1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "opto/ad.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/movenode.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/type.hpp"
  40 #include "opto/vectornode.hpp"
  41 #include "runtime/os.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "utilities/align.hpp"
  44 
  45 OptoReg::Name OptoReg::c_frame_pointer;
  46 
  47 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  48 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  49 RegMask Matcher::STACK_ONLY_mask;
  50 RegMask Matcher::c_frame_ptr_mask;
  51 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  52 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  53 
  54 //---------------------------Matcher-------------------------------------------
  55 Matcher::Matcher()
  56 : PhaseTransform( Phase::Ins_Select ),
  57 #ifdef ASSERT
  58   _old2new_map(C->comp_arena()),
  59   _new2old_map(C->comp_arena()),
  60 #endif
  61   _shared_nodes(C->comp_arena()),
  62   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  63   _swallowed(swallowed),
  64   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  65   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  66   _must_clone(must_clone),
  67   _register_save_policy(register_save_policy),
  68   _c_reg_save_policy(c_reg_save_policy),
  69   _register_save_type(register_save_type),
  70   _ruleName(ruleName),
  71   _allocation_started(false),
  72   _states_arena(Chunk::medium_size, mtCompiler),
  73   _visited(&_states_arena),
  74   _shared(&_states_arena),
  75   _dontcare(&_states_arena) {
  76   C->set_matcher(this);
  77 
  78   idealreg2spillmask  [Op_RegI] = NULL;
  79   idealreg2spillmask  [Op_RegN] = NULL;
  80   idealreg2spillmask  [Op_RegL] = NULL;
  81   idealreg2spillmask  [Op_RegF] = NULL;
  82   idealreg2spillmask  [Op_RegD] = NULL;
  83   idealreg2spillmask  [Op_RegP] = NULL;
  84   idealreg2spillmask  [Op_VecS] = NULL;
  85   idealreg2spillmask  [Op_VecD] = NULL;
  86   idealreg2spillmask  [Op_VecX] = NULL;
  87   idealreg2spillmask  [Op_VecY] = NULL;
  88   idealreg2spillmask  [Op_VecZ] = NULL;
  89   idealreg2spillmask  [Op_RegFlags] = NULL;
  90 
  91   idealreg2debugmask  [Op_RegI] = NULL;
  92   idealreg2debugmask  [Op_RegN] = NULL;
  93   idealreg2debugmask  [Op_RegL] = NULL;
  94   idealreg2debugmask  [Op_RegF] = NULL;
  95   idealreg2debugmask  [Op_RegD] = NULL;
  96   idealreg2debugmask  [Op_RegP] = NULL;
  97   idealreg2debugmask  [Op_VecS] = NULL;
  98   idealreg2debugmask  [Op_VecD] = NULL;
  99   idealreg2debugmask  [Op_VecX] = NULL;
 100   idealreg2debugmask  [Op_VecY] = NULL;
 101   idealreg2debugmask  [Op_VecZ] = NULL;
 102   idealreg2debugmask  [Op_RegFlags] = NULL;
 103 
 104   idealreg2mhdebugmask[Op_RegI] = NULL;
 105   idealreg2mhdebugmask[Op_RegN] = NULL;
 106   idealreg2mhdebugmask[Op_RegL] = NULL;
 107   idealreg2mhdebugmask[Op_RegF] = NULL;
 108   idealreg2mhdebugmask[Op_RegD] = NULL;
 109   idealreg2mhdebugmask[Op_RegP] = NULL;
 110   idealreg2mhdebugmask[Op_VecS] = NULL;
 111   idealreg2mhdebugmask[Op_VecD] = NULL;
 112   idealreg2mhdebugmask[Op_VecX] = NULL;
 113   idealreg2mhdebugmask[Op_VecY] = NULL;
 114   idealreg2mhdebugmask[Op_VecZ] = NULL;
 115   idealreg2mhdebugmask[Op_RegFlags] = NULL;
 116 
 117   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 118 }
 119 
 120 //------------------------------warp_incoming_stk_arg------------------------
 121 // This warps a VMReg into an OptoReg::Name
 122 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 123   OptoReg::Name warped;
 124   if( reg->is_stack() ) {  // Stack slot argument?
 125     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 126     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 127     if( warped >= _in_arg_limit )
 128       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 129     if (!RegMask::can_represent_arg(warped)) {
 130       // the compiler cannot represent this method's calling sequence
 131       C->record_method_not_compilable("unsupported incoming calling sequence");
 132       return OptoReg::Bad;
 133     }
 134     return warped;
 135   }
 136   return OptoReg::as_OptoReg(reg);
 137 }
 138 
 139 //---------------------------compute_old_SP------------------------------------
 140 OptoReg::Name Compile::compute_old_SP() {
 141   int fixed    = fixed_slots();
 142   int preserve = in_preserve_stack_slots();
 143   return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots()));
 144 }
 145 
 146 
 147 
 148 #ifdef ASSERT
 149 void Matcher::verify_new_nodes_only(Node* xroot) {
 150   // Make sure that the new graph only references new nodes
 151   ResourceMark rm;
 152   Unique_Node_List worklist;
 153   VectorSet visited(Thread::current()->resource_area());
 154   worklist.push(xroot);
 155   while (worklist.size() > 0) {
 156     Node* n = worklist.pop();
 157     visited <<= n->_idx;
 158     assert(C->node_arena()->contains(n), "dead node");
 159     for (uint j = 0; j < n->req(); j++) {
 160       Node* in = n->in(j);
 161       if (in != NULL) {
 162         assert(C->node_arena()->contains(in), "dead node");
 163         if (!visited.test(in->_idx)) {
 164           worklist.push(in);
 165         }
 166       }
 167     }
 168   }
 169 }
 170 #endif
 171 
 172 
 173 //---------------------------match---------------------------------------------
 174 void Matcher::match( ) {
 175   if( MaxLabelRootDepth < 100 ) { // Too small?
 176     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 177     MaxLabelRootDepth = 100;
 178   }
 179   // One-time initialization of some register masks.
 180   init_spill_mask( C->root()->in(1) );
 181   _return_addr_mask = return_addr();
 182 #ifdef _LP64
 183   // Pointers take 2 slots in 64-bit land
 184   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 185 #endif
 186 
 187   // Map a Java-signature return type into return register-value
 188   // machine registers for 0, 1 and 2 returned values.
 189   const TypeTuple *range = C->tf()->range();
 190   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 191     // Get ideal-register return type
 192     uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 193     // Get machine return register
 194     uint sop = C->start()->Opcode();
 195     OptoRegPair regs = return_value(ireg, false);
 196 
 197     // And mask for same
 198     _return_value_mask = RegMask(regs.first());
 199     if( OptoReg::is_valid(regs.second()) )
 200       _return_value_mask.Insert(regs.second());
 201   }
 202 
 203   // ---------------
 204   // Frame Layout
 205 
 206   // Need the method signature to determine the incoming argument types,
 207   // because the types determine which registers the incoming arguments are
 208   // in, and this affects the matched code.
 209   const TypeTuple *domain = C->tf()->domain();
 210   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 211   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 212   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 213   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 214   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 215   uint i;
 216   for( i = 0; i<argcnt; i++ ) {
 217     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 218   }
 219 
 220   // Pass array of ideal registers and length to USER code (from the AD file)
 221   // that will convert this to an array of register numbers.
 222   const StartNode *start = C->start();
 223   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 224 #ifdef ASSERT
 225   // Sanity check users' calling convention.  Real handy while trying to
 226   // get the initial port correct.
 227   { for (uint i = 0; i<argcnt; i++) {
 228       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 229         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 230         _parm_regs[i].set_bad();
 231         continue;
 232       }
 233       VMReg parm_reg = vm_parm_regs[i].first();
 234       assert(parm_reg->is_valid(), "invalid arg?");
 235       if (parm_reg->is_reg()) {
 236         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 237         assert(can_be_java_arg(opto_parm_reg) ||
 238                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 239                opto_parm_reg == inline_cache_reg(),
 240                "parameters in register must be preserved by runtime stubs");
 241       }
 242       for (uint j = 0; j < i; j++) {
 243         assert(parm_reg != vm_parm_regs[j].first(),
 244                "calling conv. must produce distinct regs");
 245       }
 246     }
 247   }
 248 #endif
 249 
 250   // Do some initial frame layout.
 251 
 252   // Compute the old incoming SP (may be called FP) as
 253   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 254   _old_SP = C->compute_old_SP();
 255   assert( is_even(_old_SP), "must be even" );
 256 
 257   // Compute highest incoming stack argument as
 258   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 259   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 260   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 261   for( i = 0; i < argcnt; i++ ) {
 262     // Permit args to have no register
 263     _calling_convention_mask[i].Clear();
 264     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 265       continue;
 266     }
 267     // calling_convention returns stack arguments as a count of
 268     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 269     // the allocators point of view, taking into account all the
 270     // preserve area, locks & pad2.
 271 
 272     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 273     if( OptoReg::is_valid(reg1))
 274       _calling_convention_mask[i].Insert(reg1);
 275 
 276     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 277     if( OptoReg::is_valid(reg2))
 278       _calling_convention_mask[i].Insert(reg2);
 279 
 280     // Saved biased stack-slot register number
 281     _parm_regs[i].set_pair(reg2, reg1);
 282   }
 283 
 284   // Finally, make sure the incoming arguments take up an even number of
 285   // words, in case the arguments or locals need to contain doubleword stack
 286   // slots.  The rest of the system assumes that stack slot pairs (in
 287   // particular, in the spill area) which look aligned will in fact be
 288   // aligned relative to the stack pointer in the target machine.  Double
 289   // stack slots will always be allocated aligned.
 290   _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong));
 291 
 292   // Compute highest outgoing stack argument as
 293   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 294   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 295   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 296 
 297   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 298     // the compiler cannot represent this method's calling sequence
 299     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 300   }
 301 
 302   if (C->failing())  return;  // bailed out on incoming arg failure
 303 
 304   // ---------------
 305   // Collect roots of matcher trees.  Every node for which
 306   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 307   // can be a valid interior of some tree.
 308   find_shared( C->root() );
 309   find_shared( C->top() );
 310 
 311   C->print_method(PHASE_BEFORE_MATCHING);
 312 
 313   // Create new ideal node ConP #NULL even if it does exist in old space
 314   // to avoid false sharing if the corresponding mach node is not used.
 315   // The corresponding mach node is only used in rare cases for derived
 316   // pointers.
 317   Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
 318 
 319   // Swap out to old-space; emptying new-space
 320   Arena *old = C->node_arena()->move_contents(C->old_arena());
 321 
 322   // Save debug and profile information for nodes in old space:
 323   _old_node_note_array = C->node_note_array();
 324   if (_old_node_note_array != NULL) {
 325     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 326                            (C->comp_arena(), _old_node_note_array->length(),
 327                             0, NULL));
 328   }
 329 
 330   // Pre-size the new_node table to avoid the need for range checks.
 331   grow_new_node_array(C->unique());
 332 
 333   // Reset node counter so MachNodes start with _idx at 0
 334   int live_nodes = C->live_nodes();
 335   C->set_unique(0);
 336   C->reset_dead_node_list();
 337 
 338   // Recursively match trees from old space into new space.
 339   // Correct leaves of new-space Nodes; they point to old-space.
 340   _visited.Clear();             // Clear visit bits for xform call
 341   C->set_cached_top_node(xform( C->top(), live_nodes ));
 342   if (!C->failing()) {
 343     Node* xroot =        xform( C->root(), 1 );
 344     if (xroot == NULL) {
 345       Matcher::soft_match_failure();  // recursive matching process failed
 346       C->record_method_not_compilable("instruction match failed");
 347     } else {
 348       // During matching shared constants were attached to C->root()
 349       // because xroot wasn't available yet, so transfer the uses to
 350       // the xroot.
 351       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 352         Node* n = C->root()->fast_out(j);
 353         if (C->node_arena()->contains(n)) {
 354           assert(n->in(0) == C->root(), "should be control user");
 355           n->set_req(0, xroot);
 356           --j;
 357           --jmax;
 358         }
 359       }
 360 
 361       // Generate new mach node for ConP #NULL
 362       assert(new_ideal_null != NULL, "sanity");
 363       _mach_null = match_tree(new_ideal_null);
 364       // Don't set control, it will confuse GCM since there are no uses.
 365       // The control will be set when this node is used first time
 366       // in find_base_for_derived().
 367       assert(_mach_null != NULL, "");
 368 
 369       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 370 
 371 #ifdef ASSERT
 372       verify_new_nodes_only(xroot);
 373 #endif
 374     }
 375   }
 376   if (C->top() == NULL || C->root() == NULL) {
 377     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 378   }
 379   if (C->failing()) {
 380     // delete old;
 381     old->destruct_contents();
 382     return;
 383   }
 384   assert( C->top(), "" );
 385   assert( C->root(), "" );
 386   validate_null_checks();
 387 
 388   // Now smoke old-space
 389   NOT_DEBUG( old->destruct_contents() );
 390 
 391   // ------------------------
 392   // Set up save-on-entry registers
 393   Fixup_Save_On_Entry( );
 394 }
 395 
 396 
 397 //------------------------------Fixup_Save_On_Entry----------------------------
 398 // The stated purpose of this routine is to take care of save-on-entry
 399 // registers.  However, the overall goal of the Match phase is to convert into
 400 // machine-specific instructions which have RegMasks to guide allocation.
 401 // So what this procedure really does is put a valid RegMask on each input
 402 // to the machine-specific variations of all Return, TailCall and Halt
 403 // instructions.  It also adds edgs to define the save-on-entry values (and of
 404 // course gives them a mask).
 405 
 406 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 407   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 408   // Do all the pre-defined register masks
 409   rms[TypeFunc::Control  ] = RegMask::Empty;
 410   rms[TypeFunc::I_O      ] = RegMask::Empty;
 411   rms[TypeFunc::Memory   ] = RegMask::Empty;
 412   rms[TypeFunc::ReturnAdr] = ret_adr;
 413   rms[TypeFunc::FramePtr ] = fp;
 414   return rms;
 415 }
 416 
 417 //---------------------------init_first_stack_mask-----------------------------
 418 // Create the initial stack mask used by values spilling to the stack.
 419 // Disallow any debug info in outgoing argument areas by setting the
 420 // initial mask accordingly.
 421 void Matcher::init_first_stack_mask() {
 422 
 423   // Allocate storage for spill masks as masks for the appropriate load type.
 424   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+5));
 425 
 426   idealreg2spillmask  [Op_RegN] = &rms[0];
 427   idealreg2spillmask  [Op_RegI] = &rms[1];
 428   idealreg2spillmask  [Op_RegL] = &rms[2];
 429   idealreg2spillmask  [Op_RegF] = &rms[3];
 430   idealreg2spillmask  [Op_RegD] = &rms[4];
 431   idealreg2spillmask  [Op_RegP] = &rms[5];
 432 
 433   idealreg2debugmask  [Op_RegN] = &rms[6];
 434   idealreg2debugmask  [Op_RegI] = &rms[7];
 435   idealreg2debugmask  [Op_RegL] = &rms[8];
 436   idealreg2debugmask  [Op_RegF] = &rms[9];
 437   idealreg2debugmask  [Op_RegD] = &rms[10];
 438   idealreg2debugmask  [Op_RegP] = &rms[11];
 439 
 440   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 441   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 442   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 443   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 444   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 445   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 446 
 447   idealreg2spillmask  [Op_VecS] = &rms[18];
 448   idealreg2spillmask  [Op_VecD] = &rms[19];
 449   idealreg2spillmask  [Op_VecX] = &rms[20];
 450   idealreg2spillmask  [Op_VecY] = &rms[21];
 451   idealreg2spillmask  [Op_VecZ] = &rms[22];
 452 
 453   OptoReg::Name i;
 454 
 455   // At first, start with the empty mask
 456   C->FIRST_STACK_mask().Clear();
 457 
 458   // Add in the incoming argument area
 459   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 460   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 461     C->FIRST_STACK_mask().Insert(i);
 462   }
 463   // Add in all bits past the outgoing argument area
 464   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 465             "must be able to represent all call arguments in reg mask");
 466   OptoReg::Name init = _out_arg_limit;
 467   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 468     C->FIRST_STACK_mask().Insert(i);
 469   }
 470   // Finally, set the "infinite stack" bit.
 471   C->FIRST_STACK_mask().set_AllStack();
 472 
 473   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 474   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 475   // Keep spill masks aligned.
 476   aligned_stack_mask.clear_to_pairs();
 477   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 478 
 479   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 480 #ifdef _LP64
 481   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 482    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 483    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 484 #else
 485    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 486 #endif
 487   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 488    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 489   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 490    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 491   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 492    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 493   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 494    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 495 
 496   if (Matcher::vector_size_supported(T_BYTE,4)) {
 497     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 498      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 499   }
 500   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 501     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 502     // RA guarantees such alignment since it is needed for Double and Long values.
 503     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 504      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 505   }
 506   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 507     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 508     //
 509     // RA can use input arguments stack slots for spills but until RA
 510     // we don't know frame size and offset of input arg stack slots.
 511     //
 512     // Exclude last input arg stack slots to avoid spilling vectors there
 513     // otherwise vector spills could stomp over stack slots in caller frame.
 514     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 515     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 516       aligned_stack_mask.Remove(in);
 517       in = OptoReg::add(in, -1);
 518     }
 519      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 520      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 521     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 522      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 523   }
 524   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 525     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 526     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 527     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 528       aligned_stack_mask.Remove(in);
 529       in = OptoReg::add(in, -1);
 530     }
 531      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 532      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 533     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 534      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 535   }
 536   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 537     // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
 538     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 539     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
 540       aligned_stack_mask.Remove(in);
 541       in = OptoReg::add(in, -1);
 542     }
 543      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
 544      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 545     *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
 546      idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
 547   }
 548    if (UseFPUForSpilling) {
 549      // This mask logic assumes that the spill operations are
 550      // symmetric and that the registers involved are the same size.
 551      // On sparc for instance we may have to use 64 bit moves will
 552      // kill 2 registers when used with F0-F31.
 553      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 554      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 555 #ifdef _LP64
 556      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 557      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 558      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 559      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 560 #else
 561      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 562 #ifdef ARM
 563      // ARM has support for moving 64bit values between a pair of
 564      // integer registers and a double register
 565      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 566      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 567 #endif
 568 #endif
 569    }
 570 
 571   // Make up debug masks.  Any spill slot plus callee-save registers.
 572   // Caller-save registers are assumed to be trashable by the various
 573   // inline-cache fixup routines.
 574   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 575   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 576   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 577   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 578   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 579   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 580 
 581   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 582   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 583   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 584   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 585   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 586   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 587 
 588   // Prevent stub compilations from attempting to reference
 589   // callee-saved registers from debug info
 590   bool exclude_soe = !Compile::current()->is_method_compilation();
 591 
 592   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 593     // registers the caller has to save do not work
 594     if( _register_save_policy[i] == 'C' ||
 595         _register_save_policy[i] == 'A' ||
 596         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 597       idealreg2debugmask  [Op_RegN]->Remove(i);
 598       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 599       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 600       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 601       idealreg2debugmask  [Op_RegD]->Remove(i);
 602       idealreg2debugmask  [Op_RegP]->Remove(i);
 603 
 604       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 605       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 606       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 607       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 608       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 609       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 610     }
 611   }
 612 
 613   // Subtract the register we use to save the SP for MethodHandle
 614   // invokes to from the debug mask.
 615   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 616   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 617   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 618   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 619   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 620   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 621   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 622 }
 623 
 624 //---------------------------is_save_on_entry----------------------------------
 625 bool Matcher::is_save_on_entry( int reg ) {
 626   return
 627     _register_save_policy[reg] == 'E' ||
 628     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 629     // Also save argument registers in the trampolining stubs
 630     (C->save_argument_registers() && is_spillable_arg(reg));
 631 }
 632 
 633 //---------------------------Fixup_Save_On_Entry-------------------------------
 634 void Matcher::Fixup_Save_On_Entry( ) {
 635   init_first_stack_mask();
 636 
 637   Node *root = C->root();       // Short name for root
 638   // Count number of save-on-entry registers.
 639   uint soe_cnt = number_of_saved_registers();
 640   uint i;
 641 
 642   // Find the procedure Start Node
 643   StartNode *start = C->start();
 644   assert( start, "Expect a start node" );
 645 
 646   // Save argument registers in the trampolining stubs
 647   if( C->save_argument_registers() )
 648     for( i = 0; i < _last_Mach_Reg; i++ )
 649       if( is_spillable_arg(i) )
 650         soe_cnt++;
 651 
 652   // Input RegMask array shared by all Returns.
 653   // The type for doubles and longs has a count of 2, but
 654   // there is only 1 returned value
 655   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 656   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 657   // Returns have 0 or 1 returned values depending on call signature.
 658   // Return register is specified by return_value in the AD file.
 659   if (ret_edge_cnt > TypeFunc::Parms)
 660     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 661 
 662   // Input RegMask array shared by all Rethrows.
 663   uint reth_edge_cnt = TypeFunc::Parms+1;
 664   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 665   // Rethrow takes exception oop only, but in the argument 0 slot.
 666   OptoReg::Name reg = find_receiver(false);
 667   if (reg >= 0) {
 668     reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
 669 #ifdef _LP64
 670     // Need two slots for ptrs in 64-bit land
 671     reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
 672 #endif
 673   }
 674 
 675   // Input RegMask array shared by all TailCalls
 676   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 677   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 678 
 679   // Input RegMask array shared by all TailJumps
 680   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 681   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 682 
 683   // TailCalls have 2 returned values (target & moop), whose masks come
 684   // from the usual MachNode/MachOper mechanism.  Find a sample
 685   // TailCall to extract these masks and put the correct masks into
 686   // the tail_call_rms array.
 687   for( i=1; i < root->req(); i++ ) {
 688     MachReturnNode *m = root->in(i)->as_MachReturn();
 689     if( m->ideal_Opcode() == Op_TailCall ) {
 690       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 691       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 692       break;
 693     }
 694   }
 695 
 696   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 697   // from the usual MachNode/MachOper mechanism.  Find a sample
 698   // TailJump to extract these masks and put the correct masks into
 699   // the tail_jump_rms array.
 700   for( i=1; i < root->req(); i++ ) {
 701     MachReturnNode *m = root->in(i)->as_MachReturn();
 702     if( m->ideal_Opcode() == Op_TailJump ) {
 703       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 704       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 705       break;
 706     }
 707   }
 708 
 709   // Input RegMask array shared by all Halts
 710   uint halt_edge_cnt = TypeFunc::Parms;
 711   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 712 
 713   // Capture the return input masks into each exit flavor
 714   for( i=1; i < root->req(); i++ ) {
 715     MachReturnNode *exit = root->in(i)->as_MachReturn();
 716     switch( exit->ideal_Opcode() ) {
 717       case Op_Return   : exit->_in_rms = ret_rms;  break;
 718       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 719       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 720       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 721       case Op_Halt     : exit->_in_rms = halt_rms; break;
 722       default          : ShouldNotReachHere();
 723     }
 724   }
 725 
 726   // Next unused projection number from Start.
 727   int proj_cnt = C->tf()->domain()->cnt();
 728 
 729   // Do all the save-on-entry registers.  Make projections from Start for
 730   // them, and give them a use at the exit points.  To the allocator, they
 731   // look like incoming register arguments.
 732   for( i = 0; i < _last_Mach_Reg; i++ ) {
 733     if( is_save_on_entry(i) ) {
 734 
 735       // Add the save-on-entry to the mask array
 736       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 737       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 738       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 739       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 740       // Halts need the SOE registers, but only in the stack as debug info.
 741       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 742       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 743 
 744       Node *mproj;
 745 
 746       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 747       // into a single RegD.
 748       if( (i&1) == 0 &&
 749           _register_save_type[i  ] == Op_RegF &&
 750           _register_save_type[i+1] == Op_RegF &&
 751           is_save_on_entry(i+1) ) {
 752         // Add other bit for double
 753         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 754         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 755         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 756         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 757         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 758         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 759         proj_cnt += 2;          // Skip 2 for doubles
 760       }
 761       else if( (i&1) == 1 &&    // Else check for high half of double
 762                _register_save_type[i-1] == Op_RegF &&
 763                _register_save_type[i  ] == Op_RegF &&
 764                is_save_on_entry(i-1) ) {
 765         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 766         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 767         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 768         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 769         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 770         mproj = C->top();
 771       }
 772       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 773       // into a single RegL.
 774       else if( (i&1) == 0 &&
 775           _register_save_type[i  ] == Op_RegI &&
 776           _register_save_type[i+1] == Op_RegI &&
 777         is_save_on_entry(i+1) ) {
 778         // Add other bit for long
 779         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 780         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 781         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 782         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 783         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 784         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 785         proj_cnt += 2;          // Skip 2 for longs
 786       }
 787       else if( (i&1) == 1 &&    // Else check for high half of long
 788                _register_save_type[i-1] == Op_RegI &&
 789                _register_save_type[i  ] == Op_RegI &&
 790                is_save_on_entry(i-1) ) {
 791         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 792         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 793         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 794         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 795         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 796         mproj = C->top();
 797       } else {
 798         // Make a projection for it off the Start
 799         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 800       }
 801 
 802       ret_edge_cnt ++;
 803       reth_edge_cnt ++;
 804       tail_call_edge_cnt ++;
 805       tail_jump_edge_cnt ++;
 806       halt_edge_cnt ++;
 807 
 808       // Add a use of the SOE register to all exit paths
 809       for( uint j=1; j < root->req(); j++ )
 810         root->in(j)->add_req(mproj);
 811     } // End of if a save-on-entry register
 812   } // End of for all machine registers
 813 }
 814 
 815 //------------------------------init_spill_mask--------------------------------
 816 void Matcher::init_spill_mask( Node *ret ) {
 817   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 818 
 819   OptoReg::c_frame_pointer = c_frame_pointer();
 820   c_frame_ptr_mask = c_frame_pointer();
 821 #ifdef _LP64
 822   // pointers are twice as big
 823   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 824 #endif
 825 
 826   // Start at OptoReg::stack0()
 827   STACK_ONLY_mask.Clear();
 828   OptoReg::Name init = OptoReg::stack2reg(0);
 829   // STACK_ONLY_mask is all stack bits
 830   OptoReg::Name i;
 831   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 832     STACK_ONLY_mask.Insert(i);
 833   // Also set the "infinite stack" bit.
 834   STACK_ONLY_mask.set_AllStack();
 835 
 836   // Copy the register names over into the shared world
 837   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 838     // SharedInfo::regName[i] = regName[i];
 839     // Handy RegMasks per machine register
 840     mreg2regmask[i].Insert(i);
 841   }
 842 
 843   // Grab the Frame Pointer
 844   Node *fp  = ret->in(TypeFunc::FramePtr);
 845   Node *mem = ret->in(TypeFunc::Memory);
 846   const TypePtr* atp = TypePtr::BOTTOM;
 847   // Share frame pointer while making spill ops
 848   set_shared(fp);
 849 
 850   // Compute generic short-offset Loads
 851 #ifdef _LP64
 852   MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 853 #endif
 854   MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
 855   MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest, false));
 856   MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
 857   MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
 858   MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 859   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 860          spillD != NULL && spillP != NULL, "");
 861   // Get the ADLC notion of the right regmask, for each basic type.
 862 #ifdef _LP64
 863   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 864 #endif
 865   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 866   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 867   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 868   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 869   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 870 
 871   // Vector regmasks.
 872   if (Matcher::vector_size_supported(T_BYTE,4)) {
 873     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 874     MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 875     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 876   }
 877   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 878     MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 879     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 880   }
 881   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 882     MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 883     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 884   }
 885   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 886     MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 887     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 888   }
 889   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 890     MachNode *spillVectZ = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTZ));
 891     idealreg2regmask[Op_VecZ] = &spillVectZ->out_RegMask();
 892   }
 893 }
 894 
 895 #ifdef ASSERT
 896 static void match_alias_type(Compile* C, Node* n, Node* m) {
 897   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 898   const TypePtr* nat = n->adr_type();
 899   const TypePtr* mat = m->adr_type();
 900   int nidx = C->get_alias_index(nat);
 901   int midx = C->get_alias_index(mat);
 902   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 903   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 904     for (uint i = 1; i < n->req(); i++) {
 905       Node* n1 = n->in(i);
 906       const TypePtr* n1at = n1->adr_type();
 907       if (n1at != NULL) {
 908         nat = n1at;
 909         nidx = C->get_alias_index(n1at);
 910       }
 911     }
 912   }
 913   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 914   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 915     switch (n->Opcode()) {
 916     case Op_PrefetchAllocation:
 917       nidx = Compile::AliasIdxRaw;
 918       nat = TypeRawPtr::BOTTOM;
 919       break;
 920     }
 921   }
 922   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 923     switch (n->Opcode()) {
 924     case Op_ClearArray:
 925       midx = Compile::AliasIdxRaw;
 926       mat = TypeRawPtr::BOTTOM;
 927       break;
 928     }
 929   }
 930   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 931     switch (n->Opcode()) {
 932     case Op_Return:
 933     case Op_Rethrow:
 934     case Op_Halt:
 935     case Op_TailCall:
 936     case Op_TailJump:
 937       nidx = Compile::AliasIdxBot;
 938       nat = TypePtr::BOTTOM;
 939       break;
 940     }
 941   }
 942   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 943     switch (n->Opcode()) {
 944     case Op_StrComp:
 945     case Op_StrEquals:
 946     case Op_StrIndexOf:
 947     case Op_StrIndexOfChar:
 948     case Op_AryEq:
 949     case Op_HasNegatives:
 950     case Op_MemBarVolatile:
 951     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 952     case Op_StrInflatedCopy:
 953     case Op_StrCompressedCopy:
 954     case Op_OnSpinWait:
 955     case Op_EncodeISOArray:
 956       nidx = Compile::AliasIdxTop;
 957       nat = NULL;
 958       break;
 959     }
 960   }
 961   if (nidx != midx) {
 962     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 963       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 964       n->dump();
 965       m->dump();
 966     }
 967     assert(C->subsume_loads() && C->must_alias(nat, midx),
 968            "must not lose alias info when matching");
 969   }
 970 }
 971 #endif
 972 
 973 //------------------------------xform------------------------------------------
 974 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 975 // Node in new-space.  Given a new-space Node, recursively walk his children.
 976 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 977 Node *Matcher::xform( Node *n, int max_stack ) {
 978   // Use one stack to keep both: child's node/state and parent's node/index
 979   MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
 980   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 981   while (mstack.is_nonempty()) {
 982     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
 983     if (C->failing()) return NULL;
 984     n = mstack.node();          // Leave node on stack
 985     Node_State nstate = mstack.state();
 986     if (nstate == Visit) {
 987       mstack.set_state(Post_Visit);
 988       Node *oldn = n;
 989       // Old-space or new-space check
 990       if (!C->node_arena()->contains(n)) {
 991         // Old space!
 992         Node* m;
 993         if (has_new_node(n)) {  // Not yet Label/Reduced
 994           m = new_node(n);
 995         } else {
 996           if (!is_dontcare(n)) { // Matcher can match this guy
 997             // Calls match special.  They match alone with no children.
 998             // Their children, the incoming arguments, match normally.
 999             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1000             if (C->failing())  return NULL;
1001             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1002           } else {                  // Nothing the matcher cares about
1003             if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Multi()) {       // Projections?
1004               // Convert to machine-dependent projection
1005               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1006 #ifdef ASSERT
1007               _new2old_map.map(m->_idx, n);
1008 #endif
1009               if (m->in(0) != NULL) // m might be top
1010                 collect_null_checks(m, n);
1011             } else {                // Else just a regular 'ol guy
1012               m = n->clone();       // So just clone into new-space
1013 #ifdef ASSERT
1014               _new2old_map.map(m->_idx, n);
1015 #endif
1016               // Def-Use edges will be added incrementally as Uses
1017               // of this node are matched.
1018               assert(m->outcnt() == 0, "no Uses of this clone yet");
1019             }
1020           }
1021 
1022           set_new_node(n, m);       // Map old to new
1023           if (_old_node_note_array != NULL) {
1024             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1025                                                   n->_idx);
1026             C->set_node_notes_at(m->_idx, nn);
1027           }
1028           debug_only(match_alias_type(C, n, m));
1029         }
1030         n = m;    // n is now a new-space node
1031         mstack.set_node(n);
1032       }
1033 
1034       // New space!
1035       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1036 
1037       int i;
1038       // Put precedence edges on stack first (match them last).
1039       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1040         Node *m = oldn->in(i);
1041         if (m == NULL) break;
1042         // set -1 to call add_prec() instead of set_req() during Step1
1043         mstack.push(m, Visit, n, -1);
1044       }
1045 
1046       // Handle precedence edges for interior nodes
1047       for (i = n->len()-1; (uint)i >= n->req(); i--) {
1048         Node *m = n->in(i);
1049         if (m == NULL || C->node_arena()->contains(m)) continue;
1050         n->rm_prec(i);
1051         // set -1 to call add_prec() instead of set_req() during Step1
1052         mstack.push(m, Visit, n, -1);
1053       }
1054 
1055       // For constant debug info, I'd rather have unmatched constants.
1056       int cnt = n->req();
1057       JVMState* jvms = n->jvms();
1058       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1059 
1060       // Now do only debug info.  Clone constants rather than matching.
1061       // Constants are represented directly in the debug info without
1062       // the need for executable machine instructions.
1063       // Monitor boxes are also represented directly.
1064       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1065         Node *m = n->in(i);          // Get input
1066         int op = m->Opcode();
1067         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1068         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1069             op == Op_ConF || op == Op_ConD || op == Op_ConL
1070             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1071             ) {
1072           m = m->clone();
1073 #ifdef ASSERT
1074           _new2old_map.map(m->_idx, n);
1075 #endif
1076           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1077           mstack.push(m->in(0), Visit, m, 0);
1078         } else {
1079           mstack.push(m, Visit, n, i);
1080         }
1081       }
1082 
1083       // And now walk his children, and convert his inputs to new-space.
1084       for( ; i >= 0; --i ) { // For all normal inputs do
1085         Node *m = n->in(i);  // Get input
1086         if(m != NULL)
1087           mstack.push(m, Visit, n, i);
1088       }
1089 
1090     }
1091     else if (nstate == Post_Visit) {
1092       // Set xformed input
1093       Node *p = mstack.parent();
1094       if (p != NULL) { // root doesn't have parent
1095         int i = (int)mstack.index();
1096         if (i >= 0)
1097           p->set_req(i, n); // required input
1098         else if (i == -1)
1099           p->add_prec(n);   // precedence input
1100         else
1101           ShouldNotReachHere();
1102       }
1103       mstack.pop(); // remove processed node from stack
1104     }
1105     else {
1106       ShouldNotReachHere();
1107     }
1108   } // while (mstack.is_nonempty())
1109   return n; // Return new-space Node
1110 }
1111 
1112 //------------------------------warp_outgoing_stk_arg------------------------
1113 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1114   // Convert outgoing argument location to a pre-biased stack offset
1115   if (reg->is_stack()) {
1116     OptoReg::Name warped = reg->reg2stack();
1117     // Adjust the stack slot offset to be the register number used
1118     // by the allocator.
1119     warped = OptoReg::add(begin_out_arg_area, warped);
1120     // Keep track of the largest numbered stack slot used for an arg.
1121     // Largest used slot per call-site indicates the amount of stack
1122     // that is killed by the call.
1123     if( warped >= out_arg_limit_per_call )
1124       out_arg_limit_per_call = OptoReg::add(warped,1);
1125     if (!RegMask::can_represent_arg(warped)) {
1126       C->record_method_not_compilable("unsupported calling sequence");
1127       return OptoReg::Bad;
1128     }
1129     return warped;
1130   }
1131   return OptoReg::as_OptoReg(reg);
1132 }
1133 
1134 
1135 //------------------------------match_sfpt-------------------------------------
1136 // Helper function to match call instructions.  Calls match special.
1137 // They match alone with no children.  Their children, the incoming
1138 // arguments, match normally.
1139 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1140   MachSafePointNode *msfpt = NULL;
1141   MachCallNode      *mcall = NULL;
1142   uint               cnt;
1143   // Split out case for SafePoint vs Call
1144   CallNode *call;
1145   const TypeTuple *domain;
1146   ciMethod*        method = NULL;
1147   bool             is_method_handle_invoke = false;  // for special kill effects
1148   if( sfpt->is_Call() ) {
1149     call = sfpt->as_Call();
1150     domain = call->tf()->domain();
1151     cnt = domain->cnt();
1152 
1153     // Match just the call, nothing else
1154     MachNode *m = match_tree(call);
1155     if (C->failing())  return NULL;
1156     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1157 
1158     // Copy data from the Ideal SafePoint to the machine version
1159     mcall = m->as_MachCall();
1160 
1161     mcall->set_tf(         call->tf());
1162     mcall->set_entry_point(call->entry_point());
1163     mcall->set_cnt(        call->cnt());
1164 
1165     if( mcall->is_MachCallJava() ) {
1166       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1167       const CallJavaNode *call_java =  call->as_CallJava();
1168       method = call_java->method();
1169       mcall_java->_method = method;
1170       mcall_java->_bci = call_java->_bci;
1171       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1172       is_method_handle_invoke = call_java->is_method_handle_invoke();
1173       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1174       mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
1175       if (is_method_handle_invoke) {
1176         C->set_has_method_handle_invokes(true);
1177       }
1178       if( mcall_java->is_MachCallStaticJava() )
1179         mcall_java->as_MachCallStaticJava()->_name =
1180          call_java->as_CallStaticJava()->_name;
1181       if( mcall_java->is_MachCallDynamicJava() )
1182         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1183          call_java->as_CallDynamicJava()->_vtable_index;
1184     }
1185     else if( mcall->is_MachCallRuntime() ) {
1186       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1187     }
1188     msfpt = mcall;
1189   }
1190   // This is a non-call safepoint
1191   else {
1192     call = NULL;
1193     domain = NULL;
1194     MachNode *mn = match_tree(sfpt);
1195     if (C->failing())  return NULL;
1196     msfpt = mn->as_MachSafePoint();
1197     cnt = TypeFunc::Parms;
1198   }
1199 
1200   // Advertise the correct memory effects (for anti-dependence computation).
1201   msfpt->set_adr_type(sfpt->adr_type());
1202 
1203   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1204   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1205   // Empty them all.
1206   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1207 
1208   // Do all the pre-defined non-Empty register masks
1209   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1210   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1211 
1212   // Place first outgoing argument can possibly be put.
1213   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1214   assert( is_even(begin_out_arg_area), "" );
1215   // Compute max outgoing register number per call site.
1216   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1217   // Calls to C may hammer extra stack slots above and beyond any arguments.
1218   // These are usually backing store for register arguments for varargs.
1219   if( call != NULL && call->is_CallRuntime() )
1220     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1221 
1222 
1223   // Do the normal argument list (parameters) register masks
1224   int argcnt = cnt - TypeFunc::Parms;
1225   if( argcnt > 0 ) {          // Skip it all if we have no args
1226     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1227     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1228     int i;
1229     for( i = 0; i < argcnt; i++ ) {
1230       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1231     }
1232     // V-call to pick proper calling convention
1233     call->calling_convention( sig_bt, parm_regs, argcnt );
1234 
1235 #ifdef ASSERT
1236     // Sanity check users' calling convention.  Really handy during
1237     // the initial porting effort.  Fairly expensive otherwise.
1238     { for (int i = 0; i<argcnt; i++) {
1239       if( !parm_regs[i].first()->is_valid() &&
1240           !parm_regs[i].second()->is_valid() ) continue;
1241       VMReg reg1 = parm_regs[i].first();
1242       VMReg reg2 = parm_regs[i].second();
1243       for (int j = 0; j < i; j++) {
1244         if( !parm_regs[j].first()->is_valid() &&
1245             !parm_regs[j].second()->is_valid() ) continue;
1246         VMReg reg3 = parm_regs[j].first();
1247         VMReg reg4 = parm_regs[j].second();
1248         if( !reg1->is_valid() ) {
1249           assert( !reg2->is_valid(), "valid halvsies" );
1250         } else if( !reg3->is_valid() ) {
1251           assert( !reg4->is_valid(), "valid halvsies" );
1252         } else {
1253           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1254           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1255           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1256           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1257           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1258           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1259         }
1260       }
1261     }
1262     }
1263 #endif
1264 
1265     // Visit each argument.  Compute its outgoing register mask.
1266     // Return results now can have 2 bits returned.
1267     // Compute max over all outgoing arguments both per call-site
1268     // and over the entire method.
1269     for( i = 0; i < argcnt; i++ ) {
1270       // Address of incoming argument mask to fill in
1271       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1272       if( !parm_regs[i].first()->is_valid() &&
1273           !parm_regs[i].second()->is_valid() ) {
1274         continue;               // Avoid Halves
1275       }
1276       // Grab first register, adjust stack slots and insert in mask.
1277       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1278       if (OptoReg::is_valid(reg1))
1279         rm->Insert( reg1 );
1280       // Grab second register (if any), adjust stack slots and insert in mask.
1281       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1282       if (OptoReg::is_valid(reg2))
1283         rm->Insert( reg2 );
1284     } // End of for all arguments
1285 
1286     // Compute number of stack slots needed to restore stack in case of
1287     // Pascal-style argument popping.
1288     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1289   }
1290 
1291   // Compute the max stack slot killed by any call.  These will not be
1292   // available for debug info, and will be used to adjust FIRST_STACK_mask
1293   // after all call sites have been visited.
1294   if( _out_arg_limit < out_arg_limit_per_call)
1295     _out_arg_limit = out_arg_limit_per_call;
1296 
1297   if (mcall) {
1298     // Kill the outgoing argument area, including any non-argument holes and
1299     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1300     // Since the max-per-method covers the max-per-call-site and debug info
1301     // is excluded on the max-per-method basis, debug info cannot land in
1302     // this killed area.
1303     uint r_cnt = mcall->tf()->range()->cnt();
1304     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1305     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1306       C->record_method_not_compilable("unsupported outgoing calling sequence");
1307     } else {
1308       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1309         proj->_rout.Insert(OptoReg::Name(i));
1310     }
1311     if (proj->_rout.is_NotEmpty()) {
1312       push_projection(proj);
1313     }
1314   }
1315   // Transfer the safepoint information from the call to the mcall
1316   // Move the JVMState list
1317   msfpt->set_jvms(sfpt->jvms());
1318   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1319     jvms->set_map(sfpt);
1320   }
1321 
1322   // Debug inputs begin just after the last incoming parameter
1323   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1324          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1325 
1326   // Move the OopMap
1327   msfpt->_oop_map = sfpt->_oop_map;
1328 
1329   // Add additional edges.
1330   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1331     // For these calls we can not add MachConstantBase in expand(), as the
1332     // ins are not complete then.
1333     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1334     if (msfpt->jvms() &&
1335         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1336       // We added an edge before jvms, so we must adapt the position of the ins.
1337       msfpt->jvms()->adapt_position(+1);
1338     }
1339   }
1340 
1341   // Registers killed by the call are set in the local scheduling pass
1342   // of Global Code Motion.
1343   return msfpt;
1344 }
1345 
1346 //---------------------------match_tree----------------------------------------
1347 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1348 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1349 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1350 // a Load's result RegMask for memoization in idealreg2regmask[]
1351 MachNode *Matcher::match_tree( const Node *n ) {
1352   assert( n->Opcode() != Op_Phi, "cannot match" );
1353   assert( !n->is_block_start(), "cannot match" );
1354   // Set the mark for all locally allocated State objects.
1355   // When this call returns, the _states_arena arena will be reset
1356   // freeing all State objects.
1357   ResourceMark rm( &_states_arena );
1358 
1359   LabelRootDepth = 0;
1360 
1361   // StoreNodes require their Memory input to match any LoadNodes
1362   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1363 #ifdef ASSERT
1364   Node* save_mem_node = _mem_node;
1365   _mem_node = n->is_Store() ? (Node*)n : NULL;
1366 #endif
1367   // State object for root node of match tree
1368   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1369   State *s = new (&_states_arena) State;
1370   s->_kids[0] = NULL;
1371   s->_kids[1] = NULL;
1372   s->_leaf = (Node*)n;
1373   // Label the input tree, allocating labels from top-level arena
1374   Label_Root( n, s, n->in(0), mem );
1375   if (C->failing())  return NULL;
1376 
1377   // The minimum cost match for the whole tree is found at the root State
1378   uint mincost = max_juint;
1379   uint cost = max_juint;
1380   uint i;
1381   for( i = 0; i < NUM_OPERANDS; i++ ) {
1382     if( s->valid(i) &&                // valid entry and
1383         s->_cost[i] < cost &&         // low cost and
1384         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1385       cost = s->_cost[mincost=i];
1386   }
1387   if (mincost == max_juint) {
1388 #ifndef PRODUCT
1389     tty->print("No matching rule for:");
1390     s->dump();
1391 #endif
1392     Matcher::soft_match_failure();
1393     return NULL;
1394   }
1395   // Reduce input tree based upon the state labels to machine Nodes
1396   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1397 #ifdef ASSERT
1398   _old2new_map.map(n->_idx, m);
1399   _new2old_map.map(m->_idx, (Node*)n);
1400 #endif
1401 
1402   // Add any Matcher-ignored edges
1403   uint cnt = n->req();
1404   uint start = 1;
1405   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1406   if( n->is_AddP() ) {
1407     assert( mem == (Node*)1, "" );
1408     start = AddPNode::Base+1;
1409   }
1410   for( i = start; i < cnt; i++ ) {
1411     if( !n->match_edge(i) ) {
1412       if( i < m->req() )
1413         m->ins_req( i, n->in(i) );
1414       else
1415         m->add_req( n->in(i) );
1416     }
1417   }
1418 
1419   debug_only( _mem_node = save_mem_node; )
1420   return m;
1421 }
1422 
1423 
1424 //------------------------------match_into_reg---------------------------------
1425 // Choose to either match this Node in a register or part of the current
1426 // match tree.  Return true for requiring a register and false for matching
1427 // as part of the current match tree.
1428 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1429 
1430   const Type *t = m->bottom_type();
1431 
1432   if (t->singleton()) {
1433     // Never force constants into registers.  Allow them to match as
1434     // constants or registers.  Copies of the same value will share
1435     // the same register.  See find_shared_node.
1436     return false;
1437   } else {                      // Not a constant
1438     // Stop recursion if they have different Controls.
1439     Node* m_control = m->in(0);
1440     // Control of load's memory can post-dominates load's control.
1441     // So use it since load can't float above its memory.
1442     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1443     if (control && m_control && control != m_control && control != mem_control) {
1444 
1445       // Actually, we can live with the most conservative control we
1446       // find, if it post-dominates the others.  This allows us to
1447       // pick up load/op/store trees where the load can float a little
1448       // above the store.
1449       Node *x = control;
1450       const uint max_scan = 6;  // Arbitrary scan cutoff
1451       uint j;
1452       for (j=0; j<max_scan; j++) {
1453         if (x->is_Region())     // Bail out at merge points
1454           return true;
1455         x = x->in(0);
1456         if (x == m_control)     // Does 'control' post-dominate
1457           break;                // m->in(0)?  If so, we can use it
1458         if (x == mem_control)   // Does 'control' post-dominate
1459           break;                // mem_control?  If so, we can use it
1460       }
1461       if (j == max_scan)        // No post-domination before scan end?
1462         return true;            // Then break the match tree up
1463     }
1464     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1465         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1466       // These are commonly used in address expressions and can
1467       // efficiently fold into them on X64 in some cases.
1468       return false;
1469     }
1470   }
1471 
1472   // Not forceable cloning.  If shared, put it into a register.
1473   return shared;
1474 }
1475 
1476 
1477 //------------------------------Instruction Selection--------------------------
1478 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1479 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1480 // things the Matcher does not match (e.g., Memory), and things with different
1481 // Controls (hence forced into different blocks).  We pass in the Control
1482 // selected for this entire State tree.
1483 
1484 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1485 // Store and the Load must have identical Memories (as well as identical
1486 // pointers).  Since the Matcher does not have anything for Memory (and
1487 // does not handle DAGs), I have to match the Memory input myself.  If the
1488 // Tree root is a Store, I require all Loads to have the identical memory.
1489 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1490   // Since Label_Root is a recursive function, its possible that we might run
1491   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1492   LabelRootDepth++;
1493   if (LabelRootDepth > MaxLabelRootDepth) {
1494     C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth");
1495     return NULL;
1496   }
1497   uint care = 0;                // Edges matcher cares about
1498   uint cnt = n->req();
1499   uint i = 0;
1500 
1501   // Examine children for memory state
1502   // Can only subsume a child into your match-tree if that child's memory state
1503   // is not modified along the path to another input.
1504   // It is unsafe even if the other inputs are separate roots.
1505   Node *input_mem = NULL;
1506   for( i = 1; i < cnt; i++ ) {
1507     if( !n->match_edge(i) ) continue;
1508     Node *m = n->in(i);         // Get ith input
1509     assert( m, "expect non-null children" );
1510     if( m->is_Load() ) {
1511       if( input_mem == NULL ) {
1512         input_mem = m->in(MemNode::Memory);
1513       } else if( input_mem != m->in(MemNode::Memory) ) {
1514         input_mem = NodeSentinel;
1515       }
1516     }
1517   }
1518 
1519   for( i = 1; i < cnt; i++ ){// For my children
1520     if( !n->match_edge(i) ) continue;
1521     Node *m = n->in(i);         // Get ith input
1522     // Allocate states out of a private arena
1523     State *s = new (&_states_arena) State;
1524     svec->_kids[care++] = s;
1525     assert( care <= 2, "binary only for now" );
1526 
1527     // Recursively label the State tree.
1528     s->_kids[0] = NULL;
1529     s->_kids[1] = NULL;
1530     s->_leaf = m;
1531 
1532     // Check for leaves of the State Tree; things that cannot be a part of
1533     // the current tree.  If it finds any, that value is matched as a
1534     // register operand.  If not, then the normal matching is used.
1535     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1536         //
1537         // Stop recursion if this is LoadNode and the root of this tree is a
1538         // StoreNode and the load & store have different memories.
1539         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1540         // Can NOT include the match of a subtree when its memory state
1541         // is used by any of the other subtrees
1542         (input_mem == NodeSentinel) ) {
1543       // Print when we exclude matching due to different memory states at input-loads
1544       if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1545         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
1546         tty->print_cr("invalid input_mem");
1547       }
1548       // Switch to a register-only opcode; this value must be in a register
1549       // and cannot be subsumed as part of a larger instruction.
1550       s->DFA( m->ideal_reg(), m );
1551 
1552     } else {
1553       // If match tree has no control and we do, adopt it for entire tree
1554       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1555         control = m->in(0);         // Pick up control
1556       // Else match as a normal part of the match tree.
1557       control = Label_Root(m,s,control,mem);
1558       if (C->failing()) return NULL;
1559     }
1560   }
1561 
1562 
1563   // Call DFA to match this node, and return
1564   svec->DFA( n->Opcode(), n );
1565 
1566 #ifdef ASSERT
1567   uint x;
1568   for( x = 0; x < _LAST_MACH_OPER; x++ )
1569     if( svec->valid(x) )
1570       break;
1571 
1572   if (x >= _LAST_MACH_OPER) {
1573     n->dump();
1574     svec->dump();
1575     assert( false, "bad AD file" );
1576   }
1577 #endif
1578   return control;
1579 }
1580 
1581 
1582 // Con nodes reduced using the same rule can share their MachNode
1583 // which reduces the number of copies of a constant in the final
1584 // program.  The register allocator is free to split uses later to
1585 // split live ranges.
1586 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1587   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1588 
1589   // See if this Con has already been reduced using this rule.
1590   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1591   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1592   if (last != NULL && rule == last->rule()) {
1593     // Don't expect control change for DecodeN
1594     if (leaf->is_DecodeNarrowPtr())
1595       return last;
1596     // Get the new space root.
1597     Node* xroot = new_node(C->root());
1598     if (xroot == NULL) {
1599       // This shouldn't happen give the order of matching.
1600       return NULL;
1601     }
1602 
1603     // Shared constants need to have their control be root so they
1604     // can be scheduled properly.
1605     Node* control = last->in(0);
1606     if (control != xroot) {
1607       if (control == NULL || control == C->root()) {
1608         last->set_req(0, xroot);
1609       } else {
1610         assert(false, "unexpected control");
1611         return NULL;
1612       }
1613     }
1614     return last;
1615   }
1616   return NULL;
1617 }
1618 
1619 
1620 //------------------------------ReduceInst-------------------------------------
1621 // Reduce a State tree (with given Control) into a tree of MachNodes.
1622 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1623 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1624 // Each MachNode has a number of complicated MachOper operands; each
1625 // MachOper also covers a further tree of Ideal Nodes.
1626 
1627 // The root of the Ideal match tree is always an instruction, so we enter
1628 // the recursion here.  After building the MachNode, we need to recurse
1629 // the tree checking for these cases:
1630 // (1) Child is an instruction -
1631 //     Build the instruction (recursively), add it as an edge.
1632 //     Build a simple operand (register) to hold the result of the instruction.
1633 // (2) Child is an interior part of an instruction -
1634 //     Skip over it (do nothing)
1635 // (3) Child is the start of a operand -
1636 //     Build the operand, place it inside the instruction
1637 //     Call ReduceOper.
1638 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1639   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1640 
1641   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1642   if (shared_node != NULL) {
1643     return shared_node;
1644   }
1645 
1646   // Build the object to represent this state & prepare for recursive calls
1647   MachNode *mach = s->MachNodeGenerator(rule);
1648   guarantee(mach != NULL, "Missing MachNode");
1649   mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
1650   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1651   Node *leaf = s->_leaf;
1652   // Check for instruction or instruction chain rule
1653   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1654     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1655            "duplicating node that's already been matched");
1656     // Instruction
1657     mach->add_req( leaf->in(0) ); // Set initial control
1658     // Reduce interior of complex instruction
1659     ReduceInst_Interior( s, rule, mem, mach, 1 );
1660   } else {
1661     // Instruction chain rules are data-dependent on their inputs
1662     mach->add_req(0);             // Set initial control to none
1663     ReduceInst_Chain_Rule( s, rule, mem, mach );
1664   }
1665 
1666   // If a Memory was used, insert a Memory edge
1667   if( mem != (Node*)1 ) {
1668     mach->ins_req(MemNode::Memory,mem);
1669 #ifdef ASSERT
1670     // Verify adr type after matching memory operation
1671     const MachOper* oper = mach->memory_operand();
1672     if (oper != NULL && oper != (MachOper*)-1) {
1673       // It has a unique memory operand.  Find corresponding ideal mem node.
1674       Node* m = NULL;
1675       if (leaf->is_Mem()) {
1676         m = leaf;
1677       } else {
1678         m = _mem_node;
1679         assert(m != NULL && m->is_Mem(), "expecting memory node");
1680       }
1681       const Type* mach_at = mach->adr_type();
1682       // DecodeN node consumed by an address may have different type
1683       // than its input. Don't compare types for such case.
1684       if (m->adr_type() != mach_at &&
1685           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1686            (m->in(MemNode::Address)->is_AddP() &&
1687             m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) ||
1688            (m->in(MemNode::Address)->is_AddP() &&
1689             m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1690             m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) {
1691         mach_at = m->adr_type();
1692       }
1693       if (m->adr_type() != mach_at) {
1694         m->dump();
1695         tty->print_cr("mach:");
1696         mach->dump(1);
1697       }
1698       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1699     }
1700 #endif
1701   }
1702 
1703   // If the _leaf is an AddP, insert the base edge
1704   if (leaf->is_AddP()) {
1705     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1706   }
1707 
1708   uint number_of_projections_prior = number_of_projections();
1709 
1710   // Perform any 1-to-many expansions required
1711   MachNode *ex = mach->Expand(s, _projection_list, mem);
1712   if (ex != mach) {
1713     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1714     if( ex->in(1)->is_Con() )
1715       ex->in(1)->set_req(0, C->root());
1716     // Remove old node from the graph
1717     for( uint i=0; i<mach->req(); i++ ) {
1718       mach->set_req(i,NULL);
1719     }
1720 #ifdef ASSERT
1721     _new2old_map.map(ex->_idx, s->_leaf);
1722 #endif
1723   }
1724 
1725   // PhaseChaitin::fixup_spills will sometimes generate spill code
1726   // via the matcher.  By the time, nodes have been wired into the CFG,
1727   // and any further nodes generated by expand rules will be left hanging
1728   // in space, and will not get emitted as output code.  Catch this.
1729   // Also, catch any new register allocation constraints ("projections")
1730   // generated belatedly during spill code generation.
1731   if (_allocation_started) {
1732     guarantee(ex == mach, "no expand rules during spill generation");
1733     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1734   }
1735 
1736   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1737     // Record the con for sharing
1738     _shared_nodes.map(leaf->_idx, ex);
1739   }
1740 
1741   return ex;
1742 }
1743 
1744 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
1745   for (uint i = n->req(); i < n->len(); i++) {
1746     if (n->in(i) != NULL) {
1747       mach->add_prec(n->in(i));
1748     }
1749   }
1750 }
1751 
1752 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1753   // 'op' is what I am expecting to receive
1754   int op = _leftOp[rule];
1755   // Operand type to catch childs result
1756   // This is what my child will give me.
1757   int opnd_class_instance = s->_rule[op];
1758   // Choose between operand class or not.
1759   // This is what I will receive.
1760   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1761   // New rule for child.  Chase operand classes to get the actual rule.
1762   int newrule = s->_rule[catch_op];
1763 
1764   if( newrule < NUM_OPERANDS ) {
1765     // Chain from operand or operand class, may be output of shared node
1766     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1767             "Bad AD file: Instruction chain rule must chain from operand");
1768     // Insert operand into array of operands for this instruction
1769     mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
1770 
1771     ReduceOper( s, newrule, mem, mach );
1772   } else {
1773     // Chain from the result of an instruction
1774     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1775     mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
1776     Node *mem1 = (Node*)1;
1777     debug_only(Node *save_mem_node = _mem_node;)
1778     mach->add_req( ReduceInst(s, newrule, mem1) );
1779     debug_only(_mem_node = save_mem_node;)
1780   }
1781   return;
1782 }
1783 
1784 
1785 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1786   handle_precedence_edges(s->_leaf, mach);
1787 
1788   if( s->_leaf->is_Load() ) {
1789     Node *mem2 = s->_leaf->in(MemNode::Memory);
1790     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1791     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1792     mem = mem2;
1793   }
1794   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1795     if( mach->in(0) == NULL )
1796       mach->set_req(0, s->_leaf->in(0));
1797   }
1798 
1799   // Now recursively walk the state tree & add operand list.
1800   for( uint i=0; i<2; i++ ) {   // binary tree
1801     State *newstate = s->_kids[i];
1802     if( newstate == NULL ) break;      // Might only have 1 child
1803     // 'op' is what I am expecting to receive
1804     int op;
1805     if( i == 0 ) {
1806       op = _leftOp[rule];
1807     } else {
1808       op = _rightOp[rule];
1809     }
1810     // Operand type to catch childs result
1811     // This is what my child will give me.
1812     int opnd_class_instance = newstate->_rule[op];
1813     // Choose between operand class or not.
1814     // This is what I will receive.
1815     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1816     // New rule for child.  Chase operand classes to get the actual rule.
1817     int newrule = newstate->_rule[catch_op];
1818 
1819     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1820       // Operand/operandClass
1821       // Insert operand into array of operands for this instruction
1822       mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
1823       ReduceOper( newstate, newrule, mem, mach );
1824 
1825     } else {                    // Child is internal operand or new instruction
1826       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1827         // internal operand --> call ReduceInst_Interior
1828         // Interior of complex instruction.  Do nothing but recurse.
1829         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1830       } else {
1831         // instruction --> call build operand(  ) to catch result
1832         //             --> ReduceInst( newrule )
1833         mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
1834         Node *mem1 = (Node*)1;
1835         debug_only(Node *save_mem_node = _mem_node;)
1836         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1837         debug_only(_mem_node = save_mem_node;)
1838       }
1839     }
1840     assert( mach->_opnds[num_opnds-1], "" );
1841   }
1842   return num_opnds;
1843 }
1844 
1845 // This routine walks the interior of possible complex operands.
1846 // At each point we check our children in the match tree:
1847 // (1) No children -
1848 //     We are a leaf; add _leaf field as an input to the MachNode
1849 // (2) Child is an internal operand -
1850 //     Skip over it ( do nothing )
1851 // (3) Child is an instruction -
1852 //     Call ReduceInst recursively and
1853 //     and instruction as an input to the MachNode
1854 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1855   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1856   State *kid = s->_kids[0];
1857   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1858 
1859   // Leaf?  And not subsumed?
1860   if( kid == NULL && !_swallowed[rule] ) {
1861     mach->add_req( s->_leaf );  // Add leaf pointer
1862     return;                     // Bail out
1863   }
1864 
1865   if( s->_leaf->is_Load() ) {
1866     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1867     mem = s->_leaf->in(MemNode::Memory);
1868     debug_only(_mem_node = s->_leaf;)
1869   }
1870 
1871   handle_precedence_edges(s->_leaf, mach);
1872 
1873   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1874     if( !mach->in(0) )
1875       mach->set_req(0,s->_leaf->in(0));
1876     else {
1877       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1878     }
1879   }
1880 
1881   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1882     int newrule;
1883     if( i == 0)
1884       newrule = kid->_rule[_leftOp[rule]];
1885     else
1886       newrule = kid->_rule[_rightOp[rule]];
1887 
1888     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1889       // Internal operand; recurse but do nothing else
1890       ReduceOper( kid, newrule, mem, mach );
1891 
1892     } else {                    // Child is a new instruction
1893       // Reduce the instruction, and add a direct pointer from this
1894       // machine instruction to the newly reduced one.
1895       Node *mem1 = (Node*)1;
1896       debug_only(Node *save_mem_node = _mem_node;)
1897       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1898       debug_only(_mem_node = save_mem_node;)
1899     }
1900   }
1901 }
1902 
1903 
1904 // -------------------------------------------------------------------------
1905 // Java-Java calling convention
1906 // (what you use when Java calls Java)
1907 
1908 //------------------------------find_receiver----------------------------------
1909 // For a given signature, return the OptoReg for parameter 0.
1910 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1911   VMRegPair regs;
1912   BasicType sig_bt = T_OBJECT;
1913   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1914   // Return argument 0 register.  In the LP64 build pointers
1915   // take 2 registers, but the VM wants only the 'main' name.
1916   return OptoReg::as_OptoReg(regs.first());
1917 }
1918 
1919 // This function identifies sub-graphs in which a 'load' node is
1920 // input to two different nodes, and such that it can be matched
1921 // with BMI instructions like blsi, blsr, etc.
1922 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1923 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1924 // refers to the same node.
1925 #ifdef X86
1926 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1927 // This is a temporary solution until we make DAGs expressible in ADL.
1928 template<typename ConType>
1929 class FusedPatternMatcher {
1930   Node* _op1_node;
1931   Node* _mop_node;
1932   int _con_op;
1933 
1934   static int match_next(Node* n, int next_op, int next_op_idx) {
1935     if (n->in(1) == NULL || n->in(2) == NULL) {
1936       return -1;
1937     }
1938 
1939     if (next_op_idx == -1) { // n is commutative, try rotations
1940       if (n->in(1)->Opcode() == next_op) {
1941         return 1;
1942       } else if (n->in(2)->Opcode() == next_op) {
1943         return 2;
1944       }
1945     } else {
1946       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1947       if (n->in(next_op_idx)->Opcode() == next_op) {
1948         return next_op_idx;
1949       }
1950     }
1951     return -1;
1952   }
1953 public:
1954   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
1955     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1956 
1957   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1958              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1959              typename ConType::NativeType con_value) {
1960     if (_op1_node->Opcode() != op1) {
1961       return false;
1962     }
1963     if (_mop_node->outcnt() > 2) {
1964       return false;
1965     }
1966     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
1967     if (op1_op2_idx == -1) {
1968       return false;
1969     }
1970     // Memory operation must be the other edge
1971     int op1_mop_idx = (op1_op2_idx & 1) + 1;
1972 
1973     // Check that the mop node is really what we want
1974     if (_op1_node->in(op1_mop_idx) == _mop_node) {
1975       Node *op2_node = _op1_node->in(op1_op2_idx);
1976       if (op2_node->outcnt() > 1) {
1977         return false;
1978       }
1979       assert(op2_node->Opcode() == op2, "Should be");
1980       op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
1981       if (op2_con_idx == -1) {
1982         return false;
1983       }
1984       // Memory operation must be the other edge
1985       int op2_mop_idx = (op2_con_idx & 1) + 1;
1986       // Check that the memory operation is the same node
1987       if (op2_node->in(op2_mop_idx) == _mop_node) {
1988         // Now check the constant
1989         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
1990         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
1991           return true;
1992         }
1993       }
1994     }
1995     return false;
1996   }
1997 };
1998 
1999 
2000 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
2001   if (n != NULL && m != NULL) {
2002     if (m->Opcode() == Op_LoadI) {
2003       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
2004       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
2005              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
2006              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
2007     } else if (m->Opcode() == Op_LoadL) {
2008       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
2009       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
2010              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
2011              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
2012     }
2013   }
2014   return false;
2015 }
2016 #endif // X86
2017 
2018 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
2019   Node *off = m->in(AddPNode::Offset);
2020   if (off->is_Con()) {
2021     address_visited.test_set(m->_idx); // Flag as address_visited
2022     mstack.push(m->in(AddPNode::Address), Pre_Visit);
2023     // Clone X+offset as it also folds into most addressing expressions
2024     mstack.push(off, Visit);
2025     mstack.push(m->in(AddPNode::Base), Pre_Visit);
2026     return true;
2027   }
2028   return false;
2029 }
2030 
2031 // A method-klass-holder may be passed in the inline_cache_reg
2032 // and then expanded into the inline_cache_reg and a method_oop register
2033 //   defined in ad_<arch>.cpp
2034 
2035 //------------------------------find_shared------------------------------------
2036 // Set bits if Node is shared or otherwise a root
2037 void Matcher::find_shared( Node *n ) {
2038   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2039   MStack mstack(C->live_nodes() * 2);
2040   // Mark nodes as address_visited if they are inputs to an address expression
2041   VectorSet address_visited(Thread::current()->resource_area());
2042   mstack.push(n, Visit);     // Don't need to pre-visit root node
2043   while (mstack.is_nonempty()) {
2044     n = mstack.node();       // Leave node on stack
2045     Node_State nstate = mstack.state();
2046     uint nop = n->Opcode();
2047     if (nstate == Pre_Visit) {
2048       if (address_visited.test(n->_idx)) { // Visited in address already?
2049         // Flag as visited and shared now.
2050         set_visited(n);
2051       }
2052       if (is_visited(n)) {   // Visited already?
2053         // Node is shared and has no reason to clone.  Flag it as shared.
2054         // This causes it to match into a register for the sharing.
2055         set_shared(n);       // Flag as shared and
2056         mstack.pop();        // remove node from stack
2057         continue;
2058       }
2059       nstate = Visit; // Not already visited; so visit now
2060     }
2061     if (nstate == Visit) {
2062       mstack.set_state(Post_Visit);
2063       set_visited(n);   // Flag as visited now
2064       bool mem_op = false;
2065 
2066       switch( nop ) {  // Handle some opcodes special
2067       case Op_Phi:             // Treat Phis as shared roots
2068       case Op_Parm:
2069       case Op_Proj:            // All handled specially during matching
2070       case Op_SafePointScalarObject:
2071         set_shared(n);
2072         set_dontcare(n);
2073         break;
2074       case Op_If:
2075       case Op_CountedLoopEnd:
2076         mstack.set_state(Alt_Post_Visit); // Alternative way
2077         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2078         // with matching cmp/branch in 1 instruction.  The Matcher needs the
2079         // Bool and CmpX side-by-side, because it can only get at constants
2080         // that are at the leaves of Match trees, and the Bool's condition acts
2081         // as a constant here.
2082         mstack.push(n->in(1), Visit);         // Clone the Bool
2083         mstack.push(n->in(0), Pre_Visit);     // Visit control input
2084         continue; // while (mstack.is_nonempty())
2085       case Op_ConvI2D:         // These forms efficiently match with a prior
2086       case Op_ConvI2F:         //   Load but not a following Store
2087         if( n->in(1)->is_Load() &&        // Prior load
2088             n->outcnt() == 1 &&           // Not already shared
2089             n->unique_out()->is_Store() ) // Following store
2090           set_shared(n);       // Force it to be a root
2091         break;
2092       case Op_ReverseBytesI:
2093       case Op_ReverseBytesL:
2094         if( n->in(1)->is_Load() &&        // Prior load
2095             n->outcnt() == 1 )            // Not already shared
2096           set_shared(n);                  // Force it to be a root
2097         break;
2098       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2099       case Op_IfFalse:
2100       case Op_IfTrue:
2101       case Op_MachProj:
2102       case Op_MergeMem:
2103       case Op_Catch:
2104       case Op_CatchProj:
2105       case Op_CProj:
2106       case Op_JumpProj:
2107       case Op_JProj:
2108       case Op_NeverBranch:
2109         set_dontcare(n);
2110         break;
2111       case Op_Jump:
2112         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2113         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2114         continue;                             // while (mstack.is_nonempty())
2115       case Op_StrComp:
2116       case Op_StrEquals:
2117       case Op_StrIndexOf:
2118       case Op_StrIndexOfChar:
2119       case Op_AryEq:
2120       case Op_HasNegatives:
2121       case Op_StrInflatedCopy:
2122       case Op_StrCompressedCopy:
2123       case Op_EncodeISOArray:
2124       case Op_FmaD:
2125       case Op_FmaF:
2126       case Op_FmaVD:
2127       case Op_FmaVF:
2128         set_shared(n); // Force result into register (it will be anyways)
2129         break;
2130       case Op_ConP: {  // Convert pointers above the centerline to NUL
2131         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2132         const TypePtr* tp = tn->type()->is_ptr();
2133         if (tp->_ptr == TypePtr::AnyNull) {
2134           tn->set_type(TypePtr::NULL_PTR);
2135         }
2136         break;
2137       }
2138       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2139         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2140         const TypePtr* tp = tn->type()->make_ptr();
2141         if (tp && tp->_ptr == TypePtr::AnyNull) {
2142           tn->set_type(TypeNarrowOop::NULL_PTR);
2143         }
2144         break;
2145       }
2146       case Op_Binary:         // These are introduced in the Post_Visit state.
2147         ShouldNotReachHere();
2148         break;
2149       case Op_ClearArray:
2150       case Op_SafePoint:
2151         mem_op = true;
2152         break;
2153       default:
2154         if( n->is_Store() ) {
2155           // Do match stores, despite no ideal reg
2156           mem_op = true;
2157           break;
2158         }
2159         if( n->is_Mem() ) { // Loads and LoadStores
2160           mem_op = true;
2161           // Loads must be root of match tree due to prior load conflict
2162           if( C->subsume_loads() == false )
2163             set_shared(n);
2164         }
2165         // Fall into default case
2166         if( !n->ideal_reg() )
2167           set_dontcare(n);  // Unmatchable Nodes
2168       } // end_switch
2169 
2170       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2171         Node *m = n->in(i); // Get ith input
2172         if (m == NULL) continue;  // Ignore NULLs
2173         uint mop = m->Opcode();
2174 
2175         // Must clone all producers of flags, or we will not match correctly.
2176         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2177         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2178         // are also there, so we may match a float-branch to int-flags and
2179         // expect the allocator to haul the flags from the int-side to the
2180         // fp-side.  No can do.
2181         if( _must_clone[mop] ) {
2182           mstack.push(m, Visit);
2183           continue; // for(int i = ...)
2184         }
2185 
2186         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2187           // Bases used in addresses must be shared but since
2188           // they are shared through a DecodeN they may appear
2189           // to have a single use so force sharing here.
2190           set_shared(m->in(AddPNode::Base)->in(1));
2191         }
2192 
2193         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2194 #ifdef X86
2195         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2196           mstack.push(m, Visit);
2197           continue;
2198         }
2199 #endif
2200 
2201         // Clone addressing expressions as they are "free" in memory access instructions
2202         if (mem_op && i == MemNode::Address && mop == Op_AddP &&
2203             // When there are other uses besides address expressions
2204             // put it on stack and mark as shared.
2205             !is_visited(m)) {
2206           // Some inputs for address expression are not put on stack
2207           // to avoid marking them as shared and forcing them into register
2208           // if they are used only in address expressions.
2209           // But they should be marked as shared if there are other uses
2210           // besides address expressions.
2211 
2212           if (clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2213             continue;
2214           }
2215         }   // if( mem_op &&
2216         mstack.push(m, Pre_Visit);
2217       }     // for(int i = ...)
2218     }
2219     else if (nstate == Alt_Post_Visit) {
2220       mstack.pop(); // Remove node from stack
2221       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2222       // shared and all users of the Bool need to move the Cmp in parallel.
2223       // This leaves both the Bool and the If pointing at the Cmp.  To
2224       // prevent the Matcher from trying to Match the Cmp along both paths
2225       // BoolNode::match_edge always returns a zero.
2226 
2227       // We reorder the Op_If in a pre-order manner, so we can visit without
2228       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2229       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2230     }
2231     else if (nstate == Post_Visit) {
2232       mstack.pop(); // Remove node from stack
2233 
2234       // Now hack a few special opcodes
2235       switch( n->Opcode() ) {       // Handle some opcodes special
2236       case Op_StorePConditional:
2237       case Op_StoreIConditional:
2238       case Op_StoreLConditional:
2239       case Op_CompareAndExchangeB:
2240       case Op_CompareAndExchangeS:
2241       case Op_CompareAndExchangeI:
2242       case Op_CompareAndExchangeL:
2243       case Op_CompareAndExchangeP:
2244       case Op_CompareAndExchangeN:
2245       case Op_WeakCompareAndSwapB:
2246       case Op_WeakCompareAndSwapS:
2247       case Op_WeakCompareAndSwapI:
2248       case Op_WeakCompareAndSwapL:
2249       case Op_WeakCompareAndSwapP:
2250       case Op_WeakCompareAndSwapN:
2251       case Op_CompareAndSwapB:
2252       case Op_CompareAndSwapS:
2253       case Op_CompareAndSwapI:
2254       case Op_CompareAndSwapL:
2255       case Op_CompareAndSwapP:
2256       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2257         Node *newval = n->in(MemNode::ValueIn );
2258         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2259         Node *pair = new BinaryNode( oldval, newval );
2260         n->set_req(MemNode::ValueIn,pair);
2261         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2262         break;
2263       }
2264       case Op_CMoveD:              // Convert trinary to binary-tree
2265       case Op_CMoveF:
2266       case Op_CMoveI:
2267       case Op_CMoveL:
2268       case Op_CMoveN:
2269       case Op_CMoveP:
2270       case Op_CMoveVF:
2271       case Op_CMoveVD:  {
2272         // Restructure into a binary tree for Matching.  It's possible that
2273         // we could move this code up next to the graph reshaping for IfNodes
2274         // or vice-versa, but I do not want to debug this for Ladybird.
2275         // 10/2/2000 CNC.
2276         Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1));
2277         n->set_req(1,pair1);
2278         Node *pair2 = new BinaryNode(n->in(2),n->in(3));
2279         n->set_req(2,pair2);
2280         n->del_req(3);
2281         break;
2282       }
2283       case Op_LoopLimit: {
2284         Node *pair1 = new BinaryNode(n->in(1),n->in(2));
2285         n->set_req(1,pair1);
2286         n->set_req(2,n->in(3));
2287         n->del_req(3);
2288         break;
2289       }
2290       case Op_StrEquals:
2291       case Op_StrIndexOfChar: {
2292         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2293         n->set_req(2,pair1);
2294         n->set_req(3,n->in(4));
2295         n->del_req(4);
2296         break;
2297       }
2298       case Op_StrComp:
2299       case Op_StrIndexOf: {
2300         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2301         n->set_req(2,pair1);
2302         Node *pair2 = new BinaryNode(n->in(4),n->in(5));
2303         n->set_req(3,pair2);
2304         n->del_req(5);
2305         n->del_req(4);
2306         break;
2307       }
2308       case Op_StrCompressedCopy:
2309       case Op_StrInflatedCopy:
2310       case Op_EncodeISOArray: {
2311         // Restructure into a binary tree for Matching.
2312         Node* pair = new BinaryNode(n->in(3), n->in(4));
2313         n->set_req(3, pair);
2314         n->del_req(4);
2315         break;
2316       }
2317       case Op_FmaD:
2318       case Op_FmaF:
2319       case Op_FmaVD:
2320       case Op_FmaVF: {
2321         // Restructure into a binary tree for Matching.
2322         Node* pair = new BinaryNode(n->in(1), n->in(2));
2323         n->set_req(2, pair);
2324         n->set_req(1, n->in(3));
2325         n->del_req(3);
2326         break;
2327       }
2328       default:
2329         break;
2330       }
2331     }
2332     else {
2333       ShouldNotReachHere();
2334     }
2335   } // end of while (mstack.is_nonempty())
2336 }
2337 
2338 #ifdef ASSERT
2339 // machine-independent root to machine-dependent root
2340 void Matcher::dump_old2new_map() {
2341   _old2new_map.dump();
2342 }
2343 #endif
2344 
2345 //---------------------------collect_null_checks-------------------------------
2346 // Find null checks in the ideal graph; write a machine-specific node for
2347 // it.  Used by later implicit-null-check handling.  Actually collects
2348 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2349 // value being tested.
2350 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2351   Node *iff = proj->in(0);
2352   if( iff->Opcode() == Op_If ) {
2353     // During matching If's have Bool & Cmp side-by-side
2354     BoolNode *b = iff->in(1)->as_Bool();
2355     Node *cmp = iff->in(2);
2356     int opc = cmp->Opcode();
2357     if (opc != Op_CmpP && opc != Op_CmpN) return;
2358 
2359     const Type* ct = cmp->in(2)->bottom_type();
2360     if (ct == TypePtr::NULL_PTR ||
2361         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2362 
2363       bool push_it = false;
2364       if( proj->Opcode() == Op_IfTrue ) {
2365 #ifndef PRODUCT
2366         extern int all_null_checks_found;
2367         all_null_checks_found++;
2368 #endif
2369         if( b->_test._test == BoolTest::ne ) {
2370           push_it = true;
2371         }
2372       } else {
2373         assert( proj->Opcode() == Op_IfFalse, "" );
2374         if( b->_test._test == BoolTest::eq ) {
2375           push_it = true;
2376         }
2377       }
2378       if( push_it ) {
2379         _null_check_tests.push(proj);
2380         Node* val = cmp->in(1);
2381 #ifdef _LP64
2382         if (val->bottom_type()->isa_narrowoop() &&
2383             !Matcher::narrow_oop_use_complex_address()) {
2384           //
2385           // Look for DecodeN node which should be pinned to orig_proj.
2386           // On platforms (Sparc) which can not handle 2 adds
2387           // in addressing mode we have to keep a DecodeN node and
2388           // use it to do implicit NULL check in address.
2389           //
2390           // DecodeN node was pinned to non-null path (orig_proj) during
2391           // CastPP transformation in final_graph_reshaping_impl().
2392           //
2393           uint cnt = orig_proj->outcnt();
2394           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2395             Node* d = orig_proj->raw_out(i);
2396             if (d->is_DecodeN() && d->in(1) == val) {
2397               val = d;
2398               val->set_req(0, NULL); // Unpin now.
2399               // Mark this as special case to distinguish from
2400               // a regular case: CmpP(DecodeN, NULL).
2401               val = (Node*)(((intptr_t)val) | 1);
2402               break;
2403             }
2404           }
2405         }
2406 #endif
2407         _null_check_tests.push(val);
2408       }
2409     }
2410   }
2411 }
2412 
2413 //---------------------------validate_null_checks------------------------------
2414 // Its possible that the value being NULL checked is not the root of a match
2415 // tree.  If so, I cannot use the value in an implicit null check.
2416 void Matcher::validate_null_checks( ) {
2417   uint cnt = _null_check_tests.size();
2418   for( uint i=0; i < cnt; i+=2 ) {
2419     Node *test = _null_check_tests[i];
2420     Node *val = _null_check_tests[i+1];
2421     bool is_decoden = ((intptr_t)val) & 1;
2422     val = (Node*)(((intptr_t)val) & ~1);
2423     if (has_new_node(val)) {
2424       Node* new_val = new_node(val);
2425       if (is_decoden) {
2426         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2427         // Note: new_val may have a control edge if
2428         // the original ideal node DecodeN was matched before
2429         // it was unpinned in Matcher::collect_null_checks().
2430         // Unpin the mach node and mark it.
2431         new_val->set_req(0, NULL);
2432         new_val = (Node*)(((intptr_t)new_val) | 1);
2433       }
2434       // Is a match-tree root, so replace with the matched value
2435       _null_check_tests.map(i+1, new_val);
2436     } else {
2437       // Yank from candidate list
2438       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2439       _null_check_tests.map(i,_null_check_tests[--cnt]);
2440       _null_check_tests.pop();
2441       _null_check_tests.pop();
2442       i-=2;
2443     }
2444   }
2445 }
2446 
2447 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2448 // atomic instruction acting as a store_load barrier without any
2449 // intervening volatile load, and thus we don't need a barrier here.
2450 // We retain the Node to act as a compiler ordering barrier.
2451 bool Matcher::post_store_load_barrier(const Node* vmb) {
2452   Compile* C = Compile::current();
2453   assert(vmb->is_MemBar(), "");
2454   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2455   const MemBarNode* membar = vmb->as_MemBar();
2456 
2457   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2458   Node* ctrl = NULL;
2459   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2460     Node* p = membar->fast_out(i);
2461     assert(p->is_Proj(), "only projections here");
2462     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2463         !C->node_arena()->contains(p)) { // Unmatched old-space only
2464       ctrl = p;
2465       break;
2466     }
2467   }
2468   assert((ctrl != NULL), "missing control projection");
2469 
2470   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2471     Node *x = ctrl->fast_out(j);
2472     int xop = x->Opcode();
2473 
2474     // We don't need current barrier if we see another or a lock
2475     // before seeing volatile load.
2476     //
2477     // Op_Fastunlock previously appeared in the Op_* list below.
2478     // With the advent of 1-0 lock operations we're no longer guaranteed
2479     // that a monitor exit operation contains a serializing instruction.
2480 
2481     if (xop == Op_MemBarVolatile ||
2482         xop == Op_CompareAndExchangeB ||
2483         xop == Op_CompareAndExchangeS ||
2484         xop == Op_CompareAndExchangeI ||
2485         xop == Op_CompareAndExchangeL ||
2486         xop == Op_CompareAndExchangeP ||
2487         xop == Op_CompareAndExchangeN ||
2488         xop == Op_WeakCompareAndSwapB ||
2489         xop == Op_WeakCompareAndSwapS ||
2490         xop == Op_WeakCompareAndSwapL ||
2491         xop == Op_WeakCompareAndSwapP ||
2492         xop == Op_WeakCompareAndSwapN ||
2493         xop == Op_WeakCompareAndSwapI ||
2494         xop == Op_CompareAndSwapB ||
2495         xop == Op_CompareAndSwapS ||
2496         xop == Op_CompareAndSwapL ||
2497         xop == Op_CompareAndSwapP ||
2498         xop == Op_CompareAndSwapN ||
2499         xop == Op_CompareAndSwapI) {
2500       return true;
2501     }
2502 
2503     // Op_FastLock previously appeared in the Op_* list above.
2504     // With biased locking we're no longer guaranteed that a monitor
2505     // enter operation contains a serializing instruction.
2506     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2507       return true;
2508     }
2509 
2510     if (x->is_MemBar()) {
2511       // We must retain this membar if there is an upcoming volatile
2512       // load, which will be followed by acquire membar.
2513       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2514         return false;
2515       } else {
2516         // For other kinds of barriers, check by pretending we
2517         // are them, and seeing if we can be removed.
2518         return post_store_load_barrier(x->as_MemBar());
2519       }
2520     }
2521 
2522     // probably not necessary to check for these
2523     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2524       return false;
2525     }
2526   }
2527   return false;
2528 }
2529 
2530 // Check whether node n is a branch to an uncommon trap that we could
2531 // optimize as test with very high branch costs in case of going to
2532 // the uncommon trap. The code must be able to be recompiled to use
2533 // a cheaper test.
2534 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2535   // Don't do it for natives, adapters, or runtime stubs
2536   Compile *C = Compile::current();
2537   if (!C->is_method_compilation()) return false;
2538 
2539   assert(n->is_If(), "You should only call this on if nodes.");
2540   IfNode *ifn = n->as_If();
2541 
2542   Node *ifFalse = NULL;
2543   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2544     if (ifn->fast_out(i)->is_IfFalse()) {
2545       ifFalse = ifn->fast_out(i);
2546       break;
2547     }
2548   }
2549   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2550 
2551   Node *reg = ifFalse;
2552   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2553                // Alternatively use visited set?  Seems too expensive.
2554   while (reg != NULL && cnt > 0) {
2555     CallNode *call = NULL;
2556     RegionNode *nxt_reg = NULL;
2557     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2558       Node *o = reg->fast_out(i);
2559       if (o->is_Call()) {
2560         call = o->as_Call();
2561       }
2562       if (o->is_Region()) {
2563         nxt_reg = o->as_Region();
2564       }
2565     }
2566 
2567     if (call &&
2568         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2569       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2570       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2571         jint tr_con = trtype->is_int()->get_con();
2572         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2573         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2574         assert((int)reason < (int)BitsPerInt, "recode bit map");
2575 
2576         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2577             && action != Deoptimization::Action_none) {
2578           // This uncommon trap is sure to recompile, eventually.
2579           // When that happens, C->too_many_traps will prevent
2580           // this transformation from happening again.
2581           return true;
2582         }
2583       }
2584     }
2585 
2586     reg = nxt_reg;
2587     cnt--;
2588   }
2589 
2590   return false;
2591 }
2592 
2593 //=============================================================================
2594 //---------------------------State---------------------------------------------
2595 State::State(void) {
2596 #ifdef ASSERT
2597   _id = 0;
2598   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2599   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2600   //memset(_cost, -1, sizeof(_cost));
2601   //memset(_rule, -1, sizeof(_rule));
2602 #endif
2603   memset(_valid, 0, sizeof(_valid));
2604 }
2605 
2606 #ifdef ASSERT
2607 State::~State() {
2608   _id = 99;
2609   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2610   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2611   memset(_cost, -3, sizeof(_cost));
2612   memset(_rule, -3, sizeof(_rule));
2613 }
2614 #endif
2615 
2616 #ifndef PRODUCT
2617 //---------------------------dump----------------------------------------------
2618 void State::dump() {
2619   tty->print("\n");
2620   dump(0);
2621 }
2622 
2623 void State::dump(int depth) {
2624   for( int j = 0; j < depth; j++ )
2625     tty->print("   ");
2626   tty->print("--N: ");
2627   _leaf->dump();
2628   uint i;
2629   for( i = 0; i < _LAST_MACH_OPER; i++ )
2630     // Check for valid entry
2631     if( valid(i) ) {
2632       for( int j = 0; j < depth; j++ )
2633         tty->print("   ");
2634         assert(_cost[i] != max_juint, "cost must be a valid value");
2635         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2636         tty->print_cr("%s  %d  %s",
2637                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2638       }
2639   tty->cr();
2640 
2641   for( i=0; i<2; i++ )
2642     if( _kids[i] )
2643       _kids[i]->dump(depth+1);
2644 }
2645 #endif