1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsHeap.hpp"
  33 #include "gc/cms/cmsOopClosures.inline.hpp"
  34 #include "gc/cms/compactibleFreeListSpace.hpp"
  35 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc/cms/concurrentMarkSweepThread.hpp"
  37 #include "gc/cms/parNewGeneration.hpp"
  38 #include "gc/cms/vmCMSOperations.hpp"
  39 #include "gc/serial/genMarkSweep.hpp"
  40 #include "gc/serial/tenuredGeneration.hpp"
  41 #include "gc/shared/adaptiveSizePolicy.hpp"
  42 #include "gc/shared/cardGeneration.inline.hpp"
  43 #include "gc/shared/cardTableRS.hpp"
  44 #include "gc/shared/collectedHeap.inline.hpp"
  45 #include "gc/shared/collectorCounters.hpp"
  46 #include "gc/shared/collectorPolicy.hpp"
  47 #include "gc/shared/gcLocker.hpp"
  48 #include "gc/shared/gcPolicyCounters.hpp"
  49 #include "gc/shared/gcTimer.hpp"
  50 #include "gc/shared/gcTrace.hpp"
  51 #include "gc/shared/gcTraceTime.inline.hpp"
  52 #include "gc/shared/genCollectedHeap.hpp"
  53 #include "gc/shared/genOopClosures.inline.hpp"
  54 #include "gc/shared/isGCActiveMark.hpp"
  55 #include "gc/shared/referencePolicy.hpp"
  56 #include "gc/shared/strongRootsScope.hpp"
  57 #include "gc/shared/taskqueue.inline.hpp"
  58 #include "gc/shared/weakProcessor.hpp"
  59 #include "logging/log.hpp"
  60 #include "logging/logStream.hpp"
  61 #include "memory/allocation.hpp"
  62 #include "memory/iterator.inline.hpp"
  63 #include "memory/padded.hpp"
  64 #include "memory/resourceArea.hpp"
  65 #include "oops/access.inline.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "prims/jvmtiExport.hpp"
  68 #include "runtime/atomic.hpp"
  69 #include "runtime/globals_extension.hpp"
  70 #include "runtime/handles.inline.hpp"
  71 #include "runtime/java.hpp"
  72 #include "runtime/orderAccess.inline.hpp"
  73 #include "runtime/timer.hpp"
  74 #include "runtime/vmThread.hpp"
  75 #include "services/memoryService.hpp"
  76 #include "services/runtimeService.hpp"
  77 #include "utilities/align.hpp"
  78 #include "utilities/stack.inline.hpp"
  79 
  80 // statics
  81 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  82 bool CMSCollector::_full_gc_requested = false;
  83 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  84 
  85 //////////////////////////////////////////////////////////////////
  86 // In support of CMS/VM thread synchronization
  87 //////////////////////////////////////////////////////////////////
  88 // We split use of the CGC_lock into 2 "levels".
  89 // The low-level locking is of the usual CGC_lock monitor. We introduce
  90 // a higher level "token" (hereafter "CMS token") built on top of the
  91 // low level monitor (hereafter "CGC lock").
  92 // The token-passing protocol gives priority to the VM thread. The
  93 // CMS-lock doesn't provide any fairness guarantees, but clients
  94 // should ensure that it is only held for very short, bounded
  95 // durations.
  96 //
  97 // When either of the CMS thread or the VM thread is involved in
  98 // collection operations during which it does not want the other
  99 // thread to interfere, it obtains the CMS token.
 100 //
 101 // If either thread tries to get the token while the other has
 102 // it, that thread waits. However, if the VM thread and CMS thread
 103 // both want the token, then the VM thread gets priority while the
 104 // CMS thread waits. This ensures, for instance, that the "concurrent"
 105 // phases of the CMS thread's work do not block out the VM thread
 106 // for long periods of time as the CMS thread continues to hog
 107 // the token. (See bug 4616232).
 108 //
 109 // The baton-passing functions are, however, controlled by the
 110 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 111 // and here the low-level CMS lock, not the high level token,
 112 // ensures mutual exclusion.
 113 //
 114 // Two important conditions that we have to satisfy:
 115 // 1. if a thread does a low-level wait on the CMS lock, then it
 116 //    relinquishes the CMS token if it were holding that token
 117 //    when it acquired the low-level CMS lock.
 118 // 2. any low-level notifications on the low-level lock
 119 //    should only be sent when a thread has relinquished the token.
 120 //
 121 // In the absence of either property, we'd have potential deadlock.
 122 //
 123 // We protect each of the CMS (concurrent and sequential) phases
 124 // with the CMS _token_, not the CMS _lock_.
 125 //
 126 // The only code protected by CMS lock is the token acquisition code
 127 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 128 // baton-passing code.
 129 //
 130 // Unfortunately, i couldn't come up with a good abstraction to factor and
 131 // hide the naked CGC_lock manipulation in the baton-passing code
 132 // further below. That's something we should try to do. Also, the proof
 133 // of correctness of this 2-level locking scheme is far from obvious,
 134 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 135 // that there may be a theoretical possibility of delay/starvation in the
 136 // low-level lock/wait/notify scheme used for the baton-passing because of
 137 // potential interference with the priority scheme embodied in the
 138 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 139 // invocation further below and marked with "XXX 20011219YSR".
 140 // Indeed, as we note elsewhere, this may become yet more slippery
 141 // in the presence of multiple CMS and/or multiple VM threads. XXX
 142 
 143 class CMSTokenSync: public StackObj {
 144  private:
 145   bool _is_cms_thread;
 146  public:
 147   CMSTokenSync(bool is_cms_thread):
 148     _is_cms_thread(is_cms_thread) {
 149     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 150            "Incorrect argument to constructor");
 151     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 152   }
 153 
 154   ~CMSTokenSync() {
 155     assert(_is_cms_thread ?
 156              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 157              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 158           "Incorrect state");
 159     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 160   }
 161 };
 162 
 163 // Convenience class that does a CMSTokenSync, and then acquires
 164 // upto three locks.
 165 class CMSTokenSyncWithLocks: public CMSTokenSync {
 166  private:
 167   // Note: locks are acquired in textual declaration order
 168   // and released in the opposite order
 169   MutexLockerEx _locker1, _locker2, _locker3;
 170  public:
 171   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 172                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 173     CMSTokenSync(is_cms_thread),
 174     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 175     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 176     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 177   { }
 178 };
 179 
 180 
 181 //////////////////////////////////////////////////////////////////
 182 //  Concurrent Mark-Sweep Generation /////////////////////////////
 183 //////////////////////////////////////////////////////////////////
 184 
 185 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 186 
 187 // This struct contains per-thread things necessary to support parallel
 188 // young-gen collection.
 189 class CMSParGCThreadState: public CHeapObj<mtGC> {
 190  public:
 191   CompactibleFreeListSpaceLAB lab;
 192   PromotionInfo promo;
 193 
 194   // Constructor.
 195   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 196     promo.setSpace(cfls);
 197   }
 198 };
 199 
 200 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 201      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 202   CardGeneration(rs, initial_byte_size, ct),
 203   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 204   _did_compact(false)
 205 {
 206   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 207   HeapWord* end    = (HeapWord*) _virtual_space.high();
 208 
 209   _direct_allocated_words = 0;
 210   NOT_PRODUCT(
 211     _numObjectsPromoted = 0;
 212     _numWordsPromoted = 0;
 213     _numObjectsAllocated = 0;
 214     _numWordsAllocated = 0;
 215   )
 216 
 217   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 218   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 219   _cmsSpace->_old_gen = this;
 220 
 221   _gc_stats = new CMSGCStats();
 222 
 223   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 224   // offsets match. The ability to tell free chunks from objects
 225   // depends on this property.
 226   debug_only(
 227     FreeChunk* junk = NULL;
 228     assert(UseCompressedClassPointers ||
 229            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 230            "Offset of FreeChunk::_prev within FreeChunk must match"
 231            "  that of OopDesc::_klass within OopDesc");
 232   )
 233 
 234   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 235   for (uint i = 0; i < ParallelGCThreads; i++) {
 236     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 237   }
 238 
 239   _incremental_collection_failed = false;
 240   // The "dilatation_factor" is the expansion that can occur on
 241   // account of the fact that the minimum object size in the CMS
 242   // generation may be larger than that in, say, a contiguous young
 243   //  generation.
 244   // Ideally, in the calculation below, we'd compute the dilatation
 245   // factor as: MinChunkSize/(promoting_gen's min object size)
 246   // Since we do not have such a general query interface for the
 247   // promoting generation, we'll instead just use the minimum
 248   // object size (which today is a header's worth of space);
 249   // note that all arithmetic is in units of HeapWords.
 250   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 251   assert(_dilatation_factor >= 1.0, "from previous assert");
 252 }
 253 
 254 
 255 // The field "_initiating_occupancy" represents the occupancy percentage
 256 // at which we trigger a new collection cycle.  Unless explicitly specified
 257 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 258 // is calculated by:
 259 //
 260 //   Let "f" be MinHeapFreeRatio in
 261 //
 262 //    _initiating_occupancy = 100-f +
 263 //                           f * (CMSTriggerRatio/100)
 264 //   where CMSTriggerRatio is the argument "tr" below.
 265 //
 266 // That is, if we assume the heap is at its desired maximum occupancy at the
 267 // end of a collection, we let CMSTriggerRatio of the (purported) free
 268 // space be allocated before initiating a new collection cycle.
 269 //
 270 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 271   assert(io <= 100 && tr <= 100, "Check the arguments");
 272   if (io >= 0) {
 273     _initiating_occupancy = (double)io / 100.0;
 274   } else {
 275     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 276                              (double)(tr * MinHeapFreeRatio) / 100.0)
 277                             / 100.0;
 278   }
 279 }
 280 
 281 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 282   assert(collector() != NULL, "no collector");
 283   collector()->ref_processor_init();
 284 }
 285 
 286 void CMSCollector::ref_processor_init() {
 287   if (_ref_processor == NULL) {
 288     // Allocate and initialize a reference processor
 289     _ref_processor =
 290       new ReferenceProcessor(_span,                               // span
 291                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 292                              ParallelGCThreads,                   // mt processing degree
 293                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 294                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 295                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 296                              &_is_alive_closure);                 // closure for liveness info
 297     // Initialize the _ref_processor field of CMSGen
 298     _cmsGen->set_ref_processor(_ref_processor);
 299 
 300   }
 301 }
 302 
 303 AdaptiveSizePolicy* CMSCollector::size_policy() {
 304   return CMSHeap::heap()->size_policy();
 305 }
 306 
 307 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 308 
 309   const char* gen_name = "old";
 310   GenCollectorPolicy* gcp = CMSHeap::heap()->gen_policy();
 311   // Generation Counters - generation 1, 1 subspace
 312   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 313       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 314 
 315   _space_counters = new GSpaceCounters(gen_name, 0,
 316                                        _virtual_space.reserved_size(),
 317                                        this, _gen_counters);
 318 }
 319 
 320 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 321   _cms_gen(cms_gen)
 322 {
 323   assert(alpha <= 100, "bad value");
 324   _saved_alpha = alpha;
 325 
 326   // Initialize the alphas to the bootstrap value of 100.
 327   _gc0_alpha = _cms_alpha = 100;
 328 
 329   _cms_begin_time.update();
 330   _cms_end_time.update();
 331 
 332   _gc0_duration = 0.0;
 333   _gc0_period = 0.0;
 334   _gc0_promoted = 0;
 335 
 336   _cms_duration = 0.0;
 337   _cms_period = 0.0;
 338   _cms_allocated = 0;
 339 
 340   _cms_used_at_gc0_begin = 0;
 341   _cms_used_at_gc0_end = 0;
 342   _allow_duty_cycle_reduction = false;
 343   _valid_bits = 0;
 344 }
 345 
 346 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 347   // TBD: CR 6909490
 348   return 1.0;
 349 }
 350 
 351 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 352 }
 353 
 354 // If promotion failure handling is on use
 355 // the padded average size of the promotion for each
 356 // young generation collection.
 357 double CMSStats::time_until_cms_gen_full() const {
 358   size_t cms_free = _cms_gen->cmsSpace()->free();
 359   CMSHeap* heap = CMSHeap::heap();
 360   size_t expected_promotion = MIN2(heap->young_gen()->capacity(),
 361                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 362   if (cms_free > expected_promotion) {
 363     // Start a cms collection if there isn't enough space to promote
 364     // for the next young collection.  Use the padded average as
 365     // a safety factor.
 366     cms_free -= expected_promotion;
 367 
 368     // Adjust by the safety factor.
 369     double cms_free_dbl = (double)cms_free;
 370     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 371     // Apply a further correction factor which tries to adjust
 372     // for recent occurance of concurrent mode failures.
 373     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 374     cms_free_dbl = cms_free_dbl * cms_adjustment;
 375 
 376     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 377                   cms_free, expected_promotion);
 378     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 379     // Add 1 in case the consumption rate goes to zero.
 380     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 381   }
 382   return 0.0;
 383 }
 384 
 385 // Compare the duration of the cms collection to the
 386 // time remaining before the cms generation is empty.
 387 // Note that the time from the start of the cms collection
 388 // to the start of the cms sweep (less than the total
 389 // duration of the cms collection) can be used.  This
 390 // has been tried and some applications experienced
 391 // promotion failures early in execution.  This was
 392 // possibly because the averages were not accurate
 393 // enough at the beginning.
 394 double CMSStats::time_until_cms_start() const {
 395   // We add "gc0_period" to the "work" calculation
 396   // below because this query is done (mostly) at the
 397   // end of a scavenge, so we need to conservatively
 398   // account for that much possible delay
 399   // in the query so as to avoid concurrent mode failures
 400   // due to starting the collection just a wee bit too
 401   // late.
 402   double work = cms_duration() + gc0_period();
 403   double deadline = time_until_cms_gen_full();
 404   // If a concurrent mode failure occurred recently, we want to be
 405   // more conservative and halve our expected time_until_cms_gen_full()
 406   if (work > deadline) {
 407     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 408                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 409     return 0.0;
 410   }
 411   return work - deadline;
 412 }
 413 
 414 #ifndef PRODUCT
 415 void CMSStats::print_on(outputStream *st) const {
 416   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 417   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 418                gc0_duration(), gc0_period(), gc0_promoted());
 419   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 420             cms_duration(), cms_period(), cms_allocated());
 421   st->print(",cms_since_beg=%g,cms_since_end=%g",
 422             cms_time_since_begin(), cms_time_since_end());
 423   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 424             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 425 
 426   if (valid()) {
 427     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 428               promotion_rate(), cms_allocation_rate());
 429     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 430               cms_consumption_rate(), time_until_cms_gen_full());
 431   }
 432   st->cr();
 433 }
 434 #endif // #ifndef PRODUCT
 435 
 436 CMSCollector::CollectorState CMSCollector::_collectorState =
 437                              CMSCollector::Idling;
 438 bool CMSCollector::_foregroundGCIsActive = false;
 439 bool CMSCollector::_foregroundGCShouldWait = false;
 440 
 441 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 442                            CardTableRS*                   ct,
 443                            ConcurrentMarkSweepPolicy*     cp):
 444   _cmsGen(cmsGen),
 445   _ct(ct),
 446   _ref_processor(NULL),    // will be set later
 447   _conc_workers(NULL),     // may be set later
 448   _abort_preclean(false),
 449   _start_sampling(false),
 450   _between_prologue_and_epilogue(false),
 451   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 452   _modUnionTable((CardTable::card_shift - LogHeapWordSize),
 453                  -1 /* lock-free */, "No_lock" /* dummy */),
 454   _modUnionClosurePar(&_modUnionTable),
 455   // Adjust my span to cover old (cms) gen
 456   _span(cmsGen->reserved()),
 457   // Construct the is_alive_closure with _span & markBitMap
 458   _is_alive_closure(_span, &_markBitMap),
 459   _restart_addr(NULL),
 460   _overflow_list(NULL),
 461   _stats(cmsGen),
 462   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 463                              //verify that this lock should be acquired with safepoint check.
 464                              Monitor::_safepoint_check_sometimes)),
 465   _eden_chunk_array(NULL),     // may be set in ctor body
 466   _eden_chunk_capacity(0),     // -- ditto --
 467   _eden_chunk_index(0),        // -- ditto --
 468   _survivor_plab_array(NULL),  // -- ditto --
 469   _survivor_chunk_array(NULL), // -- ditto --
 470   _survivor_chunk_capacity(0), // -- ditto --
 471   _survivor_chunk_index(0),    // -- ditto --
 472   _ser_pmc_preclean_ovflw(0),
 473   _ser_kac_preclean_ovflw(0),
 474   _ser_pmc_remark_ovflw(0),
 475   _par_pmc_remark_ovflw(0),
 476   _ser_kac_ovflw(0),
 477   _par_kac_ovflw(0),
 478 #ifndef PRODUCT
 479   _num_par_pushes(0),
 480 #endif
 481   _collection_count_start(0),
 482   _verifying(false),
 483   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 484   _completed_initialization(false),
 485   _collector_policy(cp),
 486   _should_unload_classes(CMSClassUnloadingEnabled),
 487   _concurrent_cycles_since_last_unload(0),
 488   _roots_scanning_options(GenCollectedHeap::SO_None),
 489   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 490   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 491   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 492   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 493   _cms_start_registered(false)
 494 {
 495   // Now expand the span and allocate the collection support structures
 496   // (MUT, marking bit map etc.) to cover both generations subject to
 497   // collection.
 498 
 499   // For use by dirty card to oop closures.
 500   _cmsGen->cmsSpace()->set_collector(this);
 501 
 502   // Allocate MUT and marking bit map
 503   {
 504     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 505     if (!_markBitMap.allocate(_span)) {
 506       log_warning(gc)("Failed to allocate CMS Bit Map");
 507       return;
 508     }
 509     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 510   }
 511   {
 512     _modUnionTable.allocate(_span);
 513     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 514   }
 515 
 516   if (!_markStack.allocate(MarkStackSize)) {
 517     log_warning(gc)("Failed to allocate CMS Marking Stack");
 518     return;
 519   }
 520 
 521   // Support for multi-threaded concurrent phases
 522   if (CMSConcurrentMTEnabled) {
 523     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 524       // just for now
 525       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 526     }
 527     if (ConcGCThreads > 1) {
 528       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 529                                  ConcGCThreads, true);
 530       if (_conc_workers == NULL) {
 531         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 532         CMSConcurrentMTEnabled = false;
 533       } else {
 534         _conc_workers->initialize_workers();
 535       }
 536     } else {
 537       CMSConcurrentMTEnabled = false;
 538     }
 539   }
 540   if (!CMSConcurrentMTEnabled) {
 541     ConcGCThreads = 0;
 542   } else {
 543     // Turn off CMSCleanOnEnter optimization temporarily for
 544     // the MT case where it's not fixed yet; see 6178663.
 545     CMSCleanOnEnter = false;
 546   }
 547   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 548          "Inconsistency");
 549   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 550   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 551 
 552   // Parallel task queues; these are shared for the
 553   // concurrent and stop-world phases of CMS, but
 554   // are not shared with parallel scavenge (ParNew).
 555   {
 556     uint i;
 557     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 558 
 559     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 560          || ParallelRefProcEnabled)
 561         && num_queues > 0) {
 562       _task_queues = new OopTaskQueueSet(num_queues);
 563       if (_task_queues == NULL) {
 564         log_warning(gc)("task_queues allocation failure.");
 565         return;
 566       }
 567       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 568       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 569       for (i = 0; i < num_queues; i++) {
 570         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 571         if (q == NULL) {
 572           log_warning(gc)("work_queue allocation failure.");
 573           return;
 574         }
 575         _task_queues->register_queue(i, q);
 576       }
 577       for (i = 0; i < num_queues; i++) {
 578         _task_queues->queue(i)->initialize();
 579         _hash_seed[i] = 17;  // copied from ParNew
 580       }
 581     }
 582   }
 583 
 584   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 585 
 586   // Clip CMSBootstrapOccupancy between 0 and 100.
 587   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 588 
 589   // Now tell CMS generations the identity of their collector
 590   ConcurrentMarkSweepGeneration::set_collector(this);
 591 
 592   // Create & start a CMS thread for this CMS collector
 593   _cmsThread = ConcurrentMarkSweepThread::start(this);
 594   assert(cmsThread() != NULL, "CMS Thread should have been created");
 595   assert(cmsThread()->collector() == this,
 596          "CMS Thread should refer to this gen");
 597   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 598 
 599   // Support for parallelizing young gen rescan
 600   CMSHeap* heap = CMSHeap::heap();
 601   assert(heap->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 602   _young_gen = (ParNewGeneration*)heap->young_gen();
 603   if (heap->supports_inline_contig_alloc()) {
 604     _top_addr = heap->top_addr();
 605     _end_addr = heap->end_addr();
 606     assert(_young_gen != NULL, "no _young_gen");
 607     _eden_chunk_index = 0;
 608     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 609     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 610   }
 611 
 612   // Support for parallelizing survivor space rescan
 613   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 614     const size_t max_plab_samples =
 615       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 616 
 617     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 618     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 619     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 620     _survivor_chunk_capacity = max_plab_samples;
 621     for (uint i = 0; i < ParallelGCThreads; i++) {
 622       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 623       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 624       assert(cur->end() == 0, "Should be 0");
 625       assert(cur->array() == vec, "Should be vec");
 626       assert(cur->capacity() == max_plab_samples, "Error");
 627     }
 628   }
 629 
 630   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 631   _gc_counters = new CollectorCounters("CMS", 1);
 632   _cgc_counters = new CollectorCounters("CMS stop-the-world phases", 2);
 633   _completed_initialization = true;
 634   _inter_sweep_timer.start();  // start of time
 635 }
 636 
 637 const char* ConcurrentMarkSweepGeneration::name() const {
 638   return "concurrent mark-sweep generation";
 639 }
 640 void ConcurrentMarkSweepGeneration::update_counters() {
 641   if (UsePerfData) {
 642     _space_counters->update_all();
 643     _gen_counters->update_all();
 644   }
 645 }
 646 
 647 // this is an optimized version of update_counters(). it takes the
 648 // used value as a parameter rather than computing it.
 649 //
 650 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 651   if (UsePerfData) {
 652     _space_counters->update_used(used);
 653     _space_counters->update_capacity();
 654     _gen_counters->update_all();
 655   }
 656 }
 657 
 658 void ConcurrentMarkSweepGeneration::print() const {
 659   Generation::print();
 660   cmsSpace()->print();
 661 }
 662 
 663 #ifndef PRODUCT
 664 void ConcurrentMarkSweepGeneration::print_statistics() {
 665   cmsSpace()->printFLCensus(0);
 666 }
 667 #endif
 668 
 669 size_t
 670 ConcurrentMarkSweepGeneration::contiguous_available() const {
 671   // dld proposes an improvement in precision here. If the committed
 672   // part of the space ends in a free block we should add that to
 673   // uncommitted size in the calculation below. Will make this
 674   // change later, staying with the approximation below for the
 675   // time being. -- ysr.
 676   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 677 }
 678 
 679 size_t
 680 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 681   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 682 }
 683 
 684 size_t ConcurrentMarkSweepGeneration::max_available() const {
 685   return free() + _virtual_space.uncommitted_size();
 686 }
 687 
 688 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 689   size_t available = max_available();
 690   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 691   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 692   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 693                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 694   return res;
 695 }
 696 
 697 // At a promotion failure dump information on block layout in heap
 698 // (cms old generation).
 699 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 700   Log(gc, promotion) log;
 701   if (log.is_trace()) {
 702     LogStream ls(log.trace());
 703     cmsSpace()->dump_at_safepoint_with_locks(collector(), &ls);
 704   }
 705 }
 706 
 707 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 708   // Clear the promotion information.  These pointers can be adjusted
 709   // along with all the other pointers into the heap but
 710   // compaction is expected to be a rare event with
 711   // a heap using cms so don't do it without seeing the need.
 712   for (uint i = 0; i < ParallelGCThreads; i++) {
 713     _par_gc_thread_states[i]->promo.reset();
 714   }
 715 }
 716 
 717 void ConcurrentMarkSweepGeneration::compute_new_size() {
 718   assert_locked_or_safepoint(Heap_lock);
 719 
 720   // If incremental collection failed, we just want to expand
 721   // to the limit.
 722   if (incremental_collection_failed()) {
 723     clear_incremental_collection_failed();
 724     grow_to_reserved();
 725     return;
 726   }
 727 
 728   // The heap has been compacted but not reset yet.
 729   // Any metric such as free() or used() will be incorrect.
 730 
 731   CardGeneration::compute_new_size();
 732 
 733   // Reset again after a possible resizing
 734   if (did_compact()) {
 735     cmsSpace()->reset_after_compaction();
 736   }
 737 }
 738 
 739 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 740   assert_locked_or_safepoint(Heap_lock);
 741 
 742   // If incremental collection failed, we just want to expand
 743   // to the limit.
 744   if (incremental_collection_failed()) {
 745     clear_incremental_collection_failed();
 746     grow_to_reserved();
 747     return;
 748   }
 749 
 750   double free_percentage = ((double) free()) / capacity();
 751   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 752   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 753 
 754   // compute expansion delta needed for reaching desired free percentage
 755   if (free_percentage < desired_free_percentage) {
 756     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 757     assert(desired_capacity >= capacity(), "invalid expansion size");
 758     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 759     Log(gc) log;
 760     if (log.is_trace()) {
 761       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 762       log.trace("From compute_new_size: ");
 763       log.trace("  Free fraction %f", free_percentage);
 764       log.trace("  Desired free fraction %f", desired_free_percentage);
 765       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 766       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 767       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 768       CMSHeap* heap = CMSHeap::heap();
 769       assert(heap->is_old_gen(this), "The CMS generation should always be the old generation");
 770       size_t young_size = heap->young_gen()->capacity();
 771       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 772       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 773       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 774       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 775     }
 776     // safe if expansion fails
 777     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 778     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 779   } else {
 780     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 781     assert(desired_capacity <= capacity(), "invalid expansion size");
 782     size_t shrink_bytes = capacity() - desired_capacity;
 783     // Don't shrink unless the delta is greater than the minimum shrink we want
 784     if (shrink_bytes >= MinHeapDeltaBytes) {
 785       shrink_free_list_by(shrink_bytes);
 786     }
 787   }
 788 }
 789 
 790 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 791   return cmsSpace()->freelistLock();
 792 }
 793 
 794 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 795   CMSSynchronousYieldRequest yr;
 796   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 797   return have_lock_and_allocate(size, tlab);
 798 }
 799 
 800 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 801                                                                 bool   tlab /* ignored */) {
 802   assert_lock_strong(freelistLock());
 803   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 804   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 805   // Allocate the object live (grey) if the background collector has
 806   // started marking. This is necessary because the marker may
 807   // have passed this address and consequently this object will
 808   // not otherwise be greyed and would be incorrectly swept up.
 809   // Note that if this object contains references, the writing
 810   // of those references will dirty the card containing this object
 811   // allowing the object to be blackened (and its references scanned)
 812   // either during a preclean phase or at the final checkpoint.
 813   if (res != NULL) {
 814     // We may block here with an uninitialized object with
 815     // its mark-bit or P-bits not yet set. Such objects need
 816     // to be safely navigable by block_start().
 817     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 818     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 819     collector()->direct_allocated(res, adjustedSize);
 820     _direct_allocated_words += adjustedSize;
 821     // allocation counters
 822     NOT_PRODUCT(
 823       _numObjectsAllocated++;
 824       _numWordsAllocated += (int)adjustedSize;
 825     )
 826   }
 827   return res;
 828 }
 829 
 830 // In the case of direct allocation by mutators in a generation that
 831 // is being concurrently collected, the object must be allocated
 832 // live (grey) if the background collector has started marking.
 833 // This is necessary because the marker may
 834 // have passed this address and consequently this object will
 835 // not otherwise be greyed and would be incorrectly swept up.
 836 // Note that if this object contains references, the writing
 837 // of those references will dirty the card containing this object
 838 // allowing the object to be blackened (and its references scanned)
 839 // either during a preclean phase or at the final checkpoint.
 840 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 841   assert(_markBitMap.covers(start, size), "Out of bounds");
 842   if (_collectorState >= Marking) {
 843     MutexLockerEx y(_markBitMap.lock(),
 844                     Mutex::_no_safepoint_check_flag);
 845     // [see comments preceding SweepClosure::do_blk() below for details]
 846     //
 847     // Can the P-bits be deleted now?  JJJ
 848     //
 849     // 1. need to mark the object as live so it isn't collected
 850     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 851     // 3. need to mark the end of the object so marking, precleaning or sweeping
 852     //    can skip over uninitialized or unparsable objects. An allocated
 853     //    object is considered uninitialized for our purposes as long as
 854     //    its klass word is NULL.  All old gen objects are parsable
 855     //    as soon as they are initialized.)
 856     _markBitMap.mark(start);          // object is live
 857     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 858     _markBitMap.mark(start + size - 1);
 859                                       // mark end of object
 860   }
 861   // check that oop looks uninitialized
 862   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 863 }
 864 
 865 void CMSCollector::promoted(bool par, HeapWord* start,
 866                             bool is_obj_array, size_t obj_size) {
 867   assert(_markBitMap.covers(start), "Out of bounds");
 868   // See comment in direct_allocated() about when objects should
 869   // be allocated live.
 870   if (_collectorState >= Marking) {
 871     // we already hold the marking bit map lock, taken in
 872     // the prologue
 873     if (par) {
 874       _markBitMap.par_mark(start);
 875     } else {
 876       _markBitMap.mark(start);
 877     }
 878     // We don't need to mark the object as uninitialized (as
 879     // in direct_allocated above) because this is being done with the
 880     // world stopped and the object will be initialized by the
 881     // time the marking, precleaning or sweeping get to look at it.
 882     // But see the code for copying objects into the CMS generation,
 883     // where we need to ensure that concurrent readers of the
 884     // block offset table are able to safely navigate a block that
 885     // is in flux from being free to being allocated (and in
 886     // transition while being copied into) and subsequently
 887     // becoming a bona-fide object when the copy/promotion is complete.
 888     assert(SafepointSynchronize::is_at_safepoint(),
 889            "expect promotion only at safepoints");
 890 
 891     if (_collectorState < Sweeping) {
 892       // Mark the appropriate cards in the modUnionTable, so that
 893       // this object gets scanned before the sweep. If this is
 894       // not done, CMS generation references in the object might
 895       // not get marked.
 896       // For the case of arrays, which are otherwise precisely
 897       // marked, we need to dirty the entire array, not just its head.
 898       if (is_obj_array) {
 899         // The [par_]mark_range() method expects mr.end() below to
 900         // be aligned to the granularity of a bit's representation
 901         // in the heap. In the case of the MUT below, that's a
 902         // card size.
 903         MemRegion mr(start,
 904                      align_up(start + obj_size,
 905                               CardTable::card_size /* bytes */));
 906         if (par) {
 907           _modUnionTable.par_mark_range(mr);
 908         } else {
 909           _modUnionTable.mark_range(mr);
 910         }
 911       } else {  // not an obj array; we can just mark the head
 912         if (par) {
 913           _modUnionTable.par_mark(start);
 914         } else {
 915           _modUnionTable.mark(start);
 916         }
 917       }
 918     }
 919   }
 920 }
 921 
 922 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 923   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 924   // allocate, copy and if necessary update promoinfo --
 925   // delegate to underlying space.
 926   assert_lock_strong(freelistLock());
 927 
 928 #ifndef PRODUCT
 929   if (CMSHeap::heap()->promotion_should_fail()) {
 930     return NULL;
 931   }
 932 #endif  // #ifndef PRODUCT
 933 
 934   oop res = _cmsSpace->promote(obj, obj_size);
 935   if (res == NULL) {
 936     // expand and retry
 937     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 938     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 939     // Since this is the old generation, we don't try to promote
 940     // into a more senior generation.
 941     res = _cmsSpace->promote(obj, obj_size);
 942   }
 943   if (res != NULL) {
 944     // See comment in allocate() about when objects should
 945     // be allocated live.
 946     assert(oopDesc::is_oop(obj), "Will dereference klass pointer below");
 947     collector()->promoted(false,           // Not parallel
 948                           (HeapWord*)res, obj->is_objArray(), obj_size);
 949     // promotion counters
 950     NOT_PRODUCT(
 951       _numObjectsPromoted++;
 952       _numWordsPromoted +=
 953         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 954     )
 955   }
 956   return res;
 957 }
 958 
 959 
 960 // IMPORTANT: Notes on object size recognition in CMS.
 961 // ---------------------------------------------------
 962 // A block of storage in the CMS generation is always in
 963 // one of three states. A free block (FREE), an allocated
 964 // object (OBJECT) whose size() method reports the correct size,
 965 // and an intermediate state (TRANSIENT) in which its size cannot
 966 // be accurately determined.
 967 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 968 // -----------------------------------------------------
 969 // FREE:      klass_word & 1 == 1; mark_word holds block size
 970 //
 971 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 972 //            obj->size() computes correct size
 973 //
 974 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 975 //
 976 // STATE IDENTIFICATION: (64 bit+COOPS)
 977 // ------------------------------------
 978 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 979 //
 980 // OBJECT:    klass_word installed; klass_word != 0;
 981 //            obj->size() computes correct size
 982 //
 983 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 984 //
 985 //
 986 // STATE TRANSITION DIAGRAM
 987 //
 988 //        mut / parnew                     mut  /  parnew
 989 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 990 //  ^                                                                   |
 991 //  |------------------------ DEAD <------------------------------------|
 992 //         sweep                            mut
 993 //
 994 // While a block is in TRANSIENT state its size cannot be determined
 995 // so readers will either need to come back later or stall until
 996 // the size can be determined. Note that for the case of direct
 997 // allocation, P-bits, when available, may be used to determine the
 998 // size of an object that may not yet have been initialized.
 999 
1000 // Things to support parallel young-gen collection.
1001 oop
1002 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1003                                            oop old, markOop m,
1004                                            size_t word_sz) {
1005 #ifndef PRODUCT
1006   if (CMSHeap::heap()->promotion_should_fail()) {
1007     return NULL;
1008   }
1009 #endif  // #ifndef PRODUCT
1010 
1011   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1012   PromotionInfo* promoInfo = &ps->promo;
1013   // if we are tracking promotions, then first ensure space for
1014   // promotion (including spooling space for saving header if necessary).
1015   // then allocate and copy, then track promoted info if needed.
1016   // When tracking (see PromotionInfo::track()), the mark word may
1017   // be displaced and in this case restoration of the mark word
1018   // occurs in the (oop_since_save_marks_)iterate phase.
1019   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1020     // Out of space for allocating spooling buffers;
1021     // try expanding and allocating spooling buffers.
1022     if (!expand_and_ensure_spooling_space(promoInfo)) {
1023       return NULL;
1024     }
1025   }
1026   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1027   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1028   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1029   if (obj_ptr == NULL) {
1030      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1031      if (obj_ptr == NULL) {
1032        return NULL;
1033      }
1034   }
1035   oop obj = oop(obj_ptr);
1036   OrderAccess::storestore();
1037   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1038   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1039   // IMPORTANT: See note on object initialization for CMS above.
1040   // Otherwise, copy the object.  Here we must be careful to insert the
1041   // klass pointer last, since this marks the block as an allocated object.
1042   // Except with compressed oops it's the mark word.
1043   HeapWord* old_ptr = (HeapWord*)old;
1044   // Restore the mark word copied above.
1045   obj->set_mark(m);
1046   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1047   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1048   OrderAccess::storestore();
1049 
1050   if (UseCompressedClassPointers) {
1051     // Copy gap missed by (aligned) header size calculation below
1052     obj->set_klass_gap(old->klass_gap());
1053   }
1054   if (word_sz > (size_t)oopDesc::header_size()) {
1055     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1056                                  obj_ptr + oopDesc::header_size(),
1057                                  word_sz - oopDesc::header_size());
1058   }
1059 
1060   // Now we can track the promoted object, if necessary.  We take care
1061   // to delay the transition from uninitialized to full object
1062   // (i.e., insertion of klass pointer) until after, so that it
1063   // atomically becomes a promoted object.
1064   if (promoInfo->tracking()) {
1065     promoInfo->track((PromotedObject*)obj, old->klass());
1066   }
1067   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1068   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1069   assert(oopDesc::is_oop(old), "Will use and dereference old klass ptr below");
1070 
1071   // Finally, install the klass pointer (this should be volatile).
1072   OrderAccess::storestore();
1073   obj->set_klass(old->klass());
1074   // We should now be able to calculate the right size for this object
1075   assert(oopDesc::is_oop(obj) && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1076 
1077   collector()->promoted(true,          // parallel
1078                         obj_ptr, old->is_objArray(), word_sz);
1079 
1080   NOT_PRODUCT(
1081     Atomic::inc(&_numObjectsPromoted);
1082     Atomic::add(alloc_sz, &_numWordsPromoted);
1083   )
1084 
1085   return obj;
1086 }
1087 
1088 void
1089 ConcurrentMarkSweepGeneration::
1090 par_promote_alloc_done(int thread_num) {
1091   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1092   ps->lab.retire(thread_num);
1093 }
1094 
1095 void
1096 ConcurrentMarkSweepGeneration::
1097 par_oop_since_save_marks_iterate_done(int thread_num) {
1098   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1099   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1100   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1101 
1102   // Because card-scanning has been completed, subsequent phases
1103   // (e.g., reference processing) will not need to recognize which
1104   // objects have been promoted during this GC. So, we can now disable
1105   // promotion tracking.
1106   ps->promo.stopTrackingPromotions();
1107 }
1108 
1109 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1110                                                    size_t size,
1111                                                    bool   tlab)
1112 {
1113   // We allow a STW collection only if a full
1114   // collection was requested.
1115   return full || should_allocate(size, tlab); // FIX ME !!!
1116   // This and promotion failure handling are connected at the
1117   // hip and should be fixed by untying them.
1118 }
1119 
1120 bool CMSCollector::shouldConcurrentCollect() {
1121   LogTarget(Trace, gc) log;
1122 
1123   if (_full_gc_requested) {
1124     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1125     return true;
1126   }
1127 
1128   FreelistLocker x(this);
1129   // ------------------------------------------------------------------
1130   // Print out lots of information which affects the initiation of
1131   // a collection.
1132   if (log.is_enabled() && stats().valid()) {
1133     log.print("CMSCollector shouldConcurrentCollect: ");
1134 
1135     LogStream out(log);
1136     stats().print_on(&out);
1137 
1138     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1139     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1140     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1141     log.print("promotion_rate=%g", stats().promotion_rate());
1142     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1143     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1144     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1145     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1146     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1147     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1148   }
1149   // ------------------------------------------------------------------
1150 
1151   // If the estimated time to complete a cms collection (cms_duration())
1152   // is less than the estimated time remaining until the cms generation
1153   // is full, start a collection.
1154   if (!UseCMSInitiatingOccupancyOnly) {
1155     if (stats().valid()) {
1156       if (stats().time_until_cms_start() == 0.0) {
1157         return true;
1158       }
1159     } else {
1160       // We want to conservatively collect somewhat early in order
1161       // to try and "bootstrap" our CMS/promotion statistics;
1162       // this branch will not fire after the first successful CMS
1163       // collection because the stats should then be valid.
1164       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1165         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1166                   _cmsGen->occupancy(), _bootstrap_occupancy);
1167         return true;
1168       }
1169     }
1170   }
1171 
1172   // Otherwise, we start a collection cycle if
1173   // old gen want a collection cycle started. Each may use
1174   // an appropriate criterion for making this decision.
1175   // XXX We need to make sure that the gen expansion
1176   // criterion dovetails well with this. XXX NEED TO FIX THIS
1177   if (_cmsGen->should_concurrent_collect()) {
1178     log.print("CMS old gen initiated");
1179     return true;
1180   }
1181 
1182   // We start a collection if we believe an incremental collection may fail;
1183   // this is not likely to be productive in practice because it's probably too
1184   // late anyway.
1185   CMSHeap* heap = CMSHeap::heap();
1186   if (heap->incremental_collection_will_fail(true /* consult_young */)) {
1187     log.print("CMSCollector: collect because incremental collection will fail ");
1188     return true;
1189   }
1190 
1191   if (MetaspaceGC::should_concurrent_collect()) {
1192     log.print("CMSCollector: collect for metadata allocation ");
1193     return true;
1194   }
1195 
1196   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1197   if (CMSTriggerInterval >= 0) {
1198     if (CMSTriggerInterval == 0) {
1199       // Trigger always
1200       return true;
1201     }
1202 
1203     // Check the CMS time since begin (we do not check the stats validity
1204     // as we want to be able to trigger the first CMS cycle as well)
1205     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1206       if (stats().valid()) {
1207         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1208                   stats().cms_time_since_begin());
1209       } else {
1210         log.print("CMSCollector: collect because of trigger interval (first collection)");
1211       }
1212       return true;
1213     }
1214   }
1215 
1216   return false;
1217 }
1218 
1219 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1220 
1221 // Clear _expansion_cause fields of constituent generations
1222 void CMSCollector::clear_expansion_cause() {
1223   _cmsGen->clear_expansion_cause();
1224 }
1225 
1226 // We should be conservative in starting a collection cycle.  To
1227 // start too eagerly runs the risk of collecting too often in the
1228 // extreme.  To collect too rarely falls back on full collections,
1229 // which works, even if not optimum in terms of concurrent work.
1230 // As a work around for too eagerly collecting, use the flag
1231 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1232 // giving the user an easily understandable way of controlling the
1233 // collections.
1234 // We want to start a new collection cycle if any of the following
1235 // conditions hold:
1236 // . our current occupancy exceeds the configured initiating occupancy
1237 //   for this generation, or
1238 // . we recently needed to expand this space and have not, since that
1239 //   expansion, done a collection of this generation, or
1240 // . the underlying space believes that it may be a good idea to initiate
1241 //   a concurrent collection (this may be based on criteria such as the
1242 //   following: the space uses linear allocation and linear allocation is
1243 //   going to fail, or there is believed to be excessive fragmentation in
1244 //   the generation, etc... or ...
1245 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1246 //   the case of the old generation; see CR 6543076):
1247 //   we may be approaching a point at which allocation requests may fail because
1248 //   we will be out of sufficient free space given allocation rate estimates.]
1249 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1250 
1251   assert_lock_strong(freelistLock());
1252   if (occupancy() > initiating_occupancy()) {
1253     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1254                   short_name(), occupancy(), initiating_occupancy());
1255     return true;
1256   }
1257   if (UseCMSInitiatingOccupancyOnly) {
1258     return false;
1259   }
1260   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1261     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1262     return true;
1263   }
1264   return false;
1265 }
1266 
1267 void ConcurrentMarkSweepGeneration::collect(bool   full,
1268                                             bool   clear_all_soft_refs,
1269                                             size_t size,
1270                                             bool   tlab)
1271 {
1272   collector()->collect(full, clear_all_soft_refs, size, tlab);
1273 }
1274 
1275 void CMSCollector::collect(bool   full,
1276                            bool   clear_all_soft_refs,
1277                            size_t size,
1278                            bool   tlab)
1279 {
1280   // The following "if" branch is present for defensive reasons.
1281   // In the current uses of this interface, it can be replaced with:
1282   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1283   // But I am not placing that assert here to allow future
1284   // generality in invoking this interface.
1285   if (GCLocker::is_active()) {
1286     // A consistency test for GCLocker
1287     assert(GCLocker::needs_gc(), "Should have been set already");
1288     // Skip this foreground collection, instead
1289     // expanding the heap if necessary.
1290     // Need the free list locks for the call to free() in compute_new_size()
1291     compute_new_size();
1292     return;
1293   }
1294   acquire_control_and_collect(full, clear_all_soft_refs);
1295 }
1296 
1297 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1298   CMSHeap* heap = CMSHeap::heap();
1299   unsigned int gc_count = heap->total_full_collections();
1300   if (gc_count == full_gc_count) {
1301     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1302     _full_gc_requested = true;
1303     _full_gc_cause = cause;
1304     CGC_lock->notify();   // nudge CMS thread
1305   } else {
1306     assert(gc_count > full_gc_count, "Error: causal loop");
1307   }
1308 }
1309 
1310 bool CMSCollector::is_external_interruption() {
1311   GCCause::Cause cause = CMSHeap::heap()->gc_cause();
1312   return GCCause::is_user_requested_gc(cause) ||
1313          GCCause::is_serviceability_requested_gc(cause);
1314 }
1315 
1316 void CMSCollector::report_concurrent_mode_interruption() {
1317   if (is_external_interruption()) {
1318     log_debug(gc)("Concurrent mode interrupted");
1319   } else {
1320     log_debug(gc)("Concurrent mode failure");
1321     _gc_tracer_cm->report_concurrent_mode_failure();
1322   }
1323 }
1324 
1325 
1326 // The foreground and background collectors need to coordinate in order
1327 // to make sure that they do not mutually interfere with CMS collections.
1328 // When a background collection is active,
1329 // the foreground collector may need to take over (preempt) and
1330 // synchronously complete an ongoing collection. Depending on the
1331 // frequency of the background collections and the heap usage
1332 // of the application, this preemption can be seldom or frequent.
1333 // There are only certain
1334 // points in the background collection that the "collection-baton"
1335 // can be passed to the foreground collector.
1336 //
1337 // The foreground collector will wait for the baton before
1338 // starting any part of the collection.  The foreground collector
1339 // will only wait at one location.
1340 //
1341 // The background collector will yield the baton before starting a new
1342 // phase of the collection (e.g., before initial marking, marking from roots,
1343 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1344 // of the loop which switches the phases. The background collector does some
1345 // of the phases (initial mark, final re-mark) with the world stopped.
1346 // Because of locking involved in stopping the world,
1347 // the foreground collector should not block waiting for the background
1348 // collector when it is doing a stop-the-world phase.  The background
1349 // collector will yield the baton at an additional point just before
1350 // it enters a stop-the-world phase.  Once the world is stopped, the
1351 // background collector checks the phase of the collection.  If the
1352 // phase has not changed, it proceeds with the collection.  If the
1353 // phase has changed, it skips that phase of the collection.  See
1354 // the comments on the use of the Heap_lock in collect_in_background().
1355 //
1356 // Variable used in baton passing.
1357 //   _foregroundGCIsActive - Set to true by the foreground collector when
1358 //      it wants the baton.  The foreground clears it when it has finished
1359 //      the collection.
1360 //   _foregroundGCShouldWait - Set to true by the background collector
1361 //        when it is running.  The foreground collector waits while
1362 //      _foregroundGCShouldWait is true.
1363 //  CGC_lock - monitor used to protect access to the above variables
1364 //      and to notify the foreground and background collectors.
1365 //  _collectorState - current state of the CMS collection.
1366 //
1367 // The foreground collector
1368 //   acquires the CGC_lock
1369 //   sets _foregroundGCIsActive
1370 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1371 //     various locks acquired in preparation for the collection
1372 //     are released so as not to block the background collector
1373 //     that is in the midst of a collection
1374 //   proceeds with the collection
1375 //   clears _foregroundGCIsActive
1376 //   returns
1377 //
1378 // The background collector in a loop iterating on the phases of the
1379 //      collection
1380 //   acquires the CGC_lock
1381 //   sets _foregroundGCShouldWait
1382 //   if _foregroundGCIsActive is set
1383 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1384 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1385 //     and exits the loop.
1386 //   otherwise
1387 //     proceed with that phase of the collection
1388 //     if the phase is a stop-the-world phase,
1389 //       yield the baton once more just before enqueueing
1390 //       the stop-world CMS operation (executed by the VM thread).
1391 //   returns after all phases of the collection are done
1392 //
1393 
1394 void CMSCollector::acquire_control_and_collect(bool full,
1395         bool clear_all_soft_refs) {
1396   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1397   assert(!Thread::current()->is_ConcurrentGC_thread(),
1398          "shouldn't try to acquire control from self!");
1399 
1400   // Start the protocol for acquiring control of the
1401   // collection from the background collector (aka CMS thread).
1402   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1403          "VM thread should have CMS token");
1404   // Remember the possibly interrupted state of an ongoing
1405   // concurrent collection
1406   CollectorState first_state = _collectorState;
1407 
1408   // Signal to a possibly ongoing concurrent collection that
1409   // we want to do a foreground collection.
1410   _foregroundGCIsActive = true;
1411 
1412   // release locks and wait for a notify from the background collector
1413   // releasing the locks in only necessary for phases which
1414   // do yields to improve the granularity of the collection.
1415   assert_lock_strong(bitMapLock());
1416   // We need to lock the Free list lock for the space that we are
1417   // currently collecting.
1418   assert(haveFreelistLocks(), "Must be holding free list locks");
1419   bitMapLock()->unlock();
1420   releaseFreelistLocks();
1421   {
1422     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1423     if (_foregroundGCShouldWait) {
1424       // We are going to be waiting for action for the CMS thread;
1425       // it had better not be gone (for instance at shutdown)!
1426       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1427              "CMS thread must be running");
1428       // Wait here until the background collector gives us the go-ahead
1429       ConcurrentMarkSweepThread::clear_CMS_flag(
1430         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1431       // Get a possibly blocked CMS thread going:
1432       //   Note that we set _foregroundGCIsActive true above,
1433       //   without protection of the CGC_lock.
1434       CGC_lock->notify();
1435       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1436              "Possible deadlock");
1437       while (_foregroundGCShouldWait) {
1438         // wait for notification
1439         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1440         // Possibility of delay/starvation here, since CMS token does
1441         // not know to give priority to VM thread? Actually, i think
1442         // there wouldn't be any delay/starvation, but the proof of
1443         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1444       }
1445       ConcurrentMarkSweepThread::set_CMS_flag(
1446         ConcurrentMarkSweepThread::CMS_vm_has_token);
1447     }
1448   }
1449   // The CMS_token is already held.  Get back the other locks.
1450   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1451          "VM thread should have CMS token");
1452   getFreelistLocks();
1453   bitMapLock()->lock_without_safepoint_check();
1454   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1455                        p2i(Thread::current()), first_state);
1456   log_debug(gc, state)("    gets control with state %d", _collectorState);
1457 
1458   // Inform cms gen if this was due to partial collection failing.
1459   // The CMS gen may use this fact to determine its expansion policy.
1460   CMSHeap* heap = CMSHeap::heap();
1461   if (heap->incremental_collection_will_fail(false /* don't consult_young */)) {
1462     assert(!_cmsGen->incremental_collection_failed(),
1463            "Should have been noticed, reacted to and cleared");
1464     _cmsGen->set_incremental_collection_failed();
1465   }
1466 
1467   if (first_state > Idling) {
1468     report_concurrent_mode_interruption();
1469   }
1470 
1471   set_did_compact(true);
1472 
1473   // If the collection is being acquired from the background
1474   // collector, there may be references on the discovered
1475   // references lists.  Abandon those references, since some
1476   // of them may have become unreachable after concurrent
1477   // discovery; the STW compacting collector will redo discovery
1478   // more precisely, without being subject to floating garbage.
1479   // Leaving otherwise unreachable references in the discovered
1480   // lists would require special handling.
1481   ref_processor()->disable_discovery();
1482   ref_processor()->abandon_partial_discovery();
1483   ref_processor()->verify_no_references_recorded();
1484 
1485   if (first_state > Idling) {
1486     save_heap_summary();
1487   }
1488 
1489   do_compaction_work(clear_all_soft_refs);
1490 
1491   // Has the GC time limit been exceeded?
1492   size_t max_eden_size = _young_gen->max_eden_size();
1493   GCCause::Cause gc_cause = heap->gc_cause();
1494   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1495                                          _young_gen->eden()->used(),
1496                                          _cmsGen->max_capacity(),
1497                                          max_eden_size,
1498                                          full,
1499                                          gc_cause,
1500                                          heap->soft_ref_policy());
1501 
1502   // Reset the expansion cause, now that we just completed
1503   // a collection cycle.
1504   clear_expansion_cause();
1505   _foregroundGCIsActive = false;
1506   return;
1507 }
1508 
1509 // Resize the tenured generation
1510 // after obtaining the free list locks for the
1511 // two generations.
1512 void CMSCollector::compute_new_size() {
1513   assert_locked_or_safepoint(Heap_lock);
1514   FreelistLocker z(this);
1515   MetaspaceGC::compute_new_size();
1516   _cmsGen->compute_new_size_free_list();
1517 }
1518 
1519 // A work method used by the foreground collector to do
1520 // a mark-sweep-compact.
1521 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1522   CMSHeap* heap = CMSHeap::heap();
1523 
1524   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1525   gc_timer->register_gc_start();
1526 
1527   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1528   gc_tracer->report_gc_start(heap->gc_cause(), gc_timer->gc_start());
1529 
1530   heap->pre_full_gc_dump(gc_timer);
1531 
1532   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1533 
1534   // Temporarily widen the span of the weak reference processing to
1535   // the entire heap.
1536   MemRegion new_span(CMSHeap::heap()->reserved_region());
1537   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1538   // Temporarily, clear the "is_alive_non_header" field of the
1539   // reference processor.
1540   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1541   // Temporarily make reference _processing_ single threaded (non-MT).
1542   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1543   // Temporarily make refs discovery atomic
1544   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1545   // Temporarily make reference _discovery_ single threaded (non-MT)
1546   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1547 
1548   ref_processor()->set_enqueuing_is_done(false);
1549   ref_processor()->enable_discovery();
1550   ref_processor()->setup_policy(clear_all_soft_refs);
1551   // If an asynchronous collection finishes, the _modUnionTable is
1552   // all clear.  If we are assuming the collection from an asynchronous
1553   // collection, clear the _modUnionTable.
1554   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1555     "_modUnionTable should be clear if the baton was not passed");
1556   _modUnionTable.clear_all();
1557   assert(_collectorState != Idling || _ct->cld_rem_set()->mod_union_is_clear(),
1558     "mod union for klasses should be clear if the baton was passed");
1559   _ct->cld_rem_set()->clear_mod_union();
1560 
1561 
1562   // We must adjust the allocation statistics being maintained
1563   // in the free list space. We do so by reading and clearing
1564   // the sweep timer and updating the block flux rate estimates below.
1565   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1566   if (_inter_sweep_timer.is_active()) {
1567     _inter_sweep_timer.stop();
1568     // Note that we do not use this sample to update the _inter_sweep_estimate.
1569     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1570                                             _inter_sweep_estimate.padded_average(),
1571                                             _intra_sweep_estimate.padded_average());
1572   }
1573 
1574   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1575   #ifdef ASSERT
1576     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1577     size_t free_size = cms_space->free();
1578     assert(free_size ==
1579            pointer_delta(cms_space->end(), cms_space->compaction_top())
1580            * HeapWordSize,
1581       "All the free space should be compacted into one chunk at top");
1582     assert(cms_space->dictionary()->total_chunk_size(
1583                                       debug_only(cms_space->freelistLock())) == 0 ||
1584            cms_space->totalSizeInIndexedFreeLists() == 0,
1585       "All the free space should be in a single chunk");
1586     size_t num = cms_space->totalCount();
1587     assert((free_size == 0 && num == 0) ||
1588            (free_size > 0  && (num == 1 || num == 2)),
1589          "There should be at most 2 free chunks after compaction");
1590   #endif // ASSERT
1591   _collectorState = Resetting;
1592   assert(_restart_addr == NULL,
1593          "Should have been NULL'd before baton was passed");
1594   reset_stw();
1595   _cmsGen->reset_after_compaction();
1596   _concurrent_cycles_since_last_unload = 0;
1597 
1598   // Clear any data recorded in the PLAB chunk arrays.
1599   if (_survivor_plab_array != NULL) {
1600     reset_survivor_plab_arrays();
1601   }
1602 
1603   // Adjust the per-size allocation stats for the next epoch.
1604   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1605   // Restart the "inter sweep timer" for the next epoch.
1606   _inter_sweep_timer.reset();
1607   _inter_sweep_timer.start();
1608 
1609   // No longer a need to do a concurrent collection for Metaspace.
1610   MetaspaceGC::set_should_concurrent_collect(false);
1611 
1612   heap->post_full_gc_dump(gc_timer);
1613 
1614   gc_timer->register_gc_end();
1615 
1616   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1617 
1618   // For a mark-sweep-compact, compute_new_size() will be called
1619   // in the heap's do_collection() method.
1620 }
1621 
1622 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1623   Log(gc, heap) log;
1624   if (!log.is_trace()) {
1625     return;
1626   }
1627 
1628   ContiguousSpace* eden_space = _young_gen->eden();
1629   ContiguousSpace* from_space = _young_gen->from();
1630   ContiguousSpace* to_space   = _young_gen->to();
1631   // Eden
1632   if (_eden_chunk_array != NULL) {
1633     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1634               p2i(eden_space->bottom()), p2i(eden_space->top()),
1635               p2i(eden_space->end()), eden_space->capacity());
1636     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1637               _eden_chunk_index, _eden_chunk_capacity);
1638     for (size_t i = 0; i < _eden_chunk_index; i++) {
1639       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1640     }
1641   }
1642   // Survivor
1643   if (_survivor_chunk_array != NULL) {
1644     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1645               p2i(from_space->bottom()), p2i(from_space->top()),
1646               p2i(from_space->end()), from_space->capacity());
1647     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1648               _survivor_chunk_index, _survivor_chunk_capacity);
1649     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1650       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1651     }
1652   }
1653 }
1654 
1655 void CMSCollector::getFreelistLocks() const {
1656   // Get locks for all free lists in all generations that this
1657   // collector is responsible for
1658   _cmsGen->freelistLock()->lock_without_safepoint_check();
1659 }
1660 
1661 void CMSCollector::releaseFreelistLocks() const {
1662   // Release locks for all free lists in all generations that this
1663   // collector is responsible for
1664   _cmsGen->freelistLock()->unlock();
1665 }
1666 
1667 bool CMSCollector::haveFreelistLocks() const {
1668   // Check locks for all free lists in all generations that this
1669   // collector is responsible for
1670   assert_lock_strong(_cmsGen->freelistLock());
1671   PRODUCT_ONLY(ShouldNotReachHere());
1672   return true;
1673 }
1674 
1675 // A utility class that is used by the CMS collector to
1676 // temporarily "release" the foreground collector from its
1677 // usual obligation to wait for the background collector to
1678 // complete an ongoing phase before proceeding.
1679 class ReleaseForegroundGC: public StackObj {
1680  private:
1681   CMSCollector* _c;
1682  public:
1683   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1684     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1685     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1686     // allow a potentially blocked foreground collector to proceed
1687     _c->_foregroundGCShouldWait = false;
1688     if (_c->_foregroundGCIsActive) {
1689       CGC_lock->notify();
1690     }
1691     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1692            "Possible deadlock");
1693   }
1694 
1695   ~ReleaseForegroundGC() {
1696     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1697     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1698     _c->_foregroundGCShouldWait = true;
1699   }
1700 };
1701 
1702 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1703   assert(Thread::current()->is_ConcurrentGC_thread(),
1704     "A CMS asynchronous collection is only allowed on a CMS thread.");
1705 
1706   CMSHeap* heap = CMSHeap::heap();
1707   {
1708     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1709     MutexLockerEx hl(Heap_lock, safepoint_check);
1710     FreelistLocker fll(this);
1711     MutexLockerEx x(CGC_lock, safepoint_check);
1712     if (_foregroundGCIsActive) {
1713       // The foreground collector is. Skip this
1714       // background collection.
1715       assert(!_foregroundGCShouldWait, "Should be clear");
1716       return;
1717     } else {
1718       assert(_collectorState == Idling, "Should be idling before start.");
1719       _collectorState = InitialMarking;
1720       register_gc_start(cause);
1721       // Reset the expansion cause, now that we are about to begin
1722       // a new cycle.
1723       clear_expansion_cause();
1724 
1725       // Clear the MetaspaceGC flag since a concurrent collection
1726       // is starting but also clear it after the collection.
1727       MetaspaceGC::set_should_concurrent_collect(false);
1728     }
1729     // Decide if we want to enable class unloading as part of the
1730     // ensuing concurrent GC cycle.
1731     update_should_unload_classes();
1732     _full_gc_requested = false;           // acks all outstanding full gc requests
1733     _full_gc_cause = GCCause::_no_gc;
1734     // Signal that we are about to start a collection
1735     heap->increment_total_full_collections();  // ... starting a collection cycle
1736     _collection_count_start = heap->total_full_collections();
1737   }
1738 
1739   size_t prev_used = _cmsGen->used();
1740 
1741   // The change of the collection state is normally done at this level;
1742   // the exceptions are phases that are executed while the world is
1743   // stopped.  For those phases the change of state is done while the
1744   // world is stopped.  For baton passing purposes this allows the
1745   // background collector to finish the phase and change state atomically.
1746   // The foreground collector cannot wait on a phase that is done
1747   // while the world is stopped because the foreground collector already
1748   // has the world stopped and would deadlock.
1749   while (_collectorState != Idling) {
1750     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1751                          p2i(Thread::current()), _collectorState);
1752     // The foreground collector
1753     //   holds the Heap_lock throughout its collection.
1754     //   holds the CMS token (but not the lock)
1755     //     except while it is waiting for the background collector to yield.
1756     //
1757     // The foreground collector should be blocked (not for long)
1758     //   if the background collector is about to start a phase
1759     //   executed with world stopped.  If the background
1760     //   collector has already started such a phase, the
1761     //   foreground collector is blocked waiting for the
1762     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1763     //   are executed in the VM thread.
1764     //
1765     // The locking order is
1766     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1767     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1768     //   CMS token  (claimed in
1769     //                stop_world_and_do() -->
1770     //                  safepoint_synchronize() -->
1771     //                    CMSThread::synchronize())
1772 
1773     {
1774       // Check if the FG collector wants us to yield.
1775       CMSTokenSync x(true); // is cms thread
1776       if (waitForForegroundGC()) {
1777         // We yielded to a foreground GC, nothing more to be
1778         // done this round.
1779         assert(_foregroundGCShouldWait == false, "We set it to false in "
1780                "waitForForegroundGC()");
1781         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1782                              p2i(Thread::current()), _collectorState);
1783         return;
1784       } else {
1785         // The background collector can run but check to see if the
1786         // foreground collector has done a collection while the
1787         // background collector was waiting to get the CGC_lock
1788         // above.  If yes, break so that _foregroundGCShouldWait
1789         // is cleared before returning.
1790         if (_collectorState == Idling) {
1791           break;
1792         }
1793       }
1794     }
1795 
1796     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1797       "should be waiting");
1798 
1799     switch (_collectorState) {
1800       case InitialMarking:
1801         {
1802           ReleaseForegroundGC x(this);
1803           stats().record_cms_begin();
1804           VM_CMS_Initial_Mark initial_mark_op(this);
1805           VMThread::execute(&initial_mark_op);
1806         }
1807         // The collector state may be any legal state at this point
1808         // since the background collector may have yielded to the
1809         // foreground collector.
1810         break;
1811       case Marking:
1812         // initial marking in checkpointRootsInitialWork has been completed
1813         if (markFromRoots()) { // we were successful
1814           assert(_collectorState == Precleaning, "Collector state should "
1815             "have changed");
1816         } else {
1817           assert(_foregroundGCIsActive, "Internal state inconsistency");
1818         }
1819         break;
1820       case Precleaning:
1821         // marking from roots in markFromRoots has been completed
1822         preclean();
1823         assert(_collectorState == AbortablePreclean ||
1824                _collectorState == FinalMarking,
1825                "Collector state should have changed");
1826         break;
1827       case AbortablePreclean:
1828         abortable_preclean();
1829         assert(_collectorState == FinalMarking, "Collector state should "
1830           "have changed");
1831         break;
1832       case FinalMarking:
1833         {
1834           ReleaseForegroundGC x(this);
1835 
1836           VM_CMS_Final_Remark final_remark_op(this);
1837           VMThread::execute(&final_remark_op);
1838         }
1839         assert(_foregroundGCShouldWait, "block post-condition");
1840         break;
1841       case Sweeping:
1842         // final marking in checkpointRootsFinal has been completed
1843         sweep();
1844         assert(_collectorState == Resizing, "Collector state change "
1845           "to Resizing must be done under the free_list_lock");
1846 
1847       case Resizing: {
1848         // Sweeping has been completed...
1849         // At this point the background collection has completed.
1850         // Don't move the call to compute_new_size() down
1851         // into code that might be executed if the background
1852         // collection was preempted.
1853         {
1854           ReleaseForegroundGC x(this);   // unblock FG collection
1855           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1856           CMSTokenSync        z(true);   // not strictly needed.
1857           if (_collectorState == Resizing) {
1858             compute_new_size();
1859             save_heap_summary();
1860             _collectorState = Resetting;
1861           } else {
1862             assert(_collectorState == Idling, "The state should only change"
1863                    " because the foreground collector has finished the collection");
1864           }
1865         }
1866         break;
1867       }
1868       case Resetting:
1869         // CMS heap resizing has been completed
1870         reset_concurrent();
1871         assert(_collectorState == Idling, "Collector state should "
1872           "have changed");
1873 
1874         MetaspaceGC::set_should_concurrent_collect(false);
1875 
1876         stats().record_cms_end();
1877         // Don't move the concurrent_phases_end() and compute_new_size()
1878         // calls to here because a preempted background collection
1879         // has it's state set to "Resetting".
1880         break;
1881       case Idling:
1882       default:
1883         ShouldNotReachHere();
1884         break;
1885     }
1886     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1887                          p2i(Thread::current()), _collectorState);
1888     assert(_foregroundGCShouldWait, "block post-condition");
1889   }
1890 
1891   // Should this be in gc_epilogue?
1892   heap->counters()->update_counters();
1893 
1894   {
1895     // Clear _foregroundGCShouldWait and, in the event that the
1896     // foreground collector is waiting, notify it, before
1897     // returning.
1898     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1899     _foregroundGCShouldWait = false;
1900     if (_foregroundGCIsActive) {
1901       CGC_lock->notify();
1902     }
1903     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1904            "Possible deadlock");
1905   }
1906   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1907                        p2i(Thread::current()), _collectorState);
1908   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1909                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1910 }
1911 
1912 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1913   _cms_start_registered = true;
1914   _gc_timer_cm->register_gc_start();
1915   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1916 }
1917 
1918 void CMSCollector::register_gc_end() {
1919   if (_cms_start_registered) {
1920     report_heap_summary(GCWhen::AfterGC);
1921 
1922     _gc_timer_cm->register_gc_end();
1923     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1924     _cms_start_registered = false;
1925   }
1926 }
1927 
1928 void CMSCollector::save_heap_summary() {
1929   CMSHeap* heap = CMSHeap::heap();
1930   _last_heap_summary = heap->create_heap_summary();
1931   _last_metaspace_summary = heap->create_metaspace_summary();
1932 }
1933 
1934 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1935   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1936   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1937 }
1938 
1939 bool CMSCollector::waitForForegroundGC() {
1940   bool res = false;
1941   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1942          "CMS thread should have CMS token");
1943   // Block the foreground collector until the
1944   // background collectors decides whether to
1945   // yield.
1946   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1947   _foregroundGCShouldWait = true;
1948   if (_foregroundGCIsActive) {
1949     // The background collector yields to the
1950     // foreground collector and returns a value
1951     // indicating that it has yielded.  The foreground
1952     // collector can proceed.
1953     res = true;
1954     _foregroundGCShouldWait = false;
1955     ConcurrentMarkSweepThread::clear_CMS_flag(
1956       ConcurrentMarkSweepThread::CMS_cms_has_token);
1957     ConcurrentMarkSweepThread::set_CMS_flag(
1958       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1959     // Get a possibly blocked foreground thread going
1960     CGC_lock->notify();
1961     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1962                          p2i(Thread::current()), _collectorState);
1963     while (_foregroundGCIsActive) {
1964       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1965     }
1966     ConcurrentMarkSweepThread::set_CMS_flag(
1967       ConcurrentMarkSweepThread::CMS_cms_has_token);
1968     ConcurrentMarkSweepThread::clear_CMS_flag(
1969       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1970   }
1971   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1972                        p2i(Thread::current()), _collectorState);
1973   return res;
1974 }
1975 
1976 // Because of the need to lock the free lists and other structures in
1977 // the collector, common to all the generations that the collector is
1978 // collecting, we need the gc_prologues of individual CMS generations
1979 // delegate to their collector. It may have been simpler had the
1980 // current infrastructure allowed one to call a prologue on a
1981 // collector. In the absence of that we have the generation's
1982 // prologue delegate to the collector, which delegates back
1983 // some "local" work to a worker method in the individual generations
1984 // that it's responsible for collecting, while itself doing any
1985 // work common to all generations it's responsible for. A similar
1986 // comment applies to the  gc_epilogue()'s.
1987 // The role of the variable _between_prologue_and_epilogue is to
1988 // enforce the invocation protocol.
1989 void CMSCollector::gc_prologue(bool full) {
1990   // Call gc_prologue_work() for the CMSGen
1991   // we are responsible for.
1992 
1993   // The following locking discipline assumes that we are only called
1994   // when the world is stopped.
1995   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1996 
1997   // The CMSCollector prologue must call the gc_prologues for the
1998   // "generations" that it's responsible
1999   // for.
2000 
2001   assert(   Thread::current()->is_VM_thread()
2002          || (   CMSScavengeBeforeRemark
2003              && Thread::current()->is_ConcurrentGC_thread()),
2004          "Incorrect thread type for prologue execution");
2005 
2006   if (_between_prologue_and_epilogue) {
2007     // We have already been invoked; this is a gc_prologue delegation
2008     // from yet another CMS generation that we are responsible for, just
2009     // ignore it since all relevant work has already been done.
2010     return;
2011   }
2012 
2013   // set a bit saying prologue has been called; cleared in epilogue
2014   _between_prologue_and_epilogue = true;
2015   // Claim locks for common data structures, then call gc_prologue_work()
2016   // for each CMSGen.
2017 
2018   getFreelistLocks();   // gets free list locks on constituent spaces
2019   bitMapLock()->lock_without_safepoint_check();
2020 
2021   // Should call gc_prologue_work() for all cms gens we are responsible for
2022   bool duringMarking =    _collectorState >= Marking
2023                          && _collectorState < Sweeping;
2024 
2025   // The young collections clear the modified oops state, which tells if
2026   // there are any modified oops in the class. The remark phase also needs
2027   // that information. Tell the young collection to save the union of all
2028   // modified klasses.
2029   if (duringMarking) {
2030     _ct->cld_rem_set()->set_accumulate_modified_oops(true);
2031   }
2032 
2033   bool registerClosure = duringMarking;
2034 
2035   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2036 
2037   if (!full) {
2038     stats().record_gc0_begin();
2039   }
2040 }
2041 
2042 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2043 
2044   _capacity_at_prologue = capacity();
2045   _used_at_prologue = used();
2046 
2047   // We enable promotion tracking so that card-scanning can recognize
2048   // which objects have been promoted during this GC and skip them.
2049   for (uint i = 0; i < ParallelGCThreads; i++) {
2050     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2051   }
2052 
2053   // Delegate to CMScollector which knows how to coordinate between
2054   // this and any other CMS generations that it is responsible for
2055   // collecting.
2056   collector()->gc_prologue(full);
2057 }
2058 
2059 // This is a "private" interface for use by this generation's CMSCollector.
2060 // Not to be called directly by any other entity (for instance,
2061 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2062 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2063   bool registerClosure, ModUnionClosure* modUnionClosure) {
2064   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2065   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2066     "Should be NULL");
2067   if (registerClosure) {
2068     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2069   }
2070   cmsSpace()->gc_prologue();
2071   // Clear stat counters
2072   NOT_PRODUCT(
2073     assert(_numObjectsPromoted == 0, "check");
2074     assert(_numWordsPromoted   == 0, "check");
2075     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2076                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2077     _numObjectsAllocated = 0;
2078     _numWordsAllocated   = 0;
2079   )
2080 }
2081 
2082 void CMSCollector::gc_epilogue(bool full) {
2083   // The following locking discipline assumes that we are only called
2084   // when the world is stopped.
2085   assert(SafepointSynchronize::is_at_safepoint(),
2086          "world is stopped assumption");
2087 
2088   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2089   // if linear allocation blocks need to be appropriately marked to allow the
2090   // the blocks to be parsable. We also check here whether we need to nudge the
2091   // CMS collector thread to start a new cycle (if it's not already active).
2092   assert(   Thread::current()->is_VM_thread()
2093          || (   CMSScavengeBeforeRemark
2094              && Thread::current()->is_ConcurrentGC_thread()),
2095          "Incorrect thread type for epilogue execution");
2096 
2097   if (!_between_prologue_and_epilogue) {
2098     // We have already been invoked; this is a gc_epilogue delegation
2099     // from yet another CMS generation that we are responsible for, just
2100     // ignore it since all relevant work has already been done.
2101     return;
2102   }
2103   assert(haveFreelistLocks(), "must have freelist locks");
2104   assert_lock_strong(bitMapLock());
2105 
2106   _ct->cld_rem_set()->set_accumulate_modified_oops(false);
2107 
2108   _cmsGen->gc_epilogue_work(full);
2109 
2110   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2111     // in case sampling was not already enabled, enable it
2112     _start_sampling = true;
2113   }
2114   // reset _eden_chunk_array so sampling starts afresh
2115   _eden_chunk_index = 0;
2116 
2117   size_t cms_used   = _cmsGen->cmsSpace()->used();
2118 
2119   // update performance counters - this uses a special version of
2120   // update_counters() that allows the utilization to be passed as a
2121   // parameter, avoiding multiple calls to used().
2122   //
2123   _cmsGen->update_counters(cms_used);
2124 
2125   bitMapLock()->unlock();
2126   releaseFreelistLocks();
2127 
2128   if (!CleanChunkPoolAsync) {
2129     Chunk::clean_chunk_pool();
2130   }
2131 
2132   set_did_compact(false);
2133   _between_prologue_and_epilogue = false;  // ready for next cycle
2134 }
2135 
2136 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2137   collector()->gc_epilogue(full);
2138 
2139   // When using ParNew, promotion tracking should have already been
2140   // disabled. However, the prologue (which enables promotion
2141   // tracking) and epilogue are called irrespective of the type of
2142   // GC. So they will also be called before and after Full GCs, during
2143   // which promotion tracking will not be explicitly disabled. So,
2144   // it's safer to also disable it here too (to be symmetric with
2145   // enabling it in the prologue).
2146   for (uint i = 0; i < ParallelGCThreads; i++) {
2147     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2148   }
2149 }
2150 
2151 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2152   assert(!incremental_collection_failed(), "Should have been cleared");
2153   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2154   cmsSpace()->gc_epilogue();
2155     // Print stat counters
2156   NOT_PRODUCT(
2157     assert(_numObjectsAllocated == 0, "check");
2158     assert(_numWordsAllocated == 0, "check");
2159     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2160                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2161     _numObjectsPromoted = 0;
2162     _numWordsPromoted   = 0;
2163   )
2164 
2165   // Call down the chain in contiguous_available needs the freelistLock
2166   // so print this out before releasing the freeListLock.
2167   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2168 }
2169 
2170 #ifndef PRODUCT
2171 bool CMSCollector::have_cms_token() {
2172   Thread* thr = Thread::current();
2173   if (thr->is_VM_thread()) {
2174     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2175   } else if (thr->is_ConcurrentGC_thread()) {
2176     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2177   } else if (thr->is_GC_task_thread()) {
2178     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2179            ParGCRareEvent_lock->owned_by_self();
2180   }
2181   return false;
2182 }
2183 
2184 // Check reachability of the given heap address in CMS generation,
2185 // treating all other generations as roots.
2186 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2187   // We could "guarantee" below, rather than assert, but I'll
2188   // leave these as "asserts" so that an adventurous debugger
2189   // could try this in the product build provided some subset of
2190   // the conditions were met, provided they were interested in the
2191   // results and knew that the computation below wouldn't interfere
2192   // with other concurrent computations mutating the structures
2193   // being read or written.
2194   assert(SafepointSynchronize::is_at_safepoint(),
2195          "Else mutations in object graph will make answer suspect");
2196   assert(have_cms_token(), "Should hold cms token");
2197   assert(haveFreelistLocks(), "must hold free list locks");
2198   assert_lock_strong(bitMapLock());
2199 
2200   // Clear the marking bit map array before starting, but, just
2201   // for kicks, first report if the given address is already marked
2202   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2203                 _markBitMap.isMarked(addr) ? "" : " not");
2204 
2205   if (verify_after_remark()) {
2206     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2207     bool result = verification_mark_bm()->isMarked(addr);
2208     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2209                   result ? "IS" : "is NOT");
2210     return result;
2211   } else {
2212     tty->print_cr("Could not compute result");
2213     return false;
2214   }
2215 }
2216 #endif
2217 
2218 void
2219 CMSCollector::print_on_error(outputStream* st) {
2220   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2221   if (collector != NULL) {
2222     CMSBitMap* bitmap = &collector->_markBitMap;
2223     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2224     bitmap->print_on_error(st, " Bits: ");
2225 
2226     st->cr();
2227 
2228     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2229     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2230     mut_bitmap->print_on_error(st, " Bits: ");
2231   }
2232 }
2233 
2234 ////////////////////////////////////////////////////////
2235 // CMS Verification Support
2236 ////////////////////////////////////////////////////////
2237 // Following the remark phase, the following invariant
2238 // should hold -- each object in the CMS heap which is
2239 // marked in markBitMap() should be marked in the verification_mark_bm().
2240 
2241 class VerifyMarkedClosure: public BitMapClosure {
2242   CMSBitMap* _marks;
2243   bool       _failed;
2244 
2245  public:
2246   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2247 
2248   bool do_bit(size_t offset) {
2249     HeapWord* addr = _marks->offsetToHeapWord(offset);
2250     if (!_marks->isMarked(addr)) {
2251       Log(gc, verify) log;
2252       ResourceMark rm;
2253       LogStream ls(log.error());
2254       oop(addr)->print_on(&ls);
2255       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2256       _failed = true;
2257     }
2258     return true;
2259   }
2260 
2261   bool failed() { return _failed; }
2262 };
2263 
2264 bool CMSCollector::verify_after_remark() {
2265   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2266   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2267   static bool init = false;
2268 
2269   assert(SafepointSynchronize::is_at_safepoint(),
2270          "Else mutations in object graph will make answer suspect");
2271   assert(have_cms_token(),
2272          "Else there may be mutual interference in use of "
2273          " verification data structures");
2274   assert(_collectorState > Marking && _collectorState <= Sweeping,
2275          "Else marking info checked here may be obsolete");
2276   assert(haveFreelistLocks(), "must hold free list locks");
2277   assert_lock_strong(bitMapLock());
2278 
2279 
2280   // Allocate marking bit map if not already allocated
2281   if (!init) { // first time
2282     if (!verification_mark_bm()->allocate(_span)) {
2283       return false;
2284     }
2285     init = true;
2286   }
2287 
2288   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2289 
2290   // Turn off refs discovery -- so we will be tracing through refs.
2291   // This is as intended, because by this time
2292   // GC must already have cleared any refs that need to be cleared,
2293   // and traced those that need to be marked; moreover,
2294   // the marking done here is not going to interfere in any
2295   // way with the marking information used by GC.
2296   NoRefDiscovery no_discovery(ref_processor());
2297 
2298 #if COMPILER2_OR_JVMCI
2299   DerivedPointerTableDeactivate dpt_deact;
2300 #endif
2301 
2302   // Clear any marks from a previous round
2303   verification_mark_bm()->clear_all();
2304   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2305   verify_work_stacks_empty();
2306 
2307   CMSHeap* heap = CMSHeap::heap();
2308   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2309   // Update the saved marks which may affect the root scans.
2310   heap->save_marks();
2311 
2312   if (CMSRemarkVerifyVariant == 1) {
2313     // In this first variant of verification, we complete
2314     // all marking, then check if the new marks-vector is
2315     // a subset of the CMS marks-vector.
2316     verify_after_remark_work_1();
2317   } else {
2318     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2319     // In this second variant of verification, we flag an error
2320     // (i.e. an object reachable in the new marks-vector not reachable
2321     // in the CMS marks-vector) immediately, also indicating the
2322     // identify of an object (A) that references the unmarked object (B) --
2323     // presumably, a mutation to A failed to be picked up by preclean/remark?
2324     verify_after_remark_work_2();
2325   }
2326 
2327   return true;
2328 }
2329 
2330 void CMSCollector::verify_after_remark_work_1() {
2331   ResourceMark rm;
2332   HandleMark  hm;
2333   CMSHeap* heap = CMSHeap::heap();
2334 
2335   // Get a clear set of claim bits for the roots processing to work with.
2336   ClassLoaderDataGraph::clear_claimed_marks();
2337 
2338   // Mark from roots one level into CMS
2339   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2340   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2341 
2342   {
2343     StrongRootsScope srs(1);
2344 
2345     heap->cms_process_roots(&srs,
2346                            true,   // young gen as roots
2347                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2348                            should_unload_classes(),
2349                            &notOlder,
2350                            NULL);
2351   }
2352 
2353   // Now mark from the roots
2354   MarkFromRootsClosure markFromRootsClosure(this, _span,
2355     verification_mark_bm(), verification_mark_stack(),
2356     false /* don't yield */, true /* verifying */);
2357   assert(_restart_addr == NULL, "Expected pre-condition");
2358   verification_mark_bm()->iterate(&markFromRootsClosure);
2359   while (_restart_addr != NULL) {
2360     // Deal with stack overflow: by restarting at the indicated
2361     // address.
2362     HeapWord* ra = _restart_addr;
2363     markFromRootsClosure.reset(ra);
2364     _restart_addr = NULL;
2365     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2366   }
2367   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2368   verify_work_stacks_empty();
2369 
2370   // Marking completed -- now verify that each bit marked in
2371   // verification_mark_bm() is also marked in markBitMap(); flag all
2372   // errors by printing corresponding objects.
2373   VerifyMarkedClosure vcl(markBitMap());
2374   verification_mark_bm()->iterate(&vcl);
2375   if (vcl.failed()) {
2376     Log(gc, verify) log;
2377     log.error("Failed marking verification after remark");
2378     ResourceMark rm;
2379     LogStream ls(log.error());
2380     heap->print_on(&ls);
2381     fatal("CMS: failed marking verification after remark");
2382   }
2383 }
2384 
2385 class VerifyCLDOopsCLDClosure : public CLDClosure {
2386   class VerifyCLDOopsClosure : public OopClosure {
2387     CMSBitMap* _bitmap;
2388    public:
2389     VerifyCLDOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2390     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2391     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2392   } _oop_closure;
2393  public:
2394   VerifyCLDOopsCLDClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2395   void do_cld(ClassLoaderData* cld) {
2396     cld->oops_do(&_oop_closure, false, false);
2397   }
2398 };
2399 
2400 void CMSCollector::verify_after_remark_work_2() {
2401   ResourceMark rm;
2402   HandleMark  hm;
2403   CMSHeap* heap = CMSHeap::heap();
2404 
2405   // Get a clear set of claim bits for the roots processing to work with.
2406   ClassLoaderDataGraph::clear_claimed_marks();
2407 
2408   // Mark from roots one level into CMS
2409   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2410                                      markBitMap());
2411   CLDToOopClosure cld_closure(&notOlder, true);
2412 
2413   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2414 
2415   {
2416     StrongRootsScope srs(1);
2417 
2418     heap->cms_process_roots(&srs,
2419                            true,   // young gen as roots
2420                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2421                            should_unload_classes(),
2422                            &notOlder,
2423                            &cld_closure);
2424   }
2425 
2426   // Now mark from the roots
2427   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2428     verification_mark_bm(), markBitMap(), verification_mark_stack());
2429   assert(_restart_addr == NULL, "Expected pre-condition");
2430   verification_mark_bm()->iterate(&markFromRootsClosure);
2431   while (_restart_addr != NULL) {
2432     // Deal with stack overflow: by restarting at the indicated
2433     // address.
2434     HeapWord* ra = _restart_addr;
2435     markFromRootsClosure.reset(ra);
2436     _restart_addr = NULL;
2437     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2438   }
2439   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2440   verify_work_stacks_empty();
2441 
2442   VerifyCLDOopsCLDClosure verify_cld_oops(verification_mark_bm());
2443   ClassLoaderDataGraph::cld_do(&verify_cld_oops);
2444 
2445   // Marking completed -- now verify that each bit marked in
2446   // verification_mark_bm() is also marked in markBitMap(); flag all
2447   // errors by printing corresponding objects.
2448   VerifyMarkedClosure vcl(markBitMap());
2449   verification_mark_bm()->iterate(&vcl);
2450   assert(!vcl.failed(), "Else verification above should not have succeeded");
2451 }
2452 
2453 void ConcurrentMarkSweepGeneration::save_marks() {
2454   // delegate to CMS space
2455   cmsSpace()->save_marks();
2456 }
2457 
2458 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2459   return cmsSpace()->no_allocs_since_save_marks();
2460 }
2461 
2462 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2463                                                                 \
2464 void ConcurrentMarkSweepGeneration::                            \
2465 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2466   cl->set_generation(this);                                     \
2467   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2468   cl->reset_generation();                                       \
2469   save_marks();                                                 \
2470 }
2471 
2472 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2473 
2474 void
2475 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2476   if (freelistLock()->owned_by_self()) {
2477     Generation::oop_iterate(cl);
2478   } else {
2479     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2480     Generation::oop_iterate(cl);
2481   }
2482 }
2483 
2484 void
2485 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2486   if (freelistLock()->owned_by_self()) {
2487     Generation::object_iterate(cl);
2488   } else {
2489     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2490     Generation::object_iterate(cl);
2491   }
2492 }
2493 
2494 void
2495 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2496   if (freelistLock()->owned_by_self()) {
2497     Generation::safe_object_iterate(cl);
2498   } else {
2499     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2500     Generation::safe_object_iterate(cl);
2501   }
2502 }
2503 
2504 void
2505 ConcurrentMarkSweepGeneration::post_compact() {
2506 }
2507 
2508 void
2509 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2510   // Fix the linear allocation blocks to look like free blocks.
2511 
2512   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2513   // are not called when the heap is verified during universe initialization and
2514   // at vm shutdown.
2515   if (freelistLock()->owned_by_self()) {
2516     cmsSpace()->prepare_for_verify();
2517   } else {
2518     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2519     cmsSpace()->prepare_for_verify();
2520   }
2521 }
2522 
2523 void
2524 ConcurrentMarkSweepGeneration::verify() {
2525   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2526   // are not called when the heap is verified during universe initialization and
2527   // at vm shutdown.
2528   if (freelistLock()->owned_by_self()) {
2529     cmsSpace()->verify();
2530   } else {
2531     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2532     cmsSpace()->verify();
2533   }
2534 }
2535 
2536 void CMSCollector::verify() {
2537   _cmsGen->verify();
2538 }
2539 
2540 #ifndef PRODUCT
2541 bool CMSCollector::overflow_list_is_empty() const {
2542   assert(_num_par_pushes >= 0, "Inconsistency");
2543   if (_overflow_list == NULL) {
2544     assert(_num_par_pushes == 0, "Inconsistency");
2545   }
2546   return _overflow_list == NULL;
2547 }
2548 
2549 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2550 // merely consolidate assertion checks that appear to occur together frequently.
2551 void CMSCollector::verify_work_stacks_empty() const {
2552   assert(_markStack.isEmpty(), "Marking stack should be empty");
2553   assert(overflow_list_is_empty(), "Overflow list should be empty");
2554 }
2555 
2556 void CMSCollector::verify_overflow_empty() const {
2557   assert(overflow_list_is_empty(), "Overflow list should be empty");
2558   assert(no_preserved_marks(), "No preserved marks");
2559 }
2560 #endif // PRODUCT
2561 
2562 // Decide if we want to enable class unloading as part of the
2563 // ensuing concurrent GC cycle. We will collect and
2564 // unload classes if it's the case that:
2565 //  (a) class unloading is enabled at the command line, and
2566 //  (b) old gen is getting really full
2567 // NOTE: Provided there is no change in the state of the heap between
2568 // calls to this method, it should have idempotent results. Moreover,
2569 // its results should be monotonically increasing (i.e. going from 0 to 1,
2570 // but not 1 to 0) between successive calls between which the heap was
2571 // not collected. For the implementation below, it must thus rely on
2572 // the property that concurrent_cycles_since_last_unload()
2573 // will not decrease unless a collection cycle happened and that
2574 // _cmsGen->is_too_full() are
2575 // themselves also monotonic in that sense. See check_monotonicity()
2576 // below.
2577 void CMSCollector::update_should_unload_classes() {
2578   _should_unload_classes = false;
2579   if (CMSClassUnloadingEnabled) {
2580     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2581                               CMSClassUnloadingMaxInterval)
2582                            || _cmsGen->is_too_full();
2583   }
2584 }
2585 
2586 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2587   bool res = should_concurrent_collect();
2588   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2589   return res;
2590 }
2591 
2592 void CMSCollector::setup_cms_unloading_and_verification_state() {
2593   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2594                              || VerifyBeforeExit;
2595   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2596 
2597   // We set the proper root for this CMS cycle here.
2598   if (should_unload_classes()) {   // Should unload classes this cycle
2599     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2600     set_verifying(should_verify);    // Set verification state for this cycle
2601     return;                            // Nothing else needs to be done at this time
2602   }
2603 
2604   // Not unloading classes this cycle
2605   assert(!should_unload_classes(), "Inconsistency!");
2606 
2607   // If we are not unloading classes then add SO_AllCodeCache to root
2608   // scanning options.
2609   add_root_scanning_option(rso);
2610 
2611   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2612     set_verifying(true);
2613   } else if (verifying() && !should_verify) {
2614     // We were verifying, but some verification flags got disabled.
2615     set_verifying(false);
2616     // Exclude symbols, strings and code cache elements from root scanning to
2617     // reduce IM and RM pauses.
2618     remove_root_scanning_option(rso);
2619   }
2620 }
2621 
2622 
2623 #ifndef PRODUCT
2624 HeapWord* CMSCollector::block_start(const void* p) const {
2625   const HeapWord* addr = (HeapWord*)p;
2626   if (_span.contains(p)) {
2627     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2628       return _cmsGen->cmsSpace()->block_start(p);
2629     }
2630   }
2631   return NULL;
2632 }
2633 #endif
2634 
2635 HeapWord*
2636 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2637                                                    bool   tlab,
2638                                                    bool   parallel) {
2639   CMSSynchronousYieldRequest yr;
2640   assert(!tlab, "Can't deal with TLAB allocation");
2641   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2642   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2643   if (GCExpandToAllocateDelayMillis > 0) {
2644     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2645   }
2646   return have_lock_and_allocate(word_size, tlab);
2647 }
2648 
2649 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2650     size_t bytes,
2651     size_t expand_bytes,
2652     CMSExpansionCause::Cause cause)
2653 {
2654 
2655   bool success = expand(bytes, expand_bytes);
2656 
2657   // remember why we expanded; this information is used
2658   // by shouldConcurrentCollect() when making decisions on whether to start
2659   // a new CMS cycle.
2660   if (success) {
2661     set_expansion_cause(cause);
2662     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2663   }
2664 }
2665 
2666 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2667   HeapWord* res = NULL;
2668   MutexLocker x(ParGCRareEvent_lock);
2669   while (true) {
2670     // Expansion by some other thread might make alloc OK now:
2671     res = ps->lab.alloc(word_sz);
2672     if (res != NULL) return res;
2673     // If there's not enough expansion space available, give up.
2674     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2675       return NULL;
2676     }
2677     // Otherwise, we try expansion.
2678     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2679     // Now go around the loop and try alloc again;
2680     // A competing par_promote might beat us to the expansion space,
2681     // so we may go around the loop again if promotion fails again.
2682     if (GCExpandToAllocateDelayMillis > 0) {
2683       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2684     }
2685   }
2686 }
2687 
2688 
2689 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2690   PromotionInfo* promo) {
2691   MutexLocker x(ParGCRareEvent_lock);
2692   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2693   while (true) {
2694     // Expansion by some other thread might make alloc OK now:
2695     if (promo->ensure_spooling_space()) {
2696       assert(promo->has_spooling_space(),
2697              "Post-condition of successful ensure_spooling_space()");
2698       return true;
2699     }
2700     // If there's not enough expansion space available, give up.
2701     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2702       return false;
2703     }
2704     // Otherwise, we try expansion.
2705     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2706     // Now go around the loop and try alloc again;
2707     // A competing allocation might beat us to the expansion space,
2708     // so we may go around the loop again if allocation fails again.
2709     if (GCExpandToAllocateDelayMillis > 0) {
2710       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2711     }
2712   }
2713 }
2714 
2715 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2716   // Only shrink if a compaction was done so that all the free space
2717   // in the generation is in a contiguous block at the end.
2718   if (did_compact()) {
2719     CardGeneration::shrink(bytes);
2720   }
2721 }
2722 
2723 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2724   assert_locked_or_safepoint(Heap_lock);
2725 }
2726 
2727 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2728   assert_locked_or_safepoint(Heap_lock);
2729   assert_lock_strong(freelistLock());
2730   log_trace(gc)("Shrinking of CMS not yet implemented");
2731   return;
2732 }
2733 
2734 
2735 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2736 // phases.
2737 class CMSPhaseAccounting: public StackObj {
2738  public:
2739   CMSPhaseAccounting(CMSCollector *collector,
2740                      const char *title);
2741   ~CMSPhaseAccounting();
2742 
2743  private:
2744   CMSCollector *_collector;
2745   const char *_title;
2746   GCTraceConcTime(Info, gc) _trace_time;
2747 
2748  public:
2749   // Not MT-safe; so do not pass around these StackObj's
2750   // where they may be accessed by other threads.
2751   double wallclock_millis() {
2752     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2753   }
2754 };
2755 
2756 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2757                                        const char *title) :
2758   _collector(collector), _title(title), _trace_time(title) {
2759 
2760   _collector->resetYields();
2761   _collector->resetTimer();
2762   _collector->startTimer();
2763   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2764 }
2765 
2766 CMSPhaseAccounting::~CMSPhaseAccounting() {
2767   _collector->gc_timer_cm()->register_gc_concurrent_end();
2768   _collector->stopTimer();
2769   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2770   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2771 }
2772 
2773 // CMS work
2774 
2775 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2776 class CMSParMarkTask : public AbstractGangTask {
2777  protected:
2778   CMSCollector*     _collector;
2779   uint              _n_workers;
2780   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2781       AbstractGangTask(name),
2782       _collector(collector),
2783       _n_workers(n_workers) {}
2784   // Work method in support of parallel rescan ... of young gen spaces
2785   void do_young_space_rescan(OopsInGenClosure* cl,
2786                              ContiguousSpace* space,
2787                              HeapWord** chunk_array, size_t chunk_top);
2788   void work_on_young_gen_roots(OopsInGenClosure* cl);
2789 };
2790 
2791 // Parallel initial mark task
2792 class CMSParInitialMarkTask: public CMSParMarkTask {
2793   StrongRootsScope* _strong_roots_scope;
2794  public:
2795   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2796       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2797       _strong_roots_scope(strong_roots_scope) {}
2798   void work(uint worker_id);
2799 };
2800 
2801 // Checkpoint the roots into this generation from outside
2802 // this generation. [Note this initial checkpoint need only
2803 // be approximate -- we'll do a catch up phase subsequently.]
2804 void CMSCollector::checkpointRootsInitial() {
2805   assert(_collectorState == InitialMarking, "Wrong collector state");
2806   check_correct_thread_executing();
2807   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
2808 
2809   save_heap_summary();
2810   report_heap_summary(GCWhen::BeforeGC);
2811 
2812   ReferenceProcessor* rp = ref_processor();
2813   assert(_restart_addr == NULL, "Control point invariant");
2814   {
2815     // acquire locks for subsequent manipulations
2816     MutexLockerEx x(bitMapLock(),
2817                     Mutex::_no_safepoint_check_flag);
2818     checkpointRootsInitialWork();
2819     // enable ("weak") refs discovery
2820     rp->enable_discovery();
2821     _collectorState = Marking;
2822   }
2823 }
2824 
2825 void CMSCollector::checkpointRootsInitialWork() {
2826   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2827   assert(_collectorState == InitialMarking, "just checking");
2828 
2829   // Already have locks.
2830   assert_lock_strong(bitMapLock());
2831   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2832 
2833   // Setup the verification and class unloading state for this
2834   // CMS collection cycle.
2835   setup_cms_unloading_and_verification_state();
2836 
2837   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2838 
2839   // Reset all the PLAB chunk arrays if necessary.
2840   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2841     reset_survivor_plab_arrays();
2842   }
2843 
2844   ResourceMark rm;
2845   HandleMark  hm;
2846 
2847   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2848   CMSHeap* heap = CMSHeap::heap();
2849 
2850   verify_work_stacks_empty();
2851   verify_overflow_empty();
2852 
2853   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2854   // Update the saved marks which may affect the root scans.
2855   heap->save_marks();
2856 
2857   // weak reference processing has not started yet.
2858   ref_processor()->set_enqueuing_is_done(false);
2859 
2860   // Need to remember all newly created CLDs,
2861   // so that we can guarantee that the remark finds them.
2862   ClassLoaderDataGraph::remember_new_clds(true);
2863 
2864   // Whenever a CLD is found, it will be claimed before proceeding to mark
2865   // the klasses. The claimed marks need to be cleared before marking starts.
2866   ClassLoaderDataGraph::clear_claimed_marks();
2867 
2868   print_eden_and_survivor_chunk_arrays();
2869 
2870   {
2871 #if COMPILER2_OR_JVMCI
2872     DerivedPointerTableDeactivate dpt_deact;
2873 #endif
2874     if (CMSParallelInitialMarkEnabled) {
2875       // The parallel version.
2876       WorkGang* workers = heap->workers();
2877       assert(workers != NULL, "Need parallel worker threads.");
2878       uint n_workers = workers->active_workers();
2879 
2880       StrongRootsScope srs(n_workers);
2881 
2882       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2883       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2884       // If the total workers is greater than 1, then multiple workers
2885       // may be used at some time and the initialization has been set
2886       // such that the single threaded path cannot be used.
2887       if (workers->total_workers() > 1) {
2888         workers->run_task(&tsk);
2889       } else {
2890         tsk.work(0);
2891       }
2892     } else {
2893       // The serial version.
2894       CLDToOopClosure cld_closure(&notOlder, true);
2895       heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2896 
2897       StrongRootsScope srs(1);
2898 
2899       heap->cms_process_roots(&srs,
2900                              true,   // young gen as roots
2901                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2902                              should_unload_classes(),
2903                              &notOlder,
2904                              &cld_closure);
2905     }
2906   }
2907 
2908   // Clear mod-union table; it will be dirtied in the prologue of
2909   // CMS generation per each young generation collection.
2910 
2911   assert(_modUnionTable.isAllClear(),
2912        "Was cleared in most recent final checkpoint phase"
2913        " or no bits are set in the gc_prologue before the start of the next "
2914        "subsequent marking phase.");
2915 
2916   assert(_ct->cld_rem_set()->mod_union_is_clear(), "Must be");
2917 
2918   // Save the end of the used_region of the constituent generations
2919   // to be used to limit the extent of sweep in each generation.
2920   save_sweep_limits();
2921   verify_overflow_empty();
2922 }
2923 
2924 bool CMSCollector::markFromRoots() {
2925   // we might be tempted to assert that:
2926   // assert(!SafepointSynchronize::is_at_safepoint(),
2927   //        "inconsistent argument?");
2928   // However that wouldn't be right, because it's possible that
2929   // a safepoint is indeed in progress as a young generation
2930   // stop-the-world GC happens even as we mark in this generation.
2931   assert(_collectorState == Marking, "inconsistent state?");
2932   check_correct_thread_executing();
2933   verify_overflow_empty();
2934 
2935   // Weak ref discovery note: We may be discovering weak
2936   // refs in this generation concurrent (but interleaved) with
2937   // weak ref discovery by the young generation collector.
2938 
2939   CMSTokenSyncWithLocks ts(true, bitMapLock());
2940   GCTraceCPUTime tcpu;
2941   CMSPhaseAccounting pa(this, "Concurrent Mark");
2942   bool res = markFromRootsWork();
2943   if (res) {
2944     _collectorState = Precleaning;
2945   } else { // We failed and a foreground collection wants to take over
2946     assert(_foregroundGCIsActive, "internal state inconsistency");
2947     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2948     log_debug(gc)("bailing out to foreground collection");
2949   }
2950   verify_overflow_empty();
2951   return res;
2952 }
2953 
2954 bool CMSCollector::markFromRootsWork() {
2955   // iterate over marked bits in bit map, doing a full scan and mark
2956   // from these roots using the following algorithm:
2957   // . if oop is to the right of the current scan pointer,
2958   //   mark corresponding bit (we'll process it later)
2959   // . else (oop is to left of current scan pointer)
2960   //   push oop on marking stack
2961   // . drain the marking stack
2962 
2963   // Note that when we do a marking step we need to hold the
2964   // bit map lock -- recall that direct allocation (by mutators)
2965   // and promotion (by the young generation collector) is also
2966   // marking the bit map. [the so-called allocate live policy.]
2967   // Because the implementation of bit map marking is not
2968   // robust wrt simultaneous marking of bits in the same word,
2969   // we need to make sure that there is no such interference
2970   // between concurrent such updates.
2971 
2972   // already have locks
2973   assert_lock_strong(bitMapLock());
2974 
2975   verify_work_stacks_empty();
2976   verify_overflow_empty();
2977   bool result = false;
2978   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2979     result = do_marking_mt();
2980   } else {
2981     result = do_marking_st();
2982   }
2983   return result;
2984 }
2985 
2986 // Forward decl
2987 class CMSConcMarkingTask;
2988 
2989 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2990   CMSCollector*       _collector;
2991   CMSConcMarkingTask* _task;
2992  public:
2993   virtual void yield();
2994 
2995   // "n_threads" is the number of threads to be terminated.
2996   // "queue_set" is a set of work queues of other threads.
2997   // "collector" is the CMS collector associated with this task terminator.
2998   // "yield" indicates whether we need the gang as a whole to yield.
2999   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3000     ParallelTaskTerminator(n_threads, queue_set),
3001     _collector(collector) { }
3002 
3003   void set_task(CMSConcMarkingTask* task) {
3004     _task = task;
3005   }
3006 };
3007 
3008 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3009   CMSConcMarkingTask* _task;
3010  public:
3011   bool should_exit_termination();
3012   void set_task(CMSConcMarkingTask* task) {
3013     _task = task;
3014   }
3015 };
3016 
3017 // MT Concurrent Marking Task
3018 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3019   CMSCollector*             _collector;
3020   uint                      _n_workers;      // requested/desired # workers
3021   bool                      _result;
3022   CompactibleFreeListSpace* _cms_space;
3023   char                      _pad_front[64];   // padding to ...
3024   HeapWord* volatile        _global_finger;   // ... avoid sharing cache line
3025   char                      _pad_back[64];
3026   HeapWord*                 _restart_addr;
3027 
3028   //  Exposed here for yielding support
3029   Mutex* const _bit_map_lock;
3030 
3031   // The per thread work queues, available here for stealing
3032   OopTaskQueueSet*  _task_queues;
3033 
3034   // Termination (and yielding) support
3035   CMSConcMarkingTerminator _term;
3036   CMSConcMarkingTerminatorTerminator _term_term;
3037 
3038  public:
3039   CMSConcMarkingTask(CMSCollector* collector,
3040                  CompactibleFreeListSpace* cms_space,
3041                  YieldingFlexibleWorkGang* workers,
3042                  OopTaskQueueSet* task_queues):
3043     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3044     _collector(collector),
3045     _cms_space(cms_space),
3046     _n_workers(0), _result(true),
3047     _task_queues(task_queues),
3048     _term(_n_workers, task_queues, _collector),
3049     _bit_map_lock(collector->bitMapLock())
3050   {
3051     _requested_size = _n_workers;
3052     _term.set_task(this);
3053     _term_term.set_task(this);
3054     _restart_addr = _global_finger = _cms_space->bottom();
3055   }
3056 
3057 
3058   OopTaskQueueSet* task_queues()  { return _task_queues; }
3059 
3060   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3061 
3062   HeapWord* volatile* global_finger_addr() { return &_global_finger; }
3063 
3064   CMSConcMarkingTerminator* terminator() { return &_term; }
3065 
3066   virtual void set_for_termination(uint active_workers) {
3067     terminator()->reset_for_reuse(active_workers);
3068   }
3069 
3070   void work(uint worker_id);
3071   bool should_yield() {
3072     return    ConcurrentMarkSweepThread::should_yield()
3073            && !_collector->foregroundGCIsActive();
3074   }
3075 
3076   virtual void coordinator_yield();  // stuff done by coordinator
3077   bool result() { return _result; }
3078 
3079   void reset(HeapWord* ra) {
3080     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3081     _restart_addr = _global_finger = ra;
3082     _term.reset_for_reuse();
3083   }
3084 
3085   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3086                                            OopTaskQueue* work_q);
3087 
3088  private:
3089   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3090   void do_work_steal(int i);
3091   void bump_global_finger(HeapWord* f);
3092 };
3093 
3094 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3095   assert(_task != NULL, "Error");
3096   return _task->yielding();
3097   // Note that we do not need the disjunct || _task->should_yield() above
3098   // because we want terminating threads to yield only if the task
3099   // is already in the midst of yielding, which happens only after at least one
3100   // thread has yielded.
3101 }
3102 
3103 void CMSConcMarkingTerminator::yield() {
3104   if (_task->should_yield()) {
3105     _task->yield();
3106   } else {
3107     ParallelTaskTerminator::yield();
3108   }
3109 }
3110 
3111 ////////////////////////////////////////////////////////////////
3112 // Concurrent Marking Algorithm Sketch
3113 ////////////////////////////////////////////////////////////////
3114 // Until all tasks exhausted (both spaces):
3115 // -- claim next available chunk
3116 // -- bump global finger via CAS
3117 // -- find first object that starts in this chunk
3118 //    and start scanning bitmap from that position
3119 // -- scan marked objects for oops
3120 // -- CAS-mark target, and if successful:
3121 //    . if target oop is above global finger (volatile read)
3122 //      nothing to do
3123 //    . if target oop is in chunk and above local finger
3124 //        then nothing to do
3125 //    . else push on work-queue
3126 // -- Deal with possible overflow issues:
3127 //    . local work-queue overflow causes stuff to be pushed on
3128 //      global (common) overflow queue
3129 //    . always first empty local work queue
3130 //    . then get a batch of oops from global work queue if any
3131 //    . then do work stealing
3132 // -- When all tasks claimed (both spaces)
3133 //    and local work queue empty,
3134 //    then in a loop do:
3135 //    . check global overflow stack; steal a batch of oops and trace
3136 //    . try to steal from other threads oif GOS is empty
3137 //    . if neither is available, offer termination
3138 // -- Terminate and return result
3139 //
3140 void CMSConcMarkingTask::work(uint worker_id) {
3141   elapsedTimer _timer;
3142   ResourceMark rm;
3143   HandleMark hm;
3144 
3145   DEBUG_ONLY(_collector->verify_overflow_empty();)
3146 
3147   // Before we begin work, our work queue should be empty
3148   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3149   // Scan the bitmap covering _cms_space, tracing through grey objects.
3150   _timer.start();
3151   do_scan_and_mark(worker_id, _cms_space);
3152   _timer.stop();
3153   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3154 
3155   // ... do work stealing
3156   _timer.reset();
3157   _timer.start();
3158   do_work_steal(worker_id);
3159   _timer.stop();
3160   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3161   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3162   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3163   // Note that under the current task protocol, the
3164   // following assertion is true even of the spaces
3165   // expanded since the completion of the concurrent
3166   // marking. XXX This will likely change under a strict
3167   // ABORT semantics.
3168   // After perm removal the comparison was changed to
3169   // greater than or equal to from strictly greater than.
3170   // Before perm removal the highest address sweep would
3171   // have been at the end of perm gen but now is at the
3172   // end of the tenured gen.
3173   assert(_global_finger >=  _cms_space->end(),
3174          "All tasks have been completed");
3175   DEBUG_ONLY(_collector->verify_overflow_empty();)
3176 }
3177 
3178 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3179   HeapWord* read = _global_finger;
3180   HeapWord* cur  = read;
3181   while (f > read) {
3182     cur = read;
3183     read = Atomic::cmpxchg(f, &_global_finger, cur);
3184     if (cur == read) {
3185       // our cas succeeded
3186       assert(_global_finger >= f, "protocol consistency");
3187       break;
3188     }
3189   }
3190 }
3191 
3192 // This is really inefficient, and should be redone by
3193 // using (not yet available) block-read and -write interfaces to the
3194 // stack and the work_queue. XXX FIX ME !!!
3195 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3196                                                       OopTaskQueue* work_q) {
3197   // Fast lock-free check
3198   if (ovflw_stk->length() == 0) {
3199     return false;
3200   }
3201   assert(work_q->size() == 0, "Shouldn't steal");
3202   MutexLockerEx ml(ovflw_stk->par_lock(),
3203                    Mutex::_no_safepoint_check_flag);
3204   // Grab up to 1/4 the size of the work queue
3205   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3206                     (size_t)ParGCDesiredObjsFromOverflowList);
3207   num = MIN2(num, ovflw_stk->length());
3208   for (int i = (int) num; i > 0; i--) {
3209     oop cur = ovflw_stk->pop();
3210     assert(cur != NULL, "Counted wrong?");
3211     work_q->push(cur);
3212   }
3213   return num > 0;
3214 }
3215 
3216 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3217   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3218   int n_tasks = pst->n_tasks();
3219   // We allow that there may be no tasks to do here because
3220   // we are restarting after a stack overflow.
3221   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3222   uint nth_task = 0;
3223 
3224   HeapWord* aligned_start = sp->bottom();
3225   if (sp->used_region().contains(_restart_addr)) {
3226     // Align down to a card boundary for the start of 0th task
3227     // for this space.
3228     aligned_start = align_down(_restart_addr, CardTable::card_size);
3229   }
3230 
3231   size_t chunk_size = sp->marking_task_size();
3232   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3233     // Having claimed the nth task in this space,
3234     // compute the chunk that it corresponds to:
3235     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3236                                aligned_start + (nth_task+1)*chunk_size);
3237     // Try and bump the global finger via a CAS;
3238     // note that we need to do the global finger bump
3239     // _before_ taking the intersection below, because
3240     // the task corresponding to that region will be
3241     // deemed done even if the used_region() expands
3242     // because of allocation -- as it almost certainly will
3243     // during start-up while the threads yield in the
3244     // closure below.
3245     HeapWord* finger = span.end();
3246     bump_global_finger(finger);   // atomically
3247     // There are null tasks here corresponding to chunks
3248     // beyond the "top" address of the space.
3249     span = span.intersection(sp->used_region());
3250     if (!span.is_empty()) {  // Non-null task
3251       HeapWord* prev_obj;
3252       assert(!span.contains(_restart_addr) || nth_task == 0,
3253              "Inconsistency");
3254       if (nth_task == 0) {
3255         // For the 0th task, we'll not need to compute a block_start.
3256         if (span.contains(_restart_addr)) {
3257           // In the case of a restart because of stack overflow,
3258           // we might additionally skip a chunk prefix.
3259           prev_obj = _restart_addr;
3260         } else {
3261           prev_obj = span.start();
3262         }
3263       } else {
3264         // We want to skip the first object because
3265         // the protocol is to scan any object in its entirety
3266         // that _starts_ in this span; a fortiori, any
3267         // object starting in an earlier span is scanned
3268         // as part of an earlier claimed task.
3269         // Below we use the "careful" version of block_start
3270         // so we do not try to navigate uninitialized objects.
3271         prev_obj = sp->block_start_careful(span.start());
3272         // Below we use a variant of block_size that uses the
3273         // Printezis bits to avoid waiting for allocated
3274         // objects to become initialized/parsable.
3275         while (prev_obj < span.start()) {
3276           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3277           if (sz > 0) {
3278             prev_obj += sz;
3279           } else {
3280             // In this case we may end up doing a bit of redundant
3281             // scanning, but that appears unavoidable, short of
3282             // locking the free list locks; see bug 6324141.
3283             break;
3284           }
3285         }
3286       }
3287       if (prev_obj < span.end()) {
3288         MemRegion my_span = MemRegion(prev_obj, span.end());
3289         // Do the marking work within a non-empty span --
3290         // the last argument to the constructor indicates whether the
3291         // iteration should be incremental with periodic yields.
3292         ParMarkFromRootsClosure cl(this, _collector, my_span,
3293                                    &_collector->_markBitMap,
3294                                    work_queue(i),
3295                                    &_collector->_markStack);
3296         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3297       } // else nothing to do for this task
3298     }   // else nothing to do for this task
3299   }
3300   // We'd be tempted to assert here that since there are no
3301   // more tasks left to claim in this space, the global_finger
3302   // must exceed space->top() and a fortiori space->end(). However,
3303   // that would not quite be correct because the bumping of
3304   // global_finger occurs strictly after the claiming of a task,
3305   // so by the time we reach here the global finger may not yet
3306   // have been bumped up by the thread that claimed the last
3307   // task.
3308   pst->all_tasks_completed();
3309 }
3310 
3311 class ParConcMarkingClosure: public MetadataAwareOopClosure {
3312  private:
3313   CMSCollector* _collector;
3314   CMSConcMarkingTask* _task;
3315   MemRegion     _span;
3316   CMSBitMap*    _bit_map;
3317   CMSMarkStack* _overflow_stack;
3318   OopTaskQueue* _work_queue;
3319  protected:
3320   DO_OOP_WORK_DEFN
3321  public:
3322   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3323                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3324     MetadataAwareOopClosure(collector->ref_processor()),
3325     _collector(collector),
3326     _task(task),
3327     _span(collector->_span),
3328     _work_queue(work_queue),
3329     _bit_map(bit_map),
3330     _overflow_stack(overflow_stack)
3331   { }
3332   virtual void do_oop(oop* p);
3333   virtual void do_oop(narrowOop* p);
3334 
3335   void trim_queue(size_t max);
3336   void handle_stack_overflow(HeapWord* lost);
3337   void do_yield_check() {
3338     if (_task->should_yield()) {
3339       _task->yield();
3340     }
3341   }
3342 };
3343 
3344 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3345 
3346 // Grey object scanning during work stealing phase --
3347 // the salient assumption here is that any references
3348 // that are in these stolen objects being scanned must
3349 // already have been initialized (else they would not have
3350 // been published), so we do not need to check for
3351 // uninitialized objects before pushing here.
3352 void ParConcMarkingClosure::do_oop(oop obj) {
3353   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3354   HeapWord* addr = (HeapWord*)obj;
3355   // Check if oop points into the CMS generation
3356   // and is not marked
3357   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3358     // a white object ...
3359     // If we manage to "claim" the object, by being the
3360     // first thread to mark it, then we push it on our
3361     // marking stack
3362     if (_bit_map->par_mark(addr)) {     // ... now grey
3363       // push on work queue (grey set)
3364       bool simulate_overflow = false;
3365       NOT_PRODUCT(
3366         if (CMSMarkStackOverflowALot &&
3367             _collector->simulate_overflow()) {
3368           // simulate a stack overflow
3369           simulate_overflow = true;
3370         }
3371       )
3372       if (simulate_overflow ||
3373           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3374         // stack overflow
3375         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3376         // We cannot assert that the overflow stack is full because
3377         // it may have been emptied since.
3378         assert(simulate_overflow ||
3379                _work_queue->size() == _work_queue->max_elems(),
3380               "Else push should have succeeded");
3381         handle_stack_overflow(addr);
3382       }
3383     } // Else, some other thread got there first
3384     do_yield_check();
3385   }
3386 }
3387 
3388 void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3389 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3390 
3391 void ParConcMarkingClosure::trim_queue(size_t max) {
3392   while (_work_queue->size() > max) {
3393     oop new_oop;
3394     if (_work_queue->pop_local(new_oop)) {
3395       assert(oopDesc::is_oop(new_oop), "Should be an oop");
3396       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3397       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3398       new_oop->oop_iterate(this);  // do_oop() above
3399       do_yield_check();
3400     }
3401   }
3402 }
3403 
3404 // Upon stack overflow, we discard (part of) the stack,
3405 // remembering the least address amongst those discarded
3406 // in CMSCollector's _restart_address.
3407 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3408   // We need to do this under a mutex to prevent other
3409   // workers from interfering with the work done below.
3410   MutexLockerEx ml(_overflow_stack->par_lock(),
3411                    Mutex::_no_safepoint_check_flag);
3412   // Remember the least grey address discarded
3413   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3414   _collector->lower_restart_addr(ra);
3415   _overflow_stack->reset();  // discard stack contents
3416   _overflow_stack->expand(); // expand the stack if possible
3417 }
3418 
3419 
3420 void CMSConcMarkingTask::do_work_steal(int i) {
3421   OopTaskQueue* work_q = work_queue(i);
3422   oop obj_to_scan;
3423   CMSBitMap* bm = &(_collector->_markBitMap);
3424   CMSMarkStack* ovflw = &(_collector->_markStack);
3425   int* seed = _collector->hash_seed(i);
3426   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3427   while (true) {
3428     cl.trim_queue(0);
3429     assert(work_q->size() == 0, "Should have been emptied above");
3430     if (get_work_from_overflow_stack(ovflw, work_q)) {
3431       // Can't assert below because the work obtained from the
3432       // overflow stack may already have been stolen from us.
3433       // assert(work_q->size() > 0, "Work from overflow stack");
3434       continue;
3435     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3436       assert(oopDesc::is_oop(obj_to_scan), "Should be an oop");
3437       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3438       obj_to_scan->oop_iterate(&cl);
3439     } else if (terminator()->offer_termination(&_term_term)) {
3440       assert(work_q->size() == 0, "Impossible!");
3441       break;
3442     } else if (yielding() || should_yield()) {
3443       yield();
3444     }
3445   }
3446 }
3447 
3448 // This is run by the CMS (coordinator) thread.
3449 void CMSConcMarkingTask::coordinator_yield() {
3450   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3451          "CMS thread should hold CMS token");
3452   // First give up the locks, then yield, then re-lock
3453   // We should probably use a constructor/destructor idiom to
3454   // do this unlock/lock or modify the MutexUnlocker class to
3455   // serve our purpose. XXX
3456   assert_lock_strong(_bit_map_lock);
3457   _bit_map_lock->unlock();
3458   ConcurrentMarkSweepThread::desynchronize(true);
3459   _collector->stopTimer();
3460   _collector->incrementYields();
3461 
3462   // It is possible for whichever thread initiated the yield request
3463   // not to get a chance to wake up and take the bitmap lock between
3464   // this thread releasing it and reacquiring it. So, while the
3465   // should_yield() flag is on, let's sleep for a bit to give the
3466   // other thread a chance to wake up. The limit imposed on the number
3467   // of iterations is defensive, to avoid any unforseen circumstances
3468   // putting us into an infinite loop. Since it's always been this
3469   // (coordinator_yield()) method that was observed to cause the
3470   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3471   // which is by default non-zero. For the other seven methods that
3472   // also perform the yield operation, as are using a different
3473   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3474   // can enable the sleeping for those methods too, if necessary.
3475   // See 6442774.
3476   //
3477   // We really need to reconsider the synchronization between the GC
3478   // thread and the yield-requesting threads in the future and we
3479   // should really use wait/notify, which is the recommended
3480   // way of doing this type of interaction. Additionally, we should
3481   // consolidate the eight methods that do the yield operation and they
3482   // are almost identical into one for better maintainability and
3483   // readability. See 6445193.
3484   //
3485   // Tony 2006.06.29
3486   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3487                    ConcurrentMarkSweepThread::should_yield() &&
3488                    !CMSCollector::foregroundGCIsActive(); ++i) {
3489     os::sleep(Thread::current(), 1, false);
3490   }
3491 
3492   ConcurrentMarkSweepThread::synchronize(true);
3493   _bit_map_lock->lock_without_safepoint_check();
3494   _collector->startTimer();
3495 }
3496 
3497 bool CMSCollector::do_marking_mt() {
3498   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3499   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3500                                                                   conc_workers()->active_workers(),
3501                                                                   Threads::number_of_non_daemon_threads());
3502   num_workers = conc_workers()->update_active_workers(num_workers);
3503   log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers());
3504 
3505   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3506 
3507   CMSConcMarkingTask tsk(this,
3508                          cms_space,
3509                          conc_workers(),
3510                          task_queues());
3511 
3512   // Since the actual number of workers we get may be different
3513   // from the number we requested above, do we need to do anything different
3514   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3515   // class?? XXX
3516   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3517 
3518   // Refs discovery is already non-atomic.
3519   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3520   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3521   conc_workers()->start_task(&tsk);
3522   while (tsk.yielded()) {
3523     tsk.coordinator_yield();
3524     conc_workers()->continue_task(&tsk);
3525   }
3526   // If the task was aborted, _restart_addr will be non-NULL
3527   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3528   while (_restart_addr != NULL) {
3529     // XXX For now we do not make use of ABORTED state and have not
3530     // yet implemented the right abort semantics (even in the original
3531     // single-threaded CMS case). That needs some more investigation
3532     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3533     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3534     // If _restart_addr is non-NULL, a marking stack overflow
3535     // occurred; we need to do a fresh marking iteration from the
3536     // indicated restart address.
3537     if (_foregroundGCIsActive) {
3538       // We may be running into repeated stack overflows, having
3539       // reached the limit of the stack size, while making very
3540       // slow forward progress. It may be best to bail out and
3541       // let the foreground collector do its job.
3542       // Clear _restart_addr, so that foreground GC
3543       // works from scratch. This avoids the headache of
3544       // a "rescan" which would otherwise be needed because
3545       // of the dirty mod union table & card table.
3546       _restart_addr = NULL;
3547       return false;
3548     }
3549     // Adjust the task to restart from _restart_addr
3550     tsk.reset(_restart_addr);
3551     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3552                   _restart_addr);
3553     _restart_addr = NULL;
3554     // Get the workers going again
3555     conc_workers()->start_task(&tsk);
3556     while (tsk.yielded()) {
3557       tsk.coordinator_yield();
3558       conc_workers()->continue_task(&tsk);
3559     }
3560   }
3561   assert(tsk.completed(), "Inconsistency");
3562   assert(tsk.result() == true, "Inconsistency");
3563   return true;
3564 }
3565 
3566 bool CMSCollector::do_marking_st() {
3567   ResourceMark rm;
3568   HandleMark   hm;
3569 
3570   // Temporarily make refs discovery single threaded (non-MT)
3571   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3572   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3573     &_markStack, CMSYield);
3574   // the last argument to iterate indicates whether the iteration
3575   // should be incremental with periodic yields.
3576   _markBitMap.iterate(&markFromRootsClosure);
3577   // If _restart_addr is non-NULL, a marking stack overflow
3578   // occurred; we need to do a fresh iteration from the
3579   // indicated restart address.
3580   while (_restart_addr != NULL) {
3581     if (_foregroundGCIsActive) {
3582       // We may be running into repeated stack overflows, having
3583       // reached the limit of the stack size, while making very
3584       // slow forward progress. It may be best to bail out and
3585       // let the foreground collector do its job.
3586       // Clear _restart_addr, so that foreground GC
3587       // works from scratch. This avoids the headache of
3588       // a "rescan" which would otherwise be needed because
3589       // of the dirty mod union table & card table.
3590       _restart_addr = NULL;
3591       return false;  // indicating failure to complete marking
3592     }
3593     // Deal with stack overflow:
3594     // we restart marking from _restart_addr
3595     HeapWord* ra = _restart_addr;
3596     markFromRootsClosure.reset(ra);
3597     _restart_addr = NULL;
3598     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3599   }
3600   return true;
3601 }
3602 
3603 void CMSCollector::preclean() {
3604   check_correct_thread_executing();
3605   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3606   verify_work_stacks_empty();
3607   verify_overflow_empty();
3608   _abort_preclean = false;
3609   if (CMSPrecleaningEnabled) {
3610     if (!CMSEdenChunksRecordAlways) {
3611       _eden_chunk_index = 0;
3612     }
3613     size_t used = get_eden_used();
3614     size_t capacity = get_eden_capacity();
3615     // Don't start sampling unless we will get sufficiently
3616     // many samples.
3617     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3618                 * CMSScheduleRemarkEdenPenetration)) {
3619       _start_sampling = true;
3620     } else {
3621       _start_sampling = false;
3622     }
3623     GCTraceCPUTime tcpu;
3624     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3625     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3626   }
3627   CMSTokenSync x(true); // is cms thread
3628   if (CMSPrecleaningEnabled) {
3629     sample_eden();
3630     _collectorState = AbortablePreclean;
3631   } else {
3632     _collectorState = FinalMarking;
3633   }
3634   verify_work_stacks_empty();
3635   verify_overflow_empty();
3636 }
3637 
3638 // Try and schedule the remark such that young gen
3639 // occupancy is CMSScheduleRemarkEdenPenetration %.
3640 void CMSCollector::abortable_preclean() {
3641   check_correct_thread_executing();
3642   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3643   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3644 
3645   // If Eden's current occupancy is below this threshold,
3646   // immediately schedule the remark; else preclean
3647   // past the next scavenge in an effort to
3648   // schedule the pause as described above. By choosing
3649   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3650   // we will never do an actual abortable preclean cycle.
3651   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3652     GCTraceCPUTime tcpu;
3653     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3654     // We need more smarts in the abortable preclean
3655     // loop below to deal with cases where allocation
3656     // in young gen is very very slow, and our precleaning
3657     // is running a losing race against a horde of
3658     // mutators intent on flooding us with CMS updates
3659     // (dirty cards).
3660     // One, admittedly dumb, strategy is to give up
3661     // after a certain number of abortable precleaning loops
3662     // or after a certain maximum time. We want to make
3663     // this smarter in the next iteration.
3664     // XXX FIX ME!!! YSR
3665     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3666     while (!(should_abort_preclean() ||
3667              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3668       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3669       cumworkdone += workdone;
3670       loops++;
3671       // Voluntarily terminate abortable preclean phase if we have
3672       // been at it for too long.
3673       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3674           loops >= CMSMaxAbortablePrecleanLoops) {
3675         log_debug(gc)(" CMS: abort preclean due to loops ");
3676         break;
3677       }
3678       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3679         log_debug(gc)(" CMS: abort preclean due to time ");
3680         break;
3681       }
3682       // If we are doing little work each iteration, we should
3683       // take a short break.
3684       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3685         // Sleep for some time, waiting for work to accumulate
3686         stopTimer();
3687         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3688         startTimer();
3689         waited++;
3690       }
3691     }
3692     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3693                                loops, waited, cumworkdone);
3694   }
3695   CMSTokenSync x(true); // is cms thread
3696   if (_collectorState != Idling) {
3697     assert(_collectorState == AbortablePreclean,
3698            "Spontaneous state transition?");
3699     _collectorState = FinalMarking;
3700   } // Else, a foreground collection completed this CMS cycle.
3701   return;
3702 }
3703 
3704 // Respond to an Eden sampling opportunity
3705 void CMSCollector::sample_eden() {
3706   // Make sure a young gc cannot sneak in between our
3707   // reading and recording of a sample.
3708   assert(Thread::current()->is_ConcurrentGC_thread(),
3709          "Only the cms thread may collect Eden samples");
3710   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3711          "Should collect samples while holding CMS token");
3712   if (!_start_sampling) {
3713     return;
3714   }
3715   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3716   // is populated by the young generation.
3717   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3718     if (_eden_chunk_index < _eden_chunk_capacity) {
3719       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3720       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3721              "Unexpected state of Eden");
3722       // We'd like to check that what we just sampled is an oop-start address;
3723       // however, we cannot do that here since the object may not yet have been
3724       // initialized. So we'll instead do the check when we _use_ this sample
3725       // later.
3726       if (_eden_chunk_index == 0 ||
3727           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3728                          _eden_chunk_array[_eden_chunk_index-1])
3729            >= CMSSamplingGrain)) {
3730         _eden_chunk_index++;  // commit sample
3731       }
3732     }
3733   }
3734   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3735     size_t used = get_eden_used();
3736     size_t capacity = get_eden_capacity();
3737     assert(used <= capacity, "Unexpected state of Eden");
3738     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3739       _abort_preclean = true;
3740     }
3741   }
3742 }
3743 
3744 
3745 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3746   assert(_collectorState == Precleaning ||
3747          _collectorState == AbortablePreclean, "incorrect state");
3748   ResourceMark rm;
3749   HandleMark   hm;
3750 
3751   // Precleaning is currently not MT but the reference processor
3752   // may be set for MT.  Disable it temporarily here.
3753   ReferenceProcessor* rp = ref_processor();
3754   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3755 
3756   // Do one pass of scrubbing the discovered reference lists
3757   // to remove any reference objects with strongly-reachable
3758   // referents.
3759   if (clean_refs) {
3760     CMSPrecleanRefsYieldClosure yield_cl(this);
3761     assert(rp->span().equals(_span), "Spans should be equal");
3762     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3763                                    &_markStack, true /* preclean */);
3764     CMSDrainMarkingStackClosure complete_trace(this,
3765                                    _span, &_markBitMap, &_markStack,
3766                                    &keep_alive, true /* preclean */);
3767 
3768     // We don't want this step to interfere with a young
3769     // collection because we don't want to take CPU
3770     // or memory bandwidth away from the young GC threads
3771     // (which may be as many as there are CPUs).
3772     // Note that we don't need to protect ourselves from
3773     // interference with mutators because they can't
3774     // manipulate the discovered reference lists nor affect
3775     // the computed reachability of the referents, the
3776     // only properties manipulated by the precleaning
3777     // of these reference lists.
3778     stopTimer();
3779     CMSTokenSyncWithLocks x(true /* is cms thread */,
3780                             bitMapLock());
3781     startTimer();
3782     sample_eden();
3783 
3784     // The following will yield to allow foreground
3785     // collection to proceed promptly. XXX YSR:
3786     // The code in this method may need further
3787     // tweaking for better performance and some restructuring
3788     // for cleaner interfaces.
3789     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3790     rp->preclean_discovered_references(
3791           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3792           gc_timer);
3793   }
3794 
3795   if (clean_survivor) {  // preclean the active survivor space(s)
3796     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3797                              &_markBitMap, &_modUnionTable,
3798                              &_markStack, true /* precleaning phase */);
3799     stopTimer();
3800     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3801                              bitMapLock());
3802     startTimer();
3803     unsigned int before_count =
3804       CMSHeap::heap()->total_collections();
3805     SurvivorSpacePrecleanClosure
3806       sss_cl(this, _span, &_markBitMap, &_markStack,
3807              &pam_cl, before_count, CMSYield);
3808     _young_gen->from()->object_iterate_careful(&sss_cl);
3809     _young_gen->to()->object_iterate_careful(&sss_cl);
3810   }
3811   MarkRefsIntoAndScanClosure
3812     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3813              &_markStack, this, CMSYield,
3814              true /* precleaning phase */);
3815   // CAUTION: The following closure has persistent state that may need to
3816   // be reset upon a decrease in the sequence of addresses it
3817   // processes.
3818   ScanMarkedObjectsAgainCarefullyClosure
3819     smoac_cl(this, _span,
3820       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3821 
3822   // Preclean dirty cards in ModUnionTable and CardTable using
3823   // appropriate convergence criterion;
3824   // repeat CMSPrecleanIter times unless we find that
3825   // we are losing.
3826   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3827   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3828          "Bad convergence multiplier");
3829   assert(CMSPrecleanThreshold >= 100,
3830          "Unreasonably low CMSPrecleanThreshold");
3831 
3832   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3833   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3834        numIter < CMSPrecleanIter;
3835        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3836     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3837     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3838     // Either there are very few dirty cards, so re-mark
3839     // pause will be small anyway, or our pre-cleaning isn't
3840     // that much faster than the rate at which cards are being
3841     // dirtied, so we might as well stop and re-mark since
3842     // precleaning won't improve our re-mark time by much.
3843     if (curNumCards <= CMSPrecleanThreshold ||
3844         (numIter > 0 &&
3845          (curNumCards * CMSPrecleanDenominator >
3846          lastNumCards * CMSPrecleanNumerator))) {
3847       numIter++;
3848       cumNumCards += curNumCards;
3849       break;
3850     }
3851   }
3852 
3853   preclean_cld(&mrias_cl, _cmsGen->freelistLock());
3854 
3855   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3856   cumNumCards += curNumCards;
3857   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3858                              curNumCards, cumNumCards, numIter);
3859   return cumNumCards;   // as a measure of useful work done
3860 }
3861 
3862 // PRECLEANING NOTES:
3863 // Precleaning involves:
3864 // . reading the bits of the modUnionTable and clearing the set bits.
3865 // . For the cards corresponding to the set bits, we scan the
3866 //   objects on those cards. This means we need the free_list_lock
3867 //   so that we can safely iterate over the CMS space when scanning
3868 //   for oops.
3869 // . When we scan the objects, we'll be both reading and setting
3870 //   marks in the marking bit map, so we'll need the marking bit map.
3871 // . For protecting _collector_state transitions, we take the CGC_lock.
3872 //   Note that any races in the reading of of card table entries by the
3873 //   CMS thread on the one hand and the clearing of those entries by the
3874 //   VM thread or the setting of those entries by the mutator threads on the
3875 //   other are quite benign. However, for efficiency it makes sense to keep
3876 //   the VM thread from racing with the CMS thread while the latter is
3877 //   dirty card info to the modUnionTable. We therefore also use the
3878 //   CGC_lock to protect the reading of the card table and the mod union
3879 //   table by the CM thread.
3880 // . We run concurrently with mutator updates, so scanning
3881 //   needs to be done carefully  -- we should not try to scan
3882 //   potentially uninitialized objects.
3883 //
3884 // Locking strategy: While holding the CGC_lock, we scan over and
3885 // reset a maximal dirty range of the mod union / card tables, then lock
3886 // the free_list_lock and bitmap lock to do a full marking, then
3887 // release these locks; and repeat the cycle. This allows for a
3888 // certain amount of fairness in the sharing of these locks between
3889 // the CMS collector on the one hand, and the VM thread and the
3890 // mutators on the other.
3891 
3892 // NOTE: preclean_mod_union_table() and preclean_card_table()
3893 // further below are largely identical; if you need to modify
3894 // one of these methods, please check the other method too.
3895 
3896 size_t CMSCollector::preclean_mod_union_table(
3897   ConcurrentMarkSweepGeneration* old_gen,
3898   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3899   verify_work_stacks_empty();
3900   verify_overflow_empty();
3901 
3902   // strategy: starting with the first card, accumulate contiguous
3903   // ranges of dirty cards; clear these cards, then scan the region
3904   // covered by these cards.
3905 
3906   // Since all of the MUT is committed ahead, we can just use
3907   // that, in case the generations expand while we are precleaning.
3908   // It might also be fine to just use the committed part of the
3909   // generation, but we might potentially miss cards when the
3910   // generation is rapidly expanding while we are in the midst
3911   // of precleaning.
3912   HeapWord* startAddr = old_gen->reserved().start();
3913   HeapWord* endAddr   = old_gen->reserved().end();
3914 
3915   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3916 
3917   size_t numDirtyCards, cumNumDirtyCards;
3918   HeapWord *nextAddr, *lastAddr;
3919   for (cumNumDirtyCards = numDirtyCards = 0,
3920        nextAddr = lastAddr = startAddr;
3921        nextAddr < endAddr;
3922        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3923 
3924     ResourceMark rm;
3925     HandleMark   hm;
3926 
3927     MemRegion dirtyRegion;
3928     {
3929       stopTimer();
3930       // Potential yield point
3931       CMSTokenSync ts(true);
3932       startTimer();
3933       sample_eden();
3934       // Get dirty region starting at nextOffset (inclusive),
3935       // simultaneously clearing it.
3936       dirtyRegion =
3937         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3938       assert(dirtyRegion.start() >= nextAddr,
3939              "returned region inconsistent?");
3940     }
3941     // Remember where the next search should begin.
3942     // The returned region (if non-empty) is a right open interval,
3943     // so lastOffset is obtained from the right end of that
3944     // interval.
3945     lastAddr = dirtyRegion.end();
3946     // Should do something more transparent and less hacky XXX
3947     numDirtyCards =
3948       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3949 
3950     // We'll scan the cards in the dirty region (with periodic
3951     // yields for foreground GC as needed).
3952     if (!dirtyRegion.is_empty()) {
3953       assert(numDirtyCards > 0, "consistency check");
3954       HeapWord* stop_point = NULL;
3955       stopTimer();
3956       // Potential yield point
3957       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3958                                bitMapLock());
3959       startTimer();
3960       {
3961         verify_work_stacks_empty();
3962         verify_overflow_empty();
3963         sample_eden();
3964         stop_point =
3965           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3966       }
3967       if (stop_point != NULL) {
3968         // The careful iteration stopped early either because it found an
3969         // uninitialized object, or because we were in the midst of an
3970         // "abortable preclean", which should now be aborted. Redirty
3971         // the bits corresponding to the partially-scanned or unscanned
3972         // cards. We'll either restart at the next block boundary or
3973         // abort the preclean.
3974         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3975                "Should only be AbortablePreclean.");
3976         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3977         if (should_abort_preclean()) {
3978           break; // out of preclean loop
3979         } else {
3980           // Compute the next address at which preclean should pick up;
3981           // might need bitMapLock in order to read P-bits.
3982           lastAddr = next_card_start_after_block(stop_point);
3983         }
3984       }
3985     } else {
3986       assert(lastAddr == endAddr, "consistency check");
3987       assert(numDirtyCards == 0, "consistency check");
3988       break;
3989     }
3990   }
3991   verify_work_stacks_empty();
3992   verify_overflow_empty();
3993   return cumNumDirtyCards;
3994 }
3995 
3996 // NOTE: preclean_mod_union_table() above and preclean_card_table()
3997 // below are largely identical; if you need to modify
3998 // one of these methods, please check the other method too.
3999 
4000 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4001   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4002   // strategy: it's similar to precleamModUnionTable above, in that
4003   // we accumulate contiguous ranges of dirty cards, mark these cards
4004   // precleaned, then scan the region covered by these cards.
4005   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4006   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4007 
4008   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4009 
4010   size_t numDirtyCards, cumNumDirtyCards;
4011   HeapWord *lastAddr, *nextAddr;
4012 
4013   for (cumNumDirtyCards = numDirtyCards = 0,
4014        nextAddr = lastAddr = startAddr;
4015        nextAddr < endAddr;
4016        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4017 
4018     ResourceMark rm;
4019     HandleMark   hm;
4020 
4021     MemRegion dirtyRegion;
4022     {
4023       // See comments in "Precleaning notes" above on why we
4024       // do this locking. XXX Could the locking overheads be
4025       // too high when dirty cards are sparse? [I don't think so.]
4026       stopTimer();
4027       CMSTokenSync x(true); // is cms thread
4028       startTimer();
4029       sample_eden();
4030       // Get and clear dirty region from card table
4031       dirtyRegion = _ct->dirty_card_range_after_reset(MemRegion(nextAddr, endAddr),
4032                                                       true,
4033                                                       CardTable::precleaned_card_val());
4034 
4035       assert(dirtyRegion.start() >= nextAddr,
4036              "returned region inconsistent?");
4037     }
4038     lastAddr = dirtyRegion.end();
4039     numDirtyCards =
4040       dirtyRegion.word_size()/CardTable::card_size_in_words;
4041 
4042     if (!dirtyRegion.is_empty()) {
4043       stopTimer();
4044       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4045       startTimer();
4046       sample_eden();
4047       verify_work_stacks_empty();
4048       verify_overflow_empty();
4049       HeapWord* stop_point =
4050         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4051       if (stop_point != NULL) {
4052         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4053                "Should only be AbortablePreclean.");
4054         _ct->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4055         if (should_abort_preclean()) {
4056           break; // out of preclean loop
4057         } else {
4058           // Compute the next address at which preclean should pick up.
4059           lastAddr = next_card_start_after_block(stop_point);
4060         }
4061       }
4062     } else {
4063       break;
4064     }
4065   }
4066   verify_work_stacks_empty();
4067   verify_overflow_empty();
4068   return cumNumDirtyCards;
4069 }
4070 
4071 class PrecleanCLDClosure : public CLDClosure {
4072   MetadataAwareOopsInGenClosure* _cm_closure;
4073  public:
4074   PrecleanCLDClosure(MetadataAwareOopsInGenClosure* oop_closure) : _cm_closure(oop_closure) {}
4075   void do_cld(ClassLoaderData* cld) {
4076     if (cld->has_accumulated_modified_oops()) {
4077       cld->clear_accumulated_modified_oops();
4078 
4079       _cm_closure->do_cld(cld);
4080     }
4081   }
4082 };
4083 
4084 // The freelist lock is needed to prevent asserts, is it really needed?
4085 void CMSCollector::preclean_cld(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4086 
4087   cl->set_freelistLock(freelistLock);
4088 
4089   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4090 
4091   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4092   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4093   PrecleanCLDClosure preclean_closure(cl);
4094   ClassLoaderDataGraph::cld_do(&preclean_closure);
4095 
4096   verify_work_stacks_empty();
4097   verify_overflow_empty();
4098 }
4099 
4100 void CMSCollector::checkpointRootsFinal() {
4101   assert(_collectorState == FinalMarking, "incorrect state transition?");
4102   check_correct_thread_executing();
4103   // world is stopped at this checkpoint
4104   assert(SafepointSynchronize::is_at_safepoint(),
4105          "world should be stopped");
4106   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
4107 
4108   verify_work_stacks_empty();
4109   verify_overflow_empty();
4110 
4111   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4112                 _young_gen->used() / K, _young_gen->capacity() / K);
4113   {
4114     if (CMSScavengeBeforeRemark) {
4115       CMSHeap* heap = CMSHeap::heap();
4116       // Temporarily set flag to false, GCH->do_collection will
4117       // expect it to be false and set to true
4118       FlagSetting fl(heap->_is_gc_active, false);
4119 
4120       heap->do_collection(true,                      // full (i.e. force, see below)
4121                           false,                     // !clear_all_soft_refs
4122                           0,                         // size
4123                           false,                     // is_tlab
4124                           GenCollectedHeap::YoungGen // type
4125         );
4126     }
4127     FreelistLocker x(this);
4128     MutexLockerEx y(bitMapLock(),
4129                     Mutex::_no_safepoint_check_flag);
4130     checkpointRootsFinalWork();
4131   }
4132   verify_work_stacks_empty();
4133   verify_overflow_empty();
4134 }
4135 
4136 void CMSCollector::checkpointRootsFinalWork() {
4137   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4138 
4139   assert(haveFreelistLocks(), "must have free list locks");
4140   assert_lock_strong(bitMapLock());
4141 
4142   ResourceMark rm;
4143   HandleMark   hm;
4144 
4145   CMSHeap* heap = CMSHeap::heap();
4146 
4147   if (should_unload_classes()) {
4148     CodeCache::gc_prologue();
4149   }
4150   assert(haveFreelistLocks(), "must have free list locks");
4151   assert_lock_strong(bitMapLock());
4152 
4153   // We might assume that we need not fill TLAB's when
4154   // CMSScavengeBeforeRemark is set, because we may have just done
4155   // a scavenge which would have filled all TLAB's -- and besides
4156   // Eden would be empty. This however may not always be the case --
4157   // for instance although we asked for a scavenge, it may not have
4158   // happened because of a JNI critical section. We probably need
4159   // a policy for deciding whether we can in that case wait until
4160   // the critical section releases and then do the remark following
4161   // the scavenge, and skip it here. In the absence of that policy,
4162   // or of an indication of whether the scavenge did indeed occur,
4163   // we cannot rely on TLAB's having been filled and must do
4164   // so here just in case a scavenge did not happen.
4165   heap->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4166   // Update the saved marks which may affect the root scans.
4167   heap->save_marks();
4168 
4169   print_eden_and_survivor_chunk_arrays();
4170 
4171   {
4172 #if COMPILER2_OR_JVMCI
4173     DerivedPointerTableDeactivate dpt_deact;
4174 #endif
4175 
4176     // Note on the role of the mod union table:
4177     // Since the marker in "markFromRoots" marks concurrently with
4178     // mutators, it is possible for some reachable objects not to have been
4179     // scanned. For instance, an only reference to an object A was
4180     // placed in object B after the marker scanned B. Unless B is rescanned,
4181     // A would be collected. Such updates to references in marked objects
4182     // are detected via the mod union table which is the set of all cards
4183     // dirtied since the first checkpoint in this GC cycle and prior to
4184     // the most recent young generation GC, minus those cleaned up by the
4185     // concurrent precleaning.
4186     if (CMSParallelRemarkEnabled) {
4187       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4188       do_remark_parallel();
4189     } else {
4190       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4191       do_remark_non_parallel();
4192     }
4193   }
4194   verify_work_stacks_empty();
4195   verify_overflow_empty();
4196 
4197   {
4198     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4199     refProcessingWork();
4200   }
4201   verify_work_stacks_empty();
4202   verify_overflow_empty();
4203 
4204   if (should_unload_classes()) {
4205     CodeCache::gc_epilogue();
4206   }
4207   JvmtiExport::gc_epilogue();
4208 
4209   // If we encountered any (marking stack / work queue) overflow
4210   // events during the current CMS cycle, take appropriate
4211   // remedial measures, where possible, so as to try and avoid
4212   // recurrence of that condition.
4213   assert(_markStack.isEmpty(), "No grey objects");
4214   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4215                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4216   if (ser_ovflw > 0) {
4217     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4218                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4219     _markStack.expand();
4220     _ser_pmc_remark_ovflw = 0;
4221     _ser_pmc_preclean_ovflw = 0;
4222     _ser_kac_preclean_ovflw = 0;
4223     _ser_kac_ovflw = 0;
4224   }
4225   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4226      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4227                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4228      _par_pmc_remark_ovflw = 0;
4229     _par_kac_ovflw = 0;
4230   }
4231    if (_markStack._hit_limit > 0) {
4232      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4233                           _markStack._hit_limit);
4234    }
4235    if (_markStack._failed_double > 0) {
4236      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4237                           _markStack._failed_double, _markStack.capacity());
4238    }
4239   _markStack._hit_limit = 0;
4240   _markStack._failed_double = 0;
4241 
4242   if ((VerifyAfterGC || VerifyDuringGC) &&
4243       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4244     verify_after_remark();
4245   }
4246 
4247   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4248 
4249   // Change under the freelistLocks.
4250   _collectorState = Sweeping;
4251   // Call isAllClear() under bitMapLock
4252   assert(_modUnionTable.isAllClear(),
4253       "Should be clear by end of the final marking");
4254   assert(_ct->cld_rem_set()->mod_union_is_clear(),
4255       "Should be clear by end of the final marking");
4256 }
4257 
4258 void CMSParInitialMarkTask::work(uint worker_id) {
4259   elapsedTimer _timer;
4260   ResourceMark rm;
4261   HandleMark   hm;
4262 
4263   // ---------- scan from roots --------------
4264   _timer.start();
4265   CMSHeap* heap = CMSHeap::heap();
4266   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4267 
4268   // ---------- young gen roots --------------
4269   {
4270     work_on_young_gen_roots(&par_mri_cl);
4271     _timer.stop();
4272     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4273   }
4274 
4275   // ---------- remaining roots --------------
4276   _timer.reset();
4277   _timer.start();
4278 
4279   CLDToOopClosure cld_closure(&par_mri_cl, true);
4280 
4281   heap->cms_process_roots(_strong_roots_scope,
4282                           false,     // yg was scanned above
4283                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4284                           _collector->should_unload_classes(),
4285                           &par_mri_cl,
4286                           &cld_closure);
4287   assert(_collector->should_unload_classes()
4288          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4289          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4290   _timer.stop();
4291   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4292 }
4293 
4294 // Parallel remark task
4295 class CMSParRemarkTask: public CMSParMarkTask {
4296   CompactibleFreeListSpace* _cms_space;
4297 
4298   // The per-thread work queues, available here for stealing.
4299   OopTaskQueueSet*       _task_queues;
4300   ParallelTaskTerminator _term;
4301   StrongRootsScope*      _strong_roots_scope;
4302 
4303  public:
4304   // A value of 0 passed to n_workers will cause the number of
4305   // workers to be taken from the active workers in the work gang.
4306   CMSParRemarkTask(CMSCollector* collector,
4307                    CompactibleFreeListSpace* cms_space,
4308                    uint n_workers, WorkGang* workers,
4309                    OopTaskQueueSet* task_queues,
4310                    StrongRootsScope* strong_roots_scope):
4311     CMSParMarkTask("Rescan roots and grey objects in parallel",
4312                    collector, n_workers),
4313     _cms_space(cms_space),
4314     _task_queues(task_queues),
4315     _term(n_workers, task_queues),
4316     _strong_roots_scope(strong_roots_scope) { }
4317 
4318   OopTaskQueueSet* task_queues() { return _task_queues; }
4319 
4320   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4321 
4322   ParallelTaskTerminator* terminator() { return &_term; }
4323   uint n_workers() { return _n_workers; }
4324 
4325   void work(uint worker_id);
4326 
4327  private:
4328   // ... of  dirty cards in old space
4329   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4330                                   ParMarkRefsIntoAndScanClosure* cl);
4331 
4332   // ... work stealing for the above
4333   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4334 };
4335 
4336 class RemarkCLDClosure : public CLDClosure {
4337   CLDToOopClosure _cm_closure;
4338  public:
4339   RemarkCLDClosure(OopClosure* oop_closure) : _cm_closure(oop_closure) {}
4340   void do_cld(ClassLoaderData* cld) {
4341     // Check if we have modified any oops in the CLD during the concurrent marking.
4342     if (cld->has_accumulated_modified_oops()) {
4343       cld->clear_accumulated_modified_oops();
4344 
4345       // We could have transfered the current modified marks to the accumulated marks,
4346       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4347     } else if (cld->has_modified_oops()) {
4348       // Don't clear anything, this info is needed by the next young collection.
4349     } else {
4350       // No modified oops in the ClassLoaderData.
4351       return;
4352     }
4353 
4354     // The klass has modified fields, need to scan the klass.
4355     _cm_closure.do_cld(cld);
4356   }
4357 };
4358 
4359 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4360   ParNewGeneration* young_gen = _collector->_young_gen;
4361   ContiguousSpace* eden_space = young_gen->eden();
4362   ContiguousSpace* from_space = young_gen->from();
4363   ContiguousSpace* to_space   = young_gen->to();
4364 
4365   HeapWord** eca = _collector->_eden_chunk_array;
4366   size_t     ect = _collector->_eden_chunk_index;
4367   HeapWord** sca = _collector->_survivor_chunk_array;
4368   size_t     sct = _collector->_survivor_chunk_index;
4369 
4370   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4371   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4372 
4373   do_young_space_rescan(cl, to_space, NULL, 0);
4374   do_young_space_rescan(cl, from_space, sca, sct);
4375   do_young_space_rescan(cl, eden_space, eca, ect);
4376 }
4377 
4378 // work_queue(i) is passed to the closure
4379 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4380 // also is passed to do_dirty_card_rescan_tasks() and to
4381 // do_work_steal() to select the i-th task_queue.
4382 
4383 void CMSParRemarkTask::work(uint worker_id) {
4384   elapsedTimer _timer;
4385   ResourceMark rm;
4386   HandleMark   hm;
4387 
4388   // ---------- rescan from roots --------------
4389   _timer.start();
4390   CMSHeap* heap = CMSHeap::heap();
4391   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4392     _collector->_span, _collector->ref_processor(),
4393     &(_collector->_markBitMap),
4394     work_queue(worker_id));
4395 
4396   // Rescan young gen roots first since these are likely
4397   // coarsely partitioned and may, on that account, constitute
4398   // the critical path; thus, it's best to start off that
4399   // work first.
4400   // ---------- young gen roots --------------
4401   {
4402     work_on_young_gen_roots(&par_mrias_cl);
4403     _timer.stop();
4404     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4405   }
4406 
4407   // ---------- remaining roots --------------
4408   _timer.reset();
4409   _timer.start();
4410   heap->cms_process_roots(_strong_roots_scope,
4411                           false,     // yg was scanned above
4412                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4413                           _collector->should_unload_classes(),
4414                           &par_mrias_cl,
4415                           NULL);     // The dirty klasses will be handled below
4416 
4417   assert(_collector->should_unload_classes()
4418          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4419          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4420   _timer.stop();
4421   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4422 
4423   // ---------- unhandled CLD scanning ----------
4424   if (worker_id == 0) { // Single threaded at the moment.
4425     _timer.reset();
4426     _timer.start();
4427 
4428     // Scan all new class loader data objects and new dependencies that were
4429     // introduced during concurrent marking.
4430     ResourceMark rm;
4431     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4432     for (int i = 0; i < array->length(); i++) {
4433       par_mrias_cl.do_cld_nv(array->at(i));
4434     }
4435 
4436     // We don't need to keep track of new CLDs anymore.
4437     ClassLoaderDataGraph::remember_new_clds(false);
4438 
4439     _timer.stop();
4440     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4441   }
4442 
4443   // We might have added oops to ClassLoaderData::_handles during the
4444   // concurrent marking phase. These oops do not always point to newly allocated objects
4445   // that are guaranteed to be kept alive.  Hence,
4446   // we do have to revisit the _handles block during the remark phase.
4447 
4448   // ---------- dirty CLD scanning ----------
4449   if (worker_id == 0) { // Single threaded at the moment.
4450     _timer.reset();
4451     _timer.start();
4452 
4453     // Scan all classes that was dirtied during the concurrent marking phase.
4454     RemarkCLDClosure remark_closure(&par_mrias_cl);
4455     ClassLoaderDataGraph::cld_do(&remark_closure);
4456 
4457     _timer.stop();
4458     log_trace(gc, task)("Finished dirty CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4459   }
4460 
4461 
4462   // ---------- rescan dirty cards ------------
4463   _timer.reset();
4464   _timer.start();
4465 
4466   // Do the rescan tasks for each of the two spaces
4467   // (cms_space) in turn.
4468   // "worker_id" is passed to select the task_queue for "worker_id"
4469   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4470   _timer.stop();
4471   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4472 
4473   // ---------- steal work from other threads ...
4474   // ---------- ... and drain overflow list.
4475   _timer.reset();
4476   _timer.start();
4477   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4478   _timer.stop();
4479   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4480 }
4481 
4482 void
4483 CMSParMarkTask::do_young_space_rescan(
4484   OopsInGenClosure* cl, ContiguousSpace* space,
4485   HeapWord** chunk_array, size_t chunk_top) {
4486   // Until all tasks completed:
4487   // . claim an unclaimed task
4488   // . compute region boundaries corresponding to task claimed
4489   //   using chunk_array
4490   // . par_oop_iterate(cl) over that region
4491 
4492   ResourceMark rm;
4493   HandleMark   hm;
4494 
4495   SequentialSubTasksDone* pst = space->par_seq_tasks();
4496 
4497   uint nth_task = 0;
4498   uint n_tasks  = pst->n_tasks();
4499 
4500   if (n_tasks > 0) {
4501     assert(pst->valid(), "Uninitialized use?");
4502     HeapWord *start, *end;
4503     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4504       // We claimed task # nth_task; compute its boundaries.
4505       if (chunk_top == 0) {  // no samples were taken
4506         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4507         start = space->bottom();
4508         end   = space->top();
4509       } else if (nth_task == 0) {
4510         start = space->bottom();
4511         end   = chunk_array[nth_task];
4512       } else if (nth_task < (uint)chunk_top) {
4513         assert(nth_task >= 1, "Control point invariant");
4514         start = chunk_array[nth_task - 1];
4515         end   = chunk_array[nth_task];
4516       } else {
4517         assert(nth_task == (uint)chunk_top, "Control point invariant");
4518         start = chunk_array[chunk_top - 1];
4519         end   = space->top();
4520       }
4521       MemRegion mr(start, end);
4522       // Verify that mr is in space
4523       assert(mr.is_empty() || space->used_region().contains(mr),
4524              "Should be in space");
4525       // Verify that "start" is an object boundary
4526       assert(mr.is_empty() || oopDesc::is_oop(oop(mr.start())),
4527              "Should be an oop");
4528       space->par_oop_iterate(mr, cl);
4529     }
4530     pst->all_tasks_completed();
4531   }
4532 }
4533 
4534 void
4535 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4536   CompactibleFreeListSpace* sp, int i,
4537   ParMarkRefsIntoAndScanClosure* cl) {
4538   // Until all tasks completed:
4539   // . claim an unclaimed task
4540   // . compute region boundaries corresponding to task claimed
4541   // . transfer dirty bits ct->mut for that region
4542   // . apply rescanclosure to dirty mut bits for that region
4543 
4544   ResourceMark rm;
4545   HandleMark   hm;
4546 
4547   OopTaskQueue* work_q = work_queue(i);
4548   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4549   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4550   // CAUTION: This closure has state that persists across calls to
4551   // the work method dirty_range_iterate_clear() in that it has
4552   // embedded in it a (subtype of) UpwardsObjectClosure. The
4553   // use of that state in the embedded UpwardsObjectClosure instance
4554   // assumes that the cards are always iterated (even if in parallel
4555   // by several threads) in monotonically increasing order per each
4556   // thread. This is true of the implementation below which picks
4557   // card ranges (chunks) in monotonically increasing order globally
4558   // and, a-fortiori, in monotonically increasing order per thread
4559   // (the latter order being a subsequence of the former).
4560   // If the work code below is ever reorganized into a more chaotic
4561   // work-partitioning form than the current "sequential tasks"
4562   // paradigm, the use of that persistent state will have to be
4563   // revisited and modified appropriately. See also related
4564   // bug 4756801 work on which should examine this code to make
4565   // sure that the changes there do not run counter to the
4566   // assumptions made here and necessary for correctness and
4567   // efficiency. Note also that this code might yield inefficient
4568   // behavior in the case of very large objects that span one or
4569   // more work chunks. Such objects would potentially be scanned
4570   // several times redundantly. Work on 4756801 should try and
4571   // address that performance anomaly if at all possible. XXX
4572   MemRegion  full_span  = _collector->_span;
4573   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4574   MarkFromDirtyCardsClosure
4575     greyRescanClosure(_collector, full_span, // entire span of interest
4576                       sp, bm, work_q, cl);
4577 
4578   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4579   assert(pst->valid(), "Uninitialized use?");
4580   uint nth_task = 0;
4581   const int alignment = CardTable::card_size * BitsPerWord;
4582   MemRegion span = sp->used_region();
4583   HeapWord* start_addr = span.start();
4584   HeapWord* end_addr = align_up(span.end(), alignment);
4585   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4586   assert(is_aligned(start_addr, alignment), "Check alignment");
4587   assert(is_aligned(chunk_size, alignment), "Check alignment");
4588 
4589   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4590     // Having claimed the nth_task, compute corresponding mem-region,
4591     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4592     // The alignment restriction ensures that we do not need any
4593     // synchronization with other gang-workers while setting or
4594     // clearing bits in thus chunk of the MUT.
4595     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4596                                     start_addr + (nth_task+1)*chunk_size);
4597     // The last chunk's end might be way beyond end of the
4598     // used region. In that case pull back appropriately.
4599     if (this_span.end() > end_addr) {
4600       this_span.set_end(end_addr);
4601       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4602     }
4603     // Iterate over the dirty cards covering this chunk, marking them
4604     // precleaned, and setting the corresponding bits in the mod union
4605     // table. Since we have been careful to partition at Card and MUT-word
4606     // boundaries no synchronization is needed between parallel threads.
4607     _collector->_ct->dirty_card_iterate(this_span,
4608                                                  &modUnionClosure);
4609 
4610     // Having transferred these marks into the modUnionTable,
4611     // rescan the marked objects on the dirty cards in the modUnionTable.
4612     // Even if this is at a synchronous collection, the initial marking
4613     // may have been done during an asynchronous collection so there
4614     // may be dirty bits in the mod-union table.
4615     _collector->_modUnionTable.dirty_range_iterate_clear(
4616                   this_span, &greyRescanClosure);
4617     _collector->_modUnionTable.verifyNoOneBitsInRange(
4618                                  this_span.start(),
4619                                  this_span.end());
4620   }
4621   pst->all_tasks_completed();  // declare that i am done
4622 }
4623 
4624 // . see if we can share work_queues with ParNew? XXX
4625 void
4626 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4627                                 int* seed) {
4628   OopTaskQueue* work_q = work_queue(i);
4629   NOT_PRODUCT(int num_steals = 0;)
4630   oop obj_to_scan;
4631   CMSBitMap* bm = &(_collector->_markBitMap);
4632 
4633   while (true) {
4634     // Completely finish any left over work from (an) earlier round(s)
4635     cl->trim_queue(0);
4636     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4637                                          (size_t)ParGCDesiredObjsFromOverflowList);
4638     // Now check if there's any work in the overflow list
4639     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4640     // only affects the number of attempts made to get work from the
4641     // overflow list and does not affect the number of workers.  Just
4642     // pass ParallelGCThreads so this behavior is unchanged.
4643     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4644                                                 work_q,
4645                                                 ParallelGCThreads)) {
4646       // found something in global overflow list;
4647       // not yet ready to go stealing work from others.
4648       // We'd like to assert(work_q->size() != 0, ...)
4649       // because we just took work from the overflow list,
4650       // but of course we can't since all of that could have
4651       // been already stolen from us.
4652       // "He giveth and He taketh away."
4653       continue;
4654     }
4655     // Verify that we have no work before we resort to stealing
4656     assert(work_q->size() == 0, "Have work, shouldn't steal");
4657     // Try to steal from other queues that have work
4658     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4659       NOT_PRODUCT(num_steals++;)
4660       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
4661       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4662       // Do scanning work
4663       obj_to_scan->oop_iterate(cl);
4664       // Loop around, finish this work, and try to steal some more
4665     } else if (terminator()->offer_termination()) {
4666         break;  // nirvana from the infinite cycle
4667     }
4668   }
4669   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4670   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4671          "Else our work is not yet done");
4672 }
4673 
4674 // Record object boundaries in _eden_chunk_array by sampling the eden
4675 // top in the slow-path eden object allocation code path and record
4676 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4677 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4678 // sampling in sample_eden() that activates during the part of the
4679 // preclean phase.
4680 void CMSCollector::sample_eden_chunk() {
4681   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4682     if (_eden_chunk_lock->try_lock()) {
4683       // Record a sample. This is the critical section. The contents
4684       // of the _eden_chunk_array have to be non-decreasing in the
4685       // address order.
4686       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4687       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4688              "Unexpected state of Eden");
4689       if (_eden_chunk_index == 0 ||
4690           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4691            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4692                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4693         _eden_chunk_index++;  // commit sample
4694       }
4695       _eden_chunk_lock->unlock();
4696     }
4697   }
4698 }
4699 
4700 // Return a thread-local PLAB recording array, as appropriate.
4701 void* CMSCollector::get_data_recorder(int thr_num) {
4702   if (_survivor_plab_array != NULL &&
4703       (CMSPLABRecordAlways ||
4704        (_collectorState > Marking && _collectorState < FinalMarking))) {
4705     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4706     ChunkArray* ca = &_survivor_plab_array[thr_num];
4707     ca->reset();   // clear it so that fresh data is recorded
4708     return (void*) ca;
4709   } else {
4710     return NULL;
4711   }
4712 }
4713 
4714 // Reset all the thread-local PLAB recording arrays
4715 void CMSCollector::reset_survivor_plab_arrays() {
4716   for (uint i = 0; i < ParallelGCThreads; i++) {
4717     _survivor_plab_array[i].reset();
4718   }
4719 }
4720 
4721 // Merge the per-thread plab arrays into the global survivor chunk
4722 // array which will provide the partitioning of the survivor space
4723 // for CMS initial scan and rescan.
4724 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4725                                               int no_of_gc_threads) {
4726   assert(_survivor_plab_array  != NULL, "Error");
4727   assert(_survivor_chunk_array != NULL, "Error");
4728   assert(_collectorState == FinalMarking ||
4729          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4730   for (int j = 0; j < no_of_gc_threads; j++) {
4731     _cursor[j] = 0;
4732   }
4733   HeapWord* top = surv->top();
4734   size_t i;
4735   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4736     HeapWord* min_val = top;          // Higher than any PLAB address
4737     uint      min_tid = 0;            // position of min_val this round
4738     for (int j = 0; j < no_of_gc_threads; j++) {
4739       ChunkArray* cur_sca = &_survivor_plab_array[j];
4740       if (_cursor[j] == cur_sca->end()) {
4741         continue;
4742       }
4743       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4744       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4745       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4746       if (cur_val < min_val) {
4747         min_tid = j;
4748         min_val = cur_val;
4749       } else {
4750         assert(cur_val < top, "All recorded addresses should be less");
4751       }
4752     }
4753     // At this point min_val and min_tid are respectively
4754     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4755     // and the thread (j) that witnesses that address.
4756     // We record this address in the _survivor_chunk_array[i]
4757     // and increment _cursor[min_tid] prior to the next round i.
4758     if (min_val == top) {
4759       break;
4760     }
4761     _survivor_chunk_array[i] = min_val;
4762     _cursor[min_tid]++;
4763   }
4764   // We are all done; record the size of the _survivor_chunk_array
4765   _survivor_chunk_index = i; // exclusive: [0, i)
4766   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4767   // Verify that we used up all the recorded entries
4768   #ifdef ASSERT
4769     size_t total = 0;
4770     for (int j = 0; j < no_of_gc_threads; j++) {
4771       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4772       total += _cursor[j];
4773     }
4774     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4775     // Check that the merged array is in sorted order
4776     if (total > 0) {
4777       for (size_t i = 0; i < total - 1; i++) {
4778         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4779                                      i, p2i(_survivor_chunk_array[i]));
4780         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4781                "Not sorted");
4782       }
4783     }
4784   #endif // ASSERT
4785 }
4786 
4787 // Set up the space's par_seq_tasks structure for work claiming
4788 // for parallel initial scan and rescan of young gen.
4789 // See ParRescanTask where this is currently used.
4790 void
4791 CMSCollector::
4792 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4793   assert(n_threads > 0, "Unexpected n_threads argument");
4794 
4795   // Eden space
4796   if (!_young_gen->eden()->is_empty()) {
4797     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4798     assert(!pst->valid(), "Clobbering existing data?");
4799     // Each valid entry in [0, _eden_chunk_index) represents a task.
4800     size_t n_tasks = _eden_chunk_index + 1;
4801     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4802     // Sets the condition for completion of the subtask (how many threads
4803     // need to finish in order to be done).
4804     pst->set_n_threads(n_threads);
4805     pst->set_n_tasks((int)n_tasks);
4806   }
4807 
4808   // Merge the survivor plab arrays into _survivor_chunk_array
4809   if (_survivor_plab_array != NULL) {
4810     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4811   } else {
4812     assert(_survivor_chunk_index == 0, "Error");
4813   }
4814 
4815   // To space
4816   {
4817     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4818     assert(!pst->valid(), "Clobbering existing data?");
4819     // Sets the condition for completion of the subtask (how many threads
4820     // need to finish in order to be done).
4821     pst->set_n_threads(n_threads);
4822     pst->set_n_tasks(1);
4823     assert(pst->valid(), "Error");
4824   }
4825 
4826   // From space
4827   {
4828     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4829     assert(!pst->valid(), "Clobbering existing data?");
4830     size_t n_tasks = _survivor_chunk_index + 1;
4831     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4832     // Sets the condition for completion of the subtask (how many threads
4833     // need to finish in order to be done).
4834     pst->set_n_threads(n_threads);
4835     pst->set_n_tasks((int)n_tasks);
4836     assert(pst->valid(), "Error");
4837   }
4838 }
4839 
4840 // Parallel version of remark
4841 void CMSCollector::do_remark_parallel() {
4842   CMSHeap* heap = CMSHeap::heap();
4843   WorkGang* workers = heap->workers();
4844   assert(workers != NULL, "Need parallel worker threads.");
4845   // Choose to use the number of GC workers most recently set
4846   // into "active_workers".
4847   uint n_workers = workers->active_workers();
4848 
4849   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4850 
4851   StrongRootsScope srs(n_workers);
4852 
4853   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4854 
4855   // We won't be iterating over the cards in the card table updating
4856   // the younger_gen cards, so we shouldn't call the following else
4857   // the verification code as well as subsequent younger_refs_iterate
4858   // code would get confused. XXX
4859   // heap->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4860 
4861   // The young gen rescan work will not be done as part of
4862   // process_roots (which currently doesn't know how to
4863   // parallelize such a scan), but rather will be broken up into
4864   // a set of parallel tasks (via the sampling that the [abortable]
4865   // preclean phase did of eden, plus the [two] tasks of
4866   // scanning the [two] survivor spaces. Further fine-grain
4867   // parallelization of the scanning of the survivor spaces
4868   // themselves, and of precleaning of the young gen itself
4869   // is deferred to the future.
4870   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4871 
4872   // The dirty card rescan work is broken up into a "sequence"
4873   // of parallel tasks (per constituent space) that are dynamically
4874   // claimed by the parallel threads.
4875   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4876 
4877   // It turns out that even when we're using 1 thread, doing the work in a
4878   // separate thread causes wide variance in run times.  We can't help this
4879   // in the multi-threaded case, but we special-case n=1 here to get
4880   // repeatable measurements of the 1-thread overhead of the parallel code.
4881   if (n_workers > 1) {
4882     // Make refs discovery MT-safe, if it isn't already: it may not
4883     // necessarily be so, since it's possible that we are doing
4884     // ST marking.
4885     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4886     workers->run_task(&tsk);
4887   } else {
4888     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4889     tsk.work(0);
4890   }
4891 
4892   // restore, single-threaded for now, any preserved marks
4893   // as a result of work_q overflow
4894   restore_preserved_marks_if_any();
4895 }
4896 
4897 // Non-parallel version of remark
4898 void CMSCollector::do_remark_non_parallel() {
4899   ResourceMark rm;
4900   HandleMark   hm;
4901   CMSHeap* heap = CMSHeap::heap();
4902   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4903 
4904   MarkRefsIntoAndScanClosure
4905     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4906              &_markStack, this,
4907              false /* should_yield */, false /* not precleaning */);
4908   MarkFromDirtyCardsClosure
4909     markFromDirtyCardsClosure(this, _span,
4910                               NULL,  // space is set further below
4911                               &_markBitMap, &_markStack, &mrias_cl);
4912   {
4913     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4914     // Iterate over the dirty cards, setting the corresponding bits in the
4915     // mod union table.
4916     {
4917       ModUnionClosure modUnionClosure(&_modUnionTable);
4918       _ct->dirty_card_iterate(_cmsGen->used_region(),
4919                               &modUnionClosure);
4920     }
4921     // Having transferred these marks into the modUnionTable, we just need
4922     // to rescan the marked objects on the dirty cards in the modUnionTable.
4923     // The initial marking may have been done during an asynchronous
4924     // collection so there may be dirty bits in the mod-union table.
4925     const int alignment = CardTable::card_size * BitsPerWord;
4926     {
4927       // ... First handle dirty cards in CMS gen
4928       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4929       MemRegion ur = _cmsGen->used_region();
4930       HeapWord* lb = ur.start();
4931       HeapWord* ub = align_up(ur.end(), alignment);
4932       MemRegion cms_span(lb, ub);
4933       _modUnionTable.dirty_range_iterate_clear(cms_span,
4934                                                &markFromDirtyCardsClosure);
4935       verify_work_stacks_empty();
4936       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4937     }
4938   }
4939   if (VerifyDuringGC &&
4940       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4941     HandleMark hm;  // Discard invalid handles created during verification
4942     Universe::verify();
4943   }
4944   {
4945     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4946 
4947     verify_work_stacks_empty();
4948 
4949     heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4950     StrongRootsScope srs(1);
4951 
4952     heap->cms_process_roots(&srs,
4953                             true,  // young gen as roots
4954                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
4955                             should_unload_classes(),
4956                             &mrias_cl,
4957                             NULL); // The dirty klasses will be handled below
4958 
4959     assert(should_unload_classes()
4960            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4961            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4962   }
4963 
4964   {
4965     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4966 
4967     verify_work_stacks_empty();
4968 
4969     // Scan all class loader data objects that might have been introduced
4970     // during concurrent marking.
4971     ResourceMark rm;
4972     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4973     for (int i = 0; i < array->length(); i++) {
4974       mrias_cl.do_cld_nv(array->at(i));
4975     }
4976 
4977     // We don't need to keep track of new CLDs anymore.
4978     ClassLoaderDataGraph::remember_new_clds(false);
4979 
4980     verify_work_stacks_empty();
4981   }
4982 
4983   // We might have added oops to ClassLoaderData::_handles during the
4984   // concurrent marking phase. These oops do not point to newly allocated objects
4985   // that are guaranteed to be kept alive.  Hence,
4986   // we do have to revisit the _handles block during the remark phase.
4987   {
4988     GCTraceTime(Trace, gc, phases) t("Dirty CLD Scan", _gc_timer_cm);
4989 
4990     verify_work_stacks_empty();
4991 
4992     RemarkCLDClosure remark_closure(&mrias_cl);
4993     ClassLoaderDataGraph::cld_do(&remark_closure);
4994 
4995     verify_work_stacks_empty();
4996   }
4997 
4998   verify_work_stacks_empty();
4999   // Restore evacuated mark words, if any, used for overflow list links
5000   restore_preserved_marks_if_any();
5001 
5002   verify_overflow_empty();
5003 }
5004 
5005 ////////////////////////////////////////////////////////
5006 // Parallel Reference Processing Task Proxy Class
5007 ////////////////////////////////////////////////////////
5008 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5009   OopTaskQueueSet*       _queues;
5010   ParallelTaskTerminator _terminator;
5011  public:
5012   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5013     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5014   ParallelTaskTerminator* terminator() { return &_terminator; }
5015   OopTaskQueueSet* queues() { return _queues; }
5016 };
5017 
5018 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5019   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5020   CMSCollector*          _collector;
5021   CMSBitMap*             _mark_bit_map;
5022   const MemRegion        _span;
5023   ProcessTask&           _task;
5024 
5025 public:
5026   CMSRefProcTaskProxy(ProcessTask&     task,
5027                       CMSCollector*    collector,
5028                       const MemRegion& span,
5029                       CMSBitMap*       mark_bit_map,
5030                       AbstractWorkGang* workers,
5031                       OopTaskQueueSet* task_queues):
5032     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5033       task_queues,
5034       workers->active_workers()),
5035     _task(task),
5036     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5037   {
5038     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5039            "Inconsistency in _span");
5040   }
5041 
5042   OopTaskQueueSet* task_queues() { return queues(); }
5043 
5044   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5045 
5046   void do_work_steal(int i,
5047                      CMSParDrainMarkingStackClosure* drain,
5048                      CMSParKeepAliveClosure* keep_alive,
5049                      int* seed);
5050 
5051   virtual void work(uint worker_id);
5052 };
5053 
5054 void CMSRefProcTaskProxy::work(uint worker_id) {
5055   ResourceMark rm;
5056   HandleMark hm;
5057   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5058   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5059                                         _mark_bit_map,
5060                                         work_queue(worker_id));
5061   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5062                                                  _mark_bit_map,
5063                                                  work_queue(worker_id));
5064   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5065   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5066   if (_task.marks_oops_alive()) {
5067     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5068                   _collector->hash_seed(worker_id));
5069   }
5070   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5071   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5072 }
5073 
5074 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5075   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5076   EnqueueTask& _task;
5077 
5078 public:
5079   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5080     : AbstractGangTask("Enqueue reference objects in parallel"),
5081       _task(task)
5082   { }
5083 
5084   virtual void work(uint worker_id)
5085   {
5086     _task.work(worker_id);
5087   }
5088 };
5089 
5090 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5091   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5092    _span(span),
5093    _bit_map(bit_map),
5094    _work_queue(work_queue),
5095    _mark_and_push(collector, span, bit_map, work_queue),
5096    _low_water_mark(MIN2((work_queue->max_elems()/4),
5097                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5098 { }
5099 
5100 // . see if we can share work_queues with ParNew? XXX
5101 void CMSRefProcTaskProxy::do_work_steal(int i,
5102   CMSParDrainMarkingStackClosure* drain,
5103   CMSParKeepAliveClosure* keep_alive,
5104   int* seed) {
5105   OopTaskQueue* work_q = work_queue(i);
5106   NOT_PRODUCT(int num_steals = 0;)
5107   oop obj_to_scan;
5108 
5109   while (true) {
5110     // Completely finish any left over work from (an) earlier round(s)
5111     drain->trim_queue(0);
5112     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5113                                          (size_t)ParGCDesiredObjsFromOverflowList);
5114     // Now check if there's any work in the overflow list
5115     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5116     // only affects the number of attempts made to get work from the
5117     // overflow list and does not affect the number of workers.  Just
5118     // pass ParallelGCThreads so this behavior is unchanged.
5119     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5120                                                 work_q,
5121                                                 ParallelGCThreads)) {
5122       // Found something in global overflow list;
5123       // not yet ready to go stealing work from others.
5124       // We'd like to assert(work_q->size() != 0, ...)
5125       // because we just took work from the overflow list,
5126       // but of course we can't, since all of that might have
5127       // been already stolen from us.
5128       continue;
5129     }
5130     // Verify that we have no work before we resort to stealing
5131     assert(work_q->size() == 0, "Have work, shouldn't steal");
5132     // Try to steal from other queues that have work
5133     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5134       NOT_PRODUCT(num_steals++;)
5135       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
5136       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5137       // Do scanning work
5138       obj_to_scan->oop_iterate(keep_alive);
5139       // Loop around, finish this work, and try to steal some more
5140     } else if (terminator()->offer_termination()) {
5141       break;  // nirvana from the infinite cycle
5142     }
5143   }
5144   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5145 }
5146 
5147 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5148 {
5149   CMSHeap* heap = CMSHeap::heap();
5150   WorkGang* workers = heap->workers();
5151   assert(workers != NULL, "Need parallel worker threads.");
5152   CMSRefProcTaskProxy rp_task(task, &_collector,
5153                               _collector.ref_processor()->span(),
5154                               _collector.markBitMap(),
5155                               workers, _collector.task_queues());
5156   workers->run_task(&rp_task);
5157 }
5158 
5159 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5160 {
5161 
5162   CMSHeap* heap = CMSHeap::heap();
5163   WorkGang* workers = heap->workers();
5164   assert(workers != NULL, "Need parallel worker threads.");
5165   CMSRefEnqueueTaskProxy enq_task(task);
5166   workers->run_task(&enq_task);
5167 }
5168 
5169 void CMSCollector::refProcessingWork() {
5170   ResourceMark rm;
5171   HandleMark   hm;
5172 
5173   ReferenceProcessor* rp = ref_processor();
5174   assert(rp->span().equals(_span), "Spans should be equal");
5175   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5176   // Process weak references.
5177   rp->setup_policy(false);
5178   verify_work_stacks_empty();
5179 
5180   ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
5181   {
5182     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5183 
5184     // Setup keep_alive and complete closures.
5185     CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5186                                             &_markStack, false /* !preclean */);
5187     CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5188                                   _span, &_markBitMap, &_markStack,
5189                                   &cmsKeepAliveClosure, false /* !preclean */);
5190 
5191     ReferenceProcessorStats stats;
5192     if (rp->processing_is_mt()) {
5193       // Set the degree of MT here.  If the discovery is done MT, there
5194       // may have been a different number of threads doing the discovery
5195       // and a different number of discovered lists may have Ref objects.
5196       // That is OK as long as the Reference lists are balanced (see
5197       // balance_all_queues() and balance_queues()).
5198       CMSHeap* heap = CMSHeap::heap();
5199       uint active_workers = ParallelGCThreads;
5200       WorkGang* workers = heap->workers();
5201       if (workers != NULL) {
5202         active_workers = workers->active_workers();
5203         // The expectation is that active_workers will have already
5204         // been set to a reasonable value.  If it has not been set,
5205         // investigate.
5206         assert(active_workers > 0, "Should have been set during scavenge");
5207       }
5208       rp->set_active_mt_degree(active_workers);
5209       CMSRefProcTaskExecutor task_executor(*this);
5210       stats = rp->process_discovered_references(&_is_alive_closure,
5211                                         &cmsKeepAliveClosure,
5212                                         &cmsDrainMarkingStackClosure,
5213                                         &task_executor,
5214                                         &pt);
5215     } else {
5216       stats = rp->process_discovered_references(&_is_alive_closure,
5217                                         &cmsKeepAliveClosure,
5218                                         &cmsDrainMarkingStackClosure,
5219                                         NULL,
5220                                         &pt);
5221     }
5222     _gc_tracer_cm->report_gc_reference_stats(stats);
5223     pt.print_all_references();
5224   }
5225 
5226   // This is the point where the entire marking should have completed.
5227   verify_work_stacks_empty();
5228 
5229   {
5230     GCTraceTime(Debug, gc, phases) t("Weak Processing", _gc_timer_cm);
5231     WeakProcessor::weak_oops_do(&_is_alive_closure, &do_nothing_cl);
5232   }
5233 
5234   if (should_unload_classes()) {
5235     {
5236       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5237 
5238       // Unload classes and purge the SystemDictionary.
5239       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure, _gc_timer_cm);
5240 
5241       // Unload nmethods.
5242       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5243 
5244       // Prune dead klasses from subklass/sibling/implementor lists.
5245       Klass::clean_weak_klass_links(&_is_alive_closure);
5246     }
5247 
5248     {
5249       GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5250       // Clean up unreferenced symbols in symbol table.
5251       SymbolTable::unlink();
5252     }
5253 
5254     {
5255       GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5256       // Delete entries for dead interned strings.
5257       StringTable::unlink(&_is_alive_closure);
5258     }
5259   }
5260 
5261   // Restore any preserved marks as a result of mark stack or
5262   // work queue overflow
5263   restore_preserved_marks_if_any();  // done single-threaded for now
5264 
5265   rp->set_enqueuing_is_done(true);
5266   if (rp->processing_is_mt()) {
5267     rp->balance_all_queues();
5268     CMSRefProcTaskExecutor task_executor(*this);
5269     rp->enqueue_discovered_references(&task_executor, &pt);
5270   } else {
5271     rp->enqueue_discovered_references(NULL, &pt);
5272   }
5273   rp->verify_no_references_recorded();
5274   pt.print_enqueue_phase();
5275   assert(!rp->discovery_enabled(), "should have been disabled");
5276 }
5277 
5278 #ifndef PRODUCT
5279 void CMSCollector::check_correct_thread_executing() {
5280   Thread* t = Thread::current();
5281   // Only the VM thread or the CMS thread should be here.
5282   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5283          "Unexpected thread type");
5284   // If this is the vm thread, the foreground process
5285   // should not be waiting.  Note that _foregroundGCIsActive is
5286   // true while the foreground collector is waiting.
5287   if (_foregroundGCShouldWait) {
5288     // We cannot be the VM thread
5289     assert(t->is_ConcurrentGC_thread(),
5290            "Should be CMS thread");
5291   } else {
5292     // We can be the CMS thread only if we are in a stop-world
5293     // phase of CMS collection.
5294     if (t->is_ConcurrentGC_thread()) {
5295       assert(_collectorState == InitialMarking ||
5296              _collectorState == FinalMarking,
5297              "Should be a stop-world phase");
5298       // The CMS thread should be holding the CMS_token.
5299       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5300              "Potential interference with concurrently "
5301              "executing VM thread");
5302     }
5303   }
5304 }
5305 #endif
5306 
5307 void CMSCollector::sweep() {
5308   assert(_collectorState == Sweeping, "just checking");
5309   check_correct_thread_executing();
5310   verify_work_stacks_empty();
5311   verify_overflow_empty();
5312   increment_sweep_count();
5313   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
5314 
5315   _inter_sweep_timer.stop();
5316   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5317 
5318   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5319   _intra_sweep_timer.reset();
5320   _intra_sweep_timer.start();
5321   {
5322     GCTraceCPUTime tcpu;
5323     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5324     // First sweep the old gen
5325     {
5326       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5327                                bitMapLock());
5328       sweepWork(_cmsGen);
5329     }
5330 
5331     // Update Universe::_heap_*_at_gc figures.
5332     // We need all the free list locks to make the abstract state
5333     // transition from Sweeping to Resetting. See detailed note
5334     // further below.
5335     {
5336       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5337       // Update heap occupancy information which is used as
5338       // input to soft ref clearing policy at the next gc.
5339       Universe::update_heap_info_at_gc();
5340       _collectorState = Resizing;
5341     }
5342   }
5343   verify_work_stacks_empty();
5344   verify_overflow_empty();
5345 
5346   if (should_unload_classes()) {
5347     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5348     // requires that the virtual spaces are stable and not deleted.
5349     ClassLoaderDataGraph::set_should_purge(true);
5350   }
5351 
5352   _intra_sweep_timer.stop();
5353   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5354 
5355   _inter_sweep_timer.reset();
5356   _inter_sweep_timer.start();
5357 
5358   // We need to use a monotonically non-decreasing time in ms
5359   // or we will see time-warp warnings and os::javaTimeMillis()
5360   // does not guarantee monotonicity.
5361   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5362   update_time_of_last_gc(now);
5363 
5364   // NOTE on abstract state transitions:
5365   // Mutators allocate-live and/or mark the mod-union table dirty
5366   // based on the state of the collection.  The former is done in
5367   // the interval [Marking, Sweeping] and the latter in the interval
5368   // [Marking, Sweeping).  Thus the transitions into the Marking state
5369   // and out of the Sweeping state must be synchronously visible
5370   // globally to the mutators.
5371   // The transition into the Marking state happens with the world
5372   // stopped so the mutators will globally see it.  Sweeping is
5373   // done asynchronously by the background collector so the transition
5374   // from the Sweeping state to the Resizing state must be done
5375   // under the freelistLock (as is the check for whether to
5376   // allocate-live and whether to dirty the mod-union table).
5377   assert(_collectorState == Resizing, "Change of collector state to"
5378     " Resizing must be done under the freelistLocks (plural)");
5379 
5380   // Now that sweeping has been completed, we clear
5381   // the incremental_collection_failed flag,
5382   // thus inviting a younger gen collection to promote into
5383   // this generation. If such a promotion may still fail,
5384   // the flag will be set again when a young collection is
5385   // attempted.
5386   CMSHeap* heap = CMSHeap::heap();
5387   heap->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5388   heap->update_full_collections_completed(_collection_count_start);
5389 }
5390 
5391 // FIX ME!!! Looks like this belongs in CFLSpace, with
5392 // CMSGen merely delegating to it.
5393 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5394   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5395   HeapWord*  minAddr        = _cmsSpace->bottom();
5396   HeapWord*  largestAddr    =
5397     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5398   if (largestAddr == NULL) {
5399     // The dictionary appears to be empty.  In this case
5400     // try to coalesce at the end of the heap.
5401     largestAddr = _cmsSpace->end();
5402   }
5403   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5404   size_t nearLargestOffset =
5405     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5406   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5407                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5408   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5409 }
5410 
5411 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5412   return addr >= _cmsSpace->nearLargestChunk();
5413 }
5414 
5415 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5416   return _cmsSpace->find_chunk_at_end();
5417 }
5418 
5419 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5420                                                     bool full) {
5421   // If the young generation has been collected, gather any statistics
5422   // that are of interest at this point.
5423   bool current_is_young = CMSHeap::heap()->is_young_gen(current_generation);
5424   if (!full && current_is_young) {
5425     // Gather statistics on the young generation collection.
5426     collector()->stats().record_gc0_end(used());
5427   }
5428 }
5429 
5430 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5431   // We iterate over the space(s) underlying this generation,
5432   // checking the mark bit map to see if the bits corresponding
5433   // to specific blocks are marked or not. Blocks that are
5434   // marked are live and are not swept up. All remaining blocks
5435   // are swept up, with coalescing on-the-fly as we sweep up
5436   // contiguous free and/or garbage blocks:
5437   // We need to ensure that the sweeper synchronizes with allocators
5438   // and stop-the-world collectors. In particular, the following
5439   // locks are used:
5440   // . CMS token: if this is held, a stop the world collection cannot occur
5441   // . freelistLock: if this is held no allocation can occur from this
5442   //                 generation by another thread
5443   // . bitMapLock: if this is held, no other thread can access or update
5444   //
5445 
5446   // Note that we need to hold the freelistLock if we use
5447   // block iterate below; else the iterator might go awry if
5448   // a mutator (or promotion) causes block contents to change
5449   // (for instance if the allocator divvies up a block).
5450   // If we hold the free list lock, for all practical purposes
5451   // young generation GC's can't occur (they'll usually need to
5452   // promote), so we might as well prevent all young generation
5453   // GC's while we do a sweeping step. For the same reason, we might
5454   // as well take the bit map lock for the entire duration
5455 
5456   // check that we hold the requisite locks
5457   assert(have_cms_token(), "Should hold cms token");
5458   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5459   assert_lock_strong(old_gen->freelistLock());
5460   assert_lock_strong(bitMapLock());
5461 
5462   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5463   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5464   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5465                                           _inter_sweep_estimate.padded_average(),
5466                                           _intra_sweep_estimate.padded_average());
5467   old_gen->setNearLargestChunk();
5468 
5469   {
5470     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5471     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5472     // We need to free-up/coalesce garbage/blocks from a
5473     // co-terminal free run. This is done in the SweepClosure
5474     // destructor; so, do not remove this scope, else the
5475     // end-of-sweep-census below will be off by a little bit.
5476   }
5477   old_gen->cmsSpace()->sweep_completed();
5478   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5479   if (should_unload_classes()) {                // unloaded classes this cycle,
5480     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5481   } else {                                      // did not unload classes,
5482     _concurrent_cycles_since_last_unload++;     // ... increment count
5483   }
5484 }
5485 
5486 // Reset CMS data structures (for now just the marking bit map)
5487 // preparatory for the next cycle.
5488 void CMSCollector::reset_concurrent() {
5489   CMSTokenSyncWithLocks ts(true, bitMapLock());
5490 
5491   // If the state is not "Resetting", the foreground  thread
5492   // has done a collection and the resetting.
5493   if (_collectorState != Resetting) {
5494     assert(_collectorState == Idling, "The state should only change"
5495       " because the foreground collector has finished the collection");
5496     return;
5497   }
5498 
5499   {
5500     // Clear the mark bitmap (no grey objects to start with)
5501     // for the next cycle.
5502     GCTraceCPUTime tcpu;
5503     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5504 
5505     HeapWord* curAddr = _markBitMap.startWord();
5506     while (curAddr < _markBitMap.endWord()) {
5507       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5508       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5509       _markBitMap.clear_large_range(chunk);
5510       if (ConcurrentMarkSweepThread::should_yield() &&
5511           !foregroundGCIsActive() &&
5512           CMSYield) {
5513         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5514                "CMS thread should hold CMS token");
5515         assert_lock_strong(bitMapLock());
5516         bitMapLock()->unlock();
5517         ConcurrentMarkSweepThread::desynchronize(true);
5518         stopTimer();
5519         incrementYields();
5520 
5521         // See the comment in coordinator_yield()
5522         for (unsigned i = 0; i < CMSYieldSleepCount &&
5523                          ConcurrentMarkSweepThread::should_yield() &&
5524                          !CMSCollector::foregroundGCIsActive(); ++i) {
5525           os::sleep(Thread::current(), 1, false);
5526         }
5527 
5528         ConcurrentMarkSweepThread::synchronize(true);
5529         bitMapLock()->lock_without_safepoint_check();
5530         startTimer();
5531       }
5532       curAddr = chunk.end();
5533     }
5534     // A successful mostly concurrent collection has been done.
5535     // Because only the full (i.e., concurrent mode failure) collections
5536     // are being measured for gc overhead limits, clean the "near" flag
5537     // and count.
5538     size_policy()->reset_gc_overhead_limit_count();
5539     _collectorState = Idling;
5540   }
5541 
5542   register_gc_end();
5543 }
5544 
5545 // Same as above but for STW paths
5546 void CMSCollector::reset_stw() {
5547   // already have the lock
5548   assert(_collectorState == Resetting, "just checking");
5549   assert_lock_strong(bitMapLock());
5550   GCIdMark gc_id_mark(_cmsThread->gc_id());
5551   _markBitMap.clear_all();
5552   _collectorState = Idling;
5553   register_gc_end();
5554 }
5555 
5556 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5557   GCTraceCPUTime tcpu;
5558   TraceCollectorStats tcs_cgc(cgc_counters());
5559 
5560   switch (op) {
5561     case CMS_op_checkpointRootsInitial: {
5562       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5563       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5564       checkpointRootsInitial();
5565       break;
5566     }
5567     case CMS_op_checkpointRootsFinal: {
5568       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5569       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5570       checkpointRootsFinal();
5571       break;
5572     }
5573     default:
5574       fatal("No such CMS_op");
5575   }
5576 }
5577 
5578 #ifndef PRODUCT
5579 size_t const CMSCollector::skip_header_HeapWords() {
5580   return FreeChunk::header_size();
5581 }
5582 
5583 // Try and collect here conditions that should hold when
5584 // CMS thread is exiting. The idea is that the foreground GC
5585 // thread should not be blocked if it wants to terminate
5586 // the CMS thread and yet continue to run the VM for a while
5587 // after that.
5588 void CMSCollector::verify_ok_to_terminate() const {
5589   assert(Thread::current()->is_ConcurrentGC_thread(),
5590          "should be called by CMS thread");
5591   assert(!_foregroundGCShouldWait, "should be false");
5592   // We could check here that all the various low-level locks
5593   // are not held by the CMS thread, but that is overkill; see
5594   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5595   // is checked.
5596 }
5597 #endif
5598 
5599 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5600    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5601           "missing Printezis mark?");
5602   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5603   size_t size = pointer_delta(nextOneAddr + 1, addr);
5604   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5605          "alignment problem");
5606   assert(size >= 3, "Necessary for Printezis marks to work");
5607   return size;
5608 }
5609 
5610 // A variant of the above (block_size_using_printezis_bits()) except
5611 // that we return 0 if the P-bits are not yet set.
5612 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5613   if (_markBitMap.isMarked(addr + 1)) {
5614     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5615     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5616     size_t size = pointer_delta(nextOneAddr + 1, addr);
5617     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5618            "alignment problem");
5619     assert(size >= 3, "Necessary for Printezis marks to work");
5620     return size;
5621   }
5622   return 0;
5623 }
5624 
5625 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5626   size_t sz = 0;
5627   oop p = (oop)addr;
5628   if (p->klass_or_null_acquire() != NULL) {
5629     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5630   } else {
5631     sz = block_size_using_printezis_bits(addr);
5632   }
5633   assert(sz > 0, "size must be nonzero");
5634   HeapWord* next_block = addr + sz;
5635   HeapWord* next_card  = align_up(next_block, CardTable::card_size);
5636   assert(align_down((uintptr_t)addr,      CardTable::card_size) <
5637          align_down((uintptr_t)next_card, CardTable::card_size),
5638          "must be different cards");
5639   return next_card;
5640 }
5641 
5642 
5643 // CMS Bit Map Wrapper /////////////////////////////////////////
5644 
5645 // Construct a CMS bit map infrastructure, but don't create the
5646 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5647 // further below.
5648 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5649   _bm(),
5650   _shifter(shifter),
5651   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5652                                     Monitor::_safepoint_check_sometimes) : NULL)
5653 {
5654   _bmStartWord = 0;
5655   _bmWordSize  = 0;
5656 }
5657 
5658 bool CMSBitMap::allocate(MemRegion mr) {
5659   _bmStartWord = mr.start();
5660   _bmWordSize  = mr.word_size();
5661   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5662                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5663   if (!brs.is_reserved()) {
5664     log_warning(gc)("CMS bit map allocation failure");
5665     return false;
5666   }
5667   // For now we'll just commit all of the bit map up front.
5668   // Later on we'll try to be more parsimonious with swap.
5669   if (!_virtual_space.initialize(brs, brs.size())) {
5670     log_warning(gc)("CMS bit map backing store failure");
5671     return false;
5672   }
5673   assert(_virtual_space.committed_size() == brs.size(),
5674          "didn't reserve backing store for all of CMS bit map?");
5675   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5676          _bmWordSize, "inconsistency in bit map sizing");
5677   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5678 
5679   // bm.clear(); // can we rely on getting zero'd memory? verify below
5680   assert(isAllClear(),
5681          "Expected zero'd memory from ReservedSpace constructor");
5682   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5683          "consistency check");
5684   return true;
5685 }
5686 
5687 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5688   HeapWord *next_addr, *end_addr, *last_addr;
5689   assert_locked();
5690   assert(covers(mr), "out-of-range error");
5691   // XXX assert that start and end are appropriately aligned
5692   for (next_addr = mr.start(), end_addr = mr.end();
5693        next_addr < end_addr; next_addr = last_addr) {
5694     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5695     last_addr = dirty_region.end();
5696     if (!dirty_region.is_empty()) {
5697       cl->do_MemRegion(dirty_region);
5698     } else {
5699       assert(last_addr == end_addr, "program logic");
5700       return;
5701     }
5702   }
5703 }
5704 
5705 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5706   _bm.print_on_error(st, prefix);
5707 }
5708 
5709 #ifndef PRODUCT
5710 void CMSBitMap::assert_locked() const {
5711   CMSLockVerifier::assert_locked(lock());
5712 }
5713 
5714 bool CMSBitMap::covers(MemRegion mr) const {
5715   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5716   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5717          "size inconsistency");
5718   return (mr.start() >= _bmStartWord) &&
5719          (mr.end()   <= endWord());
5720 }
5721 
5722 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5723     return (start >= _bmStartWord && (start + size) <= endWord());
5724 }
5725 
5726 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5727   // verify that there are no 1 bits in the interval [left, right)
5728   FalseBitMapClosure falseBitMapClosure;
5729   iterate(&falseBitMapClosure, left, right);
5730 }
5731 
5732 void CMSBitMap::region_invariant(MemRegion mr)
5733 {
5734   assert_locked();
5735   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5736   assert(!mr.is_empty(), "unexpected empty region");
5737   assert(covers(mr), "mr should be covered by bit map");
5738   // convert address range into offset range
5739   size_t start_ofs = heapWordToOffset(mr.start());
5740   // Make sure that end() is appropriately aligned
5741   assert(mr.end() == align_up(mr.end(), (1 << (_shifter+LogHeapWordSize))),
5742          "Misaligned mr.end()");
5743   size_t end_ofs   = heapWordToOffset(mr.end());
5744   assert(end_ofs > start_ofs, "Should mark at least one bit");
5745 }
5746 
5747 #endif
5748 
5749 bool CMSMarkStack::allocate(size_t size) {
5750   // allocate a stack of the requisite depth
5751   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5752                    size * sizeof(oop)));
5753   if (!rs.is_reserved()) {
5754     log_warning(gc)("CMSMarkStack allocation failure");
5755     return false;
5756   }
5757   if (!_virtual_space.initialize(rs, rs.size())) {
5758     log_warning(gc)("CMSMarkStack backing store failure");
5759     return false;
5760   }
5761   assert(_virtual_space.committed_size() == rs.size(),
5762          "didn't reserve backing store for all of CMS stack?");
5763   _base = (oop*)(_virtual_space.low());
5764   _index = 0;
5765   _capacity = size;
5766   NOT_PRODUCT(_max_depth = 0);
5767   return true;
5768 }
5769 
5770 // XXX FIX ME !!! In the MT case we come in here holding a
5771 // leaf lock. For printing we need to take a further lock
5772 // which has lower rank. We need to recalibrate the two
5773 // lock-ranks involved in order to be able to print the
5774 // messages below. (Or defer the printing to the caller.
5775 // For now we take the expedient path of just disabling the
5776 // messages for the problematic case.)
5777 void CMSMarkStack::expand() {
5778   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5779   if (_capacity == MarkStackSizeMax) {
5780     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5781       // We print a warning message only once per CMS cycle.
5782       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5783     }
5784     return;
5785   }
5786   // Double capacity if possible
5787   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5788   // Do not give up existing stack until we have managed to
5789   // get the double capacity that we desired.
5790   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5791                    new_capacity * sizeof(oop)));
5792   if (rs.is_reserved()) {
5793     // Release the backing store associated with old stack
5794     _virtual_space.release();
5795     // Reinitialize virtual space for new stack
5796     if (!_virtual_space.initialize(rs, rs.size())) {
5797       fatal("Not enough swap for expanded marking stack");
5798     }
5799     _base = (oop*)(_virtual_space.low());
5800     _index = 0;
5801     _capacity = new_capacity;
5802   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5803     // Failed to double capacity, continue;
5804     // we print a detail message only once per CMS cycle.
5805     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5806                         _capacity / K, new_capacity / K);
5807   }
5808 }
5809 
5810 
5811 // Closures
5812 // XXX: there seems to be a lot of code  duplication here;
5813 // should refactor and consolidate common code.
5814 
5815 // This closure is used to mark refs into the CMS generation in
5816 // the CMS bit map. Called at the first checkpoint. This closure
5817 // assumes that we do not need to re-mark dirty cards; if the CMS
5818 // generation on which this is used is not an oldest
5819 // generation then this will lose younger_gen cards!
5820 
5821 MarkRefsIntoClosure::MarkRefsIntoClosure(
5822   MemRegion span, CMSBitMap* bitMap):
5823     _span(span),
5824     _bitMap(bitMap)
5825 {
5826   assert(ref_discoverer() == NULL, "deliberately left NULL");
5827   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5828 }
5829 
5830 void MarkRefsIntoClosure::do_oop(oop obj) {
5831   // if p points into _span, then mark corresponding bit in _markBitMap
5832   assert(oopDesc::is_oop(obj), "expected an oop");
5833   HeapWord* addr = (HeapWord*)obj;
5834   if (_span.contains(addr)) {
5835     // this should be made more efficient
5836     _bitMap->mark(addr);
5837   }
5838 }
5839 
5840 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5841 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5842 
5843 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5844   MemRegion span, CMSBitMap* bitMap):
5845     _span(span),
5846     _bitMap(bitMap)
5847 {
5848   assert(ref_discoverer() == NULL, "deliberately left NULL");
5849   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5850 }
5851 
5852 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5853   // if p points into _span, then mark corresponding bit in _markBitMap
5854   assert(oopDesc::is_oop(obj), "expected an oop");
5855   HeapWord* addr = (HeapWord*)obj;
5856   if (_span.contains(addr)) {
5857     // this should be made more efficient
5858     _bitMap->par_mark(addr);
5859   }
5860 }
5861 
5862 void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5863 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5864 
5865 // A variant of the above, used for CMS marking verification.
5866 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5867   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5868     _span(span),
5869     _verification_bm(verification_bm),
5870     _cms_bm(cms_bm)
5871 {
5872   assert(ref_discoverer() == NULL, "deliberately left NULL");
5873   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5874 }
5875 
5876 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5877   // if p points into _span, then mark corresponding bit in _markBitMap
5878   assert(oopDesc::is_oop(obj), "expected an oop");
5879   HeapWord* addr = (HeapWord*)obj;
5880   if (_span.contains(addr)) {
5881     _verification_bm->mark(addr);
5882     if (!_cms_bm->isMarked(addr)) {
5883       Log(gc, verify) log;
5884       ResourceMark rm;
5885       LogStream ls(log.error());
5886       oop(addr)->print_on(&ls);
5887       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5888       fatal("... aborting");
5889     }
5890   }
5891 }
5892 
5893 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5894 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5895 
5896 //////////////////////////////////////////////////
5897 // MarkRefsIntoAndScanClosure
5898 //////////////////////////////////////////////////
5899 
5900 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5901                                                        ReferenceDiscoverer* rd,
5902                                                        CMSBitMap* bit_map,
5903                                                        CMSBitMap* mod_union_table,
5904                                                        CMSMarkStack*  mark_stack,
5905                                                        CMSCollector* collector,
5906                                                        bool should_yield,
5907                                                        bool concurrent_precleaning):
5908   _collector(collector),
5909   _span(span),
5910   _bit_map(bit_map),
5911   _mark_stack(mark_stack),
5912   _pushAndMarkClosure(collector, span, rd, bit_map, mod_union_table,
5913                       mark_stack, concurrent_precleaning),
5914   _yield(should_yield),
5915   _concurrent_precleaning(concurrent_precleaning),
5916   _freelistLock(NULL)
5917 {
5918   // FIXME: Should initialize in base class constructor.
5919   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
5920   set_ref_discoverer_internal(rd);
5921 }
5922 
5923 // This closure is used to mark refs into the CMS generation at the
5924 // second (final) checkpoint, and to scan and transitively follow
5925 // the unmarked oops. It is also used during the concurrent precleaning
5926 // phase while scanning objects on dirty cards in the CMS generation.
5927 // The marks are made in the marking bit map and the marking stack is
5928 // used for keeping the (newly) grey objects during the scan.
5929 // The parallel version (Par_...) appears further below.
5930 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5931   if (obj != NULL) {
5932     assert(oopDesc::is_oop(obj), "expected an oop");
5933     HeapWord* addr = (HeapWord*)obj;
5934     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5935     assert(_collector->overflow_list_is_empty(),
5936            "overflow list should be empty");
5937     if (_span.contains(addr) &&
5938         !_bit_map->isMarked(addr)) {
5939       // mark bit map (object is now grey)
5940       _bit_map->mark(addr);
5941       // push on marking stack (stack should be empty), and drain the
5942       // stack by applying this closure to the oops in the oops popped
5943       // from the stack (i.e. blacken the grey objects)
5944       bool res = _mark_stack->push(obj);
5945       assert(res, "Should have space to push on empty stack");
5946       do {
5947         oop new_oop = _mark_stack->pop();
5948         assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
5949         assert(_bit_map->isMarked((HeapWord*)new_oop),
5950                "only grey objects on this stack");
5951         // iterate over the oops in this oop, marking and pushing
5952         // the ones in CMS heap (i.e. in _span).
5953         new_oop->oop_iterate(&_pushAndMarkClosure);
5954         // check if it's time to yield
5955         do_yield_check();
5956       } while (!_mark_stack->isEmpty() ||
5957                (!_concurrent_precleaning && take_from_overflow_list()));
5958         // if marking stack is empty, and we are not doing this
5959         // during precleaning, then check the overflow list
5960     }
5961     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5962     assert(_collector->overflow_list_is_empty(),
5963            "overflow list was drained above");
5964 
5965     assert(_collector->no_preserved_marks(),
5966            "All preserved marks should have been restored above");
5967   }
5968 }
5969 
5970 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5971 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5972 
5973 void MarkRefsIntoAndScanClosure::do_yield_work() {
5974   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5975          "CMS thread should hold CMS token");
5976   assert_lock_strong(_freelistLock);
5977   assert_lock_strong(_bit_map->lock());
5978   // relinquish the free_list_lock and bitMaplock()
5979   _bit_map->lock()->unlock();
5980   _freelistLock->unlock();
5981   ConcurrentMarkSweepThread::desynchronize(true);
5982   _collector->stopTimer();
5983   _collector->incrementYields();
5984 
5985   // See the comment in coordinator_yield()
5986   for (unsigned i = 0;
5987        i < CMSYieldSleepCount &&
5988        ConcurrentMarkSweepThread::should_yield() &&
5989        !CMSCollector::foregroundGCIsActive();
5990        ++i) {
5991     os::sleep(Thread::current(), 1, false);
5992   }
5993 
5994   ConcurrentMarkSweepThread::synchronize(true);
5995   _freelistLock->lock_without_safepoint_check();
5996   _bit_map->lock()->lock_without_safepoint_check();
5997   _collector->startTimer();
5998 }
5999 
6000 ///////////////////////////////////////////////////////////
6001 // ParMarkRefsIntoAndScanClosure: a parallel version of
6002 //                                MarkRefsIntoAndScanClosure
6003 ///////////////////////////////////////////////////////////
6004 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6005   CMSCollector* collector, MemRegion span, ReferenceDiscoverer* rd,
6006   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6007   _span(span),
6008   _bit_map(bit_map),
6009   _work_queue(work_queue),
6010   _low_water_mark(MIN2((work_queue->max_elems()/4),
6011                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6012   _parPushAndMarkClosure(collector, span, rd, bit_map, work_queue)
6013 {
6014   // FIXME: Should initialize in base class constructor.
6015   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
6016   set_ref_discoverer_internal(rd);
6017 }
6018 
6019 // This closure is used to mark refs into the CMS generation at the
6020 // second (final) checkpoint, and to scan and transitively follow
6021 // the unmarked oops. The marks are made in the marking bit map and
6022 // the work_queue is used for keeping the (newly) grey objects during
6023 // the scan phase whence they are also available for stealing by parallel
6024 // threads. Since the marking bit map is shared, updates are
6025 // synchronized (via CAS).
6026 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6027   if (obj != NULL) {
6028     // Ignore mark word because this could be an already marked oop
6029     // that may be chained at the end of the overflow list.
6030     assert(oopDesc::is_oop(obj, true), "expected an oop");
6031     HeapWord* addr = (HeapWord*)obj;
6032     if (_span.contains(addr) &&
6033         !_bit_map->isMarked(addr)) {
6034       // mark bit map (object will become grey):
6035       // It is possible for several threads to be
6036       // trying to "claim" this object concurrently;
6037       // the unique thread that succeeds in marking the
6038       // object first will do the subsequent push on
6039       // to the work queue (or overflow list).
6040       if (_bit_map->par_mark(addr)) {
6041         // push on work_queue (which may not be empty), and trim the
6042         // queue to an appropriate length by applying this closure to
6043         // the oops in the oops popped from the stack (i.e. blacken the
6044         // grey objects)
6045         bool res = _work_queue->push(obj);
6046         assert(res, "Low water mark should be less than capacity?");
6047         trim_queue(_low_water_mark);
6048       } // Else, another thread claimed the object
6049     }
6050   }
6051 }
6052 
6053 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6054 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6055 
6056 // This closure is used to rescan the marked objects on the dirty cards
6057 // in the mod union table and the card table proper.
6058 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6059   oop p, MemRegion mr) {
6060 
6061   size_t size = 0;
6062   HeapWord* addr = (HeapWord*)p;
6063   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6064   assert(_span.contains(addr), "we are scanning the CMS generation");
6065   // check if it's time to yield
6066   if (do_yield_check()) {
6067     // We yielded for some foreground stop-world work,
6068     // and we have been asked to abort this ongoing preclean cycle.
6069     return 0;
6070   }
6071   if (_bitMap->isMarked(addr)) {
6072     // it's marked; is it potentially uninitialized?
6073     if (p->klass_or_null_acquire() != NULL) {
6074         // an initialized object; ignore mark word in verification below
6075         // since we are running concurrent with mutators
6076         assert(oopDesc::is_oop(p, true), "should be an oop");
6077         if (p->is_objArray()) {
6078           // objArrays are precisely marked; restrict scanning
6079           // to dirty cards only.
6080           size = CompactibleFreeListSpace::adjustObjectSize(
6081                    p->oop_iterate_size(_scanningClosure, mr));
6082         } else {
6083           // A non-array may have been imprecisely marked; we need
6084           // to scan object in its entirety.
6085           size = CompactibleFreeListSpace::adjustObjectSize(
6086                    p->oop_iterate_size(_scanningClosure));
6087         }
6088       #ifdef ASSERT
6089         size_t direct_size =
6090           CompactibleFreeListSpace::adjustObjectSize(p->size());
6091         assert(size == direct_size, "Inconsistency in size");
6092         assert(size >= 3, "Necessary for Printezis marks to work");
6093         HeapWord* start_pbit = addr + 1;
6094         HeapWord* end_pbit = addr + size - 1;
6095         assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6096                "inconsistent Printezis mark");
6097         // Verify inner mark bits (between Printezis bits) are clear,
6098         // but don't repeat if there are multiple dirty regions for
6099         // the same object, to avoid potential O(N^2) performance.
6100         if (addr != _last_scanned_object) {
6101           _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6102           _last_scanned_object = addr;
6103         }
6104       #endif // ASSERT
6105     } else {
6106       // An uninitialized object.
6107       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6108       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6109       size = pointer_delta(nextOneAddr + 1, addr);
6110       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6111              "alignment problem");
6112       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6113       // will dirty the card when the klass pointer is installed in the
6114       // object (signaling the completion of initialization).
6115     }
6116   } else {
6117     // Either a not yet marked object or an uninitialized object
6118     if (p->klass_or_null_acquire() == NULL) {
6119       // An uninitialized object, skip to the next card, since
6120       // we may not be able to read its P-bits yet.
6121       assert(size == 0, "Initial value");
6122     } else {
6123       // An object not (yet) reached by marking: we merely need to
6124       // compute its size so as to go look at the next block.
6125       assert(oopDesc::is_oop(p, true), "should be an oop");
6126       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6127     }
6128   }
6129   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6130   return size;
6131 }
6132 
6133 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6134   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6135          "CMS thread should hold CMS token");
6136   assert_lock_strong(_freelistLock);
6137   assert_lock_strong(_bitMap->lock());
6138   // relinquish the free_list_lock and bitMaplock()
6139   _bitMap->lock()->unlock();
6140   _freelistLock->unlock();
6141   ConcurrentMarkSweepThread::desynchronize(true);
6142   _collector->stopTimer();
6143   _collector->incrementYields();
6144 
6145   // See the comment in coordinator_yield()
6146   for (unsigned i = 0; i < CMSYieldSleepCount &&
6147                    ConcurrentMarkSweepThread::should_yield() &&
6148                    !CMSCollector::foregroundGCIsActive(); ++i) {
6149     os::sleep(Thread::current(), 1, false);
6150   }
6151 
6152   ConcurrentMarkSweepThread::synchronize(true);
6153   _freelistLock->lock_without_safepoint_check();
6154   _bitMap->lock()->lock_without_safepoint_check();
6155   _collector->startTimer();
6156 }
6157 
6158 
6159 //////////////////////////////////////////////////////////////////
6160 // SurvivorSpacePrecleanClosure
6161 //////////////////////////////////////////////////////////////////
6162 // This (single-threaded) closure is used to preclean the oops in
6163 // the survivor spaces.
6164 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6165 
6166   HeapWord* addr = (HeapWord*)p;
6167   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6168   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6169   assert(p->klass_or_null() != NULL, "object should be initialized");
6170   // an initialized object; ignore mark word in verification below
6171   // since we are running concurrent with mutators
6172   assert(oopDesc::is_oop(p, true), "should be an oop");
6173   // Note that we do not yield while we iterate over
6174   // the interior oops of p, pushing the relevant ones
6175   // on our marking stack.
6176   size_t size = p->oop_iterate_size(_scanning_closure);
6177   do_yield_check();
6178   // Observe that below, we do not abandon the preclean
6179   // phase as soon as we should; rather we empty the
6180   // marking stack before returning. This is to satisfy
6181   // some existing assertions. In general, it may be a
6182   // good idea to abort immediately and complete the marking
6183   // from the grey objects at a later time.
6184   while (!_mark_stack->isEmpty()) {
6185     oop new_oop = _mark_stack->pop();
6186     assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
6187     assert(_bit_map->isMarked((HeapWord*)new_oop),
6188            "only grey objects on this stack");
6189     // iterate over the oops in this oop, marking and pushing
6190     // the ones in CMS heap (i.e. in _span).
6191     new_oop->oop_iterate(_scanning_closure);
6192     // check if it's time to yield
6193     do_yield_check();
6194   }
6195   unsigned int after_count =
6196     CMSHeap::heap()->total_collections();
6197   bool abort = (_before_count != after_count) ||
6198                _collector->should_abort_preclean();
6199   return abort ? 0 : size;
6200 }
6201 
6202 void SurvivorSpacePrecleanClosure::do_yield_work() {
6203   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6204          "CMS thread should hold CMS token");
6205   assert_lock_strong(_bit_map->lock());
6206   // Relinquish the bit map lock
6207   _bit_map->lock()->unlock();
6208   ConcurrentMarkSweepThread::desynchronize(true);
6209   _collector->stopTimer();
6210   _collector->incrementYields();
6211 
6212   // See the comment in coordinator_yield()
6213   for (unsigned i = 0; i < CMSYieldSleepCount &&
6214                        ConcurrentMarkSweepThread::should_yield() &&
6215                        !CMSCollector::foregroundGCIsActive(); ++i) {
6216     os::sleep(Thread::current(), 1, false);
6217   }
6218 
6219   ConcurrentMarkSweepThread::synchronize(true);
6220   _bit_map->lock()->lock_without_safepoint_check();
6221   _collector->startTimer();
6222 }
6223 
6224 // This closure is used to rescan the marked objects on the dirty cards
6225 // in the mod union table and the card table proper. In the parallel
6226 // case, although the bitMap is shared, we do a single read so the
6227 // isMarked() query is "safe".
6228 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6229   // Ignore mark word because we are running concurrent with mutators
6230   assert(oopDesc::is_oop_or_null(p, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6231   HeapWord* addr = (HeapWord*)p;
6232   assert(_span.contains(addr), "we are scanning the CMS generation");
6233   bool is_obj_array = false;
6234   #ifdef ASSERT
6235     if (!_parallel) {
6236       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6237       assert(_collector->overflow_list_is_empty(),
6238              "overflow list should be empty");
6239 
6240     }
6241   #endif // ASSERT
6242   if (_bit_map->isMarked(addr)) {
6243     // Obj arrays are precisely marked, non-arrays are not;
6244     // so we scan objArrays precisely and non-arrays in their
6245     // entirety.
6246     if (p->is_objArray()) {
6247       is_obj_array = true;
6248       if (_parallel) {
6249         p->oop_iterate(_par_scan_closure, mr);
6250       } else {
6251         p->oop_iterate(_scan_closure, mr);
6252       }
6253     } else {
6254       if (_parallel) {
6255         p->oop_iterate(_par_scan_closure);
6256       } else {
6257         p->oop_iterate(_scan_closure);
6258       }
6259     }
6260   }
6261   #ifdef ASSERT
6262     if (!_parallel) {
6263       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6264       assert(_collector->overflow_list_is_empty(),
6265              "overflow list should be empty");
6266 
6267     }
6268   #endif // ASSERT
6269   return is_obj_array;
6270 }
6271 
6272 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6273                         MemRegion span,
6274                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6275                         bool should_yield, bool verifying):
6276   _collector(collector),
6277   _span(span),
6278   _bitMap(bitMap),
6279   _mut(&collector->_modUnionTable),
6280   _markStack(markStack),
6281   _yield(should_yield),
6282   _skipBits(0)
6283 {
6284   assert(_markStack->isEmpty(), "stack should be empty");
6285   _finger = _bitMap->startWord();
6286   _threshold = _finger;
6287   assert(_collector->_restart_addr == NULL, "Sanity check");
6288   assert(_span.contains(_finger), "Out of bounds _finger?");
6289   DEBUG_ONLY(_verifying = verifying;)
6290 }
6291 
6292 void MarkFromRootsClosure::reset(HeapWord* addr) {
6293   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6294   assert(_span.contains(addr), "Out of bounds _finger?");
6295   _finger = addr;
6296   _threshold = align_up(_finger, CardTable::card_size);
6297 }
6298 
6299 // Should revisit to see if this should be restructured for
6300 // greater efficiency.
6301 bool MarkFromRootsClosure::do_bit(size_t offset) {
6302   if (_skipBits > 0) {
6303     _skipBits--;
6304     return true;
6305   }
6306   // convert offset into a HeapWord*
6307   HeapWord* addr = _bitMap->startWord() + offset;
6308   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6309          "address out of range");
6310   assert(_bitMap->isMarked(addr), "tautology");
6311   if (_bitMap->isMarked(addr+1)) {
6312     // this is an allocated but not yet initialized object
6313     assert(_skipBits == 0, "tautology");
6314     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6315     oop p = oop(addr);
6316     if (p->klass_or_null_acquire() == NULL) {
6317       DEBUG_ONLY(if (!_verifying) {)
6318         // We re-dirty the cards on which this object lies and increase
6319         // the _threshold so that we'll come back to scan this object
6320         // during the preclean or remark phase. (CMSCleanOnEnter)
6321         if (CMSCleanOnEnter) {
6322           size_t sz = _collector->block_size_using_printezis_bits(addr);
6323           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
6324           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6325           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6326           // Bump _threshold to end_card_addr; note that
6327           // _threshold cannot possibly exceed end_card_addr, anyhow.
6328           // This prevents future clearing of the card as the scan proceeds
6329           // to the right.
6330           assert(_threshold <= end_card_addr,
6331                  "Because we are just scanning into this object");
6332           if (_threshold < end_card_addr) {
6333             _threshold = end_card_addr;
6334           }
6335           if (p->klass_or_null_acquire() != NULL) {
6336             // Redirty the range of cards...
6337             _mut->mark_range(redirty_range);
6338           } // ...else the setting of klass will dirty the card anyway.
6339         }
6340       DEBUG_ONLY(})
6341       return true;
6342     }
6343   }
6344   scanOopsInOop(addr);
6345   return true;
6346 }
6347 
6348 // We take a break if we've been at this for a while,
6349 // so as to avoid monopolizing the locks involved.
6350 void MarkFromRootsClosure::do_yield_work() {
6351   // First give up the locks, then yield, then re-lock
6352   // We should probably use a constructor/destructor idiom to
6353   // do this unlock/lock or modify the MutexUnlocker class to
6354   // serve our purpose. XXX
6355   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6356          "CMS thread should hold CMS token");
6357   assert_lock_strong(_bitMap->lock());
6358   _bitMap->lock()->unlock();
6359   ConcurrentMarkSweepThread::desynchronize(true);
6360   _collector->stopTimer();
6361   _collector->incrementYields();
6362 
6363   // See the comment in coordinator_yield()
6364   for (unsigned i = 0; i < CMSYieldSleepCount &&
6365                        ConcurrentMarkSweepThread::should_yield() &&
6366                        !CMSCollector::foregroundGCIsActive(); ++i) {
6367     os::sleep(Thread::current(), 1, false);
6368   }
6369 
6370   ConcurrentMarkSweepThread::synchronize(true);
6371   _bitMap->lock()->lock_without_safepoint_check();
6372   _collector->startTimer();
6373 }
6374 
6375 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6376   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6377   assert(_markStack->isEmpty(),
6378          "should drain stack to limit stack usage");
6379   // convert ptr to an oop preparatory to scanning
6380   oop obj = oop(ptr);
6381   // Ignore mark word in verification below, since we
6382   // may be running concurrent with mutators.
6383   assert(oopDesc::is_oop(obj, true), "should be an oop");
6384   assert(_finger <= ptr, "_finger runneth ahead");
6385   // advance the finger to right end of this object
6386   _finger = ptr + obj->size();
6387   assert(_finger > ptr, "we just incremented it above");
6388   // On large heaps, it may take us some time to get through
6389   // the marking phase. During
6390   // this time it's possible that a lot of mutations have
6391   // accumulated in the card table and the mod union table --
6392   // these mutation records are redundant until we have
6393   // actually traced into the corresponding card.
6394   // Here, we check whether advancing the finger would make
6395   // us cross into a new card, and if so clear corresponding
6396   // cards in the MUT (preclean them in the card-table in the
6397   // future).
6398 
6399   DEBUG_ONLY(if (!_verifying) {)
6400     // The clean-on-enter optimization is disabled by default,
6401     // until we fix 6178663.
6402     if (CMSCleanOnEnter && (_finger > _threshold)) {
6403       // [_threshold, _finger) represents the interval
6404       // of cards to be cleared  in MUT (or precleaned in card table).
6405       // The set of cards to be cleared is all those that overlap
6406       // with the interval [_threshold, _finger); note that
6407       // _threshold is always kept card-aligned but _finger isn't
6408       // always card-aligned.
6409       HeapWord* old_threshold = _threshold;
6410       assert(is_aligned(old_threshold, CardTable::card_size),
6411              "_threshold should always be card-aligned");
6412       _threshold = align_up(_finger, CardTable::card_size);
6413       MemRegion mr(old_threshold, _threshold);
6414       assert(!mr.is_empty(), "Control point invariant");
6415       assert(_span.contains(mr), "Should clear within span");
6416       _mut->clear_range(mr);
6417     }
6418   DEBUG_ONLY(})
6419   // Note: the finger doesn't advance while we drain
6420   // the stack below.
6421   PushOrMarkClosure pushOrMarkClosure(_collector,
6422                                       _span, _bitMap, _markStack,
6423                                       _finger, this);
6424   bool res = _markStack->push(obj);
6425   assert(res, "Empty non-zero size stack should have space for single push");
6426   while (!_markStack->isEmpty()) {
6427     oop new_oop = _markStack->pop();
6428     // Skip verifying header mark word below because we are
6429     // running concurrent with mutators.
6430     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6431     // now scan this oop's oops
6432     new_oop->oop_iterate(&pushOrMarkClosure);
6433     do_yield_check();
6434   }
6435   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6436 }
6437 
6438 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6439                        CMSCollector* collector, MemRegion span,
6440                        CMSBitMap* bit_map,
6441                        OopTaskQueue* work_queue,
6442                        CMSMarkStack*  overflow_stack):
6443   _collector(collector),
6444   _whole_span(collector->_span),
6445   _span(span),
6446   _bit_map(bit_map),
6447   _mut(&collector->_modUnionTable),
6448   _work_queue(work_queue),
6449   _overflow_stack(overflow_stack),
6450   _skip_bits(0),
6451   _task(task)
6452 {
6453   assert(_work_queue->size() == 0, "work_queue should be empty");
6454   _finger = span.start();
6455   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6456   assert(_span.contains(_finger), "Out of bounds _finger?");
6457 }
6458 
6459 // Should revisit to see if this should be restructured for
6460 // greater efficiency.
6461 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6462   if (_skip_bits > 0) {
6463     _skip_bits--;
6464     return true;
6465   }
6466   // convert offset into a HeapWord*
6467   HeapWord* addr = _bit_map->startWord() + offset;
6468   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6469          "address out of range");
6470   assert(_bit_map->isMarked(addr), "tautology");
6471   if (_bit_map->isMarked(addr+1)) {
6472     // this is an allocated object that might not yet be initialized
6473     assert(_skip_bits == 0, "tautology");
6474     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6475     oop p = oop(addr);
6476     if (p->klass_or_null_acquire() == NULL) {
6477       // in the case of Clean-on-Enter optimization, redirty card
6478       // and avoid clearing card by increasing  the threshold.
6479       return true;
6480     }
6481   }
6482   scan_oops_in_oop(addr);
6483   return true;
6484 }
6485 
6486 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6487   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6488   // Should we assert that our work queue is empty or
6489   // below some drain limit?
6490   assert(_work_queue->size() == 0,
6491          "should drain stack to limit stack usage");
6492   // convert ptr to an oop preparatory to scanning
6493   oop obj = oop(ptr);
6494   // Ignore mark word in verification below, since we
6495   // may be running concurrent with mutators.
6496   assert(oopDesc::is_oop(obj, true), "should be an oop");
6497   assert(_finger <= ptr, "_finger runneth ahead");
6498   // advance the finger to right end of this object
6499   _finger = ptr + obj->size();
6500   assert(_finger > ptr, "we just incremented it above");
6501   // On large heaps, it may take us some time to get through
6502   // the marking phase. During
6503   // this time it's possible that a lot of mutations have
6504   // accumulated in the card table and the mod union table --
6505   // these mutation records are redundant until we have
6506   // actually traced into the corresponding card.
6507   // Here, we check whether advancing the finger would make
6508   // us cross into a new card, and if so clear corresponding
6509   // cards in the MUT (preclean them in the card-table in the
6510   // future).
6511 
6512   // The clean-on-enter optimization is disabled by default,
6513   // until we fix 6178663.
6514   if (CMSCleanOnEnter && (_finger > _threshold)) {
6515     // [_threshold, _finger) represents the interval
6516     // of cards to be cleared  in MUT (or precleaned in card table).
6517     // The set of cards to be cleared is all those that overlap
6518     // with the interval [_threshold, _finger); note that
6519     // _threshold is always kept card-aligned but _finger isn't
6520     // always card-aligned.
6521     HeapWord* old_threshold = _threshold;
6522     assert(is_aligned(old_threshold, CardTable::card_size),
6523            "_threshold should always be card-aligned");
6524     _threshold = align_up(_finger, CardTable::card_size);
6525     MemRegion mr(old_threshold, _threshold);
6526     assert(!mr.is_empty(), "Control point invariant");
6527     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6528     _mut->clear_range(mr);
6529   }
6530 
6531   // Note: the local finger doesn't advance while we drain
6532   // the stack below, but the global finger sure can and will.
6533   HeapWord* volatile* gfa = _task->global_finger_addr();
6534   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6535                                          _span, _bit_map,
6536                                          _work_queue,
6537                                          _overflow_stack,
6538                                          _finger,
6539                                          gfa, this);
6540   bool res = _work_queue->push(obj);   // overflow could occur here
6541   assert(res, "Will hold once we use workqueues");
6542   while (true) {
6543     oop new_oop;
6544     if (!_work_queue->pop_local(new_oop)) {
6545       // We emptied our work_queue; check if there's stuff that can
6546       // be gotten from the overflow stack.
6547       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6548             _overflow_stack, _work_queue)) {
6549         do_yield_check();
6550         continue;
6551       } else {  // done
6552         break;
6553       }
6554     }
6555     // Skip verifying header mark word below because we are
6556     // running concurrent with mutators.
6557     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6558     // now scan this oop's oops
6559     new_oop->oop_iterate(&pushOrMarkClosure);
6560     do_yield_check();
6561   }
6562   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6563 }
6564 
6565 // Yield in response to a request from VM Thread or
6566 // from mutators.
6567 void ParMarkFromRootsClosure::do_yield_work() {
6568   assert(_task != NULL, "sanity");
6569   _task->yield();
6570 }
6571 
6572 // A variant of the above used for verifying CMS marking work.
6573 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6574                         MemRegion span,
6575                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6576                         CMSMarkStack*  mark_stack):
6577   _collector(collector),
6578   _span(span),
6579   _verification_bm(verification_bm),
6580   _cms_bm(cms_bm),
6581   _mark_stack(mark_stack),
6582   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6583                       mark_stack)
6584 {
6585   assert(_mark_stack->isEmpty(), "stack should be empty");
6586   _finger = _verification_bm->startWord();
6587   assert(_collector->_restart_addr == NULL, "Sanity check");
6588   assert(_span.contains(_finger), "Out of bounds _finger?");
6589 }
6590 
6591 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6592   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6593   assert(_span.contains(addr), "Out of bounds _finger?");
6594   _finger = addr;
6595 }
6596 
6597 // Should revisit to see if this should be restructured for
6598 // greater efficiency.
6599 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6600   // convert offset into a HeapWord*
6601   HeapWord* addr = _verification_bm->startWord() + offset;
6602   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6603          "address out of range");
6604   assert(_verification_bm->isMarked(addr), "tautology");
6605   assert(_cms_bm->isMarked(addr), "tautology");
6606 
6607   assert(_mark_stack->isEmpty(),
6608          "should drain stack to limit stack usage");
6609   // convert addr to an oop preparatory to scanning
6610   oop obj = oop(addr);
6611   assert(oopDesc::is_oop(obj), "should be an oop");
6612   assert(_finger <= addr, "_finger runneth ahead");
6613   // advance the finger to right end of this object
6614   _finger = addr + obj->size();
6615   assert(_finger > addr, "we just incremented it above");
6616   // Note: the finger doesn't advance while we drain
6617   // the stack below.
6618   bool res = _mark_stack->push(obj);
6619   assert(res, "Empty non-zero size stack should have space for single push");
6620   while (!_mark_stack->isEmpty()) {
6621     oop new_oop = _mark_stack->pop();
6622     assert(oopDesc::is_oop(new_oop), "Oops! expected to pop an oop");
6623     // now scan this oop's oops
6624     new_oop->oop_iterate(&_pam_verify_closure);
6625   }
6626   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6627   return true;
6628 }
6629 
6630 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6631   CMSCollector* collector, MemRegion span,
6632   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6633   CMSMarkStack*  mark_stack):
6634   MetadataAwareOopClosure(collector->ref_processor()),
6635   _collector(collector),
6636   _span(span),
6637   _verification_bm(verification_bm),
6638   _cms_bm(cms_bm),
6639   _mark_stack(mark_stack)
6640 { }
6641 
6642 template <class T> void PushAndMarkVerifyClosure::do_oop_work(T *p) {
6643   oop obj = RawAccess<>::oop_load(p);
6644   do_oop(obj);
6645 }
6646 
6647 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6648 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6649 
6650 // Upon stack overflow, we discard (part of) the stack,
6651 // remembering the least address amongst those discarded
6652 // in CMSCollector's _restart_address.
6653 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6654   // Remember the least grey address discarded
6655   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6656   _collector->lower_restart_addr(ra);
6657   _mark_stack->reset();  // discard stack contents
6658   _mark_stack->expand(); // expand the stack if possible
6659 }
6660 
6661 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6662   assert(oopDesc::is_oop_or_null(obj), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6663   HeapWord* addr = (HeapWord*)obj;
6664   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6665     // Oop lies in _span and isn't yet grey or black
6666     _verification_bm->mark(addr);            // now grey
6667     if (!_cms_bm->isMarked(addr)) {
6668       Log(gc, verify) log;
6669       ResourceMark rm;
6670       LogStream ls(log.error());
6671       oop(addr)->print_on(&ls);
6672       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6673       fatal("... aborting");
6674     }
6675 
6676     if (!_mark_stack->push(obj)) { // stack overflow
6677       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6678       assert(_mark_stack->isFull(), "Else push should have succeeded");
6679       handle_stack_overflow(addr);
6680     }
6681     // anything including and to the right of _finger
6682     // will be scanned as we iterate over the remainder of the
6683     // bit map
6684   }
6685 }
6686 
6687 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6688                      MemRegion span,
6689                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6690                      HeapWord* finger, MarkFromRootsClosure* parent) :
6691   MetadataAwareOopClosure(collector->ref_processor()),
6692   _collector(collector),
6693   _span(span),
6694   _bitMap(bitMap),
6695   _markStack(markStack),
6696   _finger(finger),
6697   _parent(parent)
6698 { }
6699 
6700 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6701                                            MemRegion span,
6702                                            CMSBitMap* bit_map,
6703                                            OopTaskQueue* work_queue,
6704                                            CMSMarkStack*  overflow_stack,
6705                                            HeapWord* finger,
6706                                            HeapWord* volatile* global_finger_addr,
6707                                            ParMarkFromRootsClosure* parent) :
6708   MetadataAwareOopClosure(collector->ref_processor()),
6709   _collector(collector),
6710   _whole_span(collector->_span),
6711   _span(span),
6712   _bit_map(bit_map),
6713   _work_queue(work_queue),
6714   _overflow_stack(overflow_stack),
6715   _finger(finger),
6716   _global_finger_addr(global_finger_addr),
6717   _parent(parent)
6718 { }
6719 
6720 // Assumes thread-safe access by callers, who are
6721 // responsible for mutual exclusion.
6722 void CMSCollector::lower_restart_addr(HeapWord* low) {
6723   assert(_span.contains(low), "Out of bounds addr");
6724   if (_restart_addr == NULL) {
6725     _restart_addr = low;
6726   } else {
6727     _restart_addr = MIN2(_restart_addr, low);
6728   }
6729 }
6730 
6731 // Upon stack overflow, we discard (part of) the stack,
6732 // remembering the least address amongst those discarded
6733 // in CMSCollector's _restart_address.
6734 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6735   // Remember the least grey address discarded
6736   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6737   _collector->lower_restart_addr(ra);
6738   _markStack->reset();  // discard stack contents
6739   _markStack->expand(); // expand the stack if possible
6740 }
6741 
6742 // Upon stack overflow, we discard (part of) the stack,
6743 // remembering the least address amongst those discarded
6744 // in CMSCollector's _restart_address.
6745 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6746   // We need to do this under a mutex to prevent other
6747   // workers from interfering with the work done below.
6748   MutexLockerEx ml(_overflow_stack->par_lock(),
6749                    Mutex::_no_safepoint_check_flag);
6750   // Remember the least grey address discarded
6751   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6752   _collector->lower_restart_addr(ra);
6753   _overflow_stack->reset();  // discard stack contents
6754   _overflow_stack->expand(); // expand the stack if possible
6755 }
6756 
6757 void PushOrMarkClosure::do_oop(oop obj) {
6758   // Ignore mark word because we are running concurrent with mutators.
6759   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6760   HeapWord* addr = (HeapWord*)obj;
6761   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6762     // Oop lies in _span and isn't yet grey or black
6763     _bitMap->mark(addr);            // now grey
6764     if (addr < _finger) {
6765       // the bit map iteration has already either passed, or
6766       // sampled, this bit in the bit map; we'll need to
6767       // use the marking stack to scan this oop's oops.
6768       bool simulate_overflow = false;
6769       NOT_PRODUCT(
6770         if (CMSMarkStackOverflowALot &&
6771             _collector->simulate_overflow()) {
6772           // simulate a stack overflow
6773           simulate_overflow = true;
6774         }
6775       )
6776       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6777         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6778         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6779         handle_stack_overflow(addr);
6780       }
6781     }
6782     // anything including and to the right of _finger
6783     // will be scanned as we iterate over the remainder of the
6784     // bit map
6785     do_yield_check();
6786   }
6787 }
6788 
6789 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6790 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6791 
6792 void ParPushOrMarkClosure::do_oop(oop obj) {
6793   // Ignore mark word because we are running concurrent with mutators.
6794   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6795   HeapWord* addr = (HeapWord*)obj;
6796   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6797     // Oop lies in _span and isn't yet grey or black
6798     // We read the global_finger (volatile read) strictly after marking oop
6799     bool res = _bit_map->par_mark(addr);    // now grey
6800     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6801     // Should we push this marked oop on our stack?
6802     // -- if someone else marked it, nothing to do
6803     // -- if target oop is above global finger nothing to do
6804     // -- if target oop is in chunk and above local finger
6805     //      then nothing to do
6806     // -- else push on work queue
6807     if (   !res       // someone else marked it, they will deal with it
6808         || (addr >= *gfa)  // will be scanned in a later task
6809         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6810       return;
6811     }
6812     // the bit map iteration has already either passed, or
6813     // sampled, this bit in the bit map; we'll need to
6814     // use the marking stack to scan this oop's oops.
6815     bool simulate_overflow = false;
6816     NOT_PRODUCT(
6817       if (CMSMarkStackOverflowALot &&
6818           _collector->simulate_overflow()) {
6819         // simulate a stack overflow
6820         simulate_overflow = true;
6821       }
6822     )
6823     if (simulate_overflow ||
6824         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6825       // stack overflow
6826       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6827       // We cannot assert that the overflow stack is full because
6828       // it may have been emptied since.
6829       assert(simulate_overflow ||
6830              _work_queue->size() == _work_queue->max_elems(),
6831             "Else push should have succeeded");
6832       handle_stack_overflow(addr);
6833     }
6834     do_yield_check();
6835   }
6836 }
6837 
6838 void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6839 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6840 
6841 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6842                                        MemRegion span,
6843                                        ReferenceDiscoverer* rd,
6844                                        CMSBitMap* bit_map,
6845                                        CMSBitMap* mod_union_table,
6846                                        CMSMarkStack*  mark_stack,
6847                                        bool           concurrent_precleaning):
6848   MetadataAwareOopClosure(rd),
6849   _collector(collector),
6850   _span(span),
6851   _bit_map(bit_map),
6852   _mod_union_table(mod_union_table),
6853   _mark_stack(mark_stack),
6854   _concurrent_precleaning(concurrent_precleaning)
6855 {
6856   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
6857 }
6858 
6859 // Grey object rescan during pre-cleaning and second checkpoint phases --
6860 // the non-parallel version (the parallel version appears further below.)
6861 void PushAndMarkClosure::do_oop(oop obj) {
6862   // Ignore mark word verification. If during concurrent precleaning,
6863   // the object monitor may be locked. If during the checkpoint
6864   // phases, the object may already have been reached by a  different
6865   // path and may be at the end of the global overflow list (so
6866   // the mark word may be NULL).
6867   assert(oopDesc::is_oop_or_null(obj, true /* ignore mark word */),
6868          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6869   HeapWord* addr = (HeapWord*)obj;
6870   // Check if oop points into the CMS generation
6871   // and is not marked
6872   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6873     // a white object ...
6874     _bit_map->mark(addr);         // ... now grey
6875     // push on the marking stack (grey set)
6876     bool simulate_overflow = false;
6877     NOT_PRODUCT(
6878       if (CMSMarkStackOverflowALot &&
6879           _collector->simulate_overflow()) {
6880         // simulate a stack overflow
6881         simulate_overflow = true;
6882       }
6883     )
6884     if (simulate_overflow || !_mark_stack->push(obj)) {
6885       if (_concurrent_precleaning) {
6886          // During precleaning we can just dirty the appropriate card(s)
6887          // in the mod union table, thus ensuring that the object remains
6888          // in the grey set  and continue. In the case of object arrays
6889          // we need to dirty all of the cards that the object spans,
6890          // since the rescan of object arrays will be limited to the
6891          // dirty cards.
6892          // Note that no one can be interfering with us in this action
6893          // of dirtying the mod union table, so no locking or atomics
6894          // are required.
6895          if (obj->is_objArray()) {
6896            size_t sz = obj->size();
6897            HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
6898            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6899            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6900            _mod_union_table->mark_range(redirty_range);
6901          } else {
6902            _mod_union_table->mark(addr);
6903          }
6904          _collector->_ser_pmc_preclean_ovflw++;
6905       } else {
6906          // During the remark phase, we need to remember this oop
6907          // in the overflow list.
6908          _collector->push_on_overflow_list(obj);
6909          _collector->_ser_pmc_remark_ovflw++;
6910       }
6911     }
6912   }
6913 }
6914 
6915 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6916                                              MemRegion span,
6917                                              ReferenceDiscoverer* rd,
6918                                              CMSBitMap* bit_map,
6919                                              OopTaskQueue* work_queue):
6920   MetadataAwareOopClosure(rd),
6921   _collector(collector),
6922   _span(span),
6923   _bit_map(bit_map),
6924   _work_queue(work_queue)
6925 {
6926   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
6927 }
6928 
6929 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6930 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6931 
6932 // Grey object rescan during second checkpoint phase --
6933 // the parallel version.
6934 void ParPushAndMarkClosure::do_oop(oop obj) {
6935   // In the assert below, we ignore the mark word because
6936   // this oop may point to an already visited object that is
6937   // on the overflow stack (in which case the mark word has
6938   // been hijacked for chaining into the overflow stack --
6939   // if this is the last object in the overflow stack then
6940   // its mark word will be NULL). Because this object may
6941   // have been subsequently popped off the global overflow
6942   // stack, and the mark word possibly restored to the prototypical
6943   // value, by the time we get to examined this failing assert in
6944   // the debugger, is_oop_or_null(false) may subsequently start
6945   // to hold.
6946   assert(oopDesc::is_oop_or_null(obj, true),
6947          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6948   HeapWord* addr = (HeapWord*)obj;
6949   // Check if oop points into the CMS generation
6950   // and is not marked
6951   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6952     // a white object ...
6953     // If we manage to "claim" the object, by being the
6954     // first thread to mark it, then we push it on our
6955     // marking stack
6956     if (_bit_map->par_mark(addr)) {     // ... now grey
6957       // push on work queue (grey set)
6958       bool simulate_overflow = false;
6959       NOT_PRODUCT(
6960         if (CMSMarkStackOverflowALot &&
6961             _collector->par_simulate_overflow()) {
6962           // simulate a stack overflow
6963           simulate_overflow = true;
6964         }
6965       )
6966       if (simulate_overflow || !_work_queue->push(obj)) {
6967         _collector->par_push_on_overflow_list(obj);
6968         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6969       }
6970     } // Else, some other thread got there first
6971   }
6972 }
6973 
6974 void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6975 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6976 
6977 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6978   Mutex* bml = _collector->bitMapLock();
6979   assert_lock_strong(bml);
6980   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6981          "CMS thread should hold CMS token");
6982 
6983   bml->unlock();
6984   ConcurrentMarkSweepThread::desynchronize(true);
6985 
6986   _collector->stopTimer();
6987   _collector->incrementYields();
6988 
6989   // See the comment in coordinator_yield()
6990   for (unsigned i = 0; i < CMSYieldSleepCount &&
6991                        ConcurrentMarkSweepThread::should_yield() &&
6992                        !CMSCollector::foregroundGCIsActive(); ++i) {
6993     os::sleep(Thread::current(), 1, false);
6994   }
6995 
6996   ConcurrentMarkSweepThread::synchronize(true);
6997   bml->lock();
6998 
6999   _collector->startTimer();
7000 }
7001 
7002 bool CMSPrecleanRefsYieldClosure::should_return() {
7003   if (ConcurrentMarkSweepThread::should_yield()) {
7004     do_yield_work();
7005   }
7006   return _collector->foregroundGCIsActive();
7007 }
7008 
7009 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7010   assert(((size_t)mr.start())%CardTable::card_size_in_words == 0,
7011          "mr should be aligned to start at a card boundary");
7012   // We'd like to assert:
7013   // assert(mr.word_size()%CardTable::card_size_in_words == 0,
7014   //        "mr should be a range of cards");
7015   // However, that would be too strong in one case -- the last
7016   // partition ends at _unallocated_block which, in general, can be
7017   // an arbitrary boundary, not necessarily card aligned.
7018   _num_dirty_cards += mr.word_size()/CardTable::card_size_in_words;
7019   _space->object_iterate_mem(mr, &_scan_cl);
7020 }
7021 
7022 SweepClosure::SweepClosure(CMSCollector* collector,
7023                            ConcurrentMarkSweepGeneration* g,
7024                            CMSBitMap* bitMap, bool should_yield) :
7025   _collector(collector),
7026   _g(g),
7027   _sp(g->cmsSpace()),
7028   _limit(_sp->sweep_limit()),
7029   _freelistLock(_sp->freelistLock()),
7030   _bitMap(bitMap),
7031   _yield(should_yield),
7032   _inFreeRange(false),           // No free range at beginning of sweep
7033   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7034   _lastFreeRangeCoalesced(false),
7035   _freeFinger(g->used_region().start())
7036 {
7037   NOT_PRODUCT(
7038     _numObjectsFreed = 0;
7039     _numWordsFreed   = 0;
7040     _numObjectsLive = 0;
7041     _numWordsLive = 0;
7042     _numObjectsAlreadyFree = 0;
7043     _numWordsAlreadyFree = 0;
7044     _last_fc = NULL;
7045 
7046     _sp->initializeIndexedFreeListArrayReturnedBytes();
7047     _sp->dictionary()->initialize_dict_returned_bytes();
7048   )
7049   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7050          "sweep _limit out of bounds");
7051   log_develop_trace(gc, sweep)("====================");
7052   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7053 }
7054 
7055 void SweepClosure::print_on(outputStream* st) const {
7056   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7057                p2i(_sp->bottom()), p2i(_sp->end()));
7058   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7059   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7060   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7061   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7062                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7063 }
7064 
7065 #ifndef PRODUCT
7066 // Assertion checking only:  no useful work in product mode --
7067 // however, if any of the flags below become product flags,
7068 // you may need to review this code to see if it needs to be
7069 // enabled in product mode.
7070 SweepClosure::~SweepClosure() {
7071   assert_lock_strong(_freelistLock);
7072   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7073          "sweep _limit out of bounds");
7074   if (inFreeRange()) {
7075     Log(gc, sweep) log;
7076     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7077     ResourceMark rm;
7078     LogStream ls(log.error());
7079     print_on(&ls);
7080     ShouldNotReachHere();
7081   }
7082 
7083   if (log_is_enabled(Debug, gc, sweep)) {
7084     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7085                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7086     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7087                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7088     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7089     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7090   }
7091 
7092   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7093     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7094     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7095     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7096     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7097                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7098   }
7099   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7100   log_develop_trace(gc, sweep)("================");
7101 }
7102 #endif  // PRODUCT
7103 
7104 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7105     bool freeRangeInFreeLists) {
7106   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7107                                p2i(freeFinger), freeRangeInFreeLists);
7108   assert(!inFreeRange(), "Trampling existing free range");
7109   set_inFreeRange(true);
7110   set_lastFreeRangeCoalesced(false);
7111 
7112   set_freeFinger(freeFinger);
7113   set_freeRangeInFreeLists(freeRangeInFreeLists);
7114   if (CMSTestInFreeList) {
7115     if (freeRangeInFreeLists) {
7116       FreeChunk* fc = (FreeChunk*) freeFinger;
7117       assert(fc->is_free(), "A chunk on the free list should be free.");
7118       assert(fc->size() > 0, "Free range should have a size");
7119       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7120     }
7121   }
7122 }
7123 
7124 // Note that the sweeper runs concurrently with mutators. Thus,
7125 // it is possible for direct allocation in this generation to happen
7126 // in the middle of the sweep. Note that the sweeper also coalesces
7127 // contiguous free blocks. Thus, unless the sweeper and the allocator
7128 // synchronize appropriately freshly allocated blocks may get swept up.
7129 // This is accomplished by the sweeper locking the free lists while
7130 // it is sweeping. Thus blocks that are determined to be free are
7131 // indeed free. There is however one additional complication:
7132 // blocks that have been allocated since the final checkpoint and
7133 // mark, will not have been marked and so would be treated as
7134 // unreachable and swept up. To prevent this, the allocator marks
7135 // the bit map when allocating during the sweep phase. This leads,
7136 // however, to a further complication -- objects may have been allocated
7137 // but not yet initialized -- in the sense that the header isn't yet
7138 // installed. The sweeper can not then determine the size of the block
7139 // in order to skip over it. To deal with this case, we use a technique
7140 // (due to Printezis) to encode such uninitialized block sizes in the
7141 // bit map. Since the bit map uses a bit per every HeapWord, but the
7142 // CMS generation has a minimum object size of 3 HeapWords, it follows
7143 // that "normal marks" won't be adjacent in the bit map (there will
7144 // always be at least two 0 bits between successive 1 bits). We make use
7145 // of these "unused" bits to represent uninitialized blocks -- the bit
7146 // corresponding to the start of the uninitialized object and the next
7147 // bit are both set. Finally, a 1 bit marks the end of the object that
7148 // started with the two consecutive 1 bits to indicate its potentially
7149 // uninitialized state.
7150 
7151 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7152   FreeChunk* fc = (FreeChunk*)addr;
7153   size_t res;
7154 
7155   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7156   // than "addr == _limit" because although _limit was a block boundary when
7157   // we started the sweep, it may no longer be one because heap expansion
7158   // may have caused us to coalesce the block ending at the address _limit
7159   // with a newly expanded chunk (this happens when _limit was set to the
7160   // previous _end of the space), so we may have stepped past _limit:
7161   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7162   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7163     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7164            "sweep _limit out of bounds");
7165     assert(addr < _sp->end(), "addr out of bounds");
7166     // Flush any free range we might be holding as a single
7167     // coalesced chunk to the appropriate free list.
7168     if (inFreeRange()) {
7169       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7170              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7171       flush_cur_free_chunk(freeFinger(),
7172                            pointer_delta(addr, freeFinger()));
7173       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7174                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7175                                    lastFreeRangeCoalesced() ? 1 : 0);
7176     }
7177 
7178     // help the iterator loop finish
7179     return pointer_delta(_sp->end(), addr);
7180   }
7181 
7182   assert(addr < _limit, "sweep invariant");
7183   // check if we should yield
7184   do_yield_check(addr);
7185   if (fc->is_free()) {
7186     // Chunk that is already free
7187     res = fc->size();
7188     do_already_free_chunk(fc);
7189     debug_only(_sp->verifyFreeLists());
7190     // If we flush the chunk at hand in lookahead_and_flush()
7191     // and it's coalesced with a preceding chunk, then the
7192     // process of "mangling" the payload of the coalesced block
7193     // will cause erasure of the size information from the
7194     // (erstwhile) header of all the coalesced blocks but the
7195     // first, so the first disjunct in the assert will not hold
7196     // in that specific case (in which case the second disjunct
7197     // will hold).
7198     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7199            "Otherwise the size info doesn't change at this step");
7200     NOT_PRODUCT(
7201       _numObjectsAlreadyFree++;
7202       _numWordsAlreadyFree += res;
7203     )
7204     NOT_PRODUCT(_last_fc = fc;)
7205   } else if (!_bitMap->isMarked(addr)) {
7206     // Chunk is fresh garbage
7207     res = do_garbage_chunk(fc);
7208     debug_only(_sp->verifyFreeLists());
7209     NOT_PRODUCT(
7210       _numObjectsFreed++;
7211       _numWordsFreed += res;
7212     )
7213   } else {
7214     // Chunk that is alive.
7215     res = do_live_chunk(fc);
7216     debug_only(_sp->verifyFreeLists());
7217     NOT_PRODUCT(
7218         _numObjectsLive++;
7219         _numWordsLive += res;
7220     )
7221   }
7222   return res;
7223 }
7224 
7225 // For the smart allocation, record following
7226 //  split deaths - a free chunk is removed from its free list because
7227 //      it is being split into two or more chunks.
7228 //  split birth - a free chunk is being added to its free list because
7229 //      a larger free chunk has been split and resulted in this free chunk.
7230 //  coal death - a free chunk is being removed from its free list because
7231 //      it is being coalesced into a large free chunk.
7232 //  coal birth - a free chunk is being added to its free list because
7233 //      it was created when two or more free chunks where coalesced into
7234 //      this free chunk.
7235 //
7236 // These statistics are used to determine the desired number of free
7237 // chunks of a given size.  The desired number is chosen to be relative
7238 // to the end of a CMS sweep.  The desired number at the end of a sweep
7239 // is the
7240 //      count-at-end-of-previous-sweep (an amount that was enough)
7241 //              - count-at-beginning-of-current-sweep  (the excess)
7242 //              + split-births  (gains in this size during interval)
7243 //              - split-deaths  (demands on this size during interval)
7244 // where the interval is from the end of one sweep to the end of the
7245 // next.
7246 //
7247 // When sweeping the sweeper maintains an accumulated chunk which is
7248 // the chunk that is made up of chunks that have been coalesced.  That
7249 // will be termed the left-hand chunk.  A new chunk of garbage that
7250 // is being considered for coalescing will be referred to as the
7251 // right-hand chunk.
7252 //
7253 // When making a decision on whether to coalesce a right-hand chunk with
7254 // the current left-hand chunk, the current count vs. the desired count
7255 // of the left-hand chunk is considered.  Also if the right-hand chunk
7256 // is near the large chunk at the end of the heap (see
7257 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7258 // left-hand chunk is coalesced.
7259 //
7260 // When making a decision about whether to split a chunk, the desired count
7261 // vs. the current count of the candidate to be split is also considered.
7262 // If the candidate is underpopulated (currently fewer chunks than desired)
7263 // a chunk of an overpopulated (currently more chunks than desired) size may
7264 // be chosen.  The "hint" associated with a free list, if non-null, points
7265 // to a free list which may be overpopulated.
7266 //
7267 
7268 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7269   const size_t size = fc->size();
7270   // Chunks that cannot be coalesced are not in the
7271   // free lists.
7272   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7273     assert(_sp->verify_chunk_in_free_list(fc),
7274            "free chunk should be in free lists");
7275   }
7276   // a chunk that is already free, should not have been
7277   // marked in the bit map
7278   HeapWord* const addr = (HeapWord*) fc;
7279   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7280   // Verify that the bit map has no bits marked between
7281   // addr and purported end of this block.
7282   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7283 
7284   // Some chunks cannot be coalesced under any circumstances.
7285   // See the definition of cantCoalesce().
7286   if (!fc->cantCoalesce()) {
7287     // This chunk can potentially be coalesced.
7288     // All the work is done in
7289     do_post_free_or_garbage_chunk(fc, size);
7290     // Note that if the chunk is not coalescable (the else arm
7291     // below), we unconditionally flush, without needing to do
7292     // a "lookahead," as we do below.
7293     if (inFreeRange()) lookahead_and_flush(fc, size);
7294   } else {
7295     // Code path common to both original and adaptive free lists.
7296 
7297     // cant coalesce with previous block; this should be treated
7298     // as the end of a free run if any
7299     if (inFreeRange()) {
7300       // we kicked some butt; time to pick up the garbage
7301       assert(freeFinger() < addr, "freeFinger points too high");
7302       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7303     }
7304     // else, nothing to do, just continue
7305   }
7306 }
7307 
7308 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7309   // This is a chunk of garbage.  It is not in any free list.
7310   // Add it to a free list or let it possibly be coalesced into
7311   // a larger chunk.
7312   HeapWord* const addr = (HeapWord*) fc;
7313   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7314 
7315   // Verify that the bit map has no bits marked between
7316   // addr and purported end of just dead object.
7317   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7318   do_post_free_or_garbage_chunk(fc, size);
7319 
7320   assert(_limit >= addr + size,
7321          "A freshly garbage chunk can't possibly straddle over _limit");
7322   if (inFreeRange()) lookahead_and_flush(fc, size);
7323   return size;
7324 }
7325 
7326 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7327   HeapWord* addr = (HeapWord*) fc;
7328   // The sweeper has just found a live object. Return any accumulated
7329   // left hand chunk to the free lists.
7330   if (inFreeRange()) {
7331     assert(freeFinger() < addr, "freeFinger points too high");
7332     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7333   }
7334 
7335   // This object is live: we'd normally expect this to be
7336   // an oop, and like to assert the following:
7337   // assert(oopDesc::is_oop(oop(addr)), "live block should be an oop");
7338   // However, as we commented above, this may be an object whose
7339   // header hasn't yet been initialized.
7340   size_t size;
7341   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7342   if (_bitMap->isMarked(addr + 1)) {
7343     // Determine the size from the bit map, rather than trying to
7344     // compute it from the object header.
7345     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7346     size = pointer_delta(nextOneAddr + 1, addr);
7347     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7348            "alignment problem");
7349 
7350 #ifdef ASSERT
7351       if (oop(addr)->klass_or_null_acquire() != NULL) {
7352         // Ignore mark word because we are running concurrent with mutators
7353         assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7354         assert(size ==
7355                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7356                "P-mark and computed size do not agree");
7357       }
7358 #endif
7359 
7360   } else {
7361     // This should be an initialized object that's alive.
7362     assert(oop(addr)->klass_or_null_acquire() != NULL,
7363            "Should be an initialized object");
7364     // Ignore mark word because we are running concurrent with mutators
7365     assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7366     // Verify that the bit map has no bits marked between
7367     // addr and purported end of this block.
7368     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7369     assert(size >= 3, "Necessary for Printezis marks to work");
7370     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7371     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7372   }
7373   return size;
7374 }
7375 
7376 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7377                                                  size_t chunkSize) {
7378   // do_post_free_or_garbage_chunk() should only be called in the case
7379   // of the adaptive free list allocator.
7380   const bool fcInFreeLists = fc->is_free();
7381   assert((HeapWord*)fc <= _limit, "sweep invariant");
7382   if (CMSTestInFreeList && fcInFreeLists) {
7383     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7384   }
7385 
7386   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7387 
7388   HeapWord* const fc_addr = (HeapWord*) fc;
7389 
7390   bool coalesce = false;
7391   const size_t left  = pointer_delta(fc_addr, freeFinger());
7392   const size_t right = chunkSize;
7393   switch (FLSCoalescePolicy) {
7394     // numeric value forms a coalition aggressiveness metric
7395     case 0:  { // never coalesce
7396       coalesce = false;
7397       break;
7398     }
7399     case 1: { // coalesce if left & right chunks on overpopulated lists
7400       coalesce = _sp->coalOverPopulated(left) &&
7401                  _sp->coalOverPopulated(right);
7402       break;
7403     }
7404     case 2: { // coalesce if left chunk on overpopulated list (default)
7405       coalesce = _sp->coalOverPopulated(left);
7406       break;
7407     }
7408     case 3: { // coalesce if left OR right chunk on overpopulated list
7409       coalesce = _sp->coalOverPopulated(left) ||
7410                  _sp->coalOverPopulated(right);
7411       break;
7412     }
7413     case 4: { // always coalesce
7414       coalesce = true;
7415       break;
7416     }
7417     default:
7418      ShouldNotReachHere();
7419   }
7420 
7421   // Should the current free range be coalesced?
7422   // If the chunk is in a free range and either we decided to coalesce above
7423   // or the chunk is near the large block at the end of the heap
7424   // (isNearLargestChunk() returns true), then coalesce this chunk.
7425   const bool doCoalesce = inFreeRange()
7426                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7427   if (doCoalesce) {
7428     // Coalesce the current free range on the left with the new
7429     // chunk on the right.  If either is on a free list,
7430     // it must be removed from the list and stashed in the closure.
7431     if (freeRangeInFreeLists()) {
7432       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7433       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7434              "Size of free range is inconsistent with chunk size.");
7435       if (CMSTestInFreeList) {
7436         assert(_sp->verify_chunk_in_free_list(ffc),
7437                "Chunk is not in free lists");
7438       }
7439       _sp->coalDeath(ffc->size());
7440       _sp->removeFreeChunkFromFreeLists(ffc);
7441       set_freeRangeInFreeLists(false);
7442     }
7443     if (fcInFreeLists) {
7444       _sp->coalDeath(chunkSize);
7445       assert(fc->size() == chunkSize,
7446         "The chunk has the wrong size or is not in the free lists");
7447       _sp->removeFreeChunkFromFreeLists(fc);
7448     }
7449     set_lastFreeRangeCoalesced(true);
7450     print_free_block_coalesced(fc);
7451   } else {  // not in a free range and/or should not coalesce
7452     // Return the current free range and start a new one.
7453     if (inFreeRange()) {
7454       // In a free range but cannot coalesce with the right hand chunk.
7455       // Put the current free range into the free lists.
7456       flush_cur_free_chunk(freeFinger(),
7457                            pointer_delta(fc_addr, freeFinger()));
7458     }
7459     // Set up for new free range.  Pass along whether the right hand
7460     // chunk is in the free lists.
7461     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7462   }
7463 }
7464 
7465 // Lookahead flush:
7466 // If we are tracking a free range, and this is the last chunk that
7467 // we'll look at because its end crosses past _limit, we'll preemptively
7468 // flush it along with any free range we may be holding on to. Note that
7469 // this can be the case only for an already free or freshly garbage
7470 // chunk. If this block is an object, it can never straddle
7471 // over _limit. The "straddling" occurs when _limit is set at
7472 // the previous end of the space when this cycle started, and
7473 // a subsequent heap expansion caused the previously co-terminal
7474 // free block to be coalesced with the newly expanded portion,
7475 // thus rendering _limit a non-block-boundary making it dangerous
7476 // for the sweeper to step over and examine.
7477 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7478   assert(inFreeRange(), "Should only be called if currently in a free range.");
7479   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7480   assert(_sp->used_region().contains(eob - 1),
7481          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7482          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7483          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7484          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7485   if (eob >= _limit) {
7486     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7487     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7488                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7489                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7490                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7491     // Return the storage we are tracking back into the free lists.
7492     log_develop_trace(gc, sweep)("Flushing ... ");
7493     assert(freeFinger() < eob, "Error");
7494     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7495   }
7496 }
7497 
7498 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7499   assert(inFreeRange(), "Should only be called if currently in a free range.");
7500   assert(size > 0,
7501     "A zero sized chunk cannot be added to the free lists.");
7502   if (!freeRangeInFreeLists()) {
7503     if (CMSTestInFreeList) {
7504       FreeChunk* fc = (FreeChunk*) chunk;
7505       fc->set_size(size);
7506       assert(!_sp->verify_chunk_in_free_list(fc),
7507              "chunk should not be in free lists yet");
7508     }
7509     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7510     // A new free range is going to be starting.  The current
7511     // free range has not been added to the free lists yet or
7512     // was removed so add it back.
7513     // If the current free range was coalesced, then the death
7514     // of the free range was recorded.  Record a birth now.
7515     if (lastFreeRangeCoalesced()) {
7516       _sp->coalBirth(size);
7517     }
7518     _sp->addChunkAndRepairOffsetTable(chunk, size,
7519             lastFreeRangeCoalesced());
7520   } else {
7521     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7522   }
7523   set_inFreeRange(false);
7524   set_freeRangeInFreeLists(false);
7525 }
7526 
7527 // We take a break if we've been at this for a while,
7528 // so as to avoid monopolizing the locks involved.
7529 void SweepClosure::do_yield_work(HeapWord* addr) {
7530   // Return current free chunk being used for coalescing (if any)
7531   // to the appropriate freelist.  After yielding, the next
7532   // free block encountered will start a coalescing range of
7533   // free blocks.  If the next free block is adjacent to the
7534   // chunk just flushed, they will need to wait for the next
7535   // sweep to be coalesced.
7536   if (inFreeRange()) {
7537     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7538   }
7539 
7540   // First give up the locks, then yield, then re-lock.
7541   // We should probably use a constructor/destructor idiom to
7542   // do this unlock/lock or modify the MutexUnlocker class to
7543   // serve our purpose. XXX
7544   assert_lock_strong(_bitMap->lock());
7545   assert_lock_strong(_freelistLock);
7546   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7547          "CMS thread should hold CMS token");
7548   _bitMap->lock()->unlock();
7549   _freelistLock->unlock();
7550   ConcurrentMarkSweepThread::desynchronize(true);
7551   _collector->stopTimer();
7552   _collector->incrementYields();
7553 
7554   // See the comment in coordinator_yield()
7555   for (unsigned i = 0; i < CMSYieldSleepCount &&
7556                        ConcurrentMarkSweepThread::should_yield() &&
7557                        !CMSCollector::foregroundGCIsActive(); ++i) {
7558     os::sleep(Thread::current(), 1, false);
7559   }
7560 
7561   ConcurrentMarkSweepThread::synchronize(true);
7562   _freelistLock->lock();
7563   _bitMap->lock()->lock_without_safepoint_check();
7564   _collector->startTimer();
7565 }
7566 
7567 #ifndef PRODUCT
7568 // This is actually very useful in a product build if it can
7569 // be called from the debugger.  Compile it into the product
7570 // as needed.
7571 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7572   return debug_cms_space->verify_chunk_in_free_list(fc);
7573 }
7574 #endif
7575 
7576 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7577   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7578                                p2i(fc), fc->size());
7579 }
7580 
7581 // CMSIsAliveClosure
7582 bool CMSIsAliveClosure::do_object_b(oop obj) {
7583   HeapWord* addr = (HeapWord*)obj;
7584   return addr != NULL &&
7585          (!_span.contains(addr) || _bit_map->isMarked(addr));
7586 }
7587 
7588 
7589 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7590                       MemRegion span,
7591                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7592                       bool cpc):
7593   _collector(collector),
7594   _span(span),
7595   _bit_map(bit_map),
7596   _mark_stack(mark_stack),
7597   _concurrent_precleaning(cpc) {
7598   assert(!_span.is_empty(), "Empty span could spell trouble");
7599 }
7600 
7601 
7602 // CMSKeepAliveClosure: the serial version
7603 void CMSKeepAliveClosure::do_oop(oop obj) {
7604   HeapWord* addr = (HeapWord*)obj;
7605   if (_span.contains(addr) &&
7606       !_bit_map->isMarked(addr)) {
7607     _bit_map->mark(addr);
7608     bool simulate_overflow = false;
7609     NOT_PRODUCT(
7610       if (CMSMarkStackOverflowALot &&
7611           _collector->simulate_overflow()) {
7612         // simulate a stack overflow
7613         simulate_overflow = true;
7614       }
7615     )
7616     if (simulate_overflow || !_mark_stack->push(obj)) {
7617       if (_concurrent_precleaning) {
7618         // We dirty the overflown object and let the remark
7619         // phase deal with it.
7620         assert(_collector->overflow_list_is_empty(), "Error");
7621         // In the case of object arrays, we need to dirty all of
7622         // the cards that the object spans. No locking or atomics
7623         // are needed since no one else can be mutating the mod union
7624         // table.
7625         if (obj->is_objArray()) {
7626           size_t sz = obj->size();
7627           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
7628           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7629           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7630           _collector->_modUnionTable.mark_range(redirty_range);
7631         } else {
7632           _collector->_modUnionTable.mark(addr);
7633         }
7634         _collector->_ser_kac_preclean_ovflw++;
7635       } else {
7636         _collector->push_on_overflow_list(obj);
7637         _collector->_ser_kac_ovflw++;
7638       }
7639     }
7640   }
7641 }
7642 
7643 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7644 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7645 
7646 // CMSParKeepAliveClosure: a parallel version of the above.
7647 // The work queues are private to each closure (thread),
7648 // but (may be) available for stealing by other threads.
7649 void CMSParKeepAliveClosure::do_oop(oop obj) {
7650   HeapWord* addr = (HeapWord*)obj;
7651   if (_span.contains(addr) &&
7652       !_bit_map->isMarked(addr)) {
7653     // In general, during recursive tracing, several threads
7654     // may be concurrently getting here; the first one to
7655     // "tag" it, claims it.
7656     if (_bit_map->par_mark(addr)) {
7657       bool res = _work_queue->push(obj);
7658       assert(res, "Low water mark should be much less than capacity");
7659       // Do a recursive trim in the hope that this will keep
7660       // stack usage lower, but leave some oops for potential stealers
7661       trim_queue(_low_water_mark);
7662     } // Else, another thread got there first
7663   }
7664 }
7665 
7666 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7667 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7668 
7669 void CMSParKeepAliveClosure::trim_queue(uint max) {
7670   while (_work_queue->size() > max) {
7671     oop new_oop;
7672     if (_work_queue->pop_local(new_oop)) {
7673       assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
7674       assert(_bit_map->isMarked((HeapWord*)new_oop),
7675              "no white objects on this stack!");
7676       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7677       // iterate over the oops in this oop, marking and pushing
7678       // the ones in CMS heap (i.e. in _span).
7679       new_oop->oop_iterate(&_mark_and_push);
7680     }
7681   }
7682 }
7683 
7684 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7685                                 CMSCollector* collector,
7686                                 MemRegion span, CMSBitMap* bit_map,
7687                                 OopTaskQueue* work_queue):
7688   _collector(collector),
7689   _span(span),
7690   _bit_map(bit_map),
7691   _work_queue(work_queue) { }
7692 
7693 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7694   HeapWord* addr = (HeapWord*)obj;
7695   if (_span.contains(addr) &&
7696       !_bit_map->isMarked(addr)) {
7697     if (_bit_map->par_mark(addr)) {
7698       bool simulate_overflow = false;
7699       NOT_PRODUCT(
7700         if (CMSMarkStackOverflowALot &&
7701             _collector->par_simulate_overflow()) {
7702           // simulate a stack overflow
7703           simulate_overflow = true;
7704         }
7705       )
7706       if (simulate_overflow || !_work_queue->push(obj)) {
7707         _collector->par_push_on_overflow_list(obj);
7708         _collector->_par_kac_ovflw++;
7709       }
7710     } // Else another thread got there already
7711   }
7712 }
7713 
7714 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7715 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7716 
7717 //////////////////////////////////////////////////////////////////
7718 //  CMSExpansionCause                /////////////////////////////
7719 //////////////////////////////////////////////////////////////////
7720 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7721   switch (cause) {
7722     case _no_expansion:
7723       return "No expansion";
7724     case _satisfy_free_ratio:
7725       return "Free ratio";
7726     case _satisfy_promotion:
7727       return "Satisfy promotion";
7728     case _satisfy_allocation:
7729       return "allocation";
7730     case _allocate_par_lab:
7731       return "Par LAB";
7732     case _allocate_par_spooling_space:
7733       return "Par Spooling Space";
7734     case _adaptive_size_policy:
7735       return "Ergonomics";
7736     default:
7737       return "unknown";
7738   }
7739 }
7740 
7741 void CMSDrainMarkingStackClosure::do_void() {
7742   // the max number to take from overflow list at a time
7743   const size_t num = _mark_stack->capacity()/4;
7744   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7745          "Overflow list should be NULL during concurrent phases");
7746   while (!_mark_stack->isEmpty() ||
7747          // if stack is empty, check the overflow list
7748          _collector->take_from_overflow_list(num, _mark_stack)) {
7749     oop obj = _mark_stack->pop();
7750     HeapWord* addr = (HeapWord*)obj;
7751     assert(_span.contains(addr), "Should be within span");
7752     assert(_bit_map->isMarked(addr), "Should be marked");
7753     assert(oopDesc::is_oop(obj), "Should be an oop");
7754     obj->oop_iterate(_keep_alive);
7755   }
7756 }
7757 
7758 void CMSParDrainMarkingStackClosure::do_void() {
7759   // drain queue
7760   trim_queue(0);
7761 }
7762 
7763 // Trim our work_queue so its length is below max at return
7764 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7765   while (_work_queue->size() > max) {
7766     oop new_oop;
7767     if (_work_queue->pop_local(new_oop)) {
7768       assert(oopDesc::is_oop(new_oop), "Expected an oop");
7769       assert(_bit_map->isMarked((HeapWord*)new_oop),
7770              "no white objects on this stack!");
7771       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7772       // iterate over the oops in this oop, marking and pushing
7773       // the ones in CMS heap (i.e. in _span).
7774       new_oop->oop_iterate(&_mark_and_push);
7775     }
7776   }
7777 }
7778 
7779 ////////////////////////////////////////////////////////////////////
7780 // Support for Marking Stack Overflow list handling and related code
7781 ////////////////////////////////////////////////////////////////////
7782 // Much of the following code is similar in shape and spirit to the
7783 // code used in ParNewGC. We should try and share that code
7784 // as much as possible in the future.
7785 
7786 #ifndef PRODUCT
7787 // Debugging support for CMSStackOverflowALot
7788 
7789 // It's OK to call this multi-threaded;  the worst thing
7790 // that can happen is that we'll get a bunch of closely
7791 // spaced simulated overflows, but that's OK, in fact
7792 // probably good as it would exercise the overflow code
7793 // under contention.
7794 bool CMSCollector::simulate_overflow() {
7795   if (_overflow_counter-- <= 0) { // just being defensive
7796     _overflow_counter = CMSMarkStackOverflowInterval;
7797     return true;
7798   } else {
7799     return false;
7800   }
7801 }
7802 
7803 bool CMSCollector::par_simulate_overflow() {
7804   return simulate_overflow();
7805 }
7806 #endif
7807 
7808 // Single-threaded
7809 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7810   assert(stack->isEmpty(), "Expected precondition");
7811   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7812   size_t i = num;
7813   oop  cur = _overflow_list;
7814   const markOop proto = markOopDesc::prototype();
7815   NOT_PRODUCT(ssize_t n = 0;)
7816   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7817     next = oop(cur->mark());
7818     cur->set_mark(proto);   // until proven otherwise
7819     assert(oopDesc::is_oop(cur), "Should be an oop");
7820     bool res = stack->push(cur);
7821     assert(res, "Bit off more than can chew?");
7822     NOT_PRODUCT(n++;)
7823   }
7824   _overflow_list = cur;
7825 #ifndef PRODUCT
7826   assert(_num_par_pushes >= n, "Too many pops?");
7827   _num_par_pushes -=n;
7828 #endif
7829   return !stack->isEmpty();
7830 }
7831 
7832 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7833 // (MT-safe) Get a prefix of at most "num" from the list.
7834 // The overflow list is chained through the mark word of
7835 // each object in the list. We fetch the entire list,
7836 // break off a prefix of the right size and return the
7837 // remainder. If other threads try to take objects from
7838 // the overflow list at that time, they will wait for
7839 // some time to see if data becomes available. If (and
7840 // only if) another thread places one or more object(s)
7841 // on the global list before we have returned the suffix
7842 // to the global list, we will walk down our local list
7843 // to find its end and append the global list to
7844 // our suffix before returning it. This suffix walk can
7845 // prove to be expensive (quadratic in the amount of traffic)
7846 // when there are many objects in the overflow list and
7847 // there is much producer-consumer contention on the list.
7848 // *NOTE*: The overflow list manipulation code here and
7849 // in ParNewGeneration:: are very similar in shape,
7850 // except that in the ParNew case we use the old (from/eden)
7851 // copy of the object to thread the list via its klass word.
7852 // Because of the common code, if you make any changes in
7853 // the code below, please check the ParNew version to see if
7854 // similar changes might be needed.
7855 // CR 6797058 has been filed to consolidate the common code.
7856 bool CMSCollector::par_take_from_overflow_list(size_t num,
7857                                                OopTaskQueue* work_q,
7858                                                int no_of_gc_threads) {
7859   assert(work_q->size() == 0, "First empty local work queue");
7860   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7861   if (_overflow_list == NULL) {
7862     return false;
7863   }
7864   // Grab the entire list; we'll put back a suffix
7865   oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7866   Thread* tid = Thread::current();
7867   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7868   // set to ParallelGCThreads.
7869   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7870   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7871   // If the list is busy, we spin for a short while,
7872   // sleeping between attempts to get the list.
7873   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7874     os::sleep(tid, sleep_time_millis, false);
7875     if (_overflow_list == NULL) {
7876       // Nothing left to take
7877       return false;
7878     } else if (_overflow_list != BUSY) {
7879       // Try and grab the prefix
7880       prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7881     }
7882   }
7883   // If the list was found to be empty, or we spun long
7884   // enough, we give up and return empty-handed. If we leave
7885   // the list in the BUSY state below, it must be the case that
7886   // some other thread holds the overflow list and will set it
7887   // to a non-BUSY state in the future.
7888   if (prefix == NULL || prefix == BUSY) {
7889      // Nothing to take or waited long enough
7890      if (prefix == NULL) {
7891        // Write back the NULL in case we overwrote it with BUSY above
7892        // and it is still the same value.
7893        Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7894      }
7895      return false;
7896   }
7897   assert(prefix != NULL && prefix != BUSY, "Error");
7898   size_t i = num;
7899   oop cur = prefix;
7900   // Walk down the first "num" objects, unless we reach the end.
7901   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7902   if (cur->mark() == NULL) {
7903     // We have "num" or fewer elements in the list, so there
7904     // is nothing to return to the global list.
7905     // Write back the NULL in lieu of the BUSY we wrote
7906     // above, if it is still the same value.
7907     if (_overflow_list == BUSY) {
7908       Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7909     }
7910   } else {
7911     // Chop off the suffix and return it to the global list.
7912     assert(cur->mark() != BUSY, "Error");
7913     oop suffix_head = cur->mark(); // suffix will be put back on global list
7914     cur->set_mark(NULL);           // break off suffix
7915     // It's possible that the list is still in the empty(busy) state
7916     // we left it in a short while ago; in that case we may be
7917     // able to place back the suffix without incurring the cost
7918     // of a walk down the list.
7919     oop observed_overflow_list = _overflow_list;
7920     oop cur_overflow_list = observed_overflow_list;
7921     bool attached = false;
7922     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7923       observed_overflow_list =
7924         Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7925       if (cur_overflow_list == observed_overflow_list) {
7926         attached = true;
7927         break;
7928       } else cur_overflow_list = observed_overflow_list;
7929     }
7930     if (!attached) {
7931       // Too bad, someone else sneaked in (at least) an element; we'll need
7932       // to do a splice. Find tail of suffix so we can prepend suffix to global
7933       // list.
7934       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7935       oop suffix_tail = cur;
7936       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7937              "Tautology");
7938       observed_overflow_list = _overflow_list;
7939       do {
7940         cur_overflow_list = observed_overflow_list;
7941         if (cur_overflow_list != BUSY) {
7942           // Do the splice ...
7943           suffix_tail->set_mark(markOop(cur_overflow_list));
7944         } else { // cur_overflow_list == BUSY
7945           suffix_tail->set_mark(NULL);
7946         }
7947         // ... and try to place spliced list back on overflow_list ...
7948         observed_overflow_list =
7949           Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7950       } while (cur_overflow_list != observed_overflow_list);
7951       // ... until we have succeeded in doing so.
7952     }
7953   }
7954 
7955   // Push the prefix elements on work_q
7956   assert(prefix != NULL, "control point invariant");
7957   const markOop proto = markOopDesc::prototype();
7958   oop next;
7959   NOT_PRODUCT(ssize_t n = 0;)
7960   for (cur = prefix; cur != NULL; cur = next) {
7961     next = oop(cur->mark());
7962     cur->set_mark(proto);   // until proven otherwise
7963     assert(oopDesc::is_oop(cur), "Should be an oop");
7964     bool res = work_q->push(cur);
7965     assert(res, "Bit off more than we can chew?");
7966     NOT_PRODUCT(n++;)
7967   }
7968 #ifndef PRODUCT
7969   assert(_num_par_pushes >= n, "Too many pops?");
7970   Atomic::sub(n, &_num_par_pushes);
7971 #endif
7972   return true;
7973 }
7974 
7975 // Single-threaded
7976 void CMSCollector::push_on_overflow_list(oop p) {
7977   NOT_PRODUCT(_num_par_pushes++;)
7978   assert(oopDesc::is_oop(p), "Not an oop");
7979   preserve_mark_if_necessary(p);
7980   p->set_mark((markOop)_overflow_list);
7981   _overflow_list = p;
7982 }
7983 
7984 // Multi-threaded; use CAS to prepend to overflow list
7985 void CMSCollector::par_push_on_overflow_list(oop p) {
7986   NOT_PRODUCT(Atomic::inc(&_num_par_pushes);)
7987   assert(oopDesc::is_oop(p), "Not an oop");
7988   par_preserve_mark_if_necessary(p);
7989   oop observed_overflow_list = _overflow_list;
7990   oop cur_overflow_list;
7991   do {
7992     cur_overflow_list = observed_overflow_list;
7993     if (cur_overflow_list != BUSY) {
7994       p->set_mark(markOop(cur_overflow_list));
7995     } else {
7996       p->set_mark(NULL);
7997     }
7998     observed_overflow_list =
7999       Atomic::cmpxchg((oopDesc*)p, &_overflow_list, (oopDesc*)cur_overflow_list);
8000   } while (cur_overflow_list != observed_overflow_list);
8001 }
8002 #undef BUSY
8003 
8004 // Single threaded
8005 // General Note on GrowableArray: pushes may silently fail
8006 // because we are (temporarily) out of C-heap for expanding
8007 // the stack. The problem is quite ubiquitous and affects
8008 // a lot of code in the JVM. The prudent thing for GrowableArray
8009 // to do (for now) is to exit with an error. However, that may
8010 // be too draconian in some cases because the caller may be
8011 // able to recover without much harm. For such cases, we
8012 // should probably introduce a "soft_push" method which returns
8013 // an indication of success or failure with the assumption that
8014 // the caller may be able to recover from a failure; code in
8015 // the VM can then be changed, incrementally, to deal with such
8016 // failures where possible, thus, incrementally hardening the VM
8017 // in such low resource situations.
8018 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8019   _preserved_oop_stack.push(p);
8020   _preserved_mark_stack.push(m);
8021   assert(m == p->mark(), "Mark word changed");
8022   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8023          "bijection");
8024 }
8025 
8026 // Single threaded
8027 void CMSCollector::preserve_mark_if_necessary(oop p) {
8028   markOop m = p->mark();
8029   if (m->must_be_preserved(p)) {
8030     preserve_mark_work(p, m);
8031   }
8032 }
8033 
8034 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8035   markOop m = p->mark();
8036   if (m->must_be_preserved(p)) {
8037     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8038     // Even though we read the mark word without holding
8039     // the lock, we are assured that it will not change
8040     // because we "own" this oop, so no other thread can
8041     // be trying to push it on the overflow list; see
8042     // the assertion in preserve_mark_work() that checks
8043     // that m == p->mark().
8044     preserve_mark_work(p, m);
8045   }
8046 }
8047 
8048 // We should be able to do this multi-threaded,
8049 // a chunk of stack being a task (this is
8050 // correct because each oop only ever appears
8051 // once in the overflow list. However, it's
8052 // not very easy to completely overlap this with
8053 // other operations, so will generally not be done
8054 // until all work's been completed. Because we
8055 // expect the preserved oop stack (set) to be small,
8056 // it's probably fine to do this single-threaded.
8057 // We can explore cleverer concurrent/overlapped/parallel
8058 // processing of preserved marks if we feel the
8059 // need for this in the future. Stack overflow should
8060 // be so rare in practice and, when it happens, its
8061 // effect on performance so great that this will
8062 // likely just be in the noise anyway.
8063 void CMSCollector::restore_preserved_marks_if_any() {
8064   assert(SafepointSynchronize::is_at_safepoint(),
8065          "world should be stopped");
8066   assert(Thread::current()->is_ConcurrentGC_thread() ||
8067          Thread::current()->is_VM_thread(),
8068          "should be single-threaded");
8069   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8070          "bijection");
8071 
8072   while (!_preserved_oop_stack.is_empty()) {
8073     oop p = _preserved_oop_stack.pop();
8074     assert(oopDesc::is_oop(p), "Should be an oop");
8075     assert(_span.contains(p), "oop should be in _span");
8076     assert(p->mark() == markOopDesc::prototype(),
8077            "Set when taken from overflow list");
8078     markOop m = _preserved_mark_stack.pop();
8079     p->set_mark(m);
8080   }
8081   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8082          "stacks were cleared above");
8083 }
8084 
8085 #ifndef PRODUCT
8086 bool CMSCollector::no_preserved_marks() const {
8087   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8088 }
8089 #endif
8090 
8091 // Transfer some number of overflown objects to usual marking
8092 // stack. Return true if some objects were transferred.
8093 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8094   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8095                     (size_t)ParGCDesiredObjsFromOverflowList);
8096 
8097   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8098   assert(_collector->overflow_list_is_empty() || res,
8099          "If list is not empty, we should have taken something");
8100   assert(!res || !_mark_stack->isEmpty(),
8101          "If we took something, it should now be on our stack");
8102   return res;
8103 }
8104 
8105 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8106   size_t res = _sp->block_size_no_stall(addr, _collector);
8107   if (_sp->block_is_obj(addr)) {
8108     if (_live_bit_map->isMarked(addr)) {
8109       // It can't have been dead in a previous cycle
8110       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8111     } else {
8112       _dead_bit_map->mark(addr);      // mark the dead object
8113     }
8114   }
8115   // Could be 0, if the block size could not be computed without stalling.
8116   return res;
8117 }
8118 
8119 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8120   GCMemoryManager* manager = CMSHeap::heap()->old_manager();
8121   switch (phase) {
8122     case CMSCollector::InitialMarking:
8123       initialize(manager /* GC manager */ ,
8124                  cause   /* cause of the GC */,
8125                  true    /* recordGCBeginTime */,
8126                  true    /* recordPreGCUsage */,
8127                  false   /* recordPeakUsage */,
8128                  false   /* recordPostGCusage */,
8129                  true    /* recordAccumulatedGCTime */,
8130                  false   /* recordGCEndTime */,
8131                  false   /* countCollection */  );
8132       break;
8133 
8134     case CMSCollector::FinalMarking:
8135       initialize(manager /* GC manager */ ,
8136                  cause   /* cause of the GC */,
8137                  false   /* recordGCBeginTime */,
8138                  false   /* recordPreGCUsage */,
8139                  false   /* recordPeakUsage */,
8140                  false   /* recordPostGCusage */,
8141                  true    /* recordAccumulatedGCTime */,
8142                  false   /* recordGCEndTime */,
8143                  false   /* countCollection */  );
8144       break;
8145 
8146     case CMSCollector::Sweeping:
8147       initialize(manager /* GC manager */ ,
8148                  cause   /* cause of the GC */,
8149                  false   /* recordGCBeginTime */,
8150                  false   /* recordPreGCUsage */,
8151                  true    /* recordPeakUsage */,
8152                  true    /* recordPostGCusage */,
8153                  false   /* recordAccumulatedGCTime */,
8154                  true    /* recordGCEndTime */,
8155                  true    /* countCollection */  );
8156       break;
8157 
8158     default:
8159       ShouldNotReachHere();
8160   }
8161 }