1 /*
   2  * Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2018, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/codeBuffer.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "gc/shared/cardTableBarrierSet.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "memory/universe.hpp"
  37 #include "oops/compressedOops.inline.hpp"
  38 #include "oops/klass.inline.hpp"
  39 #include "opto/compile.hpp"
  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "registerSaver_s390.hpp"
  44 #include "runtime/biasedLocking.hpp"
  45 #include "runtime/icache.hpp"
  46 #include "runtime/interfaceSupport.inline.hpp"
  47 #include "runtime/objectMonitor.hpp"
  48 #include "runtime/os.hpp"
  49 #include "runtime/safepoint.hpp"
  50 #include "runtime/safepointMechanism.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/macros.hpp"
  55 
  56 #include <ucontext.h>
  57 
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
  60 
  61 // Move 32-bit register if destination and source are different.
  62 void MacroAssembler::lr_if_needed(Register rd, Register rs) {
  63   if (rs != rd) { z_lr(rd, rs); }
  64 }
  65 
  66 // Move register if destination and source are different.
  67 void MacroAssembler::lgr_if_needed(Register rd, Register rs) {
  68   if (rs != rd) { z_lgr(rd, rs); }
  69 }
  70 
  71 // Zero-extend 32-bit register into 64-bit register if destination and source are different.
  72 void MacroAssembler::llgfr_if_needed(Register rd, Register rs) {
  73   if (rs != rd) { z_llgfr(rd, rs); }
  74 }
  75 
  76 // Move float register if destination and source are different.
  77 void MacroAssembler::ldr_if_needed(FloatRegister rd, FloatRegister rs) {
  78   if (rs != rd) { z_ldr(rd, rs); }
  79 }
  80 
  81 // Move integer register if destination and source are different.
  82 // It is assumed that shorter-than-int types are already
  83 // appropriately sign-extended.
  84 void MacroAssembler::move_reg_if_needed(Register dst, BasicType dst_type, Register src,
  85                                         BasicType src_type) {
  86   assert((dst_type != T_FLOAT) && (dst_type != T_DOUBLE), "use move_freg for float types");
  87   assert((src_type != T_FLOAT) && (src_type != T_DOUBLE), "use move_freg for float types");
  88 
  89   if (dst_type == src_type) {
  90     lgr_if_needed(dst, src); // Just move all 64 bits.
  91     return;
  92   }
  93 
  94   switch (dst_type) {
  95     // Do not support these types for now.
  96     //  case T_BOOLEAN:
  97     case T_BYTE:  // signed byte
  98       switch (src_type) {
  99         case T_INT:
 100           z_lgbr(dst, src);
 101           break;
 102         default:
 103           ShouldNotReachHere();
 104       }
 105       return;
 106 
 107     case T_CHAR:
 108     case T_SHORT:
 109       switch (src_type) {
 110         case T_INT:
 111           if (dst_type == T_CHAR) {
 112             z_llghr(dst, src);
 113           } else {
 114             z_lghr(dst, src);
 115           }
 116           break;
 117         default:
 118           ShouldNotReachHere();
 119       }
 120       return;
 121 
 122     case T_INT:
 123       switch (src_type) {
 124         case T_BOOLEAN:
 125         case T_BYTE:
 126         case T_CHAR:
 127         case T_SHORT:
 128         case T_INT:
 129         case T_LONG:
 130         case T_OBJECT:
 131         case T_ARRAY:
 132         case T_VOID:
 133         case T_ADDRESS:
 134           lr_if_needed(dst, src);
 135           // llgfr_if_needed(dst, src);  // zero-extend (in case we need to find a bug).
 136           return;
 137 
 138         default:
 139           assert(false, "non-integer src type");
 140           return;
 141       }
 142     case T_LONG:
 143       switch (src_type) {
 144         case T_BOOLEAN:
 145         case T_BYTE:
 146         case T_CHAR:
 147         case T_SHORT:
 148         case T_INT:
 149           z_lgfr(dst, src); // sign extension
 150           return;
 151 
 152         case T_LONG:
 153         case T_OBJECT:
 154         case T_ARRAY:
 155         case T_VOID:
 156         case T_ADDRESS:
 157           lgr_if_needed(dst, src);
 158           return;
 159 
 160         default:
 161           assert(false, "non-integer src type");
 162           return;
 163       }
 164       return;
 165     case T_OBJECT:
 166     case T_ARRAY:
 167     case T_VOID:
 168     case T_ADDRESS:
 169       switch (src_type) {
 170         // These types don't make sense to be converted to pointers:
 171         //      case T_BOOLEAN:
 172         //      case T_BYTE:
 173         //      case T_CHAR:
 174         //      case T_SHORT:
 175 
 176         case T_INT:
 177           z_llgfr(dst, src); // zero extension
 178           return;
 179 
 180         case T_LONG:
 181         case T_OBJECT:
 182         case T_ARRAY:
 183         case T_VOID:
 184         case T_ADDRESS:
 185           lgr_if_needed(dst, src);
 186           return;
 187 
 188         default:
 189           assert(false, "non-integer src type");
 190           return;
 191       }
 192       return;
 193     default:
 194       assert(false, "non-integer dst type");
 195       return;
 196   }
 197 }
 198 
 199 // Move float register if destination and source are different.
 200 void MacroAssembler::move_freg_if_needed(FloatRegister dst, BasicType dst_type,
 201                                          FloatRegister src, BasicType src_type) {
 202   assert((dst_type == T_FLOAT) || (dst_type == T_DOUBLE), "use move_reg for int types");
 203   assert((src_type == T_FLOAT) || (src_type == T_DOUBLE), "use move_reg for int types");
 204   if (dst_type == src_type) {
 205     ldr_if_needed(dst, src); // Just move all 64 bits.
 206   } else {
 207     switch (dst_type) {
 208       case T_FLOAT:
 209         assert(src_type == T_DOUBLE, "invalid float type combination");
 210         z_ledbr(dst, src);
 211         return;
 212       case T_DOUBLE:
 213         assert(src_type == T_FLOAT, "invalid float type combination");
 214         z_ldebr(dst, src);
 215         return;
 216       default:
 217         assert(false, "non-float dst type");
 218         return;
 219     }
 220   }
 221 }
 222 
 223 // Optimized emitter for reg to mem operations.
 224 // Uses modern instructions if running on modern hardware, classic instructions
 225 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 226 // Data register (reg) cannot be used as work register.
 227 //
 228 // Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
 229 // CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
 230 void MacroAssembler::freg2mem_opt(FloatRegister reg,
 231                                   int64_t       disp,
 232                                   Register      index,
 233                                   Register      base,
 234                                   void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
 235                                   void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
 236                                   Register      scratch) {
 237   index = (index == noreg) ? Z_R0 : index;
 238   if (Displacement::is_shortDisp(disp)) {
 239     (this->*classic)(reg, disp, index, base);
 240   } else {
 241     if (Displacement::is_validDisp(disp)) {
 242       (this->*modern)(reg, disp, index, base);
 243     } else {
 244       if (scratch != Z_R0 && scratch != Z_R1) {
 245         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 246       } else {
 247         if (scratch != Z_R0) {   // scratch == Z_R1
 248           if ((scratch == index) || (index == base)) {
 249             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 250           } else {
 251             add2reg(scratch, disp, base);
 252             (this->*classic)(reg, 0, index, scratch);
 253             if (base == scratch) {
 254               add2reg(base, -disp);  // Restore base.
 255             }
 256           }
 257         } else {   // scratch == Z_R0
 258           z_lgr(scratch, base);
 259           add2reg(base, disp);
 260           (this->*classic)(reg, 0, index, base);
 261           z_lgr(base, scratch);      // Restore base.
 262         }
 263       }
 264     }
 265   }
 266 }
 267 
 268 void MacroAssembler::freg2mem_opt(FloatRegister reg, const Address &a, bool is_double) {
 269   if (is_double) {
 270     freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stdy), CLASSIC_FFUN(z_std));
 271   } else {
 272     freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stey), CLASSIC_FFUN(z_ste));
 273   }
 274 }
 275 
 276 // Optimized emitter for mem to reg operations.
 277 // Uses modern instructions if running on modern hardware, classic instructions
 278 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 279 // data register (reg) cannot be used as work register.
 280 //
 281 // Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
 282 // CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
 283 void MacroAssembler::mem2freg_opt(FloatRegister reg,
 284                                   int64_t       disp,
 285                                   Register      index,
 286                                   Register      base,
 287                                   void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
 288                                   void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
 289                                   Register      scratch) {
 290   index = (index == noreg) ? Z_R0 : index;
 291   if (Displacement::is_shortDisp(disp)) {
 292     (this->*classic)(reg, disp, index, base);
 293   } else {
 294     if (Displacement::is_validDisp(disp)) {
 295       (this->*modern)(reg, disp, index, base);
 296     } else {
 297       if (scratch != Z_R0 && scratch != Z_R1) {
 298         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 299       } else {
 300         if (scratch != Z_R0) {   // scratch == Z_R1
 301           if ((scratch == index) || (index == base)) {
 302             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 303           } else {
 304             add2reg(scratch, disp, base);
 305             (this->*classic)(reg, 0, index, scratch);
 306             if (base == scratch) {
 307               add2reg(base, -disp);  // Restore base.
 308             }
 309           }
 310         } else {   // scratch == Z_R0
 311           z_lgr(scratch, base);
 312           add2reg(base, disp);
 313           (this->*classic)(reg, 0, index, base);
 314           z_lgr(base, scratch);      // Restore base.
 315         }
 316       }
 317     }
 318   }
 319 }
 320 
 321 void MacroAssembler::mem2freg_opt(FloatRegister reg, const Address &a, bool is_double) {
 322   if (is_double) {
 323     mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ldy), CLASSIC_FFUN(z_ld));
 324   } else {
 325     mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ley), CLASSIC_FFUN(z_le));
 326   }
 327 }
 328 
 329 // Optimized emitter for reg to mem operations.
 330 // Uses modern instructions if running on modern hardware, classic instructions
 331 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 332 // Data register (reg) cannot be used as work register.
 333 //
 334 // Don't rely on register locking, instead pass a scratch register
 335 // (Z_R0 by default)
 336 // CAUTION! passing registers >= Z_R2 may produce bad results on old CPUs!
 337 void MacroAssembler::reg2mem_opt(Register reg,
 338                                  int64_t  disp,
 339                                  Register index,
 340                                  Register base,
 341                                  void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
 342                                  void (MacroAssembler::*classic)(Register, int64_t, Register, Register),
 343                                  Register scratch) {
 344   index = (index == noreg) ? Z_R0 : index;
 345   if (Displacement::is_shortDisp(disp)) {
 346     (this->*classic)(reg, disp, index, base);
 347   } else {
 348     if (Displacement::is_validDisp(disp)) {
 349       (this->*modern)(reg, disp, index, base);
 350     } else {
 351       if (scratch != Z_R0 && scratch != Z_R1) {
 352         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 353       } else {
 354         if (scratch != Z_R0) {   // scratch == Z_R1
 355           if ((scratch == index) || (index == base)) {
 356             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 357           } else {
 358             add2reg(scratch, disp, base);
 359             (this->*classic)(reg, 0, index, scratch);
 360             if (base == scratch) {
 361               add2reg(base, -disp);  // Restore base.
 362             }
 363           }
 364         } else {   // scratch == Z_R0
 365           if ((scratch == reg) || (scratch == base) || (reg == base)) {
 366             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 367           } else {
 368             z_lgr(scratch, base);
 369             add2reg(base, disp);
 370             (this->*classic)(reg, 0, index, base);
 371             z_lgr(base, scratch);    // Restore base.
 372           }
 373         }
 374       }
 375     }
 376   }
 377 }
 378 
 379 int MacroAssembler::reg2mem_opt(Register reg, const Address &a, bool is_double) {
 380   int store_offset = offset();
 381   if (is_double) {
 382     reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_stg), CLASSIC_IFUN(z_stg));
 383   } else {
 384     reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_sty), CLASSIC_IFUN(z_st));
 385   }
 386   return store_offset;
 387 }
 388 
 389 // Optimized emitter for mem to reg operations.
 390 // Uses modern instructions if running on modern hardware, classic instructions
 391 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 392 // Data register (reg) will be used as work register where possible.
 393 void MacroAssembler::mem2reg_opt(Register reg,
 394                                  int64_t  disp,
 395                                  Register index,
 396                                  Register base,
 397                                  void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
 398                                  void (MacroAssembler::*classic)(Register, int64_t, Register, Register)) {
 399   index = (index == noreg) ? Z_R0 : index;
 400   if (Displacement::is_shortDisp(disp)) {
 401     (this->*classic)(reg, disp, index, base);
 402   } else {
 403     if (Displacement::is_validDisp(disp)) {
 404       (this->*modern)(reg, disp, index, base);
 405     } else {
 406       if ((reg == index) && (reg == base)) {
 407         z_sllg(reg, reg, 1);
 408         add2reg(reg, disp);
 409         (this->*classic)(reg, 0, noreg, reg);
 410       } else if ((reg == index) && (reg != Z_R0)) {
 411         add2reg(reg, disp);
 412         (this->*classic)(reg, 0, reg, base);
 413       } else if (reg == base) {
 414         add2reg(reg, disp);
 415         (this->*classic)(reg, 0, index, reg);
 416       } else if (reg != Z_R0) {
 417         add2reg(reg, disp, base);
 418         (this->*classic)(reg, 0, index, reg);
 419       } else { // reg == Z_R0 && reg != base here
 420         add2reg(base, disp);
 421         (this->*classic)(reg, 0, index, base);
 422         add2reg(base, -disp);
 423       }
 424     }
 425   }
 426 }
 427 
 428 void MacroAssembler::mem2reg_opt(Register reg, const Address &a, bool is_double) {
 429   if (is_double) {
 430     z_lg(reg, a);
 431   } else {
 432     mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_ly), CLASSIC_IFUN(z_l));
 433   }
 434 }
 435 
 436 void MacroAssembler::mem2reg_signed_opt(Register reg, const Address &a) {
 437   mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_lgf), CLASSIC_IFUN(z_lgf));
 438 }
 439 
 440 void MacroAssembler::and_imm(Register r, long mask,
 441                              Register tmp /* = Z_R0 */,
 442                              bool wide    /* = false */) {
 443   assert(wide || Immediate::is_simm32(mask), "mask value too large");
 444 
 445   if (!wide) {
 446     z_nilf(r, mask);
 447     return;
 448   }
 449 
 450   assert(r != tmp, " need a different temporary register !");
 451   load_const_optimized(tmp, mask);
 452   z_ngr(r, tmp);
 453 }
 454 
 455 // Calculate the 1's complement.
 456 // Note: The condition code is neither preserved nor correctly set by this code!!!
 457 // Note: (wide == false) does not protect the high order half of the target register
 458 //       from alteration. It only serves as optimization hint for 32-bit results.
 459 void MacroAssembler::not_(Register r1, Register r2, bool wide) {
 460 
 461   if ((r2 == noreg) || (r2 == r1)) { // Calc 1's complement in place.
 462     z_xilf(r1, -1);
 463     if (wide) {
 464       z_xihf(r1, -1);
 465     }
 466   } else { // Distinct src and dst registers.
 467     if (VM_Version::has_DistinctOpnds()) {
 468       load_const_optimized(r1, -1);
 469       z_xgrk(r1, r2, r1);
 470     } else {
 471       if (wide) {
 472         z_lgr(r1, r2);
 473         z_xilf(r1, -1);
 474         z_xihf(r1, -1);
 475       } else {
 476         z_lr(r1, r2);
 477         z_xilf(r1, -1);
 478       }
 479     }
 480   }
 481 }
 482 
 483 unsigned long MacroAssembler::create_mask(int lBitPos, int rBitPos) {
 484   assert(lBitPos >=  0,      "zero is  leftmost bit position");
 485   assert(rBitPos <= 63,      "63   is rightmost bit position");
 486   assert(lBitPos <= rBitPos, "inverted selection interval");
 487   return (lBitPos == 0 ? (unsigned long)(-1L) : ((1UL<<(63-lBitPos+1))-1)) & (~((1UL<<(63-rBitPos))-1));
 488 }
 489 
 490 // Helper function for the "Rotate_then_<logicalOP>" emitters.
 491 // Rotate src, then mask register contents such that only bits in range survive.
 492 // For oneBits == false, all bits not in range are set to 0. Useful for deleting all bits outside range.
 493 // For oneBits == true,  all bits not in range are set to 1. Useful for preserving all bits outside range.
 494 // The caller must ensure that the selected range only contains bits with defined value.
 495 void MacroAssembler::rotate_then_mask(Register dst, Register src, int lBitPos, int rBitPos,
 496                                       int nRotate, bool src32bit, bool dst32bit, bool oneBits) {
 497   assert(!(dst32bit && lBitPos < 32), "selection interval out of range for int destination");
 498   bool sll4rll = (nRotate >= 0) && (nRotate <= (63-rBitPos)); // Substitute SLL(G) for RLL(G).
 499   bool srl4rll = (nRotate <  0) && (-nRotate <= lBitPos);     // Substitute SRL(G) for RLL(G).
 500   //  Pre-determine which parts of dst will be zero after shift/rotate.
 501   bool llZero  =  sll4rll && (nRotate >= 16);
 502   bool lhZero  = (sll4rll && (nRotate >= 32)) || (srl4rll && (nRotate <= -48));
 503   bool lfZero  = llZero && lhZero;
 504   bool hlZero  = (sll4rll && (nRotate >= 48)) || (srl4rll && (nRotate <= -32));
 505   bool hhZero  =                                 (srl4rll && (nRotate <= -16));
 506   bool hfZero  = hlZero && hhZero;
 507 
 508   // rotate then mask src operand.
 509   // if oneBits == true,  all bits outside selected range are 1s.
 510   // if oneBits == false, all bits outside selected range are 0s.
 511   if (src32bit) {   // There might be garbage in the upper 32 bits which will get masked away.
 512     if (dst32bit) {
 513       z_rll(dst, src, nRotate);   // Copy and rotate, upper half of reg remains undisturbed.
 514     } else {
 515       if      (sll4rll) { z_sllg(dst, src,  nRotate); }
 516       else if (srl4rll) { z_srlg(dst, src, -nRotate); }
 517       else              { z_rllg(dst, src,  nRotate); }
 518     }
 519   } else {
 520     if      (sll4rll) { z_sllg(dst, src,  nRotate); }
 521     else if (srl4rll) { z_srlg(dst, src, -nRotate); }
 522     else              { z_rllg(dst, src,  nRotate); }
 523   }
 524 
 525   unsigned long  range_mask    = create_mask(lBitPos, rBitPos);
 526   unsigned int   range_mask_h  = (unsigned int)(range_mask >> 32);
 527   unsigned int   range_mask_l  = (unsigned int)range_mask;
 528   unsigned short range_mask_hh = (unsigned short)(range_mask >> 48);
 529   unsigned short range_mask_hl = (unsigned short)(range_mask >> 32);
 530   unsigned short range_mask_lh = (unsigned short)(range_mask >> 16);
 531   unsigned short range_mask_ll = (unsigned short)range_mask;
 532   // Works for z9 and newer H/W.
 533   if (oneBits) {
 534     if ((~range_mask_l) != 0)                { z_oilf(dst, ~range_mask_l); } // All bits outside range become 1s.
 535     if (((~range_mask_h) != 0) && !dst32bit) { z_oihf(dst, ~range_mask_h); }
 536   } else {
 537     // All bits outside range become 0s
 538     if (((~range_mask_l) != 0) &&              !lfZero) {
 539       z_nilf(dst, range_mask_l);
 540     }
 541     if (((~range_mask_h) != 0) && !dst32bit && !hfZero) {
 542       z_nihf(dst, range_mask_h);
 543     }
 544   }
 545 }
 546 
 547 // Rotate src, then insert selected range from rotated src into dst.
 548 // Clear dst before, if requested.
 549 void MacroAssembler::rotate_then_insert(Register dst, Register src, int lBitPos, int rBitPos,
 550                                         int nRotate, bool clear_dst) {
 551   // This version does not depend on src being zero-extended int2long.
 552   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 553   z_risbg(dst, src, lBitPos, rBitPos, nRotate, clear_dst); // Rotate, then insert selected, clear the rest.
 554 }
 555 
 556 // Rotate src, then and selected range from rotated src into dst.
 557 // Set condition code only if so requested. Otherwise it is unpredictable.
 558 // See performance note in macroAssembler_s390.hpp for important information.
 559 void MacroAssembler::rotate_then_and(Register dst, Register src, int lBitPos, int rBitPos,
 560                                      int nRotate, bool test_only) {
 561   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 562   // This version does not depend on src being zero-extended int2long.
 563   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 564   z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 565 }
 566 
 567 // Rotate src, then or selected range from rotated src into dst.
 568 // Set condition code only if so requested. Otherwise it is unpredictable.
 569 // See performance note in macroAssembler_s390.hpp for important information.
 570 void MacroAssembler::rotate_then_or(Register dst, Register src,  int  lBitPos,  int  rBitPos,
 571                                     int nRotate, bool test_only) {
 572   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 573   // This version does not depend on src being zero-extended int2long.
 574   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 575   z_rosbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 576 }
 577 
 578 // Rotate src, then xor selected range from rotated src into dst.
 579 // Set condition code only if so requested. Otherwise it is unpredictable.
 580 // See performance note in macroAssembler_s390.hpp for important information.
 581 void MacroAssembler::rotate_then_xor(Register dst, Register src,  int  lBitPos,  int  rBitPos,
 582                                      int nRotate, bool test_only) {
 583   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 584     // This version does not depend on src being zero-extended int2long.
 585   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 586   z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 587 }
 588 
 589 void MacroAssembler::add64(Register r1, RegisterOrConstant inc) {
 590   if (inc.is_register()) {
 591     z_agr(r1, inc.as_register());
 592   } else { // constant
 593     intptr_t imm = inc.as_constant();
 594     add2reg(r1, imm);
 595   }
 596 }
 597 // Helper function to multiply the 64bit contents of a register by a 16bit constant.
 598 // The optimization tries to avoid the mghi instruction, since it uses the FPU for
 599 // calculation and is thus rather slow.
 600 //
 601 // There is no handling for special cases, e.g. cval==0 or cval==1.
 602 //
 603 // Returns len of generated code block.
 604 unsigned int MacroAssembler::mul_reg64_const16(Register rval, Register work, int cval) {
 605   int block_start = offset();
 606 
 607   bool sign_flip = cval < 0;
 608   cval = sign_flip ? -cval : cval;
 609 
 610   BLOCK_COMMENT("Reg64*Con16 {");
 611 
 612   int bit1 = cval & -cval;
 613   if (bit1 == cval) {
 614     z_sllg(rval, rval, exact_log2(bit1));
 615     if (sign_flip) { z_lcgr(rval, rval); }
 616   } else {
 617     int bit2 = (cval-bit1) & -(cval-bit1);
 618     if ((bit1+bit2) == cval) {
 619       z_sllg(work, rval, exact_log2(bit1));
 620       z_sllg(rval, rval, exact_log2(bit2));
 621       z_agr(rval, work);
 622       if (sign_flip) { z_lcgr(rval, rval); }
 623     } else {
 624       if (sign_flip) { z_mghi(rval, -cval); }
 625       else           { z_mghi(rval,  cval); }
 626     }
 627   }
 628   BLOCK_COMMENT("} Reg64*Con16");
 629 
 630   int block_end = offset();
 631   return block_end - block_start;
 632 }
 633 
 634 // Generic operation r1 := r2 + imm.
 635 //
 636 // Should produce the best code for each supported CPU version.
 637 // r2 == noreg yields r1 := r1 + imm
 638 // imm == 0 emits either no instruction or r1 := r2 !
 639 // NOTES: 1) Don't use this function where fixed sized
 640 //           instruction sequences are required!!!
 641 //        2) Don't use this function if condition code
 642 //           setting is required!
 643 //        3) Despite being declared as int64_t, the parameter imm
 644 //           must be a simm_32 value (= signed 32-bit integer).
 645 void MacroAssembler::add2reg(Register r1, int64_t imm, Register r2) {
 646   assert(Immediate::is_simm32(imm), "probably an implicit conversion went wrong");
 647 
 648   if (r2 == noreg) { r2 = r1; }
 649 
 650   // Handle special case imm == 0.
 651   if (imm == 0) {
 652     lgr_if_needed(r1, r2);
 653     // Nothing else to do.
 654     return;
 655   }
 656 
 657   if (!PreferLAoverADD || (r2 == Z_R0)) {
 658     bool distinctOpnds = VM_Version::has_DistinctOpnds();
 659 
 660     // Can we encode imm in 16 bits signed?
 661     if (Immediate::is_simm16(imm)) {
 662       if (r1 == r2) {
 663         z_aghi(r1, imm);
 664         return;
 665       }
 666       if (distinctOpnds) {
 667         z_aghik(r1, r2, imm);
 668         return;
 669       }
 670       z_lgr(r1, r2);
 671       z_aghi(r1, imm);
 672       return;
 673     }
 674   } else {
 675     // Can we encode imm in 12 bits unsigned?
 676     if (Displacement::is_shortDisp(imm)) {
 677       z_la(r1, imm, r2);
 678       return;
 679     }
 680     // Can we encode imm in 20 bits signed?
 681     if (Displacement::is_validDisp(imm)) {
 682       // Always use LAY instruction, so we don't need the tmp register.
 683       z_lay(r1, imm, r2);
 684       return;
 685     }
 686 
 687   }
 688 
 689   // Can handle it (all possible values) with long immediates.
 690   lgr_if_needed(r1, r2);
 691   z_agfi(r1, imm);
 692 }
 693 
 694 // Generic operation r := b + x + d
 695 //
 696 // Addition of several operands with address generation semantics - sort of:
 697 //  - no restriction on the registers. Any register will do for any operand.
 698 //  - x == noreg: operand will be disregarded.
 699 //  - b == noreg: will use (contents of) result reg as operand (r := r + d).
 700 //  - x == Z_R0:  just disregard
 701 //  - b == Z_R0:  use as operand. This is not address generation semantics!!!
 702 //
 703 // The same restrictions as on add2reg() are valid!!!
 704 void MacroAssembler::add2reg_with_index(Register r, int64_t d, Register x, Register b) {
 705   assert(Immediate::is_simm32(d), "probably an implicit conversion went wrong");
 706 
 707   if (x == noreg) { x = Z_R0; }
 708   if (b == noreg) { b = r; }
 709 
 710   // Handle special case x == R0.
 711   if (x == Z_R0) {
 712     // Can simply add the immediate value to the base register.
 713     add2reg(r, d, b);
 714     return;
 715   }
 716 
 717   if (!PreferLAoverADD || (b == Z_R0)) {
 718     bool distinctOpnds = VM_Version::has_DistinctOpnds();
 719     // Handle special case d == 0.
 720     if (d == 0) {
 721       if (b == x)        { z_sllg(r, b, 1); return; }
 722       if (r == x)        { z_agr(r, b);     return; }
 723       if (r == b)        { z_agr(r, x);     return; }
 724       if (distinctOpnds) { z_agrk(r, x, b); return; }
 725       z_lgr(r, b);
 726       z_agr(r, x);
 727     } else {
 728       if (x == b)             { z_sllg(r, x, 1); }
 729       else if (r == x)        { z_agr(r, b); }
 730       else if (r == b)        { z_agr(r, x); }
 731       else if (distinctOpnds) { z_agrk(r, x, b); }
 732       else {
 733         z_lgr(r, b);
 734         z_agr(r, x);
 735       }
 736       add2reg(r, d);
 737     }
 738   } else {
 739     // Can we encode imm in 12 bits unsigned?
 740     if (Displacement::is_shortDisp(d)) {
 741       z_la(r, d, x, b);
 742       return;
 743     }
 744     // Can we encode imm in 20 bits signed?
 745     if (Displacement::is_validDisp(d)) {
 746       z_lay(r, d, x, b);
 747       return;
 748     }
 749     z_la(r, 0, x, b);
 750     add2reg(r, d);
 751   }
 752 }
 753 
 754 // Generic emitter (32bit) for direct memory increment.
 755 // For optimal code, do not specify Z_R0 as temp register.
 756 void MacroAssembler::add2mem_32(const Address &a, int64_t imm, Register tmp) {
 757   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
 758     z_asi(a, imm);
 759   } else {
 760     z_lgf(tmp, a);
 761     add2reg(tmp, imm);
 762     z_st(tmp, a);
 763   }
 764 }
 765 
 766 void MacroAssembler::add2mem_64(const Address &a, int64_t imm, Register tmp) {
 767   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
 768     z_agsi(a, imm);
 769   } else {
 770     z_lg(tmp, a);
 771     add2reg(tmp, imm);
 772     z_stg(tmp, a);
 773   }
 774 }
 775 
 776 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
 777   switch (size_in_bytes) {
 778     case  8: z_lg(dst, src); break;
 779     case  4: is_signed ? z_lgf(dst, src) : z_llgf(dst, src); break;
 780     case  2: is_signed ? z_lgh(dst, src) : z_llgh(dst, src); break;
 781     case  1: is_signed ? z_lgb(dst, src) : z_llgc(dst, src); break;
 782     default: ShouldNotReachHere();
 783   }
 784 }
 785 
 786 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
 787   switch (size_in_bytes) {
 788     case  8: z_stg(src, dst); break;
 789     case  4: z_st(src, dst); break;
 790     case  2: z_sth(src, dst); break;
 791     case  1: z_stc(src, dst); break;
 792     default: ShouldNotReachHere();
 793   }
 794 }
 795 
 796 // Split a si20 offset (20bit, signed) into an ui12 offset (12bit, unsigned) and
 797 // a high-order summand in register tmp.
 798 //
 799 // return value: <  0: No split required, si20 actually has property uimm12.
 800 //               >= 0: Split performed. Use return value as uimm12 displacement and
 801 //                     tmp as index register.
 802 int MacroAssembler::split_largeoffset(int64_t si20_offset, Register tmp, bool fixed_codelen, bool accumulate) {
 803   assert(Immediate::is_simm20(si20_offset), "sanity");
 804   int lg_off = (int)si20_offset &  0x0fff; // Punch out low-order 12 bits, always positive.
 805   int ll_off = (int)si20_offset & ~0x0fff; // Force low-order 12 bits to zero.
 806   assert((Displacement::is_shortDisp(si20_offset) && (ll_off == 0)) ||
 807          !Displacement::is_shortDisp(si20_offset), "unexpected offset values");
 808   assert((lg_off+ll_off) == si20_offset, "offset splitup error");
 809 
 810   Register work = accumulate? Z_R0 : tmp;
 811 
 812   if (fixed_codelen) {          // Len of code = 10 = 4 + 6.
 813     z_lghi(work, ll_off>>12);   // Implicit sign extension.
 814     z_slag(work, work, 12);
 815   } else {                      // Len of code = 0..10.
 816     if (ll_off == 0) { return -1; }
 817     // ll_off has 8 significant bits (at most) plus sign.
 818     if ((ll_off & 0x0000f000) == 0) {    // Non-zero bits only in upper halfbyte.
 819       z_llilh(work, ll_off >> 16);
 820       if (ll_off < 0) {                  // Sign-extension required.
 821         z_lgfr(work, work);
 822       }
 823     } else {
 824       if ((ll_off & 0x000f0000) == 0) {  // Non-zero bits only in lower halfbyte.
 825         z_llill(work, ll_off);
 826       } else {                           // Non-zero bits in both halfbytes.
 827         z_lghi(work, ll_off>>12);        // Implicit sign extension.
 828         z_slag(work, work, 12);
 829       }
 830     }
 831   }
 832   if (accumulate) { z_algr(tmp, work); } // len of code += 4
 833   return lg_off;
 834 }
 835 
 836 void MacroAssembler::load_float_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
 837   if (Displacement::is_validDisp(si20)) {
 838     z_ley(t, si20, a);
 839   } else {
 840     // Fixed_codelen = true is a simple way to ensure that the size of load_float_largeoffset
 841     // does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
 842     // pool loads).
 843     bool accumulate    = true;
 844     bool fixed_codelen = true;
 845     Register work;
 846 
 847     if (fixed_codelen) {
 848       z_lgr(tmp, a);  // Lgr_if_needed not applicable due to fixed_codelen.
 849     } else {
 850       accumulate = (a == tmp);
 851     }
 852     work = tmp;
 853 
 854     int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
 855     if (disp12 < 0) {
 856       z_le(t, si20, work);
 857     } else {
 858       if (accumulate) {
 859         z_le(t, disp12, work);
 860       } else {
 861         z_le(t, disp12, work, a);
 862       }
 863     }
 864   }
 865 }
 866 
 867 void MacroAssembler::load_double_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
 868   if (Displacement::is_validDisp(si20)) {
 869     z_ldy(t, si20, a);
 870   } else {
 871     // Fixed_codelen = true is a simple way to ensure that the size of load_double_largeoffset
 872     // does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
 873     // pool loads).
 874     bool accumulate    = true;
 875     bool fixed_codelen = true;
 876     Register work;
 877 
 878     if (fixed_codelen) {
 879       z_lgr(tmp, a);  // Lgr_if_needed not applicable due to fixed_codelen.
 880     } else {
 881       accumulate = (a == tmp);
 882     }
 883     work = tmp;
 884 
 885     int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
 886     if (disp12 < 0) {
 887       z_ld(t, si20, work);
 888     } else {
 889       if (accumulate) {
 890         z_ld(t, disp12, work);
 891       } else {
 892         z_ld(t, disp12, work, a);
 893       }
 894     }
 895   }
 896 }
 897 
 898 // PCrelative TOC access.
 899 // Returns distance (in bytes) from current position to start of consts section.
 900 // Returns 0 (zero) if no consts section exists or if it has size zero.
 901 long MacroAssembler::toc_distance() {
 902   CodeSection* cs = code()->consts();
 903   return (long)((cs != NULL) ? cs->start()-pc() : 0);
 904 }
 905 
 906 // Implementation on x86/sparc assumes that constant and instruction section are
 907 // adjacent, but this doesn't hold. Two special situations may occur, that we must
 908 // be able to handle:
 909 //   1. const section may be located apart from the inst section.
 910 //   2. const section may be empty
 911 // In both cases, we use the const section's start address to compute the "TOC",
 912 // this seems to occur only temporarily; in the final step we always seem to end up
 913 // with the pc-relatice variant.
 914 //
 915 // PC-relative offset could be +/-2**32 -> use long for disp
 916 // Furthermore: makes no sense to have special code for
 917 // adjacent const and inst sections.
 918 void MacroAssembler::load_toc(Register Rtoc) {
 919   // Simply use distance from start of const section (should be patched in the end).
 920   long disp = toc_distance();
 921 
 922   RelocationHolder rspec = internal_word_Relocation::spec(pc() + disp);
 923   relocate(rspec);
 924   z_larl(Rtoc, RelAddr::pcrel_off32(disp));  // Offset is in halfwords.
 925 }
 926 
 927 // PCrelative TOC access.
 928 // Load from anywhere pcrelative (with relocation of load instr)
 929 void MacroAssembler::load_long_pcrelative(Register Rdst, address dataLocation) {
 930   address          pc             = this->pc();
 931   ptrdiff_t        total_distance = dataLocation - pc;
 932   RelocationHolder rspec          = internal_word_Relocation::spec(dataLocation);
 933 
 934   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 935   assert(total_distance != 0, "sanity");
 936 
 937   // Some extra safety net.
 938   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 939     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
 940   }
 941 
 942   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 943   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 944 }
 945 
 946 
 947 // PCrelative TOC access.
 948 // Load from anywhere pcrelative (with relocation of load instr)
 949 // loaded addr has to be relocated when added to constant pool.
 950 void MacroAssembler::load_addr_pcrelative(Register Rdst, address addrLocation) {
 951   address          pc             = this->pc();
 952   ptrdiff_t        total_distance = addrLocation - pc;
 953   RelocationHolder rspec          = internal_word_Relocation::spec(addrLocation);
 954 
 955   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 956 
 957   // Some extra safety net.
 958   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 959     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
 960   }
 961 
 962   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 963   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 964 }
 965 
 966 // Generic operation: load a value from memory and test.
 967 // CondCode indicates the sign (<0, ==0, >0) of the loaded value.
 968 void MacroAssembler::load_and_test_byte(Register dst, const Address &a) {
 969   z_lb(dst, a);
 970   z_ltr(dst, dst);
 971 }
 972 
 973 void MacroAssembler::load_and_test_short(Register dst, const Address &a) {
 974   int64_t disp = a.disp20();
 975   if (Displacement::is_shortDisp(disp)) {
 976     z_lh(dst, a);
 977   } else if (Displacement::is_longDisp(disp)) {
 978     z_lhy(dst, a);
 979   } else {
 980     guarantee(false, "displacement out of range");
 981   }
 982   z_ltr(dst, dst);
 983 }
 984 
 985 void MacroAssembler::load_and_test_int(Register dst, const Address &a) {
 986   z_lt(dst, a);
 987 }
 988 
 989 void MacroAssembler::load_and_test_int2long(Register dst, const Address &a) {
 990   z_ltgf(dst, a);
 991 }
 992 
 993 void MacroAssembler::load_and_test_long(Register dst, const Address &a) {
 994   z_ltg(dst, a);
 995 }
 996 
 997 // Test a bit in memory.
 998 void MacroAssembler::testbit(const Address &a, unsigned int bit) {
 999   assert(a.index() == noreg, "no index reg allowed in testbit");
1000   if (bit <= 7) {
1001     z_tm(a.disp() + 3, a.base(), 1 << bit);
1002   } else if (bit <= 15) {
1003     z_tm(a.disp() + 2, a.base(), 1 << (bit - 8));
1004   } else if (bit <= 23) {
1005     z_tm(a.disp() + 1, a.base(), 1 << (bit - 16));
1006   } else if (bit <= 31) {
1007     z_tm(a.disp() + 0, a.base(), 1 << (bit - 24));
1008   } else {
1009     ShouldNotReachHere();
1010   }
1011 }
1012 
1013 // Test a bit in a register. Result is reflected in CC.
1014 void MacroAssembler::testbit(Register r, unsigned int bitPos) {
1015   if (bitPos < 16) {
1016     z_tmll(r, 1U<<bitPos);
1017   } else if (bitPos < 32) {
1018     z_tmlh(r, 1U<<(bitPos-16));
1019   } else if (bitPos < 48) {
1020     z_tmhl(r, 1U<<(bitPos-32));
1021   } else if (bitPos < 64) {
1022     z_tmhh(r, 1U<<(bitPos-48));
1023   } else {
1024     ShouldNotReachHere();
1025   }
1026 }
1027 
1028 void MacroAssembler::prefetch_read(Address a) {
1029   z_pfd(1, a.disp20(), a.indexOrR0(), a.base());
1030 }
1031 void MacroAssembler::prefetch_update(Address a) {
1032   z_pfd(2, a.disp20(), a.indexOrR0(), a.base());
1033 }
1034 
1035 // Clear a register, i.e. load const zero into reg.
1036 // Return len (in bytes) of generated instruction(s).
1037 // whole_reg: Clear 64 bits if true, 32 bits otherwise.
1038 // set_cc:    Use instruction that sets the condition code, if true.
1039 int MacroAssembler::clear_reg(Register r, bool whole_reg, bool set_cc) {
1040   unsigned int start_off = offset();
1041   if (whole_reg) {
1042     set_cc ? z_xgr(r, r) : z_laz(r, 0, Z_R0);
1043   } else {  // Only 32bit register.
1044     set_cc ? z_xr(r, r) : z_lhi(r, 0);
1045   }
1046   return offset() - start_off;
1047 }
1048 
1049 #ifdef ASSERT
1050 int MacroAssembler::preset_reg(Register r, unsigned long pattern, int pattern_len) {
1051   switch (pattern_len) {
1052     case 1:
1053       pattern = (pattern & 0x000000ff)  | ((pattern & 0x000000ff)<<8);
1054     case 2:
1055       pattern = (pattern & 0x0000ffff)  | ((pattern & 0x0000ffff)<<16);
1056     case 4:
1057       pattern = (pattern & 0xffffffffL) | ((pattern & 0xffffffffL)<<32);
1058     case 8:
1059       return load_const_optimized_rtn_len(r, pattern, true);
1060       break;
1061     default:
1062       guarantee(false, "preset_reg: bad len");
1063   }
1064   return 0;
1065 }
1066 #endif
1067 
1068 // addr: Address descriptor of memory to clear index register will not be used !
1069 // size: Number of bytes to clear.
1070 //    !!! DO NOT USE THEM FOR ATOMIC MEMORY CLEARING !!!
1071 //    !!! Use store_const() instead                  !!!
1072 void MacroAssembler::clear_mem(const Address& addr, unsigned size) {
1073   guarantee(size <= 256, "MacroAssembler::clear_mem: size too large");
1074 
1075   if (size == 1) {
1076     z_mvi(addr, 0);
1077     return;
1078   }
1079 
1080   switch (size) {
1081     case 2: z_mvhhi(addr, 0);
1082       return;
1083     case 4: z_mvhi(addr, 0);
1084       return;
1085     case 8: z_mvghi(addr, 0);
1086       return;
1087     default: ; // Fallthru to xc.
1088   }
1089 
1090   z_xc(addr, size, addr);
1091 }
1092 
1093 void MacroAssembler::align(int modulus) {
1094   while (offset() % modulus != 0) z_nop();
1095 }
1096 
1097 // Special version for non-relocateable code if required alignment
1098 // is larger than CodeEntryAlignment.
1099 void MacroAssembler::align_address(int modulus) {
1100   while ((uintptr_t)pc() % modulus != 0) z_nop();
1101 }
1102 
1103 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1104                                          Register temp_reg,
1105                                          int64_t extra_slot_offset) {
1106   // On Z, we can have index and disp in an Address. So don't call argument_offset,
1107   // which issues an unnecessary add instruction.
1108   int stackElementSize = Interpreter::stackElementSize;
1109   int64_t offset = extra_slot_offset * stackElementSize;
1110   const Register argbase = Z_esp;
1111   if (arg_slot.is_constant()) {
1112     offset += arg_slot.as_constant() * stackElementSize;
1113     return Address(argbase, offset);
1114   }
1115   // else
1116   assert(temp_reg != noreg, "must specify");
1117   assert(temp_reg != Z_ARG1, "base and index are conflicting");
1118   z_sllg(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize)); // tempreg = arg_slot << 3
1119   return Address(argbase, temp_reg, offset);
1120 }
1121 
1122 
1123 //===================================================================
1124 //===   START   C O N S T A N T S   I N   C O D E   S T R E A M   ===
1125 //===================================================================
1126 //===            P A T CH A B L E   C O N S T A N T S             ===
1127 //===================================================================
1128 
1129 
1130 //---------------------------------------------------
1131 //  Load (patchable) constant into register
1132 //---------------------------------------------------
1133 
1134 
1135 // Load absolute address (and try to optimize).
1136 //   Note: This method is usable only for position-fixed code,
1137 //         referring to a position-fixed target location.
1138 //         If not so, relocations and patching must be used.
1139 void MacroAssembler::load_absolute_address(Register d, address addr) {
1140   assert(addr != NULL, "should not happen");
1141   BLOCK_COMMENT("load_absolute_address:");
1142   if (addr == NULL) {
1143     z_larl(d, pc()); // Dummy emit for size calc.
1144     return;
1145   }
1146 
1147   if (RelAddr::is_in_range_of_RelAddr32(addr, pc())) {
1148     z_larl(d, addr);
1149     return;
1150   }
1151 
1152   load_const_optimized(d, (long)addr);
1153 }
1154 
1155 // Load a 64bit constant.
1156 // Patchable code sequence, but not atomically patchable.
1157 // Make sure to keep code size constant -> no value-dependent optimizations.
1158 // Do not kill condition code.
1159 void MacroAssembler::load_const(Register t, long x) {
1160   Assembler::z_iihf(t, (int)(x >> 32));
1161   Assembler::z_iilf(t, (int)(x & 0xffffffff));
1162 }
1163 
1164 // Load a 32bit constant into a 64bit register, sign-extend or zero-extend.
1165 // Patchable code sequence, but not atomically patchable.
1166 // Make sure to keep code size constant -> no value-dependent optimizations.
1167 // Do not kill condition code.
1168 void MacroAssembler::load_const_32to64(Register t, int64_t x, bool sign_extend) {
1169   if (sign_extend) { Assembler::z_lgfi(t, x); }
1170   else             { Assembler::z_llilf(t, x); }
1171 }
1172 
1173 // Load narrow oop constant, no decompression.
1174 void MacroAssembler::load_narrow_oop(Register t, narrowOop a) {
1175   assert(UseCompressedOops, "must be on to call this method");
1176   load_const_32to64(t, a, false /*sign_extend*/);
1177 }
1178 
1179 // Load narrow klass constant, compression required.
1180 void MacroAssembler::load_narrow_klass(Register t, Klass* k) {
1181   assert(UseCompressedClassPointers, "must be on to call this method");
1182   narrowKlass encoded_k = Klass::encode_klass(k);
1183   load_const_32to64(t, encoded_k, false /*sign_extend*/);
1184 }
1185 
1186 //------------------------------------------------------
1187 //  Compare (patchable) constant with register.
1188 //------------------------------------------------------
1189 
1190 // Compare narrow oop in reg with narrow oop constant, no decompression.
1191 void MacroAssembler::compare_immediate_narrow_oop(Register oop1, narrowOop oop2) {
1192   assert(UseCompressedOops, "must be on to call this method");
1193 
1194   Assembler::z_clfi(oop1, oop2);
1195 }
1196 
1197 // Compare narrow oop in reg with narrow oop constant, no decompression.
1198 void MacroAssembler::compare_immediate_narrow_klass(Register klass1, Klass* klass2) {
1199   assert(UseCompressedClassPointers, "must be on to call this method");
1200   narrowKlass encoded_k = Klass::encode_klass(klass2);
1201 
1202   Assembler::z_clfi(klass1, encoded_k);
1203 }
1204 
1205 //----------------------------------------------------------
1206 //  Check which kind of load_constant we have here.
1207 //----------------------------------------------------------
1208 
1209 // Detection of CPU version dependent load_const sequence.
1210 // The detection is valid only for code sequences generated by load_const,
1211 // not load_const_optimized.
1212 bool MacroAssembler::is_load_const(address a) {
1213   unsigned long inst1, inst2;
1214   unsigned int  len1,  len2;
1215 
1216   len1 = get_instruction(a, &inst1);
1217   len2 = get_instruction(a + len1, &inst2);
1218 
1219   return is_z_iihf(inst1) && is_z_iilf(inst2);
1220 }
1221 
1222 // Detection of CPU version dependent load_const_32to64 sequence.
1223 // Mostly used for narrow oops and narrow Klass pointers.
1224 // The detection is valid only for code sequences generated by load_const_32to64.
1225 bool MacroAssembler::is_load_const_32to64(address pos) {
1226   unsigned long inst1, inst2;
1227   unsigned int len1;
1228 
1229   len1 = get_instruction(pos, &inst1);
1230   return is_z_llilf(inst1);
1231 }
1232 
1233 // Detection of compare_immediate_narrow sequence.
1234 // The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
1235 bool MacroAssembler::is_compare_immediate32(address pos) {
1236   return is_equal(pos, CLFI_ZOPC, RIL_MASK);
1237 }
1238 
1239 // Detection of compare_immediate_narrow sequence.
1240 // The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
1241 bool MacroAssembler::is_compare_immediate_narrow_oop(address pos) {
1242   return is_compare_immediate32(pos);
1243   }
1244 
1245 // Detection of compare_immediate_narrow sequence.
1246 // The detection is valid only for code sequences generated by compare_immediate_narrow_klass.
1247 bool MacroAssembler::is_compare_immediate_narrow_klass(address pos) {
1248   return is_compare_immediate32(pos);
1249 }
1250 
1251 //-----------------------------------
1252 //  patch the load_constant
1253 //-----------------------------------
1254 
1255 // CPU-version dependend patching of load_const.
1256 void MacroAssembler::patch_const(address a, long x) {
1257   assert(is_load_const(a), "not a load of a constant");
1258   set_imm32((address)a, (int) ((x >> 32) & 0xffffffff));
1259   set_imm32((address)(a + 6), (int)(x & 0xffffffff));
1260 }
1261 
1262 // Patching the value of CPU version dependent load_const_32to64 sequence.
1263 // The passed ptr MUST be in compressed format!
1264 int MacroAssembler::patch_load_const_32to64(address pos, int64_t np) {
1265   assert(is_load_const_32to64(pos), "not a load of a narrow ptr (oop or klass)");
1266 
1267   set_imm32(pos, np);
1268   return 6;
1269 }
1270 
1271 // Patching the value of CPU version dependent compare_immediate_narrow sequence.
1272 // The passed ptr MUST be in compressed format!
1273 int MacroAssembler::patch_compare_immediate_32(address pos, int64_t np) {
1274   assert(is_compare_immediate32(pos), "not a compressed ptr compare");
1275 
1276   set_imm32(pos, np);
1277   return 6;
1278 }
1279 
1280 // Patching the immediate value of CPU version dependent load_narrow_oop sequence.
1281 // The passed ptr must NOT be in compressed format!
1282 int MacroAssembler::patch_load_narrow_oop(address pos, oop o) {
1283   assert(UseCompressedOops, "Can only patch compressed oops");
1284 
1285   narrowOop no = CompressedOops::encode(o);
1286   return patch_load_const_32to64(pos, no);
1287 }
1288 
1289 // Patching the immediate value of CPU version dependent load_narrow_klass sequence.
1290 // The passed ptr must NOT be in compressed format!
1291 int MacroAssembler::patch_load_narrow_klass(address pos, Klass* k) {
1292   assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
1293 
1294   narrowKlass nk = Klass::encode_klass(k);
1295   return patch_load_const_32to64(pos, nk);
1296 }
1297 
1298 // Patching the immediate value of CPU version dependent compare_immediate_narrow_oop sequence.
1299 // The passed ptr must NOT be in compressed format!
1300 int MacroAssembler::patch_compare_immediate_narrow_oop(address pos, oop o) {
1301   assert(UseCompressedOops, "Can only patch compressed oops");
1302 
1303   narrowOop no = CompressedOops::encode(o);
1304   return patch_compare_immediate_32(pos, no);
1305 }
1306 
1307 // Patching the immediate value of CPU version dependent compare_immediate_narrow_klass sequence.
1308 // The passed ptr must NOT be in compressed format!
1309 int MacroAssembler::patch_compare_immediate_narrow_klass(address pos, Klass* k) {
1310   assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
1311 
1312   narrowKlass nk = Klass::encode_klass(k);
1313   return patch_compare_immediate_32(pos, nk);
1314 }
1315 
1316 //------------------------------------------------------------------------
1317 //  Extract the constant from a load_constant instruction stream.
1318 //------------------------------------------------------------------------
1319 
1320 // Get constant from a load_const sequence.
1321 long MacroAssembler::get_const(address a) {
1322   assert(is_load_const(a), "not a load of a constant");
1323   unsigned long x;
1324   x =  (((unsigned long) (get_imm32(a,0) & 0xffffffff)) << 32);
1325   x |= (((unsigned long) (get_imm32(a,1) & 0xffffffff)));
1326   return (long) x;
1327 }
1328 
1329 //--------------------------------------
1330 //  Store a constant in memory.
1331 //--------------------------------------
1332 
1333 // General emitter to move a constant to memory.
1334 // The store is atomic.
1335 //  o Address must be given in RS format (no index register)
1336 //  o Displacement should be 12bit unsigned for efficiency. 20bit signed also supported.
1337 //  o Constant can be 1, 2, 4, or 8 bytes, signed or unsigned.
1338 //  o Memory slot can be 1, 2, 4, or 8 bytes, signed or unsigned.
1339 //  o Memory slot must be at least as wide as constant, will assert otherwise.
1340 //  o Signed constants will sign-extend, unsigned constants will zero-extend to slot width.
1341 int MacroAssembler::store_const(const Address &dest, long imm,
1342                                 unsigned int lm, unsigned int lc,
1343                                 Register scratch) {
1344   int64_t  disp = dest.disp();
1345   Register base = dest.base();
1346   assert(!dest.has_index(), "not supported");
1347   assert((lm==1)||(lm==2)||(lm==4)||(lm==8), "memory   length not supported");
1348   assert((lc==1)||(lc==2)||(lc==4)||(lc==8), "constant length not supported");
1349   assert(lm>=lc, "memory slot too small");
1350   assert(lc==8 || Immediate::is_simm(imm, lc*8), "const out of range");
1351   assert(Displacement::is_validDisp(disp), "displacement out of range");
1352 
1353   bool is_shortDisp = Displacement::is_shortDisp(disp);
1354   int store_offset = -1;
1355 
1356   // For target len == 1 it's easy.
1357   if (lm == 1) {
1358     store_offset = offset();
1359     if (is_shortDisp) {
1360       z_mvi(disp, base, imm);
1361       return store_offset;
1362     } else {
1363       z_mviy(disp, base, imm);
1364       return store_offset;
1365     }
1366   }
1367 
1368   // All the "good stuff" takes an unsigned displacement.
1369   if (is_shortDisp) {
1370     // NOTE: Cannot use clear_mem for imm==0, because it is not atomic.
1371 
1372     store_offset = offset();
1373     switch (lm) {
1374       case 2:  // Lc == 1 handled correctly here, even for unsigned. Instruction does no widening.
1375         z_mvhhi(disp, base, imm);
1376         return store_offset;
1377       case 4:
1378         if (Immediate::is_simm16(imm)) {
1379           z_mvhi(disp, base, imm);
1380           return store_offset;
1381         }
1382         break;
1383       case 8:
1384         if (Immediate::is_simm16(imm)) {
1385           z_mvghi(disp, base, imm);
1386           return store_offset;
1387         }
1388         break;
1389       default:
1390         ShouldNotReachHere();
1391         break;
1392     }
1393   }
1394 
1395   //  Can't optimize, so load value and store it.
1396   guarantee(scratch != noreg, " need a scratch register here !");
1397   if (imm != 0) {
1398     load_const_optimized(scratch, imm);  // Preserves CC anyway.
1399   } else {
1400     // Leave CC alone!!
1401     (void) clear_reg(scratch, true, false); // Indicate unused result.
1402   }
1403 
1404   store_offset = offset();
1405   if (is_shortDisp) {
1406     switch (lm) {
1407       case 2:
1408         z_sth(scratch, disp, Z_R0, base);
1409         return store_offset;
1410       case 4:
1411         z_st(scratch, disp, Z_R0, base);
1412         return store_offset;
1413       case 8:
1414         z_stg(scratch, disp, Z_R0, base);
1415         return store_offset;
1416       default:
1417         ShouldNotReachHere();
1418         break;
1419     }
1420   } else {
1421     switch (lm) {
1422       case 2:
1423         z_sthy(scratch, disp, Z_R0, base);
1424         return store_offset;
1425       case 4:
1426         z_sty(scratch, disp, Z_R0, base);
1427         return store_offset;
1428       case 8:
1429         z_stg(scratch, disp, Z_R0, base);
1430         return store_offset;
1431       default:
1432         ShouldNotReachHere();
1433         break;
1434     }
1435   }
1436   return -1; // should not reach here
1437 }
1438 
1439 //===================================================================
1440 //===       N O T   P A T CH A B L E   C O N S T A N T S          ===
1441 //===================================================================
1442 
1443 // Load constant x into register t with a fast instrcution sequence
1444 // depending on the bits in x. Preserves CC under all circumstances.
1445 int MacroAssembler::load_const_optimized_rtn_len(Register t, long x, bool emit) {
1446   if (x == 0) {
1447     int len;
1448     if (emit) {
1449       len = clear_reg(t, true, false);
1450     } else {
1451       len = 4;
1452     }
1453     return len;
1454   }
1455 
1456   if (Immediate::is_simm16(x)) {
1457     if (emit) { z_lghi(t, x); }
1458     return 4;
1459   }
1460 
1461   // 64 bit value: | part1 | part2 | part3 | part4 |
1462   // At least one part is not zero!
1463   int part1 = ((x >> 32) & 0xffff0000) >> 16;
1464   int part2 = (x >> 32) & 0x0000ffff;
1465   int part3 = (x & 0xffff0000) >> 16;
1466   int part4 = (x & 0x0000ffff);
1467 
1468   // Lower word only (unsigned).
1469   if ((part1 == 0) && (part2 == 0)) {
1470     if (part3 == 0) {
1471       if (emit) z_llill(t, part4);
1472       return 4;
1473     }
1474     if (part4 == 0) {
1475       if (emit) z_llilh(t, part3);
1476       return 4;
1477     }
1478     if (emit) z_llilf(t, (int)(x & 0xffffffff));
1479     return 6;
1480   }
1481 
1482   // Upper word only.
1483   if ((part3 == 0) && (part4 == 0)) {
1484     if (part1 == 0) {
1485       if (emit) z_llihl(t, part2);
1486       return 4;
1487     }
1488     if (part2 == 0) {
1489       if (emit) z_llihh(t, part1);
1490       return 4;
1491     }
1492     if (emit) z_llihf(t, (int)(x >> 32));
1493     return 6;
1494   }
1495 
1496   // Lower word only (signed).
1497   if ((part1 == 0x0000ffff) && (part2 == 0x0000ffff) && ((part3 & 0x00008000) != 0)) {
1498     if (emit) z_lgfi(t, (int)(x & 0xffffffff));
1499     return 6;
1500   }
1501 
1502   int len = 0;
1503 
1504   if ((part1 == 0) || (part2 == 0)) {
1505     if (part1 == 0) {
1506       if (emit) z_llihl(t, part2);
1507       len += 4;
1508     } else {
1509       if (emit) z_llihh(t, part1);
1510       len += 4;
1511     }
1512   } else {
1513     if (emit) z_llihf(t, (int)(x >> 32));
1514     len += 6;
1515   }
1516 
1517   if ((part3 == 0) || (part4 == 0)) {
1518     if (part3 == 0) {
1519       if (emit) z_iill(t, part4);
1520       len += 4;
1521     } else {
1522       if (emit) z_iilh(t, part3);
1523       len += 4;
1524     }
1525   } else {
1526     if (emit) z_iilf(t, (int)(x & 0xffffffff));
1527     len += 6;
1528   }
1529   return len;
1530 }
1531 
1532 //=====================================================================
1533 //===     H I G H E R   L E V E L   B R A N C H   E M I T T E R S   ===
1534 //=====================================================================
1535 
1536 // Note: In the worst case, one of the scratch registers is destroyed!!!
1537 void MacroAssembler::compare32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1538   // Right operand is constant.
1539   if (x2.is_constant()) {
1540     jlong value = x2.as_constant();
1541     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/true);
1542     return;
1543   }
1544 
1545   // Right operand is in register.
1546   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/true);
1547 }
1548 
1549 // Note: In the worst case, one of the scratch registers is destroyed!!!
1550 void MacroAssembler::compareU32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1551   // Right operand is constant.
1552   if (x2.is_constant()) {
1553     jlong value = x2.as_constant();
1554     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/false);
1555     return;
1556   }
1557 
1558   // Right operand is in register.
1559   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/false);
1560 }
1561 
1562 // Note: In the worst case, one of the scratch registers is destroyed!!!
1563 void MacroAssembler::compare64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1564   // Right operand is constant.
1565   if (x2.is_constant()) {
1566     jlong value = x2.as_constant();
1567     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/true);
1568     return;
1569   }
1570 
1571   // Right operand is in register.
1572   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/true);
1573 }
1574 
1575 void MacroAssembler::compareU64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1576   // Right operand is constant.
1577   if (x2.is_constant()) {
1578     jlong value = x2.as_constant();
1579     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/false);
1580     return;
1581   }
1582 
1583   // Right operand is in register.
1584   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/false);
1585 }
1586 
1587 // Generate an optimal branch to the branch target.
1588 // Optimal means that a relative branch (brc or brcl) is used if the
1589 // branch distance is short enough. Loading the target address into a
1590 // register and branching via reg is used as fallback only.
1591 //
1592 // Used registers:
1593 //   Z_R1 - work reg. Holds branch target address.
1594 //          Used in fallback case only.
1595 //
1596 // This version of branch_optimized is good for cases where the target address is known
1597 // and constant, i.e. is never changed (no relocation, no patching).
1598 void MacroAssembler::branch_optimized(Assembler::branch_condition cond, address branch_addr) {
1599   address branch_origin = pc();
1600 
1601   if (RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
1602     z_brc(cond, branch_addr);
1603   } else if (RelAddr::is_in_range_of_RelAddr32(branch_addr, branch_origin)) {
1604     z_brcl(cond, branch_addr);
1605   } else {
1606     load_const_optimized(Z_R1, branch_addr);  // CC must not get killed by load_const_optimized.
1607     z_bcr(cond, Z_R1);
1608   }
1609 }
1610 
1611 // This version of branch_optimized is good for cases where the target address
1612 // is potentially not yet known at the time the code is emitted.
1613 //
1614 // One very common case is a branch to an unbound label which is handled here.
1615 // The caller might know (or hope) that the branch distance is short enough
1616 // to be encoded in a 16bit relative address. In this case he will pass a
1617 // NearLabel branch_target.
1618 // Care must be taken with unbound labels. Each call to target(label) creates
1619 // an entry in the patch queue for that label to patch all references of the label
1620 // once it gets bound. Those recorded patch locations must be patchable. Otherwise,
1621 // an assertion fires at patch time.
1622 void MacroAssembler::branch_optimized(Assembler::branch_condition cond, Label& branch_target) {
1623   if (branch_target.is_bound()) {
1624     address branch_addr = target(branch_target);
1625     branch_optimized(cond, branch_addr);
1626   } else if (branch_target.is_near()) {
1627     z_brc(cond, branch_target);  // Caller assures that the target will be in range for z_brc.
1628   } else {
1629     z_brcl(cond, branch_target); // Let's hope target is in range. Otherwise, we will abort at patch time.
1630   }
1631 }
1632 
1633 // Generate an optimal compare and branch to the branch target.
1634 // Optimal means that a relative branch (clgrj, brc or brcl) is used if the
1635 // branch distance is short enough. Loading the target address into a
1636 // register and branching via reg is used as fallback only.
1637 //
1638 // Input:
1639 //   r1 - left compare operand
1640 //   r2 - right compare operand
1641 void MacroAssembler::compare_and_branch_optimized(Register r1,
1642                                                   Register r2,
1643                                                   Assembler::branch_condition cond,
1644                                                   address  branch_addr,
1645                                                   bool     len64,
1646                                                   bool     has_sign) {
1647   unsigned int casenum = (len64?2:0)+(has_sign?0:1);
1648 
1649   address branch_origin = pc();
1650   if (VM_Version::has_CompareBranch() && RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
1651     switch (casenum) {
1652       case 0: z_crj( r1, r2, cond, branch_addr); break;
1653       case 1: z_clrj (r1, r2, cond, branch_addr); break;
1654       case 2: z_cgrj(r1, r2, cond, branch_addr); break;
1655       case 3: z_clgrj(r1, r2, cond, branch_addr); break;
1656       default: ShouldNotReachHere(); break;
1657     }
1658   } else {
1659     switch (casenum) {
1660       case 0: z_cr( r1, r2); break;
1661       case 1: z_clr(r1, r2); break;
1662       case 2: z_cgr(r1, r2); break;
1663       case 3: z_clgr(r1, r2); break;
1664       default: ShouldNotReachHere(); break;
1665     }
1666     branch_optimized(cond, branch_addr);
1667   }
1668 }
1669 
1670 // Generate an optimal compare and branch to the branch target.
1671 // Optimal means that a relative branch (clgij, brc or brcl) is used if the
1672 // branch distance is short enough. Loading the target address into a
1673 // register and branching via reg is used as fallback only.
1674 //
1675 // Input:
1676 //   r1 - left compare operand (in register)
1677 //   x2 - right compare operand (immediate)
1678 void MacroAssembler::compare_and_branch_optimized(Register r1,
1679                                                   jlong    x2,
1680                                                   Assembler::branch_condition cond,
1681                                                   Label&   branch_target,
1682                                                   bool     len64,
1683                                                   bool     has_sign) {
1684   address      branch_origin = pc();
1685   bool         x2_imm8       = (has_sign && Immediate::is_simm8(x2)) || (!has_sign && Immediate::is_uimm8(x2));
1686   bool         is_RelAddr16  = branch_target.is_near() ||
1687                                (branch_target.is_bound() &&
1688                                 RelAddr::is_in_range_of_RelAddr16(target(branch_target), branch_origin));
1689   unsigned int casenum       = (len64?2:0)+(has_sign?0:1);
1690 
1691   if (VM_Version::has_CompareBranch() && is_RelAddr16 && x2_imm8) {
1692     switch (casenum) {
1693       case 0: z_cij( r1, x2, cond, branch_target); break;
1694       case 1: z_clij(r1, x2, cond, branch_target); break;
1695       case 2: z_cgij(r1, x2, cond, branch_target); break;
1696       case 3: z_clgij(r1, x2, cond, branch_target); break;
1697       default: ShouldNotReachHere(); break;
1698     }
1699     return;
1700   }
1701 
1702   if (x2 == 0) {
1703     switch (casenum) {
1704       case 0: z_ltr(r1, r1); break;
1705       case 1: z_ltr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
1706       case 2: z_ltgr(r1, r1); break;
1707       case 3: z_ltgr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
1708       default: ShouldNotReachHere(); break;
1709     }
1710   } else {
1711     if ((has_sign && Immediate::is_simm16(x2)) || (!has_sign && Immediate::is_uimm(x2, 15))) {
1712       switch (casenum) {
1713         case 0: z_chi(r1, x2); break;
1714         case 1: z_chi(r1, x2); break; // positive immediate < 2**15
1715         case 2: z_cghi(r1, x2); break;
1716         case 3: z_cghi(r1, x2); break; // positive immediate < 2**15
1717         default: break;
1718       }
1719     } else if ( (has_sign && Immediate::is_simm32(x2)) || (!has_sign && Immediate::is_uimm32(x2)) ) {
1720       switch (casenum) {
1721         case 0: z_cfi( r1, x2); break;
1722         case 1: z_clfi(r1, x2); break;
1723         case 2: z_cgfi(r1, x2); break;
1724         case 3: z_clgfi(r1, x2); break;
1725         default: ShouldNotReachHere(); break;
1726       }
1727     } else {
1728       // No instruction with immediate operand possible, so load into register.
1729       Register scratch = (r1 != Z_R0) ? Z_R0 : Z_R1;
1730       load_const_optimized(scratch, x2);
1731       switch (casenum) {
1732         case 0: z_cr( r1, scratch); break;
1733         case 1: z_clr(r1, scratch); break;
1734         case 2: z_cgr(r1, scratch); break;
1735         case 3: z_clgr(r1, scratch); break;
1736         default: ShouldNotReachHere(); break;
1737       }
1738     }
1739   }
1740   branch_optimized(cond, branch_target);
1741 }
1742 
1743 // Generate an optimal compare and branch to the branch target.
1744 // Optimal means that a relative branch (clgrj, brc or brcl) is used if the
1745 // branch distance is short enough. Loading the target address into a
1746 // register and branching via reg is used as fallback only.
1747 //
1748 // Input:
1749 //   r1 - left compare operand
1750 //   r2 - right compare operand
1751 void MacroAssembler::compare_and_branch_optimized(Register r1,
1752                                                   Register r2,
1753                                                   Assembler::branch_condition cond,
1754                                                   Label&   branch_target,
1755                                                   bool     len64,
1756                                                   bool     has_sign) {
1757   unsigned int casenum = (len64 ? 2 : 0) + (has_sign ? 0 : 1);
1758 
1759   if (branch_target.is_bound()) {
1760     address branch_addr = target(branch_target);
1761     compare_and_branch_optimized(r1, r2, cond, branch_addr, len64, has_sign);
1762   } else {
1763     if (VM_Version::has_CompareBranch() && branch_target.is_near()) {
1764       switch (casenum) {
1765         case 0: z_crj(  r1, r2, cond, branch_target); break;
1766         case 1: z_clrj( r1, r2, cond, branch_target); break;
1767         case 2: z_cgrj( r1, r2, cond, branch_target); break;
1768         case 3: z_clgrj(r1, r2, cond, branch_target); break;
1769         default: ShouldNotReachHere(); break;
1770       }
1771     } else {
1772       switch (casenum) {
1773         case 0: z_cr( r1, r2); break;
1774         case 1: z_clr(r1, r2); break;
1775         case 2: z_cgr(r1, r2); break;
1776         case 3: z_clgr(r1, r2); break;
1777         default: ShouldNotReachHere(); break;
1778       }
1779       branch_optimized(cond, branch_target);
1780     }
1781   }
1782 }
1783 
1784 //===========================================================================
1785 //===   END     H I G H E R   L E V E L   B R A N C H   E M I T T E R S   ===
1786 //===========================================================================
1787 
1788 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
1789   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1790   int index = oop_recorder()->allocate_metadata_index(obj);
1791   RelocationHolder rspec = metadata_Relocation::spec(index);
1792   return AddressLiteral((address)obj, rspec);
1793 }
1794 
1795 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1796   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1797   int index = oop_recorder()->find_index(obj);
1798   RelocationHolder rspec = metadata_Relocation::spec(index);
1799   return AddressLiteral((address)obj, rspec);
1800 }
1801 
1802 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
1803   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1804   int oop_index = oop_recorder()->allocate_oop_index(obj);
1805   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
1806 }
1807 
1808 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1809   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1810   int oop_index = oop_recorder()->find_index(obj);
1811   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
1812 }
1813 
1814 // NOTE: destroys r
1815 void MacroAssembler::c2bool(Register r, Register t) {
1816   z_lcr(t, r);   // t = -r
1817   z_or(r, t);    // r = -r OR r
1818   z_srl(r, 31);  // Yields 0 if r was 0, 1 otherwise.
1819 }
1820 
1821 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
1822                                                       Register tmp,
1823                                                       int offset) {
1824   intptr_t value = *delayed_value_addr;
1825   if (value != 0) {
1826     return RegisterOrConstant(value + offset);
1827   }
1828 
1829   BLOCK_COMMENT("delayed_value {");
1830   // Load indirectly to solve generation ordering problem.
1831   load_absolute_address(tmp, (address) delayed_value_addr); // tmp = a;
1832   z_lg(tmp, 0, tmp);                   // tmp = *tmp;
1833 
1834 #ifdef ASSERT
1835   NearLabel L;
1836   compare64_and_branch(tmp, (intptr_t)0L, Assembler::bcondNotEqual, L);
1837   z_illtrap();
1838   bind(L);
1839 #endif
1840 
1841   if (offset != 0) {
1842     z_agfi(tmp, offset);               // tmp = tmp + offset;
1843   }
1844 
1845   BLOCK_COMMENT("} delayed_value");
1846   return RegisterOrConstant(tmp);
1847 }
1848 
1849 // Patch instruction `inst' at offset `inst_pos' to refer to `dest_pos'
1850 // and return the resulting instruction.
1851 // Dest_pos and inst_pos are 32 bit only. These parms can only designate
1852 // relative positions.
1853 // Use correct argument types. Do not pre-calculate distance.
1854 unsigned long MacroAssembler::patched_branch(address dest_pos, unsigned long inst, address inst_pos) {
1855   int c = 0;
1856   unsigned long patched_inst = 0;
1857   if (is_call_pcrelative_short(inst) ||
1858       is_branch_pcrelative_short(inst) ||
1859       is_branchoncount_pcrelative_short(inst) ||
1860       is_branchonindex32_pcrelative_short(inst)) {
1861     c = 1;
1862     int m = fmask(15, 0);    // simm16(-1, 16, 32);
1863     int v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 32);
1864     patched_inst = (inst & ~m) | v;
1865   } else if (is_compareandbranch_pcrelative_short(inst)) {
1866     c = 2;
1867     long m = fmask(31, 16);  // simm16(-1, 16, 48);
1868     long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
1869     patched_inst = (inst & ~m) | v;
1870   } else if (is_branchonindex64_pcrelative_short(inst)) {
1871     c = 3;
1872     long m = fmask(31, 16);  // simm16(-1, 16, 48);
1873     long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
1874     patched_inst = (inst & ~m) | v;
1875   } else if (is_call_pcrelative_long(inst) || is_branch_pcrelative_long(inst)) {
1876     c = 4;
1877     long m = fmask(31, 0);  // simm32(-1, 16, 48);
1878     long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
1879     patched_inst = (inst & ~m) | v;
1880   } else if (is_pcrelative_long(inst)) { // These are the non-branch pc-relative instructions.
1881     c = 5;
1882     long m = fmask(31, 0);  // simm32(-1, 16, 48);
1883     long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
1884     patched_inst = (inst & ~m) | v;
1885   } else {
1886     print_dbg_msg(tty, inst, "not a relative branch", 0);
1887     dump_code_range(tty, inst_pos, 32, "not a pcrelative branch");
1888     ShouldNotReachHere();
1889   }
1890 
1891   long new_off = get_pcrel_offset(patched_inst);
1892   if (new_off != (dest_pos-inst_pos)) {
1893     tty->print_cr("case %d: dest_pos = %p, inst_pos = %p, disp = %ld(%12.12lx)", c, dest_pos, inst_pos, new_off, new_off);
1894     print_dbg_msg(tty, inst,         "<- original instruction: branch patching error", 0);
1895     print_dbg_msg(tty, patched_inst, "<- patched  instruction: branch patching error", 0);
1896 #ifdef LUCY_DBG
1897     VM_Version::z_SIGSEGV();
1898 #endif
1899     ShouldNotReachHere();
1900   }
1901   return patched_inst;
1902 }
1903 
1904 // Only called when binding labels (share/vm/asm/assembler.cpp)
1905 // Pass arguments as intended. Do not pre-calculate distance.
1906 void MacroAssembler::pd_patch_instruction(address branch, address target) {
1907   unsigned long stub_inst;
1908   int           inst_len = get_instruction(branch, &stub_inst);
1909 
1910   set_instruction(branch, patched_branch(target, stub_inst, branch), inst_len);
1911 }
1912 
1913 
1914 // Extract relative address (aka offset).
1915 // inv_simm16 works for 4-byte instructions only.
1916 // compare and branch instructions are 6-byte and have a 16bit offset "in the middle".
1917 long MacroAssembler::get_pcrel_offset(unsigned long inst) {
1918 
1919   if (MacroAssembler::is_pcrelative_short(inst)) {
1920     if (((inst&0xFFFFffff00000000UL) == 0) && ((inst&0x00000000FFFF0000UL) != 0)) {
1921       return RelAddr::inv_pcrel_off16(inv_simm16(inst));
1922     } else {
1923       return RelAddr::inv_pcrel_off16(inv_simm16_48(inst));
1924     }
1925   }
1926 
1927   if (MacroAssembler::is_pcrelative_long(inst)) {
1928     return RelAddr::inv_pcrel_off32(inv_simm32(inst));
1929   }
1930 
1931   print_dbg_msg(tty, inst, "not a pcrelative instruction", 6);
1932 #ifdef LUCY_DBG
1933   VM_Version::z_SIGSEGV();
1934 #else
1935   ShouldNotReachHere();
1936 #endif
1937   return -1;
1938 }
1939 
1940 long MacroAssembler::get_pcrel_offset(address pc) {
1941   unsigned long inst;
1942   unsigned int  len = get_instruction(pc, &inst);
1943 
1944 #ifdef ASSERT
1945   long offset;
1946   if (MacroAssembler::is_pcrelative_short(inst) || MacroAssembler::is_pcrelative_long(inst)) {
1947     offset = get_pcrel_offset(inst);
1948   } else {
1949     offset = -1;
1950   }
1951 
1952   if (offset == -1) {
1953     dump_code_range(tty, pc, 32, "not a pcrelative instruction");
1954 #ifdef LUCY_DBG
1955     VM_Version::z_SIGSEGV();
1956 #else
1957     ShouldNotReachHere();
1958 #endif
1959   }
1960   return offset;
1961 #else
1962   return get_pcrel_offset(inst);
1963 #endif // ASSERT
1964 }
1965 
1966 // Get target address from pc-relative instructions.
1967 address MacroAssembler::get_target_addr_pcrel(address pc) {
1968   assert(is_pcrelative_long(pc), "not a pcrelative instruction");
1969   return pc + get_pcrel_offset(pc);
1970 }
1971 
1972 // Patch pc relative load address.
1973 void MacroAssembler::patch_target_addr_pcrel(address pc, address con) {
1974   unsigned long inst;
1975   // Offset is +/- 2**32 -> use long.
1976   ptrdiff_t distance = con - pc;
1977 
1978   get_instruction(pc, &inst);
1979 
1980   if (is_pcrelative_short(inst)) {
1981     *(short *)(pc+2) = RelAddr::pcrel_off16(con, pc);  // Instructions are at least 2-byte aligned, no test required.
1982 
1983     // Some extra safety net.
1984     if (!RelAddr::is_in_range_of_RelAddr16(distance)) {
1985       print_dbg_msg(tty, inst, "distance out of range (16bit)", 4);
1986       dump_code_range(tty, pc, 32, "distance out of range (16bit)");
1987       guarantee(RelAddr::is_in_range_of_RelAddr16(distance), "too far away (more than +/- 2**16");
1988     }
1989     return;
1990   }
1991 
1992   if (is_pcrelative_long(inst)) {
1993     *(int *)(pc+2)   = RelAddr::pcrel_off32(con, pc);
1994 
1995     // Some Extra safety net.
1996     if (!RelAddr::is_in_range_of_RelAddr32(distance)) {
1997       print_dbg_msg(tty, inst, "distance out of range (32bit)", 6);
1998       dump_code_range(tty, pc, 32, "distance out of range (32bit)");
1999       guarantee(RelAddr::is_in_range_of_RelAddr32(distance), "too far away (more than +/- 2**32");
2000     }
2001     return;
2002   }
2003 
2004   guarantee(false, "not a pcrelative instruction to patch!");
2005 }
2006 
2007 // "Current PC" here means the address just behind the basr instruction.
2008 address MacroAssembler::get_PC(Register result) {
2009   z_basr(result, Z_R0); // Don't branch, just save next instruction address in result.
2010   return pc();
2011 }
2012 
2013 // Get current PC + offset.
2014 // Offset given in bytes, must be even!
2015 // "Current PC" here means the address of the larl instruction plus the given offset.
2016 address MacroAssembler::get_PC(Register result, int64_t offset) {
2017   address here = pc();
2018   z_larl(result, offset/2); // Save target instruction address in result.
2019   return here + offset;
2020 }
2021 
2022 void MacroAssembler::instr_size(Register size, Register pc) {
2023   // Extract 2 most significant bits of current instruction.
2024   z_llgc(size, Address(pc));
2025   z_srl(size, 6);
2026   // Compute (x+3)&6 which translates 0->2, 1->4, 2->4, 3->6.
2027   z_ahi(size, 3);
2028   z_nill(size, 6);
2029 }
2030 
2031 // Resize_frame with SP(new) = SP(old) - [offset].
2032 void MacroAssembler::resize_frame_sub(Register offset, Register fp, bool load_fp)
2033 {
2034   assert_different_registers(offset, fp, Z_SP);
2035   if (load_fp) { z_lg(fp, _z_abi(callers_sp), Z_SP); }
2036 
2037   z_sgr(Z_SP, offset);
2038   z_stg(fp, _z_abi(callers_sp), Z_SP);
2039 }
2040 
2041 // Resize_frame with SP(new) = [newSP] + offset.
2042 //   This emitter is useful if we already have calculated a pointer
2043 //   into the to-be-allocated stack space, e.g. with special alignment properties,
2044 //   but need some additional space, e.g. for spilling.
2045 //   newSP    is the pre-calculated pointer. It must not be modified.
2046 //   fp       holds, or is filled with, the frame pointer.
2047 //   offset   is the additional increment which is added to addr to form the new SP.
2048 //            Note: specify a negative value to reserve more space!
2049 //   load_fp == true  only indicates that fp is not pre-filled with the frame pointer.
2050 //                    It does not guarantee that fp contains the frame pointer at the end.
2051 void MacroAssembler::resize_frame_abs_with_offset(Register newSP, Register fp, int offset, bool load_fp) {
2052   assert_different_registers(newSP, fp, Z_SP);
2053 
2054   if (load_fp) {
2055     z_lg(fp, _z_abi(callers_sp), Z_SP);
2056   }
2057 
2058   add2reg(Z_SP, offset, newSP);
2059   z_stg(fp, _z_abi(callers_sp), Z_SP);
2060 }
2061 
2062 // Resize_frame with SP(new) = [newSP].
2063 //   load_fp == true  only indicates that fp is not pre-filled with the frame pointer.
2064 //                    It does not guarantee that fp contains the frame pointer at the end.
2065 void MacroAssembler::resize_frame_absolute(Register newSP, Register fp, bool load_fp) {
2066   assert_different_registers(newSP, fp, Z_SP);
2067 
2068   if (load_fp) {
2069     z_lg(fp, _z_abi(callers_sp), Z_SP); // need to use load/store.
2070   }
2071 
2072   z_lgr(Z_SP, newSP);
2073   if (newSP != Z_R0) { // make sure we generate correct code, no matter what register newSP uses.
2074     z_stg(fp, _z_abi(callers_sp), newSP);
2075   } else {
2076     z_stg(fp, _z_abi(callers_sp), Z_SP);
2077   }
2078 }
2079 
2080 // Resize_frame with SP(new) = SP(old) + offset.
2081 void MacroAssembler::resize_frame(RegisterOrConstant offset, Register fp, bool load_fp) {
2082   assert_different_registers(fp, Z_SP);
2083 
2084   if (load_fp) {
2085     z_lg(fp, _z_abi(callers_sp), Z_SP);
2086   }
2087   add64(Z_SP, offset);
2088   z_stg(fp, _z_abi(callers_sp), Z_SP);
2089 }
2090 
2091 void MacroAssembler::push_frame(Register bytes, Register old_sp, bool copy_sp, bool bytes_with_inverted_sign) {
2092 #ifdef ASSERT
2093   assert_different_registers(bytes, old_sp, Z_SP);
2094   if (!copy_sp) {
2095     z_cgr(old_sp, Z_SP);
2096     asm_assert_eq("[old_sp]!=[Z_SP]", 0x211);
2097   }
2098 #endif
2099   if (copy_sp) { z_lgr(old_sp, Z_SP); }
2100   if (bytes_with_inverted_sign) {
2101     z_agr(Z_SP, bytes);
2102   } else {
2103     z_sgr(Z_SP, bytes); // Z_sgfr sufficient, but probably not faster.
2104   }
2105   z_stg(old_sp, _z_abi(callers_sp), Z_SP);
2106 }
2107 
2108 unsigned int MacroAssembler::push_frame(unsigned int bytes, Register scratch) {
2109   long offset = Assembler::align(bytes, frame::alignment_in_bytes);
2110   assert(offset > 0, "should push a frame with positive size, size = %ld.", offset);
2111   assert(Displacement::is_validDisp(-offset), "frame size out of range, size = %ld", offset);
2112 
2113   // We must not write outside the current stack bounds (given by Z_SP).
2114   // Thus, we have to first update Z_SP and then store the previous SP as stack linkage.
2115   // We rely on Z_R0 by default to be available as scratch.
2116   z_lgr(scratch, Z_SP);
2117   add2reg(Z_SP, -offset);
2118   z_stg(scratch, _z_abi(callers_sp), Z_SP);
2119 #ifdef ASSERT
2120   // Just make sure nobody uses the value in the default scratch register.
2121   // When another register is used, the caller might rely on it containing the frame pointer.
2122   if (scratch == Z_R0) {
2123     z_iihf(scratch, 0xbaadbabe);
2124     z_iilf(scratch, 0xdeadbeef);
2125   }
2126 #endif
2127   return offset;
2128 }
2129 
2130 // Push a frame of size `bytes' plus abi160 on top.
2131 unsigned int MacroAssembler::push_frame_abi160(unsigned int bytes) {
2132   BLOCK_COMMENT("push_frame_abi160 {");
2133   unsigned int res = push_frame(bytes + frame::z_abi_160_size);
2134   BLOCK_COMMENT("} push_frame_abi160");
2135   return res;
2136 }
2137 
2138 // Pop current C frame.
2139 void MacroAssembler::pop_frame() {
2140   BLOCK_COMMENT("pop_frame:");
2141   Assembler::z_lg(Z_SP, _z_abi(callers_sp), Z_SP);
2142 }
2143 
2144 // Pop current C frame and restore return PC register (Z_R14).
2145 void MacroAssembler::pop_frame_restore_retPC(int frame_size_in_bytes) {
2146   BLOCK_COMMENT("pop_frame_restore_retPC:");
2147   int retPC_offset = _z_abi16(return_pc) + frame_size_in_bytes;
2148   // If possible, pop frame by add instead of load (a penny saved is a penny got :-).
2149   if (Displacement::is_validDisp(retPC_offset)) {
2150     z_lg(Z_R14, retPC_offset, Z_SP);
2151     add2reg(Z_SP, frame_size_in_bytes);
2152   } else {
2153     add2reg(Z_SP, frame_size_in_bytes);
2154     restore_return_pc();
2155   }
2156 }
2157 
2158 void MacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
2159   if (allow_relocation) {
2160     call_c(entry_point);
2161   } else {
2162     call_c_static(entry_point);
2163   }
2164 }
2165 
2166 void MacroAssembler::call_VM_leaf_base(address entry_point) {
2167   bool allow_relocation = true;
2168   call_VM_leaf_base(entry_point, allow_relocation);
2169 }
2170 
2171 void MacroAssembler::call_VM_base(Register oop_result,
2172                                   Register last_java_sp,
2173                                   address  entry_point,
2174                                   bool     allow_relocation,
2175                                   bool     check_exceptions) { // Defaults to true.
2176   // Allow_relocation indicates, if true, that the generated code shall
2177   // be fit for code relocation or referenced data relocation. In other
2178   // words: all addresses must be considered variable. PC-relative addressing
2179   // is not possible then.
2180   // On the other hand, if (allow_relocation == false), addresses and offsets
2181   // may be considered stable, enabling us to take advantage of some PC-relative
2182   // addressing tweaks. These might improve performance and reduce code size.
2183 
2184   // Determine last_java_sp register.
2185   if (!last_java_sp->is_valid()) {
2186     last_java_sp = Z_SP;  // Load Z_SP as SP.
2187   }
2188 
2189   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, Z_R1, allow_relocation);
2190 
2191   // ARG1 must hold thread address.
2192   z_lgr(Z_ARG1, Z_thread);
2193 
2194   address return_pc = NULL;
2195   if (allow_relocation) {
2196     return_pc = call_c(entry_point);
2197   } else {
2198     return_pc = call_c_static(entry_point);
2199   }
2200 
2201   reset_last_Java_frame(allow_relocation);
2202 
2203   // C++ interp handles this in the interpreter.
2204   check_and_handle_popframe(Z_thread);
2205   check_and_handle_earlyret(Z_thread);
2206 
2207   // Check for pending exceptions.
2208   if (check_exceptions) {
2209     // Check for pending exceptions (java_thread is set upon return).
2210     load_and_test_long(Z_R0_scratch, Address(Z_thread, Thread::pending_exception_offset()));
2211 
2212     // This used to conditionally jump to forward_exception however it is
2213     // possible if we relocate that the branch will not reach. So we must jump
2214     // around so we can always reach.
2215 
2216     Label ok;
2217     z_bre(ok); // Bcondequal is the same as bcondZero.
2218     call_stub(StubRoutines::forward_exception_entry());
2219     bind(ok);
2220   }
2221 
2222   // Get oop result if there is one and reset the value in the thread.
2223   if (oop_result->is_valid()) {
2224     get_vm_result(oop_result);
2225   }
2226 
2227   _last_calls_return_pc = return_pc;  // Wipe out other (error handling) calls.
2228 }
2229 
2230 void MacroAssembler::call_VM_base(Register oop_result,
2231                                   Register last_java_sp,
2232                                   address  entry_point,
2233                                   bool     check_exceptions) { // Defaults to true.
2234   bool allow_relocation = true;
2235   call_VM_base(oop_result, last_java_sp, entry_point, allow_relocation, check_exceptions);
2236 }
2237 
2238 // VM calls without explicit last_java_sp.
2239 
2240 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
2241   // Call takes possible detour via InterpreterMacroAssembler.
2242   call_VM_base(oop_result, noreg, entry_point, true, check_exceptions);
2243 }
2244 
2245 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
2246   // Z_ARG1 is reserved for the thread.
2247   lgr_if_needed(Z_ARG2, arg_1);
2248   call_VM(oop_result, entry_point, check_exceptions);
2249 }
2250 
2251 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
2252   // Z_ARG1 is reserved for the thread.
2253   lgr_if_needed(Z_ARG2, arg_1);
2254   assert(arg_2 != Z_ARG2, "smashed argument");
2255   lgr_if_needed(Z_ARG3, arg_2);
2256   call_VM(oop_result, entry_point, check_exceptions);
2257 }
2258 
2259 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
2260                              Register arg_3, bool check_exceptions) {
2261   // Z_ARG1 is reserved for the thread.
2262   lgr_if_needed(Z_ARG2, arg_1);
2263   assert(arg_2 != Z_ARG2, "smashed argument");
2264   lgr_if_needed(Z_ARG3, arg_2);
2265   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2266   lgr_if_needed(Z_ARG4, arg_3);
2267   call_VM(oop_result, entry_point, check_exceptions);
2268 }
2269 
2270 // VM static calls without explicit last_java_sp.
2271 
2272 void MacroAssembler::call_VM_static(Register oop_result, address entry_point, bool check_exceptions) {
2273   // Call takes possible detour via InterpreterMacroAssembler.
2274   call_VM_base(oop_result, noreg, entry_point, false, check_exceptions);
2275 }
2276 
2277 void MacroAssembler::call_VM_static(Register oop_result, address entry_point, Register arg_1, Register arg_2,
2278                                     Register arg_3, bool check_exceptions) {
2279   // Z_ARG1 is reserved for the thread.
2280   lgr_if_needed(Z_ARG2, arg_1);
2281   assert(arg_2 != Z_ARG2, "smashed argument");
2282   lgr_if_needed(Z_ARG3, arg_2);
2283   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2284   lgr_if_needed(Z_ARG4, arg_3);
2285   call_VM_static(oop_result, entry_point, check_exceptions);
2286 }
2287 
2288 // VM calls with explicit last_java_sp.
2289 
2290 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, bool check_exceptions) {
2291   // Call takes possible detour via InterpreterMacroAssembler.
2292   call_VM_base(oop_result, last_java_sp, entry_point, true, check_exceptions);
2293 }
2294 
2295 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
2296    // Z_ARG1 is reserved for the thread.
2297    lgr_if_needed(Z_ARG2, arg_1);
2298    call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2299 }
2300 
2301 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
2302                              Register arg_2, bool check_exceptions) {
2303    // Z_ARG1 is reserved for the thread.
2304    lgr_if_needed(Z_ARG2, arg_1);
2305    assert(arg_2 != Z_ARG2, "smashed argument");
2306    lgr_if_needed(Z_ARG3, arg_2);
2307    call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2308 }
2309 
2310 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
2311                              Register arg_2, Register arg_3, bool check_exceptions) {
2312   // Z_ARG1 is reserved for the thread.
2313   lgr_if_needed(Z_ARG2, arg_1);
2314   assert(arg_2 != Z_ARG2, "smashed argument");
2315   lgr_if_needed(Z_ARG3, arg_2);
2316   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2317   lgr_if_needed(Z_ARG4, arg_3);
2318   call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2319 }
2320 
2321 // VM leaf calls.
2322 
2323 void MacroAssembler::call_VM_leaf(address entry_point) {
2324   // Call takes possible detour via InterpreterMacroAssembler.
2325   call_VM_leaf_base(entry_point, true);
2326 }
2327 
2328 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
2329   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2330   call_VM_leaf(entry_point);
2331 }
2332 
2333 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
2334   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2335   assert(arg_2 != Z_ARG1, "smashed argument");
2336   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2337   call_VM_leaf(entry_point);
2338 }
2339 
2340 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
2341   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2342   assert(arg_2 != Z_ARG1, "smashed argument");
2343   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2344   assert(arg_3 != Z_ARG1 && arg_3 != Z_ARG2, "smashed argument");
2345   if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
2346   call_VM_leaf(entry_point);
2347 }
2348 
2349 // Static VM leaf calls.
2350 // Really static VM leaf calls are never patched.
2351 
2352 void MacroAssembler::call_VM_leaf_static(address entry_point) {
2353   // Call takes possible detour via InterpreterMacroAssembler.
2354   call_VM_leaf_base(entry_point, false);
2355 }
2356 
2357 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1) {
2358   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2359   call_VM_leaf_static(entry_point);
2360 }
2361 
2362 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2) {
2363   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2364   assert(arg_2 != Z_ARG1, "smashed argument");
2365   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2366   call_VM_leaf_static(entry_point);
2367 }
2368 
2369 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
2370   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2371   assert(arg_2 != Z_ARG1, "smashed argument");
2372   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2373   assert(arg_3 != Z_ARG1 && arg_3 != Z_ARG2, "smashed argument");
2374   if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
2375   call_VM_leaf_static(entry_point);
2376 }
2377 
2378 // Don't use detour via call_c(reg).
2379 address MacroAssembler::call_c(address function_entry) {
2380   load_const(Z_R1, function_entry);
2381   return call(Z_R1);
2382 }
2383 
2384 // Variant for really static (non-relocatable) calls which are never patched.
2385 address MacroAssembler::call_c_static(address function_entry) {
2386   load_absolute_address(Z_R1, function_entry);
2387 #if 0 // def ASSERT
2388   // Verify that call site did not move.
2389   load_const_optimized(Z_R0, function_entry);
2390   z_cgr(Z_R1, Z_R0);
2391   z_brc(bcondEqual, 3);
2392   z_illtrap(0xba);
2393 #endif
2394   return call(Z_R1);
2395 }
2396 
2397 address MacroAssembler::call_c_opt(address function_entry) {
2398   bool success = call_far_patchable(function_entry, -2 /* emit relocation + constant */);
2399   _last_calls_return_pc = success ? pc() : NULL;
2400   return _last_calls_return_pc;
2401 }
2402 
2403 // Identify a call_far_patchable instruction: LARL + LG + BASR
2404 //
2405 //    nop                   ; optionally, if required for alignment
2406 //    lgrl rx,A(TOC entry)  ; PC-relative access into constant pool
2407 //    basr Z_R14,rx         ; end of this instruction must be aligned to a word boundary
2408 //
2409 // Code pattern will eventually get patched into variant2 (see below for detection code).
2410 //
2411 bool MacroAssembler::is_call_far_patchable_variant0_at(address instruction_addr) {
2412   address iaddr = instruction_addr;
2413 
2414   // Check for the actual load instruction.
2415   if (!is_load_const_from_toc(iaddr)) { return false; }
2416   iaddr += load_const_from_toc_size();
2417 
2418   // Check for the call (BASR) instruction, finally.
2419   assert(iaddr-instruction_addr+call_byregister_size() == call_far_patchable_size(), "size mismatch");
2420   return is_call_byregister(iaddr);
2421 }
2422 
2423 // Identify a call_far_patchable instruction: BRASL
2424 //
2425 // Code pattern to suits atomic patching:
2426 //    nop                       ; Optionally, if required for alignment.
2427 //    nop    ...                ; Multiple filler nops to compensate for size difference (variant0 is longer).
2428 //    nop                       ; For code pattern detection: Prepend each BRASL with a nop.
2429 //    brasl  Z_R14,<reladdr>    ; End of code must be 4-byte aligned !
2430 bool MacroAssembler::is_call_far_patchable_variant2_at(address instruction_addr) {
2431   const address call_addr = (address)((intptr_t)instruction_addr + call_far_patchable_size() - call_far_pcrelative_size());
2432 
2433   // Check for correct number of leading nops.
2434   address iaddr;
2435   for (iaddr = instruction_addr; iaddr < call_addr; iaddr += nop_size()) {
2436     if (!is_z_nop(iaddr)) { return false; }
2437   }
2438   assert(iaddr == call_addr, "sanity");
2439 
2440   // --> Check for call instruction.
2441   if (is_call_far_pcrelative(call_addr)) {
2442     assert(call_addr-instruction_addr+call_far_pcrelative_size() == call_far_patchable_size(), "size mismatch");
2443     return true;
2444   }
2445 
2446   return false;
2447 }
2448 
2449 // Emit a NOT mt-safely patchable 64 bit absolute call.
2450 // If toc_offset == -2, then the destination of the call (= target) is emitted
2451 //                      to the constant pool and a runtime_call relocation is added
2452 //                      to the code buffer.
2453 // If toc_offset != -2, target must already be in the constant pool at
2454 //                      _ctableStart+toc_offset (a caller can retrieve toc_offset
2455 //                      from the runtime_call relocation).
2456 // Special handling of emitting to scratch buffer when there is no constant pool.
2457 // Slightly changed code pattern. We emit an additional nop if we would
2458 // not end emitting at a word aligned address. This is to ensure
2459 // an atomically patchable displacement in brasl instructions.
2460 //
2461 // A call_far_patchable comes in different flavors:
2462 //  - LARL(CP) / LG(CP) / BR (address in constant pool, access via CP register)
2463 //  - LGRL(CP) / BR          (address in constant pool, pc-relative accesss)
2464 //  - BRASL                  (relative address of call target coded in instruction)
2465 // All flavors occupy the same amount of space. Length differences are compensated
2466 // by leading nops, such that the instruction sequence always ends at the same
2467 // byte offset. This is required to keep the return offset constant.
2468 // Furthermore, the return address (the end of the instruction sequence) is forced
2469 // to be on a 4-byte boundary. This is required for atomic patching, should we ever
2470 // need to patch the call target of the BRASL flavor.
2471 // RETURN value: false, if no constant pool entry could be allocated, true otherwise.
2472 bool MacroAssembler::call_far_patchable(address target, int64_t tocOffset) {
2473   // Get current pc and ensure word alignment for end of instr sequence.
2474   const address start_pc = pc();
2475   const intptr_t       start_off = offset();
2476   assert(!call_far_patchable_requires_alignment_nop(start_pc), "call_far_patchable requires aligned address");
2477   const ptrdiff_t      dist      = (ptrdiff_t)(target - (start_pc + 2)); // Prepend each BRASL with a nop.
2478   const bool emit_target_to_pool = (tocOffset == -2) && !code_section()->scratch_emit();
2479   const bool emit_relative_call  = !emit_target_to_pool &&
2480                                    RelAddr::is_in_range_of_RelAddr32(dist) &&
2481                                    ReoptimizeCallSequences &&
2482                                    !code_section()->scratch_emit();
2483 
2484   if (emit_relative_call) {
2485     // Add padding to get the same size as below.
2486     const unsigned int padding = call_far_patchable_size() - call_far_pcrelative_size();
2487     unsigned int current_padding;
2488     for (current_padding = 0; current_padding < padding; current_padding += nop_size()) { z_nop(); }
2489     assert(current_padding == padding, "sanity");
2490 
2491     // relative call: len = 2(nop) + 6 (brasl)
2492     // CodeBlob resize cannot occur in this case because
2493     // this call is emitted into pre-existing space.
2494     z_nop(); // Prepend each BRASL with a nop.
2495     z_brasl(Z_R14, target);
2496   } else {
2497     // absolute call: Get address from TOC.
2498     // len = (load TOC){6|0} + (load from TOC){6} + (basr){2} = {14|8}
2499     if (emit_target_to_pool) {
2500       // When emitting the call for the first time, we do not need to use
2501       // the pc-relative version. It will be patched anyway, when the code
2502       // buffer is copied.
2503       // Relocation is not needed when !ReoptimizeCallSequences.
2504       relocInfo::relocType rt = ReoptimizeCallSequences ? relocInfo::runtime_call_w_cp_type : relocInfo::none;
2505       AddressLiteral dest(target, rt);
2506       // Store_oop_in_toc() adds dest to the constant table. As side effect, this kills
2507       // inst_mark(). Reset if possible.
2508       bool reset_mark = (inst_mark() == pc());
2509       tocOffset = store_oop_in_toc(dest);
2510       if (reset_mark) { set_inst_mark(); }
2511       if (tocOffset == -1) {
2512         return false; // Couldn't create constant pool entry.
2513       }
2514     }
2515     assert(offset() == start_off, "emit no code before this point!");
2516 
2517     address tocPos = pc() + tocOffset;
2518     if (emit_target_to_pool) {
2519       tocPos = code()->consts()->start() + tocOffset;
2520     }
2521     load_long_pcrelative(Z_R14, tocPos);
2522     z_basr(Z_R14, Z_R14);
2523   }
2524 
2525 #ifdef ASSERT
2526   // Assert that we can identify the emitted call.
2527   assert(is_call_far_patchable_at(addr_at(start_off)), "can't identify emitted call");
2528   assert(offset() == start_off+call_far_patchable_size(), "wrong size");
2529 
2530   if (emit_target_to_pool) {
2531     assert(get_dest_of_call_far_patchable_at(addr_at(start_off), code()->consts()->start()) == target,
2532            "wrong encoding of dest address");
2533   }
2534 #endif
2535   return true; // success
2536 }
2537 
2538 // Identify a call_far_patchable instruction.
2539 // For more detailed information see header comment of call_far_patchable.
2540 bool MacroAssembler::is_call_far_patchable_at(address instruction_addr) {
2541   return is_call_far_patchable_variant2_at(instruction_addr)  || // short version: BRASL
2542          is_call_far_patchable_variant0_at(instruction_addr);    // long version LARL + LG + BASR
2543 }
2544 
2545 // Does the call_far_patchable instruction use a pc-relative encoding
2546 // of the call destination?
2547 bool MacroAssembler::is_call_far_patchable_pcrelative_at(address instruction_addr) {
2548   // Variant 2 is pc-relative.
2549   return is_call_far_patchable_variant2_at(instruction_addr);
2550 }
2551 
2552 bool MacroAssembler::is_call_far_pcrelative(address instruction_addr) {
2553   // Prepend each BRASL with a nop.
2554   return is_z_nop(instruction_addr) && is_z_brasl(instruction_addr + nop_size());  // Match at position after one nop required.
2555 }
2556 
2557 // Set destination address of a call_far_patchable instruction.
2558 void MacroAssembler::set_dest_of_call_far_patchable_at(address instruction_addr, address dest, int64_t tocOffset) {
2559   ResourceMark rm;
2560 
2561   // Now that CP entry is verified, patch call to a pc-relative call (if circumstances permit).
2562   int code_size = MacroAssembler::call_far_patchable_size();
2563   CodeBuffer buf(instruction_addr, code_size);
2564   MacroAssembler masm(&buf);
2565   masm.call_far_patchable(dest, tocOffset);
2566   ICache::invalidate_range(instruction_addr, code_size); // Empty on z.
2567 }
2568 
2569 // Get dest address of a call_far_patchable instruction.
2570 address MacroAssembler::get_dest_of_call_far_patchable_at(address instruction_addr, address ctable) {
2571   // Dynamic TOC: absolute address in constant pool.
2572   // Check variant2 first, it is more frequent.
2573 
2574   // Relative address encoded in call instruction.
2575   if (is_call_far_patchable_variant2_at(instruction_addr)) {
2576     return MacroAssembler::get_target_addr_pcrel(instruction_addr + nop_size()); // Prepend each BRASL with a nop.
2577 
2578   // Absolute address in constant pool.
2579   } else if (is_call_far_patchable_variant0_at(instruction_addr)) {
2580     address iaddr = instruction_addr;
2581 
2582     long    tocOffset = get_load_const_from_toc_offset(iaddr);
2583     address tocLoc    = iaddr + tocOffset;
2584     return *(address *)(tocLoc);
2585   } else {
2586     fprintf(stderr, "MacroAssembler::get_dest_of_call_far_patchable_at has a problem at %p:\n", instruction_addr);
2587     fprintf(stderr, "not a call_far_patchable: %16.16lx %16.16lx, len = %d\n",
2588             *(unsigned long*)instruction_addr,
2589             *(unsigned long*)(instruction_addr+8),
2590             call_far_patchable_size());
2591     Disassembler::decode(instruction_addr, instruction_addr+call_far_patchable_size());
2592     ShouldNotReachHere();
2593     return NULL;
2594   }
2595 }
2596 
2597 void MacroAssembler::align_call_far_patchable(address pc) {
2598   if (call_far_patchable_requires_alignment_nop(pc)) { z_nop(); }
2599 }
2600 
2601 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2602 }
2603 
2604 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2605 }
2606 
2607 // Read from the polling page.
2608 // Use TM or TMY instruction, depending on read offset.
2609 //   offset = 0: Use TM, safepoint polling.
2610 //   offset < 0: Use TMY, profiling safepoint polling.
2611 void MacroAssembler::load_from_polling_page(Register polling_page_address, int64_t offset) {
2612   if (Immediate::is_uimm12(offset)) {
2613     z_tm(offset, polling_page_address, mask_safepoint);
2614   } else {
2615     z_tmy(offset, polling_page_address, mask_profiling);
2616   }
2617 }
2618 
2619 // Check whether z_instruction is a read access to the polling page
2620 // which was emitted by load_from_polling_page(..).
2621 bool MacroAssembler::is_load_from_polling_page(address instr_loc) {
2622   unsigned long z_instruction;
2623   unsigned int  ilen = get_instruction(instr_loc, &z_instruction);
2624 
2625   if (ilen == 2) { return false; } // It's none of the allowed instructions.
2626 
2627   if (ilen == 4) {
2628     if (!is_z_tm(z_instruction)) { return false; } // It's len=4, but not a z_tm. fail.
2629 
2630     int ms = inv_mask(z_instruction,8,32);  // mask
2631     int ra = inv_reg(z_instruction,16,32);  // base register
2632     int ds = inv_uimm12(z_instruction);     // displacement
2633 
2634     if (!(ds == 0 && ra != 0 && ms == mask_safepoint)) {
2635       return false; // It's not a z_tm(0, ra, mask_safepoint). Fail.
2636     }
2637 
2638   } else { /* if (ilen == 6) */
2639 
2640     assert(!is_z_lg(z_instruction), "old form (LG) polling page access. Please fix and use TM(Y).");
2641 
2642     if (!is_z_tmy(z_instruction)) { return false; } // It's len=6, but not a z_tmy. fail.
2643 
2644     int ms = inv_mask(z_instruction,8,48);  // mask
2645     int ra = inv_reg(z_instruction,16,48);  // base register
2646     int ds = inv_simm20(z_instruction);     // displacement
2647   }
2648 
2649   return true;
2650 }
2651 
2652 // Extract poll address from instruction and ucontext.
2653 address MacroAssembler::get_poll_address(address instr_loc, void* ucontext) {
2654   assert(ucontext != NULL, "must have ucontext");
2655   ucontext_t* uc = (ucontext_t*) ucontext;
2656   unsigned long z_instruction;
2657   unsigned int ilen = get_instruction(instr_loc, &z_instruction);
2658 
2659   if (ilen == 4 && is_z_tm(z_instruction)) {
2660     int ra = inv_reg(z_instruction, 16, 32);  // base register
2661     int ds = inv_uimm12(z_instruction);       // displacement
2662     address addr = (address)uc->uc_mcontext.gregs[ra];
2663     return addr + ds;
2664   } else if (ilen == 6 && is_z_tmy(z_instruction)) {
2665     int ra = inv_reg(z_instruction, 16, 48);  // base register
2666     int ds = inv_simm20(z_instruction);       // displacement
2667     address addr = (address)uc->uc_mcontext.gregs[ra];
2668     return addr + ds;
2669   }
2670 
2671   ShouldNotReachHere();
2672   return NULL;
2673 }
2674 
2675 // Extract poll register from instruction.
2676 uint MacroAssembler::get_poll_register(address instr_loc) {
2677   unsigned long z_instruction;
2678   unsigned int ilen = get_instruction(instr_loc, &z_instruction);
2679 
2680   if (ilen == 4 && is_z_tm(z_instruction)) {
2681     return (uint)inv_reg(z_instruction, 16, 32);  // base register
2682   } else if (ilen == 6 && is_z_tmy(z_instruction)) {
2683     return (uint)inv_reg(z_instruction, 16, 48);  // base register
2684   }
2685 
2686   ShouldNotReachHere();
2687   return 0;
2688 }
2689 
2690 bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
2691   ShouldNotCallThis();
2692   return false;
2693 }
2694 
2695 // Write serialization page so VM thread can do a pseudo remote membar
2696 // We use the current thread pointer to calculate a thread specific
2697 // offset to write to within the page. This minimizes bus traffic
2698 // due to cache line collision.
2699 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
2700   assert_different_registers(tmp1, tmp2);
2701   z_sllg(tmp2, thread, os::get_serialize_page_shift_count());
2702   load_const_optimized(tmp1, (long) os::get_memory_serialize_page());
2703 
2704   int mask = os::get_serialize_page_mask();
2705   if (Immediate::is_uimm16(mask)) {
2706     z_nill(tmp2, mask);
2707     z_llghr(tmp2, tmp2);
2708   } else {
2709     z_nilf(tmp2, mask);
2710     z_llgfr(tmp2, tmp2);
2711   }
2712 
2713   z_release();
2714   z_st(Z_R0, 0, tmp2, tmp1);
2715 }
2716 
2717 void MacroAssembler::safepoint_poll(Label& slow_path, Register temp_reg) {
2718   if (SafepointMechanism::uses_thread_local_poll()) {
2719     const Address poll_byte_addr(Z_thread, in_bytes(Thread::polling_page_offset()) + 7 /* Big Endian */);
2720     // Armed page has poll_bit set.
2721     z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
2722     z_brnaz(slow_path);
2723   } else {
2724     load_const_optimized(temp_reg, SafepointSynchronize::address_of_state());
2725     z_cli(/*SafepointSynchronize::sz_state()*/4-1, temp_reg, SafepointSynchronize::_not_synchronized);
2726     z_brne(slow_path);
2727   }
2728 }
2729 
2730 // Don't rely on register locking, always use Z_R1 as scratch register instead.
2731 void MacroAssembler::bang_stack_with_offset(int offset) {
2732   // Stack grows down, caller passes positive offset.
2733   assert(offset > 0, "must bang with positive offset");
2734   if (Displacement::is_validDisp(-offset)) {
2735     z_tmy(-offset, Z_SP, mask_stackbang);
2736   } else {
2737     add2reg(Z_R1, -offset, Z_SP);    // Do not destroy Z_SP!!!
2738     z_tm(0, Z_R1, mask_stackbang);  // Just banging.
2739   }
2740 }
2741 
2742 void MacroAssembler::reserved_stack_check(Register return_pc) {
2743   // Test if reserved zone needs to be enabled.
2744   Label no_reserved_zone_enabling;
2745   assert(return_pc == Z_R14, "Return pc must be in R14 before z_br() to StackOverflow stub.");
2746   BLOCK_COMMENT("reserved_stack_check {");
2747 
2748   z_clg(Z_SP, Address(Z_thread, JavaThread::reserved_stack_activation_offset()));
2749   z_brl(no_reserved_zone_enabling);
2750 
2751   // Enable reserved zone again, throw stack overflow exception.
2752   save_return_pc();
2753   push_frame_abi160(0);
2754   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
2755   pop_frame();
2756   restore_return_pc();
2757 
2758   load_const_optimized(Z_R1, StubRoutines::throw_delayed_StackOverflowError_entry());
2759   // Don't use call() or z_basr(), they will invalidate Z_R14 which contains the return pc.
2760   z_br(Z_R1);
2761 
2762   should_not_reach_here();
2763 
2764   bind(no_reserved_zone_enabling);
2765   BLOCK_COMMENT("} reserved_stack_check");
2766 }
2767 
2768 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
2769 void MacroAssembler::tlab_allocate(Register obj,
2770                                    Register var_size_in_bytes,
2771                                    int con_size_in_bytes,
2772                                    Register t1,
2773                                    Label& slow_case) {
2774   assert_different_registers(obj, var_size_in_bytes, t1);
2775   Register end = t1;
2776   Register thread = Z_thread;
2777 
2778   z_lg(obj, Address(thread, JavaThread::tlab_top_offset()));
2779   if (var_size_in_bytes == noreg) {
2780     z_lay(end, Address(obj, con_size_in_bytes));
2781   } else {
2782     z_lay(end, Address(obj, var_size_in_bytes));
2783   }
2784   z_cg(end, Address(thread, JavaThread::tlab_end_offset()));
2785   branch_optimized(bcondHigh, slow_case);
2786 
2787   // Update the tlab top pointer.
2788   z_stg(end, Address(thread, JavaThread::tlab_top_offset()));
2789 
2790   // Recover var_size_in_bytes if necessary.
2791   if (var_size_in_bytes == end) {
2792     z_sgr(var_size_in_bytes, obj);
2793   }
2794 }
2795 
2796 // Emitter for interface method lookup.
2797 //   input: recv_klass, intf_klass, itable_index
2798 //   output: method_result
2799 //   kills: itable_index, temp1_reg, Z_R0, Z_R1
2800 // TODO: Temp2_reg is unused. we may use this emitter also in the itable stubs.
2801 // If the register is still not needed then, remove it.
2802 void MacroAssembler::lookup_interface_method(Register           recv_klass,
2803                                              Register           intf_klass,
2804                                              RegisterOrConstant itable_index,
2805                                              Register           method_result,
2806                                              Register           temp1_reg,
2807                                              Label&             no_such_interface,
2808                                              bool               return_method) {
2809 
2810   const Register vtable_len = temp1_reg;    // Used to compute itable_entry_addr.
2811   const Register itable_entry_addr = Z_R1_scratch;
2812   const Register itable_interface = Z_R0_scratch;
2813 
2814   BLOCK_COMMENT("lookup_interface_method {");
2815 
2816   // Load start of itable entries into itable_entry_addr.
2817   z_llgf(vtable_len, Address(recv_klass, Klass::vtable_length_offset()));
2818   z_sllg(vtable_len, vtable_len, exact_log2(vtableEntry::size_in_bytes()));
2819 
2820   // Loop over all itable entries until desired interfaceOop(Rinterface) found.
2821   const int vtable_base_offset = in_bytes(Klass::vtable_start_offset());
2822 
2823   add2reg_with_index(itable_entry_addr,
2824                      vtable_base_offset + itableOffsetEntry::interface_offset_in_bytes(),
2825                      recv_klass, vtable_len);
2826 
2827   const int itable_offset_search_inc = itableOffsetEntry::size() * wordSize;
2828   Label     search;
2829 
2830   bind(search);
2831 
2832   // Handle IncompatibleClassChangeError.
2833   // If the entry is NULL then we've reached the end of the table
2834   // without finding the expected interface, so throw an exception.
2835   load_and_test_long(itable_interface, Address(itable_entry_addr));
2836   z_bre(no_such_interface);
2837 
2838   add2reg(itable_entry_addr, itable_offset_search_inc);
2839   z_cgr(itable_interface, intf_klass);
2840   z_brne(search);
2841 
2842   // Entry found and itable_entry_addr points to it, get offset of vtable for interface.
2843   if (return_method) {
2844     const int vtable_offset_offset = (itableOffsetEntry::offset_offset_in_bytes() -
2845                                       itableOffsetEntry::interface_offset_in_bytes()) -
2846                                      itable_offset_search_inc;
2847 
2848     // Compute itableMethodEntry and get method and entry point
2849     // we use addressing with index and displacement, since the formula
2850     // for computing the entry's offset has a fixed and a dynamic part,
2851     // the latter depending on the matched interface entry and on the case,
2852     // that the itable index has been passed as a register, not a constant value.
2853     int method_offset = itableMethodEntry::method_offset_in_bytes();
2854                              // Fixed part (displacement), common operand.
2855     Register itable_offset = method_result;  // Dynamic part (index register).
2856 
2857     if (itable_index.is_register()) {
2858        // Compute the method's offset in that register, for the formula, see the
2859        // else-clause below.
2860        z_sllg(itable_offset, itable_index.as_register(), exact_log2(itableMethodEntry::size() * wordSize));
2861        z_agf(itable_offset, vtable_offset_offset, itable_entry_addr);
2862     } else {
2863       // Displacement increases.
2864       method_offset += itableMethodEntry::size() * wordSize * itable_index.as_constant();
2865 
2866       // Load index from itable.
2867       z_llgf(itable_offset, vtable_offset_offset, itable_entry_addr);
2868     }
2869 
2870     // Finally load the method's oop.
2871     z_lg(method_result, method_offset, itable_offset, recv_klass);
2872   }
2873   BLOCK_COMMENT("} lookup_interface_method");
2874 }
2875 
2876 // Lookup for virtual method invocation.
2877 void MacroAssembler::lookup_virtual_method(Register           recv_klass,
2878                                            RegisterOrConstant vtable_index,
2879                                            Register           method_result) {
2880   assert_different_registers(recv_klass, vtable_index.register_or_noreg());
2881   assert(vtableEntry::size() * wordSize == wordSize,
2882          "else adjust the scaling in the code below");
2883 
2884   BLOCK_COMMENT("lookup_virtual_method {");
2885 
2886   const int base = in_bytes(Klass::vtable_start_offset());
2887 
2888   if (vtable_index.is_constant()) {
2889     // Load with base + disp.
2890     Address vtable_entry_addr(recv_klass,
2891                               vtable_index.as_constant() * wordSize +
2892                               base +
2893                               vtableEntry::method_offset_in_bytes());
2894 
2895     z_lg(method_result, vtable_entry_addr);
2896   } else {
2897     // Shift index properly and load with base + index + disp.
2898     Register vindex = vtable_index.as_register();
2899     Address  vtable_entry_addr(recv_klass, vindex,
2900                                base + vtableEntry::method_offset_in_bytes());
2901 
2902     z_sllg(vindex, vindex, exact_log2(wordSize));
2903     z_lg(method_result, vtable_entry_addr);
2904   }
2905   BLOCK_COMMENT("} lookup_virtual_method");
2906 }
2907 
2908 // Factor out code to call ic_miss_handler.
2909 // Generate code to call the inline cache miss handler.
2910 //
2911 // In most cases, this code will be generated out-of-line.
2912 // The method parameters are intended to provide some variability.
2913 //   ICM          - Label which has to be bound to the start of useful code (past any traps).
2914 //   trapMarker   - Marking byte for the generated illtrap instructions (if any).
2915 //                  Any value except 0x00 is supported.
2916 //                  = 0x00 - do not generate illtrap instructions.
2917 //                         use nops to fill ununsed space.
2918 //   requiredSize - required size of the generated code. If the actually
2919 //                  generated code is smaller, use padding instructions to fill up.
2920 //                  = 0 - no size requirement, no padding.
2921 //   scratch      - scratch register to hold branch target address.
2922 //
2923 //  The method returns the code offset of the bound label.
2924 unsigned int MacroAssembler::call_ic_miss_handler(Label& ICM, int trapMarker, int requiredSize, Register scratch) {
2925   intptr_t startOffset = offset();
2926 
2927   // Prevent entry at content_begin().
2928   if (trapMarker != 0) {
2929     z_illtrap(trapMarker);
2930   }
2931 
2932   // Load address of inline cache miss code into scratch register
2933   // and branch to cache miss handler.
2934   BLOCK_COMMENT("IC miss handler {");
2935   BIND(ICM);
2936   unsigned int   labelOffset = offset();
2937   AddressLiteral icmiss(SharedRuntime::get_ic_miss_stub());
2938 
2939   load_const_optimized(scratch, icmiss);
2940   z_br(scratch);
2941 
2942   // Fill unused space.
2943   if (requiredSize > 0) {
2944     while ((offset() - startOffset) < requiredSize) {
2945       if (trapMarker == 0) {
2946         z_nop();
2947       } else {
2948         z_illtrap(trapMarker);
2949       }
2950     }
2951   }
2952   BLOCK_COMMENT("} IC miss handler");
2953   return labelOffset;
2954 }
2955 
2956 void MacroAssembler::nmethod_UEP(Label& ic_miss) {
2957   Register ic_reg       = as_Register(Matcher::inline_cache_reg_encode());
2958   int      klass_offset = oopDesc::klass_offset_in_bytes();
2959   if (!ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(klass_offset)) {
2960     if (VM_Version::has_CompareBranch()) {
2961       z_cgij(Z_ARG1, 0, Assembler::bcondEqual, ic_miss);
2962     } else {
2963       z_ltgr(Z_ARG1, Z_ARG1);
2964       z_bre(ic_miss);
2965     }
2966   }
2967   // Compare cached class against klass from receiver.
2968   compare_klass_ptr(ic_reg, klass_offset, Z_ARG1, false);
2969   z_brne(ic_miss);
2970 }
2971 
2972 void MacroAssembler::check_klass_subtype_fast_path(Register   sub_klass,
2973                                                    Register   super_klass,
2974                                                    Register   temp1_reg,
2975                                                    Label*     L_success,
2976                                                    Label*     L_failure,
2977                                                    Label*     L_slow_path,
2978                                                    RegisterOrConstant super_check_offset) {
2979 
2980   const int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
2981   const int sco_offset = in_bytes(Klass::super_check_offset_offset());
2982 
2983   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
2984   bool need_slow_path = (must_load_sco ||
2985                          super_check_offset.constant_or_zero() == sc_offset);
2986 
2987   // Input registers must not overlap.
2988   assert_different_registers(sub_klass, super_klass, temp1_reg);
2989   if (super_check_offset.is_register()) {
2990     assert_different_registers(sub_klass, super_klass,
2991                                super_check_offset.as_register());
2992   } else if (must_load_sco) {
2993     assert(temp1_reg != noreg, "supply either a temp or a register offset");
2994   }
2995 
2996   const Register Rsuper_check_offset = temp1_reg;
2997 
2998   NearLabel L_fallthrough;
2999   int label_nulls = 0;
3000   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
3001   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
3002   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
3003   assert(label_nulls <= 1 ||
3004          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
3005          "at most one NULL in the batch, usually");
3006 
3007   BLOCK_COMMENT("check_klass_subtype_fast_path {");
3008   // If the pointers are equal, we are done (e.g., String[] elements).
3009   // This self-check enables sharing of secondary supertype arrays among
3010   // non-primary types such as array-of-interface. Otherwise, each such
3011   // type would need its own customized SSA.
3012   // We move this check to the front of the fast path because many
3013   // type checks are in fact trivially successful in this manner,
3014   // so we get a nicely predicted branch right at the start of the check.
3015   compare64_and_branch(sub_klass, super_klass, bcondEqual, *L_success);
3016 
3017   // Check the supertype display, which is uint.
3018   if (must_load_sco) {
3019     z_llgf(Rsuper_check_offset, sco_offset, super_klass);
3020     super_check_offset = RegisterOrConstant(Rsuper_check_offset);
3021   }
3022   Address super_check_addr(sub_klass, super_check_offset, 0);
3023   z_cg(super_klass, super_check_addr); // compare w/ displayed supertype
3024 
3025   // This check has worked decisively for primary supers.
3026   // Secondary supers are sought in the super_cache ('super_cache_addr').
3027   // (Secondary supers are interfaces and very deeply nested subtypes.)
3028   // This works in the same check above because of a tricky aliasing
3029   // between the super_cache and the primary super display elements.
3030   // (The 'super_check_addr' can address either, as the case requires.)
3031   // Note that the cache is updated below if it does not help us find
3032   // what we need immediately.
3033   // So if it was a primary super, we can just fail immediately.
3034   // Otherwise, it's the slow path for us (no success at this point).
3035 
3036   // Hacked jmp, which may only be used just before L_fallthrough.
3037 #define final_jmp(label)                                                \
3038   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
3039   else                            { branch_optimized(Assembler::bcondAlways, label); } /*omit semicolon*/
3040 
3041   if (super_check_offset.is_register()) {
3042     branch_optimized(Assembler::bcondEqual, *L_success);
3043     z_cfi(super_check_offset.as_register(), sc_offset);
3044     if (L_failure == &L_fallthrough) {
3045       branch_optimized(Assembler::bcondEqual, *L_slow_path);
3046     } else {
3047       branch_optimized(Assembler::bcondNotEqual, *L_failure);
3048       final_jmp(*L_slow_path);
3049     }
3050   } else if (super_check_offset.as_constant() == sc_offset) {
3051     // Need a slow path; fast failure is impossible.
3052     if (L_slow_path == &L_fallthrough) {
3053       branch_optimized(Assembler::bcondEqual, *L_success);
3054     } else {
3055       branch_optimized(Assembler::bcondNotEqual, *L_slow_path);
3056       final_jmp(*L_success);
3057     }
3058   } else {
3059     // No slow path; it's a fast decision.
3060     if (L_failure == &L_fallthrough) {
3061       branch_optimized(Assembler::bcondEqual, *L_success);
3062     } else {
3063       branch_optimized(Assembler::bcondNotEqual, *L_failure);
3064       final_jmp(*L_success);
3065     }
3066   }
3067 
3068   bind(L_fallthrough);
3069 #undef local_brc
3070 #undef final_jmp
3071   BLOCK_COMMENT("} check_klass_subtype_fast_path");
3072   // fallthru (to slow path)
3073 }
3074 
3075 void MacroAssembler::check_klass_subtype_slow_path(Register Rsubklass,
3076                                                    Register Rsuperklass,
3077                                                    Register Rarray_ptr,  // tmp
3078                                                    Register Rlength,     // tmp
3079                                                    Label* L_success,
3080                                                    Label* L_failure) {
3081   // Input registers must not overlap.
3082   // Also check for R1 which is explicitely used here.
3083   assert_different_registers(Z_R1, Rsubklass, Rsuperklass, Rarray_ptr, Rlength);
3084   NearLabel L_fallthrough, L_loop;
3085   int label_nulls = 0;
3086   if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
3087   if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
3088   assert(label_nulls <= 1, "at most one NULL in the batch");
3089 
3090   const int ss_offset = in_bytes(Klass::secondary_supers_offset());
3091   const int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3092 
3093   const int length_offset = Array<Klass*>::length_offset_in_bytes();
3094   const int base_offset   = Array<Klass*>::base_offset_in_bytes();
3095 
3096   // Hacked jmp, which may only be used just before L_fallthrough.
3097 #define final_jmp(label)                                                \
3098   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
3099   else                            branch_optimized(Assembler::bcondAlways, label) /*omit semicolon*/
3100 
3101   NearLabel loop_iterate, loop_count, match;
3102 
3103   BLOCK_COMMENT("check_klass_subtype_slow_path {");
3104   z_lg(Rarray_ptr, ss_offset, Rsubklass);
3105 
3106   load_and_test_int(Rlength, Address(Rarray_ptr, length_offset));
3107   branch_optimized(Assembler::bcondZero, *L_failure);
3108 
3109   // Oops in table are NO MORE compressed.
3110   z_cg(Rsuperklass, base_offset, Rarray_ptr); // Check array element for match.
3111   z_bre(match);                               // Shortcut for array length = 1.
3112 
3113   // No match yet, so we must walk the array's elements.
3114   z_lngfr(Rlength, Rlength);
3115   z_sllg(Rlength, Rlength, LogBytesPerWord); // -#bytes of cache array
3116   z_llill(Z_R1, BytesPerWord);               // Set increment/end index.
3117   add2reg(Rlength, 2 * BytesPerWord);        // start index  = -(n-2)*BytesPerWord
3118   z_slgr(Rarray_ptr, Rlength);               // start addr: +=  (n-2)*BytesPerWord
3119   z_bru(loop_count);
3120 
3121   BIND(loop_iterate);
3122   z_cg(Rsuperklass, base_offset, Rlength, Rarray_ptr); // Check array element for match.
3123   z_bre(match);
3124   BIND(loop_count);
3125   z_brxlg(Rlength, Z_R1, loop_iterate);
3126 
3127   // Rsuperklass not found among secondary super classes -> failure.
3128   branch_optimized(Assembler::bcondAlways, *L_failure);
3129 
3130   // Got a hit. Return success (zero result). Set cache.
3131   // Cache load doesn't happen here. For speed it is directly emitted by the compiler.
3132 
3133   BIND(match);
3134 
3135   z_stg(Rsuperklass, sc_offset, Rsubklass); // Save result to cache.
3136 
3137   final_jmp(*L_success);
3138 
3139   // Exit to the surrounding code.
3140   BIND(L_fallthrough);
3141 #undef local_brc
3142 #undef final_jmp
3143   BLOCK_COMMENT("} check_klass_subtype_slow_path");
3144 }
3145 
3146 // Emitter for combining fast and slow path.
3147 void MacroAssembler::check_klass_subtype(Register sub_klass,
3148                                          Register super_klass,
3149                                          Register temp1_reg,
3150                                          Register temp2_reg,
3151                                          Label&   L_success) {
3152   NearLabel failure;
3153   BLOCK_COMMENT(err_msg("check_klass_subtype(%s subclass of %s) {", sub_klass->name(), super_klass->name()));
3154   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg,
3155                                 &L_success, &failure, NULL);
3156   check_klass_subtype_slow_path(sub_klass, super_klass,
3157                                 temp1_reg, temp2_reg, &L_success, NULL);
3158   BIND(failure);
3159   BLOCK_COMMENT("} check_klass_subtype");
3160 }
3161 
3162 // Increment a counter at counter_address when the eq condition code is
3163 // set. Kills registers tmp1_reg and tmp2_reg and preserves the condition code.
3164 void MacroAssembler::increment_counter_eq(address counter_address, Register tmp1_reg, Register tmp2_reg) {
3165   Label l;
3166   z_brne(l);
3167   load_const(tmp1_reg, counter_address);
3168   add2mem_32(Address(tmp1_reg), 1, tmp2_reg);
3169   z_cr(tmp1_reg, tmp1_reg); // Set cc to eq.
3170   bind(l);
3171 }
3172 
3173 // Semantics are dependent on the slow_case label:
3174 //   If the slow_case label is not NULL, failure to biased-lock the object
3175 //   transfers control to the location of the slow_case label. If the
3176 //   object could be biased-locked, control is transferred to the done label.
3177 //   The condition code is unpredictable.
3178 //
3179 //   If the slow_case label is NULL, failure to biased-lock the object results
3180 //   in a transfer of control to the done label with a condition code of not_equal.
3181 //   If the biased-lock could be successfully obtained, control is transfered to
3182 //   the done label with a condition code of equal.
3183 //   It is mandatory to react on the condition code At the done label.
3184 //
3185 void MacroAssembler::biased_locking_enter(Register  obj_reg,
3186                                           Register  mark_reg,
3187                                           Register  temp_reg,
3188                                           Register  temp2_reg,    // May be Z_RO!
3189                                           Label    &done,
3190                                           Label    *slow_case) {
3191   assert(UseBiasedLocking, "why call this otherwise?");
3192   assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
3193 
3194   Label cas_label; // Try, if implemented, CAS locking. Fall thru to slow path otherwise.
3195 
3196   BLOCK_COMMENT("biased_locking_enter {");
3197 
3198   // Biased locking
3199   // See whether the lock is currently biased toward our thread and
3200   // whether the epoch is still valid.
3201   // Note that the runtime guarantees sufficient alignment of JavaThread
3202   // pointers to allow age to be placed into low bits.
3203   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
3204          "biased locking makes assumptions about bit layout");
3205   z_lr(temp_reg, mark_reg);
3206   z_nilf(temp_reg, markOopDesc::biased_lock_mask_in_place);
3207   z_chi(temp_reg, markOopDesc::biased_lock_pattern);
3208   z_brne(cas_label);  // Try cas if object is not biased, i.e. cannot be biased locked.
3209 
3210   load_prototype_header(temp_reg, obj_reg);
3211   load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
3212 
3213   z_ogr(temp_reg, Z_thread);
3214   z_xgr(temp_reg, mark_reg);
3215   z_ngr(temp_reg, temp2_reg);
3216   if (PrintBiasedLockingStatistics) {
3217     increment_counter_eq((address) BiasedLocking::biased_lock_entry_count_addr(), mark_reg, temp2_reg);
3218     // Restore mark_reg.
3219     z_lg(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
3220   }
3221   branch_optimized(Assembler::bcondEqual, done);  // Biased lock obtained, return success.
3222 
3223   Label try_revoke_bias;
3224   Label try_rebias;
3225   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
3226 
3227   //----------------------------------------------------------------------------
3228   // At this point we know that the header has the bias pattern and
3229   // that we are not the bias owner in the current epoch. We need to
3230   // figure out more details about the state of the header in order to
3231   // know what operations can be legally performed on the object's
3232   // header.
3233 
3234   // If the low three bits in the xor result aren't clear, that means
3235   // the prototype header is no longer biased and we have to revoke
3236   // the bias on this object.
3237   z_tmll(temp_reg, markOopDesc::biased_lock_mask_in_place);
3238   z_brnaz(try_revoke_bias);
3239 
3240   // Biasing is still enabled for this data type. See whether the
3241   // epoch of the current bias is still valid, meaning that the epoch
3242   // bits of the mark word are equal to the epoch bits of the
3243   // prototype header. (Note that the prototype header's epoch bits
3244   // only change at a safepoint.) If not, attempt to rebias the object
3245   // toward the current thread. Note that we must be absolutely sure
3246   // that the current epoch is invalid in order to do this because
3247   // otherwise the manipulations it performs on the mark word are
3248   // illegal.
3249   z_tmll(temp_reg, markOopDesc::epoch_mask_in_place);
3250   z_brnaz(try_rebias);
3251 
3252   //----------------------------------------------------------------------------
3253   // The epoch of the current bias is still valid but we know nothing
3254   // about the owner; it might be set or it might be clear. Try to
3255   // acquire the bias of the object using an atomic operation. If this
3256   // fails we will go in to the runtime to revoke the object's bias.
3257   // Note that we first construct the presumed unbiased header so we
3258   // don't accidentally blow away another thread's valid bias.
3259   z_nilf(mark_reg, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place |
3260          markOopDesc::epoch_mask_in_place);
3261   z_lgr(temp_reg, Z_thread);
3262   z_llgfr(mark_reg, mark_reg);
3263   z_ogr(temp_reg, mark_reg);
3264 
3265   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3266 
3267   z_csg(mark_reg, temp_reg, 0, obj_reg);
3268 
3269   // If the biasing toward our thread failed, this means that
3270   // another thread succeeded in biasing it toward itself and we
3271   // need to revoke that bias. The revocation will occur in the
3272   // interpreter runtime in the slow case.
3273 
3274   if (PrintBiasedLockingStatistics) {
3275     increment_counter_eq((address) BiasedLocking::anonymously_biased_lock_entry_count_addr(),
3276                          temp_reg, temp2_reg);
3277   }
3278   if (slow_case != NULL) {
3279     branch_optimized(Assembler::bcondNotEqual, *slow_case); // Biased lock not obtained, need to go the long way.
3280   }
3281   branch_optimized(Assembler::bcondAlways, done);           // Biased lock status given in condition code.
3282 
3283   //----------------------------------------------------------------------------
3284   bind(try_rebias);
3285   // At this point we know the epoch has expired, meaning that the
3286   // current "bias owner", if any, is actually invalid. Under these
3287   // circumstances _only_, we are allowed to use the current header's
3288   // value as the comparison value when doing the cas to acquire the
3289   // bias in the current epoch. In other words, we allow transfer of
3290   // the bias from one thread to another directly in this situation.
3291 
3292   z_nilf(mark_reg, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
3293   load_prototype_header(temp_reg, obj_reg);
3294   z_llgfr(mark_reg, mark_reg);
3295 
3296   z_ogr(temp_reg, Z_thread);
3297 
3298   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3299 
3300   z_csg(mark_reg, temp_reg, 0, obj_reg);
3301 
3302   // If the biasing toward our thread failed, this means that
3303   // another thread succeeded in biasing it toward itself and we
3304   // need to revoke that bias. The revocation will occur in the
3305   // interpreter runtime in the slow case.
3306 
3307   if (PrintBiasedLockingStatistics) {
3308     increment_counter_eq((address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg, temp2_reg);
3309   }
3310   if (slow_case != NULL) {
3311     branch_optimized(Assembler::bcondNotEqual, *slow_case);  // Biased lock not obtained, need to go the long way.
3312   }
3313   z_bru(done);           // Biased lock status given in condition code.
3314 
3315   //----------------------------------------------------------------------------
3316   bind(try_revoke_bias);
3317   // The prototype mark in the klass doesn't have the bias bit set any
3318   // more, indicating that objects of this data type are not supposed
3319   // to be biased any more. We are going to try to reset the mark of
3320   // this object to the prototype value and fall through to the
3321   // CAS-based locking scheme. Note that if our CAS fails, it means
3322   // that another thread raced us for the privilege of revoking the
3323   // bias of this particular object, so it's okay to continue in the
3324   // normal locking code.
3325   load_prototype_header(temp_reg, obj_reg);
3326 
3327   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3328 
3329   z_csg(mark_reg, temp_reg, 0, obj_reg);
3330 
3331   // Fall through to the normal CAS-based lock, because no matter what
3332   // the result of the above CAS, some thread must have succeeded in
3333   // removing the bias bit from the object's header.
3334   if (PrintBiasedLockingStatistics) {
3335     // z_cgr(mark_reg, temp2_reg);
3336     increment_counter_eq((address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg, temp2_reg);
3337   }
3338 
3339   bind(cas_label);
3340   BLOCK_COMMENT("} biased_locking_enter");
3341 }
3342 
3343 void MacroAssembler::biased_locking_exit(Register mark_addr, Register temp_reg, Label& done) {
3344   // Check for biased locking unlock case, which is a no-op
3345   // Note: we do not have to check the thread ID for two reasons.
3346   // First, the interpreter checks for IllegalMonitorStateException at
3347   // a higher level. Second, if the bias was revoked while we held the
3348   // lock, the object could not be rebiased toward another thread, so
3349   // the bias bit would be clear.
3350   BLOCK_COMMENT("biased_locking_exit {");
3351 
3352   z_lg(temp_reg, 0, mark_addr);
3353   z_nilf(temp_reg, markOopDesc::biased_lock_mask_in_place);
3354 
3355   z_chi(temp_reg, markOopDesc::biased_lock_pattern);
3356   z_bre(done);
3357   BLOCK_COMMENT("} biased_locking_exit");
3358 }
3359 
3360 void MacroAssembler::compiler_fast_lock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias) {
3361   Register displacedHeader = temp1;
3362   Register currentHeader = temp1;
3363   Register temp = temp2;
3364   NearLabel done, object_has_monitor;
3365 
3366   BLOCK_COMMENT("compiler_fast_lock_object {");
3367 
3368   // Load markOop from oop into mark.
3369   z_lg(displacedHeader, 0, oop);
3370 
3371   if (try_bias) {
3372     biased_locking_enter(oop, displacedHeader, temp, Z_R0, done);
3373   }
3374 
3375   // Handle existing monitor.
3376   if ((EmitSync & 0x01) == 0) {
3377     // The object has an existing monitor iff (mark & monitor_value) != 0.
3378     guarantee(Immediate::is_uimm16(markOopDesc::monitor_value), "must be half-word");
3379     z_lr(temp, displacedHeader);
3380     z_nill(temp, markOopDesc::monitor_value);
3381     z_brne(object_has_monitor);
3382   }
3383 
3384   // Set mark to markOop | markOopDesc::unlocked_value.
3385   z_oill(displacedHeader, markOopDesc::unlocked_value);
3386 
3387   // Load Compare Value application register.
3388 
3389   // Initialize the box (must happen before we update the object mark).
3390   z_stg(displacedHeader, BasicLock::displaced_header_offset_in_bytes(), box);
3391 
3392   // Memory Fence (in cmpxchgd)
3393   // Compare object markOop with mark and if equal exchange scratch1 with object markOop.
3394 
3395   // If the compare-and-swap succeeded, then we found an unlocked object and we
3396   // have now locked it.
3397   z_csg(displacedHeader, box, 0, oop);
3398   assert(currentHeader==displacedHeader, "must be same register"); // Identified two registers from z/Architecture.
3399   z_bre(done);
3400 
3401   // We did not see an unlocked object so try the fast recursive case.
3402 
3403   z_sgr(currentHeader, Z_SP);
3404   load_const_optimized(temp, (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place));
3405 
3406   z_ngr(currentHeader, temp);
3407   //   z_brne(done);
3408   //   z_release();
3409   z_stg(currentHeader/*==0 or not 0*/, BasicLock::displaced_header_offset_in_bytes(), box);
3410 
3411   z_bru(done);
3412 
3413   if ((EmitSync & 0x01) == 0) {
3414     Register zero = temp;
3415     Register monitor_tagged = displacedHeader; // Tagged with markOopDesc::monitor_value.
3416     bind(object_has_monitor);
3417     // The object's monitor m is unlocked iff m->owner == NULL,
3418     // otherwise m->owner may contain a thread or a stack address.
3419     //
3420     // Try to CAS m->owner from NULL to current thread.
3421     z_lghi(zero, 0);
3422     // If m->owner is null, then csg succeeds and sets m->owner=THREAD and CR=EQ.
3423     z_csg(zero, Z_thread, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), monitor_tagged);
3424     // Store a non-null value into the box.
3425     z_stg(box, BasicLock::displaced_header_offset_in_bytes(), box);
3426 #ifdef ASSERT
3427       z_brne(done);
3428       // We've acquired the monitor, check some invariants.
3429       // Invariant 1: _recursions should be 0.
3430       asm_assert_mem8_is_zero(OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions), monitor_tagged,
3431                               "monitor->_recursions should be 0", -1);
3432       z_ltgr(zero, zero); // Set CR=EQ.
3433 #endif
3434   }
3435   bind(done);
3436 
3437   BLOCK_COMMENT("} compiler_fast_lock_object");
3438   // If locking was successful, CR should indicate 'EQ'.
3439   // The compiler or the native wrapper generates a branch to the runtime call
3440   // _complete_monitor_locking_Java.
3441 }
3442 
3443 void MacroAssembler::compiler_fast_unlock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias) {
3444   Register displacedHeader = temp1;
3445   Register currentHeader = temp2;
3446   Register temp = temp1;
3447   Register monitor = temp2;
3448 
3449   Label done, object_has_monitor;
3450 
3451   BLOCK_COMMENT("compiler_fast_unlock_object {");
3452 
3453   if (try_bias) {
3454     biased_locking_exit(oop, currentHeader, done);
3455   }
3456 
3457   // Find the lock address and load the displaced header from the stack.
3458   // if the displaced header is zero, we have a recursive unlock.
3459   load_and_test_long(displacedHeader, Address(box, BasicLock::displaced_header_offset_in_bytes()));
3460   z_bre(done);
3461 
3462   // Handle existing monitor.
3463   if ((EmitSync & 0x02) == 0) {
3464     // The object has an existing monitor iff (mark & monitor_value) != 0.
3465     z_lg(currentHeader, oopDesc::mark_offset_in_bytes(), oop);
3466     guarantee(Immediate::is_uimm16(markOopDesc::monitor_value), "must be half-word");
3467     z_nill(currentHeader, markOopDesc::monitor_value);
3468     z_brne(object_has_monitor);
3469   }
3470 
3471   // Check if it is still a light weight lock, this is true if we see
3472   // the stack address of the basicLock in the markOop of the object
3473   // copy box to currentHeader such that csg does not kill it.
3474   z_lgr(currentHeader, box);
3475   z_csg(currentHeader, displacedHeader, 0, oop);
3476   z_bru(done); // Csg sets CR as desired.
3477 
3478   // Handle existing monitor.
3479   if ((EmitSync & 0x02) == 0) {
3480     bind(object_has_monitor);
3481     z_lg(currentHeader, oopDesc::mark_offset_in_bytes(), oop);    // CurrentHeader is tagged with monitor_value set.
3482     load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
3483     z_brne(done);
3484     load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3485     z_brne(done);
3486     load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
3487     z_brne(done);
3488     load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
3489     z_brne(done);
3490     z_release();
3491     z_stg(temp/*=0*/, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), currentHeader);
3492   }
3493 
3494   bind(done);
3495 
3496   BLOCK_COMMENT("} compiler_fast_unlock_object");
3497   // flag == EQ indicates success
3498   // flag == NE indicates failure
3499 }
3500 
3501 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
3502   BarrierSetAssembler* bs = Universe::heap()->barrier_set()->barrier_set_assembler();
3503   bs->resolve_jobject(this, value, tmp1, tmp2);
3504 }
3505 
3506 // Last_Java_sp must comply to the rules in frame_s390.hpp.
3507 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc, bool allow_relocation) {
3508   BLOCK_COMMENT("set_last_Java_frame {");
3509 
3510   // Always set last_Java_pc and flags first because once last_Java_sp
3511   // is visible has_last_Java_frame is true and users will look at the
3512   // rest of the fields. (Note: flags should always be zero before we
3513   // get here so doesn't need to be set.)
3514 
3515   // Verify that last_Java_pc was zeroed on return to Java.
3516   if (allow_relocation) {
3517     asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()),
3518                             Z_thread,
3519                             "last_Java_pc not zeroed before leaving Java",
3520                             0x200);
3521   } else {
3522     asm_assert_mem8_is_zero_static(in_bytes(JavaThread::last_Java_pc_offset()),
3523                                    Z_thread,
3524                                    "last_Java_pc not zeroed before leaving Java",
3525                                    0x200);
3526   }
3527 
3528   // When returning from calling out from Java mode the frame anchor's
3529   // last_Java_pc will always be set to NULL. It is set here so that
3530   // if we are doing a call to native (not VM) that we capture the
3531   // known pc and don't have to rely on the native call having a
3532   // standard frame linkage where we can find the pc.
3533   if (last_Java_pc!=noreg) {
3534     z_stg(last_Java_pc, Address(Z_thread, JavaThread::last_Java_pc_offset()));
3535   }
3536 
3537   // This membar release is not required on z/Architecture, since the sequence of stores
3538   // in maintained. Nevertheless, we leave it in to document the required ordering.
3539   // The implementation of z_release() should be empty.
3540   // z_release();
3541 
3542   z_stg(last_Java_sp, Address(Z_thread, JavaThread::last_Java_sp_offset()));
3543   BLOCK_COMMENT("} set_last_Java_frame");
3544 }
3545 
3546 void MacroAssembler::reset_last_Java_frame(bool allow_relocation) {
3547   BLOCK_COMMENT("reset_last_Java_frame {");
3548 
3549   if (allow_relocation) {
3550     asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
3551                                Z_thread,
3552                                "SP was not set, still zero",
3553                                0x202);
3554   } else {
3555     asm_assert_mem8_isnot_zero_static(in_bytes(JavaThread::last_Java_sp_offset()),
3556                                       Z_thread,
3557                                       "SP was not set, still zero",
3558                                       0x202);
3559   }
3560 
3561   // _last_Java_sp = 0
3562   // Clearing storage must be atomic here, so don't use clear_mem()!
3563   store_const(Address(Z_thread, JavaThread::last_Java_sp_offset()), 0);
3564 
3565   // _last_Java_pc = 0
3566   store_const(Address(Z_thread, JavaThread::last_Java_pc_offset()), 0);
3567 
3568   BLOCK_COMMENT("} reset_last_Java_frame");
3569   return;
3570 }
3571 
3572 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1, bool allow_relocation) {
3573   assert_different_registers(sp, tmp1);
3574 
3575   // We cannot trust that code generated by the C++ compiler saves R14
3576   // to z_abi_160.return_pc, because sometimes it spills R14 using stmg at
3577   // z_abi_160.gpr14 (e.g. InterpreterRuntime::_new()).
3578   // Therefore we load the PC into tmp1 and let set_last_Java_frame() save
3579   // it into the frame anchor.
3580   get_PC(tmp1);
3581   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1, allow_relocation);
3582 }
3583 
3584 void MacroAssembler::set_thread_state(JavaThreadState new_state) {
3585   z_release();
3586 
3587   assert(Immediate::is_uimm16(_thread_max_state), "enum value out of range for instruction");
3588   assert(sizeof(JavaThreadState) == sizeof(int), "enum value must have base type int");
3589   store_const(Address(Z_thread, JavaThread::thread_state_offset()), new_state, Z_R0, false);
3590 }
3591 
3592 void MacroAssembler::get_vm_result(Register oop_result) {
3593   verify_thread();
3594 
3595   z_lg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
3596   clear_mem(Address(Z_thread, JavaThread::vm_result_offset()), sizeof(void*));
3597 
3598   verify_oop(oop_result);
3599 }
3600 
3601 void MacroAssembler::get_vm_result_2(Register result) {
3602   verify_thread();
3603 
3604   z_lg(result, Address(Z_thread, JavaThread::vm_result_2_offset()));
3605   clear_mem(Address(Z_thread, JavaThread::vm_result_2_offset()), sizeof(void*));
3606 }
3607 
3608 // We require that C code which does not return a value in vm_result will
3609 // leave it undisturbed.
3610 void MacroAssembler::set_vm_result(Register oop_result) {
3611   z_stg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
3612 }
3613 
3614 // Explicit null checks (used for method handle code).
3615 void MacroAssembler::null_check(Register reg, Register tmp, int64_t offset) {
3616   if (!ImplicitNullChecks) {
3617     NearLabel ok;
3618 
3619     compare64_and_branch(reg, (intptr_t) 0, Assembler::bcondNotEqual, ok);
3620 
3621     // We just put the address into reg if it was 0 (tmp==Z_R0 is allowed so we can't use it for the address).
3622     address exception_entry = Interpreter::throw_NullPointerException_entry();
3623     load_absolute_address(reg, exception_entry);
3624     z_br(reg);
3625 
3626     bind(ok);
3627   } else {
3628     if (needs_explicit_null_check((intptr_t)offset)) {
3629       // Provoke OS NULL exception if reg = NULL by
3630       // accessing M[reg] w/o changing any registers.
3631       z_lg(tmp, 0, reg);
3632     }
3633     // else
3634       // Nothing to do, (later) access of M[reg + offset]
3635       // will provoke OS NULL exception if reg = NULL.
3636   }
3637 }
3638 
3639 //-------------------------------------
3640 //  Compressed Klass Pointers
3641 //-------------------------------------
3642 
3643 // Klass oop manipulations if compressed.
3644 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3645   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided. (dst == src) also possible.
3646   address  base    = Universe::narrow_klass_base();
3647   int      shift   = Universe::narrow_klass_shift();
3648   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3649 
3650   BLOCK_COMMENT("cKlass encoder {");
3651 
3652 #ifdef ASSERT
3653   Label ok;
3654   z_tmll(current, KlassAlignmentInBytes-1); // Check alignment.
3655   z_brc(Assembler::bcondAllZero, ok);
3656   // The plain disassembler does not recognize illtrap. It instead displays
3657   // a 32-bit value. Issueing two illtraps assures the disassembler finds
3658   // the proper beginning of the next instruction.
3659   z_illtrap(0xee);
3660   z_illtrap(0xee);
3661   bind(ok);
3662 #endif
3663 
3664   if (base != NULL) {
3665     unsigned int base_h = ((unsigned long)base)>>32;
3666     unsigned int base_l = (unsigned int)((unsigned long)base);
3667     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3668       lgr_if_needed(dst, current);
3669       z_aih(dst, -((int)base_h));     // Base has no set bits in lower half.
3670     } else if ((base_h == 0) && (base_l != 0)) {
3671       lgr_if_needed(dst, current);
3672       z_agfi(dst, -(int)base_l);
3673     } else {
3674       load_const(Z_R0, base);
3675       lgr_if_needed(dst, current);
3676       z_sgr(dst, Z_R0);
3677     }
3678     current = dst;
3679   }
3680   if (shift != 0) {
3681     assert (LogKlassAlignmentInBytes == shift, "decode alg wrong");
3682     z_srlg(dst, current, shift);
3683     current = dst;
3684   }
3685   lgr_if_needed(dst, current); // Move may be required (if neither base nor shift != 0).
3686 
3687   BLOCK_COMMENT("} cKlass encoder");
3688 }
3689 
3690 // This function calculates the size of the code generated by
3691 //   decode_klass_not_null(register dst, Register src)
3692 // when (Universe::heap() != NULL). Hence, if the instructions
3693 // it generates change, then this method needs to be updated.
3694 int MacroAssembler::instr_size_for_decode_klass_not_null() {
3695   address  base    = Universe::narrow_klass_base();
3696   int shift_size   = Universe::narrow_klass_shift() == 0 ? 0 : 6; /* sllg */
3697   int addbase_size = 0;
3698   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3699 
3700   if (base != NULL) {
3701     unsigned int base_h = ((unsigned long)base)>>32;
3702     unsigned int base_l = (unsigned int)((unsigned long)base);
3703     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3704       addbase_size += 6; /* aih */
3705     } else if ((base_h == 0) && (base_l != 0)) {
3706       addbase_size += 6; /* algfi */
3707     } else {
3708       addbase_size += load_const_size();
3709       addbase_size += 4; /* algr */
3710     }
3711   }
3712 #ifdef ASSERT
3713   addbase_size += 10;
3714   addbase_size += 2; // Extra sigill.
3715 #endif
3716   return addbase_size + shift_size;
3717 }
3718 
3719 // !!! If the instructions that get generated here change
3720 //     then function instr_size_for_decode_klass_not_null()
3721 //     needs to get updated.
3722 // This variant of decode_klass_not_null() must generate predictable code!
3723 // The code must only depend on globally known parameters.
3724 void MacroAssembler::decode_klass_not_null(Register dst) {
3725   address  base    = Universe::narrow_klass_base();
3726   int      shift   = Universe::narrow_klass_shift();
3727   int      beg_off = offset();
3728   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3729 
3730   BLOCK_COMMENT("cKlass decoder (const size) {");
3731 
3732   if (shift != 0) { // Shift required?
3733     z_sllg(dst, dst, shift);
3734   }
3735   if (base != NULL) {
3736     unsigned int base_h = ((unsigned long)base)>>32;
3737     unsigned int base_l = (unsigned int)((unsigned long)base);
3738     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3739       z_aih(dst, base_h);     // Base has no set bits in lower half.
3740     } else if ((base_h == 0) && (base_l != 0)) {
3741       z_algfi(dst, base_l);   // Base has no set bits in upper half.
3742     } else {
3743       load_const(Z_R0, base); // Base has set bits everywhere.
3744       z_algr(dst, Z_R0);
3745     }
3746   }
3747 
3748 #ifdef ASSERT
3749   Label ok;
3750   z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
3751   z_brc(Assembler::bcondAllZero, ok);
3752   // The plain disassembler does not recognize illtrap. It instead displays
3753   // a 32-bit value. Issueing two illtraps assures the disassembler finds
3754   // the proper beginning of the next instruction.
3755   z_illtrap(0xd1);
3756   z_illtrap(0xd1);
3757   bind(ok);
3758 #endif
3759   assert(offset() == beg_off + instr_size_for_decode_klass_not_null(), "Code gen mismatch.");
3760 
3761   BLOCK_COMMENT("} cKlass decoder (const size)");
3762 }
3763 
3764 // This variant of decode_klass_not_null() is for cases where
3765 //  1) the size of the generated instructions may vary
3766 //  2) the result is (potentially) stored in a register different from the source.
3767 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3768   address base  = Universe::narrow_klass_base();
3769   int     shift = Universe::narrow_klass_shift();
3770   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3771 
3772   BLOCK_COMMENT("cKlass decoder {");
3773 
3774   if (src == noreg) src = dst;
3775 
3776   if (shift != 0) { // Shift or at least move required?
3777     z_sllg(dst, src, shift);
3778   } else {
3779     lgr_if_needed(dst, src);
3780   }
3781 
3782   if (base != NULL) {
3783     unsigned int base_h = ((unsigned long)base)>>32;
3784     unsigned int base_l = (unsigned int)((unsigned long)base);
3785     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3786       z_aih(dst, base_h);     // Base has not set bits in lower half.
3787     } else if ((base_h == 0) && (base_l != 0)) {
3788       z_algfi(dst, base_l);   // Base has no set bits in upper half.
3789     } else {
3790       load_const_optimized(Z_R0, base); // Base has set bits everywhere.
3791       z_algr(dst, Z_R0);
3792     }
3793   }
3794 
3795 #ifdef ASSERT
3796   Label ok;
3797   z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
3798   z_brc(Assembler::bcondAllZero, ok);
3799   // The plain disassembler does not recognize illtrap. It instead displays
3800   // a 32-bit value. Issueing two illtraps assures the disassembler finds
3801   // the proper beginning of the next instruction.
3802   z_illtrap(0xd2);
3803   z_illtrap(0xd2);
3804   bind(ok);
3805 #endif
3806   BLOCK_COMMENT("} cKlass decoder");
3807 }
3808 
3809 void MacroAssembler::load_klass(Register klass, Address mem) {
3810   if (UseCompressedClassPointers) {
3811     z_llgf(klass, mem);
3812     // Attention: no null check here!
3813     decode_klass_not_null(klass);
3814   } else {
3815     z_lg(klass, mem);
3816   }
3817 }
3818 
3819 void MacroAssembler::load_klass(Register klass, Register src_oop) {
3820   if (UseCompressedClassPointers) {
3821     z_llgf(klass, oopDesc::klass_offset_in_bytes(), src_oop);
3822     // Attention: no null check here!
3823     decode_klass_not_null(klass);
3824   } else {
3825     z_lg(klass, oopDesc::klass_offset_in_bytes(), src_oop);
3826   }
3827 }
3828 
3829 void MacroAssembler::load_prototype_header(Register Rheader, Register Rsrc_oop) {
3830   assert_different_registers(Rheader, Rsrc_oop);
3831   load_klass(Rheader, Rsrc_oop);
3832   z_lg(Rheader, Address(Rheader, Klass::prototype_header_offset()));
3833 }
3834 
3835 void MacroAssembler::store_klass(Register klass, Register dst_oop, Register ck) {
3836   if (UseCompressedClassPointers) {
3837     assert_different_registers(dst_oop, klass, Z_R0);
3838     if (ck == noreg) ck = klass;
3839     encode_klass_not_null(ck, klass);
3840     z_st(ck, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
3841   } else {
3842     z_stg(klass, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
3843   }
3844 }
3845 
3846 void MacroAssembler::store_klass_gap(Register s, Register d) {
3847   if (UseCompressedClassPointers) {
3848     assert(s != d, "not enough registers");
3849     // Support s = noreg.
3850     if (s != noreg) {
3851       z_st(s, Address(d, oopDesc::klass_gap_offset_in_bytes()));
3852     } else {
3853       z_mvhi(Address(d, oopDesc::klass_gap_offset_in_bytes()), 0);
3854     }
3855   }
3856 }
3857 
3858 // Compare klass ptr in memory against klass ptr in register.
3859 //
3860 // Rop1            - klass in register, always uncompressed.
3861 // disp            - Offset of klass in memory, compressed/uncompressed, depending on runtime flag.
3862 // Rbase           - Base address of cKlass in memory.
3863 // maybeNULL       - True if Rop1 possibly is a NULL.
3864 void MacroAssembler::compare_klass_ptr(Register Rop1, int64_t disp, Register Rbase, bool maybeNULL) {
3865 
3866   BLOCK_COMMENT("compare klass ptr {");
3867 
3868   if (UseCompressedClassPointers) {
3869     const int shift = Universe::narrow_klass_shift();
3870     address   base  = Universe::narrow_klass_base();
3871 
3872     assert((shift == 0) || (shift == LogKlassAlignmentInBytes), "cKlass encoder detected bad shift");
3873     assert_different_registers(Rop1, Z_R0);
3874     assert_different_registers(Rop1, Rbase, Z_R1);
3875 
3876     // First encode register oop and then compare with cOop in memory.
3877     // This sequence saves an unnecessary cOop load and decode.
3878     if (base == NULL) {
3879       if (shift == 0) {
3880         z_cl(Rop1, disp, Rbase);     // Unscaled
3881       } else {
3882         z_srlg(Z_R0, Rop1, shift);   // ZeroBased
3883         z_cl(Z_R0, disp, Rbase);
3884       }
3885     } else {                         // HeapBased
3886 #ifdef ASSERT
3887       bool     used_R0 = true;
3888       bool     used_R1 = true;
3889 #endif
3890       Register current = Rop1;
3891       Label    done;
3892 
3893       if (maybeNULL) {       // NULL ptr must be preserved!
3894         z_ltgr(Z_R0, current);
3895         z_bre(done);
3896         current = Z_R0;
3897       }
3898 
3899       unsigned int base_h = ((unsigned long)base)>>32;
3900       unsigned int base_l = (unsigned int)((unsigned long)base);
3901       if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3902         lgr_if_needed(Z_R0, current);
3903         z_aih(Z_R0, -((int)base_h));     // Base has no set bits in lower half.
3904       } else if ((base_h == 0) && (base_l != 0)) {
3905         lgr_if_needed(Z_R0, current);
3906         z_agfi(Z_R0, -(int)base_l);
3907       } else {
3908         int pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
3909         add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1); // Subtract base by adding complement.
3910       }
3911 
3912       if (shift != 0) {
3913         z_srlg(Z_R0, Z_R0, shift);
3914       }
3915       bind(done);
3916       z_cl(Z_R0, disp, Rbase);
3917 #ifdef ASSERT
3918       if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
3919       if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
3920 #endif
3921     }
3922   } else {
3923     z_clg(Rop1, disp, Z_R0, Rbase);
3924   }
3925   BLOCK_COMMENT("} compare klass ptr");
3926 }
3927 
3928 //---------------------------
3929 //  Compressed oops
3930 //---------------------------
3931 
3932 void MacroAssembler::encode_heap_oop(Register oop) {
3933   oop_encoder(oop, oop, true /*maybe null*/);
3934 }
3935 
3936 void MacroAssembler::encode_heap_oop_not_null(Register oop) {
3937   oop_encoder(oop, oop, false /*not null*/);
3938 }
3939 
3940 // Called with something derived from the oop base. e.g. oop_base>>3.
3941 int MacroAssembler::get_oop_base_pow2_offset(uint64_t oop_base) {
3942   unsigned int oop_base_ll = ((unsigned int)(oop_base >>  0)) & 0xffff;
3943   unsigned int oop_base_lh = ((unsigned int)(oop_base >> 16)) & 0xffff;
3944   unsigned int oop_base_hl = ((unsigned int)(oop_base >> 32)) & 0xffff;
3945   unsigned int oop_base_hh = ((unsigned int)(oop_base >> 48)) & 0xffff;
3946   unsigned int n_notzero_parts = (oop_base_ll == 0 ? 0:1)
3947                                + (oop_base_lh == 0 ? 0:1)
3948                                + (oop_base_hl == 0 ? 0:1)
3949                                + (oop_base_hh == 0 ? 0:1);
3950 
3951   assert(oop_base != 0, "This is for HeapBased cOops only");
3952 
3953   if (n_notzero_parts != 1) { //  Check if oop_base is just a few pages shy of a power of 2.
3954     uint64_t pow2_offset = 0x10000 - oop_base_ll;
3955     if (pow2_offset < 0x8000) {  // This might not be necessary.
3956       uint64_t oop_base2 = oop_base + pow2_offset;
3957 
3958       oop_base_ll = ((unsigned int)(oop_base2 >>  0)) & 0xffff;
3959       oop_base_lh = ((unsigned int)(oop_base2 >> 16)) & 0xffff;
3960       oop_base_hl = ((unsigned int)(oop_base2 >> 32)) & 0xffff;
3961       oop_base_hh = ((unsigned int)(oop_base2 >> 48)) & 0xffff;
3962       n_notzero_parts = (oop_base_ll == 0 ? 0:1) +
3963                         (oop_base_lh == 0 ? 0:1) +
3964                         (oop_base_hl == 0 ? 0:1) +
3965                         (oop_base_hh == 0 ? 0:1);
3966       if (n_notzero_parts == 1) {
3967         assert(-(int64_t)pow2_offset != (int64_t)-1, "We use -1 to signal uninitialized base register");
3968         return -pow2_offset;
3969       }
3970     }
3971   }
3972   return 0;
3973 }
3974 
3975 // If base address is offset from a straight power of two by just a few pages,
3976 // return this offset to the caller for a possible later composite add.
3977 // TODO/FIX: will only work correctly for 4k pages.
3978 int MacroAssembler::get_oop_base(Register Rbase, uint64_t oop_base) {
3979   int pow2_offset = get_oop_base_pow2_offset(oop_base);
3980 
3981   load_const_optimized(Rbase, oop_base - pow2_offset); // Best job possible.
3982 
3983   return pow2_offset;
3984 }
3985 
3986 int MacroAssembler::get_oop_base_complement(Register Rbase, uint64_t oop_base) {
3987   int offset = get_oop_base(Rbase, oop_base);
3988   z_lcgr(Rbase, Rbase);
3989   return -offset;
3990 }
3991 
3992 // Compare compressed oop in memory against oop in register.
3993 // Rop1            - Oop in register.
3994 // disp            - Offset of cOop in memory.
3995 // Rbase           - Base address of cOop in memory.
3996 // maybeNULL       - True if Rop1 possibly is a NULL.
3997 // maybeNULLtarget - Branch target for Rop1 == NULL, if flow control shall NOT continue with compare instruction.
3998 void MacroAssembler::compare_heap_oop(Register Rop1, Address mem, bool maybeNULL) {
3999   Register Rbase  = mem.baseOrR0();
4000   Register Rindex = mem.indexOrR0();
4001   int64_t  disp   = mem.disp();
4002 
4003   const int shift = Universe::narrow_oop_shift();
4004   address   base  = Universe::narrow_oop_base();
4005 
4006   assert(UseCompressedOops, "must be on to call this method");
4007   assert(Universe::heap() != NULL, "java heap must be initialized to call this method");
4008   assert((shift == 0) || (shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
4009   assert_different_registers(Rop1, Z_R0);
4010   assert_different_registers(Rop1, Rbase, Z_R1);
4011   assert_different_registers(Rop1, Rindex, Z_R1);
4012 
4013   BLOCK_COMMENT("compare heap oop {");
4014 
4015   // First encode register oop and then compare with cOop in memory.
4016   // This sequence saves an unnecessary cOop load and decode.
4017   if (base == NULL) {
4018     if (shift == 0) {
4019       z_cl(Rop1, disp, Rindex, Rbase);  // Unscaled
4020     } else {
4021       z_srlg(Z_R0, Rop1, shift);        // ZeroBased
4022       z_cl(Z_R0, disp, Rindex, Rbase);
4023     }
4024   } else {                              // HeapBased
4025 #ifdef ASSERT
4026     bool  used_R0 = true;
4027     bool  used_R1 = true;
4028 #endif
4029     Label done;
4030     int   pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
4031 
4032     if (maybeNULL) {       // NULL ptr must be preserved!
4033       z_ltgr(Z_R0, Rop1);
4034       z_bre(done);
4035     }
4036 
4037     add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1);
4038     z_srlg(Z_R0, Z_R0, shift);
4039 
4040     bind(done);
4041     z_cl(Z_R0, disp, Rindex, Rbase);
4042 #ifdef ASSERT
4043     if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
4044     if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
4045 #endif
4046   }
4047   BLOCK_COMMENT("} compare heap oop");
4048 }
4049 
4050 // Load heap oop and decompress, if necessary.
4051 void  MacroAssembler::load_heap_oop(Register dest, const Address &a) {
4052   if (UseCompressedOops) {
4053     z_llgf(dest, a.disp(), a.indexOrR0(), a.baseOrR0());
4054     oop_decoder(dest, dest, true);
4055   } else {
4056     z_lg(dest, a.disp(), a.indexOrR0(), a.baseOrR0());
4057   }
4058 }
4059 
4060 // Load heap oop and decompress, if necessary.
4061 void MacroAssembler::load_heap_oop(Register dest, int64_t disp, Register base) {
4062   if (UseCompressedOops) {
4063     z_llgf(dest, disp, base);
4064     oop_decoder(dest, dest, true);
4065   } else {
4066     z_lg(dest, disp, base);
4067   }
4068 }
4069 
4070 // Load heap oop and decompress, if necessary.
4071 void MacroAssembler::load_heap_oop_not_null(Register dest, int64_t disp, Register base) {
4072   if (UseCompressedOops) {
4073     z_llgf(dest, disp, base);
4074     oop_decoder(dest, dest, false);
4075   } else {
4076     z_lg(dest, disp, base);
4077   }
4078 }
4079 
4080 // Compress, if necessary, and store oop to heap.
4081 void MacroAssembler::store_heap_oop(Register Roop, RegisterOrConstant offset, Register base) {
4082   Register Ridx = offset.is_register() ? offset.register_or_noreg() : Z_R0;
4083   if (UseCompressedOops) {
4084     assert_different_registers(Roop, offset.register_or_noreg(), base);
4085     encode_heap_oop(Roop);
4086     z_st(Roop, offset.constant_or_zero(), Ridx, base);
4087   } else {
4088     z_stg(Roop, offset.constant_or_zero(), Ridx, base);
4089   }
4090 }
4091 
4092 // Compress, if necessary, and store oop to heap. Oop is guaranteed to be not NULL.
4093 void MacroAssembler::store_heap_oop_not_null(Register Roop, RegisterOrConstant offset, Register base) {
4094   Register Ridx = offset.is_register() ? offset.register_or_noreg() : Z_R0;
4095   if (UseCompressedOops) {
4096     assert_different_registers(Roop, offset.register_or_noreg(), base);
4097     encode_heap_oop_not_null(Roop);
4098     z_st(Roop, offset.constant_or_zero(), Ridx, base);
4099   } else {
4100     z_stg(Roop, offset.constant_or_zero(), Ridx, base);
4101   }
4102 }
4103 
4104 // Store NULL oop to heap.
4105 void MacroAssembler::store_heap_oop_null(Register zero, RegisterOrConstant offset, Register base) {
4106   Register Ridx = offset.is_register() ? offset.register_or_noreg() : Z_R0;
4107   if (UseCompressedOops) {
4108     z_st(zero, offset.constant_or_zero(), Ridx, base);
4109   } else {
4110     z_stg(zero, offset.constant_or_zero(), Ridx, base);
4111   }
4112 }
4113 
4114 //-------------------------------------------------
4115 // Encode compressed oop. Generally usable encoder.
4116 //-------------------------------------------------
4117 // Rsrc - contains regular oop on entry. It remains unchanged.
4118 // Rdst - contains compressed oop on exit.
4119 // Rdst and Rsrc may indicate same register, in which case Rsrc does not remain unchanged.
4120 //
4121 // Rdst must not indicate scratch register Z_R1 (Z_R1_scratch) for functionality.
4122 // Rdst should not indicate scratch register Z_R0 (Z_R0_scratch) for performance.
4123 //
4124 // only32bitValid is set, if later code only uses the lower 32 bits. In this
4125 // case we must not fix the upper 32 bits.
4126 void MacroAssembler::oop_encoder(Register Rdst, Register Rsrc, bool maybeNULL,
4127                                  Register Rbase, int pow2_offset, bool only32bitValid) {
4128 
4129   const address oop_base  = Universe::narrow_oop_base();
4130   const int     oop_shift = Universe::narrow_oop_shift();
4131   const bool    disjoint  = Universe::narrow_oop_base_disjoint();
4132 
4133   assert(UseCompressedOops, "must be on to call this method");
4134   assert(Universe::heap() != NULL, "java heap must be initialized to call this encoder");
4135   assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
4136 
4137   if (disjoint || (oop_base == NULL)) {
4138     BLOCK_COMMENT("cOop encoder zeroBase {");
4139     if (oop_shift == 0) {
4140       if (oop_base != NULL && !only32bitValid) {
4141         z_llgfr(Rdst, Rsrc); // Clear upper bits in case the register will be decoded again.
4142       } else {
4143         lgr_if_needed(Rdst, Rsrc);
4144       }
4145     } else {
4146       z_srlg(Rdst, Rsrc, oop_shift);
4147       if (oop_base != NULL && !only32bitValid) {
4148         z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4149       }
4150     }
4151     BLOCK_COMMENT("} cOop encoder zeroBase");
4152     return;
4153   }
4154 
4155   bool used_R0 = false;
4156   bool used_R1 = false;
4157 
4158   BLOCK_COMMENT("cOop encoder general {");
4159   assert_different_registers(Rdst, Z_R1);
4160   assert_different_registers(Rsrc, Rbase);
4161   if (maybeNULL) {
4162     Label done;
4163     // We reorder shifting and subtracting, so that we can compare
4164     // and shift in parallel:
4165     //
4166     // cycle 0:  potential LoadN, base = <const>
4167     // cycle 1:  base = !base     dst = src >> 3,    cmp cr = (src != 0)
4168     // cycle 2:  if (cr) br,      dst = dst + base + offset
4169 
4170     // Get oop_base components.
4171     if (pow2_offset == -1) {
4172       if (Rdst == Rbase) {
4173         if (Rdst == Z_R1 || Rsrc == Z_R1) {
4174           Rbase = Z_R0;
4175           used_R0 = true;
4176         } else {
4177           Rdst = Z_R1;
4178           used_R1 = true;
4179         }
4180       }
4181       if (Rbase == Z_R1) {
4182         used_R1 = true;
4183       }
4184       pow2_offset = get_oop_base_complement(Rbase, ((uint64_t)(intptr_t)oop_base) >> oop_shift);
4185     }
4186     assert_different_registers(Rdst, Rbase);
4187 
4188     // Check for NULL oop (must be left alone) and shift.
4189     if (oop_shift != 0) {  // Shift out alignment bits
4190       if (((intptr_t)oop_base&0xc000000000000000L) == 0L) { // We are sure: no single address will have the leftmost bit set.
4191         z_srag(Rdst, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4192       } else {
4193         z_srlg(Rdst, Rsrc, oop_shift);
4194         z_ltgr(Rsrc, Rsrc);  // This is the recommended way of testing for zero.
4195         // This probably is faster, as it does not write a register. No!
4196         // z_cghi(Rsrc, 0);
4197       }
4198     } else {
4199       z_ltgr(Rdst, Rsrc);   // Move NULL to result register.
4200     }
4201     z_bre(done);
4202 
4203     // Subtract oop_base components.
4204     if ((Rdst == Z_R0) || (Rbase == Z_R0)) {
4205       z_algr(Rdst, Rbase);
4206       if (pow2_offset != 0) { add2reg(Rdst, pow2_offset); }
4207     } else {
4208       add2reg_with_index(Rdst, pow2_offset, Rbase, Rdst);
4209     }
4210     if (!only32bitValid) {
4211       z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4212     }
4213     bind(done);
4214 
4215   } else {  // not null
4216     // Get oop_base components.
4217     if (pow2_offset == -1) {
4218       pow2_offset = get_oop_base_complement(Rbase, (uint64_t)(intptr_t)oop_base);
4219     }
4220 
4221     // Subtract oop_base components and shift.
4222     if (Rdst == Z_R0 || Rsrc == Z_R0 || Rbase == Z_R0) {
4223       // Don't use lay instruction.
4224       if (Rdst == Rsrc) {
4225         z_algr(Rdst, Rbase);
4226       } else {
4227         lgr_if_needed(Rdst, Rbase);
4228         z_algr(Rdst, Rsrc);
4229       }
4230       if (pow2_offset != 0) add2reg(Rdst, pow2_offset);
4231     } else {
4232       add2reg_with_index(Rdst, pow2_offset, Rbase, Rsrc);
4233     }
4234     if (oop_shift != 0) {   // Shift out alignment bits.
4235       z_srlg(Rdst, Rdst, oop_shift);
4236     }
4237     if (!only32bitValid) {
4238       z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4239     }
4240   }
4241 #ifdef ASSERT
4242   if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb01bUL, 2); }
4243   if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb02bUL, 2); }
4244 #endif
4245   BLOCK_COMMENT("} cOop encoder general");
4246 }
4247 
4248 //-------------------------------------------------
4249 // decode compressed oop. Generally usable decoder.
4250 //-------------------------------------------------
4251 // Rsrc - contains compressed oop on entry.
4252 // Rdst - contains regular oop on exit.
4253 // Rdst and Rsrc may indicate same register.
4254 // Rdst must not be the same register as Rbase, if Rbase was preloaded (before call).
4255 // Rdst can be the same register as Rbase. Then, either Z_R0 or Z_R1 must be available as scratch.
4256 // Rbase - register to use for the base
4257 // pow2_offset - offset of base to nice value. If -1, base must be loaded.
4258 // For performance, it is good to
4259 //  - avoid Z_R0 for any of the argument registers.
4260 //  - keep Rdst and Rsrc distinct from Rbase. Rdst == Rsrc is ok for performance.
4261 //  - avoid Z_R1 for Rdst if Rdst == Rbase.
4262 void MacroAssembler::oop_decoder(Register Rdst, Register Rsrc, bool maybeNULL, Register Rbase, int pow2_offset) {
4263 
4264   const address oop_base  = Universe::narrow_oop_base();
4265   const int     oop_shift = Universe::narrow_oop_shift();
4266   const bool    disjoint  = Universe::narrow_oop_base_disjoint();
4267 
4268   assert(UseCompressedOops, "must be on to call this method");
4269   assert(Universe::heap() != NULL, "java heap must be initialized to call this decoder");
4270   assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes),
4271          "cOop encoder detected bad shift");
4272 
4273   // cOops are always loaded zero-extended from memory. No explicit zero-extension necessary.
4274 
4275   if (oop_base != NULL) {
4276     unsigned int oop_base_hl = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xffff;
4277     unsigned int oop_base_hh = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 48)) & 0xffff;
4278     unsigned int oop_base_hf = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xFFFFffff;
4279     if (disjoint && (oop_base_hl == 0 || oop_base_hh == 0)) {
4280       BLOCK_COMMENT("cOop decoder disjointBase {");
4281       // We do not need to load the base. Instead, we can install the upper bits
4282       // with an OR instead of an ADD.
4283       Label done;
4284 
4285       // Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
4286       if (maybeNULL) {  // NULL ptr must be preserved!
4287         z_slag(Rdst, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4288         z_bre(done);
4289       } else {
4290         z_sllg(Rdst, Rsrc, oop_shift);  // Logical shift leaves condition code alone.
4291       }
4292       if ((oop_base_hl != 0) && (oop_base_hh != 0)) {
4293         z_oihf(Rdst, oop_base_hf);
4294       } else if (oop_base_hl != 0) {
4295         z_oihl(Rdst, oop_base_hl);
4296       } else {
4297         assert(oop_base_hh != 0, "not heapbased mode");
4298         z_oihh(Rdst, oop_base_hh);
4299       }
4300       bind(done);
4301       BLOCK_COMMENT("} cOop decoder disjointBase");
4302     } else {
4303       BLOCK_COMMENT("cOop decoder general {");
4304       // There are three decode steps:
4305       //   scale oop offset (shift left)
4306       //   get base (in reg) and pow2_offset (constant)
4307       //   add base, pow2_offset, and oop offset
4308       // The following register overlap situations may exist:
4309       // Rdst == Rsrc,  Rbase any other
4310       //   not a problem. Scaling in-place leaves Rbase undisturbed.
4311       //   Loading Rbase does not impact the scaled offset.
4312       // Rdst == Rbase, Rsrc  any other
4313       //   scaling would destroy a possibly preloaded Rbase. Loading Rbase
4314       //   would destroy the scaled offset.
4315       //   Remedy: use Rdst_tmp if Rbase has been preloaded.
4316       //           use Rbase_tmp if base has to be loaded.
4317       // Rsrc == Rbase, Rdst  any other
4318       //   Only possible without preloaded Rbase.
4319       //   Loading Rbase does not destroy compressed oop because it was scaled into Rdst before.
4320       // Rsrc == Rbase, Rdst == Rbase
4321       //   Only possible without preloaded Rbase.
4322       //   Loading Rbase would destroy compressed oop. Scaling in-place is ok.
4323       //   Remedy: use Rbase_tmp.
4324       //
4325       Label    done;
4326       Register Rdst_tmp       = Rdst;
4327       Register Rbase_tmp      = Rbase;
4328       bool     used_R0        = false;
4329       bool     used_R1        = false;
4330       bool     base_preloaded = pow2_offset >= 0;
4331       guarantee(!(base_preloaded && (Rsrc == Rbase)), "Register clash, check caller");
4332       assert(oop_shift != 0, "room for optimization");
4333 
4334       // Check if we need to use scratch registers.
4335       if (Rdst == Rbase) {
4336         assert(!(((Rdst == Z_R0) && (Rsrc == Z_R1)) || ((Rdst == Z_R1) && (Rsrc == Z_R0))), "need a scratch reg");
4337         if (Rdst != Rsrc) {
4338           if (base_preloaded) { Rdst_tmp  = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
4339           else                { Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
4340         } else {
4341           Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1;
4342         }
4343       }
4344       if (base_preloaded) lgr_if_needed(Rbase_tmp, Rbase);
4345 
4346       // Scale oop and check for NULL.
4347       // Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
4348       if (maybeNULL) {  // NULL ptr must be preserved!
4349         z_slag(Rdst_tmp, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4350         z_bre(done);
4351       } else {
4352         z_sllg(Rdst_tmp, Rsrc, oop_shift);  // Logical shift leaves condition code alone.
4353       }
4354 
4355       // Get oop_base components.
4356       if (!base_preloaded) {
4357         pow2_offset = get_oop_base(Rbase_tmp, (uint64_t)(intptr_t)oop_base);
4358       }
4359 
4360       // Add up all components.
4361       if ((Rbase_tmp == Z_R0) || (Rdst_tmp == Z_R0)) {
4362         z_algr(Rdst_tmp, Rbase_tmp);
4363         if (pow2_offset != 0) { add2reg(Rdst_tmp, pow2_offset); }
4364       } else {
4365         add2reg_with_index(Rdst_tmp, pow2_offset, Rbase_tmp, Rdst_tmp);
4366       }
4367 
4368       bind(done);
4369       lgr_if_needed(Rdst, Rdst_tmp);
4370 #ifdef ASSERT
4371       if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb03bUL, 2); }
4372       if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb04bUL, 2); }
4373 #endif
4374       BLOCK_COMMENT("} cOop decoder general");
4375     }
4376   } else {
4377     BLOCK_COMMENT("cOop decoder zeroBase {");
4378     if (oop_shift == 0) {
4379       lgr_if_needed(Rdst, Rsrc);
4380     } else {
4381       z_sllg(Rdst, Rsrc, oop_shift);
4382     }
4383     BLOCK_COMMENT("} cOop decoder zeroBase");
4384   }
4385 }
4386 
4387 // ((OopHandle)result).resolve();
4388 void MacroAssembler::resolve_oop_handle(Register result) {
4389   // OopHandle::resolve is an indirection.
4390   z_lg(result, 0, result);
4391 }
4392 
4393 void MacroAssembler::load_mirror(Register mirror, Register method) {
4394   mem2reg_opt(mirror, Address(method, Method::const_offset()));
4395   mem2reg_opt(mirror, Address(mirror, ConstMethod::constants_offset()));
4396   mem2reg_opt(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
4397   mem2reg_opt(mirror, Address(mirror, Klass::java_mirror_offset()));
4398   resolve_oop_handle(mirror);
4399 }
4400 
4401 //---------------------------------------------------------------
4402 //---  Operations on arrays.
4403 //---------------------------------------------------------------
4404 
4405 // Compiler ensures base is doubleword aligned and cnt is #doublewords.
4406 // Emitter does not KILL cnt and base arguments, since they need to be copied to
4407 // work registers anyway.
4408 // Actually, only r0, r1, and r5 are killed.
4409 unsigned int MacroAssembler::Clear_Array(Register cnt_arg, Register base_pointer_arg, Register src_addr, Register src_len) {
4410   // Src_addr is evenReg.
4411   // Src_len is odd_Reg.
4412 
4413   int      block_start = offset();
4414   Register tmp_reg  = src_len; // Holds target instr addr for EX.
4415   Register dst_len  = Z_R1;    // Holds dst len  for MVCLE.
4416   Register dst_addr = Z_R0;    // Holds dst addr for MVCLE.
4417 
4418   Label doXC, doMVCLE, done;
4419 
4420   BLOCK_COMMENT("Clear_Array {");
4421 
4422   // Check for zero len and convert to long.
4423   z_ltgfr(src_len, cnt_arg);      // Remember casted value for doSTG case.
4424   z_bre(done);                    // Nothing to do if len == 0.
4425 
4426   // Prefetch data to be cleared.
4427   if (VM_Version::has_Prefetch()) {
4428     z_pfd(0x02,   0, Z_R0, base_pointer_arg);
4429     z_pfd(0x02, 256, Z_R0, base_pointer_arg);
4430   }
4431 
4432   z_sllg(dst_len, src_len, 3);    // #bytes to clear.
4433   z_cghi(src_len, 32);            // Check for len <= 256 bytes (<=32 DW).
4434   z_brnh(doXC);                   // If so, use executed XC to clear.
4435 
4436   // MVCLE: initialize long arrays (general case).
4437   bind(doMVCLE);
4438   z_lgr(dst_addr, base_pointer_arg);
4439   clear_reg(src_len, true, false); // Src len of MVCLE is zero.
4440 
4441   MacroAssembler::move_long_ext(dst_addr, src_addr, 0);
4442   z_bru(done);
4443 
4444   // XC: initialize short arrays.
4445   Label XC_template; // Instr template, never exec directly!
4446     bind(XC_template);
4447     z_xc(0,0,base_pointer_arg,0,base_pointer_arg);
4448 
4449   bind(doXC);
4450     add2reg(dst_len, -1);             // Get #bytes-1 for EXECUTE.
4451     if (VM_Version::has_ExecuteExtensions()) {
4452       z_exrl(dst_len, XC_template);   // Execute XC with var. len.
4453     } else {
4454       z_larl(tmp_reg, XC_template);
4455       z_ex(dst_len,0,Z_R0,tmp_reg);   // Execute XC with var. len.
4456     }
4457     // z_bru(done);      // fallthru
4458 
4459   bind(done);
4460 
4461   BLOCK_COMMENT("} Clear_Array");
4462 
4463   int block_end = offset();
4464   return block_end - block_start;
4465 }
4466 
4467 // Compiler ensures base is doubleword aligned and cnt is count of doublewords.
4468 // Emitter does not KILL any arguments nor work registers.
4469 // Emitter generates up to 16 XC instructions, depending on the array length.
4470 unsigned int MacroAssembler::Clear_Array_Const(long cnt, Register base) {
4471   int  block_start    = offset();
4472   int  off;
4473   int  lineSize_Bytes = AllocatePrefetchStepSize;
4474   int  lineSize_DW    = AllocatePrefetchStepSize>>LogBytesPerWord;
4475   bool doPrefetch     = VM_Version::has_Prefetch();
4476   int  XC_maxlen      = 256;
4477   int  numXCInstr     = cnt > 0 ? (cnt*BytesPerWord-1)/XC_maxlen+1 : 0;
4478 
4479   BLOCK_COMMENT("Clear_Array_Const {");
4480   assert(cnt*BytesPerWord <= 4096, "ClearArrayConst can handle 4k only");
4481 
4482   // Do less prefetching for very short arrays.
4483   if (numXCInstr > 0) {
4484     // Prefetch only some cache lines, then begin clearing.
4485     if (doPrefetch) {
4486       if (cnt*BytesPerWord <= lineSize_Bytes/4) {  // If less than 1/4 of a cache line to clear,
4487         z_pfd(0x02, 0, Z_R0, base);                // prefetch just the first cache line.
4488       } else {
4489         assert(XC_maxlen == lineSize_Bytes, "ClearArrayConst needs 256B cache lines");
4490         for (off = 0; (off < AllocatePrefetchLines) && (off <= numXCInstr); off ++) {
4491           z_pfd(0x02, off*lineSize_Bytes, Z_R0, base);
4492         }
4493       }
4494     }
4495 
4496     for (off=0; off<(numXCInstr-1); off++) {
4497       z_xc(off*XC_maxlen, XC_maxlen-1, base, off*XC_maxlen, base);
4498 
4499       // Prefetch some cache lines in advance.
4500       if (doPrefetch && (off <= numXCInstr-AllocatePrefetchLines)) {
4501         z_pfd(0x02, (off+AllocatePrefetchLines)*lineSize_Bytes, Z_R0, base);
4502       }
4503     }
4504     if (off*XC_maxlen < cnt*BytesPerWord) {
4505       z_xc(off*XC_maxlen, (cnt*BytesPerWord-off*XC_maxlen)-1, base, off*XC_maxlen, base);
4506     }
4507   }
4508   BLOCK_COMMENT("} Clear_Array_Const");
4509 
4510   int block_end = offset();
4511   return block_end - block_start;
4512 }
4513 
4514 // Compiler ensures base is doubleword aligned and cnt is #doublewords.
4515 // Emitter does not KILL cnt and base arguments, since they need to be copied to
4516 // work registers anyway.
4517 // Actually, only r0, r1, r4, and r5 (which are work registers) are killed.
4518 //
4519 // For very large arrays, exploit MVCLE H/W support.
4520 // MVCLE instruction automatically exploits H/W-optimized page mover.
4521 // - Bytes up to next page boundary are cleared with a series of XC to self.
4522 // - All full pages are cleared with the page mover H/W assist.
4523 // - Remaining bytes are again cleared by a series of XC to self.
4524 //
4525 unsigned int MacroAssembler::Clear_Array_Const_Big(long cnt, Register base_pointer_arg, Register src_addr, Register src_len) {
4526   // Src_addr is evenReg.
4527   // Src_len is odd_Reg.
4528 
4529   int      block_start = offset();
4530   Register dst_len  = Z_R1;      // Holds dst len  for MVCLE.
4531   Register dst_addr = Z_R0;      // Holds dst addr for MVCLE.
4532 
4533   BLOCK_COMMENT("Clear_Array_Const_Big {");
4534 
4535   // Get len to clear.
4536   load_const_optimized(dst_len, (long)cnt*8L);  // in Bytes = #DW*8
4537 
4538   // Prepare other args to MVCLE.
4539   z_lgr(dst_addr, base_pointer_arg);
4540   // Indicate unused result.
4541   (void) clear_reg(src_len, true, false);  // Src len of MVCLE is zero.
4542 
4543   // Clear.
4544   MacroAssembler::move_long_ext(dst_addr, src_addr, 0);
4545   BLOCK_COMMENT("} Clear_Array_Const_Big");
4546 
4547   int block_end = offset();
4548   return block_end - block_start;
4549 }
4550 
4551 // Allocator.
4552 unsigned int MacroAssembler::CopyRawMemory_AlignedDisjoint(Register src_reg, Register dst_reg,
4553                                                            Register cnt_reg,
4554                                                            Register tmp1_reg, Register tmp2_reg) {
4555   // Tmp1 is oddReg.
4556   // Tmp2 is evenReg.
4557 
4558   int block_start = offset();
4559   Label doMVC, doMVCLE, done, MVC_template;
4560 
4561   BLOCK_COMMENT("CopyRawMemory_AlignedDisjoint {");
4562 
4563   // Check for zero len and convert to long.
4564   z_ltgfr(cnt_reg, cnt_reg);      // Remember casted value for doSTG case.
4565   z_bre(done);                    // Nothing to do if len == 0.
4566 
4567   z_sllg(Z_R1, cnt_reg, 3);       // Dst len in bytes. calc early to have the result ready.
4568 
4569   z_cghi(cnt_reg, 32);            // Check for len <= 256 bytes (<=32 DW).
4570   z_brnh(doMVC);                  // If so, use executed MVC to clear.
4571 
4572   bind(doMVCLE);                  // A lot of data (more than 256 bytes).
4573   // Prep dest reg pair.
4574   z_lgr(Z_R0, dst_reg);           // dst addr
4575   // Dst len already in Z_R1.
4576   // Prep src reg pair.
4577   z_lgr(tmp2_reg, src_reg);       // src addr
4578   z_lgr(tmp1_reg, Z_R1);          // Src len same as dst len.
4579 
4580   // Do the copy.
4581   move_long_ext(Z_R0, tmp2_reg, 0xb0); // Bypass cache.
4582   z_bru(done);                         // All done.
4583 
4584   bind(MVC_template);             // Just some data (not more than 256 bytes).
4585   z_mvc(0, 0, dst_reg, 0, src_reg);
4586 
4587   bind(doMVC);
4588 
4589   if (VM_Version::has_ExecuteExtensions()) {
4590     add2reg(Z_R1, -1);
4591   } else {
4592     add2reg(tmp1_reg, -1, Z_R1);
4593     z_larl(Z_R1, MVC_template);
4594   }
4595 
4596   if (VM_Version::has_Prefetch()) {
4597     z_pfd(1,  0,Z_R0,src_reg);
4598     z_pfd(2,  0,Z_R0,dst_reg);
4599     //    z_pfd(1,256,Z_R0,src_reg);    // Assume very short copy.
4600     //    z_pfd(2,256,Z_R0,dst_reg);
4601   }
4602 
4603   if (VM_Version::has_ExecuteExtensions()) {
4604     z_exrl(Z_R1, MVC_template);
4605   } else {
4606     z_ex(tmp1_reg, 0, Z_R0, Z_R1);
4607   }
4608 
4609   bind(done);
4610 
4611   BLOCK_COMMENT("} CopyRawMemory_AlignedDisjoint");
4612 
4613   int block_end = offset();
4614   return block_end - block_start;
4615 }
4616 
4617 //------------------------------------------------------
4618 //   Special String Intrinsics. Implementation
4619 //------------------------------------------------------
4620 
4621 // Intrinsics for CompactStrings
4622 
4623 // Compress char[] to byte[].
4624 //   Restores: src, dst
4625 //   Uses:     cnt
4626 //   Kills:    tmp, Z_R0, Z_R1.
4627 //   Early clobber: result.
4628 // Note:
4629 //   cnt is signed int. Do not rely on high word!
4630 //       counts # characters, not bytes.
4631 // The result is the number of characters copied before the first incompatible character was found.
4632 // If precise is true, the processing stops exactly at this point. Otherwise, the result may be off
4633 // by a few bytes. The result always indicates the number of copied characters.
4634 // When used as a character index, the returned value points to the first incompatible character.
4635 //
4636 // Note: Does not behave exactly like package private StringUTF16 compress java implementation in case of failure:
4637 // - Different number of characters may have been written to dead array (if precise is false).
4638 // - Returns a number <cnt instead of 0. (Result gets compared with cnt.)
4639 unsigned int MacroAssembler::string_compress(Register result, Register src, Register dst, Register cnt,
4640                                              Register tmp,    bool precise) {
4641   assert_different_registers(Z_R0, Z_R1, result, src, dst, cnt, tmp);
4642 
4643   if (precise) {
4644     BLOCK_COMMENT("encode_iso_array {");
4645   } else {
4646     BLOCK_COMMENT("string_compress {");
4647   }
4648   int  block_start = offset();
4649 
4650   Register       Rsrc  = src;
4651   Register       Rdst  = dst;
4652   Register       Rix   = tmp;
4653   Register       Rcnt  = cnt;
4654   Register       Rmask = result;  // holds incompatibility check mask until result value is stored.
4655   Label          ScalarShortcut, AllDone;
4656 
4657   z_iilf(Rmask, 0xFF00FF00);
4658   z_iihf(Rmask, 0xFF00FF00);
4659 
4660 #if 0  // Sacrifice shortcuts for code compactness
4661   {
4662     //---<  shortcuts for short strings (very frequent)   >---
4663     //   Strings with 4 and 8 characters were fond to occur very frequently.
4664     //   Therefore, we handle them right away with minimal overhead.
4665     Label     skipShortcut, skip4Shortcut, skip8Shortcut;
4666     Register  Rout = Z_R0;
4667     z_chi(Rcnt, 4);
4668     z_brne(skip4Shortcut);                 // 4 characters are very frequent
4669       z_lg(Z_R0, 0, Rsrc);                 // Treat exactly 4 characters specially.
4670       if (VM_Version::has_DistinctOpnds()) {
4671         Rout = Z_R0;
4672         z_ngrk(Rix, Z_R0, Rmask);
4673       } else {
4674         Rout = Rix;
4675         z_lgr(Rix, Z_R0);
4676         z_ngr(Z_R0, Rmask);
4677       }
4678       z_brnz(skipShortcut);
4679       z_stcmh(Rout, 5, 0, Rdst);
4680       z_stcm(Rout,  5, 2, Rdst);
4681       z_lgfr(result, Rcnt);
4682       z_bru(AllDone);
4683     bind(skip4Shortcut);
4684 
4685     z_chi(Rcnt, 8);
4686     z_brne(skip8Shortcut);                 // There's more to do...
4687       z_lmg(Z_R0, Z_R1, 0, Rsrc);          // Treat exactly 8 characters specially.
4688       if (VM_Version::has_DistinctOpnds()) {
4689         Rout = Z_R0;
4690         z_ogrk(Rix, Z_R0, Z_R1);
4691         z_ngr(Rix, Rmask);
4692       } else {
4693         Rout = Rix;
4694         z_lgr(Rix, Z_R0);
4695         z_ogr(Z_R0, Z_R1);
4696         z_ngr(Z_R0, Rmask);
4697       }
4698       z_brnz(skipShortcut);
4699       z_stcmh(Rout, 5, 0, Rdst);
4700       z_stcm(Rout,  5, 2, Rdst);
4701       z_stcmh(Z_R1, 5, 4, Rdst);
4702       z_stcm(Z_R1,  5, 6, Rdst);
4703       z_lgfr(result, Rcnt);
4704       z_bru(AllDone);
4705 
4706     bind(skip8Shortcut);
4707     clear_reg(Z_R0, true, false);          // #characters already processed (none). Precond for scalar loop.
4708     z_brl(ScalarShortcut);                 // Just a few characters
4709 
4710     bind(skipShortcut);
4711   }
4712 #endif
4713   clear_reg(Z_R0);                         // make sure register is properly initialized.
4714 
4715   if (VM_Version::has_VectorFacility()) {
4716     const int  min_vcnt     = 32;          // Minimum #characters required to use vector instructions.
4717                                            // Otherwise just do nothing in vector mode.
4718                                            // Must be multiple of 2*(vector register length in chars (8 HW = 128 bits)).
4719     const int  log_min_vcnt = exact_log2(min_vcnt);
4720     Label      VectorLoop, VectorDone, VectorBreak;
4721 
4722     VectorRegister Vtmp1      = Z_V16;
4723     VectorRegister Vtmp2      = Z_V17;
4724     VectorRegister Vmask      = Z_V18;
4725     VectorRegister Vzero      = Z_V19;
4726     VectorRegister Vsrc_first = Z_V20;
4727     VectorRegister Vsrc_last  = Z_V23;
4728 
4729     assert((Vsrc_last->encoding() - Vsrc_first->encoding() + 1) == min_vcnt/8, "logic error");
4730     assert(VM_Version::has_DistinctOpnds(), "Assumption when has_VectorFacility()");
4731     z_srak(Rix, Rcnt, log_min_vcnt);       // # vector loop iterations
4732     z_brz(VectorDone);                     // not enough data for vector loop
4733 
4734     z_vzero(Vzero);                        // all zeroes
4735     z_vgmh(Vmask, 0, 7);                   // generate 0xff00 mask for all 2-byte elements
4736     z_sllg(Z_R0, Rix, log_min_vcnt);       // remember #chars that will be processed by vector loop
4737 
4738     bind(VectorLoop);
4739       z_vlm(Vsrc_first, Vsrc_last, 0, Rsrc);
4740       add2reg(Rsrc, min_vcnt*2);
4741 
4742       //---<  check for incompatible character  >---
4743       z_vo(Vtmp1, Z_V20, Z_V21);
4744       z_vo(Vtmp2, Z_V22, Z_V23);
4745       z_vo(Vtmp1, Vtmp1, Vtmp2);
4746       z_vn(Vtmp1, Vtmp1, Vmask);
4747       z_vceqhs(Vtmp1, Vtmp1, Vzero);       // high half of all chars must be zero for successful compress.
4748       z_bvnt(VectorBreak);                 // break vector loop if not all vector elements compare eq -> incompatible character found.
4749                                            // re-process data from current iteration in break handler.
4750 
4751       //---<  pack & store characters  >---
4752       z_vpkh(Vtmp1, Z_V20, Z_V21);         // pack (src1, src2) -> tmp1
4753       z_vpkh(Vtmp2, Z_V22, Z_V23);         // pack (src3, src4) -> tmp2
4754       z_vstm(Vtmp1, Vtmp2, 0, Rdst);       // store packed string
4755       add2reg(Rdst, min_vcnt);
4756 
4757       z_brct(Rix, VectorLoop);
4758 
4759     z_bru(VectorDone);
4760 
4761     bind(VectorBreak);
4762       add2reg(Rsrc, -min_vcnt*2);          // Fix Rsrc. Rsrc was already updated, but Rdst and Rix are not.
4763       z_sll(Rix, log_min_vcnt);            // # chars processed so far in VectorLoop, excl. current iteration.
4764       z_sr(Z_R0, Rix);                     // correct # chars processed in total.
4765 
4766     bind(VectorDone);
4767   }
4768 
4769   {
4770     const int  min_cnt     =  8;           // Minimum #characters required to use unrolled loop.
4771                                            // Otherwise just do nothing in unrolled loop.
4772                                            // Must be multiple of 8.
4773     const int  log_min_cnt = exact_log2(min_cnt);
4774     Label      UnrolledLoop, UnrolledDone, UnrolledBreak;
4775 
4776     if (VM_Version::has_DistinctOpnds()) {
4777       z_srk(Rix, Rcnt, Z_R0);              // remaining # chars to compress in unrolled loop
4778     } else {
4779       z_lr(Rix, Rcnt);
4780       z_sr(Rix, Z_R0);
4781     }
4782     z_sra(Rix, log_min_cnt);             // unrolled loop count
4783     z_brz(UnrolledDone);
4784 
4785     bind(UnrolledLoop);
4786       z_lmg(Z_R0, Z_R1, 0, Rsrc);
4787       if (precise) {
4788         z_ogr(Z_R1, Z_R0);                 // check all 8 chars for incompatibility
4789         z_ngr(Z_R1, Rmask);
4790         z_brnz(UnrolledBreak);
4791 
4792         z_lg(Z_R1, 8, Rsrc);               // reload destroyed register
4793         z_stcmh(Z_R0, 5, 0, Rdst);
4794         z_stcm(Z_R0,  5, 2, Rdst);
4795       } else {
4796         z_stcmh(Z_R0, 5, 0, Rdst);
4797         z_stcm(Z_R0,  5, 2, Rdst);
4798 
4799         z_ogr(Z_R0, Z_R1);
4800         z_ngr(Z_R0, Rmask);
4801         z_brnz(UnrolledBreak);
4802       }
4803       z_stcmh(Z_R1, 5, 4, Rdst);
4804       z_stcm(Z_R1,  5, 6, Rdst);
4805 
4806       add2reg(Rsrc, min_cnt*2);
4807       add2reg(Rdst, min_cnt);
4808       z_brct(Rix, UnrolledLoop);
4809 
4810     z_lgfr(Z_R0, Rcnt);                    // # chars processed in total after unrolled loop.
4811     z_nilf(Z_R0, ~(min_cnt-1));
4812     z_tmll(Rcnt, min_cnt-1);
4813     z_brnaz(ScalarShortcut);               // if all bits zero, there is nothing left to do for scalar loop.
4814                                            // Rix == 0 in all cases.
4815     z_sllg(Z_R1, Rcnt, 1);                 // # src bytes already processed. Only lower 32 bits are valid!
4816                                            //   Z_R1 contents must be treated as unsigned operand! For huge strings,
4817                                            //   (Rcnt >= 2**30), the value may spill into the sign bit by sllg.
4818     z_lgfr(result, Rcnt);                  // all characters processed.
4819     z_slgfr(Rdst, Rcnt);                   // restore ptr
4820     z_slgfr(Rsrc, Z_R1);                   // restore ptr, double the element count for Rsrc restore
4821     z_bru(AllDone);
4822 
4823     bind(UnrolledBreak);
4824     z_lgfr(Z_R0, Rcnt);                    // # chars processed in total after unrolled loop
4825     z_nilf(Z_R0, ~(min_cnt-1));
4826     z_sll(Rix, log_min_cnt);               // # chars not yet processed in UnrolledLoop (due to break), broken iteration not included.
4827     z_sr(Z_R0, Rix);                       // fix # chars processed OK so far.
4828     if (!precise) {
4829       z_lgfr(result, Z_R0);
4830       z_sllg(Z_R1, Z_R0, 1);               // # src bytes already processed. Only lower 32 bits are valid!
4831                                            //   Z_R1 contents must be treated as unsigned operand! For huge strings,
4832                                            //   (Rcnt >= 2**30), the value may spill into the sign bit by sllg.
4833       z_aghi(result, min_cnt/2);           // min_cnt/2 characters have already been written
4834                                            // but ptrs were not updated yet.
4835       z_slgfr(Rdst, Z_R0);                 // restore ptr
4836       z_slgfr(Rsrc, Z_R1);                 // restore ptr, double the element count for Rsrc restore
4837       z_bru(AllDone);
4838     }
4839     bind(UnrolledDone);
4840   }
4841 
4842   {
4843     Label     ScalarLoop, ScalarDone, ScalarBreak;
4844 
4845     bind(ScalarShortcut);
4846     z_ltgfr(result, Rcnt);
4847     z_brz(AllDone);
4848 
4849 #if 0  // Sacrifice shortcuts for code compactness
4850     {
4851       //---<  Special treatment for very short strings (one or two characters)  >---
4852       //   For these strings, we are sure that the above code was skipped.
4853       //   Thus, no registers were modified, register restore is not required.
4854       Label     ScalarDoit, Scalar2Char;
4855       z_chi(Rcnt, 2);
4856       z_brh(ScalarDoit);
4857       z_llh(Z_R1,  0, Z_R0, Rsrc);
4858       z_bre(Scalar2Char);
4859       z_tmll(Z_R1, 0xff00);
4860       z_lghi(result, 0);                   // cnt == 1, first char invalid, no chars successfully processed
4861       z_brnaz(AllDone);
4862       z_stc(Z_R1,  0, Z_R0, Rdst);
4863       z_lghi(result, 1);
4864       z_bru(AllDone);
4865 
4866       bind(Scalar2Char);
4867       z_llh(Z_R0,  2, Z_R0, Rsrc);
4868       z_tmll(Z_R1, 0xff00);
4869       z_lghi(result, 0);                   // cnt == 2, first char invalid, no chars successfully processed
4870       z_brnaz(AllDone);
4871       z_stc(Z_R1,  0, Z_R0, Rdst);
4872       z_tmll(Z_R0, 0xff00);
4873       z_lghi(result, 1);                   // cnt == 2, second char invalid, one char successfully processed
4874       z_brnaz(AllDone);
4875       z_stc(Z_R0,  1, Z_R0, Rdst);
4876       z_lghi(result, 2);
4877       z_bru(AllDone);
4878 
4879       bind(ScalarDoit);
4880     }
4881 #endif
4882 
4883     if (VM_Version::has_DistinctOpnds()) {
4884       z_srk(Rix, Rcnt, Z_R0);              // remaining # chars to compress in unrolled loop
4885     } else {
4886       z_lr(Rix, Rcnt);
4887       z_sr(Rix, Z_R0);
4888     }
4889     z_lgfr(result, Rcnt);                  // # processed characters (if all runs ok).
4890     z_brz(ScalarDone);                     // uses CC from Rix calculation
4891 
4892     bind(ScalarLoop);
4893       z_llh(Z_R1, 0, Z_R0, Rsrc);
4894       z_tmll(Z_R1, 0xff00);
4895       z_brnaz(ScalarBreak);
4896       z_stc(Z_R1, 0, Z_R0, Rdst);
4897       add2reg(Rsrc, 2);
4898       add2reg(Rdst, 1);
4899       z_brct(Rix, ScalarLoop);
4900 
4901     z_bru(ScalarDone);
4902 
4903     bind(ScalarBreak);
4904     z_sr(result, Rix);
4905 
4906     bind(ScalarDone);
4907     z_sgfr(Rdst, result);                  // restore ptr
4908     z_sgfr(Rsrc, result);                  // restore ptr, double the element count for Rsrc restore
4909     z_sgfr(Rsrc, result);
4910   }
4911   bind(AllDone);
4912 
4913   if (precise) {
4914     BLOCK_COMMENT("} encode_iso_array");
4915   } else {
4916     BLOCK_COMMENT("} string_compress");
4917   }
4918   return offset() - block_start;
4919 }
4920 
4921 // Inflate byte[] to char[].
4922 unsigned int MacroAssembler::string_inflate_trot(Register src, Register dst, Register cnt, Register tmp) {
4923   int block_start = offset();
4924 
4925   BLOCK_COMMENT("string_inflate {");
4926 
4927   Register stop_char = Z_R0;
4928   Register table     = Z_R1;
4929   Register src_addr  = tmp;
4930 
4931   assert_different_registers(Z_R0, Z_R1, tmp, src, dst, cnt);
4932   assert(dst->encoding()%2 == 0, "must be even reg");
4933   assert(cnt->encoding()%2 == 1, "must be odd reg");
4934   assert(cnt->encoding() - dst->encoding() == 1, "must be even/odd pair");
4935 
4936   StubRoutines::zarch::generate_load_trot_table_addr(this, table);  // kills Z_R0 (if ASSERT)
4937   clear_reg(stop_char);  // Stop character. Not used here, but initialized to have a defined value.
4938   lgr_if_needed(src_addr, src);
4939   z_llgfr(cnt, cnt);     // # src characters, must be a positive simm32.
4940 
4941   translate_ot(dst, src_addr, /* mask = */ 0x0001);
4942 
4943   BLOCK_COMMENT("} string_inflate");
4944 
4945   return offset() - block_start;
4946 }
4947 
4948 // Inflate byte[] to char[].
4949 //   Restores: src, dst
4950 //   Uses:     cnt
4951 //   Kills:    tmp, Z_R0, Z_R1.
4952 // Note:
4953 //   cnt is signed int. Do not rely on high word!
4954 //       counts # characters, not bytes.
4955 unsigned int MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
4956   assert_different_registers(Z_R0, Z_R1, src, dst, cnt, tmp);
4957 
4958   BLOCK_COMMENT("string_inflate {");
4959   int block_start = offset();
4960 
4961   Register   Rcnt = cnt;   // # characters (src: bytes, dst: char (2-byte)), remaining after current loop.
4962   Register   Rix  = tmp;   // loop index
4963   Register   Rsrc = src;   // addr(src array)
4964   Register   Rdst = dst;   // addr(dst array)
4965   Label      ScalarShortcut, AllDone;
4966 
4967 #if 0  // Sacrifice shortcuts for code compactness
4968   {
4969     //---<  shortcuts for short strings (very frequent)   >---
4970     Label   skipShortcut, skip4Shortcut;
4971     z_ltr(Rcnt, Rcnt);                     // absolutely nothing to do for strings of len == 0.
4972     z_brz(AllDone);
4973     clear_reg(Z_R0);                       // make sure registers are properly initialized.
4974     clear_reg(Z_R1);
4975     z_chi(Rcnt, 4);
4976     z_brne(skip4Shortcut);                 // 4 characters are very frequent
4977       z_icm(Z_R0, 5,    0, Rsrc);          // Treat exactly 4 characters specially.
4978       z_icm(Z_R1, 5,    2, Rsrc);
4979       z_stm(Z_R0, Z_R1, 0, Rdst);
4980       z_bru(AllDone);
4981     bind(skip4Shortcut);
4982 
4983     z_chi(Rcnt, 8);
4984     z_brh(skipShortcut);                   // There's a lot to do...
4985     z_lgfr(Z_R0, Rcnt);                    // remaining #characters (<= 8). Precond for scalar loop.
4986                                            // This does not destroy the "register cleared" state of Z_R0.
4987     z_brl(ScalarShortcut);                 // Just a few characters
4988       z_icmh(Z_R0, 5, 0, Rsrc);            // Treat exactly 8 characters specially.
4989       z_icmh(Z_R1, 5, 4, Rsrc);
4990       z_icm(Z_R0,  5, 2, Rsrc);
4991       z_icm(Z_R1,  5, 6, Rsrc);
4992       z_stmg(Z_R0, Z_R1, 0, Rdst);
4993       z_bru(AllDone);
4994     bind(skipShortcut);
4995   }
4996 #endif
4997   clear_reg(Z_R0);                         // make sure register is properly initialized.
4998 
4999   if (VM_Version::has_VectorFacility()) {
5000     const int  min_vcnt     = 32;          // Minimum #characters required to use vector instructions.
5001                                            // Otherwise just do nothing in vector mode.
5002                                            // Must be multiple of vector register length (16 bytes = 128 bits).
5003     const int  log_min_vcnt = exact_log2(min_vcnt);
5004     Label      VectorLoop, VectorDone;
5005 
5006     assert(VM_Version::has_DistinctOpnds(), "Assumption when has_VectorFacility()");
5007     z_srak(Rix, Rcnt, log_min_vcnt);       // calculate # vector loop iterations
5008     z_brz(VectorDone);                     // skip if none
5009 
5010     z_sllg(Z_R0, Rix, log_min_vcnt);       // remember #chars that will be processed by vector loop
5011 
5012     bind(VectorLoop);
5013       z_vlm(Z_V20, Z_V21, 0, Rsrc);        // get next 32 characters (single-byte)
5014       add2reg(Rsrc, min_vcnt);
5015 
5016       z_vuplhb(Z_V22, Z_V20);              // V2 <- (expand) V0(high)
5017       z_vupllb(Z_V23, Z_V20);              // V3 <- (expand) V0(low)
5018       z_vuplhb(Z_V24, Z_V21);              // V4 <- (expand) V1(high)
5019       z_vupllb(Z_V25, Z_V21);              // V5 <- (expand) V1(low)
5020       z_vstm(Z_V22, Z_V25, 0, Rdst);       // store next 32 bytes
5021       add2reg(Rdst, min_vcnt*2);
5022 
5023       z_brct(Rix, VectorLoop);
5024 
5025     bind(VectorDone);
5026   }
5027 
5028   const int  min_cnt     =  8;             // Minimum #characters required to use unrolled scalar loop.
5029                                            // Otherwise just do nothing in unrolled scalar mode.
5030                                            // Must be multiple of 8.
5031   {
5032     const int  log_min_cnt = exact_log2(min_cnt);
5033     Label      UnrolledLoop, UnrolledDone;
5034 
5035 
5036     if (VM_Version::has_DistinctOpnds()) {
5037       z_srk(Rix, Rcnt, Z_R0);              // remaining # chars to process in unrolled loop
5038     } else {
5039       z_lr(Rix, Rcnt);
5040       z_sr(Rix, Z_R0);
5041     }
5042     z_sra(Rix, log_min_cnt);               // unrolled loop count
5043     z_brz(UnrolledDone);
5044 
5045     clear_reg(Z_R0);
5046     clear_reg(Z_R1);
5047 
5048     bind(UnrolledLoop);
5049       z_icmh(Z_R0, 5, 0, Rsrc);
5050       z_icmh(Z_R1, 5, 4, Rsrc);
5051       z_icm(Z_R0,  5, 2, Rsrc);
5052       z_icm(Z_R1,  5, 6, Rsrc);
5053       add2reg(Rsrc, min_cnt);
5054 
5055       z_stmg(Z_R0, Z_R1, 0, Rdst);
5056 
5057       add2reg(Rdst, min_cnt*2);
5058       z_brct(Rix, UnrolledLoop);
5059 
5060     bind(UnrolledDone);
5061     z_lgfr(Z_R0, Rcnt);                    // # chars left over after unrolled loop.
5062     z_nilf(Z_R0, min_cnt-1);
5063     z_brnz(ScalarShortcut);                // if zero, there is nothing left to do for scalar loop.
5064                                            // Rix == 0 in all cases.
5065     z_sgfr(Z_R0, Rcnt);                    // negative # characters the ptrs have been advanced previously.
5066     z_agr(Rdst, Z_R0);                     // restore ptr, double the element count for Rdst restore.
5067     z_agr(Rdst, Z_R0);
5068     z_agr(Rsrc, Z_R0);                     // restore ptr.
5069     z_bru(AllDone);
5070   }
5071 
5072   {
5073     bind(ScalarShortcut);
5074     // Z_R0 must contain remaining # characters as 64-bit signed int here.
5075     //      register contents is preserved over scalar processing (for register fixup).
5076 
5077 #if 0  // Sacrifice shortcuts for code compactness
5078     {
5079       Label      ScalarDefault;
5080       z_chi(Rcnt, 2);
5081       z_brh(ScalarDefault);
5082       z_llc(Z_R0,  0, Z_R0, Rsrc);     // 6 bytes
5083       z_sth(Z_R0,  0, Z_R0, Rdst);     // 4 bytes
5084       z_brl(AllDone);
5085       z_llc(Z_R0,  1, Z_R0, Rsrc);     // 6 bytes
5086       z_sth(Z_R0,  2, Z_R0, Rdst);     // 4 bytes
5087       z_bru(AllDone);
5088       bind(ScalarDefault);
5089     }
5090 #endif
5091 
5092     Label   CodeTable;
5093     // Some comments on Rix calculation:
5094     //  - Rcnt is small, therefore no bits shifted out of low word (sll(g) instructions).
5095     //  - high word of both Rix and Rcnt may contain garbage
5096     //  - the final lngfr takes care of that garbage, extending the sign to high word
5097     z_sllg(Rix, Z_R0, 2);                // calculate 10*Rix = (4*Rix + Rix)*2
5098     z_ar(Rix, Z_R0);
5099     z_larl(Z_R1, CodeTable);
5100     z_sll(Rix, 1);
5101     z_lngfr(Rix, Rix);      // ix range: [0..7], after inversion & mult: [-(7*12)..(0*12)].
5102     z_bc(Assembler::bcondAlways, 0, Rix, Z_R1);
5103 
5104     z_llc(Z_R1,  6, Z_R0, Rsrc);  // 6 bytes
5105     z_sth(Z_R1, 12, Z_R0, Rdst);  // 4 bytes
5106 
5107     z_llc(Z_R1,  5, Z_R0, Rsrc);
5108     z_sth(Z_R1, 10, Z_R0, Rdst);
5109 
5110     z_llc(Z_R1,  4, Z_R0, Rsrc);
5111     z_sth(Z_R1,  8, Z_R0, Rdst);
5112 
5113     z_llc(Z_R1,  3, Z_R0, Rsrc);
5114     z_sth(Z_R1,  6, Z_R0, Rdst);
5115 
5116     z_llc(Z_R1,  2, Z_R0, Rsrc);
5117     z_sth(Z_R1,  4, Z_R0, Rdst);
5118 
5119     z_llc(Z_R1,  1, Z_R0, Rsrc);
5120     z_sth(Z_R1,  2, Z_R0, Rdst);
5121 
5122     z_llc(Z_R1,  0, Z_R0, Rsrc);
5123     z_sth(Z_R1,  0, Z_R0, Rdst);
5124     bind(CodeTable);
5125 
5126     z_chi(Rcnt, 8);                        // no fixup for small strings. Rdst, Rsrc were not modified.
5127     z_brl(AllDone);
5128 
5129     z_sgfr(Z_R0, Rcnt);                    // # characters the ptrs have been advanced previously.
5130     z_agr(Rdst, Z_R0);                     // restore ptr, double the element count for Rdst restore.
5131     z_agr(Rdst, Z_R0);
5132     z_agr(Rsrc, Z_R0);                     // restore ptr.
5133   }
5134   bind(AllDone);
5135 
5136   BLOCK_COMMENT("} string_inflate");
5137   return offset() - block_start;
5138 }
5139 
5140 // Inflate byte[] to char[], length known at compile time.
5141 //   Restores: src, dst
5142 //   Kills:    tmp, Z_R0, Z_R1.
5143 // Note:
5144 //   len is signed int. Counts # characters, not bytes.
5145 unsigned int MacroAssembler::string_inflate_const(Register src, Register dst, Register tmp, int len) {
5146   assert_different_registers(Z_R0, Z_R1, src, dst, tmp);
5147 
5148   BLOCK_COMMENT("string_inflate_const {");
5149   int block_start = offset();
5150 
5151   Register   Rix  = tmp;   // loop index
5152   Register   Rsrc = src;   // addr(src array)
5153   Register   Rdst = dst;   // addr(dst array)
5154   Label      ScalarShortcut, AllDone;
5155   int        nprocessed = 0;
5156   int        src_off    = 0;  // compensate for saved (optimized away) ptr advancement.
5157   int        dst_off    = 0;  // compensate for saved (optimized away) ptr advancement.
5158   bool       restore_inputs = false;
5159   bool       workreg_clear  = false;
5160 
5161   if ((len >= 32) && VM_Version::has_VectorFacility()) {
5162     const int  min_vcnt     = 32;          // Minimum #characters required to use vector instructions.
5163                                            // Otherwise just do nothing in vector mode.
5164                                            // Must be multiple of vector register length (16 bytes = 128 bits).
5165     const int  log_min_vcnt = exact_log2(min_vcnt);
5166     const int  iterations   = (len - nprocessed) >> log_min_vcnt;
5167     nprocessed             += iterations << log_min_vcnt;
5168     Label      VectorLoop;
5169 
5170     if (iterations == 1) {
5171       z_vlm(Z_V20, Z_V21, 0+src_off, Rsrc);  // get next 32 characters (single-byte)
5172       z_vuplhb(Z_V22, Z_V20);                // V2 <- (expand) V0(high)
5173       z_vupllb(Z_V23, Z_V20);                // V3 <- (expand) V0(low)
5174       z_vuplhb(Z_V24, Z_V21);                // V4 <- (expand) V1(high)
5175       z_vupllb(Z_V25, Z_V21);                // V5 <- (expand) V1(low)
5176       z_vstm(Z_V22, Z_V25, 0+dst_off, Rdst); // store next 32 bytes
5177 
5178       src_off += min_vcnt;
5179       dst_off += min_vcnt*2;
5180     } else {
5181       restore_inputs = true;
5182 
5183       z_lgfi(Rix, len>>log_min_vcnt);
5184       bind(VectorLoop);
5185         z_vlm(Z_V20, Z_V21, 0, Rsrc);        // get next 32 characters (single-byte)
5186         add2reg(Rsrc, min_vcnt);
5187 
5188         z_vuplhb(Z_V22, Z_V20);              // V2 <- (expand) V0(high)
5189         z_vupllb(Z_V23, Z_V20);              // V3 <- (expand) V0(low)
5190         z_vuplhb(Z_V24, Z_V21);              // V4 <- (expand) V1(high)
5191         z_vupllb(Z_V25, Z_V21);              // V5 <- (expand) V1(low)
5192         z_vstm(Z_V22, Z_V25, 0, Rdst);       // store next 32 bytes
5193         add2reg(Rdst, min_vcnt*2);
5194 
5195         z_brct(Rix, VectorLoop);
5196     }
5197   }
5198 
5199   if (((len-nprocessed) >= 16) && VM_Version::has_VectorFacility()) {
5200     const int  min_vcnt     = 16;          // Minimum #characters required to use vector instructions.
5201                                            // Otherwise just do nothing in vector mode.
5202                                            // Must be multiple of vector register length (16 bytes = 128 bits).
5203     const int  log_min_vcnt = exact_log2(min_vcnt);
5204     const int  iterations   = (len - nprocessed) >> log_min_vcnt;
5205     nprocessed             += iterations << log_min_vcnt;
5206     assert(iterations == 1, "must be!");
5207 
5208     z_vl(Z_V20, 0+src_off, Z_R0, Rsrc);    // get next 16 characters (single-byte)
5209     z_vuplhb(Z_V22, Z_V20);                // V2 <- (expand) V0(high)
5210     z_vupllb(Z_V23, Z_V20);                // V3 <- (expand) V0(low)
5211     z_vstm(Z_V22, Z_V23, 0+dst_off, Rdst); // store next 32 bytes
5212 
5213     src_off += min_vcnt;
5214     dst_off += min_vcnt*2;
5215   }
5216 
5217   if ((len-nprocessed) > 8) {
5218     const int  min_cnt     =  8;           // Minimum #characters required to use unrolled scalar loop.
5219                                            // Otherwise just do nothing in unrolled scalar mode.
5220                                            // Must be multiple of 8.
5221     const int  log_min_cnt = exact_log2(min_cnt);
5222     const int  iterations  = (len - nprocessed) >> log_min_cnt;
5223     nprocessed     += iterations << log_min_cnt;
5224 
5225     //---<  avoid loop overhead/ptr increment for small # iterations  >---
5226     if (iterations <= 2) {
5227       clear_reg(Z_R0);
5228       clear_reg(Z_R1);
5229       workreg_clear = true;
5230 
5231       z_icmh(Z_R0, 5, 0+src_off, Rsrc);
5232       z_icmh(Z_R1, 5, 4+src_off, Rsrc);
5233       z_icm(Z_R0,  5, 2+src_off, Rsrc);
5234       z_icm(Z_R1,  5, 6+src_off, Rsrc);
5235       z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
5236 
5237       src_off += min_cnt;
5238       dst_off += min_cnt*2;
5239     }
5240 
5241     if (iterations == 2) {
5242       z_icmh(Z_R0, 5, 0+src_off, Rsrc);
5243       z_icmh(Z_R1, 5, 4+src_off, Rsrc);
5244       z_icm(Z_R0,  5, 2+src_off, Rsrc);
5245       z_icm(Z_R1,  5, 6+src_off, Rsrc);
5246       z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
5247 
5248       src_off += min_cnt;
5249       dst_off += min_cnt*2;
5250     }
5251 
5252     if (iterations > 2) {
5253       Label      UnrolledLoop;
5254       restore_inputs  = true;
5255 
5256       clear_reg(Z_R0);
5257       clear_reg(Z_R1);
5258       workreg_clear = true;
5259 
5260       z_lgfi(Rix, iterations);
5261       bind(UnrolledLoop);
5262         z_icmh(Z_R0, 5, 0, Rsrc);
5263         z_icmh(Z_R1, 5, 4, Rsrc);
5264         z_icm(Z_R0,  5, 2, Rsrc);
5265         z_icm(Z_R1,  5, 6, Rsrc);
5266         add2reg(Rsrc, min_cnt);
5267 
5268         z_stmg(Z_R0, Z_R1, 0, Rdst);
5269         add2reg(Rdst, min_cnt*2);
5270 
5271         z_brct(Rix, UnrolledLoop);
5272     }
5273   }
5274 
5275   if ((len-nprocessed) > 0) {
5276     switch (len-nprocessed) {
5277       case 8:
5278         if (!workreg_clear) {
5279           clear_reg(Z_R0);
5280           clear_reg(Z_R1);
5281         }
5282         z_icmh(Z_R0, 5, 0+src_off, Rsrc);
5283         z_icmh(Z_R1, 5, 4+src_off, Rsrc);
5284         z_icm(Z_R0,  5, 2+src_off, Rsrc);
5285         z_icm(Z_R1,  5, 6+src_off, Rsrc);
5286         z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
5287         break;
5288       case 7:
5289         if (!workreg_clear) {
5290           clear_reg(Z_R0);
5291           clear_reg(Z_R1);
5292         }
5293         clear_reg(Rix);
5294         z_icm(Z_R0,  5, 0+src_off, Rsrc);
5295         z_icm(Z_R1,  5, 2+src_off, Rsrc);
5296         z_icm(Rix,   5, 4+src_off, Rsrc);
5297         z_stm(Z_R0,  Z_R1, 0+dst_off, Rdst);
5298         z_llc(Z_R0,  6+src_off, Z_R0, Rsrc);
5299         z_st(Rix,    8+dst_off, Z_R0, Rdst);
5300         z_sth(Z_R0, 12+dst_off, Z_R0, Rdst);
5301         break;
5302       case 6:
5303         if (!workreg_clear) {
5304           clear_reg(Z_R0);
5305           clear_reg(Z_R1);
5306         }
5307         clear_reg(Rix);
5308         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5309         z_icm(Z_R1, 5, 2+src_off, Rsrc);
5310         z_icm(Rix,  5, 4+src_off, Rsrc);
5311         z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
5312         z_st(Rix,   8+dst_off, Z_R0, Rdst);
5313         break;
5314       case 5:
5315         if (!workreg_clear) {
5316           clear_reg(Z_R0);
5317           clear_reg(Z_R1);
5318         }
5319         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5320         z_icm(Z_R1, 5, 2+src_off, Rsrc);
5321         z_llc(Rix,  4+src_off, Z_R0, Rsrc);
5322         z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
5323         z_sth(Rix,  8+dst_off, Z_R0, Rdst);
5324         break;
5325       case 4:
5326         if (!workreg_clear) {
5327           clear_reg(Z_R0);
5328           clear_reg(Z_R1);
5329         }
5330         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5331         z_icm(Z_R1, 5, 2+src_off, Rsrc);
5332         z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
5333         break;
5334       case 3:
5335         if (!workreg_clear) {
5336           clear_reg(Z_R0);
5337         }
5338         z_llc(Z_R1, 2+src_off, Z_R0, Rsrc);
5339         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5340         z_sth(Z_R1, 4+dst_off, Z_R0, Rdst);
5341         z_st(Z_R0,  0+dst_off, Rdst);
5342         break;
5343       case 2:
5344         z_llc(Z_R0, 0+src_off, Z_R0, Rsrc);
5345         z_llc(Z_R1, 1+src_off, Z_R0, Rsrc);
5346         z_sth(Z_R0, 0+dst_off, Z_R0, Rdst);
5347         z_sth(Z_R1, 2+dst_off, Z_R0, Rdst);
5348         break;
5349       case 1:
5350         z_llc(Z_R0, 0+src_off, Z_R0, Rsrc);
5351         z_sth(Z_R0, 0+dst_off, Z_R0, Rdst);
5352         break;
5353       default:
5354         guarantee(false, "Impossible");
5355         break;
5356     }
5357     src_off   +=  len-nprocessed;
5358     dst_off   += (len-nprocessed)*2;
5359     nprocessed = len;
5360   }
5361 
5362   //---< restore modified input registers  >---
5363   if ((nprocessed > 0) && restore_inputs) {
5364     z_agfi(Rsrc, -(nprocessed-src_off));
5365     if (nprocessed < 1000000000) { // avoid int overflow
5366       z_agfi(Rdst, -(nprocessed*2-dst_off));
5367     } else {
5368       z_agfi(Rdst, -(nprocessed-dst_off));
5369       z_agfi(Rdst, -nprocessed);
5370     }
5371   }
5372 
5373   BLOCK_COMMENT("} string_inflate_const");
5374   return offset() - block_start;
5375 }
5376 
5377 // Kills src.
5378 unsigned int MacroAssembler::has_negatives(Register result, Register src, Register cnt,
5379                                            Register odd_reg, Register even_reg, Register tmp) {
5380   int block_start = offset();
5381   Label Lloop1, Lloop2, Lslow, Lnotfound, Ldone;
5382   const Register addr = src, mask = tmp;
5383 
5384   BLOCK_COMMENT("has_negatives {");
5385 
5386   z_llgfr(Z_R1, cnt);      // Number of bytes to read. (Must be a positive simm32.)
5387   z_llilf(mask, 0x80808080);
5388   z_lhi(result, 1);        // Assume true.
5389   // Last possible addr for fast loop.
5390   z_lay(odd_reg, -16, Z_R1, src);
5391   z_chi(cnt, 16);
5392   z_brl(Lslow);
5393 
5394   // ind1: index, even_reg: index increment, odd_reg: index limit
5395   z_iihf(mask, 0x80808080);
5396   z_lghi(even_reg, 16);
5397 
5398   bind(Lloop1); // 16 bytes per iteration.
5399   z_lg(Z_R0, Address(addr));
5400   z_lg(Z_R1, Address(addr, 8));
5401   z_ogr(Z_R0, Z_R1);
5402   z_ngr(Z_R0, mask);
5403   z_brne(Ldone);           // If found return 1.
5404   z_brxlg(addr, even_reg, Lloop1);
5405 
5406   bind(Lslow);
5407   z_aghi(odd_reg, 16-1);   // Last possible addr for slow loop.
5408   z_lghi(even_reg, 1);
5409   z_cgr(addr, odd_reg);
5410   z_brh(Lnotfound);
5411 
5412   bind(Lloop2); // 1 byte per iteration.
5413   z_cli(Address(addr), 0x80);
5414   z_brnl(Ldone);           // If found return 1.
5415   z_brxlg(addr, even_reg, Lloop2);
5416 
5417   bind(Lnotfound);
5418   z_lhi(result, 0);
5419 
5420   bind(Ldone);
5421 
5422   BLOCK_COMMENT("} has_negatives");
5423 
5424   return offset() - block_start;
5425 }
5426 
5427 // kill: cnt1, cnt2, odd_reg, even_reg; early clobber: result
5428 unsigned int MacroAssembler::string_compare(Register str1, Register str2,
5429                                             Register cnt1, Register cnt2,
5430                                             Register odd_reg, Register even_reg, Register result, int ae) {
5431   int block_start = offset();
5432 
5433   assert_different_registers(str1, cnt1, cnt2, odd_reg, even_reg, result);
5434   assert_different_registers(str2, cnt1, cnt2, odd_reg, even_reg, result);
5435 
5436   // If strings are equal up to min length, return the length difference.
5437   const Register diff = result, // Pre-set result with length difference.
5438                  min  = cnt1,   // min number of bytes
5439                  tmp  = cnt2;
5440 
5441   // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
5442   // we interchange str1 and str2 in the UL case and negate the result.
5443   // Like this, str1 is always latin1 encoded, except for the UU case.
5444   // In addition, we need 0 (or sign which is 0) extend when using 64 bit register.
5445   const bool used_as_LU = (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL);
5446 
5447   BLOCK_COMMENT("string_compare {");
5448 
5449   if (used_as_LU) {
5450     z_srl(cnt2, 1);
5451   }
5452 
5453   // See if the lengths are different, and calculate min in cnt1.
5454   // Save diff in case we need it for a tie-breaker.
5455 
5456   // diff = cnt1 - cnt2
5457   if (VM_Version::has_DistinctOpnds()) {
5458     z_srk(diff, cnt1, cnt2);
5459   } else {
5460     z_lr(diff, cnt1);
5461     z_sr(diff, cnt2);
5462   }
5463   if (str1 != str2) {
5464     if (VM_Version::has_LoadStoreConditional()) {
5465       z_locr(min, cnt2, Assembler::bcondHigh);
5466     } else {
5467       Label Lskip;
5468       z_brl(Lskip);    // min ok if cnt1 < cnt2
5469       z_lr(min, cnt2); // min = cnt2
5470       bind(Lskip);
5471     }
5472   }
5473 
5474   if (ae == StrIntrinsicNode::UU) {
5475     z_sra(diff, 1);
5476   }
5477   if (str1 != str2) {
5478     Label Ldone;
5479     if (used_as_LU) {
5480       // Loop which searches the first difference character by character.
5481       Label Lloop;
5482       const Register ind1 = Z_R1,
5483                      ind2 = min;
5484       int stride1 = 1, stride2 = 2; // See comment above.
5485 
5486       // ind1: index, even_reg: index increment, odd_reg: index limit
5487       z_llilf(ind1, (unsigned int)(-stride1));
5488       z_lhi(even_reg, stride1);
5489       add2reg(odd_reg, -stride1, min);
5490       clear_reg(ind2); // kills min
5491 
5492       bind(Lloop);
5493       z_brxh(ind1, even_reg, Ldone);
5494       z_llc(tmp, Address(str1, ind1));
5495       z_llh(Z_R0, Address(str2, ind2));
5496       z_ahi(ind2, stride2);
5497       z_sr(tmp, Z_R0);
5498       z_bre(Lloop);
5499 
5500       z_lr(result, tmp);
5501 
5502     } else {
5503       // Use clcle in fast loop (only for same encoding).
5504       z_lgr(Z_R0, str1);
5505       z_lgr(even_reg, str2);
5506       z_llgfr(Z_R1, min);
5507       z_llgfr(odd_reg, min);
5508 
5509       if (ae == StrIntrinsicNode::LL) {
5510         compare_long_ext(Z_R0, even_reg, 0);
5511       } else {
5512         compare_long_uni(Z_R0, even_reg, 0);
5513       }
5514       z_bre(Ldone);
5515       z_lgr(Z_R1, Z_R0);
5516       if (ae == StrIntrinsicNode::LL) {
5517         z_llc(Z_R0, Address(even_reg));
5518         z_llc(result, Address(Z_R1));
5519       } else {
5520         z_llh(Z_R0, Address(even_reg));
5521         z_llh(result, Address(Z_R1));
5522       }
5523       z_sr(result, Z_R0);
5524     }
5525 
5526     // Otherwise, return the difference between the first mismatched chars.
5527     bind(Ldone);
5528   }
5529 
5530   if (ae == StrIntrinsicNode::UL) {
5531     z_lcr(result, result); // Negate result (see note above).
5532   }
5533 
5534   BLOCK_COMMENT("} string_compare");
5535 
5536   return offset() - block_start;
5537 }
5538 
5539 unsigned int MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2, Register limit,
5540                                           Register odd_reg, Register even_reg, Register result, bool is_byte) {
5541   int block_start = offset();
5542 
5543   BLOCK_COMMENT("array_equals {");
5544 
5545   assert_different_registers(ary1, limit, odd_reg, even_reg);
5546   assert_different_registers(ary2, limit, odd_reg, even_reg);
5547 
5548   Label Ldone, Ldone_true, Ldone_false, Lclcle, CLC_template;
5549   int base_offset = 0;
5550 
5551   if (ary1 != ary2) {
5552     if (is_array_equ) {
5553       base_offset = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
5554 
5555       // Return true if the same array.
5556       compareU64_and_branch(ary1, ary2, Assembler::bcondEqual, Ldone_true);
5557 
5558       // Return false if one of them is NULL.
5559       compareU64_and_branch(ary1, (intptr_t)0, Assembler::bcondEqual, Ldone_false);
5560       compareU64_and_branch(ary2, (intptr_t)0, Assembler::bcondEqual, Ldone_false);
5561 
5562       // Load the lengths of arrays.
5563       z_llgf(odd_reg, Address(ary1, arrayOopDesc::length_offset_in_bytes()));
5564 
5565       // Return false if the two arrays are not equal length.
5566       z_c(odd_reg, Address(ary2, arrayOopDesc::length_offset_in_bytes()));
5567       z_brne(Ldone_false);
5568 
5569       // string len in bytes (right operand)
5570       if (!is_byte) {
5571         z_chi(odd_reg, 128);
5572         z_sll(odd_reg, 1); // preserves flags
5573         z_brh(Lclcle);
5574       } else {
5575         compareU32_and_branch(odd_reg, (intptr_t)256, Assembler::bcondHigh, Lclcle);
5576       }
5577     } else {
5578       z_llgfr(odd_reg, limit); // Need to zero-extend prior to using the value.
5579       compareU32_and_branch(limit, (intptr_t)256, Assembler::bcondHigh, Lclcle);
5580     }
5581 
5582 
5583     // Use clc instruction for up to 256 bytes.
5584     {
5585       Register str1_reg = ary1,
5586           str2_reg = ary2;
5587       if (is_array_equ) {
5588         str1_reg = Z_R1;
5589         str2_reg = even_reg;
5590         add2reg(str1_reg, base_offset, ary1); // string addr (left operand)
5591         add2reg(str2_reg, base_offset, ary2); // string addr (right operand)
5592       }
5593       z_ahi(odd_reg, -1); // Clc uses decremented limit. Also compare result to 0.
5594       z_brl(Ldone_true);
5595       // Note: We could jump to the template if equal.
5596 
5597       assert(VM_Version::has_ExecuteExtensions(), "unsupported hardware");
5598       z_exrl(odd_reg, CLC_template);
5599       z_bre(Ldone_true);
5600       // fall through
5601 
5602       bind(Ldone_false);
5603       clear_reg(result);
5604       z_bru(Ldone);
5605 
5606       bind(CLC_template);
5607       z_clc(0, 0, str1_reg, 0, str2_reg);
5608     }
5609 
5610     // Use clcle instruction.
5611     {
5612       bind(Lclcle);
5613       add2reg(even_reg, base_offset, ary2); // string addr (right operand)
5614       add2reg(Z_R0, base_offset, ary1);     // string addr (left operand)
5615 
5616       z_lgr(Z_R1, odd_reg); // string len in bytes (left operand)
5617       if (is_byte) {
5618         compare_long_ext(Z_R0, even_reg, 0);
5619       } else {
5620         compare_long_uni(Z_R0, even_reg, 0);
5621       }
5622       z_lghi(result, 0); // Preserve flags.
5623       z_brne(Ldone);
5624     }
5625   }
5626   // fall through
5627 
5628   bind(Ldone_true);
5629   z_lghi(result, 1); // All characters are equal.
5630   bind(Ldone);
5631 
5632   BLOCK_COMMENT("} array_equals");
5633 
5634   return offset() - block_start;
5635 }
5636 
5637 // kill: haycnt, needlecnt, odd_reg, even_reg; early clobber: result
5638 unsigned int MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
5639                                             Register needle, Register needlecnt, int needlecntval,
5640                                             Register odd_reg, Register even_reg, int ae) {
5641   int block_start = offset();
5642 
5643   // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
5644   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5645   const int h_csize = (ae == StrIntrinsicNode::LL) ? 1 : 2;
5646   const int n_csize = (ae == StrIntrinsicNode::UU) ? 2 : 1;
5647   Label L_needle1, L_Found, L_NotFound;
5648 
5649   BLOCK_COMMENT("string_indexof {");
5650 
5651   if (needle == haystack) {
5652     z_lhi(result, 0);
5653   } else {
5654 
5655   // Load first character of needle (R0 used by search_string instructions).
5656   if (n_csize == 2) { z_llgh(Z_R0, Address(needle)); } else { z_llgc(Z_R0, Address(needle)); }
5657 
5658   // Compute last haystack addr to use if no match gets found.
5659   if (needlecnt != noreg) { // variable needlecnt
5660     z_ahi(needlecnt, -1); // Remaining characters after first one.
5661     z_sr(haycnt, needlecnt); // Compute index succeeding last element to compare.
5662     if (n_csize == 2) { z_sll(needlecnt, 1); } // In bytes.
5663   } else { // constant needlecnt
5664     assert((needlecntval & 0x7fff) == needlecntval, "must be positive simm16 immediate");
5665     // Compute index succeeding last element to compare.
5666     if (needlecntval != 1) { z_ahi(haycnt, 1 - needlecntval); }
5667   }
5668 
5669   z_llgfr(haycnt, haycnt); // Clear high half.
5670   z_lgr(result, haystack); // Final result will be computed from needle start pointer.
5671   if (h_csize == 2) { z_sll(haycnt, 1); } // Scale to number of bytes.
5672   z_agr(haycnt, haystack); // Point to address succeeding last element (haystack+scale*(haycnt-needlecnt+1)).
5673 
5674   if (h_csize != n_csize) {
5675     assert(ae == StrIntrinsicNode::UL, "Invalid encoding");
5676 
5677     if (needlecnt != noreg || needlecntval != 1) {
5678       if (needlecnt != noreg) {
5679         compare32_and_branch(needlecnt, (intptr_t)0, Assembler::bcondEqual, L_needle1);
5680       }
5681 
5682       // Main Loop: UL version (now we have at least 2 characters).
5683       Label L_OuterLoop, L_InnerLoop, L_Skip;
5684       bind(L_OuterLoop); // Search for 1st 2 characters.
5685       z_lgr(Z_R1, haycnt);
5686       MacroAssembler::search_string_uni(Z_R1, result);
5687       z_brc(Assembler::bcondNotFound, L_NotFound);
5688       z_lgr(result, Z_R1);
5689 
5690       z_lghi(Z_R1, n_csize);
5691       z_lghi(even_reg, h_csize);
5692       bind(L_InnerLoop);
5693       z_llgc(odd_reg, Address(needle, Z_R1));
5694       z_ch(odd_reg, Address(result, even_reg));
5695       z_brne(L_Skip);
5696       if (needlecnt != noreg) { z_cr(Z_R1, needlecnt); } else { z_chi(Z_R1, needlecntval - 1); }
5697       z_brnl(L_Found);
5698       z_aghi(Z_R1, n_csize);
5699       z_aghi(even_reg, h_csize);
5700       z_bru(L_InnerLoop);
5701 
5702       bind(L_Skip);
5703       z_aghi(result, h_csize); // This is the new address we want to use for comparing.
5704       z_bru(L_OuterLoop);
5705     }
5706 
5707   } else {
5708     const intptr_t needle_bytes = (n_csize == 2) ? ((needlecntval - 1) << 1) : (needlecntval - 1);
5709     Label L_clcle;
5710 
5711     if (needlecnt != noreg || (needlecntval != 1 && needle_bytes <= 256)) {
5712       if (needlecnt != noreg) {
5713         compare32_and_branch(needlecnt, 256, Assembler::bcondHigh, L_clcle);
5714         z_ahi(needlecnt, -1); // remaining bytes -1 (for CLC)
5715         z_brl(L_needle1);
5716       }
5717 
5718       // Main Loop: clc version (now we have at least 2 characters).
5719       Label L_OuterLoop, CLC_template;
5720       bind(L_OuterLoop); // Search for 1st 2 characters.
5721       z_lgr(Z_R1, haycnt);
5722       if (h_csize == 1) {
5723         MacroAssembler::search_string(Z_R1, result);
5724       } else {
5725         MacroAssembler::search_string_uni(Z_R1, result);
5726       }
5727       z_brc(Assembler::bcondNotFound, L_NotFound);
5728       z_lgr(result, Z_R1);
5729 
5730       if (needlecnt != noreg) {
5731         assert(VM_Version::has_ExecuteExtensions(), "unsupported hardware");
5732         z_exrl(needlecnt, CLC_template);
5733       } else {
5734         z_clc(h_csize, needle_bytes -1, Z_R1, n_csize, needle);
5735       }
5736       z_bre(L_Found);
5737       z_aghi(result, h_csize); // This is the new address we want to use for comparing.
5738       z_bru(L_OuterLoop);
5739 
5740       if (needlecnt != noreg) {
5741         bind(CLC_template);
5742         z_clc(h_csize, 0, Z_R1, n_csize, needle);
5743       }
5744     }
5745 
5746     if (needlecnt != noreg || needle_bytes > 256) {
5747       bind(L_clcle);
5748 
5749       // Main Loop: clcle version (now we have at least 256 bytes).
5750       Label L_OuterLoop, CLC_template;
5751       bind(L_OuterLoop); // Search for 1st 2 characters.
5752       z_lgr(Z_R1, haycnt);
5753       if (h_csize == 1) {
5754         MacroAssembler::search_string(Z_R1, result);
5755       } else {
5756         MacroAssembler::search_string_uni(Z_R1, result);
5757       }
5758       z_brc(Assembler::bcondNotFound, L_NotFound);
5759 
5760       add2reg(Z_R0, n_csize, needle);
5761       add2reg(even_reg, h_csize, Z_R1);
5762       z_lgr(result, Z_R1);
5763       if (needlecnt != noreg) {
5764         z_llgfr(Z_R1, needlecnt); // needle len in bytes (left operand)
5765         z_llgfr(odd_reg, needlecnt);
5766       } else {
5767         load_const_optimized(Z_R1, needle_bytes);
5768         if (Immediate::is_simm16(needle_bytes)) { z_lghi(odd_reg, needle_bytes); } else { z_lgr(odd_reg, Z_R1); }
5769       }
5770       if (h_csize == 1) {
5771         compare_long_ext(Z_R0, even_reg, 0);
5772       } else {
5773         compare_long_uni(Z_R0, even_reg, 0);
5774       }
5775       z_bre(L_Found);
5776 
5777       if (n_csize == 2) { z_llgh(Z_R0, Address(needle)); } else { z_llgc(Z_R0, Address(needle)); } // Reload.
5778       z_aghi(result, h_csize); // This is the new address we want to use for comparing.
5779       z_bru(L_OuterLoop);
5780     }
5781   }
5782 
5783   if (needlecnt != noreg || needlecntval == 1) {
5784     bind(L_needle1);
5785 
5786     // Single needle character version.
5787     if (h_csize == 1) {
5788       MacroAssembler::search_string(haycnt, result);
5789     } else {
5790       MacroAssembler::search_string_uni(haycnt, result);
5791     }
5792     z_lgr(result, haycnt);
5793     z_brc(Assembler::bcondFound, L_Found);
5794   }
5795 
5796   bind(L_NotFound);
5797   add2reg(result, -1, haystack); // Return -1.
5798 
5799   bind(L_Found); // Return index (or -1 in fallthrough case).
5800   z_sgr(result, haystack);
5801   if (h_csize == 2) { z_srag(result, result, exact_log2(sizeof(jchar))); }
5802   }
5803   BLOCK_COMMENT("} string_indexof");
5804 
5805   return offset() - block_start;
5806 }
5807 
5808 // early clobber: result
5809 unsigned int MacroAssembler::string_indexof_char(Register result, Register haystack, Register haycnt,
5810                                                  Register needle, jchar needleChar, Register odd_reg, Register even_reg, bool is_byte) {
5811   int block_start = offset();
5812 
5813   BLOCK_COMMENT("string_indexof_char {");
5814 
5815   if (needle == haystack) {
5816     z_lhi(result, 0);
5817   } else {
5818 
5819   Label Ldone;
5820 
5821   z_llgfr(odd_reg, haycnt);  // Preset loop ctr/searchrange end.
5822   if (needle == noreg) {
5823     load_const_optimized(Z_R0, (unsigned long)needleChar);
5824   } else {
5825     if (is_byte) {
5826       z_llgcr(Z_R0, needle); // First (and only) needle char.
5827     } else {
5828       z_llghr(Z_R0, needle); // First (and only) needle char.
5829     }
5830   }
5831 
5832   if (!is_byte) {
5833     z_agr(odd_reg, odd_reg); // Calc #bytes to be processed with SRSTU.
5834   }
5835 
5836   z_lgr(even_reg, haystack); // haystack addr
5837   z_agr(odd_reg, haystack);  // First char after range end.
5838   z_lghi(result, -1);
5839 
5840   if (is_byte) {
5841     MacroAssembler::search_string(odd_reg, even_reg);
5842   } else {
5843     MacroAssembler::search_string_uni(odd_reg, even_reg);
5844   }
5845   z_brc(Assembler::bcondNotFound, Ldone);
5846   if (is_byte) {
5847     if (VM_Version::has_DistinctOpnds()) {
5848       z_sgrk(result, odd_reg, haystack);
5849     } else {
5850       z_sgr(odd_reg, haystack);
5851       z_lgr(result, odd_reg);
5852     }
5853   } else {
5854     z_slgr(odd_reg, haystack);
5855     z_srlg(result, odd_reg, exact_log2(sizeof(jchar)));
5856   }
5857 
5858   bind(Ldone);
5859   }
5860   BLOCK_COMMENT("} string_indexof_char");
5861 
5862   return offset() - block_start;
5863 }
5864 
5865 
5866 //-------------------------------------------------
5867 //   Constants (scalar and oop) in constant pool
5868 //-------------------------------------------------
5869 
5870 // Add a non-relocated constant to the CP.
5871 int MacroAssembler::store_const_in_toc(AddressLiteral& val) {
5872   long    value  = val.value();
5873   address tocPos = long_constant(value);
5874 
5875   if (tocPos != NULL) {
5876     int tocOffset = (int)(tocPos - code()->consts()->start());
5877     return tocOffset;
5878   }
5879   // Address_constant returned NULL, so no constant entry has been created.
5880   // In that case, we return a "fatal" offset, just in case that subsequently
5881   // generated access code is executed.
5882   return -1;
5883 }
5884 
5885 // Returns the TOC offset where the address is stored.
5886 // Add a relocated constant to the CP.
5887 int MacroAssembler::store_oop_in_toc(AddressLiteral& oop) {
5888   // Use RelocationHolder::none for the constant pool entry.
5889   // Otherwise we will end up with a failing NativeCall::verify(x),
5890   // where x is the address of the constant pool entry.
5891   address tocPos = address_constant((address)oop.value(), RelocationHolder::none);
5892 
5893   if (tocPos != NULL) {
5894     int              tocOffset = (int)(tocPos - code()->consts()->start());
5895     RelocationHolder rsp = oop.rspec();
5896     Relocation      *rel = rsp.reloc();
5897 
5898     // Store toc_offset in relocation, used by call_far_patchable.
5899     if ((relocInfo::relocType)rel->type() == relocInfo::runtime_call_w_cp_type) {
5900       ((runtime_call_w_cp_Relocation *)(rel))->set_constant_pool_offset(tocOffset);
5901     }
5902     // Relocate at the load's pc.
5903     relocate(rsp);
5904 
5905     return tocOffset;
5906   }
5907   // Address_constant returned NULL, so no constant entry has been created
5908   // in that case, we return a "fatal" offset, just in case that subsequently
5909   // generated access code is executed.
5910   return -1;
5911 }
5912 
5913 bool MacroAssembler::load_const_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
5914   int     tocOffset = store_const_in_toc(a);
5915   if (tocOffset == -1) return false;
5916   address tocPos    = tocOffset + code()->consts()->start();
5917   assert((address)code()->consts()->start() != NULL, "Please add CP address");
5918 
5919   load_long_pcrelative(dst, tocPos);
5920   return true;
5921 }
5922 
5923 bool MacroAssembler::load_oop_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
5924   int     tocOffset = store_oop_in_toc(a);
5925   if (tocOffset == -1) return false;
5926   address tocPos    = tocOffset + code()->consts()->start();
5927   assert((address)code()->consts()->start() != NULL, "Please add CP address");
5928 
5929   load_addr_pcrelative(dst, tocPos);
5930   return true;
5931 }
5932 
5933 // If the instruction sequence at the given pc is a load_const_from_toc
5934 // sequence, return the value currently stored at the referenced position
5935 // in the TOC.
5936 intptr_t MacroAssembler::get_const_from_toc(address pc) {
5937 
5938   assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
5939 
5940   long    offset  = get_load_const_from_toc_offset(pc);
5941   address dataLoc = NULL;
5942   if (is_load_const_from_toc_pcrelative(pc)) {
5943     dataLoc = pc + offset;
5944   } else {
5945     CodeBlob* cb = CodeCache::find_blob_unsafe(pc);   // Else we get assertion if nmethod is zombie.
5946     assert(cb && cb->is_nmethod(), "sanity");
5947     nmethod* nm = (nmethod*)cb;
5948     dataLoc = nm->ctable_begin() + offset;
5949   }
5950   return *(intptr_t *)dataLoc;
5951 }
5952 
5953 // If the instruction sequence at the given pc is a load_const_from_toc
5954 // sequence, copy the passed-in new_data value into the referenced
5955 // position in the TOC.
5956 void MacroAssembler::set_const_in_toc(address pc, unsigned long new_data, CodeBlob *cb) {
5957   assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
5958 
5959   long    offset = MacroAssembler::get_load_const_from_toc_offset(pc);
5960   address dataLoc = NULL;
5961   if (is_load_const_from_toc_pcrelative(pc)) {
5962     dataLoc = pc+offset;
5963   } else {
5964     nmethod* nm = CodeCache::find_nmethod(pc);
5965     assert((cb == NULL) || (nm == (nmethod*)cb), "instruction address should be in CodeBlob");
5966     dataLoc = nm->ctable_begin() + offset;
5967   }
5968   if (*(unsigned long *)dataLoc != new_data) { // Prevent cache invalidation: update only if necessary.
5969     *(unsigned long *)dataLoc = new_data;
5970   }
5971 }
5972 
5973 // Dynamic TOC. Getter must only be called if "a" is a load_const_from_toc
5974 // site. Verify by calling is_load_const_from_toc() before!!
5975 // Offset is +/- 2**32 -> use long.
5976 long MacroAssembler::get_load_const_from_toc_offset(address a) {
5977   assert(is_load_const_from_toc_pcrelative(a), "expected pc relative load");
5978   //  expected code sequence:
5979   //    z_lgrl(t, simm32);    len = 6
5980   unsigned long inst;
5981   unsigned int  len = get_instruction(a, &inst);
5982   return get_pcrel_offset(inst);
5983 }
5984 
5985 //**********************************************************************************
5986 //  inspection of generated instruction sequences for a particular pattern
5987 //**********************************************************************************
5988 
5989 bool MacroAssembler::is_load_const_from_toc_pcrelative(address a) {
5990 #ifdef ASSERT
5991   unsigned long inst;
5992   unsigned int  len = get_instruction(a+2, &inst);
5993   if ((len == 6) && is_load_pcrelative_long(a) && is_call_pcrelative_long(inst)) {
5994     const int range = 128;
5995     Assembler::dump_code_range(tty, a, range, "instr(a) == z_lgrl && instr(a+2) == z_brasl");
5996     VM_Version::z_SIGSEGV();
5997   }
5998 #endif
5999   // expected code sequence:
6000   //   z_lgrl(t, relAddr32);    len = 6
6001   //TODO: verify accessed data is in CP, if possible.
6002   return is_load_pcrelative_long(a);  // TODO: might be too general. Currently, only lgrl is used.
6003 }
6004 
6005 bool MacroAssembler::is_load_const_from_toc_call(address a) {
6006   return is_load_const_from_toc(a) && is_call_byregister(a + load_const_from_toc_size());
6007 }
6008 
6009 bool MacroAssembler::is_load_const_call(address a) {
6010   return is_load_const(a) && is_call_byregister(a + load_const_size());
6011 }
6012 
6013 //-------------------------------------------------
6014 //   Emitters for some really CICS instructions
6015 //-------------------------------------------------
6016 
6017 void MacroAssembler::move_long_ext(Register dst, Register src, unsigned int pad) {
6018   assert(dst->encoding()%2==0, "must be an even/odd register pair");
6019   assert(src->encoding()%2==0, "must be an even/odd register pair");
6020   assert(pad<256, "must be a padding BYTE");
6021 
6022   Label retry;
6023   bind(retry);
6024   Assembler::z_mvcle(dst, src, pad);
6025   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6026 }
6027 
6028 void MacroAssembler::compare_long_ext(Register left, Register right, unsigned int pad) {
6029   assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
6030   assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
6031   assert(pad<256, "must be a padding BYTE");
6032 
6033   Label retry;
6034   bind(retry);
6035   Assembler::z_clcle(left, right, pad, Z_R0);
6036   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6037 }
6038 
6039 void MacroAssembler::compare_long_uni(Register left, Register right, unsigned int pad) {
6040   assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
6041   assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
6042   assert(pad<=0xfff, "must be a padding HALFWORD");
6043   assert(VM_Version::has_ETF2(), "instruction must be available");
6044 
6045   Label retry;
6046   bind(retry);
6047   Assembler::z_clclu(left, right, pad, Z_R0);
6048   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6049 }
6050 
6051 void MacroAssembler::search_string(Register end, Register start) {
6052   assert(end->encoding() != 0, "end address must not be in R0");
6053   assert(start->encoding() != 0, "start address must not be in R0");
6054 
6055   Label retry;
6056   bind(retry);
6057   Assembler::z_srst(end, start);
6058   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6059 }
6060 
6061 void MacroAssembler::search_string_uni(Register end, Register start) {
6062   assert(end->encoding() != 0, "end address must not be in R0");
6063   assert(start->encoding() != 0, "start address must not be in R0");
6064   assert(VM_Version::has_ETF3(), "instruction must be available");
6065 
6066   Label retry;
6067   bind(retry);
6068   Assembler::z_srstu(end, start);
6069   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6070 }
6071 
6072 void MacroAssembler::kmac(Register srcBuff) {
6073   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6074   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
6075 
6076   Label retry;
6077   bind(retry);
6078   Assembler::z_kmac(Z_R0, srcBuff);
6079   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6080 }
6081 
6082 void MacroAssembler::kimd(Register srcBuff) {
6083   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6084   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
6085 
6086   Label retry;
6087   bind(retry);
6088   Assembler::z_kimd(Z_R0, srcBuff);
6089   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6090 }
6091 
6092 void MacroAssembler::klmd(Register srcBuff) {
6093   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6094   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
6095 
6096   Label retry;
6097   bind(retry);
6098   Assembler::z_klmd(Z_R0, srcBuff);
6099   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6100 }
6101 
6102 void MacroAssembler::km(Register dstBuff, Register srcBuff) {
6103   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
6104   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
6105   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6106   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
6107   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
6108 
6109   Label retry;
6110   bind(retry);
6111   Assembler::z_km(dstBuff, srcBuff);
6112   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6113 }
6114 
6115 void MacroAssembler::kmc(Register dstBuff, Register srcBuff) {
6116   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
6117   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
6118   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6119   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
6120   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
6121 
6122   Label retry;
6123   bind(retry);
6124   Assembler::z_kmc(dstBuff, srcBuff);
6125   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6126 }
6127 
6128 void MacroAssembler::cksm(Register crcBuff, Register srcBuff) {
6129   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
6130 
6131   Label retry;
6132   bind(retry);
6133   Assembler::z_cksm(crcBuff, srcBuff);
6134   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6135 }
6136 
6137 void MacroAssembler::translate_oo(Register r1, Register r2, uint m3) {
6138   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
6139   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
6140 
6141   Label retry;
6142   bind(retry);
6143   Assembler::z_troo(r1, r2, m3);
6144   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6145 }
6146 
6147 void MacroAssembler::translate_ot(Register r1, Register r2, uint m3) {
6148   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
6149   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
6150 
6151   Label retry;
6152   bind(retry);
6153   Assembler::z_trot(r1, r2, m3);
6154   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6155 }
6156 
6157 void MacroAssembler::translate_to(Register r1, Register r2, uint m3) {
6158   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
6159   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
6160 
6161   Label retry;
6162   bind(retry);
6163   Assembler::z_trto(r1, r2, m3);
6164   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6165 }
6166 
6167 void MacroAssembler::translate_tt(Register r1, Register r2, uint m3) {
6168   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
6169   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
6170 
6171   Label retry;
6172   bind(retry);
6173   Assembler::z_trtt(r1, r2, m3);
6174   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6175 }
6176 
6177 
6178 void MacroAssembler::generate_type_profiling(const Register Rdata,
6179                                              const Register Rreceiver_klass,
6180                                              const Register Rwanted_receiver_klass,
6181                                              const Register Rmatching_row,
6182                                              bool is_virtual_call) {
6183   const int row_size = in_bytes(ReceiverTypeData::receiver_offset(1)) -
6184                        in_bytes(ReceiverTypeData::receiver_offset(0));
6185   const int num_rows = ReceiverTypeData::row_limit();
6186   NearLabel found_free_row;
6187   NearLabel do_increment;
6188   NearLabel found_no_slot;
6189 
6190   BLOCK_COMMENT("type profiling {");
6191 
6192   // search for:
6193   //    a) The type given in Rwanted_receiver_klass.
6194   //    b) The *first* empty row.
6195 
6196   // First search for a) only, just running over b) with no regard.
6197   // This is possible because
6198   //    wanted_receiver_class == receiver_class  &&  wanted_receiver_class == 0
6199   // is never true (receiver_class can't be zero).
6200   for (int row_num = 0; row_num < num_rows; row_num++) {
6201     // Row_offset should be a well-behaved positive number. The generated code relies
6202     // on that wrt constant code size. Add2reg can handle all row_offset values, but
6203     // will have to vary generated code size.
6204     int row_offset = in_bytes(ReceiverTypeData::receiver_offset(row_num));
6205     assert(Displacement::is_shortDisp(row_offset), "Limitation of generated code");
6206 
6207     // Is Rwanted_receiver_klass in this row?
6208     if (VM_Version::has_CompareBranch()) {
6209       z_lg(Rwanted_receiver_klass, row_offset, Z_R0, Rdata);
6210       // Rmatching_row = Rdata + row_offset;
6211       add2reg(Rmatching_row, row_offset, Rdata);
6212       // if (*row_recv == (intptr_t) receiver_klass) goto fill_existing_slot;
6213       compare64_and_branch(Rwanted_receiver_klass, Rreceiver_klass, Assembler::bcondEqual, do_increment);
6214     } else {
6215       add2reg(Rmatching_row, row_offset, Rdata);
6216       z_cg(Rreceiver_klass, row_offset, Z_R0, Rdata);
6217       z_bre(do_increment);
6218     }
6219   }
6220 
6221   // Now that we did not find a match, let's search for b).
6222 
6223   // We could save the first calculation of Rmatching_row if we woud search for a) in reverse order.
6224   // We would then end up here with Rmatching_row containing the value for row_num == 0.
6225   // We would not see much benefit, if any at all, because the CPU can schedule
6226   // two instructions together with a branch anyway.
6227   for (int row_num = 0; row_num < num_rows; row_num++) {
6228     int row_offset = in_bytes(ReceiverTypeData::receiver_offset(row_num));
6229 
6230     // Has this row a zero receiver_klass, i.e. is it empty?
6231     if (VM_Version::has_CompareBranch()) {
6232       z_lg(Rwanted_receiver_klass, row_offset, Z_R0, Rdata);
6233       // Rmatching_row = Rdata + row_offset
6234       add2reg(Rmatching_row, row_offset, Rdata);
6235       // if (*row_recv == (intptr_t) 0) goto found_free_row
6236       compare64_and_branch(Rwanted_receiver_klass, (intptr_t)0, Assembler::bcondEqual, found_free_row);
6237     } else {
6238       add2reg(Rmatching_row, row_offset, Rdata);
6239       load_and_test_long(Rwanted_receiver_klass, Address(Rdata, row_offset));
6240       z_bre(found_free_row);  // zero -> Found a free row.
6241     }
6242   }
6243 
6244   // No match, no empty row found.
6245   // Increment total counter to indicate polymorphic case.
6246   if (is_virtual_call) {
6247     add2mem_64(Address(Rdata, CounterData::count_offset()), 1, Rmatching_row);
6248   }
6249   z_bru(found_no_slot);
6250 
6251   // Here we found an empty row, but we have not found Rwanted_receiver_klass.
6252   // Rmatching_row holds the address to the first empty row.
6253   bind(found_free_row);
6254   // Store receiver_klass into empty slot.
6255   z_stg(Rreceiver_klass, 0, Z_R0, Rmatching_row);
6256 
6257   // Increment the counter of Rmatching_row.
6258   bind(do_increment);
6259   ByteSize counter_offset = ReceiverTypeData::receiver_count_offset(0) - ReceiverTypeData::receiver_offset(0);
6260   add2mem_64(Address(Rmatching_row, counter_offset), 1, Rdata);
6261 
6262   bind(found_no_slot);
6263 
6264   BLOCK_COMMENT("} type profiling");
6265 }
6266 
6267 //---------------------------------------
6268 // Helpers for Intrinsic Emitters
6269 //---------------------------------------
6270 
6271 /**
6272  * uint32_t crc;
6273  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
6274  */
6275 void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
6276   assert_different_registers(crc, table, tmp);
6277   assert_different_registers(val, table);
6278   if (crc == val) {      // Must rotate first to use the unmodified value.
6279     rotate_then_insert(tmp, val, 56-2, 63-2, 2, true);  // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
6280     z_srl(crc, 8);       // Unsigned shift, clear leftmost 8 bits.
6281   } else {
6282     z_srl(crc, 8);       // Unsigned shift, clear leftmost 8 bits.
6283     rotate_then_insert(tmp, val, 56-2, 63-2, 2, true);  // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
6284   }
6285   z_x(crc, Address(table, tmp, 0));
6286 }
6287 
6288 /**
6289  * uint32_t crc;
6290  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
6291  */
6292 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
6293   fold_byte_crc32(crc, crc, table, tmp);
6294 }
6295 
6296 /**
6297  * Emits code to update CRC-32 with a byte value according to constants in table.
6298  *
6299  * @param [in,out]crc Register containing the crc.
6300  * @param [in]val     Register containing the byte to fold into the CRC.
6301  * @param [in]table   Register containing the table of crc constants.
6302  *
6303  * uint32_t crc;
6304  * val = crc_table[(val ^ crc) & 0xFF];
6305  * crc = val ^ (crc >> 8);
6306  */
6307 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
6308   z_xr(val, crc);
6309   fold_byte_crc32(crc, val, table, val);
6310 }
6311 
6312 
6313 /**
6314  * @param crc   register containing existing CRC (32-bit)
6315  * @param buf   register pointing to input byte buffer (byte*)
6316  * @param len   register containing number of bytes
6317  * @param table register pointing to CRC table
6318  */
6319 void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table, Register data) {
6320   assert_different_registers(crc, buf, len, table, data);
6321 
6322   Label L_mainLoop, L_done;
6323   const int mainLoop_stepping = 1;
6324 
6325   // Process all bytes in a single-byte loop.
6326   z_ltr(len, len);
6327   z_brnh(L_done);
6328 
6329   bind(L_mainLoop);
6330     z_llgc(data, Address(buf, (intptr_t)0));// Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
6331     add2reg(buf, mainLoop_stepping);        // Advance buffer position.
6332     update_byte_crc32(crc, data, table);
6333     z_brct(len, L_mainLoop);                // Iterate.
6334 
6335   bind(L_done);
6336 }
6337 
6338 /**
6339  * Emits code to update CRC-32 with a 4-byte value according to constants in table.
6340  * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c.
6341  *
6342  */
6343 void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
6344                                         Register t0,  Register t1,  Register t2,    Register t3) {
6345   // This is what we implement (the DOBIG4 part):
6346   //
6347   // #define DOBIG4 c ^= *++buf4; \
6348   //         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
6349   //             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
6350   // #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
6351   // Pre-calculate (constant) column offsets, use columns 4..7 for big-endian.
6352   const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
6353   const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
6354   const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
6355   const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
6356 
6357   // XOR crc with next four bytes of buffer.
6358   lgr_if_needed(t0, crc);
6359   z_x(t0, Address(buf, bufDisp));
6360   if (bufInc != 0) {
6361     add2reg(buf, bufInc);
6362   }
6363 
6364   // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
6365   rotate_then_insert(t3, t0, 56-2, 63-2, 2,    true);  // ((c >>  0) & 0xff) << 2
6366   rotate_then_insert(t2, t0, 56-2, 63-2, 2-8,  true);  // ((c >>  8) & 0xff) << 2
6367   rotate_then_insert(t1, t0, 56-2, 63-2, 2-16, true);  // ((c >> 16) & 0xff) << 2
6368   rotate_then_insert(t0, t0, 56-2, 63-2, 2-24, true);  // ((c >> 24) & 0xff) << 2
6369 
6370   // XOR indexed table values to calculate updated crc.
6371   z_ly(t2, Address(table, t2, (intptr_t)ix1));
6372   z_ly(t0, Address(table, t0, (intptr_t)ix3));
6373   z_xy(t2, Address(table, t3, (intptr_t)ix0));
6374   z_xy(t0, Address(table, t1, (intptr_t)ix2));
6375   z_xr(t0, t2);           // Now t0 contains the updated CRC value.
6376   lgr_if_needed(crc, t0);
6377 }
6378 
6379 /**
6380  * @param crc   register containing existing CRC (32-bit)
6381  * @param buf   register pointing to input byte buffer (byte*)
6382  * @param len   register containing number of bytes
6383  * @param table register pointing to CRC table
6384  *
6385  * uses Z_R10..Z_R13 as work register. Must be saved/restored by caller!
6386  */
6387 void MacroAssembler::kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
6388                                         Register t0,  Register t1,  Register t2,  Register t3,
6389                                         bool invertCRC) {
6390   assert_different_registers(crc, buf, len, table);
6391 
6392   Label L_mainLoop, L_tail;
6393   Register  data = t0;
6394   Register  ctr  = Z_R0;
6395   const int mainLoop_stepping = 8;
6396   const int tailLoop_stepping = 1;
6397   const int log_stepping      = exact_log2(mainLoop_stepping);
6398 
6399   // Don't test for len <= 0 here. This pathological case should not occur anyway.
6400   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
6401   // The situation itself is detected and handled correctly by the conditional branches
6402   // following aghi(len, -stepping) and aghi(len, +stepping).
6403 
6404   if (invertCRC) {
6405     not_(crc, noreg, false);           // 1s complement of crc
6406   }
6407 
6408 #if 0
6409   {
6410     // Pre-mainLoop alignment did not show any positive effect on performance.
6411     // We leave the code in for reference. Maybe the vector instructions in z13 depend on alignment.
6412 
6413     z_cghi(len, mainLoop_stepping);    // Alignment is useless for short data streams.
6414     z_brnh(L_tail);
6415 
6416     // Align buf to word (4-byte) boundary.
6417     z_lcr(ctr, buf);
6418     rotate_then_insert(ctr, ctr, 62, 63, 0, true); // TODO: should set cc
6419     z_sgfr(len, ctr);                  // Remaining len after alignment.
6420 
6421     update_byteLoop_crc32(crc, buf, ctr, table, data);
6422   }
6423 #endif
6424 
6425   // Check for short (<mainLoop_stepping bytes) buffer.
6426   z_srag(ctr, len, log_stepping);
6427   z_brnh(L_tail);
6428 
6429   z_lrvr(crc, crc);          // Revert byte order because we are dealing with big-endian data.
6430   rotate_then_insert(len, len, 64-log_stepping, 63, 0, true); // #bytes for tailLoop
6431 
6432   BIND(L_mainLoop);
6433     update_1word_crc32(crc, buf, table, 0, 0, crc, t1, t2, t3);
6434     update_1word_crc32(crc, buf, table, 4, mainLoop_stepping, crc, t1, t2, t3);
6435     z_brct(ctr, L_mainLoop); // Iterate.
6436 
6437   z_lrvr(crc, crc);          // Revert byte order back to original.
6438 
6439   // Process last few (<8) bytes of buffer.
6440   BIND(L_tail);
6441   update_byteLoop_crc32(crc, buf, len, table, data);
6442 
6443   if (invertCRC) {
6444     not_(crc, noreg, false);           // 1s complement of crc
6445   }
6446 }
6447 
6448 /**
6449  * @param crc   register containing existing CRC (32-bit)
6450  * @param buf   register pointing to input byte buffer (byte*)
6451  * @param len   register containing number of bytes
6452  * @param table register pointing to CRC table
6453  *
6454  * uses Z_R10..Z_R13 as work register. Must be saved/restored by caller!
6455  */
6456 void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
6457                                         Register t0,  Register t1,  Register t2,  Register t3,
6458                                         bool invertCRC) {
6459   assert_different_registers(crc, buf, len, table);
6460 
6461   Label L_mainLoop, L_tail;
6462   Register  data = t0;
6463   Register  ctr  = Z_R0;
6464   const int mainLoop_stepping = 4;
6465   const int log_stepping      = exact_log2(mainLoop_stepping);
6466 
6467   // Don't test for len <= 0 here. This pathological case should not occur anyway.
6468   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
6469   // The situation itself is detected and handled correctly by the conditional branches
6470   // following aghi(len, -stepping) and aghi(len, +stepping).
6471 
6472   if (invertCRC) {
6473     not_(crc, noreg, false);           // 1s complement of crc
6474   }
6475 
6476   // Check for short (<4 bytes) buffer.
6477   z_srag(ctr, len, log_stepping);
6478   z_brnh(L_tail);
6479 
6480   z_lrvr(crc, crc);          // Revert byte order because we are dealing with big-endian data.
6481   rotate_then_insert(len, len, 64-log_stepping, 63, 0, true); // #bytes for tailLoop
6482 
6483   BIND(L_mainLoop);
6484     update_1word_crc32(crc, buf, table, 0, mainLoop_stepping, crc, t1, t2, t3);
6485     z_brct(ctr, L_mainLoop); // Iterate.
6486 
6487   z_lrvr(crc, crc);          // Revert byte order back to original.
6488 
6489   // Process last few (<8) bytes of buffer.
6490   BIND(L_tail);
6491   update_byteLoop_crc32(crc, buf, len, table, data);
6492 
6493   if (invertCRC) {
6494     not_(crc, noreg, false);           // 1s complement of crc
6495   }
6496 }
6497 
6498 /**
6499  * @param crc   register containing existing CRC (32-bit)
6500  * @param buf   register pointing to input byte buffer (byte*)
6501  * @param len   register containing number of bytes
6502  * @param table register pointing to CRC table
6503  */
6504 void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
6505                                         Register t0,  Register t1,  Register t2,  Register t3,
6506                                         bool invertCRC) {
6507   assert_different_registers(crc, buf, len, table);
6508   Register data = t0;
6509 
6510   if (invertCRC) {
6511     not_(crc, noreg, false);           // 1s complement of crc
6512   }
6513 
6514   update_byteLoop_crc32(crc, buf, len, table, data);
6515 
6516   if (invertCRC) {
6517     not_(crc, noreg, false);           // 1s complement of crc
6518   }
6519 }
6520 
6521 void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp,
6522                                              bool invertCRC) {
6523   assert_different_registers(crc, buf, len, table, tmp);
6524 
6525   if (invertCRC) {
6526     not_(crc, noreg, false);           // 1s complement of crc
6527   }
6528 
6529   z_llgc(tmp, Address(buf, (intptr_t)0));  // Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
6530   update_byte_crc32(crc, tmp, table);
6531 
6532   if (invertCRC) {
6533     not_(crc, noreg, false);           // 1s complement of crc
6534   }
6535 }
6536 
6537 void MacroAssembler::kernel_crc32_singleByteReg(Register crc, Register val, Register table,
6538                                                 bool invertCRC) {
6539   assert_different_registers(crc, val, table);
6540 
6541   if (invertCRC) {
6542     not_(crc, noreg, false);           // 1s complement of crc
6543   }
6544 
6545   update_byte_crc32(crc, val, table);
6546 
6547   if (invertCRC) {
6548     not_(crc, noreg, false);           // 1s complement of crc
6549   }
6550 }
6551 
6552 //
6553 // Code for BigInteger::multiplyToLen() intrinsic.
6554 //
6555 
6556 // dest_lo += src1 + src2
6557 // dest_hi += carry1 + carry2
6558 // Z_R7 is destroyed !
6559 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo,
6560                                      Register src1, Register src2) {
6561   clear_reg(Z_R7);
6562   z_algr(dest_lo, src1);
6563   z_alcgr(dest_hi, Z_R7);
6564   z_algr(dest_lo, src2);
6565   z_alcgr(dest_hi, Z_R7);
6566 }
6567 
6568 // Multiply 64 bit by 64 bit first loop.
6569 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
6570                                            Register x_xstart,
6571                                            Register y, Register y_idx,
6572                                            Register z,
6573                                            Register carry,
6574                                            Register product,
6575                                            Register idx, Register kdx) {
6576   // jlong carry, x[], y[], z[];
6577   // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
6578   //   huge_128 product = y[idx] * x[xstart] + carry;
6579   //   z[kdx] = (jlong)product;
6580   //   carry  = (jlong)(product >>> 64);
6581   // }
6582   // z[xstart] = carry;
6583 
6584   Label L_first_loop, L_first_loop_exit;
6585   Label L_one_x, L_one_y, L_multiply;
6586 
6587   z_aghi(xstart, -1);
6588   z_brl(L_one_x);   // Special case: length of x is 1.
6589 
6590   // Load next two integers of x.
6591   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
6592   mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
6593 
6594 
6595   bind(L_first_loop);
6596 
6597   z_aghi(idx, -1);
6598   z_brl(L_first_loop_exit);
6599   z_aghi(idx, -1);
6600   z_brl(L_one_y);
6601 
6602   // Load next two integers of y.
6603   z_sllg(Z_R1_scratch, idx, LogBytesPerInt);
6604   mem2reg_opt(y_idx, Address(y, Z_R1_scratch, 0));
6605 
6606 
6607   bind(L_multiply);
6608 
6609   Register multiplicand = product->successor();
6610   Register product_low = multiplicand;
6611 
6612   lgr_if_needed(multiplicand, x_xstart);
6613   z_mlgr(product, y_idx);     // multiplicand * y_idx -> product::multiplicand
6614   clear_reg(Z_R7);
6615   z_algr(product_low, carry); // Add carry to result.
6616   z_alcgr(product, Z_R7);     // Add carry of the last addition.
6617   add2reg(kdx, -2);
6618 
6619   // Store result.
6620   z_sllg(Z_R7, kdx, LogBytesPerInt);
6621   reg2mem_opt(product_low, Address(z, Z_R7, 0));
6622   lgr_if_needed(carry, product);
6623   z_bru(L_first_loop);
6624 
6625 
6626   bind(L_one_y); // Load one 32 bit portion of y as (0,value).
6627 
6628   clear_reg(y_idx);
6629   mem2reg_opt(y_idx, Address(y, (intptr_t) 0), false);
6630   z_bru(L_multiply);
6631 
6632 
6633   bind(L_one_x); // Load one 32 bit portion of x as (0,value).
6634 
6635   clear_reg(x_xstart);
6636   mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
6637   z_bru(L_first_loop);
6638 
6639   bind(L_first_loop_exit);
6640 }
6641 
6642 // Multiply 64 bit by 64 bit and add 128 bit.
6643 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
6644                                             Register z,
6645                                             Register yz_idx, Register idx,
6646                                             Register carry, Register product,
6647                                             int offset) {
6648   // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
6649   // z[kdx] = (jlong)product;
6650 
6651   Register multiplicand = product->successor();
6652   Register product_low = multiplicand;
6653 
6654   z_sllg(Z_R7, idx, LogBytesPerInt);
6655   mem2reg_opt(yz_idx, Address(y, Z_R7, offset));
6656 
6657   lgr_if_needed(multiplicand, x_xstart);
6658   z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
6659   mem2reg_opt(yz_idx, Address(z, Z_R7, offset));
6660 
6661   add2_with_carry(product, product_low, carry, yz_idx);
6662 
6663   z_sllg(Z_R7, idx, LogBytesPerInt);
6664   reg2mem_opt(product_low, Address(z, Z_R7, offset));
6665 
6666 }
6667 
6668 // Multiply 128 bit by 128 bit. Unrolled inner loop.
6669 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
6670                                              Register y, Register z,
6671                                              Register yz_idx, Register idx,
6672                                              Register jdx,
6673                                              Register carry, Register product,
6674                                              Register carry2) {
6675   // jlong carry, x[], y[], z[];
6676   // int kdx = ystart+1;
6677   // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
6678   //   huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
6679   //   z[kdx+idx+1] = (jlong)product;
6680   //   jlong carry2 = (jlong)(product >>> 64);
6681   //   product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
6682   //   z[kdx+idx] = (jlong)product;
6683   //   carry = (jlong)(product >>> 64);
6684   // }
6685   // idx += 2;
6686   // if (idx > 0) {
6687   //   product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
6688   //   z[kdx+idx] = (jlong)product;
6689   //   carry = (jlong)(product >>> 64);
6690   // }
6691 
6692   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
6693 
6694   // scale the index
6695   lgr_if_needed(jdx, idx);
6696   and_imm(jdx, 0xfffffffffffffffcL);
6697   rshift(jdx, 2);
6698 
6699 
6700   bind(L_third_loop);
6701 
6702   z_aghi(jdx, -1);
6703   z_brl(L_third_loop_exit);
6704   add2reg(idx, -4);
6705 
6706   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
6707   lgr_if_needed(carry2, product);
6708 
6709   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
6710   lgr_if_needed(carry, product);
6711   z_bru(L_third_loop);
6712 
6713 
6714   bind(L_third_loop_exit);  // Handle any left-over operand parts.
6715 
6716   and_imm(idx, 0x3);
6717   z_brz(L_post_third_loop_done);
6718 
6719   Label L_check_1;
6720 
6721   z_aghi(idx, -2);
6722   z_brl(L_check_1);
6723 
6724   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
6725   lgr_if_needed(carry, product);
6726 
6727 
6728   bind(L_check_1);
6729 
6730   add2reg(idx, 0x2);
6731   and_imm(idx, 0x1);
6732   z_aghi(idx, -1);
6733   z_brl(L_post_third_loop_done);
6734 
6735   Register   multiplicand = product->successor();
6736   Register   product_low = multiplicand;
6737 
6738   z_sllg(Z_R7, idx, LogBytesPerInt);
6739   clear_reg(yz_idx);
6740   mem2reg_opt(yz_idx, Address(y, Z_R7, 0), false);
6741   lgr_if_needed(multiplicand, x_xstart);
6742   z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
6743   clear_reg(yz_idx);
6744   mem2reg_opt(yz_idx, Address(z, Z_R7, 0), false);
6745 
6746   add2_with_carry(product, product_low, yz_idx, carry);
6747 
6748   z_sllg(Z_R7, idx, LogBytesPerInt);
6749   reg2mem_opt(product_low, Address(z, Z_R7, 0), false);
6750   rshift(product_low, 32);
6751 
6752   lshift(product, 32);
6753   z_ogr(product_low, product);
6754   lgr_if_needed(carry, product_low);
6755 
6756   bind(L_post_third_loop_done);
6757 }
6758 
6759 void MacroAssembler::multiply_to_len(Register x, Register xlen,
6760                                      Register y, Register ylen,
6761                                      Register z,
6762                                      Register tmp1, Register tmp2,
6763                                      Register tmp3, Register tmp4,
6764                                      Register tmp5) {
6765   ShortBranchVerifier sbv(this);
6766 
6767   assert_different_registers(x, xlen, y, ylen, z,
6768                              tmp1, tmp2, tmp3, tmp4, tmp5, Z_R1_scratch, Z_R7);
6769   assert_different_registers(x, xlen, y, ylen, z,
6770                              tmp1, tmp2, tmp3, tmp4, tmp5, Z_R8);
6771 
6772   z_stmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
6773 
6774   // In openJdk, we store the argument as 32-bit value to slot.
6775   Address zlen(Z_SP, _z_abi(remaining_cargs));  // Int in long on big endian.
6776 
6777   const Register idx = tmp1;
6778   const Register kdx = tmp2;
6779   const Register xstart = tmp3;
6780 
6781   const Register y_idx = tmp4;
6782   const Register carry = tmp5;
6783   const Register product  = Z_R0_scratch;
6784   const Register x_xstart = Z_R8;
6785 
6786   // First Loop.
6787   //
6788   //   final static long LONG_MASK = 0xffffffffL;
6789   //   int xstart = xlen - 1;
6790   //   int ystart = ylen - 1;
6791   //   long carry = 0;
6792   //   for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
6793   //     long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
6794   //     z[kdx] = (int)product;
6795   //     carry = product >>> 32;
6796   //   }
6797   //   z[xstart] = (int)carry;
6798   //
6799 
6800   lgr_if_needed(idx, ylen);  // idx = ylen
6801   z_llgf(kdx, zlen);         // C2 does not respect int to long conversion for stub calls, thus load zero-extended.
6802   clear_reg(carry);          // carry = 0
6803 
6804   Label L_done;
6805 
6806   lgr_if_needed(xstart, xlen);
6807   z_aghi(xstart, -1);
6808   z_brl(L_done);
6809 
6810   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
6811 
6812   NearLabel L_second_loop;
6813   compare64_and_branch(kdx, RegisterOrConstant((intptr_t) 0), bcondEqual, L_second_loop);
6814 
6815   NearLabel L_carry;
6816   z_aghi(kdx, -1);
6817   z_brz(L_carry);
6818 
6819   // Store lower 32 bits of carry.
6820   z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
6821   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6822   rshift(carry, 32);
6823   z_aghi(kdx, -1);
6824 
6825 
6826   bind(L_carry);
6827 
6828   // Store upper 32 bits of carry.
6829   z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
6830   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6831 
6832   // Second and third (nested) loops.
6833   //
6834   // for (int i = xstart-1; i >= 0; i--) { // Second loop
6835   //   carry = 0;
6836   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
6837   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
6838   //                    (z[k] & LONG_MASK) + carry;
6839   //     z[k] = (int)product;
6840   //     carry = product >>> 32;
6841   //   }
6842   //   z[i] = (int)carry;
6843   // }
6844   //
6845   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
6846 
6847   const Register jdx = tmp1;
6848 
6849   bind(L_second_loop);
6850 
6851   clear_reg(carry);           // carry = 0;
6852   lgr_if_needed(jdx, ylen);   // j = ystart+1
6853 
6854   z_aghi(xstart, -1);         // i = xstart-1;
6855   z_brl(L_done);
6856 
6857   // Use free slots in the current stackframe instead of push/pop.
6858   Address zsave(Z_SP, _z_abi(carg_1));
6859   reg2mem_opt(z, zsave);
6860 
6861 
6862   Label L_last_x;
6863 
6864   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
6865   load_address(z, Address(z, Z_R1_scratch, 4)); // z = z + k - j
6866   z_aghi(xstart, -1);                           // i = xstart-1;
6867   z_brl(L_last_x);
6868 
6869   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
6870   mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
6871 
6872 
6873   Label L_third_loop_prologue;
6874 
6875   bind(L_third_loop_prologue);
6876 
6877   Address xsave(Z_SP, _z_abi(carg_2));
6878   Address xlensave(Z_SP, _z_abi(carg_3));
6879   Address ylensave(Z_SP, _z_abi(carg_4));
6880 
6881   reg2mem_opt(x, xsave);
6882   reg2mem_opt(xstart, xlensave);
6883   reg2mem_opt(ylen, ylensave);
6884 
6885 
6886   multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
6887 
6888   mem2reg_opt(z, zsave);
6889   mem2reg_opt(x, xsave);
6890   mem2reg_opt(xlen, xlensave);   // This is the decrement of the loop counter!
6891   mem2reg_opt(ylen, ylensave);
6892 
6893   add2reg(tmp3, 1, xlen);
6894   z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
6895   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6896   z_aghi(tmp3, -1);
6897   z_brl(L_done);
6898 
6899   rshift(carry, 32);
6900   z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
6901   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6902   z_bru(L_second_loop);
6903 
6904   // Next infrequent code is moved outside loops.
6905   bind(L_last_x);
6906 
6907   clear_reg(x_xstart);
6908   mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
6909   z_bru(L_third_loop_prologue);
6910 
6911   bind(L_done);
6912 
6913   z_lmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
6914 }
6915 
6916 #ifndef PRODUCT
6917 // Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false).
6918 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
6919   Label ok;
6920   if (check_equal) {
6921     z_bre(ok);
6922   } else {
6923     z_brne(ok);
6924   }
6925   stop(msg, id);
6926   bind(ok);
6927 }
6928 
6929 // Assert if CC indicates "low".
6930 void MacroAssembler::asm_assert_low(const char *msg, int id) {
6931   Label ok;
6932   z_brnl(ok);
6933   stop(msg, id);
6934   bind(ok);
6935 }
6936 
6937 // Assert if CC indicates "high".
6938 void MacroAssembler::asm_assert_high(const char *msg, int id) {
6939   Label ok;
6940   z_brnh(ok);
6941   stop(msg, id);
6942   bind(ok);
6943 }
6944 
6945 // Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false)
6946 // generate non-relocatable code.
6947 void MacroAssembler::asm_assert_static(bool check_equal, const char *msg, int id) {
6948   Label ok;
6949   if (check_equal) { z_bre(ok); }
6950   else             { z_brne(ok); }
6951   stop_static(msg, id);
6952   bind(ok);
6953 }
6954 
6955 void MacroAssembler::asm_assert_mems_zero(bool check_equal, bool allow_relocation, int size, int64_t mem_offset,
6956                                           Register mem_base, const char* msg, int id) {
6957   switch (size) {
6958     case 4:
6959       load_and_test_int(Z_R0, Address(mem_base, mem_offset));
6960       break;
6961     case 8:
6962       load_and_test_long(Z_R0,  Address(mem_base, mem_offset));
6963       break;
6964     default:
6965       ShouldNotReachHere();
6966   }
6967   if (allow_relocation) { asm_assert(check_equal, msg, id); }
6968   else                  { asm_assert_static(check_equal, msg, id); }
6969 }
6970 
6971 // Check the condition
6972 //   expected_size == FP - SP
6973 // after transformation:
6974 //   expected_size - FP + SP == 0
6975 // Destroys Register expected_size if no tmp register is passed.
6976 void MacroAssembler::asm_assert_frame_size(Register expected_size, Register tmp, const char* msg, int id) {
6977   if (tmp == noreg) {
6978     tmp = expected_size;
6979   } else {
6980     if (tmp != expected_size) {
6981       z_lgr(tmp, expected_size);
6982     }
6983     z_algr(tmp, Z_SP);
6984     z_slg(tmp, 0, Z_R0, Z_SP);
6985     asm_assert_eq(msg, id);
6986   }
6987 }
6988 #endif // !PRODUCT
6989 
6990 void MacroAssembler::verify_thread() {
6991   if (VerifyThread) {
6992     unimplemented("", 117);
6993   }
6994 }
6995 
6996 // Plausibility check for oops.
6997 void MacroAssembler::verify_oop(Register oop, const char* msg) {
6998   if (!VerifyOops) return;
6999 
7000   BLOCK_COMMENT("verify_oop {");
7001   Register tmp = Z_R0;
7002   unsigned int nbytes_save = 5*BytesPerWord;
7003   address entry = StubRoutines::verify_oop_subroutine_entry_address();
7004 
7005   save_return_pc();
7006   push_frame_abi160(nbytes_save);
7007   z_stmg(Z_R1, Z_R5, frame::z_abi_160_size, Z_SP);
7008 
7009   z_lgr(Z_ARG2, oop);
7010   load_const(Z_ARG1, (address) msg);
7011   load_const(Z_R1, entry);
7012   z_lg(Z_R1, 0, Z_R1);
7013   call_c(Z_R1);
7014 
7015   z_lmg(Z_R1, Z_R5, frame::z_abi_160_size, Z_SP);
7016   pop_frame();
7017   restore_return_pc();
7018 
7019   BLOCK_COMMENT("} verify_oop ");
7020 }
7021 
7022 const char* MacroAssembler::stop_types[] = {
7023   "stop",
7024   "untested",
7025   "unimplemented",
7026   "shouldnotreachhere"
7027 };
7028 
7029 static void stop_on_request(const char* tp, const char* msg) {
7030   tty->print("Z assembly code requires stop: (%s) %s\n", tp, msg);
7031   guarantee(false, "Z assembly code requires stop: %s", msg);
7032 }
7033 
7034 void MacroAssembler::stop(int type, const char* msg, int id) {
7035   BLOCK_COMMENT(err_msg("stop: %s {", msg));
7036 
7037   // Setup arguments.
7038   load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
7039   load_const(Z_ARG2, (void*) msg);
7040   get_PC(Z_R14);     // Following code pushes a frame without entering a new function. Use current pc as return address.
7041   save_return_pc();  // Saves return pc Z_R14.
7042   push_frame_abi160(0);
7043   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
7044   // The plain disassembler does not recognize illtrap. It instead displays
7045   // a 32-bit value. Issueing two illtraps assures the disassembler finds
7046   // the proper beginning of the next instruction.
7047   z_illtrap(); // Illegal instruction.
7048   z_illtrap(); // Illegal instruction.
7049 
7050   BLOCK_COMMENT(" } stop");
7051 }
7052 
7053 // Special version of stop() for code size reduction.
7054 // Reuses the previously generated call sequence, if any.
7055 // Generates the call sequence on its own, if necessary.
7056 // Note: This code will work only in non-relocatable code!
7057 //       The relative address of the data elements (arg1, arg2) must not change.
7058 //       The reentry point must not move relative to it's users. This prerequisite
7059 //       should be given for "hand-written" code, if all chain calls are in the same code blob.
7060 //       Generated code must not undergo any transformation, e.g. ShortenBranches, to be safe.
7061 address MacroAssembler::stop_chain(address reentry, int type, const char* msg, int id, bool allow_relocation) {
7062   BLOCK_COMMENT(err_msg("stop_chain(%s,%s): %s {", reentry==NULL?"init":"cont", allow_relocation?"reloc ":"static", msg));
7063 
7064   // Setup arguments.
7065   if (allow_relocation) {
7066     // Relocatable version (for comparison purposes). Remove after some time.
7067     load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
7068     load_const(Z_ARG2, (void*) msg);
7069   } else {
7070     load_absolute_address(Z_ARG1, (address)stop_types[type%stop_end]);
7071     load_absolute_address(Z_ARG2, (address)msg);
7072   }
7073   if ((reentry != NULL) && RelAddr::is_in_range_of_RelAddr16(reentry, pc())) {
7074     BLOCK_COMMENT("branch to reentry point:");
7075     z_brc(bcondAlways, reentry);
7076   } else {
7077     BLOCK_COMMENT("reentry point:");
7078     reentry = pc();      // Re-entry point for subsequent stop calls.
7079     save_return_pc();    // Saves return pc Z_R14.
7080     push_frame_abi160(0);
7081     if (allow_relocation) {
7082       reentry = NULL;    // Prevent reentry if code relocation is allowed.
7083       call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
7084     } else {
7085       call_VM_leaf_static(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
7086     }
7087     z_illtrap(); // Illegal instruction as emergency stop, should the above call return.
7088   }
7089   BLOCK_COMMENT(" } stop_chain");
7090 
7091   return reentry;
7092 }
7093 
7094 // Special version of stop() for code size reduction.
7095 // Assumes constant relative addresses for data and runtime call.
7096 void MacroAssembler::stop_static(int type, const char* msg, int id) {
7097   stop_chain(NULL, type, msg, id, false);
7098 }
7099 
7100 void MacroAssembler::stop_subroutine() {
7101   unimplemented("stop_subroutine", 710);
7102 }
7103 
7104 // Prints msg to stdout from within generated code..
7105 void MacroAssembler::warn(const char* msg) {
7106   RegisterSaver::save_live_registers(this, RegisterSaver::all_registers, Z_R14);
7107   load_absolute_address(Z_R1, (address) warning);
7108   load_absolute_address(Z_ARG1, (address) msg);
7109   (void) call(Z_R1);
7110   RegisterSaver::restore_live_registers(this, RegisterSaver::all_registers);
7111 }
7112 
7113 #ifndef PRODUCT
7114 
7115 // Write pattern 0x0101010101010101 in region [low-before, high+after].
7116 void MacroAssembler::zap_from_to(Register low, Register high, Register val, Register addr, int before, int after) {
7117   if (!ZapEmptyStackFields) return;
7118   BLOCK_COMMENT("zap memory region {");
7119   load_const_optimized(val, 0x0101010101010101);
7120   int size = before + after;
7121   if (low == high && size < 5 && size > 0) {
7122     int offset = -before*BytesPerWord;
7123     for (int i = 0; i < size; ++i) {
7124       z_stg(val, Address(low, offset));
7125       offset +=(1*BytesPerWord);
7126     }
7127   } else {
7128     add2reg(addr, -before*BytesPerWord, low);
7129     if (after) {
7130 #ifdef ASSERT
7131       jlong check = after * BytesPerWord;
7132       assert(Immediate::is_simm32(check) && Immediate::is_simm32(-check), "value not encodable !");
7133 #endif
7134       add2reg(high, after * BytesPerWord);
7135     }
7136     NearLabel loop;
7137     bind(loop);
7138     z_stg(val, Address(addr));
7139     add2reg(addr, 8);
7140     compare64_and_branch(addr, high, bcondNotHigh, loop);
7141     if (after) {
7142       add2reg(high, -after * BytesPerWord);
7143     }
7144   }
7145   BLOCK_COMMENT("} zap memory region");
7146 }
7147 #endif // !PRODUCT
7148 
7149 SkipIfEqual::SkipIfEqual(MacroAssembler* masm, const bool* flag_addr, bool value, Register _rscratch) {
7150   _masm = masm;
7151   _masm->load_absolute_address(_rscratch, (address)flag_addr);
7152   _masm->load_and_test_int(_rscratch, Address(_rscratch));
7153   if (value) {
7154     _masm->z_brne(_label); // Skip if true, i.e. != 0.
7155   } else {
7156     _masm->z_bre(_label);  // Skip if false, i.e. == 0.
7157   }
7158 }
7159 
7160 SkipIfEqual::~SkipIfEqual() {
7161   _masm->bind(_label);
7162 }