/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018, SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "gc/shared/barrierSet.hpp" #include "gc/shared/barrierSetAssembler.hpp" #include "interpreter/interpreter.hpp" #include "nativeInst_ppc.hpp" #include "oops/instanceOop.hpp" #include "oops/method.hpp" #include "oops/objArrayKlass.hpp" #include "oops/oop.inline.hpp" #include "prims/methodHandles.hpp" #include "runtime/frame.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubCodeGenerator.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/thread.inline.hpp" #include "utilities/align.hpp" // Declaration and definition of StubGenerator (no .hpp file). // For a more detailed description of the stub routine structure // see the comment in stubRoutines.hpp. #define __ _masm-> #ifdef PRODUCT #define BLOCK_COMMENT(str) // nothing #else #define BLOCK_COMMENT(str) __ block_comment(str) #endif #if defined(ABI_ELFv2) #define STUB_ENTRY(name) StubRoutines::name() #else #define STUB_ENTRY(name) ((FunctionDescriptor*)StubRoutines::name())->entry() #endif class StubGenerator: public StubCodeGenerator { private: // Call stubs are used to call Java from C // // Arguments: // // R3 - call wrapper address : address // R4 - result : intptr_t* // R5 - result type : BasicType // R6 - method : Method // R7 - frame mgr entry point : address // R8 - parameter block : intptr_t* // R9 - parameter count in words : int // R10 - thread : Thread* // address generate_call_stub(address& return_address) { // Setup a new c frame, copy java arguments, call frame manager or // native_entry, and process result. StubCodeMark mark(this, "StubRoutines", "call_stub"); address start = __ function_entry(); // some sanity checks assert((sizeof(frame::abi_minframe) % 16) == 0, "unaligned"); assert((sizeof(frame::abi_reg_args) % 16) == 0, "unaligned"); assert((sizeof(frame::spill_nonvolatiles) % 16) == 0, "unaligned"); assert((sizeof(frame::parent_ijava_frame_abi) % 16) == 0, "unaligned"); assert((sizeof(frame::entry_frame_locals) % 16) == 0, "unaligned"); Register r_arg_call_wrapper_addr = R3; Register r_arg_result_addr = R4; Register r_arg_result_type = R5; Register r_arg_method = R6; Register r_arg_entry = R7; Register r_arg_thread = R10; Register r_temp = R24; Register r_top_of_arguments_addr = R25; Register r_entryframe_fp = R26; { // Stack on entry to call_stub: // // F1 [C_FRAME] // ... Register r_arg_argument_addr = R8; Register r_arg_argument_count = R9; Register r_frame_alignment_in_bytes = R27; Register r_argument_addr = R28; Register r_argumentcopy_addr = R29; Register r_argument_size_in_bytes = R30; Register r_frame_size = R23; Label arguments_copied; // Save LR/CR to caller's C_FRAME. __ save_LR_CR(R0); // Zero extend arg_argument_count. __ clrldi(r_arg_argument_count, r_arg_argument_count, 32); // Save non-volatiles GPRs to ENTRY_FRAME (not yet pushed, but it's safe). __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14)); // Keep copy of our frame pointer (caller's SP). __ mr(r_entryframe_fp, R1_SP); BLOCK_COMMENT("Push ENTRY_FRAME including arguments"); // Push ENTRY_FRAME including arguments: // // F0 [TOP_IJAVA_FRAME_ABI] // alignment (optional) // [outgoing Java arguments] // [ENTRY_FRAME_LOCALS] // F1 [C_FRAME] // ... // calculate frame size // unaligned size of arguments __ sldi(r_argument_size_in_bytes, r_arg_argument_count, Interpreter::logStackElementSize); // arguments alignment (max 1 slot) // FIXME: use round_to() here __ andi_(r_frame_alignment_in_bytes, r_arg_argument_count, 1); __ sldi(r_frame_alignment_in_bytes, r_frame_alignment_in_bytes, Interpreter::logStackElementSize); // size = unaligned size of arguments + top abi's size __ addi(r_frame_size, r_argument_size_in_bytes, frame::top_ijava_frame_abi_size); // size += arguments alignment __ add(r_frame_size, r_frame_size, r_frame_alignment_in_bytes); // size += size of call_stub locals __ addi(r_frame_size, r_frame_size, frame::entry_frame_locals_size); // push ENTRY_FRAME __ push_frame(r_frame_size, r_temp); // initialize call_stub locals (step 1) __ std(r_arg_call_wrapper_addr, _entry_frame_locals_neg(call_wrapper_address), r_entryframe_fp); __ std(r_arg_result_addr, _entry_frame_locals_neg(result_address), r_entryframe_fp); __ std(r_arg_result_type, _entry_frame_locals_neg(result_type), r_entryframe_fp); // we will save arguments_tos_address later BLOCK_COMMENT("Copy Java arguments"); // copy Java arguments // Calculate top_of_arguments_addr which will be R17_tos (not prepushed) later. // FIXME: why not simply use SP+frame::top_ijava_frame_size? __ addi(r_top_of_arguments_addr, R1_SP, frame::top_ijava_frame_abi_size); __ add(r_top_of_arguments_addr, r_top_of_arguments_addr, r_frame_alignment_in_bytes); // any arguments to copy? __ cmpdi(CCR0, r_arg_argument_count, 0); __ beq(CCR0, arguments_copied); // prepare loop and copy arguments in reverse order { // init CTR with arg_argument_count __ mtctr(r_arg_argument_count); // let r_argumentcopy_addr point to last outgoing Java arguments P __ mr(r_argumentcopy_addr, r_top_of_arguments_addr); // let r_argument_addr point to last incoming java argument __ add(r_argument_addr, r_arg_argument_addr, r_argument_size_in_bytes); __ addi(r_argument_addr, r_argument_addr, -BytesPerWord); // now loop while CTR > 0 and copy arguments { Label next_argument; __ bind(next_argument); __ ld(r_temp, 0, r_argument_addr); // argument_addr--; __ addi(r_argument_addr, r_argument_addr, -BytesPerWord); __ std(r_temp, 0, r_argumentcopy_addr); // argumentcopy_addr++; __ addi(r_argumentcopy_addr, r_argumentcopy_addr, BytesPerWord); __ bdnz(next_argument); } } // Arguments copied, continue. __ bind(arguments_copied); } { BLOCK_COMMENT("Call frame manager or native entry."); // Call frame manager or native entry. Register r_new_arg_entry = R14; assert_different_registers(r_new_arg_entry, r_top_of_arguments_addr, r_arg_method, r_arg_thread); __ mr(r_new_arg_entry, r_arg_entry); // Register state on entry to frame manager / native entry: // // tos - intptr_t* sender tos (prepushed) Lesp = (SP) + copied_arguments_offset - 8 // R19_method - Method // R16_thread - JavaThread* // Tos must point to last argument - element_size. const Register tos = R15_esp; __ addi(tos, r_top_of_arguments_addr, -Interpreter::stackElementSize); // initialize call_stub locals (step 2) // now save tos as arguments_tos_address __ std(tos, _entry_frame_locals_neg(arguments_tos_address), r_entryframe_fp); // load argument registers for call __ mr(R19_method, r_arg_method); __ mr(R16_thread, r_arg_thread); assert(tos != r_arg_method, "trashed r_arg_method"); assert(tos != r_arg_thread && R19_method != r_arg_thread, "trashed r_arg_thread"); // Set R15_prev_state to 0 for simplifying checks in callee. __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1); // Stack on entry to frame manager / native entry: // // F0 [TOP_IJAVA_FRAME_ABI] // alignment (optional) // [outgoing Java arguments] // [ENTRY_FRAME_LOCALS] // F1 [C_FRAME] // ... // // global toc register __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R11_scratch1); // Remember the senderSP so we interpreter can pop c2i arguments off of the stack // when called via a c2i. // Pass initial_caller_sp to framemanager. __ mr(R21_tmp1, R1_SP); // Do a light-weight C-call here, r_new_arg_entry holds the address // of the interpreter entry point (frame manager or native entry) // and save runtime-value of LR in return_address. assert(r_new_arg_entry != tos && r_new_arg_entry != R19_method && r_new_arg_entry != R16_thread, "trashed r_new_arg_entry"); return_address = __ call_stub(r_new_arg_entry); } { BLOCK_COMMENT("Returned from frame manager or native entry."); // Returned from frame manager or native entry. // Now pop frame, process result, and return to caller. // Stack on exit from frame manager / native entry: // // F0 [ABI] // ... // [ENTRY_FRAME_LOCALS] // F1 [C_FRAME] // ... // // Just pop the topmost frame ... // Label ret_is_object; Label ret_is_long; Label ret_is_float; Label ret_is_double; Register r_entryframe_fp = R30; Register r_lr = R7_ARG5; Register r_cr = R8_ARG6; // Reload some volatile registers which we've spilled before the call // to frame manager / native entry. // Access all locals via frame pointer, because we know nothing about // the topmost frame's size. __ ld(r_entryframe_fp, _abi(callers_sp), R1_SP); assert_different_registers(r_entryframe_fp, R3_RET, r_arg_result_addr, r_arg_result_type, r_cr, r_lr); __ ld(r_arg_result_addr, _entry_frame_locals_neg(result_address), r_entryframe_fp); __ ld(r_arg_result_type, _entry_frame_locals_neg(result_type), r_entryframe_fp); __ ld(r_cr, _abi(cr), r_entryframe_fp); __ ld(r_lr, _abi(lr), r_entryframe_fp); // pop frame and restore non-volatiles, LR and CR __ mr(R1_SP, r_entryframe_fp); __ mtcr(r_cr); __ mtlr(r_lr); // Store result depending on type. Everything that is not // T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE is treated as T_INT. __ cmpwi(CCR0, r_arg_result_type, T_OBJECT); __ cmpwi(CCR1, r_arg_result_type, T_LONG); __ cmpwi(CCR5, r_arg_result_type, T_FLOAT); __ cmpwi(CCR6, r_arg_result_type, T_DOUBLE); // restore non-volatile registers __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14)); // Stack on exit from call_stub: // // 0 [C_FRAME] // ... // // no call_stub frames left. // All non-volatiles have been restored at this point!! assert(R3_RET == R3, "R3_RET should be R3"); __ beq(CCR0, ret_is_object); __ beq(CCR1, ret_is_long); __ beq(CCR5, ret_is_float); __ beq(CCR6, ret_is_double); // default: __ stw(R3_RET, 0, r_arg_result_addr); __ blr(); // return to caller // case T_OBJECT: __ bind(ret_is_object); __ std(R3_RET, 0, r_arg_result_addr); __ blr(); // return to caller // case T_LONG: __ bind(ret_is_long); __ std(R3_RET, 0, r_arg_result_addr); __ blr(); // return to caller // case T_FLOAT: __ bind(ret_is_float); __ stfs(F1_RET, 0, r_arg_result_addr); __ blr(); // return to caller // case T_DOUBLE: __ bind(ret_is_double); __ stfd(F1_RET, 0, r_arg_result_addr); __ blr(); // return to caller } return start; } // Return point for a Java call if there's an exception thrown in // Java code. The exception is caught and transformed into a // pending exception stored in JavaThread that can be tested from // within the VM. // address generate_catch_exception() { StubCodeMark mark(this, "StubRoutines", "catch_exception"); address start = __ pc(); // Registers alive // // R16_thread // R3_ARG1 - address of pending exception // R4_ARG2 - return address in call stub const Register exception_file = R21_tmp1; const Register exception_line = R22_tmp2; __ load_const(exception_file, (void*)__FILE__); __ load_const(exception_line, (void*)__LINE__); __ std(R3_ARG1, in_bytes(JavaThread::pending_exception_offset()), R16_thread); // store into `char *' __ std(exception_file, in_bytes(JavaThread::exception_file_offset()), R16_thread); // store into `int' __ stw(exception_line, in_bytes(JavaThread::exception_line_offset()), R16_thread); // complete return to VM assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before"); __ mtlr(R4_ARG2); // continue in call stub __ blr(); return start; } // Continuation point for runtime calls returning with a pending // exception. The pending exception check happened in the runtime // or native call stub. The pending exception in Thread is // converted into a Java-level exception. // // Read: // // LR: The pc the runtime library callee wants to return to. // Since the exception occurred in the callee, the return pc // from the point of view of Java is the exception pc. // thread: Needed for method handles. // // Invalidate: // // volatile registers (except below). // // Update: // // R4_ARG2: exception // // (LR is unchanged and is live out). // address generate_forward_exception() { StubCodeMark mark(this, "StubRoutines", "forward_exception"); address start = __ pc(); #if !defined(PRODUCT) if (VerifyOops) { // Get pending exception oop. __ ld(R3_ARG1, in_bytes(Thread::pending_exception_offset()), R16_thread); // Make sure that this code is only executed if there is a pending exception. { Label L; __ cmpdi(CCR0, R3_ARG1, 0); __ bne(CCR0, L); __ stop("StubRoutines::forward exception: no pending exception (1)"); __ bind(L); } __ verify_oop(R3_ARG1, "StubRoutines::forward exception: not an oop"); } #endif // Save LR/CR and copy exception pc (LR) into R4_ARG2. __ save_LR_CR(R4_ARG2); __ push_frame_reg_args(0, R0); // Find exception handler. __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, R4_ARG2); // Copy handler's address. __ mtctr(R3_RET); __ pop_frame(); __ restore_LR_CR(R0); // Set up the arguments for the exception handler: // - R3_ARG1: exception oop // - R4_ARG2: exception pc. // Load pending exception oop. __ ld(R3_ARG1, in_bytes(Thread::pending_exception_offset()), R16_thread); // The exception pc is the return address in the caller. // Must load it into R4_ARG2. __ mflr(R4_ARG2); #ifdef ASSERT // Make sure exception is set. { Label L; __ cmpdi(CCR0, R3_ARG1, 0); __ bne(CCR0, L); __ stop("StubRoutines::forward exception: no pending exception (2)"); __ bind(L); } #endif // Clear the pending exception. __ li(R0, 0); __ std(R0, in_bytes(Thread::pending_exception_offset()), R16_thread); // Jump to exception handler. __ bctr(); return start; } #undef __ #define __ masm-> // Continuation point for throwing of implicit exceptions that are // not handled in the current activation. Fabricates an exception // oop and initiates normal exception dispatching in this // frame. Only callee-saved registers are preserved (through the // normal register window / RegisterMap handling). If the compiler // needs all registers to be preserved between the fault point and // the exception handler then it must assume responsibility for that // in AbstractCompiler::continuation_for_implicit_null_exception or // continuation_for_implicit_division_by_zero_exception. All other // implicit exceptions (e.g., NullPointerException or // AbstractMethodError on entry) are either at call sites or // otherwise assume that stack unwinding will be initiated, so // caller saved registers were assumed volatile in the compiler. // // Note that we generate only this stub into a RuntimeStub, because // it needs to be properly traversed and ignored during GC, so we // change the meaning of the "__" macro within this method. // // Note: the routine set_pc_not_at_call_for_caller in // SharedRuntime.cpp requires that this code be generated into a // RuntimeStub. address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc, Register arg1 = noreg, Register arg2 = noreg) { CodeBuffer code(name, 1024 DEBUG_ONLY(+ 512), 0); MacroAssembler* masm = new MacroAssembler(&code); OopMapSet* oop_maps = new OopMapSet(); int frame_size_in_bytes = frame::abi_reg_args_size; OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0); address start = __ pc(); __ save_LR_CR(R11_scratch1); // Push a frame. __ push_frame_reg_args(0, R11_scratch1); address frame_complete_pc = __ pc(); if (restore_saved_exception_pc) { __ unimplemented("StubGenerator::throw_exception with restore_saved_exception_pc", 74); } // Note that we always have a runtime stub frame on the top of // stack by this point. Remember the offset of the instruction // whose address will be moved to R11_scratch1. address gc_map_pc = __ get_PC_trash_LR(R11_scratch1); __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1); __ mr(R3_ARG1, R16_thread); if (arg1 != noreg) { __ mr(R4_ARG2, arg1); } if (arg2 != noreg) { __ mr(R5_ARG3, arg2); } #if defined(ABI_ELFv2) __ call_c(runtime_entry, relocInfo::none); #else __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, runtime_entry), relocInfo::none); #endif // Set an oopmap for the call site. oop_maps->add_gc_map((int)(gc_map_pc - start), map); __ reset_last_Java_frame(); #ifdef ASSERT // Make sure that this code is only executed if there is a pending // exception. { Label L; __ ld(R0, in_bytes(Thread::pending_exception_offset()), R16_thread); __ cmpdi(CCR0, R0, 0); __ bne(CCR0, L); __ stop("StubRoutines::throw_exception: no pending exception"); __ bind(L); } #endif // Pop frame. __ pop_frame(); __ restore_LR_CR(R11_scratch1); __ load_const(R11_scratch1, StubRoutines::forward_exception_entry()); __ mtctr(R11_scratch1); __ bctr(); // Create runtime stub with OopMap. RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, /*frame_complete=*/ (int)(frame_complete_pc - start), frame_size_in_bytes/wordSize, oop_maps, false); return stub->entry_point(); } #undef __ #define __ _masm-> // Support for void zero_words_aligned8(HeapWord* to, size_t count) // // Arguments: // to: // count: // // Destroys: // address generate_zero_words_aligned8() { StubCodeMark mark(this, "StubRoutines", "zero_words_aligned8"); // Implemented as in ClearArray. address start = __ function_entry(); Register base_ptr_reg = R3_ARG1; // tohw (needs to be 8b aligned) Register cnt_dwords_reg = R4_ARG2; // count (in dwords) Register tmp1_reg = R5_ARG3; Register tmp2_reg = R6_ARG4; Register zero_reg = R7_ARG5; // Procedure for large arrays (uses data cache block zero instruction). Label dwloop, fast, fastloop, restloop, lastdword, done; int cl_size = VM_Version::L1_data_cache_line_size(); int cl_dwords = cl_size >> 3; int cl_dwordaddr_bits = exact_log2(cl_dwords); int min_dcbz = 2; // Needs to be positive, apply dcbz only to at least min_dcbz cache lines. // Clear up to 128byte boundary if long enough, dword_cnt=(16-(base>>3))%16. __ dcbtst(base_ptr_reg); // Indicate write access to first cache line ... __ andi(tmp2_reg, cnt_dwords_reg, 1); // to check if number of dwords is even. __ srdi_(tmp1_reg, cnt_dwords_reg, 1); // number of double dwords __ load_const_optimized(zero_reg, 0L); // Use as zero register. __ cmpdi(CCR1, tmp2_reg, 0); // cnt_dwords even? __ beq(CCR0, lastdword); // size <= 1 __ mtctr(tmp1_reg); // Speculatively preload counter for rest loop (>0). __ cmpdi(CCR0, cnt_dwords_reg, (min_dcbz+1)*cl_dwords-1); // Big enough to ensure >=min_dcbz cache lines are included? __ neg(tmp1_reg, base_ptr_reg); // bit 0..58: bogus, bit 57..60: (16-(base>>3))%16, bit 61..63: 000 __ blt(CCR0, restloop); // Too small. (<31=(2*cl_dwords)-1 is sufficient, but bigger performs better.) __ rldicl_(tmp1_reg, tmp1_reg, 64-3, 64-cl_dwordaddr_bits); // Extract number of dwords to 128byte boundary=(16-(base>>3))%16. __ beq(CCR0, fast); // already 128byte aligned __ mtctr(tmp1_reg); // Set ctr to hit 128byte boundary (00 since size>=256-8) // Clear in first cache line dword-by-dword if not already 128byte aligned. __ bind(dwloop); __ std(zero_reg, 0, base_ptr_reg); // Clear 8byte aligned block. __ addi(base_ptr_reg, base_ptr_reg, 8); __ bdnz(dwloop); // clear 128byte blocks __ bind(fast); __ srdi(tmp1_reg, cnt_dwords_reg, cl_dwordaddr_bits); // loop count for 128byte loop (>0 since size>=256-8) __ andi(tmp2_reg, cnt_dwords_reg, 1); // to check if rest even __ mtctr(tmp1_reg); // load counter __ cmpdi(CCR1, tmp2_reg, 0); // rest even? __ rldicl_(tmp1_reg, cnt_dwords_reg, 63, 65-cl_dwordaddr_bits); // rest in double dwords __ bind(fastloop); __ dcbz(base_ptr_reg); // Clear 128byte aligned block. __ addi(base_ptr_reg, base_ptr_reg, cl_size); __ bdnz(fastloop); //__ dcbtst(base_ptr_reg); // Indicate write access to last cache line. __ beq(CCR0, lastdword); // rest<=1 __ mtctr(tmp1_reg); // load counter // Clear rest. __ bind(restloop); __ std(zero_reg, 0, base_ptr_reg); // Clear 8byte aligned block. __ std(zero_reg, 8, base_ptr_reg); // Clear 8byte aligned block. __ addi(base_ptr_reg, base_ptr_reg, 16); __ bdnz(restloop); __ bind(lastdword); __ beq(CCR1, done); __ std(zero_reg, 0, base_ptr_reg); __ bind(done); __ blr(); // return return start; } #if !defined(PRODUCT) // Wrapper which calls oopDesc::is_oop_or_null() // Only called by MacroAssembler::verify_oop static void verify_oop_helper(const char* message, oop o) { if (!oopDesc::is_oop_or_null(o)) { fatal("%s", message); } ++ StubRoutines::_verify_oop_count; } #endif // Return address of code to be called from code generated by // MacroAssembler::verify_oop. // // Don't generate, rather use C++ code. address generate_verify_oop() { // this is actually a `FunctionDescriptor*'. address start = 0; #if !defined(PRODUCT) start = CAST_FROM_FN_PTR(address, verify_oop_helper); #endif return start; } // Fairer handling of safepoints for native methods. // // Generate code which reads from the polling page. This special handling is needed as the // linux-ppc64 kernel before 2.6.6 doesn't set si_addr on some segfaults in 64bit mode // (cf. http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.6), especially when we try // to read from the safepoint polling page. address generate_load_from_poll() { StubCodeMark mark(this, "StubRoutines", "generate_load_from_poll"); address start = __ function_entry(); __ unimplemented("StubRoutines::verify_oop", 95); // TODO PPC port return start; } // -XX:+OptimizeFill : convert fill/copy loops into intrinsic // // The code is implemented(ported from sparc) as we believe it benefits JVM98, however // tracing(-XX:+TraceOptimizeFill) shows the intrinsic replacement doesn't happen at all! // // Source code in function is_range_check_if() shows that OptimizeFill relaxed the condition // for turning on loop predication optimization, and hence the behavior of "array range check" // and "loop invariant check" could be influenced, which potentially boosted JVM98. // // Generate stub for disjoint short fill. If "aligned" is true, the // "to" address is assumed to be heapword aligned. // // Arguments for generated stub: // to: R3_ARG1 // value: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_fill(BasicType t, bool aligned, const char* name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); const Register to = R3_ARG1; // source array address const Register value = R4_ARG2; // fill value const Register count = R5_ARG3; // elements count const Register temp = R6_ARG4; // temp register //assert_clean_int(count, O3); // Make sure 'count' is clean int. Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte; Label L_fill_2_bytes, L_fill_4_bytes, L_fill_elements, L_fill_32_bytes; int shift = -1; switch (t) { case T_BYTE: shift = 2; // Clone bytes (zero extend not needed because store instructions below ignore high order bytes). __ rldimi(value, value, 8, 48); // 8 bit -> 16 bit __ cmpdi(CCR0, count, 2< 32 bit break; case T_SHORT: shift = 1; // Clone bytes (zero extend not needed because store instructions below ignore high order bytes). __ rldimi(value, value, 16, 32); // 16 bit -> 32 bit __ cmpdi(CCR0, count, 2<long as above. __ rldimi(value, value, 32, 0); // 32 bit -> 64 bit Label L_check_fill_8_bytes; // Fill 32-byte chunks. __ subf_(count, temp, count); __ blt(CCR0, L_check_fill_8_bytes); Label L_fill_32_bytes_loop; __ align(32); __ bind(L_fill_32_bytes_loop); __ std(value, 0, to); __ std(value, 8, to); __ subf_(count, temp, count); // Update count. __ std(value, 16, to); __ std(value, 24, to); __ addi(to, to, 32); __ bge(CCR0, L_fill_32_bytes_loop); __ bind(L_check_fill_8_bytes); __ add_(count, temp, count); __ beq(CCR0, L_exit); __ addic_(count, count, -(2 << shift)); __ blt(CCR0, L_fill_4_bytes); // // Length is too short, just fill 8 bytes at a time. // Label L_fill_8_bytes_loop; __ bind(L_fill_8_bytes_loop); __ std(value, 0, to); __ addic_(count, count, -(2 << shift)); __ addi(to, to, 8); __ bge(CCR0, L_fill_8_bytes_loop); // Fill trailing 4 bytes. __ bind(L_fill_4_bytes); __ andi_(temp, count, 1< to or from is aligned -> copy 8 // copy a 2-element word if necessary to align to 8 bytes __ andi_(R0, R3_ARG1, 7); __ beq(CCR0, l_7); __ lwzx(tmp2, R3_ARG1, tmp3); __ addi(R5_ARG3, R5_ARG3, -4); __ stwx(tmp2, R4_ARG2, tmp3); { // FasterArrayCopy __ addi(R3_ARG1, R3_ARG1, 4); __ addi(R4_ARG2, R4_ARG2, 4); } __ bind(l_7); { // FasterArrayCopy __ cmpwi(CCR0, R5_ARG3, 31); __ ble(CCR0, l_6); // copy 2 at a time if less than 32 elements remain __ srdi(tmp1, R5_ARG3, 5); __ andi_(R5_ARG3, R5_ARG3, 31); __ mtctr(tmp1); if (!VM_Version::has_vsx()) { __ bind(l_8); // Use unrolled version for mass copying (copy 32 elements a time) // Load feeding store gets zero latency on Power6, however not on Power5. // Therefore, the following sequence is made for the good of both. __ ld(tmp1, 0, R3_ARG1); __ ld(tmp2, 8, R3_ARG1); __ ld(tmp3, 16, R3_ARG1); __ ld(tmp4, 24, R3_ARG1); __ std(tmp1, 0, R4_ARG2); __ std(tmp2, 8, R4_ARG2); __ std(tmp3, 16, R4_ARG2); __ std(tmp4, 24, R4_ARG2); __ addi(R3_ARG1, R3_ARG1, 32); __ addi(R4_ARG2, R4_ARG2, 32); __ bdnz(l_8); } else { // Processor supports VSX, so use it to mass copy. // Prefetch the data into the L2 cache. __ dcbt(R3_ARG1, 0); // If supported set DSCR pre-fetch to deepest. if (VM_Version::has_mfdscr()) { __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7); __ mtdscr(tmp2); } __ li(tmp1, 16); // Backbranch target aligned to 32-byte. Not 16-byte align as // loop contains < 8 instructions that fit inside a single // i-cache sector. __ align(32); __ bind(l_10); // Use loop with VSX load/store instructions to // copy 32 elements a time. __ lxvd2x(tmp_vsr1, R3_ARG1); // Load src __ stxvd2x(tmp_vsr1, R4_ARG2); // Store to dst __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1); // Load src + 16 __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst + 16 __ addi(R3_ARG1, R3_ARG1, 32); // Update src+=32 __ addi(R4_ARG2, R4_ARG2, 32); // Update dsc+=32 __ bdnz(l_10); // Dec CTR and loop if not zero. // Restore DSCR pre-fetch value. if (VM_Version::has_mfdscr()) { __ load_const_optimized(tmp2, VM_Version::_dscr_val); __ mtdscr(tmp2); } } // VSX } // FasterArrayCopy __ bind(l_6); // copy 4 elements at a time __ cmpwi(CCR0, R5_ARG3, 4); __ blt(CCR0, l_1); __ srdi(tmp1, R5_ARG3, 2); __ mtctr(tmp1); // is > 0 __ andi_(R5_ARG3, R5_ARG3, 3); { // FasterArrayCopy __ addi(R3_ARG1, R3_ARG1, -4); __ addi(R4_ARG2, R4_ARG2, -4); __ bind(l_3); __ lwzu(tmp2, 4, R3_ARG1); __ stwu(tmp2, 4, R4_ARG2); __ bdnz(l_3); __ addi(R3_ARG1, R3_ARG1, 4); __ addi(R4_ARG2, R4_ARG2, 4); } // do single element copy __ bind(l_1); __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_4); { // FasterArrayCopy __ mtctr(R5_ARG3); __ addi(R3_ARG1, R3_ARG1, -1); __ addi(R4_ARG2, R4_ARG2, -1); __ bind(l_5); __ lbzu(tmp2, 1, R3_ARG1); __ stbu(tmp2, 1, R4_ARG2); __ bdnz(l_5); } __ bind(l_4); __ li(R3_RET, 0); // return 0 __ blr(); return start; } // Generate stub for conjoint byte copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_conjoint_byte_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); assert_positive_int(R5_ARG3); Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; address nooverlap_target = aligned ? STUB_ENTRY(arrayof_jbyte_disjoint_arraycopy) : STUB_ENTRY(jbyte_disjoint_arraycopy); array_overlap_test(nooverlap_target, 0); // Do reverse copy. We assume the case of actual overlap is rare enough // that we don't have to optimize it. Label l_1, l_2; __ b(l_2); __ bind(l_1); __ stbx(tmp1, R4_ARG2, R5_ARG3); __ bind(l_2); __ addic_(R5_ARG3, R5_ARG3, -1); __ lbzx(tmp1, R3_ARG1, R5_ARG3); __ bge(CCR0, l_1); __ li(R3_RET, 0); // return 0 __ blr(); return start; } // Generate stub for disjoint short copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // elm.count: R5_ARG3 treated as signed // // Strategy for aligned==true: // // If length <= 9: // 1. copy 2 elements at a time (l_6) // 2. copy last element if original element count was odd (l_1) // // If length > 9: // 1. copy 4 elements at a time until less than 4 elements are left (l_7) // 2. copy 2 elements at a time until less than 2 elements are left (l_6) // 3. copy last element if one was left in step 2. (l_1) // // // Strategy for aligned==false: // // If length <= 9: same as aligned==true case, but NOTE: load/stores // can be unaligned (see comment below) // // If length > 9: // 1. continue with step 6. if the alignment of from and to mod 4 // is different. // 2. align from and to to 4 bytes by copying 1 element if necessary // 3. at l_2 from and to are 4 byte aligned; continue with // 5. if they cannot be aligned to 8 bytes because they have // got different alignment mod 8. // 4. at this point we know that both, from and to, have the same // alignment mod 8, now copy one element if necessary to get // 8 byte alignment of from and to. // 5. copy 4 elements at a time until less than 4 elements are // left; depending on step 3. all load/stores are aligned or // either all loads or all stores are unaligned. // 6. copy 2 elements at a time until less than 2 elements are // left (l_6); arriving here from step 1., there is a chance // that all accesses are unaligned. // 7. copy last element if one was left in step 6. (l_1) // // There are unaligned data accesses using integer load/store // instructions in this stub. POWER allows such accesses. // // According to the manuals (PowerISA_V2.06_PUBLIC, Book II, // Chapter 2: Effect of Operand Placement on Performance) unaligned // integer load/stores have good performance. Only unaligned // floating point load/stores can have poor performance. // // TODO: // // 1. check if aligning the backbranch target of loops is beneficial // address generate_disjoint_short_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; Register tmp4 = R9_ARG7; VectorSRegister tmp_vsr1 = VSR1; VectorSRegister tmp_vsr2 = VSR2; address start = __ function_entry(); assert_positive_int(R5_ARG3); Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8, l_9; // don't try anything fancy if arrays don't have many elements __ li(tmp3, 0); __ cmpwi(CCR0, R5_ARG3, 9); __ ble(CCR0, l_6); // copy 2 at a time if (!aligned) { __ xorr(tmp1, R3_ARG1, R4_ARG2); __ andi_(tmp1, tmp1, 3); __ bne(CCR0, l_6); // if arrays don't have the same alignment mod 4, do 2 element copy // At this point it is guaranteed that both, from and to have the same alignment mod 4. // Copy 1 element if necessary to align to 4 bytes. __ andi_(tmp1, R3_ARG1, 3); __ beq(CCR0, l_2); __ lhz(tmp2, 0, R3_ARG1); __ addi(R3_ARG1, R3_ARG1, 2); __ sth(tmp2, 0, R4_ARG2); __ addi(R4_ARG2, R4_ARG2, 2); __ addi(R5_ARG3, R5_ARG3, -1); __ bind(l_2); // At this point the positions of both, from and to, are at least 4 byte aligned. // Copy 4 elements at a time. // Align to 8 bytes, but only if both, from and to, have same alignment mod 8. __ xorr(tmp2, R3_ARG1, R4_ARG2); __ andi_(tmp1, tmp2, 7); __ bne(CCR0, l_7); // not same alignment mod 8 -> copy 4, either from or to will be unaligned // Copy a 2-element word if necessary to align to 8 bytes. __ andi_(R0, R3_ARG1, 7); __ beq(CCR0, l_7); __ lwzx(tmp2, R3_ARG1, tmp3); __ addi(R5_ARG3, R5_ARG3, -2); __ stwx(tmp2, R4_ARG2, tmp3); { // FasterArrayCopy __ addi(R3_ARG1, R3_ARG1, 4); __ addi(R4_ARG2, R4_ARG2, 4); } } __ bind(l_7); // Copy 4 elements at a time; either the loads or the stores can // be unaligned if aligned == false. { // FasterArrayCopy __ cmpwi(CCR0, R5_ARG3, 15); __ ble(CCR0, l_6); // copy 2 at a time if less than 16 elements remain __ srdi(tmp1, R5_ARG3, 4); __ andi_(R5_ARG3, R5_ARG3, 15); __ mtctr(tmp1); if (!VM_Version::has_vsx()) { __ bind(l_8); // Use unrolled version for mass copying (copy 16 elements a time). // Load feeding store gets zero latency on Power6, however not on Power5. // Therefore, the following sequence is made for the good of both. __ ld(tmp1, 0, R3_ARG1); __ ld(tmp2, 8, R3_ARG1); __ ld(tmp3, 16, R3_ARG1); __ ld(tmp4, 24, R3_ARG1); __ std(tmp1, 0, R4_ARG2); __ std(tmp2, 8, R4_ARG2); __ std(tmp3, 16, R4_ARG2); __ std(tmp4, 24, R4_ARG2); __ addi(R3_ARG1, R3_ARG1, 32); __ addi(R4_ARG2, R4_ARG2, 32); __ bdnz(l_8); } else { // Processor supports VSX, so use it to mass copy. // Prefetch src data into L2 cache. __ dcbt(R3_ARG1, 0); // If supported set DSCR pre-fetch to deepest. if (VM_Version::has_mfdscr()) { __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7); __ mtdscr(tmp2); } __ li(tmp1, 16); // Backbranch target aligned to 32-byte. It's not aligned 16-byte // as loop contains < 8 instructions that fit inside a single // i-cache sector. __ align(32); __ bind(l_9); // Use loop with VSX load/store instructions to // copy 16 elements a time. __ lxvd2x(tmp_vsr1, R3_ARG1); // Load from src. __ stxvd2x(tmp_vsr1, R4_ARG2); // Store to dst. __ lxvd2x(tmp_vsr2, R3_ARG1, tmp1); // Load from src + 16. __ stxvd2x(tmp_vsr2, R4_ARG2, tmp1); // Store to dst + 16. __ addi(R3_ARG1, R3_ARG1, 32); // Update src+=32. __ addi(R4_ARG2, R4_ARG2, 32); // Update dsc+=32. __ bdnz(l_9); // Dec CTR and loop if not zero. // Restore DSCR pre-fetch value. if (VM_Version::has_mfdscr()) { __ load_const_optimized(tmp2, VM_Version::_dscr_val); __ mtdscr(tmp2); } } } // FasterArrayCopy __ bind(l_6); // copy 2 elements at a time { // FasterArrayCopy __ cmpwi(CCR0, R5_ARG3, 2); __ blt(CCR0, l_1); __ srdi(tmp1, R5_ARG3, 1); __ andi_(R5_ARG3, R5_ARG3, 1); __ addi(R3_ARG1, R3_ARG1, -4); __ addi(R4_ARG2, R4_ARG2, -4); __ mtctr(tmp1); __ bind(l_3); __ lwzu(tmp2, 4, R3_ARG1); __ stwu(tmp2, 4, R4_ARG2); __ bdnz(l_3); __ addi(R3_ARG1, R3_ARG1, 4); __ addi(R4_ARG2, R4_ARG2, 4); } // do single element copy __ bind(l_1); __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_4); { // FasterArrayCopy __ mtctr(R5_ARG3); __ addi(R3_ARG1, R3_ARG1, -2); __ addi(R4_ARG2, R4_ARG2, -2); __ bind(l_5); __ lhzu(tmp2, 2, R3_ARG1); __ sthu(tmp2, 2, R4_ARG2); __ bdnz(l_5); } __ bind(l_4); __ li(R3_RET, 0); // return 0 __ blr(); return start; } // Generate stub for conjoint short copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_conjoint_short_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); assert_positive_int(R5_ARG3); Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; address nooverlap_target = aligned ? STUB_ENTRY(arrayof_jshort_disjoint_arraycopy) : STUB_ENTRY(jshort_disjoint_arraycopy); array_overlap_test(nooverlap_target, 1); Label l_1, l_2; __ sldi(tmp1, R5_ARG3, 1); __ b(l_2); __ bind(l_1); __ sthx(tmp2, R4_ARG2, tmp1); __ bind(l_2); __ addic_(tmp1, tmp1, -2); __ lhzx(tmp2, R3_ARG1, tmp1); __ bge(CCR0, l_1); __ li(R3_RET, 0); // return 0 __ blr(); return start; } // Generate core code for disjoint int copy (and oop copy on 32-bit). If "aligned" // is true, the "from" and "to" addresses are assumed to be heapword aligned. // // Arguments: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // void generate_disjoint_int_copy_core(bool aligned) { Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; Register tmp4 = R0; VectorSRegister tmp_vsr1 = VSR1; VectorSRegister tmp_vsr2 = VSR2; Label l_1, l_2, l_3, l_4, l_5, l_6, l_7; // for short arrays, just do single element copy __ li(tmp3, 0); __ cmpwi(CCR0, R5_ARG3, 5); __ ble(CCR0, l_2); if (!aligned) { // check if arrays have same alignment mod 8. __ xorr(tmp1, R3_ARG1, R4_ARG2); __ andi_(R0, tmp1, 7); // Not the same alignment, but ld and std just need to be 4 byte aligned. __ bne(CCR0, l_4); // to OR from is 8 byte aligned -> copy 2 at a time // copy 1 element to align to and from on an 8 byte boundary __ andi_(R0, R3_ARG1, 7); __ beq(CCR0, l_4); __ lwzx(tmp2, R3_ARG1, tmp3); __ addi(R5_ARG3, R5_ARG3, -1); __ stwx(tmp2, R4_ARG2, tmp3); { // FasterArrayCopy __ addi(R3_ARG1, R3_ARG1, 4); __ addi(R4_ARG2, R4_ARG2, 4); } __ bind(l_4); } { // FasterArrayCopy __ cmpwi(CCR0, R5_ARG3, 7); __ ble(CCR0, l_2); // copy 1 at a time if less than 8 elements remain __ srdi(tmp1, R5_ARG3, 3); __ andi_(R5_ARG3, R5_ARG3, 7); __ mtctr(tmp1); if (!VM_Version::has_vsx()) { __ bind(l_6); // Use unrolled version for mass copying (copy 8 elements a time). // Load feeding store gets zero latency on power6, however not on power 5. // Therefore, the following sequence is made for the good of both. __ ld(tmp1, 0, R3_ARG1); __ ld(tmp2, 8, R3_ARG1); __ ld(tmp3, 16, R3_ARG1); __ ld(tmp4, 24, R3_ARG1); __ std(tmp1, 0, R4_ARG2); __ std(tmp2, 8, R4_ARG2); __ std(tmp3, 16, R4_ARG2); __ std(tmp4, 24, R4_ARG2); __ addi(R3_ARG1, R3_ARG1, 32); __ addi(R4_ARG2, R4_ARG2, 32); __ bdnz(l_6); } else { // Processor supports VSX, so use it to mass copy. // Prefetch the data into the L2 cache. __ dcbt(R3_ARG1, 0); // If supported set DSCR pre-fetch to deepest. if (VM_Version::has_mfdscr()) { __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7); __ mtdscr(tmp2); } __ li(tmp1, 16); // Backbranch target aligned to 32-byte. Not 16-byte align as // loop contains < 8 instructions that fit inside a single // i-cache sector. __ align(32); __ bind(l_7); // Use loop with VSX load/store instructions to // copy 8 elements a time. __ lxvd2x(tmp_vsr1, R3_ARG1); // Load src __ stxvd2x(tmp_vsr1, R4_ARG2); // Store to dst __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1); // Load src + 16 __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst + 16 __ addi(R3_ARG1, R3_ARG1, 32); // Update src+=32 __ addi(R4_ARG2, R4_ARG2, 32); // Update dsc+=32 __ bdnz(l_7); // Dec CTR and loop if not zero. // Restore DSCR pre-fetch value. if (VM_Version::has_mfdscr()) { __ load_const_optimized(tmp2, VM_Version::_dscr_val); __ mtdscr(tmp2); } } // VSX } // FasterArrayCopy // copy 1 element at a time __ bind(l_2); __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_1); { // FasterArrayCopy __ mtctr(R5_ARG3); __ addi(R3_ARG1, R3_ARG1, -4); __ addi(R4_ARG2, R4_ARG2, -4); __ bind(l_3); __ lwzu(tmp2, 4, R3_ARG1); __ stwu(tmp2, 4, R4_ARG2); __ bdnz(l_3); } __ bind(l_1); return; } // Generate stub for disjoint int copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_disjoint_int_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); assert_positive_int(R5_ARG3); generate_disjoint_int_copy_core(aligned); __ li(R3_RET, 0); // return 0 __ blr(); return start; } // Generate core code for conjoint int copy (and oop copy on // 32-bit). If "aligned" is true, the "from" and "to" addresses // are assumed to be heapword aligned. // // Arguments: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // void generate_conjoint_int_copy_core(bool aligned) { // Do reverse copy. We assume the case of actual overlap is rare enough // that we don't have to optimize it. Label l_1, l_2, l_3, l_4, l_5, l_6, l_7; Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; Register tmp4 = R0; VectorSRegister tmp_vsr1 = VSR1; VectorSRegister tmp_vsr2 = VSR2; { // FasterArrayCopy __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_6); __ sldi(R5_ARG3, R5_ARG3, 2); __ add(R3_ARG1, R3_ARG1, R5_ARG3); __ add(R4_ARG2, R4_ARG2, R5_ARG3); __ srdi(R5_ARG3, R5_ARG3, 2); if (!aligned) { // check if arrays have same alignment mod 8. __ xorr(tmp1, R3_ARG1, R4_ARG2); __ andi_(R0, tmp1, 7); // Not the same alignment, but ld and std just need to be 4 byte aligned. __ bne(CCR0, l_7); // to OR from is 8 byte aligned -> copy 2 at a time // copy 1 element to align to and from on an 8 byte boundary __ andi_(R0, R3_ARG1, 7); __ beq(CCR0, l_7); __ addi(R3_ARG1, R3_ARG1, -4); __ addi(R4_ARG2, R4_ARG2, -4); __ addi(R5_ARG3, R5_ARG3, -1); __ lwzx(tmp2, R3_ARG1); __ stwx(tmp2, R4_ARG2); __ bind(l_7); } __ cmpwi(CCR0, R5_ARG3, 7); __ ble(CCR0, l_5); // copy 1 at a time if less than 8 elements remain __ srdi(tmp1, R5_ARG3, 3); __ andi(R5_ARG3, R5_ARG3, 7); __ mtctr(tmp1); if (!VM_Version::has_vsx()) { __ bind(l_4); // Use unrolled version for mass copying (copy 4 elements a time). // Load feeding store gets zero latency on Power6, however not on Power5. // Therefore, the following sequence is made for the good of both. __ addi(R3_ARG1, R3_ARG1, -32); __ addi(R4_ARG2, R4_ARG2, -32); __ ld(tmp4, 24, R3_ARG1); __ ld(tmp3, 16, R3_ARG1); __ ld(tmp2, 8, R3_ARG1); __ ld(tmp1, 0, R3_ARG1); __ std(tmp4, 24, R4_ARG2); __ std(tmp3, 16, R4_ARG2); __ std(tmp2, 8, R4_ARG2); __ std(tmp1, 0, R4_ARG2); __ bdnz(l_4); } else { // Processor supports VSX, so use it to mass copy. // Prefetch the data into the L2 cache. __ dcbt(R3_ARG1, 0); // If supported set DSCR pre-fetch to deepest. if (VM_Version::has_mfdscr()) { __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7); __ mtdscr(tmp2); } __ li(tmp1, 16); // Backbranch target aligned to 32-byte. Not 16-byte align as // loop contains < 8 instructions that fit inside a single // i-cache sector. __ align(32); __ bind(l_4); // Use loop with VSX load/store instructions to // copy 8 elements a time. __ addi(R3_ARG1, R3_ARG1, -32); // Update src-=32 __ addi(R4_ARG2, R4_ARG2, -32); // Update dsc-=32 __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1); // Load src+16 __ lxvd2x(tmp_vsr1, R3_ARG1); // Load src __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst+16 __ stxvd2x(tmp_vsr1, R4_ARG2); // Store to dst __ bdnz(l_4); // Restore DSCR pre-fetch value. if (VM_Version::has_mfdscr()) { __ load_const_optimized(tmp2, VM_Version::_dscr_val); __ mtdscr(tmp2); } } __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_6); __ bind(l_5); __ mtctr(R5_ARG3); __ bind(l_3); __ lwz(R0, -4, R3_ARG1); __ stw(R0, -4, R4_ARG2); __ addi(R3_ARG1, R3_ARG1, -4); __ addi(R4_ARG2, R4_ARG2, -4); __ bdnz(l_3); __ bind(l_6); } } // Generate stub for conjoint int copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_conjoint_int_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); assert_positive_int(R5_ARG3); address nooverlap_target = aligned ? STUB_ENTRY(arrayof_jint_disjoint_arraycopy) : STUB_ENTRY(jint_disjoint_arraycopy); array_overlap_test(nooverlap_target, 2); generate_conjoint_int_copy_core(aligned); __ li(R3_RET, 0); // return 0 __ blr(); return start; } // Generate core code for disjoint long copy (and oop copy on // 64-bit). If "aligned" is true, the "from" and "to" addresses // are assumed to be heapword aligned. // // Arguments: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // void generate_disjoint_long_copy_core(bool aligned) { Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; Register tmp4 = R0; Label l_1, l_2, l_3, l_4, l_5; VectorSRegister tmp_vsr1 = VSR1; VectorSRegister tmp_vsr2 = VSR2; { // FasterArrayCopy __ cmpwi(CCR0, R5_ARG3, 3); __ ble(CCR0, l_3); // copy 1 at a time if less than 4 elements remain __ srdi(tmp1, R5_ARG3, 2); __ andi_(R5_ARG3, R5_ARG3, 3); __ mtctr(tmp1); if (!VM_Version::has_vsx()) { __ bind(l_4); // Use unrolled version for mass copying (copy 4 elements a time). // Load feeding store gets zero latency on Power6, however not on Power5. // Therefore, the following sequence is made for the good of both. __ ld(tmp1, 0, R3_ARG1); __ ld(tmp2, 8, R3_ARG1); __ ld(tmp3, 16, R3_ARG1); __ ld(tmp4, 24, R3_ARG1); __ std(tmp1, 0, R4_ARG2); __ std(tmp2, 8, R4_ARG2); __ std(tmp3, 16, R4_ARG2); __ std(tmp4, 24, R4_ARG2); __ addi(R3_ARG1, R3_ARG1, 32); __ addi(R4_ARG2, R4_ARG2, 32); __ bdnz(l_4); } else { // Processor supports VSX, so use it to mass copy. // Prefetch the data into the L2 cache. __ dcbt(R3_ARG1, 0); // If supported set DSCR pre-fetch to deepest. if (VM_Version::has_mfdscr()) { __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7); __ mtdscr(tmp2); } __ li(tmp1, 16); // Backbranch target aligned to 32-byte. Not 16-byte align as // loop contains < 8 instructions that fit inside a single // i-cache sector. __ align(32); __ bind(l_5); // Use loop with VSX load/store instructions to // copy 4 elements a time. __ lxvd2x(tmp_vsr1, R3_ARG1); // Load src __ stxvd2x(tmp_vsr1, R4_ARG2); // Store to dst __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1); // Load src + 16 __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst + 16 __ addi(R3_ARG1, R3_ARG1, 32); // Update src+=32 __ addi(R4_ARG2, R4_ARG2, 32); // Update dsc+=32 __ bdnz(l_5); // Dec CTR and loop if not zero. // Restore DSCR pre-fetch value. if (VM_Version::has_mfdscr()) { __ load_const_optimized(tmp2, VM_Version::_dscr_val); __ mtdscr(tmp2); } } // VSX } // FasterArrayCopy // copy 1 element at a time __ bind(l_3); __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_1); { // FasterArrayCopy __ mtctr(R5_ARG3); __ addi(R3_ARG1, R3_ARG1, -8); __ addi(R4_ARG2, R4_ARG2, -8); __ bind(l_2); __ ldu(R0, 8, R3_ARG1); __ stdu(R0, 8, R4_ARG2); __ bdnz(l_2); } __ bind(l_1); } // Generate stub for disjoint long copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_disjoint_long_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); assert_positive_int(R5_ARG3); generate_disjoint_long_copy_core(aligned); __ li(R3_RET, 0); // return 0 __ blr(); return start; } // Generate core code for conjoint long copy (and oop copy on // 64-bit). If "aligned" is true, the "from" and "to" addresses // are assumed to be heapword aligned. // // Arguments: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // void generate_conjoint_long_copy_core(bool aligned) { Register tmp1 = R6_ARG4; Register tmp2 = R7_ARG5; Register tmp3 = R8_ARG6; Register tmp4 = R0; VectorSRegister tmp_vsr1 = VSR1; VectorSRegister tmp_vsr2 = VSR2; Label l_1, l_2, l_3, l_4, l_5; __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_1); { // FasterArrayCopy __ sldi(R5_ARG3, R5_ARG3, 3); __ add(R3_ARG1, R3_ARG1, R5_ARG3); __ add(R4_ARG2, R4_ARG2, R5_ARG3); __ srdi(R5_ARG3, R5_ARG3, 3); __ cmpwi(CCR0, R5_ARG3, 3); __ ble(CCR0, l_5); // copy 1 at a time if less than 4 elements remain __ srdi(tmp1, R5_ARG3, 2); __ andi(R5_ARG3, R5_ARG3, 3); __ mtctr(tmp1); if (!VM_Version::has_vsx()) { __ bind(l_4); // Use unrolled version for mass copying (copy 4 elements a time). // Load feeding store gets zero latency on Power6, however not on Power5. // Therefore, the following sequence is made for the good of both. __ addi(R3_ARG1, R3_ARG1, -32); __ addi(R4_ARG2, R4_ARG2, -32); __ ld(tmp4, 24, R3_ARG1); __ ld(tmp3, 16, R3_ARG1); __ ld(tmp2, 8, R3_ARG1); __ ld(tmp1, 0, R3_ARG1); __ std(tmp4, 24, R4_ARG2); __ std(tmp3, 16, R4_ARG2); __ std(tmp2, 8, R4_ARG2); __ std(tmp1, 0, R4_ARG2); __ bdnz(l_4); } else { // Processor supports VSX, so use it to mass copy. // Prefetch the data into the L2 cache. __ dcbt(R3_ARG1, 0); // If supported set DSCR pre-fetch to deepest. if (VM_Version::has_mfdscr()) { __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7); __ mtdscr(tmp2); } __ li(tmp1, 16); // Backbranch target aligned to 32-byte. Not 16-byte align as // loop contains < 8 instructions that fit inside a single // i-cache sector. __ align(32); __ bind(l_4); // Use loop with VSX load/store instructions to // copy 4 elements a time. __ addi(R3_ARG1, R3_ARG1, -32); // Update src-=32 __ addi(R4_ARG2, R4_ARG2, -32); // Update dsc-=32 __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1); // Load src+16 __ lxvd2x(tmp_vsr1, R3_ARG1); // Load src __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst+16 __ stxvd2x(tmp_vsr1, R4_ARG2); // Store to dst __ bdnz(l_4); // Restore DSCR pre-fetch value. if (VM_Version::has_mfdscr()) { __ load_const_optimized(tmp2, VM_Version::_dscr_val); __ mtdscr(tmp2); } } __ cmpwi(CCR0, R5_ARG3, 0); __ beq(CCR0, l_1); __ bind(l_5); __ mtctr(R5_ARG3); __ bind(l_3); __ ld(R0, -8, R3_ARG1); __ std(R0, -8, R4_ARG2); __ addi(R3_ARG1, R3_ARG1, -8); __ addi(R4_ARG2, R4_ARG2, -8); __ bdnz(l_3); } __ bind(l_1); } // Generate stub for conjoint long copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // address generate_conjoint_long_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); assert_positive_int(R5_ARG3); address nooverlap_target = aligned ? STUB_ENTRY(arrayof_jlong_disjoint_arraycopy) : STUB_ENTRY(jlong_disjoint_arraycopy); array_overlap_test(nooverlap_target, 3); generate_conjoint_long_copy_core(aligned); __ li(R3_RET, 0); // return 0 __ blr(); return start; } // Generate stub for conjoint oop copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // dest_uninitialized: G1 support // address generate_conjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); assert_positive_int(R5_ARG3); address nooverlap_target = aligned ? STUB_ENTRY(arrayof_oop_disjoint_arraycopy) : STUB_ENTRY(oop_disjoint_arraycopy); DecoratorSet decorators = 0; if (dest_uninitialized) { decorators |= AS_DEST_NOT_INITIALIZED; } if (aligned) { decorators |= ARRAYCOPY_ALIGNED; } BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->arraycopy_prologue(_masm, decorators, T_OBJECT, R3_ARG1, R4_ARG2, R5_ARG3, noreg, noreg); if (UseCompressedOops) { array_overlap_test(nooverlap_target, 2); generate_conjoint_int_copy_core(aligned); } else { array_overlap_test(nooverlap_target, 3); generate_conjoint_long_copy_core(aligned); } bs->arraycopy_epilogue(_masm, decorators, T_OBJECT, R4_ARG2, R5_ARG3, noreg); __ li(R3_RET, 0); // return 0 __ blr(); return start; } // Generate stub for disjoint oop copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: R3_ARG1 // to: R4_ARG2 // count: R5_ARG3 treated as signed // dest_uninitialized: G1 support // address generate_disjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) { StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); assert_positive_int(R5_ARG3); DecoratorSet decorators = ARRAYCOPY_DISJOINT; if (dest_uninitialized) { decorators |= AS_DEST_NOT_INITIALIZED; } if (aligned) { decorators |= ARRAYCOPY_ALIGNED; } BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->arraycopy_prologue(_masm, decorators, T_OBJECT, R3_ARG1, R4_ARG2, R5_ARG3, noreg, noreg); if (UseCompressedOops) { generate_disjoint_int_copy_core(aligned); } else { generate_disjoint_long_copy_core(aligned); } bs->arraycopy_epilogue(_masm, decorators, T_OBJECT, R4_ARG2, R5_ARG3, noreg); __ li(R3_RET, 0); // return 0 __ blr(); return start; } // Helper for generating a dynamic type check. // Smashes only the given temp registers. void generate_type_check(Register sub_klass, Register super_check_offset, Register super_klass, Register temp, Label& L_success) { assert_different_registers(sub_klass, super_check_offset, super_klass); BLOCK_COMMENT("type_check:"); Label L_miss; __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, R0, &L_success, &L_miss, NULL, super_check_offset); __ check_klass_subtype_slow_path(sub_klass, super_klass, temp, R0, &L_success, NULL); // Fall through on failure! __ bind(L_miss); } // Generate stub for checked oop copy. // // Arguments for generated stub: // from: R3 // to: R4 // count: R5 treated as signed // ckoff: R6 (super_check_offset) // ckval: R7 (super_klass) // ret: R3 zero for success; (-1^K) where K is partial transfer count // address generate_checkcast_copy(const char *name, bool dest_uninitialized) { const Register R3_from = R3_ARG1; // source array address const Register R4_to = R4_ARG2; // destination array address const Register R5_count = R5_ARG3; // elements count const Register R6_ckoff = R6_ARG4; // super_check_offset const Register R7_ckval = R7_ARG5; // super_klass const Register R8_offset = R8_ARG6; // loop var, with stride wordSize const Register R9_remain = R9_ARG7; // loop var, with stride -1 const Register R10_oop = R10_ARG8; // actual oop copied const Register R11_klass = R11_scratch1; // oop._klass const Register R12_tmp = R12_scratch2; const Register R2_minus1 = R2; //__ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); // Assert that int is 64 bit sign extended and arrays are not conjoint. #ifdef ASSERT { assert_positive_int(R5_ARG3); const Register tmp1 = R11_scratch1, tmp2 = R12_scratch2; Label no_overlap; __ subf(tmp1, R3_ARG1, R4_ARG2); // distance in bytes __ sldi(tmp2, R5_ARG3, LogBytesPerHeapOop); // size in bytes __ cmpld(CCR0, R3_ARG1, R4_ARG2); // Use unsigned comparison! __ cmpld(CCR1, tmp1, tmp2); __ crnand(CCR0, Assembler::less, CCR1, Assembler::less); // Overlaps if Src before dst and distance smaller than size. // Branch to forward copy routine otherwise. __ blt(CCR0, no_overlap); __ stop("overlap in checkcast_copy", 0x9543); __ bind(no_overlap); } #endif DecoratorSet decorators = ARRAYCOPY_CHECKCAST; if (dest_uninitialized) { decorators |= AS_DEST_NOT_INITIALIZED; } BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->arraycopy_prologue(_masm, decorators, T_OBJECT, R3_from, R4_to, R5_count, /* preserve: */ R6_ckoff, R7_ckval); //inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, R12_tmp, R3_RET); Label load_element, store_element, store_null, success, do_epilogue; __ or_(R9_remain, R5_count, R5_count); // Initialize loop index, and test it. __ li(R8_offset, 0); // Offset from start of arrays. __ li(R2_minus1, -1); __ bne(CCR0, load_element); // Empty array: Nothing to do. __ li(R3_RET, 0); // Return 0 on (trivial) success. __ blr(); // ======== begin loop ======== // (Entry is load_element.) __ align(OptoLoopAlignment); __ bind(store_element); if (UseCompressedOops) { __ encode_heap_oop_not_null(R10_oop); __ bind(store_null); __ stw(R10_oop, R8_offset, R4_to); } else { __ bind(store_null); __ std(R10_oop, R8_offset, R4_to); } __ addi(R8_offset, R8_offset, heapOopSize); // Step to next offset. __ add_(R9_remain, R2_minus1, R9_remain); // Decrement the count. __ beq(CCR0, success); // ======== loop entry is here ======== __ bind(load_element); __ load_heap_oop(R10_oop, R8_offset, R3_from, &store_null); // Load the oop. __ load_klass(R11_klass, R10_oop); // Query the object klass. generate_type_check(R11_klass, R6_ckoff, R7_ckval, R12_tmp, // Branch to this on success: store_element); // ======== end loop ======== // It was a real error; we must depend on the caller to finish the job. // Register R9_remain has number of *remaining* oops, R5_count number of *total* oops. // Emit GC store barriers for the oops we have copied (R5_count minus R9_remain), // and report their number to the caller. __ subf_(R5_count, R9_remain, R5_count); __ nand(R3_RET, R5_count, R5_count); // report (-1^K) to caller __ bne(CCR0, do_epilogue); __ blr(); __ bind(success); __ li(R3_RET, 0); __ bind(do_epilogue); bs->arraycopy_epilogue(_masm, decorators, T_OBJECT, R4_to, R5_count, /* preserve */ R3_RET); __ blr(); return start; } // Generate 'unsafe' array copy stub. // Though just as safe as the other stubs, it takes an unscaled // size_t argument instead of an element count. // // Arguments for generated stub: // from: R3 // to: R4 // count: R5 byte count, treated as ssize_t, can be zero // // Examines the alignment of the operands and dispatches // to a long, int, short, or byte copy loop. // address generate_unsafe_copy(const char* name, address byte_copy_entry, address short_copy_entry, address int_copy_entry, address long_copy_entry) { const Register R3_from = R3_ARG1; // source array address const Register R4_to = R4_ARG2; // destination array address const Register R5_count = R5_ARG3; // elements count (as long on PPC64) const Register R6_bits = R6_ARG4; // test copy of low bits const Register R7_tmp = R7_ARG5; //__ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); // Bump this on entry, not on exit: //inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, R6_bits, R7_tmp); Label short_copy, int_copy, long_copy; __ orr(R6_bits, R3_from, R4_to); __ orr(R6_bits, R6_bits, R5_count); __ andi_(R0, R6_bits, (BytesPerLong-1)); __ beq(CCR0, long_copy); __ andi_(R0, R6_bits, (BytesPerInt-1)); __ beq(CCR0, int_copy); __ andi_(R0, R6_bits, (BytesPerShort-1)); __ beq(CCR0, short_copy); // byte_copy: __ b(byte_copy_entry); __ bind(short_copy); __ srwi(R5_count, R5_count, LogBytesPerShort); __ b(short_copy_entry); __ bind(int_copy); __ srwi(R5_count, R5_count, LogBytesPerInt); __ b(int_copy_entry); __ bind(long_copy); __ srwi(R5_count, R5_count, LogBytesPerLong); __ b(long_copy_entry); return start; } // Perform range checks on the proposed arraycopy. // Kills the two temps, but nothing else. // Also, clean the sign bits of src_pos and dst_pos. void arraycopy_range_checks(Register src, // source array oop Register src_pos, // source position Register dst, // destination array oop Register dst_pos, // destination position Register length, // length of copy Register temp1, Register temp2, Label& L_failed) { BLOCK_COMMENT("arraycopy_range_checks:"); const Register array_length = temp1; // scratch const Register end_pos = temp2; // scratch // if (src_pos + length > arrayOop(src)->length() ) FAIL; __ lwa(array_length, arrayOopDesc::length_offset_in_bytes(), src); __ add(end_pos, src_pos, length); // src_pos + length __ cmpd(CCR0, end_pos, array_length); __ bgt(CCR0, L_failed); // if (dst_pos + length > arrayOop(dst)->length() ) FAIL; __ lwa(array_length, arrayOopDesc::length_offset_in_bytes(), dst); __ add(end_pos, dst_pos, length); // src_pos + length __ cmpd(CCR0, end_pos, array_length); __ bgt(CCR0, L_failed); BLOCK_COMMENT("arraycopy_range_checks done"); } // // Generate generic array copy stubs // // Input: // R3 - src oop // R4 - src_pos // R5 - dst oop // R6 - dst_pos // R7 - element count // // Output: // R3 == 0 - success // R3 == -1 - need to call System.arraycopy // address generate_generic_copy(const char *name, address entry_jbyte_arraycopy, address entry_jshort_arraycopy, address entry_jint_arraycopy, address entry_oop_arraycopy, address entry_disjoint_oop_arraycopy, address entry_jlong_arraycopy, address entry_checkcast_arraycopy) { Label L_failed, L_objArray; // Input registers const Register src = R3_ARG1; // source array oop const Register src_pos = R4_ARG2; // source position const Register dst = R5_ARG3; // destination array oop const Register dst_pos = R6_ARG4; // destination position const Register length = R7_ARG5; // elements count // registers used as temp const Register src_klass = R8_ARG6; // source array klass const Register dst_klass = R9_ARG7; // destination array klass const Register lh = R10_ARG8; // layout handler const Register temp = R2; //__ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); // Bump this on entry, not on exit: //inc_counter_np(SharedRuntime::_generic_array_copy_ctr, lh, temp); // In principle, the int arguments could be dirty. //----------------------------------------------------------------------- // Assembler stubs will be used for this call to arraycopy // if the following conditions are met: // // (1) src and dst must not be null. // (2) src_pos must not be negative. // (3) dst_pos must not be negative. // (4) length must not be negative. // (5) src klass and dst klass should be the same and not NULL. // (6) src and dst should be arrays. // (7) src_pos + length must not exceed length of src. // (8) dst_pos + length must not exceed length of dst. BLOCK_COMMENT("arraycopy initial argument checks"); __ cmpdi(CCR1, src, 0); // if (src == NULL) return -1; __ extsw_(src_pos, src_pos); // if (src_pos < 0) return -1; __ cmpdi(CCR5, dst, 0); // if (dst == NULL) return -1; __ cror(CCR1, Assembler::equal, CCR0, Assembler::less); __ extsw_(dst_pos, dst_pos); // if (src_pos < 0) return -1; __ cror(CCR5, Assembler::equal, CCR0, Assembler::less); __ extsw_(length, length); // if (length < 0) return -1; __ cror(CCR1, Assembler::equal, CCR5, Assembler::equal); __ cror(CCR1, Assembler::equal, CCR0, Assembler::less); __ beq(CCR1, L_failed); BLOCK_COMMENT("arraycopy argument klass checks"); __ load_klass(src_klass, src); __ load_klass(dst_klass, dst); // Load layout helper // // |array_tag| | header_size | element_type | |log2_element_size| // 32 30 24 16 8 2 0 // // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0 // int lh_offset = in_bytes(Klass::layout_helper_offset()); // Load 32-bits signed value. Use br() instruction with it to check icc. __ lwz(lh, lh_offset, src_klass); // Handle objArrays completely differently... jint objArray_lh = Klass::array_layout_helper(T_OBJECT); __ load_const_optimized(temp, objArray_lh, R0); __ cmpw(CCR0, lh, temp); __ beq(CCR0, L_objArray); __ cmpd(CCR5, src_klass, dst_klass); // if (src->klass() != dst->klass()) return -1; __ cmpwi(CCR6, lh, Klass::_lh_neutral_value); // if (!src->is_Array()) return -1; __ crnand(CCR5, Assembler::equal, CCR6, Assembler::less); __ beq(CCR5, L_failed); // At this point, it is known to be a typeArray (array_tag 0x3). #ifdef ASSERT { Label L; jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift); __ load_const_optimized(temp, lh_prim_tag_in_place, R0); __ cmpw(CCR0, lh, temp); __ bge(CCR0, L); __ stop("must be a primitive array"); __ bind(L); } #endif arraycopy_range_checks(src, src_pos, dst, dst_pos, length, temp, dst_klass, L_failed); // TypeArrayKlass // // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize); // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize); // const Register offset = dst_klass; // array offset const Register elsize = src_klass; // log2 element size __ rldicl(offset, lh, 64 - Klass::_lh_header_size_shift, 64 - exact_log2(Klass::_lh_header_size_mask + 1)); __ andi(elsize, lh, Klass::_lh_log2_element_size_mask); __ add(src, offset, src); // src array offset __ add(dst, offset, dst); // dst array offset // Next registers should be set before the jump to corresponding stub. const Register from = R3_ARG1; // source array address const Register to = R4_ARG2; // destination array address const Register count = R5_ARG3; // elements count // 'from', 'to', 'count' registers should be set in this order // since they are the same as 'src', 'src_pos', 'dst'. BLOCK_COMMENT("scale indexes to element size"); __ sld(src_pos, src_pos, elsize); __ sld(dst_pos, dst_pos, elsize); __ add(from, src_pos, src); // src_addr __ add(to, dst_pos, dst); // dst_addr __ mr(count, length); // length BLOCK_COMMENT("choose copy loop based on element size"); // Using conditional branches with range 32kB. const int bo = Assembler::bcondCRbiIs1, bi = Assembler::bi0(CCR0, Assembler::equal); __ cmpwi(CCR0, elsize, 0); __ bc(bo, bi, entry_jbyte_arraycopy); __ cmpwi(CCR0, elsize, LogBytesPerShort); __ bc(bo, bi, entry_jshort_arraycopy); __ cmpwi(CCR0, elsize, LogBytesPerInt); __ bc(bo, bi, entry_jint_arraycopy); #ifdef ASSERT { Label L; __ cmpwi(CCR0, elsize, LogBytesPerLong); __ beq(CCR0, L); __ stop("must be long copy, but elsize is wrong"); __ bind(L); } #endif __ b(entry_jlong_arraycopy); // ObjArrayKlass __ bind(L_objArray); // live at this point: src_klass, dst_klass, src[_pos], dst[_pos], length Label L_disjoint_plain_copy, L_checkcast_copy; // test array classes for subtyping __ cmpd(CCR0, src_klass, dst_klass); // usual case is exact equality __ bne(CCR0, L_checkcast_copy); // Identically typed arrays can be copied without element-wise checks. arraycopy_range_checks(src, src_pos, dst, dst_pos, length, temp, lh, L_failed); __ addi(src, src, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //src offset __ addi(dst, dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //dst offset __ sldi(src_pos, src_pos, LogBytesPerHeapOop); __ sldi(dst_pos, dst_pos, LogBytesPerHeapOop); __ add(from, src_pos, src); // src_addr __ add(to, dst_pos, dst); // dst_addr __ mr(count, length); // length __ b(entry_oop_arraycopy); __ bind(L_checkcast_copy); // live at this point: src_klass, dst_klass { // Before looking at dst.length, make sure dst is also an objArray. __ lwz(temp, lh_offset, dst_klass); __ cmpw(CCR0, lh, temp); __ bne(CCR0, L_failed); // It is safe to examine both src.length and dst.length. arraycopy_range_checks(src, src_pos, dst, dst_pos, length, temp, lh, L_failed); // Marshal the base address arguments now, freeing registers. __ addi(src, src, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //src offset __ addi(dst, dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //dst offset __ sldi(src_pos, src_pos, LogBytesPerHeapOop); __ sldi(dst_pos, dst_pos, LogBytesPerHeapOop); __ add(from, src_pos, src); // src_addr __ add(to, dst_pos, dst); // dst_addr __ mr(count, length); // length Register sco_temp = R6_ARG4; // This register is free now. assert_different_registers(from, to, count, sco_temp, dst_klass, src_klass); // Generate the type check. int sco_offset = in_bytes(Klass::super_check_offset_offset()); __ lwz(sco_temp, sco_offset, dst_klass); generate_type_check(src_klass, sco_temp, dst_klass, temp, L_disjoint_plain_copy); // Fetch destination element klass from the ObjArrayKlass header. int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); // The checkcast_copy loop needs two extra arguments: __ ld(R7_ARG5, ek_offset, dst_klass); // dest elem klass __ lwz(R6_ARG4, sco_offset, R7_ARG5); // sco of elem klass __ b(entry_checkcast_arraycopy); } __ bind(L_disjoint_plain_copy); __ b(entry_disjoint_oop_arraycopy); __ bind(L_failed); __ li(R3_RET, -1); // return -1 __ blr(); return start; } // Arguments for generated stub: // R3_ARG1 - source byte array address // R4_ARG2 - destination byte array address // R5_ARG3 - round key array address generate_aescrypt_encryptBlock() { assert(UseAES, "need AES instructions and misaligned SSE support"); StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock"); address start = __ function_entry(); Label L_doLast; Register from = R3_ARG1; // source array address Register to = R4_ARG2; // destination array address Register key = R5_ARG3; // round key array Register keylen = R8; Register temp = R9; Register keypos = R10; Register fifteen = R12; VectorRegister vRet = VR0; VectorRegister vKey1 = VR1; VectorRegister vKey2 = VR2; VectorRegister vKey3 = VR3; VectorRegister vKey4 = VR4; VectorRegister fromPerm = VR5; VectorRegister keyPerm = VR6; VectorRegister toPerm = VR7; VectorRegister fSplt = VR8; VectorRegister vTmp1 = VR9; VectorRegister vTmp2 = VR10; VectorRegister vTmp3 = VR11; VectorRegister vTmp4 = VR12; __ li (fifteen, 15); // load unaligned from[0-15] to vsRet __ lvx (vRet, from); __ lvx (vTmp1, fifteen, from); __ lvsl (fromPerm, from); #ifdef VM_LITTLE_ENDIAN __ vspltisb (fSplt, 0x0f); __ vxor (fromPerm, fromPerm, fSplt); #endif __ vperm (vRet, vRet, vTmp1, fromPerm); // load keylen (44 or 52 or 60) __ lwz (keylen, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT), key); // to load keys __ load_perm (keyPerm, key); #ifdef VM_LITTLE_ENDIAN __ vspltisb (vTmp2, -16); __ vrld (keyPerm, keyPerm, vTmp2); __ vrld (keyPerm, keyPerm, vTmp2); __ vsldoi (keyPerm, keyPerm, keyPerm, 8); #endif // load the 1st round key to vTmp1 __ lvx (vTmp1, key); __ li (keypos, 16); __ lvx (vKey1, keypos, key); __ vec_perm (vTmp1, vKey1, keyPerm); // 1st round __ vxor (vRet, vRet, vTmp1); // load the 2nd round key to vKey1 __ li (keypos, 32); __ lvx (vKey2, keypos, key); __ vec_perm (vKey1, vKey2, keyPerm); // load the 3rd round key to vKey2 __ li (keypos, 48); __ lvx (vKey3, keypos, key); __ vec_perm (vKey2, vKey3, keyPerm); // load the 4th round key to vKey3 __ li (keypos, 64); __ lvx (vKey4, keypos, key); __ vec_perm (vKey3, vKey4, keyPerm); // load the 5th round key to vKey4 __ li (keypos, 80); __ lvx (vTmp1, keypos, key); __ vec_perm (vKey4, vTmp1, keyPerm); // 2nd - 5th rounds __ vcipher (vRet, vRet, vKey1); __ vcipher (vRet, vRet, vKey2); __ vcipher (vRet, vRet, vKey3); __ vcipher (vRet, vRet, vKey4); // load the 6th round key to vKey1 __ li (keypos, 96); __ lvx (vKey2, keypos, key); __ vec_perm (vKey1, vTmp1, vKey2, keyPerm); // load the 7th round key to vKey2 __ li (keypos, 112); __ lvx (vKey3, keypos, key); __ vec_perm (vKey2, vKey3, keyPerm); // load the 8th round key to vKey3 __ li (keypos, 128); __ lvx (vKey4, keypos, key); __ vec_perm (vKey3, vKey4, keyPerm); // load the 9th round key to vKey4 __ li (keypos, 144); __ lvx (vTmp1, keypos, key); __ vec_perm (vKey4, vTmp1, keyPerm); // 6th - 9th rounds __ vcipher (vRet, vRet, vKey1); __ vcipher (vRet, vRet, vKey2); __ vcipher (vRet, vRet, vKey3); __ vcipher (vRet, vRet, vKey4); // load the 10th round key to vKey1 __ li (keypos, 160); __ lvx (vKey2, keypos, key); __ vec_perm (vKey1, vTmp1, vKey2, keyPerm); // load the 11th round key to vKey2 __ li (keypos, 176); __ lvx (vTmp1, keypos, key); __ vec_perm (vKey2, vTmp1, keyPerm); // if all round keys are loaded, skip next 4 rounds __ cmpwi (CCR0, keylen, 44); __ beq (CCR0, L_doLast); // 10th - 11th rounds __ vcipher (vRet, vRet, vKey1); __ vcipher (vRet, vRet, vKey2); // load the 12th round key to vKey1 __ li (keypos, 192); __ lvx (vKey2, keypos, key); __ vec_perm (vKey1, vTmp1, vKey2, keyPerm); // load the 13th round key to vKey2 __ li (keypos, 208); __ lvx (vTmp1, keypos, key); __ vec_perm (vKey2, vTmp1, keyPerm); // if all round keys are loaded, skip next 2 rounds __ cmpwi (CCR0, keylen, 52); __ beq (CCR0, L_doLast); // 12th - 13th rounds __ vcipher (vRet, vRet, vKey1); __ vcipher (vRet, vRet, vKey2); // load the 14th round key to vKey1 __ li (keypos, 224); __ lvx (vKey2, keypos, key); __ vec_perm (vKey1, vTmp1, vKey2, keyPerm); // load the 15th round key to vKey2 __ li (keypos, 240); __ lvx (vTmp1, keypos, key); __ vec_perm (vKey2, vTmp1, keyPerm); __ bind(L_doLast); // last two rounds __ vcipher (vRet, vRet, vKey1); __ vcipherlast (vRet, vRet, vKey2); // store result (unaligned) #ifdef VM_LITTLE_ENDIAN __ lvsl (toPerm, to); #else __ lvsr (toPerm, to); #endif __ vspltisb (vTmp3, -1); __ vspltisb (vTmp4, 0); __ lvx (vTmp1, to); __ lvx (vTmp2, fifteen, to); #ifdef VM_LITTLE_ENDIAN __ vperm (vTmp3, vTmp3, vTmp4, toPerm); // generate select mask __ vxor (toPerm, toPerm, fSplt); // swap bytes #else __ vperm (vTmp3, vTmp4, vTmp3, toPerm); // generate select mask #endif __ vperm (vTmp4, vRet, vRet, toPerm); // rotate data __ vsel (vTmp2, vTmp4, vTmp2, vTmp3); __ vsel (vTmp1, vTmp1, vTmp4, vTmp3); __ stvx (vTmp2, fifteen, to); // store this one first (may alias) __ stvx (vTmp1, to); __ blr(); return start; } // Arguments for generated stub: // R3_ARG1 - source byte array address // R4_ARG2 - destination byte array address // R5_ARG3 - K (key) in little endian int array address generate_aescrypt_decryptBlock() { assert(UseAES, "need AES instructions and misaligned SSE support"); StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock"); address start = __ function_entry(); Label L_doLast; Label L_do44; Label L_do52; Label L_do60; Register from = R3_ARG1; // source array address Register to = R4_ARG2; // destination array address Register key = R5_ARG3; // round key array Register keylen = R8; Register temp = R9; Register keypos = R10; Register fifteen = R12; VectorRegister vRet = VR0; VectorRegister vKey1 = VR1; VectorRegister vKey2 = VR2; VectorRegister vKey3 = VR3; VectorRegister vKey4 = VR4; VectorRegister vKey5 = VR5; VectorRegister fromPerm = VR6; VectorRegister keyPerm = VR7; VectorRegister toPerm = VR8; VectorRegister fSplt = VR9; VectorRegister vTmp1 = VR10; VectorRegister vTmp2 = VR11; VectorRegister vTmp3 = VR12; VectorRegister vTmp4 = VR13; __ li (fifteen, 15); // load unaligned from[0-15] to vsRet __ lvx (vRet, from); __ lvx (vTmp1, fifteen, from); __ lvsl (fromPerm, from); #ifdef VM_LITTLE_ENDIAN __ vspltisb (fSplt, 0x0f); __ vxor (fromPerm, fromPerm, fSplt); #endif __ vperm (vRet, vRet, vTmp1, fromPerm); // align [and byte swap in LE] // load keylen (44 or 52 or 60) __ lwz (keylen, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT), key); // to load keys __ load_perm (keyPerm, key); #ifdef VM_LITTLE_ENDIAN __ vxor (vTmp2, vTmp2, vTmp2); __ vspltisb (vTmp2, -16); __ vrld (keyPerm, keyPerm, vTmp2); __ vrld (keyPerm, keyPerm, vTmp2); __ vsldoi (keyPerm, keyPerm, keyPerm, 8); #endif __ cmpwi (CCR0, keylen, 44); __ beq (CCR0, L_do44); __ cmpwi (CCR0, keylen, 52); __ beq (CCR0, L_do52); // load the 15th round key to vKey1 __ li (keypos, 240); __ lvx (vKey1, keypos, key); __ li (keypos, 224); __ lvx (vKey2, keypos, key); __ vec_perm (vKey1, vKey2, vKey1, keyPerm); // load the 14th round key to vKey2 __ li (keypos, 208); __ lvx (vKey3, keypos, key); __ vec_perm (vKey2, vKey3, vKey2, keyPerm); // load the 13th round key to vKey3 __ li (keypos, 192); __ lvx (vKey4, keypos, key); __ vec_perm (vKey3, vKey4, vKey3, keyPerm); // load the 12th round key to vKey4 __ li (keypos, 176); __ lvx (vKey5, keypos, key); __ vec_perm (vKey4, vKey5, vKey4, keyPerm); // load the 11th round key to vKey5 __ li (keypos, 160); __ lvx (vTmp1, keypos, key); __ vec_perm (vKey5, vTmp1, vKey5, keyPerm); // 1st - 5th rounds __ vxor (vRet, vRet, vKey1); __ vncipher (vRet, vRet, vKey2); __ vncipher (vRet, vRet, vKey3); __ vncipher (vRet, vRet, vKey4); __ vncipher (vRet, vRet, vKey5); __ b (L_doLast); __ bind (L_do52); // load the 13th round key to vKey1 __ li (keypos, 208); __ lvx (vKey1, keypos, key); __ li (keypos, 192); __ lvx (vKey2, keypos, key); __ vec_perm (vKey1, vKey2, vKey1, keyPerm); // load the 12th round key to vKey2 __ li (keypos, 176); __ lvx (vKey3, keypos, key); __ vec_perm (vKey2, vKey3, vKey2, keyPerm); // load the 11th round key to vKey3 __ li (keypos, 160); __ lvx (vTmp1, keypos, key); __ vec_perm (vKey3, vTmp1, vKey3, keyPerm); // 1st - 3rd rounds __ vxor (vRet, vRet, vKey1); __ vncipher (vRet, vRet, vKey2); __ vncipher (vRet, vRet, vKey3); __ b (L_doLast); __ bind (L_do44); // load the 11th round key to vKey1 __ li (keypos, 176); __ lvx (vKey1, keypos, key); __ li (keypos, 160); __ lvx (vTmp1, keypos, key); __ vec_perm (vKey1, vTmp1, vKey1, keyPerm); // 1st round __ vxor (vRet, vRet, vKey1); __ bind (L_doLast); // load the 10th round key to vKey1 __ li (keypos, 144); __ lvx (vKey2, keypos, key); __ vec_perm (vKey1, vKey2, vTmp1, keyPerm); // load the 9th round key to vKey2 __ li (keypos, 128); __ lvx (vKey3, keypos, key); __ vec_perm (vKey2, vKey3, vKey2, keyPerm); // load the 8th round key to vKey3 __ li (keypos, 112); __ lvx (vKey4, keypos, key); __ vec_perm (vKey3, vKey4, vKey3, keyPerm); // load the 7th round key to vKey4 __ li (keypos, 96); __ lvx (vKey5, keypos, key); __ vec_perm (vKey4, vKey5, vKey4, keyPerm); // load the 6th round key to vKey5 __ li (keypos, 80); __ lvx (vTmp1, keypos, key); __ vec_perm (vKey5, vTmp1, vKey5, keyPerm); // last 10th - 6th rounds __ vncipher (vRet, vRet, vKey1); __ vncipher (vRet, vRet, vKey2); __ vncipher (vRet, vRet, vKey3); __ vncipher (vRet, vRet, vKey4); __ vncipher (vRet, vRet, vKey5); // load the 5th round key to vKey1 __ li (keypos, 64); __ lvx (vKey2, keypos, key); __ vec_perm (vKey1, vKey2, vTmp1, keyPerm); // load the 4th round key to vKey2 __ li (keypos, 48); __ lvx (vKey3, keypos, key); __ vec_perm (vKey2, vKey3, vKey2, keyPerm); // load the 3rd round key to vKey3 __ li (keypos, 32); __ lvx (vKey4, keypos, key); __ vec_perm (vKey3, vKey4, vKey3, keyPerm); // load the 2nd round key to vKey4 __ li (keypos, 16); __ lvx (vKey5, keypos, key); __ vec_perm (vKey4, vKey5, vKey4, keyPerm); // load the 1st round key to vKey5 __ lvx (vTmp1, key); __ vec_perm (vKey5, vTmp1, vKey5, keyPerm); // last 5th - 1th rounds __ vncipher (vRet, vRet, vKey1); __ vncipher (vRet, vRet, vKey2); __ vncipher (vRet, vRet, vKey3); __ vncipher (vRet, vRet, vKey4); __ vncipherlast (vRet, vRet, vKey5); // store result (unaligned) #ifdef VM_LITTLE_ENDIAN __ lvsl (toPerm, to); #else __ lvsr (toPerm, to); #endif __ vspltisb (vTmp3, -1); __ vspltisb (vTmp4, 0); __ lvx (vTmp1, to); __ lvx (vTmp2, fifteen, to); #ifdef VM_LITTLE_ENDIAN __ vperm (vTmp3, vTmp3, vTmp4, toPerm); // generate select mask __ vxor (toPerm, toPerm, fSplt); // swap bytes #else __ vperm (vTmp3, vTmp4, vTmp3, toPerm); // generate select mask #endif __ vperm (vTmp4, vRet, vRet, toPerm); // rotate data __ vsel (vTmp2, vTmp4, vTmp2, vTmp3); __ vsel (vTmp1, vTmp1, vTmp4, vTmp3); __ stvx (vTmp2, fifteen, to); // store this one first (may alias) __ stvx (vTmp1, to); __ blr(); return start; } address generate_sha256_implCompress(bool multi_block, const char *name) { assert(UseSHA, "need SHA instructions"); StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); __ sha256 (multi_block); __ blr(); return start; } address generate_sha512_implCompress(bool multi_block, const char *name) { assert(UseSHA, "need SHA instructions"); StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); __ sha512 (multi_block); __ blr(); return start; } void generate_arraycopy_stubs() { // Note: the disjoint stubs must be generated first, some of // the conjoint stubs use them. // non-aligned disjoint versions StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy"); StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy"); StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy"); StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy"); StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy", false); StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy_uninit", true); // aligned disjoint versions StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy"); StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy"); StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy"); StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy"); StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy", false); StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, "oop_disjoint_arraycopy_uninit", true); // non-aligned conjoint versions StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy"); StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy"); StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, "jint_arraycopy"); StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, "jlong_arraycopy"); StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, "oop_arraycopy", false); StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, "oop_arraycopy_uninit", true); // aligned conjoint versions StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy"); StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy"); StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy"); StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, "arrayof_jlong_arraycopy"); StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", false); StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", true); // special/generic versions StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", false); StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", true); StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy", STUB_ENTRY(jbyte_arraycopy), STUB_ENTRY(jshort_arraycopy), STUB_ENTRY(jint_arraycopy), STUB_ENTRY(jlong_arraycopy)); StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy", STUB_ENTRY(jbyte_arraycopy), STUB_ENTRY(jshort_arraycopy), STUB_ENTRY(jint_arraycopy), STUB_ENTRY(oop_arraycopy), STUB_ENTRY(oop_disjoint_arraycopy), STUB_ENTRY(jlong_arraycopy), STUB_ENTRY(checkcast_arraycopy)); // fill routines if (OptimizeFill) { StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill"); StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill"); StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill"); StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill"); StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill"); StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill"); } } // Safefetch stubs. void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) { // safefetch signatures: // int SafeFetch32(int* adr, int errValue); // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue); // // arguments: // R3_ARG1 = adr // R4_ARG2 = errValue // // result: // R3_RET = *adr or errValue StubCodeMark mark(this, "StubRoutines", name); // Entry point, pc or function descriptor. *entry = __ function_entry(); // Load *adr into R4_ARG2, may fault. *fault_pc = __ pc(); switch (size) { case 4: // int32_t, signed extended __ lwa(R4_ARG2, 0, R3_ARG1); break; case 8: // int64_t __ ld(R4_ARG2, 0, R3_ARG1); break; default: ShouldNotReachHere(); } // return errValue or *adr *continuation_pc = __ pc(); __ mr(R3_RET, R4_ARG2); __ blr(); } // Stub for BigInteger::multiplyToLen() // // Arguments: // // Input: // R3 - x address // R4 - x length // R5 - y address // R6 - y length // R7 - z address // R8 - z length // address generate_multiplyToLen() { StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); address start = __ function_entry(); const Register x = R3; const Register xlen = R4; const Register y = R5; const Register ylen = R6; const Register z = R7; const Register zlen = R8; const Register tmp1 = R2; // TOC not used. const Register tmp2 = R9; const Register tmp3 = R10; const Register tmp4 = R11; const Register tmp5 = R12; // non-volatile regs const Register tmp6 = R31; const Register tmp7 = R30; const Register tmp8 = R29; const Register tmp9 = R28; const Register tmp10 = R27; const Register tmp11 = R26; const Register tmp12 = R25; const Register tmp13 = R24; BLOCK_COMMENT("Entry:"); // C2 does not respect int to long conversion for stub calls. __ clrldi(xlen, xlen, 32); __ clrldi(ylen, ylen, 32); __ clrldi(zlen, zlen, 32); // Save non-volatile regs (frameless). int current_offs = 8; __ std(R24, -current_offs, R1_SP); current_offs += 8; __ std(R25, -current_offs, R1_SP); current_offs += 8; __ std(R26, -current_offs, R1_SP); current_offs += 8; __ std(R27, -current_offs, R1_SP); current_offs += 8; __ std(R28, -current_offs, R1_SP); current_offs += 8; __ std(R29, -current_offs, R1_SP); current_offs += 8; __ std(R30, -current_offs, R1_SP); current_offs += 8; __ std(R31, -current_offs, R1_SP); __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9, tmp10, tmp11, tmp12, tmp13); // Restore non-volatile regs. current_offs = 8; __ ld(R24, -current_offs, R1_SP); current_offs += 8; __ ld(R25, -current_offs, R1_SP); current_offs += 8; __ ld(R26, -current_offs, R1_SP); current_offs += 8; __ ld(R27, -current_offs, R1_SP); current_offs += 8; __ ld(R28, -current_offs, R1_SP); current_offs += 8; __ ld(R29, -current_offs, R1_SP); current_offs += 8; __ ld(R30, -current_offs, R1_SP); current_offs += 8; __ ld(R31, -current_offs, R1_SP); __ blr(); // Return to caller. return start; } // Compute CRC32/CRC32C function. void generate_CRC_updateBytes(const char* name, Register table, bool invertCRC) { // arguments to kernel_crc32: const Register crc = R3_ARG1; // Current checksum, preset by caller or result from previous call. const Register data = R4_ARG2; // source byte array const Register dataLen = R5_ARG3; // #bytes to process const Register t0 = R2; const Register t1 = R7; const Register t2 = R8; const Register t3 = R9; const Register tc0 = R10; const Register tc1 = R11; const Register tc2 = R12; BLOCK_COMMENT("Stub body {"); assert_different_registers(crc, data, dataLen, table); __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, table, invertCRC); BLOCK_COMMENT("return"); __ mr_if_needed(R3_RET, crc); // Updated crc is function result. No copying required (R3_ARG1 == R3_RET). __ blr(); BLOCK_COMMENT("} Stub body"); } /** * Arguments: * * Input: * R3_ARG1 - out address * R4_ARG2 - in address * R5_ARG3 - offset * R6_ARG4 - len * R7_ARG5 - k * Output: * R3_RET - carry */ address generate_mulAdd() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "mulAdd"); address start = __ function_entry(); // C2 does not sign extend signed parameters to full 64 bits registers: __ rldic (R5_ARG3, R5_ARG3, 2, 32); // always positive __ clrldi(R6_ARG4, R6_ARG4, 32); // force zero bits on higher word __ clrldi(R7_ARG5, R7_ARG5, 32); // force zero bits on higher word __ muladd(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4, R7_ARG5, R8, R9, R10); // Moves output carry to return register __ mr (R3_RET, R10); __ blr(); return start; } /** * Arguments: * * Input: * R3_ARG1 - in address * R4_ARG2 - in length * R5_ARG3 - out address * R6_ARG4 - out length */ address generate_squareToLen() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "squareToLen"); address start = __ function_entry(); // args - higher word is cleaned (unsignedly) due to int to long casting const Register in = R3_ARG1; const Register in_len = R4_ARG2; __ clrldi(in_len, in_len, 32); const Register out = R5_ARG3; const Register out_len = R6_ARG4; __ clrldi(out_len, out_len, 32); // output const Register ret = R3_RET; // temporaries const Register lplw_s = R7; const Register in_aux = R8; const Register out_aux = R9; const Register piece = R10; const Register product = R14; const Register lplw = R15; const Register i_minus1 = R16; const Register carry = R17; const Register offset = R18; const Register off_aux = R19; const Register t = R20; const Register mlen = R21; const Register len = R22; const Register a = R23; const Register b = R24; const Register i = R25; const Register c = R26; const Register cs = R27; // Labels Label SKIP_LSHIFT, SKIP_DIAGONAL_SUM, SKIP_ADDONE, SKIP_MULADD, SKIP_LOOP_SQUARE; Label LOOP_LSHIFT, LOOP_DIAGONAL_SUM, LOOP_ADDONE, LOOP_MULADD, LOOP_SQUARE; // Save non-volatile regs (frameless). int current_offs = -8; __ std(R28, current_offs, R1_SP); current_offs -= 8; __ std(R27, current_offs, R1_SP); current_offs -= 8; __ std(R26, current_offs, R1_SP); current_offs -= 8; __ std(R25, current_offs, R1_SP); current_offs -= 8; __ std(R24, current_offs, R1_SP); current_offs -= 8; __ std(R23, current_offs, R1_SP); current_offs -= 8; __ std(R22, current_offs, R1_SP); current_offs -= 8; __ std(R21, current_offs, R1_SP); current_offs -= 8; __ std(R20, current_offs, R1_SP); current_offs -= 8; __ std(R19, current_offs, R1_SP); current_offs -= 8; __ std(R18, current_offs, R1_SP); current_offs -= 8; __ std(R17, current_offs, R1_SP); current_offs -= 8; __ std(R16, current_offs, R1_SP); current_offs -= 8; __ std(R15, current_offs, R1_SP); current_offs -= 8; __ std(R14, current_offs, R1_SP); // Store the squares, right shifted one bit (i.e., divided by 2) __ subi (out_aux, out, 8); __ subi (in_aux, in, 4); __ cmpwi (CCR0, in_len, 0); // Initialize lplw outside of the loop __ xorr (lplw, lplw, lplw); __ ble (CCR0, SKIP_LOOP_SQUARE); // in_len <= 0 __ mtctr (in_len); __ bind(LOOP_SQUARE); __ lwzu (piece, 4, in_aux); __ mulld (product, piece, piece); // shift left 63 bits and only keep the MSB __ rldic (lplw_s, lplw, 63, 0); __ mr (lplw, product); // shift right 1 bit without sign extension __ srdi (product, product, 1); // join them to the same register and store it __ orr (product, lplw_s, product); #ifdef VM_LITTLE_ENDIAN // Swap low and high words for little endian __ rldicl (product, product, 32, 0); #endif __ stdu (product, 8, out_aux); __ bdnz (LOOP_SQUARE); __ bind(SKIP_LOOP_SQUARE); // Add in off-diagonal sums __ cmpwi (CCR0, in_len, 0); __ ble (CCR0, SKIP_DIAGONAL_SUM); // Avoid CTR usage here in order to use it at mulAdd __ subi (i_minus1, in_len, 1); __ li (offset, 4); __ bind(LOOP_DIAGONAL_SUM); __ sldi (off_aux, out_len, 2); __ sub (off_aux, off_aux, offset); __ mr (len, i_minus1); __ sldi (mlen, i_minus1, 2); __ lwzx (t, in, mlen); __ muladd (out, in, off_aux, len, t, a, b, carry); // begin // off_aux = out_len*4 - 4 - mlen - offset*4 - 4; __ addi (mlen, mlen, 4); __ sldi (a, out_len, 2); __ subi (a, a, 4); __ sub (a, a, mlen); __ subi (off_aux, offset, 4); __ sub (off_aux, a, off_aux); __ lwzx (b, off_aux, out); __ add (b, b, carry); __ stwx (b, off_aux, out); // if (((uint64_t)s >> 32) != 0) { __ srdi_ (a, b, 32); __ beq (CCR0, SKIP_ADDONE); // while (--mlen >= 0) { __ bind(LOOP_ADDONE); __ subi (mlen, mlen, 4); __ cmpwi (CCR0, mlen, 0); __ beq (CCR0, SKIP_ADDONE); // if (--offset_aux < 0) { // Carry out of number __ subi (off_aux, off_aux, 4); __ cmpwi (CCR0, off_aux, 0); __ blt (CCR0, SKIP_ADDONE); // } else { __ lwzx (b, off_aux, out); __ addi (b, b, 1); __ stwx (b, off_aux, out); __ cmpwi (CCR0, b, 0); __ bne (CCR0, SKIP_ADDONE); __ b (LOOP_ADDONE); __ bind(SKIP_ADDONE); // } } } end __ addi (offset, offset, 8); __ subi (i_minus1, i_minus1, 1); __ cmpwi (CCR0, i_minus1, 0); __ bge (CCR0, LOOP_DIAGONAL_SUM); __ bind(SKIP_DIAGONAL_SUM); // Shift back up and set low bit // Shifts 1 bit left up to len positions. Assumes no leading zeros // begin __ cmpwi (CCR0, out_len, 0); __ ble (CCR0, SKIP_LSHIFT); __ li (i, 0); __ lwz (c, 0, out); __ subi (b, out_len, 1); __ mtctr (b); __ bind(LOOP_LSHIFT); __ mr (b, c); __ addi (cs, i, 4); __ lwzx (c, out, cs); __ sldi (b, b, 1); __ srwi (cs, c, 31); __ orr (b, b, cs); __ stwx (b, i, out); __ addi (i, i, 4); __ bdnz (LOOP_LSHIFT); __ sldi (c, out_len, 2); __ subi (c, c, 4); __ lwzx (b, out, c); __ sldi (b, b, 1); __ stwx (b, out, c); __ bind(SKIP_LSHIFT); // end // Set low bit __ sldi (i, in_len, 2); __ subi (i, i, 4); __ lwzx (i, in, i); __ sldi (c, out_len, 2); __ subi (c, c, 4); __ lwzx (b, out, c); __ andi (i, i, 1); __ orr (i, b, i); __ stwx (i, out, c); // Restore non-volatile regs. current_offs = -8; __ ld(R28, current_offs, R1_SP); current_offs -= 8; __ ld(R27, current_offs, R1_SP); current_offs -= 8; __ ld(R26, current_offs, R1_SP); current_offs -= 8; __ ld(R25, current_offs, R1_SP); current_offs -= 8; __ ld(R24, current_offs, R1_SP); current_offs -= 8; __ ld(R23, current_offs, R1_SP); current_offs -= 8; __ ld(R22, current_offs, R1_SP); current_offs -= 8; __ ld(R21, current_offs, R1_SP); current_offs -= 8; __ ld(R20, current_offs, R1_SP); current_offs -= 8; __ ld(R19, current_offs, R1_SP); current_offs -= 8; __ ld(R18, current_offs, R1_SP); current_offs -= 8; __ ld(R17, current_offs, R1_SP); current_offs -= 8; __ ld(R16, current_offs, R1_SP); current_offs -= 8; __ ld(R15, current_offs, R1_SP); current_offs -= 8; __ ld(R14, current_offs, R1_SP); __ mr(ret, out); __ blr(); return start; } /** * Arguments: * * Inputs: * R3_ARG1 - int crc * R4_ARG2 - byte* buf * R5_ARG3 - int length (of buffer) * * scratch: * R2, R6-R12 * * Ouput: * R3_RET - int crc result */ // Compute CRC32 function. address generate_CRC32_updateBytes(const char* name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); // Remember stub start address (is rtn value). const Register table = R6; // crc table address // arguments to kernel_crc32: const Register crc = R3_ARG1; // Current checksum, preset by caller or result from previous call. const Register data = R4_ARG2; // source byte array const Register dataLen = R5_ARG3; // #bytes to process if (VM_Version::has_vpmsumb()) { const Register constants = R2; // constants address const Register bconstants = R8; // barret table address const Register t0 = R9; const Register t1 = R10; const Register t2 = R11; const Register t3 = R12; const Register t4 = R7; BLOCK_COMMENT("Stub body {"); assert_different_registers(crc, data, dataLen, table); StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table); StubRoutines::ppc64::generate_load_crc_constants_addr(_masm, constants); StubRoutines::ppc64::generate_load_crc_barret_constants_addr(_masm, bconstants); __ kernel_crc32_1word_vpmsum(crc, data, dataLen, table, constants, bconstants, t0, t1, t2, t3, t4, true); BLOCK_COMMENT("return"); __ mr_if_needed(R3_RET, crc); // Updated crc is function result. No copying required (R3_ARG1 == R3_RET). __ blr(); BLOCK_COMMENT("} Stub body"); } else { StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table); generate_CRC_updateBytes(name, table, true); } return start; } /** * Arguments: * * Inputs: * R3_ARG1 - int crc * R4_ARG2 - byte* buf * R5_ARG3 - int length (of buffer) * * scratch: * R2, R6-R12 * * Ouput: * R3_RET - int crc result */ // Compute CRC32C function. address generate_CRC32C_updateBytes(const char* name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ function_entry(); // Remember stub start address (is rtn value). const Register table = R6; // crc table address // arguments to kernel_crc32: const Register crc = R3_ARG1; // Current checksum, preset by caller or result from previous call. const Register data = R4_ARG2; // source byte array const Register dataLen = R5_ARG3; // #bytes to process if (VM_Version::has_vpmsumb()) { const Register constants = R2; // constants address const Register bconstants = R8; // barret table address const Register t0 = R9; const Register t1 = R10; const Register t2 = R11; const Register t3 = R12; const Register t4 = R7; BLOCK_COMMENT("Stub body {"); assert_different_registers(crc, data, dataLen, table); StubRoutines::ppc64::generate_load_crc32c_table_addr(_masm, table); StubRoutines::ppc64::generate_load_crc32c_constants_addr(_masm, constants); StubRoutines::ppc64::generate_load_crc32c_barret_constants_addr(_masm, bconstants); __ kernel_crc32_1word_vpmsum(crc, data, dataLen, table, constants, bconstants, t0, t1, t2, t3, t4, false); BLOCK_COMMENT("return"); __ mr_if_needed(R3_RET, crc); // Updated crc is function result. No copying required (R3_ARG1 == R3_RET). __ blr(); BLOCK_COMMENT("} Stub body"); } else { StubRoutines::ppc64::generate_load_crc32c_table_addr(_masm, table); generate_CRC_updateBytes(name, table, false); } return start; } // Initialization void generate_initial() { // Generates all stubs and initializes the entry points // Entry points that exist in all platforms. // Note: This is code that could be shared among different platforms - however the // benefit seems to be smaller than the disadvantage of having a // much more complicated generator structure. See also comment in // stubRoutines.hpp. StubRoutines::_forward_exception_entry = generate_forward_exception(); StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address); StubRoutines::_catch_exception_entry = generate_catch_exception(); // Build this early so it's available for the interpreter. StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false); StubRoutines::_throw_delayed_StackOverflowError_entry = generate_throw_exception("delayed StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError), false); // CRC32 Intrinsics. if (UseCRC32Intrinsics) { StubRoutines::_crc_table_adr = (address)StubRoutines::ppc64::_crc_table; StubRoutines::_updateBytesCRC32 = generate_CRC32_updateBytes("CRC32_updateBytes"); } // CRC32C Intrinsics. if (UseCRC32CIntrinsics) { StubRoutines::_crc32c_table_addr = (address)StubRoutines::ppc64::_crc32c_table; StubRoutines::_updateBytesCRC32C = generate_CRC32C_updateBytes("CRC32C_updateBytes"); } } void generate_all() { // Generates all stubs and initializes the entry points // These entry points require SharedInfo::stack0 to be set up in // non-core builds StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false); // Handle IncompatibleClassChangeError in itable stubs. StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false); StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false); // support for verify_oop (must happen after universe_init) StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); // arraycopy stubs used by compilers generate_arraycopy_stubs(); // Safefetch stubs. generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry, &StubRoutines::_safefetch32_fault_pc, &StubRoutines::_safefetch32_continuation_pc); generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry, &StubRoutines::_safefetchN_fault_pc, &StubRoutines::_safefetchN_continuation_pc); #ifdef COMPILER2 if (UseMultiplyToLenIntrinsic) { StubRoutines::_multiplyToLen = generate_multiplyToLen(); } #endif if (UseSquareToLenIntrinsic) { StubRoutines::_squareToLen = generate_squareToLen(); } if (UseMulAddIntrinsic) { StubRoutines::_mulAdd = generate_mulAdd(); } if (UseMontgomeryMultiplyIntrinsic) { StubRoutines::_montgomeryMultiply = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); } if (UseMontgomerySquareIntrinsic) { StubRoutines::_montgomerySquare = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); } if (UseAESIntrinsics) { StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock(); StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock(); } if (UseSHA256Intrinsics) { StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress"); StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB"); } if (UseSHA512Intrinsics) { StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress"); StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB"); } } public: StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) { // replace the standard masm with a special one: _masm = new MacroAssembler(code); if (all) { generate_all(); } else { generate_initial(); } } }; void StubGenerator_generate(CodeBuffer* code, bool all) { StubGenerator g(code, all); }