1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "vmreg_x86.inline.hpp"
  44 
  45 
  46 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  47 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  48 // fast versions of NegF/NegD and AbsF/AbsD.
  49 
  50 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  51 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  52   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  53   // of 128-bits operands for SSE instructions.
  54   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  55   // Store the value to a 128-bits operand.
  56   operand[0] = lo;
  57   operand[1] = hi;
  58   return operand;
  59 }
  60 
  61 // Buffer for 128-bits masks used by SSE instructions.
  62 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  63 
  64 // Static initialization during VM startup.
  65 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  66 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  67 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  68 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  69 
  70 
  71 
  72 NEEDS_CLEANUP // remove this definitions ?
  73 const Register IC_Klass    = rax;   // where the IC klass is cached
  74 const Register SYNC_header = rax;   // synchronization header
  75 const Register SHIFT_count = rcx;   // where count for shift operations must be
  76 
  77 #define __ _masm->
  78 
  79 
  80 static void select_different_registers(Register preserve,
  81                                        Register extra,
  82                                        Register &tmp1,
  83                                        Register &tmp2) {
  84   if (tmp1 == preserve) {
  85     assert_different_registers(tmp1, tmp2, extra);
  86     tmp1 = extra;
  87   } else if (tmp2 == preserve) {
  88     assert_different_registers(tmp1, tmp2, extra);
  89     tmp2 = extra;
  90   }
  91   assert_different_registers(preserve, tmp1, tmp2);
  92 }
  93 
  94 
  95 
  96 static void select_different_registers(Register preserve,
  97                                        Register extra,
  98                                        Register &tmp1,
  99                                        Register &tmp2,
 100                                        Register &tmp3) {
 101   if (tmp1 == preserve) {
 102     assert_different_registers(tmp1, tmp2, tmp3, extra);
 103     tmp1 = extra;
 104   } else if (tmp2 == preserve) {
 105     assert_different_registers(tmp1, tmp2, tmp3, extra);
 106     tmp2 = extra;
 107   } else if (tmp3 == preserve) {
 108     assert_different_registers(tmp1, tmp2, tmp3, extra);
 109     tmp3 = extra;
 110   }
 111   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 112 }
 113 
 114 
 115 
 116 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 117   if (opr->is_constant()) {
 118     LIR_Const* constant = opr->as_constant_ptr();
 119     switch (constant->type()) {
 120       case T_INT: {
 121         return true;
 122       }
 123 
 124       default:
 125         return false;
 126     }
 127   }
 128   return false;
 129 }
 130 
 131 
 132 LIR_Opr LIR_Assembler::receiverOpr() {
 133   return FrameMap::receiver_opr;
 134 }
 135 
 136 LIR_Opr LIR_Assembler::osrBufferPointer() {
 137   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 138 }
 139 
 140 //--------------fpu register translations-----------------------
 141 
 142 
 143 address LIR_Assembler::float_constant(float f) {
 144   address const_addr = __ float_constant(f);
 145   if (const_addr == NULL) {
 146     bailout("const section overflow");
 147     return __ code()->consts()->start();
 148   } else {
 149     return const_addr;
 150   }
 151 }
 152 
 153 
 154 address LIR_Assembler::double_constant(double d) {
 155   address const_addr = __ double_constant(d);
 156   if (const_addr == NULL) {
 157     bailout("const section overflow");
 158     return __ code()->consts()->start();
 159   } else {
 160     return const_addr;
 161   }
 162 }
 163 
 164 
 165 void LIR_Assembler::set_24bit_FPU() {
 166   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 167 }
 168 
 169 void LIR_Assembler::reset_FPU() {
 170   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 171 }
 172 
 173 void LIR_Assembler::fpop() {
 174   __ fpop();
 175 }
 176 
 177 void LIR_Assembler::fxch(int i) {
 178   __ fxch(i);
 179 }
 180 
 181 void LIR_Assembler::fld(int i) {
 182   __ fld_s(i);
 183 }
 184 
 185 void LIR_Assembler::ffree(int i) {
 186   __ ffree(i);
 187 }
 188 
 189 void LIR_Assembler::breakpoint() {
 190   __ int3();
 191 }
 192 
 193 void LIR_Assembler::push(LIR_Opr opr) {
 194   if (opr->is_single_cpu()) {
 195     __ push_reg(opr->as_register());
 196   } else if (opr->is_double_cpu()) {
 197     NOT_LP64(__ push_reg(opr->as_register_hi()));
 198     __ push_reg(opr->as_register_lo());
 199   } else if (opr->is_stack()) {
 200     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 201   } else if (opr->is_constant()) {
 202     LIR_Const* const_opr = opr->as_constant_ptr();
 203     if (const_opr->type() == T_OBJECT) {
 204       __ push_oop(const_opr->as_jobject());
 205     } else if (const_opr->type() == T_INT) {
 206       __ push_jint(const_opr->as_jint());
 207     } else {
 208       ShouldNotReachHere();
 209     }
 210 
 211   } else {
 212     ShouldNotReachHere();
 213   }
 214 }
 215 
 216 void LIR_Assembler::pop(LIR_Opr opr) {
 217   if (opr->is_single_cpu()) {
 218     __ pop_reg(opr->as_register());
 219   } else {
 220     ShouldNotReachHere();
 221   }
 222 }
 223 
 224 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 225   return addr->base()->is_illegal() && addr->index()->is_illegal();
 226 }
 227 
 228 //-------------------------------------------
 229 
 230 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 231   return as_Address(addr, rscratch1);
 232 }
 233 
 234 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 235   if (addr->base()->is_illegal()) {
 236     assert(addr->index()->is_illegal(), "must be illegal too");
 237     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 238     if (! __ reachable(laddr)) {
 239       __ movptr(tmp, laddr.addr());
 240       Address res(tmp, 0);
 241       return res;
 242     } else {
 243       return __ as_Address(laddr);
 244     }
 245   }
 246 
 247   Register base = addr->base()->as_pointer_register();
 248 
 249   if (addr->index()->is_illegal()) {
 250     return Address( base, addr->disp());
 251   } else if (addr->index()->is_cpu_register()) {
 252     Register index = addr->index()->as_pointer_register();
 253     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 254   } else if (addr->index()->is_constant()) {
 255     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 256     assert(Assembler::is_simm32(addr_offset), "must be");
 257 
 258     return Address(base, addr_offset);
 259   } else {
 260     Unimplemented();
 261     return Address();
 262   }
 263 }
 264 
 265 
 266 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 267   Address base = as_Address(addr);
 268   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 269 }
 270 
 271 
 272 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 273   return as_Address(addr);
 274 }
 275 
 276 
 277 void LIR_Assembler::osr_entry() {
 278   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 279   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 280   ValueStack* entry_state = osr_entry->state();
 281   int number_of_locks = entry_state->locks_size();
 282 
 283   // we jump here if osr happens with the interpreter
 284   // state set up to continue at the beginning of the
 285   // loop that triggered osr - in particular, we have
 286   // the following registers setup:
 287   //
 288   // rcx: osr buffer
 289   //
 290 
 291   // build frame
 292   ciMethod* m = compilation()->method();
 293   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 294 
 295   // OSR buffer is
 296   //
 297   // locals[nlocals-1..0]
 298   // monitors[0..number_of_locks]
 299   //
 300   // locals is a direct copy of the interpreter frame so in the osr buffer
 301   // so first slot in the local array is the last local from the interpreter
 302   // and last slot is local[0] (receiver) from the interpreter
 303   //
 304   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 305   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 306   // in the interpreter frame (the method lock if a sync method)
 307 
 308   // Initialize monitors in the compiled activation.
 309   //   rcx: pointer to osr buffer
 310   //
 311   // All other registers are dead at this point and the locals will be
 312   // copied into place by code emitted in the IR.
 313 
 314   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 315   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 316     int monitor_offset = BytesPerWord * method()->max_locals() +
 317       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 318     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 319     // the OSR buffer using 2 word entries: first the lock and then
 320     // the oop.
 321     for (int i = 0; i < number_of_locks; i++) {
 322       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 323 #ifdef ASSERT
 324       // verify the interpreter's monitor has a non-null object
 325       {
 326         Label L;
 327         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 328         __ jcc(Assembler::notZero, L);
 329         __ stop("locked object is NULL");
 330         __ bind(L);
 331       }
 332 #endif
 333       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 334       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 335       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 336       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 337     }
 338   }
 339 }
 340 
 341 
 342 // inline cache check; done before the frame is built.
 343 int LIR_Assembler::check_icache() {
 344   Register receiver = FrameMap::receiver_opr->as_register();
 345   Register ic_klass = IC_Klass;
 346   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 347   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 348   if (!do_post_padding) {
 349     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 350     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 351   }
 352   int offset = __ offset();
 353   __ inline_cache_check(receiver, IC_Klass);
 354   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 355   if (do_post_padding) {
 356     // force alignment after the cache check.
 357     // It's been verified to be aligned if !VerifyOops
 358     __ align(CodeEntryAlignment);
 359   }
 360   return offset;
 361 }
 362 
 363 
 364 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 365   jobject o = NULL;
 366   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 367   __ movoop(reg, o);
 368   patching_epilog(patch, lir_patch_normal, reg, info);
 369 }
 370 
 371 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 372   Metadata* o = NULL;
 373   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 374   __ mov_metadata(reg, o);
 375   patching_epilog(patch, lir_patch_normal, reg, info);
 376 }
 377 
 378 // This specifies the rsp decrement needed to build the frame
 379 int LIR_Assembler::initial_frame_size_in_bytes() const {
 380   // if rounding, must let FrameMap know!
 381 
 382   // The frame_map records size in slots (32bit word)
 383 
 384   // subtract two words to account for return address and link
 385   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 386 }
 387 
 388 
 389 int LIR_Assembler::emit_exception_handler() {
 390   // if the last instruction is a call (typically to do a throw which
 391   // is coming at the end after block reordering) the return address
 392   // must still point into the code area in order to avoid assertion
 393   // failures when searching for the corresponding bci => add a nop
 394   // (was bug 5/14/1999 - gri)
 395   __ nop();
 396 
 397   // generate code for exception handler
 398   address handler_base = __ start_a_stub(exception_handler_size());
 399   if (handler_base == NULL) {
 400     // not enough space left for the handler
 401     bailout("exception handler overflow");
 402     return -1;
 403   }
 404 
 405   int offset = code_offset();
 406 
 407   // the exception oop and pc are in rax, and rdx
 408   // no other registers need to be preserved, so invalidate them
 409   __ invalidate_registers(false, true, true, false, true, true);
 410 
 411   // check that there is really an exception
 412   __ verify_not_null_oop(rax);
 413 
 414   // search an exception handler (rax: exception oop, rdx: throwing pc)
 415   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 416   __ should_not_reach_here();
 417   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 418   __ end_a_stub();
 419 
 420   return offset;
 421 }
 422 
 423 
 424 // Emit the code to remove the frame from the stack in the exception
 425 // unwind path.
 426 int LIR_Assembler::emit_unwind_handler() {
 427 #ifndef PRODUCT
 428   if (CommentedAssembly) {
 429     _masm->block_comment("Unwind handler");
 430   }
 431 #endif
 432 
 433   int offset = code_offset();
 434 
 435   // Fetch the exception from TLS and clear out exception related thread state
 436   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 437   NOT_LP64(__ get_thread(rsi));
 438   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 439   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 440   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 441 
 442   __ bind(_unwind_handler_entry);
 443   __ verify_not_null_oop(rax);
 444   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 445     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 446   }
 447 
 448   // Preform needed unlocking
 449   MonitorExitStub* stub = NULL;
 450   if (method()->is_synchronized()) {
 451     monitor_address(0, FrameMap::rax_opr);
 452     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 453     __ unlock_object(rdi, rsi, rax, *stub->entry());
 454     __ bind(*stub->continuation());
 455   }
 456 
 457   if (compilation()->env()->dtrace_method_probes()) {
 458 #ifdef _LP64
 459     __ mov(rdi, r15_thread);
 460     __ mov_metadata(rsi, method()->constant_encoding());
 461 #else
 462     __ get_thread(rax);
 463     __ movptr(Address(rsp, 0), rax);
 464     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 465 #endif
 466     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 467   }
 468 
 469   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 470     __ mov(rax, rbx);  // Restore the exception
 471   }
 472 
 473   // remove the activation and dispatch to the unwind handler
 474   __ remove_frame(initial_frame_size_in_bytes());
 475   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 476 
 477   // Emit the slow path assembly
 478   if (stub != NULL) {
 479     stub->emit_code(this);
 480   }
 481 
 482   return offset;
 483 }
 484 
 485 
 486 int LIR_Assembler::emit_deopt_handler() {
 487   // if the last instruction is a call (typically to do a throw which
 488   // is coming at the end after block reordering) the return address
 489   // must still point into the code area in order to avoid assertion
 490   // failures when searching for the corresponding bci => add a nop
 491   // (was bug 5/14/1999 - gri)
 492   __ nop();
 493 
 494   // generate code for exception handler
 495   address handler_base = __ start_a_stub(deopt_handler_size());
 496   if (handler_base == NULL) {
 497     // not enough space left for the handler
 498     bailout("deopt handler overflow");
 499     return -1;
 500   }
 501 
 502   int offset = code_offset();
 503   InternalAddress here(__ pc());
 504 
 505   __ pushptr(here.addr());
 506   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 507   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 508   __ end_a_stub();
 509 
 510   return offset;
 511 }
 512 
 513 
 514 void LIR_Assembler::return_op(LIR_Opr result) {
 515   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 516   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 517     assert(result->fpu() == 0, "result must already be on TOS");
 518   }
 519 
 520   // Pop the stack before the safepoint code
 521   __ remove_frame(initial_frame_size_in_bytes());
 522 
 523   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 524     __ reserved_stack_check();
 525   }
 526 
 527   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 528 
 529   // Note: we do not need to round double result; float result has the right precision
 530   // the poll sets the condition code, but no data registers
 531 
 532   if (SafepointMechanism::uses_thread_local_poll()) {
 533 #ifdef _LP64
 534     const Register poll_addr = rscratch1;
 535     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 536 #else
 537     const Register poll_addr = rbx;
 538     assert(FrameMap::is_caller_save_register(poll_addr), "will overwrite");
 539     __ get_thread(poll_addr);
 540     __ movptr(poll_addr, Address(poll_addr, Thread::polling_page_offset()));
 541 #endif
 542     __ relocate(relocInfo::poll_return_type);
 543     __ testl(rax, Address(poll_addr, 0));
 544   } else {
 545     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 546 
 547     if (Assembler::is_polling_page_far()) {
 548       __ lea(rscratch1, polling_page);
 549       __ relocate(relocInfo::poll_return_type);
 550       __ testl(rax, Address(rscratch1, 0));
 551     } else {
 552       __ testl(rax, polling_page);
 553     }
 554   }
 555   __ ret(0);
 556 }
 557 
 558 
 559 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 560   guarantee(info != NULL, "Shouldn't be NULL");
 561   int offset = __ offset();
 562   if (SafepointMechanism::uses_thread_local_poll()) {
 563 #ifdef _LP64
 564     const Register poll_addr = rscratch1;
 565     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 566 #else
 567     assert(tmp->is_cpu_register(), "needed");
 568     const Register poll_addr = tmp->as_register();
 569     __ get_thread(poll_addr);
 570     __ movptr(poll_addr, Address(poll_addr, in_bytes(Thread::polling_page_offset())));
 571 #endif
 572     add_debug_info_for_branch(info);
 573     __ relocate(relocInfo::poll_type);
 574     address pre_pc = __ pc();
 575     __ testl(rax, Address(poll_addr, 0));
 576     address post_pc = __ pc();
 577     guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 578   } else {
 579     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 580     if (Assembler::is_polling_page_far()) {
 581       __ lea(rscratch1, polling_page);
 582       offset = __ offset();
 583       add_debug_info_for_branch(info);
 584       __ relocate(relocInfo::poll_type);
 585       __ testl(rax, Address(rscratch1, 0));
 586     } else {
 587       add_debug_info_for_branch(info);
 588       __ testl(rax, polling_page);
 589     }
 590   }
 591   return offset;
 592 }
 593 
 594 
 595 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 596   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 597 }
 598 
 599 void LIR_Assembler::swap_reg(Register a, Register b) {
 600   __ xchgptr(a, b);
 601 }
 602 
 603 
 604 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 605   assert(src->is_constant(), "should not call otherwise");
 606   assert(dest->is_register(), "should not call otherwise");
 607   LIR_Const* c = src->as_constant_ptr();
 608 
 609   switch (c->type()) {
 610     case T_INT: {
 611       assert(patch_code == lir_patch_none, "no patching handled here");
 612       __ movl(dest->as_register(), c->as_jint());
 613       break;
 614     }
 615 
 616     case T_ADDRESS: {
 617       assert(patch_code == lir_patch_none, "no patching handled here");
 618       __ movptr(dest->as_register(), c->as_jint());
 619       break;
 620     }
 621 
 622     case T_LONG: {
 623       assert(patch_code == lir_patch_none, "no patching handled here");
 624 #ifdef _LP64
 625       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 626 #else
 627       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 628       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 629 #endif // _LP64
 630       break;
 631     }
 632 
 633     case T_OBJECT: {
 634       if (patch_code != lir_patch_none) {
 635         jobject2reg_with_patching(dest->as_register(), info);
 636       } else {
 637         __ movoop(dest->as_register(), c->as_jobject());
 638       }
 639       break;
 640     }
 641 
 642     case T_METADATA: {
 643       if (patch_code != lir_patch_none) {
 644         klass2reg_with_patching(dest->as_register(), info);
 645       } else {
 646         __ mov_metadata(dest->as_register(), c->as_metadata());
 647       }
 648       break;
 649     }
 650 
 651     case T_FLOAT: {
 652       if (dest->is_single_xmm()) {
 653         if (c->is_zero_float()) {
 654           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 655         } else {
 656           __ movflt(dest->as_xmm_float_reg(),
 657                    InternalAddress(float_constant(c->as_jfloat())));
 658         }
 659       } else {
 660         assert(dest->is_single_fpu(), "must be");
 661         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 662         if (c->is_zero_float()) {
 663           __ fldz();
 664         } else if (c->is_one_float()) {
 665           __ fld1();
 666         } else {
 667           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 668         }
 669       }
 670       break;
 671     }
 672 
 673     case T_DOUBLE: {
 674       if (dest->is_double_xmm()) {
 675         if (c->is_zero_double()) {
 676           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 677         } else {
 678           __ movdbl(dest->as_xmm_double_reg(),
 679                     InternalAddress(double_constant(c->as_jdouble())));
 680         }
 681       } else {
 682         assert(dest->is_double_fpu(), "must be");
 683         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 684         if (c->is_zero_double()) {
 685           __ fldz();
 686         } else if (c->is_one_double()) {
 687           __ fld1();
 688         } else {
 689           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 690         }
 691       }
 692       break;
 693     }
 694 
 695     default:
 696       ShouldNotReachHere();
 697   }
 698 }
 699 
 700 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 701   assert(src->is_constant(), "should not call otherwise");
 702   assert(dest->is_stack(), "should not call otherwise");
 703   LIR_Const* c = src->as_constant_ptr();
 704 
 705   switch (c->type()) {
 706     case T_INT:  // fall through
 707     case T_FLOAT:
 708       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 709       break;
 710 
 711     case T_ADDRESS:
 712       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 713       break;
 714 
 715     case T_OBJECT:
 716       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 717       break;
 718 
 719     case T_LONG:  // fall through
 720     case T_DOUBLE:
 721 #ifdef _LP64
 722       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 723                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 724 #else
 725       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 726                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 727       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 728                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 729 #endif // _LP64
 730       break;
 731 
 732     default:
 733       ShouldNotReachHere();
 734   }
 735 }
 736 
 737 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 738   assert(src->is_constant(), "should not call otherwise");
 739   assert(dest->is_address(), "should not call otherwise");
 740   LIR_Const* c = src->as_constant_ptr();
 741   LIR_Address* addr = dest->as_address_ptr();
 742 
 743   int null_check_here = code_offset();
 744   switch (type) {
 745     case T_INT:    // fall through
 746     case T_FLOAT:
 747       __ movl(as_Address(addr), c->as_jint_bits());
 748       break;
 749 
 750     case T_ADDRESS:
 751       __ movptr(as_Address(addr), c->as_jint_bits());
 752       break;
 753 
 754     case T_OBJECT:  // fall through
 755     case T_ARRAY:
 756       if (c->as_jobject() == NULL) {
 757         if (UseCompressedOops && !wide) {
 758           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 759         } else {
 760 #ifdef _LP64
 761           __ xorptr(rscratch1, rscratch1);
 762           null_check_here = code_offset();
 763           __ movptr(as_Address(addr), rscratch1);
 764 #else
 765           __ movptr(as_Address(addr), NULL_WORD);
 766 #endif
 767         }
 768       } else {
 769         if (is_literal_address(addr)) {
 770           ShouldNotReachHere();
 771           __ movoop(as_Address(addr, noreg), c->as_jobject());
 772         } else {
 773 #ifdef _LP64
 774           __ movoop(rscratch1, c->as_jobject());
 775           if (UseCompressedOops && !wide) {
 776             __ encode_heap_oop(rscratch1);
 777             null_check_here = code_offset();
 778             __ movl(as_Address_lo(addr), rscratch1);
 779           } else {
 780             null_check_here = code_offset();
 781             __ movptr(as_Address_lo(addr), rscratch1);
 782           }
 783 #else
 784           __ movoop(as_Address(addr), c->as_jobject());
 785 #endif
 786         }
 787       }
 788       break;
 789 
 790     case T_LONG:    // fall through
 791     case T_DOUBLE:
 792 #ifdef _LP64
 793       if (is_literal_address(addr)) {
 794         ShouldNotReachHere();
 795         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 796       } else {
 797         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 798         null_check_here = code_offset();
 799         __ movptr(as_Address_lo(addr), r10);
 800       }
 801 #else
 802       // Always reachable in 32bit so this doesn't produce useless move literal
 803       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 804       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 805 #endif // _LP64
 806       break;
 807 
 808     case T_BOOLEAN: // fall through
 809     case T_BYTE:
 810       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 811       break;
 812 
 813     case T_CHAR:    // fall through
 814     case T_SHORT:
 815       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 816       break;
 817 
 818     default:
 819       ShouldNotReachHere();
 820   };
 821 
 822   if (info != NULL) {
 823     add_debug_info_for_null_check(null_check_here, info);
 824   }
 825 }
 826 
 827 
 828 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 829   assert(src->is_register(), "should not call otherwise");
 830   assert(dest->is_register(), "should not call otherwise");
 831 
 832   // move between cpu-registers
 833   if (dest->is_single_cpu()) {
 834 #ifdef _LP64
 835     if (src->type() == T_LONG) {
 836       // Can do LONG -> OBJECT
 837       move_regs(src->as_register_lo(), dest->as_register());
 838       return;
 839     }
 840 #endif
 841     assert(src->is_single_cpu(), "must match");
 842     if (src->type() == T_OBJECT) {
 843       __ verify_oop(src->as_register());
 844     }
 845     move_regs(src->as_register(), dest->as_register());
 846 
 847   } else if (dest->is_double_cpu()) {
 848 #ifdef _LP64
 849     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 850       // Surprising to me but we can see move of a long to t_object
 851       __ verify_oop(src->as_register());
 852       move_regs(src->as_register(), dest->as_register_lo());
 853       return;
 854     }
 855 #endif
 856     assert(src->is_double_cpu(), "must match");
 857     Register f_lo = src->as_register_lo();
 858     Register f_hi = src->as_register_hi();
 859     Register t_lo = dest->as_register_lo();
 860     Register t_hi = dest->as_register_hi();
 861 #ifdef _LP64
 862     assert(f_hi == f_lo, "must be same");
 863     assert(t_hi == t_lo, "must be same");
 864     move_regs(f_lo, t_lo);
 865 #else
 866     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 867 
 868 
 869     if (f_lo == t_hi && f_hi == t_lo) {
 870       swap_reg(f_lo, f_hi);
 871     } else if (f_hi == t_lo) {
 872       assert(f_lo != t_hi, "overwriting register");
 873       move_regs(f_hi, t_hi);
 874       move_regs(f_lo, t_lo);
 875     } else {
 876       assert(f_hi != t_lo, "overwriting register");
 877       move_regs(f_lo, t_lo);
 878       move_regs(f_hi, t_hi);
 879     }
 880 #endif // LP64
 881 
 882     // special moves from fpu-register to xmm-register
 883     // necessary for method results
 884   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 885     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 886     __ fld_s(Address(rsp, 0));
 887   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 888     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 889     __ fld_d(Address(rsp, 0));
 890   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 891     __ fstp_s(Address(rsp, 0));
 892     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 893   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 894     __ fstp_d(Address(rsp, 0));
 895     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 896 
 897     // move between xmm-registers
 898   } else if (dest->is_single_xmm()) {
 899     assert(src->is_single_xmm(), "must match");
 900     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 901   } else if (dest->is_double_xmm()) {
 902     assert(src->is_double_xmm(), "must match");
 903     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 904 
 905     // move between fpu-registers (no instruction necessary because of fpu-stack)
 906   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 907     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 908     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 909   } else {
 910     ShouldNotReachHere();
 911   }
 912 }
 913 
 914 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 915   assert(src->is_register(), "should not call otherwise");
 916   assert(dest->is_stack(), "should not call otherwise");
 917 
 918   if (src->is_single_cpu()) {
 919     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 920     if (type == T_OBJECT || type == T_ARRAY) {
 921       __ verify_oop(src->as_register());
 922       __ movptr (dst, src->as_register());
 923     } else if (type == T_METADATA) {
 924       __ movptr (dst, src->as_register());
 925     } else {
 926       __ movl (dst, src->as_register());
 927     }
 928 
 929   } else if (src->is_double_cpu()) {
 930     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 931     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 932     __ movptr (dstLO, src->as_register_lo());
 933     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 934 
 935   } else if (src->is_single_xmm()) {
 936     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 937     __ movflt(dst_addr, src->as_xmm_float_reg());
 938 
 939   } else if (src->is_double_xmm()) {
 940     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 941     __ movdbl(dst_addr, src->as_xmm_double_reg());
 942 
 943   } else if (src->is_single_fpu()) {
 944     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 945     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 946     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 947     else                   __ fst_s  (dst_addr);
 948 
 949   } else if (src->is_double_fpu()) {
 950     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 951     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 952     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 953     else                   __ fst_d  (dst_addr);
 954 
 955   } else {
 956     ShouldNotReachHere();
 957   }
 958 }
 959 
 960 
 961 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 962   LIR_Address* to_addr = dest->as_address_ptr();
 963   PatchingStub* patch = NULL;
 964   Register compressed_src = rscratch1;
 965 
 966   if (type == T_ARRAY || type == T_OBJECT) {
 967     __ verify_oop(src->as_register());
 968 #ifdef _LP64
 969     if (UseCompressedOops && !wide) {
 970       __ movptr(compressed_src, src->as_register());
 971       __ encode_heap_oop(compressed_src);
 972       if (patch_code != lir_patch_none) {
 973         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 974       }
 975     }
 976 #endif
 977   }
 978 
 979   if (patch_code != lir_patch_none) {
 980     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 981     Address toa = as_Address(to_addr);
 982     assert(toa.disp() != 0, "must have");
 983   }
 984 
 985   int null_check_here = code_offset();
 986   switch (type) {
 987     case T_FLOAT: {
 988       if (src->is_single_xmm()) {
 989         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 990       } else {
 991         assert(src->is_single_fpu(), "must be");
 992         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 993         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 994         else                    __ fst_s (as_Address(to_addr));
 995       }
 996       break;
 997     }
 998 
 999     case T_DOUBLE: {
1000       if (src->is_double_xmm()) {
1001         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1002       } else {
1003         assert(src->is_double_fpu(), "must be");
1004         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1005         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1006         else                    __ fst_d (as_Address(to_addr));
1007       }
1008       break;
1009     }
1010 
1011     case T_ARRAY:   // fall through
1012     case T_OBJECT:  // fall through
1013       if (UseCompressedOops && !wide) {
1014         __ movl(as_Address(to_addr), compressed_src);
1015       } else {
1016         __ movptr(as_Address(to_addr), src->as_register());
1017       }
1018       break;
1019     case T_METADATA:
1020       // We get here to store a method pointer to the stack to pass to
1021       // a dtrace runtime call. This can't work on 64 bit with
1022       // compressed klass ptrs: T_METADATA can be a compressed klass
1023       // ptr or a 64 bit method pointer.
1024       LP64_ONLY(ShouldNotReachHere());
1025       __ movptr(as_Address(to_addr), src->as_register());
1026       break;
1027     case T_ADDRESS:
1028       __ movptr(as_Address(to_addr), src->as_register());
1029       break;
1030     case T_INT:
1031       __ movl(as_Address(to_addr), src->as_register());
1032       break;
1033 
1034     case T_LONG: {
1035       Register from_lo = src->as_register_lo();
1036       Register from_hi = src->as_register_hi();
1037 #ifdef _LP64
1038       __ movptr(as_Address_lo(to_addr), from_lo);
1039 #else
1040       Register base = to_addr->base()->as_register();
1041       Register index = noreg;
1042       if (to_addr->index()->is_register()) {
1043         index = to_addr->index()->as_register();
1044       }
1045       if (base == from_lo || index == from_lo) {
1046         assert(base != from_hi, "can't be");
1047         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1048         __ movl(as_Address_hi(to_addr), from_hi);
1049         if (patch != NULL) {
1050           patching_epilog(patch, lir_patch_high, base, info);
1051           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1052           patch_code = lir_patch_low;
1053         }
1054         __ movl(as_Address_lo(to_addr), from_lo);
1055       } else {
1056         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1057         __ movl(as_Address_lo(to_addr), from_lo);
1058         if (patch != NULL) {
1059           patching_epilog(patch, lir_patch_low, base, info);
1060           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1061           patch_code = lir_patch_high;
1062         }
1063         __ movl(as_Address_hi(to_addr), from_hi);
1064       }
1065 #endif // _LP64
1066       break;
1067     }
1068 
1069     case T_BYTE:    // fall through
1070     case T_BOOLEAN: {
1071       Register src_reg = src->as_register();
1072       Address dst_addr = as_Address(to_addr);
1073       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1074       __ movb(dst_addr, src_reg);
1075       break;
1076     }
1077 
1078     case T_CHAR:    // fall through
1079     case T_SHORT:
1080       __ movw(as_Address(to_addr), src->as_register());
1081       break;
1082 
1083     default:
1084       ShouldNotReachHere();
1085   }
1086   if (info != NULL) {
1087     add_debug_info_for_null_check(null_check_here, info);
1088   }
1089 
1090   if (patch_code != lir_patch_none) {
1091     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1092   }
1093 }
1094 
1095 
1096 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1097   assert(src->is_stack(), "should not call otherwise");
1098   assert(dest->is_register(), "should not call otherwise");
1099 
1100   if (dest->is_single_cpu()) {
1101     if (type == T_ARRAY || type == T_OBJECT) {
1102       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1103       __ verify_oop(dest->as_register());
1104     } else if (type == T_METADATA) {
1105       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1106     } else {
1107       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1108     }
1109 
1110   } else if (dest->is_double_cpu()) {
1111     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1112     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1113     __ movptr(dest->as_register_lo(), src_addr_LO);
1114     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1115 
1116   } else if (dest->is_single_xmm()) {
1117     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1118     __ movflt(dest->as_xmm_float_reg(), src_addr);
1119 
1120   } else if (dest->is_double_xmm()) {
1121     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1122     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1123 
1124   } else if (dest->is_single_fpu()) {
1125     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1126     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1127     __ fld_s(src_addr);
1128 
1129   } else if (dest->is_double_fpu()) {
1130     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1131     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1132     __ fld_d(src_addr);
1133 
1134   } else {
1135     ShouldNotReachHere();
1136   }
1137 }
1138 
1139 
1140 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1141   if (src->is_single_stack()) {
1142     if (type == T_OBJECT || type == T_ARRAY) {
1143       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1144       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1145     } else {
1146 #ifndef _LP64
1147       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1148       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1149 #else
1150       //no pushl on 64bits
1151       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1152       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1153 #endif
1154     }
1155 
1156   } else if (src->is_double_stack()) {
1157 #ifdef _LP64
1158     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1159     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1160 #else
1161     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1162     // push and pop the part at src + wordSize, adding wordSize for the previous push
1163     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1164     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1165     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1166 #endif // _LP64
1167 
1168   } else {
1169     ShouldNotReachHere();
1170   }
1171 }
1172 
1173 
1174 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1175   assert(src->is_address(), "should not call otherwise");
1176   assert(dest->is_register(), "should not call otherwise");
1177 
1178   LIR_Address* addr = src->as_address_ptr();
1179   Address from_addr = as_Address(addr);
1180 
1181   if (addr->base()->type() == T_OBJECT) {
1182     __ verify_oop(addr->base()->as_pointer_register());
1183   }
1184 
1185   switch (type) {
1186     case T_BOOLEAN: // fall through
1187     case T_BYTE:    // fall through
1188     case T_CHAR:    // fall through
1189     case T_SHORT:
1190       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1191         // on pre P6 processors we may get partial register stalls
1192         // so blow away the value of to_rinfo before loading a
1193         // partial word into it.  Do it here so that it precedes
1194         // the potential patch point below.
1195         __ xorptr(dest->as_register(), dest->as_register());
1196       }
1197       break;
1198    default:
1199      break;
1200   }
1201 
1202   PatchingStub* patch = NULL;
1203   if (patch_code != lir_patch_none) {
1204     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1205     assert(from_addr.disp() != 0, "must have");
1206   }
1207   if (info != NULL) {
1208     add_debug_info_for_null_check_here(info);
1209   }
1210 
1211   switch (type) {
1212     case T_FLOAT: {
1213       if (dest->is_single_xmm()) {
1214         __ movflt(dest->as_xmm_float_reg(), from_addr);
1215       } else {
1216         assert(dest->is_single_fpu(), "must be");
1217         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1218         __ fld_s(from_addr);
1219       }
1220       break;
1221     }
1222 
1223     case T_DOUBLE: {
1224       if (dest->is_double_xmm()) {
1225         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1226       } else {
1227         assert(dest->is_double_fpu(), "must be");
1228         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1229         __ fld_d(from_addr);
1230       }
1231       break;
1232     }
1233 
1234     case T_OBJECT:  // fall through
1235     case T_ARRAY:   // fall through
1236       if (UseCompressedOops && !wide) {
1237         __ movl(dest->as_register(), from_addr);
1238       } else {
1239         __ movptr(dest->as_register(), from_addr);
1240       }
1241       break;
1242 
1243     case T_ADDRESS:
1244       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1245         __ movl(dest->as_register(), from_addr);
1246       } else {
1247         __ movptr(dest->as_register(), from_addr);
1248       }
1249       break;
1250     case T_INT:
1251       __ movl(dest->as_register(), from_addr);
1252       break;
1253 
1254     case T_LONG: {
1255       Register to_lo = dest->as_register_lo();
1256       Register to_hi = dest->as_register_hi();
1257 #ifdef _LP64
1258       __ movptr(to_lo, as_Address_lo(addr));
1259 #else
1260       Register base = addr->base()->as_register();
1261       Register index = noreg;
1262       if (addr->index()->is_register()) {
1263         index = addr->index()->as_register();
1264       }
1265       if ((base == to_lo && index == to_hi) ||
1266           (base == to_hi && index == to_lo)) {
1267         // addresses with 2 registers are only formed as a result of
1268         // array access so this code will never have to deal with
1269         // patches or null checks.
1270         assert(info == NULL && patch == NULL, "must be");
1271         __ lea(to_hi, as_Address(addr));
1272         __ movl(to_lo, Address(to_hi, 0));
1273         __ movl(to_hi, Address(to_hi, BytesPerWord));
1274       } else if (base == to_lo || index == to_lo) {
1275         assert(base != to_hi, "can't be");
1276         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1277         __ movl(to_hi, as_Address_hi(addr));
1278         if (patch != NULL) {
1279           patching_epilog(patch, lir_patch_high, base, info);
1280           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1281           patch_code = lir_patch_low;
1282         }
1283         __ movl(to_lo, as_Address_lo(addr));
1284       } else {
1285         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1286         __ movl(to_lo, as_Address_lo(addr));
1287         if (patch != NULL) {
1288           patching_epilog(patch, lir_patch_low, base, info);
1289           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1290           patch_code = lir_patch_high;
1291         }
1292         __ movl(to_hi, as_Address_hi(addr));
1293       }
1294 #endif // _LP64
1295       break;
1296     }
1297 
1298     case T_BOOLEAN: // fall through
1299     case T_BYTE: {
1300       Register dest_reg = dest->as_register();
1301       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1302       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1303         __ movsbl(dest_reg, from_addr);
1304       } else {
1305         __ movb(dest_reg, from_addr);
1306         __ shll(dest_reg, 24);
1307         __ sarl(dest_reg, 24);
1308       }
1309       break;
1310     }
1311 
1312     case T_CHAR: {
1313       Register dest_reg = dest->as_register();
1314       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1315       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1316         __ movzwl(dest_reg, from_addr);
1317       } else {
1318         __ movw(dest_reg, from_addr);
1319       }
1320       break;
1321     }
1322 
1323     case T_SHORT: {
1324       Register dest_reg = dest->as_register();
1325       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1326         __ movswl(dest_reg, from_addr);
1327       } else {
1328         __ movw(dest_reg, from_addr);
1329         __ shll(dest_reg, 16);
1330         __ sarl(dest_reg, 16);
1331       }
1332       break;
1333     }
1334 
1335     default:
1336       ShouldNotReachHere();
1337   }
1338 
1339   if (patch != NULL) {
1340     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1341   }
1342 
1343   if (type == T_ARRAY || type == T_OBJECT) {
1344 #ifdef _LP64
1345     if (UseCompressedOops && !wide) {
1346       __ decode_heap_oop(dest->as_register());
1347     }
1348 #endif
1349 #if INCLUDE_ZGC
1350     // Load barrier not yet applied, so a verification here would fail
1351     if (!UseZGC)
1352 #endif
1353     {
1354       __ verify_oop(dest->as_register());
1355     }
1356   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1357 #ifdef _LP64
1358     if (UseCompressedClassPointers) {
1359       __ decode_klass_not_null(dest->as_register());
1360     }
1361 #endif
1362   }
1363 }
1364 
1365 
1366 NEEDS_CLEANUP; // This could be static?
1367 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1368   int elem_size = type2aelembytes(type);
1369   switch (elem_size) {
1370     case 1: return Address::times_1;
1371     case 2: return Address::times_2;
1372     case 4: return Address::times_4;
1373     case 8: return Address::times_8;
1374   }
1375   ShouldNotReachHere();
1376   return Address::no_scale;
1377 }
1378 
1379 
1380 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1381   switch (op->code()) {
1382     case lir_idiv:
1383     case lir_irem:
1384       arithmetic_idiv(op->code(),
1385                       op->in_opr1(),
1386                       op->in_opr2(),
1387                       op->in_opr3(),
1388                       op->result_opr(),
1389                       op->info());
1390       break;
1391     case lir_fmad:
1392       __ fmad(op->result_opr()->as_xmm_double_reg(),
1393               op->in_opr1()->as_xmm_double_reg(),
1394               op->in_opr2()->as_xmm_double_reg(),
1395               op->in_opr3()->as_xmm_double_reg());
1396       break;
1397     case lir_fmaf:
1398       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1399               op->in_opr1()->as_xmm_float_reg(),
1400               op->in_opr2()->as_xmm_float_reg(),
1401               op->in_opr3()->as_xmm_float_reg());
1402       break;
1403     default:      ShouldNotReachHere(); break;
1404   }
1405 }
1406 
1407 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1408 #ifdef ASSERT
1409   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1410   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1411   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1412 #endif
1413 
1414   if (op->cond() == lir_cond_always) {
1415     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1416     __ jmp (*(op->label()));
1417   } else {
1418     Assembler::Condition acond = Assembler::zero;
1419     if (op->code() == lir_cond_float_branch) {
1420       assert(op->ublock() != NULL, "must have unordered successor");
1421       __ jcc(Assembler::parity, *(op->ublock()->label()));
1422       switch(op->cond()) {
1423         case lir_cond_equal:        acond = Assembler::equal;      break;
1424         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1425         case lir_cond_less:         acond = Assembler::below;      break;
1426         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1427         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1428         case lir_cond_greater:      acond = Assembler::above;      break;
1429         default:                         ShouldNotReachHere();
1430       }
1431     } else {
1432       switch (op->cond()) {
1433         case lir_cond_equal:        acond = Assembler::equal;       break;
1434         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1435         case lir_cond_less:         acond = Assembler::less;        break;
1436         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1437         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1438         case lir_cond_greater:      acond = Assembler::greater;     break;
1439         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1440         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1441         default:                         ShouldNotReachHere();
1442       }
1443     }
1444     __ jcc(acond,*(op->label()));
1445   }
1446 }
1447 
1448 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1449   LIR_Opr src  = op->in_opr();
1450   LIR_Opr dest = op->result_opr();
1451 
1452   switch (op->bytecode()) {
1453     case Bytecodes::_i2l:
1454 #ifdef _LP64
1455       __ movl2ptr(dest->as_register_lo(), src->as_register());
1456 #else
1457       move_regs(src->as_register(), dest->as_register_lo());
1458       move_regs(src->as_register(), dest->as_register_hi());
1459       __ sarl(dest->as_register_hi(), 31);
1460 #endif // LP64
1461       break;
1462 
1463     case Bytecodes::_l2i:
1464 #ifdef _LP64
1465       __ movl(dest->as_register(), src->as_register_lo());
1466 #else
1467       move_regs(src->as_register_lo(), dest->as_register());
1468 #endif
1469       break;
1470 
1471     case Bytecodes::_i2b:
1472       move_regs(src->as_register(), dest->as_register());
1473       __ sign_extend_byte(dest->as_register());
1474       break;
1475 
1476     case Bytecodes::_i2c:
1477       move_regs(src->as_register(), dest->as_register());
1478       __ andl(dest->as_register(), 0xFFFF);
1479       break;
1480 
1481     case Bytecodes::_i2s:
1482       move_regs(src->as_register(), dest->as_register());
1483       __ sign_extend_short(dest->as_register());
1484       break;
1485 
1486 
1487     case Bytecodes::_f2d:
1488     case Bytecodes::_d2f:
1489       if (dest->is_single_xmm()) {
1490         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1491       } else if (dest->is_double_xmm()) {
1492         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1493       } else {
1494         assert(src->fpu() == dest->fpu(), "register must be equal");
1495         // do nothing (float result is rounded later through spilling)
1496       }
1497       break;
1498 
1499     case Bytecodes::_i2f:
1500     case Bytecodes::_i2d:
1501       if (dest->is_single_xmm()) {
1502         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1503       } else if (dest->is_double_xmm()) {
1504         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1505       } else {
1506         assert(dest->fpu() == 0, "result must be on TOS");
1507         __ movl(Address(rsp, 0), src->as_register());
1508         __ fild_s(Address(rsp, 0));
1509       }
1510       break;
1511 
1512     case Bytecodes::_f2i:
1513     case Bytecodes::_d2i:
1514       if (src->is_single_xmm()) {
1515         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1516       } else if (src->is_double_xmm()) {
1517         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1518       } else {
1519         assert(src->fpu() == 0, "input must be on TOS");
1520         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1521         __ fist_s(Address(rsp, 0));
1522         __ movl(dest->as_register(), Address(rsp, 0));
1523         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1524       }
1525 
1526       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1527       assert(op->stub() != NULL, "stub required");
1528       __ cmpl(dest->as_register(), 0x80000000);
1529       __ jcc(Assembler::equal, *op->stub()->entry());
1530       __ bind(*op->stub()->continuation());
1531       break;
1532 
1533     case Bytecodes::_l2f:
1534     case Bytecodes::_l2d:
1535       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1536       assert(dest->fpu() == 0, "result must be on TOS");
1537 
1538       __ movptr(Address(rsp, 0),            src->as_register_lo());
1539       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1540       __ fild_d(Address(rsp, 0));
1541       // float result is rounded later through spilling
1542       break;
1543 
1544     case Bytecodes::_f2l:
1545     case Bytecodes::_d2l:
1546       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1547       assert(src->fpu() == 0, "input must be on TOS");
1548       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1549 
1550       // instruction sequence too long to inline it here
1551       {
1552         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1553       }
1554       break;
1555 
1556     default: ShouldNotReachHere();
1557   }
1558 }
1559 
1560 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1561   if (op->init_check()) {
1562     add_debug_info_for_null_check_here(op->stub()->info());
1563     __ cmpb(Address(op->klass()->as_register(),
1564                     InstanceKlass::init_state_offset()),
1565                     InstanceKlass::fully_initialized);
1566     __ jcc(Assembler::notEqual, *op->stub()->entry());
1567   }
1568   __ allocate_object(op->obj()->as_register(),
1569                      op->tmp1()->as_register(),
1570                      op->tmp2()->as_register(),
1571                      op->header_size(),
1572                      op->object_size(),
1573                      op->klass()->as_register(),
1574                      *op->stub()->entry());
1575   __ bind(*op->stub()->continuation());
1576 }
1577 
1578 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1579   Register len =  op->len()->as_register();
1580   LP64_ONLY( __ movslq(len, len); )
1581 
1582   if (UseSlowPath ||
1583       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1584       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1585     __ jmp(*op->stub()->entry());
1586   } else {
1587     Register tmp1 = op->tmp1()->as_register();
1588     Register tmp2 = op->tmp2()->as_register();
1589     Register tmp3 = op->tmp3()->as_register();
1590     if (len == tmp1) {
1591       tmp1 = tmp3;
1592     } else if (len == tmp2) {
1593       tmp2 = tmp3;
1594     } else if (len == tmp3) {
1595       // everything is ok
1596     } else {
1597       __ mov(tmp3, len);
1598     }
1599     __ allocate_array(op->obj()->as_register(),
1600                       len,
1601                       tmp1,
1602                       tmp2,
1603                       arrayOopDesc::header_size(op->type()),
1604                       array_element_size(op->type()),
1605                       op->klass()->as_register(),
1606                       *op->stub()->entry());
1607   }
1608   __ bind(*op->stub()->continuation());
1609 }
1610 
1611 void LIR_Assembler::type_profile_helper(Register mdo,
1612                                         ciMethodData *md, ciProfileData *data,
1613                                         Register recv, Label* update_done) {
1614   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1615     Label next_test;
1616     // See if the receiver is receiver[n].
1617     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1618     __ jccb(Assembler::notEqual, next_test);
1619     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1620     __ addptr(data_addr, DataLayout::counter_increment);
1621     __ jmp(*update_done);
1622     __ bind(next_test);
1623   }
1624 
1625   // Didn't find receiver; find next empty slot and fill it in
1626   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1627     Label next_test;
1628     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1629     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1630     __ jccb(Assembler::notEqual, next_test);
1631     __ movptr(recv_addr, recv);
1632     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1633     __ jmp(*update_done);
1634     __ bind(next_test);
1635   }
1636 }
1637 
1638 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1639   // we always need a stub for the failure case.
1640   CodeStub* stub = op->stub();
1641   Register obj = op->object()->as_register();
1642   Register k_RInfo = op->tmp1()->as_register();
1643   Register klass_RInfo = op->tmp2()->as_register();
1644   Register dst = op->result_opr()->as_register();
1645   ciKlass* k = op->klass();
1646   Register Rtmp1 = noreg;
1647 
1648   // check if it needs to be profiled
1649   ciMethodData* md = NULL;
1650   ciProfileData* data = NULL;
1651 
1652   if (op->should_profile()) {
1653     ciMethod* method = op->profiled_method();
1654     assert(method != NULL, "Should have method");
1655     int bci = op->profiled_bci();
1656     md = method->method_data_or_null();
1657     assert(md != NULL, "Sanity");
1658     data = md->bci_to_data(bci);
1659     assert(data != NULL,                "need data for type check");
1660     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1661   }
1662   Label profile_cast_success, profile_cast_failure;
1663   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1664   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1665 
1666   if (obj == k_RInfo) {
1667     k_RInfo = dst;
1668   } else if (obj == klass_RInfo) {
1669     klass_RInfo = dst;
1670   }
1671   if (k->is_loaded() && !UseCompressedClassPointers) {
1672     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1673   } else {
1674     Rtmp1 = op->tmp3()->as_register();
1675     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1676   }
1677 
1678   assert_different_registers(obj, k_RInfo, klass_RInfo);
1679 
1680   __ cmpptr(obj, (int32_t)NULL_WORD);
1681   if (op->should_profile()) {
1682     Label not_null;
1683     __ jccb(Assembler::notEqual, not_null);
1684     // Object is null; update MDO and exit
1685     Register mdo  = klass_RInfo;
1686     __ mov_metadata(mdo, md->constant_encoding());
1687     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1688     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1689     __ orl(data_addr, header_bits);
1690     __ jmp(*obj_is_null);
1691     __ bind(not_null);
1692   } else {
1693     __ jcc(Assembler::equal, *obj_is_null);
1694   }
1695 
1696   if (!k->is_loaded()) {
1697     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1698   } else {
1699 #ifdef _LP64
1700     __ mov_metadata(k_RInfo, k->constant_encoding());
1701 #endif // _LP64
1702   }
1703   __ verify_oop(obj);
1704 
1705   if (op->fast_check()) {
1706     // get object class
1707     // not a safepoint as obj null check happens earlier
1708 #ifdef _LP64
1709     if (UseCompressedClassPointers) {
1710       __ load_klass(Rtmp1, obj);
1711       __ cmpptr(k_RInfo, Rtmp1);
1712     } else {
1713       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1714     }
1715 #else
1716     if (k->is_loaded()) {
1717       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1718     } else {
1719       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1720     }
1721 #endif
1722     __ jcc(Assembler::notEqual, *failure_target);
1723     // successful cast, fall through to profile or jump
1724   } else {
1725     // get object class
1726     // not a safepoint as obj null check happens earlier
1727     __ load_klass(klass_RInfo, obj);
1728     if (k->is_loaded()) {
1729       // See if we get an immediate positive hit
1730 #ifdef _LP64
1731       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1732 #else
1733       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1734 #endif // _LP64
1735       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1736         __ jcc(Assembler::notEqual, *failure_target);
1737         // successful cast, fall through to profile or jump
1738       } else {
1739         // See if we get an immediate positive hit
1740         __ jcc(Assembler::equal, *success_target);
1741         // check for self
1742 #ifdef _LP64
1743         __ cmpptr(klass_RInfo, k_RInfo);
1744 #else
1745         __ cmpklass(klass_RInfo, k->constant_encoding());
1746 #endif // _LP64
1747         __ jcc(Assembler::equal, *success_target);
1748 
1749         __ push(klass_RInfo);
1750 #ifdef _LP64
1751         __ push(k_RInfo);
1752 #else
1753         __ pushklass(k->constant_encoding());
1754 #endif // _LP64
1755         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1756         __ pop(klass_RInfo);
1757         __ pop(klass_RInfo);
1758         // result is a boolean
1759         __ cmpl(klass_RInfo, 0);
1760         __ jcc(Assembler::equal, *failure_target);
1761         // successful cast, fall through to profile or jump
1762       }
1763     } else {
1764       // perform the fast part of the checking logic
1765       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1766       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1767       __ push(klass_RInfo);
1768       __ push(k_RInfo);
1769       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1770       __ pop(klass_RInfo);
1771       __ pop(k_RInfo);
1772       // result is a boolean
1773       __ cmpl(k_RInfo, 0);
1774       __ jcc(Assembler::equal, *failure_target);
1775       // successful cast, fall through to profile or jump
1776     }
1777   }
1778   if (op->should_profile()) {
1779     Register mdo  = klass_RInfo, recv = k_RInfo;
1780     __ bind(profile_cast_success);
1781     __ mov_metadata(mdo, md->constant_encoding());
1782     __ load_klass(recv, obj);
1783     Label update_done;
1784     type_profile_helper(mdo, md, data, recv, success);
1785     __ jmp(*success);
1786 
1787     __ bind(profile_cast_failure);
1788     __ mov_metadata(mdo, md->constant_encoding());
1789     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1790     __ subptr(counter_addr, DataLayout::counter_increment);
1791     __ jmp(*failure);
1792   }
1793   __ jmp(*success);
1794 }
1795 
1796 
1797 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1798   LIR_Code code = op->code();
1799   if (code == lir_store_check) {
1800     Register value = op->object()->as_register();
1801     Register array = op->array()->as_register();
1802     Register k_RInfo = op->tmp1()->as_register();
1803     Register klass_RInfo = op->tmp2()->as_register();
1804     Register Rtmp1 = op->tmp3()->as_register();
1805 
1806     CodeStub* stub = op->stub();
1807 
1808     // check if it needs to be profiled
1809     ciMethodData* md = NULL;
1810     ciProfileData* data = NULL;
1811 
1812     if (op->should_profile()) {
1813       ciMethod* method = op->profiled_method();
1814       assert(method != NULL, "Should have method");
1815       int bci = op->profiled_bci();
1816       md = method->method_data_or_null();
1817       assert(md != NULL, "Sanity");
1818       data = md->bci_to_data(bci);
1819       assert(data != NULL,                "need data for type check");
1820       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1821     }
1822     Label profile_cast_success, profile_cast_failure, done;
1823     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1824     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1825 
1826     __ cmpptr(value, (int32_t)NULL_WORD);
1827     if (op->should_profile()) {
1828       Label not_null;
1829       __ jccb(Assembler::notEqual, not_null);
1830       // Object is null; update MDO and exit
1831       Register mdo  = klass_RInfo;
1832       __ mov_metadata(mdo, md->constant_encoding());
1833       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1834       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1835       __ orl(data_addr, header_bits);
1836       __ jmp(done);
1837       __ bind(not_null);
1838     } else {
1839       __ jcc(Assembler::equal, done);
1840     }
1841 
1842     add_debug_info_for_null_check_here(op->info_for_exception());
1843     __ load_klass(k_RInfo, array);
1844     __ load_klass(klass_RInfo, value);
1845 
1846     // get instance klass (it's already uncompressed)
1847     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1848     // perform the fast part of the checking logic
1849     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1850     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1851     __ push(klass_RInfo);
1852     __ push(k_RInfo);
1853     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1854     __ pop(klass_RInfo);
1855     __ pop(k_RInfo);
1856     // result is a boolean
1857     __ cmpl(k_RInfo, 0);
1858     __ jcc(Assembler::equal, *failure_target);
1859     // fall through to the success case
1860 
1861     if (op->should_profile()) {
1862       Register mdo  = klass_RInfo, recv = k_RInfo;
1863       __ bind(profile_cast_success);
1864       __ mov_metadata(mdo, md->constant_encoding());
1865       __ load_klass(recv, value);
1866       Label update_done;
1867       type_profile_helper(mdo, md, data, recv, &done);
1868       __ jmpb(done);
1869 
1870       __ bind(profile_cast_failure);
1871       __ mov_metadata(mdo, md->constant_encoding());
1872       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1873       __ subptr(counter_addr, DataLayout::counter_increment);
1874       __ jmp(*stub->entry());
1875     }
1876 
1877     __ bind(done);
1878   } else
1879     if (code == lir_checkcast) {
1880       Register obj = op->object()->as_register();
1881       Register dst = op->result_opr()->as_register();
1882       Label success;
1883       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1884       __ bind(success);
1885       if (dst != obj) {
1886         __ mov(dst, obj);
1887       }
1888     } else
1889       if (code == lir_instanceof) {
1890         Register obj = op->object()->as_register();
1891         Register dst = op->result_opr()->as_register();
1892         Label success, failure, done;
1893         emit_typecheck_helper(op, &success, &failure, &failure);
1894         __ bind(failure);
1895         __ xorptr(dst, dst);
1896         __ jmpb(done);
1897         __ bind(success);
1898         __ movptr(dst, 1);
1899         __ bind(done);
1900       } else {
1901         ShouldNotReachHere();
1902       }
1903 
1904 }
1905 
1906 
1907 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1908   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1909     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1910     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1911     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1912     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1913     Register addr = op->addr()->as_register();
1914     if (os::is_MP()) {
1915       __ lock();
1916     }
1917     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1918 
1919   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1920     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1921     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1922     Register newval = op->new_value()->as_register();
1923     Register cmpval = op->cmp_value()->as_register();
1924     assert(cmpval == rax, "wrong register");
1925     assert(newval != NULL, "new val must be register");
1926     assert(cmpval != newval, "cmp and new values must be in different registers");
1927     assert(cmpval != addr, "cmp and addr must be in different registers");
1928     assert(newval != addr, "new value and addr must be in different registers");
1929 
1930     if ( op->code() == lir_cas_obj) {
1931 #ifdef _LP64
1932       if (UseCompressedOops) {
1933         __ encode_heap_oop(cmpval);
1934         __ mov(rscratch1, newval);
1935         __ encode_heap_oop(rscratch1);
1936         if (os::is_MP()) {
1937           __ lock();
1938         }
1939         // cmpval (rax) is implicitly used by this instruction
1940         __ cmpxchgl(rscratch1, Address(addr, 0));
1941       } else
1942 #endif
1943       {
1944         if (os::is_MP()) {
1945           __ lock();
1946         }
1947         __ cmpxchgptr(newval, Address(addr, 0));
1948       }
1949     } else {
1950       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1951       if (os::is_MP()) {
1952         __ lock();
1953       }
1954       __ cmpxchgl(newval, Address(addr, 0));
1955     }
1956 #ifdef _LP64
1957   } else if (op->code() == lir_cas_long) {
1958     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1959     Register newval = op->new_value()->as_register_lo();
1960     Register cmpval = op->cmp_value()->as_register_lo();
1961     assert(cmpval == rax, "wrong register");
1962     assert(newval != NULL, "new val must be register");
1963     assert(cmpval != newval, "cmp and new values must be in different registers");
1964     assert(cmpval != addr, "cmp and addr must be in different registers");
1965     assert(newval != addr, "new value and addr must be in different registers");
1966     if (os::is_MP()) {
1967       __ lock();
1968     }
1969     __ cmpxchgq(newval, Address(addr, 0));
1970 #endif // _LP64
1971   } else {
1972     Unimplemented();
1973   }
1974 }
1975 
1976 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1977   Assembler::Condition acond, ncond;
1978   switch (condition) {
1979     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1980     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1981     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1982     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1983     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1984     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1985     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1986     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1987     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1988                                 ShouldNotReachHere();
1989   }
1990 
1991   if (opr1->is_cpu_register()) {
1992     reg2reg(opr1, result);
1993   } else if (opr1->is_stack()) {
1994     stack2reg(opr1, result, result->type());
1995   } else if (opr1->is_constant()) {
1996     const2reg(opr1, result, lir_patch_none, NULL);
1997   } else {
1998     ShouldNotReachHere();
1999   }
2000 
2001   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2002     // optimized version that does not require a branch
2003     if (opr2->is_single_cpu()) {
2004       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2005       __ cmov(ncond, result->as_register(), opr2->as_register());
2006     } else if (opr2->is_double_cpu()) {
2007       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2008       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2009       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2010       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2011     } else if (opr2->is_single_stack()) {
2012       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2013     } else if (opr2->is_double_stack()) {
2014       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2015       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2016     } else {
2017       ShouldNotReachHere();
2018     }
2019 
2020   } else {
2021     Label skip;
2022     __ jcc (acond, skip);
2023     if (opr2->is_cpu_register()) {
2024       reg2reg(opr2, result);
2025     } else if (opr2->is_stack()) {
2026       stack2reg(opr2, result, result->type());
2027     } else if (opr2->is_constant()) {
2028       const2reg(opr2, result, lir_patch_none, NULL);
2029     } else {
2030       ShouldNotReachHere();
2031     }
2032     __ bind(skip);
2033   }
2034 }
2035 
2036 
2037 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2038   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2039 
2040   if (left->is_single_cpu()) {
2041     assert(left == dest, "left and dest must be equal");
2042     Register lreg = left->as_register();
2043 
2044     if (right->is_single_cpu()) {
2045       // cpu register - cpu register
2046       Register rreg = right->as_register();
2047       switch (code) {
2048         case lir_add: __ addl (lreg, rreg); break;
2049         case lir_sub: __ subl (lreg, rreg); break;
2050         case lir_mul: __ imull(lreg, rreg); break;
2051         default:      ShouldNotReachHere();
2052       }
2053 
2054     } else if (right->is_stack()) {
2055       // cpu register - stack
2056       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2057       switch (code) {
2058         case lir_add: __ addl(lreg, raddr); break;
2059         case lir_sub: __ subl(lreg, raddr); break;
2060         default:      ShouldNotReachHere();
2061       }
2062 
2063     } else if (right->is_constant()) {
2064       // cpu register - constant
2065       jint c = right->as_constant_ptr()->as_jint();
2066       switch (code) {
2067         case lir_add: {
2068           __ incrementl(lreg, c);
2069           break;
2070         }
2071         case lir_sub: {
2072           __ decrementl(lreg, c);
2073           break;
2074         }
2075         default: ShouldNotReachHere();
2076       }
2077 
2078     } else {
2079       ShouldNotReachHere();
2080     }
2081 
2082   } else if (left->is_double_cpu()) {
2083     assert(left == dest, "left and dest must be equal");
2084     Register lreg_lo = left->as_register_lo();
2085     Register lreg_hi = left->as_register_hi();
2086 
2087     if (right->is_double_cpu()) {
2088       // cpu register - cpu register
2089       Register rreg_lo = right->as_register_lo();
2090       Register rreg_hi = right->as_register_hi();
2091       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2092       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2093       switch (code) {
2094         case lir_add:
2095           __ addptr(lreg_lo, rreg_lo);
2096           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2097           break;
2098         case lir_sub:
2099           __ subptr(lreg_lo, rreg_lo);
2100           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2101           break;
2102         case lir_mul:
2103 #ifdef _LP64
2104           __ imulq(lreg_lo, rreg_lo);
2105 #else
2106           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2107           __ imull(lreg_hi, rreg_lo);
2108           __ imull(rreg_hi, lreg_lo);
2109           __ addl (rreg_hi, lreg_hi);
2110           __ mull (rreg_lo);
2111           __ addl (lreg_hi, rreg_hi);
2112 #endif // _LP64
2113           break;
2114         default:
2115           ShouldNotReachHere();
2116       }
2117 
2118     } else if (right->is_constant()) {
2119       // cpu register - constant
2120 #ifdef _LP64
2121       jlong c = right->as_constant_ptr()->as_jlong_bits();
2122       __ movptr(r10, (intptr_t) c);
2123       switch (code) {
2124         case lir_add:
2125           __ addptr(lreg_lo, r10);
2126           break;
2127         case lir_sub:
2128           __ subptr(lreg_lo, r10);
2129           break;
2130         default:
2131           ShouldNotReachHere();
2132       }
2133 #else
2134       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2135       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2136       switch (code) {
2137         case lir_add:
2138           __ addptr(lreg_lo, c_lo);
2139           __ adcl(lreg_hi, c_hi);
2140           break;
2141         case lir_sub:
2142           __ subptr(lreg_lo, c_lo);
2143           __ sbbl(lreg_hi, c_hi);
2144           break;
2145         default:
2146           ShouldNotReachHere();
2147       }
2148 #endif // _LP64
2149 
2150     } else {
2151       ShouldNotReachHere();
2152     }
2153 
2154   } else if (left->is_single_xmm()) {
2155     assert(left == dest, "left and dest must be equal");
2156     XMMRegister lreg = left->as_xmm_float_reg();
2157 
2158     if (right->is_single_xmm()) {
2159       XMMRegister rreg = right->as_xmm_float_reg();
2160       switch (code) {
2161         case lir_add: __ addss(lreg, rreg);  break;
2162         case lir_sub: __ subss(lreg, rreg);  break;
2163         case lir_mul_strictfp: // fall through
2164         case lir_mul: __ mulss(lreg, rreg);  break;
2165         case lir_div_strictfp: // fall through
2166         case lir_div: __ divss(lreg, rreg);  break;
2167         default: ShouldNotReachHere();
2168       }
2169     } else {
2170       Address raddr;
2171       if (right->is_single_stack()) {
2172         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2173       } else if (right->is_constant()) {
2174         // hack for now
2175         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2176       } else {
2177         ShouldNotReachHere();
2178       }
2179       switch (code) {
2180         case lir_add: __ addss(lreg, raddr);  break;
2181         case lir_sub: __ subss(lreg, raddr);  break;
2182         case lir_mul_strictfp: // fall through
2183         case lir_mul: __ mulss(lreg, raddr);  break;
2184         case lir_div_strictfp: // fall through
2185         case lir_div: __ divss(lreg, raddr);  break;
2186         default: ShouldNotReachHere();
2187       }
2188     }
2189 
2190   } else if (left->is_double_xmm()) {
2191     assert(left == dest, "left and dest must be equal");
2192 
2193     XMMRegister lreg = left->as_xmm_double_reg();
2194     if (right->is_double_xmm()) {
2195       XMMRegister rreg = right->as_xmm_double_reg();
2196       switch (code) {
2197         case lir_add: __ addsd(lreg, rreg);  break;
2198         case lir_sub: __ subsd(lreg, rreg);  break;
2199         case lir_mul_strictfp: // fall through
2200         case lir_mul: __ mulsd(lreg, rreg);  break;
2201         case lir_div_strictfp: // fall through
2202         case lir_div: __ divsd(lreg, rreg);  break;
2203         default: ShouldNotReachHere();
2204       }
2205     } else {
2206       Address raddr;
2207       if (right->is_double_stack()) {
2208         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2209       } else if (right->is_constant()) {
2210         // hack for now
2211         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2212       } else {
2213         ShouldNotReachHere();
2214       }
2215       switch (code) {
2216         case lir_add: __ addsd(lreg, raddr);  break;
2217         case lir_sub: __ subsd(lreg, raddr);  break;
2218         case lir_mul_strictfp: // fall through
2219         case lir_mul: __ mulsd(lreg, raddr);  break;
2220         case lir_div_strictfp: // fall through
2221         case lir_div: __ divsd(lreg, raddr);  break;
2222         default: ShouldNotReachHere();
2223       }
2224     }
2225 
2226   } else if (left->is_single_fpu()) {
2227     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2228 
2229     if (right->is_single_fpu()) {
2230       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2231 
2232     } else {
2233       assert(left->fpu_regnr() == 0, "left must be on TOS");
2234       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2235 
2236       Address raddr;
2237       if (right->is_single_stack()) {
2238         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2239       } else if (right->is_constant()) {
2240         address const_addr = float_constant(right->as_jfloat());
2241         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2242         // hack for now
2243         raddr = __ as_Address(InternalAddress(const_addr));
2244       } else {
2245         ShouldNotReachHere();
2246       }
2247 
2248       switch (code) {
2249         case lir_add: __ fadd_s(raddr); break;
2250         case lir_sub: __ fsub_s(raddr); break;
2251         case lir_mul_strictfp: // fall through
2252         case lir_mul: __ fmul_s(raddr); break;
2253         case lir_div_strictfp: // fall through
2254         case lir_div: __ fdiv_s(raddr); break;
2255         default:      ShouldNotReachHere();
2256       }
2257     }
2258 
2259   } else if (left->is_double_fpu()) {
2260     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2261 
2262     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2263       // Double values require special handling for strictfp mul/div on x86
2264       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2265       __ fmulp(left->fpu_regnrLo() + 1);
2266     }
2267 
2268     if (right->is_double_fpu()) {
2269       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2270 
2271     } else {
2272       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2273       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2274 
2275       Address raddr;
2276       if (right->is_double_stack()) {
2277         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2278       } else if (right->is_constant()) {
2279         // hack for now
2280         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2281       } else {
2282         ShouldNotReachHere();
2283       }
2284 
2285       switch (code) {
2286         case lir_add: __ fadd_d(raddr); break;
2287         case lir_sub: __ fsub_d(raddr); break;
2288         case lir_mul_strictfp: // fall through
2289         case lir_mul: __ fmul_d(raddr); break;
2290         case lir_div_strictfp: // fall through
2291         case lir_div: __ fdiv_d(raddr); break;
2292         default: ShouldNotReachHere();
2293       }
2294     }
2295 
2296     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2297       // Double values require special handling for strictfp mul/div on x86
2298       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2299       __ fmulp(dest->fpu_regnrLo() + 1);
2300     }
2301 
2302   } else if (left->is_single_stack() || left->is_address()) {
2303     assert(left == dest, "left and dest must be equal");
2304 
2305     Address laddr;
2306     if (left->is_single_stack()) {
2307       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2308     } else if (left->is_address()) {
2309       laddr = as_Address(left->as_address_ptr());
2310     } else {
2311       ShouldNotReachHere();
2312     }
2313 
2314     if (right->is_single_cpu()) {
2315       Register rreg = right->as_register();
2316       switch (code) {
2317         case lir_add: __ addl(laddr, rreg); break;
2318         case lir_sub: __ subl(laddr, rreg); break;
2319         default:      ShouldNotReachHere();
2320       }
2321     } else if (right->is_constant()) {
2322       jint c = right->as_constant_ptr()->as_jint();
2323       switch (code) {
2324         case lir_add: {
2325           __ incrementl(laddr, c);
2326           break;
2327         }
2328         case lir_sub: {
2329           __ decrementl(laddr, c);
2330           break;
2331         }
2332         default: ShouldNotReachHere();
2333       }
2334     } else {
2335       ShouldNotReachHere();
2336     }
2337 
2338   } else {
2339     ShouldNotReachHere();
2340   }
2341 }
2342 
2343 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2344   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2345   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2346   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2347 
2348   bool left_is_tos = (left_index == 0);
2349   bool dest_is_tos = (dest_index == 0);
2350   int non_tos_index = (left_is_tos ? right_index : left_index);
2351 
2352   switch (code) {
2353     case lir_add:
2354       if (pop_fpu_stack)       __ faddp(non_tos_index);
2355       else if (dest_is_tos)    __ fadd (non_tos_index);
2356       else                     __ fadda(non_tos_index);
2357       break;
2358 
2359     case lir_sub:
2360       if (left_is_tos) {
2361         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2362         else if (dest_is_tos)  __ fsub  (non_tos_index);
2363         else                   __ fsubra(non_tos_index);
2364       } else {
2365         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2366         else if (dest_is_tos)  __ fsubr (non_tos_index);
2367         else                   __ fsuba (non_tos_index);
2368       }
2369       break;
2370 
2371     case lir_mul_strictfp: // fall through
2372     case lir_mul:
2373       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2374       else if (dest_is_tos)    __ fmul (non_tos_index);
2375       else                     __ fmula(non_tos_index);
2376       break;
2377 
2378     case lir_div_strictfp: // fall through
2379     case lir_div:
2380       if (left_is_tos) {
2381         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2382         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2383         else                   __ fdivra(non_tos_index);
2384       } else {
2385         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2386         else if (dest_is_tos)  __ fdivr (non_tos_index);
2387         else                   __ fdiva (non_tos_index);
2388       }
2389       break;
2390 
2391     case lir_rem:
2392       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2393       __ fremr(noreg);
2394       break;
2395 
2396     default:
2397       ShouldNotReachHere();
2398   }
2399 }
2400 
2401 
2402 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2403   if (value->is_double_xmm()) {
2404     switch(code) {
2405       case lir_abs :
2406         {
2407           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2408             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2409           }
2410           __ andpd(dest->as_xmm_double_reg(),
2411                     ExternalAddress((address)double_signmask_pool));
2412         }
2413         break;
2414 
2415       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2416       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2417       default      : ShouldNotReachHere();
2418     }
2419 
2420   } else if (value->is_double_fpu()) {
2421     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2422     switch(code) {
2423       case lir_abs   : __ fabs() ; break;
2424       case lir_sqrt  : __ fsqrt(); break;
2425       default      : ShouldNotReachHere();
2426     }
2427   } else {
2428     Unimplemented();
2429   }
2430 }
2431 
2432 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2433   // assert(left->destroys_register(), "check");
2434   if (left->is_single_cpu()) {
2435     Register reg = left->as_register();
2436     if (right->is_constant()) {
2437       int val = right->as_constant_ptr()->as_jint();
2438       switch (code) {
2439         case lir_logic_and: __ andl (reg, val); break;
2440         case lir_logic_or:  __ orl  (reg, val); break;
2441         case lir_logic_xor: __ xorl (reg, val); break;
2442         default: ShouldNotReachHere();
2443       }
2444     } else if (right->is_stack()) {
2445       // added support for stack operands
2446       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2447       switch (code) {
2448         case lir_logic_and: __ andl (reg, raddr); break;
2449         case lir_logic_or:  __ orl  (reg, raddr); break;
2450         case lir_logic_xor: __ xorl (reg, raddr); break;
2451         default: ShouldNotReachHere();
2452       }
2453     } else {
2454       Register rright = right->as_register();
2455       switch (code) {
2456         case lir_logic_and: __ andptr (reg, rright); break;
2457         case lir_logic_or : __ orptr  (reg, rright); break;
2458         case lir_logic_xor: __ xorptr (reg, rright); break;
2459         default: ShouldNotReachHere();
2460       }
2461     }
2462     move_regs(reg, dst->as_register());
2463   } else {
2464     Register l_lo = left->as_register_lo();
2465     Register l_hi = left->as_register_hi();
2466     if (right->is_constant()) {
2467 #ifdef _LP64
2468       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2469       switch (code) {
2470         case lir_logic_and:
2471           __ andq(l_lo, rscratch1);
2472           break;
2473         case lir_logic_or:
2474           __ orq(l_lo, rscratch1);
2475           break;
2476         case lir_logic_xor:
2477           __ xorq(l_lo, rscratch1);
2478           break;
2479         default: ShouldNotReachHere();
2480       }
2481 #else
2482       int r_lo = right->as_constant_ptr()->as_jint_lo();
2483       int r_hi = right->as_constant_ptr()->as_jint_hi();
2484       switch (code) {
2485         case lir_logic_and:
2486           __ andl(l_lo, r_lo);
2487           __ andl(l_hi, r_hi);
2488           break;
2489         case lir_logic_or:
2490           __ orl(l_lo, r_lo);
2491           __ orl(l_hi, r_hi);
2492           break;
2493         case lir_logic_xor:
2494           __ xorl(l_lo, r_lo);
2495           __ xorl(l_hi, r_hi);
2496           break;
2497         default: ShouldNotReachHere();
2498       }
2499 #endif // _LP64
2500     } else {
2501 #ifdef _LP64
2502       Register r_lo;
2503       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2504         r_lo = right->as_register();
2505       } else {
2506         r_lo = right->as_register_lo();
2507       }
2508 #else
2509       Register r_lo = right->as_register_lo();
2510       Register r_hi = right->as_register_hi();
2511       assert(l_lo != r_hi, "overwriting registers");
2512 #endif
2513       switch (code) {
2514         case lir_logic_and:
2515           __ andptr(l_lo, r_lo);
2516           NOT_LP64(__ andptr(l_hi, r_hi);)
2517           break;
2518         case lir_logic_or:
2519           __ orptr(l_lo, r_lo);
2520           NOT_LP64(__ orptr(l_hi, r_hi);)
2521           break;
2522         case lir_logic_xor:
2523           __ xorptr(l_lo, r_lo);
2524           NOT_LP64(__ xorptr(l_hi, r_hi);)
2525           break;
2526         default: ShouldNotReachHere();
2527       }
2528     }
2529 
2530     Register dst_lo = dst->as_register_lo();
2531     Register dst_hi = dst->as_register_hi();
2532 
2533 #ifdef _LP64
2534     move_regs(l_lo, dst_lo);
2535 #else
2536     if (dst_lo == l_hi) {
2537       assert(dst_hi != l_lo, "overwriting registers");
2538       move_regs(l_hi, dst_hi);
2539       move_regs(l_lo, dst_lo);
2540     } else {
2541       assert(dst_lo != l_hi, "overwriting registers");
2542       move_regs(l_lo, dst_lo);
2543       move_regs(l_hi, dst_hi);
2544     }
2545 #endif // _LP64
2546   }
2547 }
2548 
2549 
2550 // we assume that rax, and rdx can be overwritten
2551 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2552 
2553   assert(left->is_single_cpu(),   "left must be register");
2554   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2555   assert(result->is_single_cpu(), "result must be register");
2556 
2557   //  assert(left->destroys_register(), "check");
2558   //  assert(right->destroys_register(), "check");
2559 
2560   Register lreg = left->as_register();
2561   Register dreg = result->as_register();
2562 
2563   if (right->is_constant()) {
2564     int divisor = right->as_constant_ptr()->as_jint();
2565     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2566     if (code == lir_idiv) {
2567       assert(lreg == rax, "must be rax,");
2568       assert(temp->as_register() == rdx, "tmp register must be rdx");
2569       __ cdql(); // sign extend into rdx:rax
2570       if (divisor == 2) {
2571         __ subl(lreg, rdx);
2572       } else {
2573         __ andl(rdx, divisor - 1);
2574         __ addl(lreg, rdx);
2575       }
2576       __ sarl(lreg, log2_intptr(divisor));
2577       move_regs(lreg, dreg);
2578     } else if (code == lir_irem) {
2579       Label done;
2580       __ mov(dreg, lreg);
2581       __ andl(dreg, 0x80000000 | (divisor - 1));
2582       __ jcc(Assembler::positive, done);
2583       __ decrement(dreg);
2584       __ orl(dreg, ~(divisor - 1));
2585       __ increment(dreg);
2586       __ bind(done);
2587     } else {
2588       ShouldNotReachHere();
2589     }
2590   } else {
2591     Register rreg = right->as_register();
2592     assert(lreg == rax, "left register must be rax,");
2593     assert(rreg != rdx, "right register must not be rdx");
2594     assert(temp->as_register() == rdx, "tmp register must be rdx");
2595 
2596     move_regs(lreg, rax);
2597 
2598     int idivl_offset = __ corrected_idivl(rreg);
2599     if (ImplicitDiv0Checks) {
2600       add_debug_info_for_div0(idivl_offset, info);
2601     }
2602     if (code == lir_irem) {
2603       move_regs(rdx, dreg); // result is in rdx
2604     } else {
2605       move_regs(rax, dreg);
2606     }
2607   }
2608 }
2609 
2610 
2611 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2612   if (opr1->is_single_cpu()) {
2613     Register reg1 = opr1->as_register();
2614     if (opr2->is_single_cpu()) {
2615       // cpu register - cpu register
2616       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2617         __ cmpoop(reg1, opr2->as_register());
2618       } else {
2619         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2620         __ cmpl(reg1, opr2->as_register());
2621       }
2622     } else if (opr2->is_stack()) {
2623       // cpu register - stack
2624       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2625         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2626       } else {
2627         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2628       }
2629     } else if (opr2->is_constant()) {
2630       // cpu register - constant
2631       LIR_Const* c = opr2->as_constant_ptr();
2632       if (c->type() == T_INT) {
2633         __ cmpl(reg1, c->as_jint());
2634       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2635         // In 64bit oops are single register
2636         jobject o = c->as_jobject();
2637         if (o == NULL) {
2638           __ cmpptr(reg1, (int32_t)NULL_WORD);
2639         } else {
2640           __ cmpoop(reg1, o);
2641         }
2642       } else {
2643         fatal("unexpected type: %s", basictype_to_str(c->type()));
2644       }
2645       // cpu register - address
2646     } else if (opr2->is_address()) {
2647       if (op->info() != NULL) {
2648         add_debug_info_for_null_check_here(op->info());
2649       }
2650       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2651     } else {
2652       ShouldNotReachHere();
2653     }
2654 
2655   } else if(opr1->is_double_cpu()) {
2656     Register xlo = opr1->as_register_lo();
2657     Register xhi = opr1->as_register_hi();
2658     if (opr2->is_double_cpu()) {
2659 #ifdef _LP64
2660       __ cmpptr(xlo, opr2->as_register_lo());
2661 #else
2662       // cpu register - cpu register
2663       Register ylo = opr2->as_register_lo();
2664       Register yhi = opr2->as_register_hi();
2665       __ subl(xlo, ylo);
2666       __ sbbl(xhi, yhi);
2667       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2668         __ orl(xhi, xlo);
2669       }
2670 #endif // _LP64
2671     } else if (opr2->is_constant()) {
2672       // cpu register - constant 0
2673       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2674 #ifdef _LP64
2675       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2676 #else
2677       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2678       __ orl(xhi, xlo);
2679 #endif // _LP64
2680     } else {
2681       ShouldNotReachHere();
2682     }
2683 
2684   } else if (opr1->is_single_xmm()) {
2685     XMMRegister reg1 = opr1->as_xmm_float_reg();
2686     if (opr2->is_single_xmm()) {
2687       // xmm register - xmm register
2688       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2689     } else if (opr2->is_stack()) {
2690       // xmm register - stack
2691       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2692     } else if (opr2->is_constant()) {
2693       // xmm register - constant
2694       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2695     } else if (opr2->is_address()) {
2696       // xmm register - address
2697       if (op->info() != NULL) {
2698         add_debug_info_for_null_check_here(op->info());
2699       }
2700       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2701     } else {
2702       ShouldNotReachHere();
2703     }
2704 
2705   } else if (opr1->is_double_xmm()) {
2706     XMMRegister reg1 = opr1->as_xmm_double_reg();
2707     if (opr2->is_double_xmm()) {
2708       // xmm register - xmm register
2709       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2710     } else if (opr2->is_stack()) {
2711       // xmm register - stack
2712       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2713     } else if (opr2->is_constant()) {
2714       // xmm register - constant
2715       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2716     } else if (opr2->is_address()) {
2717       // xmm register - address
2718       if (op->info() != NULL) {
2719         add_debug_info_for_null_check_here(op->info());
2720       }
2721       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2722     } else {
2723       ShouldNotReachHere();
2724     }
2725 
2726   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2727     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2728     assert(opr2->is_fpu_register(), "both must be registers");
2729     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2730 
2731   } else if (opr1->is_address() && opr2->is_constant()) {
2732     LIR_Const* c = opr2->as_constant_ptr();
2733 #ifdef _LP64
2734     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2735       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2736       __ movoop(rscratch1, c->as_jobject());
2737     }
2738 #endif // LP64
2739     if (op->info() != NULL) {
2740       add_debug_info_for_null_check_here(op->info());
2741     }
2742     // special case: address - constant
2743     LIR_Address* addr = opr1->as_address_ptr();
2744     if (c->type() == T_INT) {
2745       __ cmpl(as_Address(addr), c->as_jint());
2746     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2747 #ifdef _LP64
2748       // %%% Make this explode if addr isn't reachable until we figure out a
2749       // better strategy by giving noreg as the temp for as_Address
2750       __ cmpoop(rscratch1, as_Address(addr, noreg));
2751 #else
2752       __ cmpoop(as_Address(addr), c->as_jobject());
2753 #endif // _LP64
2754     } else {
2755       ShouldNotReachHere();
2756     }
2757 
2758   } else {
2759     ShouldNotReachHere();
2760   }
2761 }
2762 
2763 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2764   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2765     if (left->is_single_xmm()) {
2766       assert(right->is_single_xmm(), "must match");
2767       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2768     } else if (left->is_double_xmm()) {
2769       assert(right->is_double_xmm(), "must match");
2770       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2771 
2772     } else {
2773       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2774       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2775 
2776       assert(left->fpu() == 0, "left must be on TOS");
2777       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2778                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2779     }
2780   } else {
2781     assert(code == lir_cmp_l2i, "check");
2782 #ifdef _LP64
2783     Label done;
2784     Register dest = dst->as_register();
2785     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2786     __ movl(dest, -1);
2787     __ jccb(Assembler::less, done);
2788     __ set_byte_if_not_zero(dest);
2789     __ movzbl(dest, dest);
2790     __ bind(done);
2791 #else
2792     __ lcmp2int(left->as_register_hi(),
2793                 left->as_register_lo(),
2794                 right->as_register_hi(),
2795                 right->as_register_lo());
2796     move_regs(left->as_register_hi(), dst->as_register());
2797 #endif // _LP64
2798   }
2799 }
2800 
2801 
2802 void LIR_Assembler::align_call(LIR_Code code) {
2803   if (os::is_MP()) {
2804     // make sure that the displacement word of the call ends up word aligned
2805     int offset = __ offset();
2806     switch (code) {
2807       case lir_static_call:
2808       case lir_optvirtual_call:
2809       case lir_dynamic_call:
2810         offset += NativeCall::displacement_offset;
2811         break;
2812       case lir_icvirtual_call:
2813         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2814       break;
2815       case lir_virtual_call:  // currently, sparc-specific for niagara
2816       default: ShouldNotReachHere();
2817     }
2818     __ align(BytesPerWord, offset);
2819   }
2820 }
2821 
2822 
2823 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2824   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2825          "must be aligned");
2826   __ call(AddressLiteral(op->addr(), rtype));
2827   add_call_info(code_offset(), op->info());
2828 }
2829 
2830 
2831 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2832   __ ic_call(op->addr());
2833   add_call_info(code_offset(), op->info());
2834   assert(!os::is_MP() ||
2835          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2836          "must be aligned");
2837 }
2838 
2839 
2840 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2841 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2842   ShouldNotReachHere();
2843 }
2844 
2845 
2846 void LIR_Assembler::emit_static_call_stub() {
2847   address call_pc = __ pc();
2848   address stub = __ start_a_stub(call_stub_size());
2849   if (stub == NULL) {
2850     bailout("static call stub overflow");
2851     return;
2852   }
2853 
2854   int start = __ offset();
2855   if (os::is_MP()) {
2856     // make sure that the displacement word of the call ends up word aligned
2857     __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2858   }
2859   __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2860   __ mov_metadata(rbx, (Metadata*)NULL);
2861   // must be set to -1 at code generation time
2862   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2863   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2864   __ jump(RuntimeAddress(__ pc()));
2865 
2866   if (UseAOT) {
2867     // Trampoline to aot code
2868     __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2869 #ifdef _LP64
2870     __ mov64(rax, CONST64(0));  // address is zapped till fixup time.
2871 #else
2872     __ movl(rax, 0xdeadffff);  // address is zapped till fixup time.
2873 #endif
2874     __ jmp(rax);
2875   }
2876   assert(__ offset() - start <= call_stub_size(), "stub too big");
2877   __ end_a_stub();
2878 }
2879 
2880 
2881 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2882   assert(exceptionOop->as_register() == rax, "must match");
2883   assert(exceptionPC->as_register() == rdx, "must match");
2884 
2885   // exception object is not added to oop map by LinearScan
2886   // (LinearScan assumes that no oops are in fixed registers)
2887   info->add_register_oop(exceptionOop);
2888   Runtime1::StubID unwind_id;
2889 
2890   // get current pc information
2891   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2892   int pc_for_athrow_offset = __ offset();
2893   InternalAddress pc_for_athrow(__ pc());
2894   __ lea(exceptionPC->as_register(), pc_for_athrow);
2895   add_call_info(pc_for_athrow_offset, info); // for exception handler
2896 
2897   __ verify_not_null_oop(rax);
2898   // search an exception handler (rax: exception oop, rdx: throwing pc)
2899   if (compilation()->has_fpu_code()) {
2900     unwind_id = Runtime1::handle_exception_id;
2901   } else {
2902     unwind_id = Runtime1::handle_exception_nofpu_id;
2903   }
2904   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2905 
2906   // enough room for two byte trap
2907   __ nop();
2908 }
2909 
2910 
2911 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2912   assert(exceptionOop->as_register() == rax, "must match");
2913 
2914   __ jmp(_unwind_handler_entry);
2915 }
2916 
2917 
2918 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2919 
2920   // optimized version for linear scan:
2921   // * count must be already in ECX (guaranteed by LinearScan)
2922   // * left and dest must be equal
2923   // * tmp must be unused
2924   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2925   assert(left == dest, "left and dest must be equal");
2926   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2927 
2928   if (left->is_single_cpu()) {
2929     Register value = left->as_register();
2930     assert(value != SHIFT_count, "left cannot be ECX");
2931 
2932     switch (code) {
2933       case lir_shl:  __ shll(value); break;
2934       case lir_shr:  __ sarl(value); break;
2935       case lir_ushr: __ shrl(value); break;
2936       default: ShouldNotReachHere();
2937     }
2938   } else if (left->is_double_cpu()) {
2939     Register lo = left->as_register_lo();
2940     Register hi = left->as_register_hi();
2941     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2942 #ifdef _LP64
2943     switch (code) {
2944       case lir_shl:  __ shlptr(lo);        break;
2945       case lir_shr:  __ sarptr(lo);        break;
2946       case lir_ushr: __ shrptr(lo);        break;
2947       default: ShouldNotReachHere();
2948     }
2949 #else
2950 
2951     switch (code) {
2952       case lir_shl:  __ lshl(hi, lo);        break;
2953       case lir_shr:  __ lshr(hi, lo, true);  break;
2954       case lir_ushr: __ lshr(hi, lo, false); break;
2955       default: ShouldNotReachHere();
2956     }
2957 #endif // LP64
2958   } else {
2959     ShouldNotReachHere();
2960   }
2961 }
2962 
2963 
2964 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2965   if (dest->is_single_cpu()) {
2966     // first move left into dest so that left is not destroyed by the shift
2967     Register value = dest->as_register();
2968     count = count & 0x1F; // Java spec
2969 
2970     move_regs(left->as_register(), value);
2971     switch (code) {
2972       case lir_shl:  __ shll(value, count); break;
2973       case lir_shr:  __ sarl(value, count); break;
2974       case lir_ushr: __ shrl(value, count); break;
2975       default: ShouldNotReachHere();
2976     }
2977   } else if (dest->is_double_cpu()) {
2978 #ifndef _LP64
2979     Unimplemented();
2980 #else
2981     // first move left into dest so that left is not destroyed by the shift
2982     Register value = dest->as_register_lo();
2983     count = count & 0x1F; // Java spec
2984 
2985     move_regs(left->as_register_lo(), value);
2986     switch (code) {
2987       case lir_shl:  __ shlptr(value, count); break;
2988       case lir_shr:  __ sarptr(value, count); break;
2989       case lir_ushr: __ shrptr(value, count); break;
2990       default: ShouldNotReachHere();
2991     }
2992 #endif // _LP64
2993   } else {
2994     ShouldNotReachHere();
2995   }
2996 }
2997 
2998 
2999 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3000   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3001   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3002   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3003   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3004 }
3005 
3006 
3007 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3008   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3009   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3010   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3011   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3012 }
3013 
3014 
3015 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3016   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3017   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3018   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3019   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3020 }
3021 
3022 
3023 void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
3024   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3025   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3026   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3027   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
3028 }
3029 
3030 
3031 // This code replaces a call to arraycopy; no exception may
3032 // be thrown in this code, they must be thrown in the System.arraycopy
3033 // activation frame; we could save some checks if this would not be the case
3034 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3035   ciArrayKlass* default_type = op->expected_type();
3036   Register src = op->src()->as_register();
3037   Register dst = op->dst()->as_register();
3038   Register src_pos = op->src_pos()->as_register();
3039   Register dst_pos = op->dst_pos()->as_register();
3040   Register length  = op->length()->as_register();
3041   Register tmp = op->tmp()->as_register();
3042 
3043   CodeStub* stub = op->stub();
3044   int flags = op->flags();
3045   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3046   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3047 
3048   // if we don't know anything, just go through the generic arraycopy
3049   if (default_type == NULL) {
3050     Label done;
3051     // save outgoing arguments on stack in case call to System.arraycopy is needed
3052     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3053     // for interpreter calling conventions. Now we have to do it in new style conventions.
3054     // For the moment until C1 gets the new register allocator I just force all the
3055     // args to the right place (except the register args) and then on the back side
3056     // reload the register args properly if we go slow path. Yuck
3057 
3058     // These are proper for the calling convention
3059     store_parameter(length, 2);
3060     store_parameter(dst_pos, 1);
3061     store_parameter(dst, 0);
3062 
3063     // these are just temporary placements until we need to reload
3064     store_parameter(src_pos, 3);
3065     store_parameter(src, 4);
3066     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3067 
3068     address copyfunc_addr = StubRoutines::generic_arraycopy();
3069     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
3070 
3071     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3072 #ifdef _LP64
3073     // The arguments are in java calling convention so we can trivially shift them to C
3074     // convention
3075     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3076     __ mov(c_rarg0, j_rarg0);
3077     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3078     __ mov(c_rarg1, j_rarg1);
3079     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3080     __ mov(c_rarg2, j_rarg2);
3081     assert_different_registers(c_rarg3, j_rarg4);
3082     __ mov(c_rarg3, j_rarg3);
3083 #ifdef _WIN64
3084     // Allocate abi space for args but be sure to keep stack aligned
3085     __ subptr(rsp, 6*wordSize);
3086     store_parameter(j_rarg4, 4);
3087 #ifndef PRODUCT
3088     if (PrintC1Statistics) {
3089       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3090     }
3091 #endif
3092     __ call(RuntimeAddress(copyfunc_addr));
3093     __ addptr(rsp, 6*wordSize);
3094 #else
3095     __ mov(c_rarg4, j_rarg4);
3096 #ifndef PRODUCT
3097     if (PrintC1Statistics) {
3098       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3099     }
3100 #endif
3101     __ call(RuntimeAddress(copyfunc_addr));
3102 #endif // _WIN64
3103 #else
3104     __ push(length);
3105     __ push(dst_pos);
3106     __ push(dst);
3107     __ push(src_pos);
3108     __ push(src);
3109 
3110 #ifndef PRODUCT
3111     if (PrintC1Statistics) {
3112       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3113     }
3114 #endif
3115     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3116 
3117 #endif // _LP64
3118 
3119     __ cmpl(rax, 0);
3120     __ jcc(Assembler::equal, *stub->continuation());
3121 
3122     __ mov(tmp, rax);
3123     __ xorl(tmp, -1);
3124 
3125     // Reload values from the stack so they are where the stub
3126     // expects them.
3127     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3128     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3129     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3130     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3131     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3132 
3133     __ subl(length, tmp);
3134     __ addl(src_pos, tmp);
3135     __ addl(dst_pos, tmp);
3136     __ jmp(*stub->entry());
3137 
3138     __ bind(*stub->continuation());
3139     return;
3140   }
3141 
3142   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3143 
3144   int elem_size = type2aelembytes(basic_type);
3145   Address::ScaleFactor scale;
3146 
3147   switch (elem_size) {
3148     case 1 :
3149       scale = Address::times_1;
3150       break;
3151     case 2 :
3152       scale = Address::times_2;
3153       break;
3154     case 4 :
3155       scale = Address::times_4;
3156       break;
3157     case 8 :
3158       scale = Address::times_8;
3159       break;
3160     default:
3161       scale = Address::no_scale;
3162       ShouldNotReachHere();
3163   }
3164 
3165   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3166   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3167   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3168   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3169 
3170   // length and pos's are all sign extended at this point on 64bit
3171 
3172   // test for NULL
3173   if (flags & LIR_OpArrayCopy::src_null_check) {
3174     __ testptr(src, src);
3175     __ jcc(Assembler::zero, *stub->entry());
3176   }
3177   if (flags & LIR_OpArrayCopy::dst_null_check) {
3178     __ testptr(dst, dst);
3179     __ jcc(Assembler::zero, *stub->entry());
3180   }
3181 
3182   // If the compiler was not able to prove that exact type of the source or the destination
3183   // of the arraycopy is an array type, check at runtime if the source or the destination is
3184   // an instance type.
3185   if (flags & LIR_OpArrayCopy::type_check) {
3186     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3187       __ load_klass(tmp, dst);
3188       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3189       __ jcc(Assembler::greaterEqual, *stub->entry());
3190     }
3191 
3192     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3193       __ load_klass(tmp, src);
3194       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3195       __ jcc(Assembler::greaterEqual, *stub->entry());
3196     }
3197   }
3198 
3199   // check if negative
3200   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3201     __ testl(src_pos, src_pos);
3202     __ jcc(Assembler::less, *stub->entry());
3203   }
3204   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3205     __ testl(dst_pos, dst_pos);
3206     __ jcc(Assembler::less, *stub->entry());
3207   }
3208 
3209   if (flags & LIR_OpArrayCopy::src_range_check) {
3210     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3211     __ cmpl(tmp, src_length_addr);
3212     __ jcc(Assembler::above, *stub->entry());
3213   }
3214   if (flags & LIR_OpArrayCopy::dst_range_check) {
3215     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3216     __ cmpl(tmp, dst_length_addr);
3217     __ jcc(Assembler::above, *stub->entry());
3218   }
3219 
3220   if (flags & LIR_OpArrayCopy::length_positive_check) {
3221     __ testl(length, length);
3222     __ jcc(Assembler::less, *stub->entry());
3223   }
3224 
3225 #ifdef _LP64
3226   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3227   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3228 #endif
3229 
3230   if (flags & LIR_OpArrayCopy::type_check) {
3231     // We don't know the array types are compatible
3232     if (basic_type != T_OBJECT) {
3233       // Simple test for basic type arrays
3234       if (UseCompressedClassPointers) {
3235         __ movl(tmp, src_klass_addr);
3236         __ cmpl(tmp, dst_klass_addr);
3237       } else {
3238         __ movptr(tmp, src_klass_addr);
3239         __ cmpptr(tmp, dst_klass_addr);
3240       }
3241       __ jcc(Assembler::notEqual, *stub->entry());
3242     } else {
3243       // For object arrays, if src is a sub class of dst then we can
3244       // safely do the copy.
3245       Label cont, slow;
3246 
3247       __ push(src);
3248       __ push(dst);
3249 
3250       __ load_klass(src, src);
3251       __ load_klass(dst, dst);
3252 
3253       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3254 
3255       __ push(src);
3256       __ push(dst);
3257       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3258       __ pop(dst);
3259       __ pop(src);
3260 
3261       __ cmpl(src, 0);
3262       __ jcc(Assembler::notEqual, cont);
3263 
3264       __ bind(slow);
3265       __ pop(dst);
3266       __ pop(src);
3267 
3268       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3269       if (copyfunc_addr != NULL) { // use stub if available
3270         // src is not a sub class of dst so we have to do a
3271         // per-element check.
3272 
3273         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3274         if ((flags & mask) != mask) {
3275           // Check that at least both of them object arrays.
3276           assert(flags & mask, "one of the two should be known to be an object array");
3277 
3278           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3279             __ load_klass(tmp, src);
3280           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3281             __ load_klass(tmp, dst);
3282           }
3283           int lh_offset = in_bytes(Klass::layout_helper_offset());
3284           Address klass_lh_addr(tmp, lh_offset);
3285           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3286           __ cmpl(klass_lh_addr, objArray_lh);
3287           __ jcc(Assembler::notEqual, *stub->entry());
3288         }
3289 
3290        // Spill because stubs can use any register they like and it's
3291        // easier to restore just those that we care about.
3292        store_parameter(dst, 0);
3293        store_parameter(dst_pos, 1);
3294        store_parameter(length, 2);
3295        store_parameter(src_pos, 3);
3296        store_parameter(src, 4);
3297 
3298 #ifndef _LP64
3299         __ movptr(tmp, dst_klass_addr);
3300         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3301         __ push(tmp);
3302         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3303         __ push(tmp);
3304         __ push(length);
3305         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3306         __ push(tmp);
3307         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3308         __ push(tmp);
3309 
3310         __ call_VM_leaf(copyfunc_addr, 5);
3311 #else
3312         __ movl2ptr(length, length); //higher 32bits must be null
3313 
3314         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3315         assert_different_registers(c_rarg0, dst, dst_pos, length);
3316         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3317         assert_different_registers(c_rarg1, dst, length);
3318 
3319         __ mov(c_rarg2, length);
3320         assert_different_registers(c_rarg2, dst);
3321 
3322 #ifdef _WIN64
3323         // Allocate abi space for args but be sure to keep stack aligned
3324         __ subptr(rsp, 6*wordSize);
3325         __ load_klass(c_rarg3, dst);
3326         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3327         store_parameter(c_rarg3, 4);
3328         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3329         __ call(RuntimeAddress(copyfunc_addr));
3330         __ addptr(rsp, 6*wordSize);
3331 #else
3332         __ load_klass(c_rarg4, dst);
3333         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3334         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3335         __ call(RuntimeAddress(copyfunc_addr));
3336 #endif
3337 
3338 #endif
3339 
3340 #ifndef PRODUCT
3341         if (PrintC1Statistics) {
3342           Label failed;
3343           __ testl(rax, rax);
3344           __ jcc(Assembler::notZero, failed);
3345           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3346           __ bind(failed);
3347         }
3348 #endif
3349 
3350         __ testl(rax, rax);
3351         __ jcc(Assembler::zero, *stub->continuation());
3352 
3353 #ifndef PRODUCT
3354         if (PrintC1Statistics) {
3355           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3356         }
3357 #endif
3358 
3359         __ mov(tmp, rax);
3360 
3361         __ xorl(tmp, -1);
3362 
3363         // Restore previously spilled arguments
3364         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3365         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3366         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3367         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3368         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3369 
3370 
3371         __ subl(length, tmp);
3372         __ addl(src_pos, tmp);
3373         __ addl(dst_pos, tmp);
3374       }
3375 
3376       __ jmp(*stub->entry());
3377 
3378       __ bind(cont);
3379       __ pop(dst);
3380       __ pop(src);
3381     }
3382   }
3383 
3384 #ifdef ASSERT
3385   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3386     // Sanity check the known type with the incoming class.  For the
3387     // primitive case the types must match exactly with src.klass and
3388     // dst.klass each exactly matching the default type.  For the
3389     // object array case, if no type check is needed then either the
3390     // dst type is exactly the expected type and the src type is a
3391     // subtype which we can't check or src is the same array as dst
3392     // but not necessarily exactly of type default_type.
3393     Label known_ok, halt;
3394     __ mov_metadata(tmp, default_type->constant_encoding());
3395 #ifdef _LP64
3396     if (UseCompressedClassPointers) {
3397       __ encode_klass_not_null(tmp);
3398     }
3399 #endif
3400 
3401     if (basic_type != T_OBJECT) {
3402 
3403       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3404       else                   __ cmpptr(tmp, dst_klass_addr);
3405       __ jcc(Assembler::notEqual, halt);
3406       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3407       else                   __ cmpptr(tmp, src_klass_addr);
3408       __ jcc(Assembler::equal, known_ok);
3409     } else {
3410       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3411       else                   __ cmpptr(tmp, dst_klass_addr);
3412       __ jcc(Assembler::equal, known_ok);
3413       __ cmpptr(src, dst);
3414       __ jcc(Assembler::equal, known_ok);
3415     }
3416     __ bind(halt);
3417     __ stop("incorrect type information in arraycopy");
3418     __ bind(known_ok);
3419   }
3420 #endif
3421 
3422 #ifndef PRODUCT
3423   if (PrintC1Statistics) {
3424     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3425   }
3426 #endif
3427 
3428 #ifdef _LP64
3429   assert_different_registers(c_rarg0, dst, dst_pos, length);
3430   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3431   assert_different_registers(c_rarg1, length);
3432   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3433   __ mov(c_rarg2, length);
3434 
3435 #else
3436   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3437   store_parameter(tmp, 0);
3438   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3439   store_parameter(tmp, 1);
3440   store_parameter(length, 2);
3441 #endif // _LP64
3442 
3443   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3444   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3445   const char *name;
3446   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3447   __ call_VM_leaf(entry, 0);
3448 
3449   __ bind(*stub->continuation());
3450 }
3451 
3452 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3453   assert(op->crc()->is_single_cpu(),  "crc must be register");
3454   assert(op->val()->is_single_cpu(),  "byte value must be register");
3455   assert(op->result_opr()->is_single_cpu(), "result must be register");
3456   Register crc = op->crc()->as_register();
3457   Register val = op->val()->as_register();
3458   Register res = op->result_opr()->as_register();
3459 
3460   assert_different_registers(val, crc, res);
3461 
3462   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3463   __ notl(crc); // ~crc
3464   __ update_byte_crc32(crc, val, res);
3465   __ notl(crc); // ~crc
3466   __ mov(res, crc);
3467 }
3468 
3469 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3470   Register obj = op->obj_opr()->as_register();  // may not be an oop
3471   Register hdr = op->hdr_opr()->as_register();
3472   Register lock = op->lock_opr()->as_register();
3473   if (!UseFastLocking) {
3474     __ jmp(*op->stub()->entry());
3475   } else if (op->code() == lir_lock) {
3476     Register scratch = noreg;
3477     if (UseBiasedLocking) {
3478       scratch = op->scratch_opr()->as_register();
3479     }
3480     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3481     // add debug info for NullPointerException only if one is possible
3482     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3483     if (op->info() != NULL) {
3484       add_debug_info_for_null_check(null_check_offset, op->info());
3485     }
3486     // done
3487   } else if (op->code() == lir_unlock) {
3488     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3489     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3490   } else {
3491     Unimplemented();
3492   }
3493   __ bind(*op->stub()->continuation());
3494 }
3495 
3496 
3497 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3498   ciMethod* method = op->profiled_method();
3499   int bci          = op->profiled_bci();
3500   ciMethod* callee = op->profiled_callee();
3501 
3502   // Update counter for all call types
3503   ciMethodData* md = method->method_data_or_null();
3504   assert(md != NULL, "Sanity");
3505   ciProfileData* data = md->bci_to_data(bci);
3506   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
3507   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3508   Register mdo  = op->mdo()->as_register();
3509   __ mov_metadata(mdo, md->constant_encoding());
3510   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3511   // Perform additional virtual call profiling for invokevirtual and
3512   // invokeinterface bytecodes
3513   if (op->should_profile_receiver_type()) {
3514     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3515     Register recv = op->recv()->as_register();
3516     assert_different_registers(mdo, recv);
3517     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3518     ciKlass* known_klass = op->known_holder();
3519     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3520       // We know the type that will be seen at this call site; we can
3521       // statically update the MethodData* rather than needing to do
3522       // dynamic tests on the receiver type
3523 
3524       // NOTE: we should probably put a lock around this search to
3525       // avoid collisions by concurrent compilations
3526       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3527       uint i;
3528       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3529         ciKlass* receiver = vc_data->receiver(i);
3530         if (known_klass->equals(receiver)) {
3531           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3532           __ addptr(data_addr, DataLayout::counter_increment);
3533           return;
3534         }
3535       }
3536 
3537       // Receiver type not found in profile data; select an empty slot
3538 
3539       // Note that this is less efficient than it should be because it
3540       // always does a write to the receiver part of the
3541       // VirtualCallData rather than just the first time
3542       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3543         ciKlass* receiver = vc_data->receiver(i);
3544         if (receiver == NULL) {
3545           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3546           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3547           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3548           __ addptr(data_addr, DataLayout::counter_increment);
3549           return;
3550         }
3551       }
3552     } else {
3553       __ load_klass(recv, recv);
3554       Label update_done;
3555       type_profile_helper(mdo, md, data, recv, &update_done);
3556       // Receiver did not match any saved receiver and there is no empty row for it.
3557       // Increment total counter to indicate polymorphic case.
3558       __ addptr(counter_addr, DataLayout::counter_increment);
3559 
3560       __ bind(update_done);
3561     }
3562   } else {
3563     // Static call
3564     __ addptr(counter_addr, DataLayout::counter_increment);
3565   }
3566 }
3567 
3568 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3569   Register obj = op->obj()->as_register();
3570   Register tmp = op->tmp()->as_pointer_register();
3571   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3572   ciKlass* exact_klass = op->exact_klass();
3573   intptr_t current_klass = op->current_klass();
3574   bool not_null = op->not_null();
3575   bool no_conflict = op->no_conflict();
3576 
3577   Label update, next, none;
3578 
3579   bool do_null = !not_null;
3580   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3581   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3582 
3583   assert(do_null || do_update, "why are we here?");
3584   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3585 
3586   __ verify_oop(obj);
3587 
3588   if (tmp != obj) {
3589     __ mov(tmp, obj);
3590   }
3591   if (do_null) {
3592     __ testptr(tmp, tmp);
3593     __ jccb(Assembler::notZero, update);
3594     if (!TypeEntries::was_null_seen(current_klass)) {
3595       __ orptr(mdo_addr, TypeEntries::null_seen);
3596     }
3597     if (do_update) {
3598 #ifndef ASSERT
3599       __ jmpb(next);
3600     }
3601 #else
3602       __ jmp(next);
3603     }
3604   } else {
3605     __ testptr(tmp, tmp);
3606     __ jccb(Assembler::notZero, update);
3607     __ stop("unexpect null obj");
3608 #endif
3609   }
3610 
3611   __ bind(update);
3612 
3613   if (do_update) {
3614 #ifdef ASSERT
3615     if (exact_klass != NULL) {
3616       Label ok;
3617       __ load_klass(tmp, tmp);
3618       __ push(tmp);
3619       __ mov_metadata(tmp, exact_klass->constant_encoding());
3620       __ cmpptr(tmp, Address(rsp, 0));
3621       __ jccb(Assembler::equal, ok);
3622       __ stop("exact klass and actual klass differ");
3623       __ bind(ok);
3624       __ pop(tmp);
3625     }
3626 #endif
3627     if (!no_conflict) {
3628       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3629         if (exact_klass != NULL) {
3630           __ mov_metadata(tmp, exact_klass->constant_encoding());
3631         } else {
3632           __ load_klass(tmp, tmp);
3633         }
3634 
3635         __ xorptr(tmp, mdo_addr);
3636         __ testptr(tmp, TypeEntries::type_klass_mask);
3637         // klass seen before, nothing to do. The unknown bit may have been
3638         // set already but no need to check.
3639         __ jccb(Assembler::zero, next);
3640 
3641         __ testptr(tmp, TypeEntries::type_unknown);
3642         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3643 
3644         if (TypeEntries::is_type_none(current_klass)) {
3645           __ cmpptr(mdo_addr, 0);
3646           __ jccb(Assembler::equal, none);
3647           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3648           __ jccb(Assembler::equal, none);
3649           // There is a chance that the checks above (re-reading profiling
3650           // data from memory) fail if another thread has just set the
3651           // profiling to this obj's klass
3652           __ xorptr(tmp, mdo_addr);
3653           __ testptr(tmp, TypeEntries::type_klass_mask);
3654           __ jccb(Assembler::zero, next);
3655         }
3656       } else {
3657         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3658                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3659 
3660         __ movptr(tmp, mdo_addr);
3661         __ testptr(tmp, TypeEntries::type_unknown);
3662         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3663       }
3664 
3665       // different than before. Cannot keep accurate profile.
3666       __ orptr(mdo_addr, TypeEntries::type_unknown);
3667 
3668       if (TypeEntries::is_type_none(current_klass)) {
3669         __ jmpb(next);
3670 
3671         __ bind(none);
3672         // first time here. Set profile type.
3673         __ movptr(mdo_addr, tmp);
3674       }
3675     } else {
3676       // There's a single possible klass at this profile point
3677       assert(exact_klass != NULL, "should be");
3678       if (TypeEntries::is_type_none(current_klass)) {
3679         __ mov_metadata(tmp, exact_klass->constant_encoding());
3680         __ xorptr(tmp, mdo_addr);
3681         __ testptr(tmp, TypeEntries::type_klass_mask);
3682 #ifdef ASSERT
3683         __ jcc(Assembler::zero, next);
3684 
3685         {
3686           Label ok;
3687           __ push(tmp);
3688           __ cmpptr(mdo_addr, 0);
3689           __ jcc(Assembler::equal, ok);
3690           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3691           __ jcc(Assembler::equal, ok);
3692           // may have been set by another thread
3693           __ mov_metadata(tmp, exact_klass->constant_encoding());
3694           __ xorptr(tmp, mdo_addr);
3695           __ testptr(tmp, TypeEntries::type_mask);
3696           __ jcc(Assembler::zero, ok);
3697 
3698           __ stop("unexpected profiling mismatch");
3699           __ bind(ok);
3700           __ pop(tmp);
3701         }
3702 #else
3703         __ jccb(Assembler::zero, next);
3704 #endif
3705         // first time here. Set profile type.
3706         __ movptr(mdo_addr, tmp);
3707       } else {
3708         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3709                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3710 
3711         __ movptr(tmp, mdo_addr);
3712         __ testptr(tmp, TypeEntries::type_unknown);
3713         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3714 
3715         __ orptr(mdo_addr, TypeEntries::type_unknown);
3716       }
3717     }
3718 
3719     __ bind(next);
3720   }
3721 }
3722 
3723 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3724   Unimplemented();
3725 }
3726 
3727 
3728 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3729   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3730 }
3731 
3732 
3733 void LIR_Assembler::align_backward_branch_target() {
3734   __ align(BytesPerWord);
3735 }
3736 
3737 
3738 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3739   if (left->is_single_cpu()) {
3740     __ negl(left->as_register());
3741     move_regs(left->as_register(), dest->as_register());
3742 
3743   } else if (left->is_double_cpu()) {
3744     Register lo = left->as_register_lo();
3745 #ifdef _LP64
3746     Register dst = dest->as_register_lo();
3747     __ movptr(dst, lo);
3748     __ negptr(dst);
3749 #else
3750     Register hi = left->as_register_hi();
3751     __ lneg(hi, lo);
3752     if (dest->as_register_lo() == hi) {
3753       assert(dest->as_register_hi() != lo, "destroying register");
3754       move_regs(hi, dest->as_register_hi());
3755       move_regs(lo, dest->as_register_lo());
3756     } else {
3757       move_regs(lo, dest->as_register_lo());
3758       move_regs(hi, dest->as_register_hi());
3759     }
3760 #endif // _LP64
3761 
3762   } else if (dest->is_single_xmm()) {
3763     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3764       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3765     }
3766     if (UseAVX > 0) {
3767       __ vnegatess(dest->as_xmm_float_reg(), dest->as_xmm_float_reg(),
3768                    ExternalAddress((address)float_signflip_pool));
3769     } else {
3770       __ xorps(dest->as_xmm_float_reg(),
3771                ExternalAddress((address)float_signflip_pool));
3772     }
3773   } else if (dest->is_double_xmm()) {
3774     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3775       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3776     }
3777     if (UseAVX > 0) {
3778       __ vnegatesd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg(),
3779                    ExternalAddress((address)double_signflip_pool));
3780     } else {
3781       __ xorpd(dest->as_xmm_double_reg(),
3782                ExternalAddress((address)double_signflip_pool));
3783     }
3784   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3785     assert(left->fpu() == 0, "arg must be on TOS");
3786     assert(dest->fpu() == 0, "dest must be TOS");
3787     __ fchs();
3788 
3789   } else {
3790     ShouldNotReachHere();
3791   }
3792 }
3793 
3794 
3795 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3796   assert(src->is_address(), "must be an address");
3797   assert(dest->is_register(), "must be a register");
3798 
3799   PatchingStub* patch = NULL;
3800   if (patch_code != lir_patch_none) {
3801     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3802   }
3803 
3804   Register reg = dest->as_pointer_register();
3805   LIR_Address* addr = src->as_address_ptr();
3806   __ lea(reg, as_Address(addr));
3807 
3808   if (patch != NULL) {
3809     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3810   }
3811 }
3812 
3813 
3814 
3815 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3816   assert(!tmp->is_valid(), "don't need temporary");
3817   __ call(RuntimeAddress(dest));
3818   if (info != NULL) {
3819     add_call_info_here(info);
3820   }
3821 }
3822 
3823 
3824 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3825   assert(type == T_LONG, "only for volatile long fields");
3826 
3827   if (info != NULL) {
3828     add_debug_info_for_null_check_here(info);
3829   }
3830 
3831   if (src->is_double_xmm()) {
3832     if (dest->is_double_cpu()) {
3833 #ifdef _LP64
3834       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3835 #else
3836       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3837       __ psrlq(src->as_xmm_double_reg(), 32);
3838       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3839 #endif // _LP64
3840     } else if (dest->is_double_stack()) {
3841       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3842     } else if (dest->is_address()) {
3843       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3844     } else {
3845       ShouldNotReachHere();
3846     }
3847 
3848   } else if (dest->is_double_xmm()) {
3849     if (src->is_double_stack()) {
3850       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3851     } else if (src->is_address()) {
3852       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3853     } else {
3854       ShouldNotReachHere();
3855     }
3856 
3857   } else if (src->is_double_fpu()) {
3858     assert(src->fpu_regnrLo() == 0, "must be TOS");
3859     if (dest->is_double_stack()) {
3860       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3861     } else if (dest->is_address()) {
3862       __ fistp_d(as_Address(dest->as_address_ptr()));
3863     } else {
3864       ShouldNotReachHere();
3865     }
3866 
3867   } else if (dest->is_double_fpu()) {
3868     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3869     if (src->is_double_stack()) {
3870       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3871     } else if (src->is_address()) {
3872       __ fild_d(as_Address(src->as_address_ptr()));
3873     } else {
3874       ShouldNotReachHere();
3875     }
3876   } else {
3877     ShouldNotReachHere();
3878   }
3879 }
3880 
3881 #ifdef ASSERT
3882 // emit run-time assertion
3883 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3884   assert(op->code() == lir_assert, "must be");
3885 
3886   if (op->in_opr1()->is_valid()) {
3887     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3888     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3889   } else {
3890     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3891     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3892   }
3893 
3894   Label ok;
3895   if (op->condition() != lir_cond_always) {
3896     Assembler::Condition acond = Assembler::zero;
3897     switch (op->condition()) {
3898       case lir_cond_equal:        acond = Assembler::equal;       break;
3899       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3900       case lir_cond_less:         acond = Assembler::less;        break;
3901       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3902       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3903       case lir_cond_greater:      acond = Assembler::greater;     break;
3904       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3905       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3906       default:                    ShouldNotReachHere();
3907     }
3908     __ jcc(acond, ok);
3909   }
3910   if (op->halt()) {
3911     const char* str = __ code_string(op->msg());
3912     __ stop(str);
3913   } else {
3914     breakpoint();
3915   }
3916   __ bind(ok);
3917 }
3918 #endif
3919 
3920 void LIR_Assembler::membar() {
3921   // QQQ sparc TSO uses this,
3922   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3923 }
3924 
3925 void LIR_Assembler::membar_acquire() {
3926   // No x86 machines currently require load fences
3927 }
3928 
3929 void LIR_Assembler::membar_release() {
3930   // No x86 machines currently require store fences
3931 }
3932 
3933 void LIR_Assembler::membar_loadload() {
3934   // no-op
3935   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3936 }
3937 
3938 void LIR_Assembler::membar_storestore() {
3939   // no-op
3940   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3941 }
3942 
3943 void LIR_Assembler::membar_loadstore() {
3944   // no-op
3945   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3946 }
3947 
3948 void LIR_Assembler::membar_storeload() {
3949   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3950 }
3951 
3952 void LIR_Assembler::on_spin_wait() {
3953   __ pause ();
3954 }
3955 
3956 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3957   assert(result_reg->is_register(), "check");
3958 #ifdef _LP64
3959   // __ get_thread(result_reg->as_register_lo());
3960   __ mov(result_reg->as_register(), r15_thread);
3961 #else
3962   __ get_thread(result_reg->as_register());
3963 #endif // _LP64
3964 }
3965 
3966 
3967 void LIR_Assembler::peephole(LIR_List*) {
3968   // do nothing for now
3969 }
3970 
3971 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3972   assert(data == dest, "xchg/xadd uses only 2 operands");
3973 
3974   if (data->type() == T_INT) {
3975     if (code == lir_xadd) {
3976       if (os::is_MP()) {
3977         __ lock();
3978       }
3979       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3980     } else {
3981       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
3982     }
3983   } else if (data->is_oop()) {
3984     assert (code == lir_xchg, "xadd for oops");
3985     Register obj = data->as_register();
3986 #ifdef _LP64
3987     if (UseCompressedOops) {
3988       __ encode_heap_oop(obj);
3989       __ xchgl(obj, as_Address(src->as_address_ptr()));
3990       __ decode_heap_oop(obj);
3991     } else {
3992       __ xchgptr(obj, as_Address(src->as_address_ptr()));
3993     }
3994 #else
3995     __ xchgl(obj, as_Address(src->as_address_ptr()));
3996 #endif
3997   } else if (data->type() == T_LONG) {
3998 #ifdef _LP64
3999     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4000     if (code == lir_xadd) {
4001       if (os::is_MP()) {
4002         __ lock();
4003       }
4004       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4005     } else {
4006       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4007     }
4008 #else
4009     ShouldNotReachHere();
4010 #endif
4011   } else {
4012     ShouldNotReachHere();
4013   }
4014 }
4015 
4016 #undef __