1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/vectset.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 class AbstractLockNode;
  38 class AddNode;
  39 class AddPNode;
  40 class AliasInfo;
  41 class AllocateArrayNode;
  42 class AllocateNode;
  43 class ArrayCopyNode;
  44 class Block;
  45 class BoolNode;
  46 class BoxLockNode;
  47 class CMoveNode;
  48 class CallDynamicJavaNode;
  49 class CallJavaNode;
  50 class CallLeafNode;
  51 class CallNode;
  52 class CallRuntimeNode;
  53 class CallStaticJavaNode;
  54 class CastIINode;
  55 class CatchNode;
  56 class CatchProjNode;
  57 class CheckCastPPNode;
  58 class ClearArrayNode;
  59 class CmpNode;
  60 class CodeBuffer;
  61 class ConstraintCastNode;
  62 class ConNode;
  63 class CompareAndSwapNode;
  64 class CompareAndExchangeNode;
  65 class CountedLoopNode;
  66 class CountedLoopEndNode;
  67 class DecodeNarrowPtrNode;
  68 class DecodeNNode;
  69 class DecodeNKlassNode;
  70 class EncodeNarrowPtrNode;
  71 class EncodePNode;
  72 class EncodePKlassNode;
  73 class FastLockNode;
  74 class FastUnlockNode;
  75 class IfNode;
  76 class IfFalseNode;
  77 class IfTrueNode;
  78 class InitializeNode;
  79 class JVMState;
  80 class JumpNode;
  81 class JumpProjNode;
  82 class LoadNode;
  83 class LoadBarrierNode;
  84 class LoadBarrierSlowRegNode;
  85 class LoadBarrierWeakSlowRegNode;
  86 class LoadStoreNode;
  87 class LockNode;
  88 class LoopNode;
  89 class MachBranchNode;
  90 class MachCallDynamicJavaNode;
  91 class MachCallJavaNode;
  92 class MachCallLeafNode;
  93 class MachCallNode;
  94 class MachCallRuntimeNode;
  95 class MachCallStaticJavaNode;
  96 class MachConstantBaseNode;
  97 class MachConstantNode;
  98 class MachGotoNode;
  99 class MachIfNode;
 100 class MachJumpNode;
 101 class MachNode;
 102 class MachNullCheckNode;
 103 class MachProjNode;
 104 class MachReturnNode;
 105 class MachSafePointNode;
 106 class MachSpillCopyNode;
 107 class MachTempNode;
 108 class MachMergeNode;
 109 class Matcher;
 110 class MemBarNode;
 111 class MemBarStoreStoreNode;
 112 class MemNode;
 113 class MergeMemNode;
 114 class MulNode;
 115 class MultiNode;
 116 class MultiBranchNode;
 117 class NeverBranchNode;
 118 class OuterStripMinedLoopNode;
 119 class OuterStripMinedLoopEndNode;
 120 class Node;
 121 class Node_Array;
 122 class Node_List;
 123 class Node_Stack;
 124 class NullCheckNode;
 125 class OopMap;
 126 class ParmNode;
 127 class PCTableNode;
 128 class PhaseCCP;
 129 class PhaseGVN;
 130 class PhaseIterGVN;
 131 class PhaseRegAlloc;
 132 class PhaseTransform;
 133 class PhaseValues;
 134 class PhiNode;
 135 class Pipeline;
 136 class ProjNode;
 137 class RangeCheckNode;
 138 class RegMask;
 139 class RegionNode;
 140 class RootNode;
 141 class SafePointNode;
 142 class SafePointScalarObjectNode;
 143 class StartNode;
 144 class State;
 145 class StoreNode;
 146 class SubNode;
 147 class Type;
 148 class TypeNode;
 149 class UnlockNode;
 150 class VectorNode;
 151 class LoadVectorNode;
 152 class StoreVectorNode;
 153 class VectorSet;
 154 typedef void (*NFunc)(Node&,void*);
 155 extern "C" {
 156   typedef int (*C_sort_func_t)(const void *, const void *);
 157 }
 158 
 159 // The type of all node counts and indexes.
 160 // It must hold at least 16 bits, but must also be fast to load and store.
 161 // This type, if less than 32 bits, could limit the number of possible nodes.
 162 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 163 typedef unsigned int node_idx_t;
 164 
 165 
 166 #ifndef OPTO_DU_ITERATOR_ASSERT
 167 #ifdef ASSERT
 168 #define OPTO_DU_ITERATOR_ASSERT 1
 169 #else
 170 #define OPTO_DU_ITERATOR_ASSERT 0
 171 #endif
 172 #endif //OPTO_DU_ITERATOR_ASSERT
 173 
 174 #if OPTO_DU_ITERATOR_ASSERT
 175 class DUIterator;
 176 class DUIterator_Fast;
 177 class DUIterator_Last;
 178 #else
 179 typedef uint   DUIterator;
 180 typedef Node** DUIterator_Fast;
 181 typedef Node** DUIterator_Last;
 182 #endif
 183 
 184 // Node Sentinel
 185 #define NodeSentinel (Node*)-1
 186 
 187 // Unknown count frequency
 188 #define COUNT_UNKNOWN (-1.0f)
 189 
 190 //------------------------------Node-------------------------------------------
 191 // Nodes define actions in the program.  They create values, which have types.
 192 // They are both vertices in a directed graph and program primitives.  Nodes
 193 // are labeled; the label is the "opcode", the primitive function in the lambda
 194 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 195 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 196 // the Node's function.  These inputs also define a Type equation for the Node.
 197 // Solving these Type equations amounts to doing dataflow analysis.
 198 // Control and data are uniformly represented in the graph.  Finally, Nodes
 199 // have a unique dense integer index which is used to index into side arrays
 200 // whenever I have phase-specific information.
 201 
 202 class Node {
 203   friend class VMStructs;
 204 
 205   // Lots of restrictions on cloning Nodes
 206   Node(const Node&);            // not defined; linker error to use these
 207   Node &operator=(const Node &rhs);
 208 
 209 public:
 210   friend class Compile;
 211   #if OPTO_DU_ITERATOR_ASSERT
 212   friend class DUIterator_Common;
 213   friend class DUIterator;
 214   friend class DUIterator_Fast;
 215   friend class DUIterator_Last;
 216   #endif
 217 
 218   // Because Nodes come and go, I define an Arena of Node structures to pull
 219   // from.  This should allow fast access to node creation & deletion.  This
 220   // field is a local cache of a value defined in some "program fragment" for
 221   // which these Nodes are just a part of.
 222 
 223   inline void* operator new(size_t x) throw() {
 224     Compile* C = Compile::current();
 225     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 226     return (void*)n;
 227   }
 228 
 229   // Delete is a NOP
 230   void operator delete( void *ptr ) {}
 231   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 232   void destruct();
 233 
 234   // Create a new Node.  Required is the number is of inputs required for
 235   // semantic correctness.
 236   Node( uint required );
 237 
 238   // Create a new Node with given input edges.
 239   // This version requires use of the "edge-count" new.
 240   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 241   Node( Node *n0 );
 242   Node( Node *n0, Node *n1 );
 243   Node( Node *n0, Node *n1, Node *n2 );
 244   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 245   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 246   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 247   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 248             Node *n4, Node *n5, Node *n6 );
 249 
 250   // Clone an inherited Node given only the base Node type.
 251   Node* clone() const;
 252 
 253   // Clone a Node, immediately supplying one or two new edges.
 254   // The first and second arguments, if non-null, replace in(1) and in(2),
 255   // respectively.
 256   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 257     Node* nn = clone();
 258     if (in1 != NULL)  nn->set_req(1, in1);
 259     if (in2 != NULL)  nn->set_req(2, in2);
 260     return nn;
 261   }
 262 
 263 private:
 264   // Shared setup for the above constructors.
 265   // Handles all interactions with Compile::current.
 266   // Puts initial values in all Node fields except _idx.
 267   // Returns the initial value for _idx, which cannot
 268   // be initialized by assignment.
 269   inline int Init(int req);
 270 
 271 //----------------- input edge handling
 272 protected:
 273   friend class PhaseCFG;        // Access to address of _in array elements
 274   Node **_in;                   // Array of use-def references to Nodes
 275   Node **_out;                  // Array of def-use references to Nodes
 276 
 277   // Input edges are split into two categories.  Required edges are required
 278   // for semantic correctness; order is important and NULLs are allowed.
 279   // Precedence edges are used to help determine execution order and are
 280   // added, e.g., for scheduling purposes.  They are unordered and not
 281   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 282   // are required, from _cnt to _max-1 are precedence edges.
 283   node_idx_t _cnt;              // Total number of required Node inputs.
 284 
 285   node_idx_t _max;              // Actual length of input array.
 286 
 287   // Output edges are an unordered list of def-use edges which exactly
 288   // correspond to required input edges which point from other nodes
 289   // to this one.  Thus the count of the output edges is the number of
 290   // users of this node.
 291   node_idx_t _outcnt;           // Total number of Node outputs.
 292 
 293   node_idx_t _outmax;           // Actual length of output array.
 294 
 295   // Grow the actual input array to the next larger power-of-2 bigger than len.
 296   void grow( uint len );
 297   // Grow the output array to the next larger power-of-2 bigger than len.
 298   void out_grow( uint len );
 299 
 300  public:
 301   // Each Node is assigned a unique small/dense number.  This number is used
 302   // to index into auxiliary arrays of data and bit vectors.
 303   // The field _idx is declared constant to defend against inadvertent assignments,
 304   // since it is used by clients as a naked field. However, the field's value can be
 305   // changed using the set_idx() method.
 306   //
 307   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 308   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 309   // preserved in _parse_idx.
 310   const node_idx_t _idx;
 311   DEBUG_ONLY(const node_idx_t _parse_idx;)
 312 
 313   // Get the (read-only) number of input edges
 314   uint req() const { return _cnt; }
 315   uint len() const { return _max; }
 316   // Get the (read-only) number of output edges
 317   uint outcnt() const { return _outcnt; }
 318 
 319 #if OPTO_DU_ITERATOR_ASSERT
 320   // Iterate over the out-edges of this node.  Deletions are illegal.
 321   inline DUIterator outs() const;
 322   // Use this when the out array might have changed to suppress asserts.
 323   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 324   // Does the node have an out at this position?  (Used for iteration.)
 325   inline bool has_out(DUIterator& i) const;
 326   inline Node*    out(DUIterator& i) const;
 327   // Iterate over the out-edges of this node.  All changes are illegal.
 328   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 329   inline Node*    fast_out(DUIterator_Fast& i) const;
 330   // Iterate over the out-edges of this node, deleting one at a time.
 331   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 332   inline Node*    last_out(DUIterator_Last& i) const;
 333   // The inline bodies of all these methods are after the iterator definitions.
 334 #else
 335   // Iterate over the out-edges of this node.  Deletions are illegal.
 336   // This iteration uses integral indexes, to decouple from array reallocations.
 337   DUIterator outs() const  { return 0; }
 338   // Use this when the out array might have changed to suppress asserts.
 339   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 340 
 341   // Reference to the i'th output Node.  Error if out of bounds.
 342   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 343   // Does the node have an out at this position?  (Used for iteration.)
 344   bool has_out(DUIterator i) const { return i < _outcnt; }
 345 
 346   // Iterate over the out-edges of this node.  All changes are illegal.
 347   // This iteration uses a pointer internal to the out array.
 348   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 349     Node** out = _out;
 350     // Assign a limit pointer to the reference argument:
 351     max = out + (ptrdiff_t)_outcnt;
 352     // Return the base pointer:
 353     return out;
 354   }
 355   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 356   // Iterate over the out-edges of this node, deleting one at a time.
 357   // This iteration uses a pointer internal to the out array.
 358   DUIterator_Last last_outs(DUIterator_Last& min) const {
 359     Node** out = _out;
 360     // Assign a limit pointer to the reference argument:
 361     min = out;
 362     // Return the pointer to the start of the iteration:
 363     return out + (ptrdiff_t)_outcnt - 1;
 364   }
 365   Node*    last_out(DUIterator_Last i) const  { return *i; }
 366 #endif
 367 
 368   // Reference to the i'th input Node.  Error if out of bounds.
 369   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 370   // Reference to the i'th input Node.  NULL if out of bounds.
 371   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
 372   // Reference to the i'th output Node.  Error if out of bounds.
 373   // Use this accessor sparingly.  We are going trying to use iterators instead.
 374   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 375   // Return the unique out edge.
 376   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 377   // Delete out edge at position 'i' by moving last out edge to position 'i'
 378   void  raw_del_out(uint i) {
 379     assert(i < _outcnt,"oob");
 380     assert(_outcnt > 0,"oob");
 381     #if OPTO_DU_ITERATOR_ASSERT
 382     // Record that a change happened here.
 383     debug_only(_last_del = _out[i]; ++_del_tick);
 384     #endif
 385     _out[i] = _out[--_outcnt];
 386     // Smash the old edge so it can't be used accidentally.
 387     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 388   }
 389 
 390 #ifdef ASSERT
 391   bool is_dead() const;
 392 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 393 #endif
 394   // Check whether node has become unreachable
 395   bool is_unreachable(PhaseIterGVN &igvn) const;
 396 
 397   // Set a required input edge, also updates corresponding output edge
 398   void add_req( Node *n ); // Append a NEW required input
 399   void add_req( Node *n0, Node *n1 ) {
 400     add_req(n0); add_req(n1); }
 401   void add_req( Node *n0, Node *n1, Node *n2 ) {
 402     add_req(n0); add_req(n1); add_req(n2); }
 403   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 404   void del_req( uint idx ); // Delete required edge & compact
 405   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 406   void ins_req( uint i, Node *n ); // Insert a NEW required input
 407   void set_req( uint i, Node *n ) {
 408     assert( is_not_dead(n), "can not use dead node");
 409     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 410     assert( !VerifyHashTableKeys || _hash_lock == 0,
 411             "remove node from hash table before modifying it");
 412     Node** p = &_in[i];    // cache this._in, across the del_out call
 413     if (*p != NULL)  (*p)->del_out((Node *)this);
 414     (*p) = n;
 415     if (n != NULL)      n->add_out((Node *)this);
 416     Compile::current()->record_modified_node(this);
 417   }
 418   // Light version of set_req() to init inputs after node creation.
 419   void init_req( uint i, Node *n ) {
 420     assert( i == 0 && this == n ||
 421             is_not_dead(n), "can not use dead node");
 422     assert( i < _cnt, "oob");
 423     assert( !VerifyHashTableKeys || _hash_lock == 0,
 424             "remove node from hash table before modifying it");
 425     assert( _in[i] == NULL, "sanity");
 426     _in[i] = n;
 427     if (n != NULL)      n->add_out((Node *)this);
 428     Compile::current()->record_modified_node(this);
 429   }
 430   // Find first occurrence of n among my edges:
 431   int find_edge(Node* n);
 432   int find_prec_edge(Node* n) {
 433     for (uint i = req(); i < len(); i++) {
 434       if (_in[i] == n) return i;
 435       if (_in[i] == NULL) {
 436         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
 437         break;
 438       }
 439     }
 440     return -1;
 441   }
 442   int replace_edge(Node* old, Node* neww);
 443   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
 444   // NULL out all inputs to eliminate incoming Def-Use edges.
 445   // Return the number of edges between 'n' and 'this'
 446   int  disconnect_inputs(Node *n, Compile *c);
 447 
 448   // Quickly, return true if and only if I am Compile::current()->top().
 449   bool is_top() const {
 450     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 451     return (_out == NULL);
 452   }
 453   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 454   void setup_is_top();
 455 
 456   // Strip away casting.  (It is depth-limited.)
 457   Node* uncast() const;
 458   // Return whether two Nodes are equivalent, after stripping casting.
 459   bool eqv_uncast(const Node* n) const {
 460     return (this->uncast() == n->uncast());
 461   }
 462 
 463   // Find out of current node that matches opcode.
 464   Node* find_out_with(int opcode);
 465   // Return true if the current node has an out that matches opcode.
 466   bool has_out_with(int opcode);
 467   // Return true if the current node has an out that matches any of the opcodes.
 468   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 469 
 470 private:
 471   static Node* uncast_helper(const Node* n);
 472 
 473   // Add an output edge to the end of the list
 474   void add_out( Node *n ) {
 475     if (is_top())  return;
 476     if( _outcnt == _outmax ) out_grow(_outcnt);
 477     _out[_outcnt++] = n;
 478   }
 479   // Delete an output edge
 480   void del_out( Node *n ) {
 481     if (is_top())  return;
 482     Node** outp = &_out[_outcnt];
 483     // Find and remove n
 484     do {
 485       assert(outp > _out, "Missing Def-Use edge");
 486     } while (*--outp != n);
 487     *outp = _out[--_outcnt];
 488     // Smash the old edge so it can't be used accidentally.
 489     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 490     // Record that a change happened here.
 491     #if OPTO_DU_ITERATOR_ASSERT
 492     debug_only(_last_del = n; ++_del_tick);
 493     #endif
 494   }
 495   // Close gap after removing edge.
 496   void close_prec_gap_at(uint gap) {
 497     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 498     uint i = gap;
 499     Node *last = NULL;
 500     for (; i < _max-1; ++i) {
 501       Node *next = _in[i+1];
 502       if (next == NULL) break;
 503       last = next;
 504     }
 505     _in[gap] = last; // Move last slot to empty one.
 506     _in[i] = NULL;   // NULL out last slot.
 507   }
 508 
 509 public:
 510   // Globally replace this node by a given new node, updating all uses.
 511   void replace_by(Node* new_node);
 512   // Globally replace this node by a given new node, updating all uses
 513   // and cutting input edges of old node.
 514   void subsume_by(Node* new_node, Compile* c) {
 515     replace_by(new_node);
 516     disconnect_inputs(NULL, c);
 517   }
 518   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 519   // Find the one non-null required input.  RegionNode only
 520   Node *nonnull_req() const;
 521   // Add or remove precedence edges
 522   void add_prec( Node *n );
 523   void rm_prec( uint i );
 524 
 525   // Note: prec(i) will not necessarily point to n if edge already exists.
 526   void set_prec( uint i, Node *n ) {
 527     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
 528     assert(is_not_dead(n), "can not use dead node");
 529     assert(i >= _cnt, "not a precedence edge");
 530     // Avoid spec violation: duplicated prec edge.
 531     if (_in[i] == n) return;
 532     if (n == NULL || find_prec_edge(n) != -1) {
 533       rm_prec(i);
 534       return;
 535     }
 536     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 537     _in[i] = n;
 538     if (n != NULL) n->add_out((Node *)this);
 539   }
 540 
 541   // Set this node's index, used by cisc_version to replace current node
 542   void set_idx(uint new_idx) {
 543     const node_idx_t* ref = &_idx;
 544     *(node_idx_t*)ref = new_idx;
 545   }
 546   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 547   void swap_edges(uint i1, uint i2) {
 548     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 549     // Def-Use info is unchanged
 550     Node* n1 = in(i1);
 551     Node* n2 = in(i2);
 552     _in[i1] = n2;
 553     _in[i2] = n1;
 554     // If this node is in the hash table, make sure it doesn't need a rehash.
 555     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 556   }
 557 
 558   // Iterators over input Nodes for a Node X are written as:
 559   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 560   // NOTE: Required edges can contain embedded NULL pointers.
 561 
 562 //----------------- Other Node Properties
 563 
 564   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 565   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 566   //
 567   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 568   // the type of the node the ID represents; another subset of an ID's bits are reserved
 569   // for the superclasses of the node represented by the ID.
 570   //
 571   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 572   // returns false. A.is_A() returns true.
 573   //
 574   // If two classes, A and B, have the same superclass, a different bit of A's class id
 575   // is reserved for A's type than for B's type. That bit is specified by the third
 576   // parameter in the macro DEFINE_CLASS_ID.
 577   //
 578   // By convention, classes with deeper hierarchy are declared first. Moreover,
 579   // classes with the same hierarchy depth are sorted by usage frequency.
 580   //
 581   // The query method masks the bits to cut off bits of subclasses and then compares
 582   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 583   //
 584   //  Class_MachCall=30, ClassMask_MachCall=31
 585   // 12               8               4               0
 586   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 587   //                                  |   |   |   |
 588   //                                  |   |   |   Bit_Mach=2
 589   //                                  |   |   Bit_MachReturn=4
 590   //                                  |   Bit_MachSafePoint=8
 591   //                                  Bit_MachCall=16
 592   //
 593   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 594   // 12               8               4               0
 595   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 596   //                              |   |   |
 597   //                              |   |   Bit_Region=8
 598   //                              |   Bit_Loop=16
 599   //                              Bit_CountedLoop=32
 600 
 601   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 602   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 603   Class_##cl = Class_##supcl + Bit_##cl , \
 604   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 605 
 606   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 607   // so that it's values fits into 16 bits.
 608   enum NodeClasses {
 609     Bit_Node   = 0x0000,
 610     Class_Node = 0x0000,
 611     ClassMask_Node = 0xFFFF,
 612 
 613     DEFINE_CLASS_ID(Multi, Node, 0)
 614       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 615         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 616           DEFINE_CLASS_ID(CallJava,         Call, 0)
 617             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 618             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 619           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 620             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 621           DEFINE_CLASS_ID(Allocate,         Call, 2)
 622             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 623           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 624             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 625             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 626           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 627       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 628         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 629           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 630           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 631         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 632           DEFINE_CLASS_ID(CountedLoopEnd,         If, 0)
 633           DEFINE_CLASS_ID(RangeCheck,             If, 1)
 634           DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
 635         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 636       DEFINE_CLASS_ID(Start,       Multi, 2)
 637       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 638         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 639         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 640       DEFINE_CLASS_ID(LoadBarrier, Multi, 4)
 641 
 642     DEFINE_CLASS_ID(Mach,  Node, 1)
 643       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 644         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 645           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 646             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 647               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 648               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 649             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 650               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 651       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 652         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 653         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 654         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 655       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 656       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 657       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 658       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 659         DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
 660       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 661 
 662     DEFINE_CLASS_ID(Type,  Node, 2)
 663       DEFINE_CLASS_ID(Phi,   Type, 0)
 664       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 665         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 666         DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
 667       DEFINE_CLASS_ID(CMove, Type, 3)
 668       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 669       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 670         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 671         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 672       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 673         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 674         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 675 
 676     DEFINE_CLASS_ID(Proj,  Node, 3)
 677       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 678       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 679       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 680       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 681       DEFINE_CLASS_ID(Parm,      Proj, 4)
 682       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 683 
 684     DEFINE_CLASS_ID(Mem,   Node, 4)
 685       DEFINE_CLASS_ID(Load,  Mem, 0)
 686         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 687           DEFINE_CLASS_ID(LoadBarrierSlowReg, Load, 1)
 688           DEFINE_CLASS_ID(LoadBarrierWeakSlowReg, Load, 2)
 689       DEFINE_CLASS_ID(Store, Mem, 1)
 690         DEFINE_CLASS_ID(StoreVector, Store, 0)
 691       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 692         DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
 693           DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
 694         DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
 695 
 696     DEFINE_CLASS_ID(Region, Node, 5)
 697       DEFINE_CLASS_ID(Loop, Region, 0)
 698         DEFINE_CLASS_ID(Root,                Loop, 0)
 699         DEFINE_CLASS_ID(CountedLoop,         Loop, 1)
 700         DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
 701 
 702     DEFINE_CLASS_ID(Sub,   Node, 6)
 703       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 704         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 705         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 706 
 707     DEFINE_CLASS_ID(MergeMem, Node, 7)
 708     DEFINE_CLASS_ID(Bool,     Node, 8)
 709     DEFINE_CLASS_ID(AddP,     Node, 9)
 710     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 711     DEFINE_CLASS_ID(Add,      Node, 11)
 712     DEFINE_CLASS_ID(Mul,      Node, 12)
 713     DEFINE_CLASS_ID(Vector,   Node, 13)
 714     DEFINE_CLASS_ID(ClearArray, Node, 14)
 715 
 716     _max_classes  = ClassMask_ClearArray
 717   };
 718   #undef DEFINE_CLASS_ID
 719 
 720   // Flags are sorted by usage frequency.
 721   enum NodeFlags {
 722     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
 723     Flag_rematerialize               = Flag_is_Copy << 1,
 724     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 725     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
 726     Flag_is_Con                      = Flag_is_macro << 1,
 727     Flag_is_cisc_alternate           = Flag_is_Con << 1,
 728     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
 729     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
 730     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
 731     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
 732     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
 733     Flag_is_reduction                = Flag_has_call << 1,
 734     Flag_is_scheduled                = Flag_is_reduction << 1,
 735     Flag_has_vector_mask_set         = Flag_is_scheduled << 1,
 736     Flag_is_expensive                = Flag_has_vector_mask_set << 1,
 737     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
 738   };
 739 
 740 private:
 741   jushort _class_id;
 742   jushort _flags;
 743 
 744 protected:
 745   // These methods should be called from constructors only.
 746   void init_class_id(jushort c) {
 747     assert(c <= _max_classes, "invalid node class");
 748     _class_id = c; // cast out const
 749   }
 750   void init_flags(jushort fl) {
 751     assert(fl <= _max_flags, "invalid node flag");
 752     _flags |= fl;
 753   }
 754   void clear_flag(jushort fl) {
 755     assert(fl <= _max_flags, "invalid node flag");
 756     _flags &= ~fl;
 757   }
 758 
 759 public:
 760   const jushort class_id() const { return _class_id; }
 761 
 762   const jushort flags() const { return _flags; }
 763 
 764   void add_flag(jushort fl) { init_flags(fl); }
 765 
 766   void remove_flag(jushort fl) { clear_flag(fl); }
 767 
 768   // Return a dense integer opcode number
 769   virtual int Opcode() const;
 770 
 771   // Virtual inherited Node size
 772   virtual uint size_of() const;
 773 
 774   // Other interesting Node properties
 775   #define DEFINE_CLASS_QUERY(type)                           \
 776   bool is_##type() const {                                   \
 777     return ((_class_id & ClassMask_##type) == Class_##type); \
 778   }                                                          \
 779   type##Node *as_##type() const {                            \
 780     assert(is_##type(), "invalid node class");               \
 781     return (type##Node*)this;                                \
 782   }                                                          \
 783   type##Node* isa_##type() const {                           \
 784     return (is_##type()) ? as_##type() : NULL;               \
 785   }
 786 
 787   DEFINE_CLASS_QUERY(AbstractLock)
 788   DEFINE_CLASS_QUERY(Add)
 789   DEFINE_CLASS_QUERY(AddP)
 790   DEFINE_CLASS_QUERY(Allocate)
 791   DEFINE_CLASS_QUERY(AllocateArray)
 792   DEFINE_CLASS_QUERY(ArrayCopy)
 793   DEFINE_CLASS_QUERY(Bool)
 794   DEFINE_CLASS_QUERY(BoxLock)
 795   DEFINE_CLASS_QUERY(Call)
 796   DEFINE_CLASS_QUERY(CallDynamicJava)
 797   DEFINE_CLASS_QUERY(CallJava)
 798   DEFINE_CLASS_QUERY(CallLeaf)
 799   DEFINE_CLASS_QUERY(CallRuntime)
 800   DEFINE_CLASS_QUERY(CallStaticJava)
 801   DEFINE_CLASS_QUERY(Catch)
 802   DEFINE_CLASS_QUERY(CatchProj)
 803   DEFINE_CLASS_QUERY(CheckCastPP)
 804   DEFINE_CLASS_QUERY(CastII)
 805   DEFINE_CLASS_QUERY(ConstraintCast)
 806   DEFINE_CLASS_QUERY(ClearArray)
 807   DEFINE_CLASS_QUERY(CMove)
 808   DEFINE_CLASS_QUERY(Cmp)
 809   DEFINE_CLASS_QUERY(CountedLoop)
 810   DEFINE_CLASS_QUERY(CountedLoopEnd)
 811   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 812   DEFINE_CLASS_QUERY(DecodeN)
 813   DEFINE_CLASS_QUERY(DecodeNKlass)
 814   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 815   DEFINE_CLASS_QUERY(EncodeP)
 816   DEFINE_CLASS_QUERY(EncodePKlass)
 817   DEFINE_CLASS_QUERY(FastLock)
 818   DEFINE_CLASS_QUERY(FastUnlock)
 819   DEFINE_CLASS_QUERY(If)
 820   DEFINE_CLASS_QUERY(RangeCheck)
 821   DEFINE_CLASS_QUERY(IfFalse)
 822   DEFINE_CLASS_QUERY(IfTrue)
 823   DEFINE_CLASS_QUERY(Initialize)
 824   DEFINE_CLASS_QUERY(Jump)
 825   DEFINE_CLASS_QUERY(JumpProj)
 826   DEFINE_CLASS_QUERY(Load)
 827   DEFINE_CLASS_QUERY(LoadStore)
 828   DEFINE_CLASS_QUERY(LoadBarrier)
 829   DEFINE_CLASS_QUERY(LoadBarrierSlowReg)
 830   DEFINE_CLASS_QUERY(LoadBarrierWeakSlowReg)
 831   DEFINE_CLASS_QUERY(Lock)
 832   DEFINE_CLASS_QUERY(Loop)
 833   DEFINE_CLASS_QUERY(Mach)
 834   DEFINE_CLASS_QUERY(MachBranch)
 835   DEFINE_CLASS_QUERY(MachCall)
 836   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 837   DEFINE_CLASS_QUERY(MachCallJava)
 838   DEFINE_CLASS_QUERY(MachCallLeaf)
 839   DEFINE_CLASS_QUERY(MachCallRuntime)
 840   DEFINE_CLASS_QUERY(MachCallStaticJava)
 841   DEFINE_CLASS_QUERY(MachConstantBase)
 842   DEFINE_CLASS_QUERY(MachConstant)
 843   DEFINE_CLASS_QUERY(MachGoto)
 844   DEFINE_CLASS_QUERY(MachIf)
 845   DEFINE_CLASS_QUERY(MachJump)
 846   DEFINE_CLASS_QUERY(MachNullCheck)
 847   DEFINE_CLASS_QUERY(MachProj)
 848   DEFINE_CLASS_QUERY(MachReturn)
 849   DEFINE_CLASS_QUERY(MachSafePoint)
 850   DEFINE_CLASS_QUERY(MachSpillCopy)
 851   DEFINE_CLASS_QUERY(MachTemp)
 852   DEFINE_CLASS_QUERY(MachMerge)
 853   DEFINE_CLASS_QUERY(Mem)
 854   DEFINE_CLASS_QUERY(MemBar)
 855   DEFINE_CLASS_QUERY(MemBarStoreStore)
 856   DEFINE_CLASS_QUERY(MergeMem)
 857   DEFINE_CLASS_QUERY(Mul)
 858   DEFINE_CLASS_QUERY(Multi)
 859   DEFINE_CLASS_QUERY(MultiBranch)
 860   DEFINE_CLASS_QUERY(OuterStripMinedLoop)
 861   DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
 862   DEFINE_CLASS_QUERY(Parm)
 863   DEFINE_CLASS_QUERY(PCTable)
 864   DEFINE_CLASS_QUERY(Phi)
 865   DEFINE_CLASS_QUERY(Proj)
 866   DEFINE_CLASS_QUERY(Region)
 867   DEFINE_CLASS_QUERY(Root)
 868   DEFINE_CLASS_QUERY(SafePoint)
 869   DEFINE_CLASS_QUERY(SafePointScalarObject)
 870   DEFINE_CLASS_QUERY(Start)
 871   DEFINE_CLASS_QUERY(Store)
 872   DEFINE_CLASS_QUERY(Sub)
 873   DEFINE_CLASS_QUERY(Type)
 874   DEFINE_CLASS_QUERY(Vector)
 875   DEFINE_CLASS_QUERY(LoadVector)
 876   DEFINE_CLASS_QUERY(StoreVector)
 877   DEFINE_CLASS_QUERY(Unlock)
 878 
 879   #undef DEFINE_CLASS_QUERY
 880 
 881   // duplicate of is_MachSpillCopy()
 882   bool is_SpillCopy () const {
 883     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 884   }
 885 
 886   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 887   // The data node which is safe to leave in dead loop during IGVN optimization.
 888   bool is_dead_loop_safe() const {
 889     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 890            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 891             (!is_Proj() || !in(0)->is_Allocate()));
 892   }
 893 
 894   // is_Copy() returns copied edge index (0 or 1)
 895   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 896 
 897   virtual bool is_CFG() const { return false; }
 898 
 899   // If this node is control-dependent on a test, can it be
 900   // rerouted to a dominating equivalent test?  This is usually
 901   // true of non-CFG nodes, but can be false for operations which
 902   // depend for their correct sequencing on more than one test.
 903   // (In that case, hoisting to a dominating test may silently
 904   // skip some other important test.)
 905   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 906 
 907   // When building basic blocks, I need to have a notion of block beginning
 908   // Nodes, next block selector Nodes (block enders), and next block
 909   // projections.  These calls need to work on their machine equivalents.  The
 910   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 911   bool is_block_start() const {
 912     if ( is_Region() )
 913       return this == (const Node*)in(0);
 914     else
 915       return is_Start();
 916   }
 917 
 918   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 919   // Goto and Return.  This call also returns the block ending Node.
 920   virtual const Node *is_block_proj() const;
 921 
 922   // The node is a "macro" node which needs to be expanded before matching
 923   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 924   // The node is expensive: the best control is set during loop opts
 925   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
 926 
 927   // An arithmetic node which accumulates a data in a loop.
 928   // It must have the loop's phi as input and provide a def to the phi.
 929   bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; }
 930 
 931   // The node is a CountedLoopEnd with a mask annotation so as to emit a restore context
 932   bool has_vector_mask_set() const { return (_flags & Flag_has_vector_mask_set) != 0; }
 933 
 934   // Used in lcm to mark nodes that have scheduled
 935   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
 936 
 937 //----------------- Optimization
 938 
 939   // Get the worst-case Type output for this Node.
 940   virtual const class Type *bottom_type() const;
 941 
 942   // If we find a better type for a node, try to record it permanently.
 943   // Return true if this node actually changed.
 944   // Be sure to do the hash_delete game in the "rehash" variant.
 945   void raise_bottom_type(const Type* new_type);
 946 
 947   // Get the address type with which this node uses and/or defs memory,
 948   // or NULL if none.  The address type is conservatively wide.
 949   // Returns non-null for calls, membars, loads, stores, etc.
 950   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 951   virtual const class TypePtr *adr_type() const { return NULL; }
 952 
 953   // Return an existing node which computes the same function as this node.
 954   // The optimistic combined algorithm requires this to return a Node which
 955   // is a small number of steps away (e.g., one of my inputs).
 956   virtual Node* Identity(PhaseGVN* phase);
 957 
 958   // Return the set of values this Node can take on at runtime.
 959   virtual const Type* Value(PhaseGVN* phase) const;
 960 
 961   // Return a node which is more "ideal" than the current node.
 962   // The invariants on this call are subtle.  If in doubt, read the
 963   // treatise in node.cpp above the default implemention AND TEST WITH
 964   // +VerifyIterativeGVN!
 965   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 966 
 967   // Some nodes have specific Ideal subgraph transformations only if they are
 968   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 969   // for the transformations to happen.
 970   bool has_special_unique_user() const;
 971 
 972   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 973   Node* find_exact_control(Node* ctrl);
 974 
 975   // Check if 'this' node dominates or equal to 'sub'.
 976   bool dominates(Node* sub, Node_List &nlist);
 977 
 978 protected:
 979   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 980 public:
 981 
 982   // See if there is valid pipeline info
 983   static  const Pipeline *pipeline_class();
 984   virtual const Pipeline *pipeline() const;
 985 
 986   // Compute the latency from the def to this instruction of the ith input node
 987   uint latency(uint i);
 988 
 989   // Hash & compare functions, for pessimistic value numbering
 990 
 991   // If the hash function returns the special sentinel value NO_HASH,
 992   // the node is guaranteed never to compare equal to any other node.
 993   // If we accidentally generate a hash with value NO_HASH the node
 994   // won't go into the table and we'll lose a little optimization.
 995   enum { NO_HASH = 0 };
 996   virtual uint hash() const;
 997   virtual uint cmp( const Node &n ) const;
 998 
 999   // Operation appears to be iteratively computed (such as an induction variable)
1000   // It is possible for this operation to return false for a loop-varying
1001   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1002   bool is_iteratively_computed();
1003 
1004   // Determine if a node is Counted loop induction variable.
1005   // The method is defined in loopnode.cpp.
1006   const Node* is_loop_iv() const;
1007 
1008   // Return a node with opcode "opc" and same inputs as "this" if one can
1009   // be found; Otherwise return NULL;
1010   Node* find_similar(int opc);
1011 
1012   // Return the unique control out if only one. Null if none or more than one.
1013   Node* unique_ctrl_out() const;
1014 
1015   // Set control or add control as precedence edge
1016   void ensure_control_or_add_prec(Node* c);
1017 
1018 //----------------- Code Generation
1019 
1020   // Ideal register class for Matching.  Zero means unmatched instruction
1021   // (these are cloned instead of converted to machine nodes).
1022   virtual uint ideal_reg() const;
1023 
1024   static const uint NotAMachineReg;   // must be > max. machine register
1025 
1026   // Do we Match on this edge index or not?  Generally false for Control
1027   // and true for everything else.  Weird for calls & returns.
1028   virtual uint match_edge(uint idx) const;
1029 
1030   // Register class output is returned in
1031   virtual const RegMask &out_RegMask() const;
1032   // Register class input is expected in
1033   virtual const RegMask &in_RegMask(uint) const;
1034   // Should we clone rather than spill this instruction?
1035   bool rematerialize() const;
1036 
1037   // Return JVM State Object if this Node carries debug info, or NULL otherwise
1038   virtual JVMState* jvms() const;
1039 
1040   // Print as assembly
1041   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1042   // Emit bytes starting at parameter 'ptr'
1043   // Bump 'ptr' by the number of output bytes
1044   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
1045   // Size of instruction in bytes
1046   virtual uint size(PhaseRegAlloc *ra_) const;
1047 
1048   // Convenience function to extract an integer constant from a node.
1049   // If it is not an integer constant (either Con, CastII, or Mach),
1050   // return value_if_unknown.
1051   jint find_int_con(jint value_if_unknown) const {
1052     const TypeInt* t = find_int_type();
1053     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1054   }
1055   // Return the constant, knowing it is an integer constant already
1056   jint get_int() const {
1057     const TypeInt* t = find_int_type();
1058     guarantee(t != NULL, "must be con");
1059     return t->get_con();
1060   }
1061   // Here's where the work is done.  Can produce non-constant int types too.
1062   const TypeInt* find_int_type() const;
1063 
1064   // Same thing for long (and intptr_t, via type.hpp):
1065   jlong get_long() const {
1066     const TypeLong* t = find_long_type();
1067     guarantee(t != NULL, "must be con");
1068     return t->get_con();
1069   }
1070   jlong find_long_con(jint value_if_unknown) const {
1071     const TypeLong* t = find_long_type();
1072     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1073   }
1074   const TypeLong* find_long_type() const;
1075 
1076   const TypePtr* get_ptr_type() const;
1077 
1078   // These guys are called by code generated by ADLC:
1079   intptr_t get_ptr() const;
1080   intptr_t get_narrowcon() const;
1081   jdouble getd() const;
1082   jfloat getf() const;
1083 
1084   // Nodes which are pinned into basic blocks
1085   virtual bool pinned() const { return false; }
1086 
1087   // Nodes which use memory without consuming it, hence need antidependences
1088   // More specifically, needs_anti_dependence_check returns true iff the node
1089   // (a) does a load, and (b) does not perform a store (except perhaps to a
1090   // stack slot or some other unaliased location).
1091   bool needs_anti_dependence_check() const;
1092 
1093   // Return which operand this instruction may cisc-spill. In other words,
1094   // return operand position that can convert from reg to memory access
1095   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1096   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1097 
1098 //----------------- Graph walking
1099 public:
1100   // Walk and apply member functions recursively.
1101   // Supplied (this) pointer is root.
1102   void walk(NFunc pre, NFunc post, void *env);
1103   static void nop(Node &, void*); // Dummy empty function
1104   static void packregion( Node &n, void* );
1105 private:
1106   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1107 
1108 //----------------- Printing, etc
1109 public:
1110 #ifndef PRODUCT
1111   Node* find(int idx) const;         // Search the graph for the given idx.
1112   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1113   void dump() const { dump("\n"); }  // Print this node.
1114   void dump(const char* suffix, bool mark = false, outputStream *st = tty) const; // Print this node.
1115   void dump(int depth) const;        // Print this node, recursively to depth d
1116   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1117   void dump_comp() const;            // Print this node in compact representation.
1118   // Print this node in compact representation.
1119   void dump_comp(const char* suffix, outputStream *st = tty) const;
1120   virtual void dump_req(outputStream *st = tty) const;    // Print required-edge info
1121   virtual void dump_prec(outputStream *st = tty) const;   // Print precedence-edge info
1122   virtual void dump_out(outputStream *st = tty) const;    // Print the output edge info
1123   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1124   // Print compact per-node info
1125   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1126   void dump_related() const;             // Print related nodes (depends on node at hand).
1127   // Print related nodes up to given depths for input and output nodes.
1128   void dump_related(uint d_in, uint d_out) const;
1129   void dump_related_compact() const;     // Print related nodes in compact representation.
1130   // Collect related nodes.
1131   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1132   // Collect nodes starting from this node, explicitly including/excluding control and data links.
1133   void collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const;
1134 
1135   // Node collectors, to be used in implementations of Node::rel().
1136   // Collect the entire data input graph. Include control inputs if requested.
1137   void collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const;
1138   // Collect the entire control input graph. Include data inputs if requested.
1139   void collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const;
1140   // Collect the entire output graph until hitting and including control nodes.
1141   void collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const;
1142 
1143   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1144   void verify() const;               // Check Def-Use info for my subgraph
1145   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1146 
1147   // This call defines a class-unique string used to identify class instances
1148   virtual const char *Name() const;
1149 
1150   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1151   // RegMask Print Functions
1152   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1153   void dump_out_regmask() { out_RegMask().dump(); }
1154   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1155   void fast_dump() const {
1156     tty->print("%4d: %-17s", _idx, Name());
1157     for (uint i = 0; i < len(); i++)
1158       if (in(i))
1159         tty->print(" %4d", in(i)->_idx);
1160       else
1161         tty->print(" NULL");
1162     tty->print("\n");
1163   }
1164 #endif
1165 #ifdef ASSERT
1166   void verify_construction();
1167   bool verify_jvms(const JVMState* jvms) const;
1168   int  _debug_idx;                     // Unique value assigned to every node.
1169   int   debug_idx() const              { return _debug_idx; }
1170   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1171 
1172   Node* _debug_orig;                   // Original version of this, if any.
1173   Node*  debug_orig() const            { return _debug_orig; }
1174   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1175 
1176   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1177   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1178   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1179 
1180   static void init_NodeProperty();
1181 
1182   #if OPTO_DU_ITERATOR_ASSERT
1183   const Node* _last_del;               // The last deleted node.
1184   uint        _del_tick;               // Bumped when a deletion happens..
1185   #endif
1186 #endif
1187 };
1188 
1189 
1190 #ifndef PRODUCT
1191 
1192 // Used in debugging code to avoid walking across dead or uninitialized edges.
1193 inline bool NotANode(const Node* n) {
1194   if (n == NULL)                   return true;
1195   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1196   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1197   return false;
1198 }
1199 
1200 #endif
1201 
1202 
1203 //-----------------------------------------------------------------------------
1204 // Iterators over DU info, and associated Node functions.
1205 
1206 #if OPTO_DU_ITERATOR_ASSERT
1207 
1208 // Common code for assertion checking on DU iterators.
1209 class DUIterator_Common {
1210 #ifdef ASSERT
1211  protected:
1212   bool         _vdui;               // cached value of VerifyDUIterators
1213   const Node*  _node;               // the node containing the _out array
1214   uint         _outcnt;             // cached node->_outcnt
1215   uint         _del_tick;           // cached node->_del_tick
1216   Node*        _last;               // last value produced by the iterator
1217 
1218   void sample(const Node* node);    // used by c'tor to set up for verifies
1219   void verify(const Node* node, bool at_end_ok = false);
1220   void verify_resync();
1221   void reset(const DUIterator_Common& that);
1222 
1223 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1224   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1225 #else
1226   #define I_VDUI_ONLY(i,x) { }
1227 #endif //ASSERT
1228 };
1229 
1230 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1231 
1232 // Default DU iterator.  Allows appends onto the out array.
1233 // Allows deletion from the out array only at the current point.
1234 // Usage:
1235 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1236 //    Node* y = x->out(i);
1237 //    ...
1238 //  }
1239 // Compiles in product mode to a unsigned integer index, which indexes
1240 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1241 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1242 // before continuing the loop.  You must delete only the last-produced
1243 // edge.  You must delete only a single copy of the last-produced edge,
1244 // or else you must delete all copies at once (the first time the edge
1245 // is produced by the iterator).
1246 class DUIterator : public DUIterator_Common {
1247   friend class Node;
1248 
1249   // This is the index which provides the product-mode behavior.
1250   // Whatever the product-mode version of the system does to the
1251   // DUI index is done to this index.  All other fields in
1252   // this class are used only for assertion checking.
1253   uint         _idx;
1254 
1255   #ifdef ASSERT
1256   uint         _refresh_tick;    // Records the refresh activity.
1257 
1258   void sample(const Node* node); // Initialize _refresh_tick etc.
1259   void verify(const Node* node, bool at_end_ok = false);
1260   void verify_increment();       // Verify an increment operation.
1261   void verify_resync();          // Verify that we can back up over a deletion.
1262   void verify_finish();          // Verify that the loop terminated properly.
1263   void refresh();                // Resample verification info.
1264   void reset(const DUIterator& that);  // Resample after assignment.
1265   #endif
1266 
1267   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1268     { _idx = 0;                         debug_only(sample(node)); }
1269 
1270  public:
1271   // initialize to garbage; clear _vdui to disable asserts
1272   DUIterator()
1273     { /*initialize to garbage*/         debug_only(_vdui = false); }
1274 
1275   void operator++(int dummy_to_specify_postfix_op)
1276     { _idx++;                           VDUI_ONLY(verify_increment()); }
1277 
1278   void operator--()
1279     { VDUI_ONLY(verify_resync());       --_idx; }
1280 
1281   ~DUIterator()
1282     { VDUI_ONLY(verify_finish()); }
1283 
1284   void operator=(const DUIterator& that)
1285     { _idx = that._idx;                 debug_only(reset(that)); }
1286 };
1287 
1288 DUIterator Node::outs() const
1289   { return DUIterator(this, 0); }
1290 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1291   { I_VDUI_ONLY(i, i.refresh());        return i; }
1292 bool Node::has_out(DUIterator& i) const
1293   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1294 Node*    Node::out(DUIterator& i) const
1295   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1296 
1297 
1298 // Faster DU iterator.  Disallows insertions into the out array.
1299 // Allows deletion from the out array only at the current point.
1300 // Usage:
1301 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1302 //    Node* y = x->fast_out(i);
1303 //    ...
1304 //  }
1305 // Compiles in product mode to raw Node** pointer arithmetic, with
1306 // no reloading of pointers from the original node x.  If you delete,
1307 // you must perform "--i; --imax" just before continuing the loop.
1308 // If you delete multiple copies of the same edge, you must decrement
1309 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1310 class DUIterator_Fast : public DUIterator_Common {
1311   friend class Node;
1312   friend class DUIterator_Last;
1313 
1314   // This is the pointer which provides the product-mode behavior.
1315   // Whatever the product-mode version of the system does to the
1316   // DUI pointer is done to this pointer.  All other fields in
1317   // this class are used only for assertion checking.
1318   Node**       _outp;
1319 
1320   #ifdef ASSERT
1321   void verify(const Node* node, bool at_end_ok = false);
1322   void verify_limit();
1323   void verify_resync();
1324   void verify_relimit(uint n);
1325   void reset(const DUIterator_Fast& that);
1326   #endif
1327 
1328   // Note:  offset must be signed, since -1 is sometimes passed
1329   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1330     { _outp = node->_out + offset;      debug_only(sample(node)); }
1331 
1332  public:
1333   // initialize to garbage; clear _vdui to disable asserts
1334   DUIterator_Fast()
1335     { /*initialize to garbage*/         debug_only(_vdui = false); }
1336 
1337   void operator++(int dummy_to_specify_postfix_op)
1338     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1339 
1340   void operator--()
1341     { VDUI_ONLY(verify_resync());       --_outp; }
1342 
1343   void operator-=(uint n)   // applied to the limit only
1344     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1345 
1346   bool operator<(DUIterator_Fast& limit) {
1347     I_VDUI_ONLY(*this, this->verify(_node, true));
1348     I_VDUI_ONLY(limit, limit.verify_limit());
1349     return _outp < limit._outp;
1350   }
1351 
1352   void operator=(const DUIterator_Fast& that)
1353     { _outp = that._outp;               debug_only(reset(that)); }
1354 };
1355 
1356 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1357   // Assign a limit pointer to the reference argument:
1358   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1359   // Return the base pointer:
1360   return DUIterator_Fast(this, 0);
1361 }
1362 Node* Node::fast_out(DUIterator_Fast& i) const {
1363   I_VDUI_ONLY(i, i.verify(this));
1364   return debug_only(i._last=) *i._outp;
1365 }
1366 
1367 
1368 // Faster DU iterator.  Requires each successive edge to be removed.
1369 // Does not allow insertion of any edges.
1370 // Usage:
1371 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1372 //    Node* y = x->last_out(i);
1373 //    ...
1374 //  }
1375 // Compiles in product mode to raw Node** pointer arithmetic, with
1376 // no reloading of pointers from the original node x.
1377 class DUIterator_Last : private DUIterator_Fast {
1378   friend class Node;
1379 
1380   #ifdef ASSERT
1381   void verify(const Node* node, bool at_end_ok = false);
1382   void verify_limit();
1383   void verify_step(uint num_edges);
1384   #endif
1385 
1386   // Note:  offset must be signed, since -1 is sometimes passed
1387   DUIterator_Last(const Node* node, ptrdiff_t offset)
1388     : DUIterator_Fast(node, offset) { }
1389 
1390   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1391   void operator<(int)                              {} // do not use
1392 
1393  public:
1394   DUIterator_Last() { }
1395   // initialize to garbage
1396 
1397   void operator--()
1398     { _outp--;              VDUI_ONLY(verify_step(1));  }
1399 
1400   void operator-=(uint n)
1401     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1402 
1403   bool operator>=(DUIterator_Last& limit) {
1404     I_VDUI_ONLY(*this, this->verify(_node, true));
1405     I_VDUI_ONLY(limit, limit.verify_limit());
1406     return _outp >= limit._outp;
1407   }
1408 
1409   void operator=(const DUIterator_Last& that)
1410     { DUIterator_Fast::operator=(that); }
1411 };
1412 
1413 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1414   // Assign a limit pointer to the reference argument:
1415   imin = DUIterator_Last(this, 0);
1416   // Return the initial pointer:
1417   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1418 }
1419 Node* Node::last_out(DUIterator_Last& i) const {
1420   I_VDUI_ONLY(i, i.verify(this));
1421   return debug_only(i._last=) *i._outp;
1422 }
1423 
1424 #endif //OPTO_DU_ITERATOR_ASSERT
1425 
1426 #undef I_VDUI_ONLY
1427 #undef VDUI_ONLY
1428 
1429 // An Iterator that truly follows the iterator pattern.  Doesn't
1430 // support deletion but could be made to.
1431 //
1432 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1433 //     Node* m = i.get();
1434 //
1435 class SimpleDUIterator : public StackObj {
1436  private:
1437   Node* node;
1438   DUIterator_Fast i;
1439   DUIterator_Fast imax;
1440  public:
1441   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1442   bool has_next() { return i < imax; }
1443   void next() { i++; }
1444   Node* get() { return node->fast_out(i); }
1445 };
1446 
1447 
1448 //-----------------------------------------------------------------------------
1449 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1450 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1451 // Note that the constructor just zeros things, and since I use Arena
1452 // allocation I do not need a destructor to reclaim storage.
1453 class Node_Array : public ResourceObj {
1454   friend class VMStructs;
1455 protected:
1456   Arena *_a;                    // Arena to allocate in
1457   uint   _max;
1458   Node **_nodes;
1459   void   grow( uint i );        // Grow array node to fit
1460 public:
1461   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1462     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1463     for( int i = 0; i < OptoNodeListSize; i++ ) {
1464       _nodes[i] = NULL;
1465     }
1466   }
1467 
1468   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1469   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1470   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1471   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1472   Node **adr() { return _nodes; }
1473   // Extend the mapping: index i maps to Node *n.
1474   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1475   void insert( uint i, Node *n );
1476   void remove( uint i );        // Remove, preserving order
1477   void sort( C_sort_func_t func);
1478   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1479   void clear();                 // Set all entries to NULL, keep storage
1480   uint Size() const { return _max; }
1481   void dump() const;
1482 };
1483 
1484 class Node_List : public Node_Array {
1485   friend class VMStructs;
1486   uint _cnt;
1487 public:
1488   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1489   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1490   bool contains(const Node* n) const {
1491     for (uint e = 0; e < size(); e++) {
1492       if (at(e) == n) return true;
1493     }
1494     return false;
1495   }
1496   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1497   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1498   void push( Node *b ) { map(_cnt++,b); }
1499   void yank( Node *n );         // Find and remove
1500   Node *pop() { return _nodes[--_cnt]; }
1501   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1502   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1503   uint size() const { return _cnt; }
1504   void dump() const;
1505   void dump_simple() const;
1506 };
1507 
1508 //------------------------------Unique_Node_List-------------------------------
1509 class Unique_Node_List : public Node_List {
1510   friend class VMStructs;
1511   VectorSet _in_worklist;
1512   uint _clock_index;            // Index in list where to pop from next
1513 public:
1514   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1515   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1516 
1517   void remove( Node *n );
1518   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1519   VectorSet &member_set(){ return _in_worklist; }
1520 
1521   void push( Node *b ) {
1522     if( !_in_worklist.test_set(b->_idx) )
1523       Node_List::push(b);
1524   }
1525   Node *pop() {
1526     if( _clock_index >= size() ) _clock_index = 0;
1527     Node *b = at(_clock_index);
1528     map( _clock_index, Node_List::pop());
1529     if (size() != 0) _clock_index++; // Always start from 0
1530     _in_worklist >>= b->_idx;
1531     return b;
1532   }
1533   Node *remove( uint i ) {
1534     Node *b = Node_List::at(i);
1535     _in_worklist >>= b->_idx;
1536     map(i,Node_List::pop());
1537     return b;
1538   }
1539   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1540   void  clear() {
1541     _in_worklist.Clear();        // Discards storage but grows automatically
1542     Node_List::clear();
1543     _clock_index = 0;
1544   }
1545 
1546   // Used after parsing to remove useless nodes before Iterative GVN
1547   void remove_useless_nodes(VectorSet &useful);
1548 
1549 #ifndef PRODUCT
1550   void print_set() const { _in_worklist.print(); }
1551 #endif
1552 };
1553 
1554 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1555 inline void Compile::record_for_igvn(Node* n) {
1556   _for_igvn->push(n);
1557 }
1558 
1559 //------------------------------Node_Stack-------------------------------------
1560 class Node_Stack {
1561   friend class VMStructs;
1562 protected:
1563   struct INode {
1564     Node *node; // Processed node
1565     uint  indx; // Index of next node's child
1566   };
1567   INode *_inode_top; // tos, stack grows up
1568   INode *_inode_max; // End of _inodes == _inodes + _max
1569   INode *_inodes;    // Array storage for the stack
1570   Arena *_a;         // Arena to allocate in
1571   void grow();
1572 public:
1573   Node_Stack(int size) {
1574     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1575     _a = Thread::current()->resource_area();
1576     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1577     _inode_max = _inodes + max;
1578     _inode_top = _inodes - 1; // stack is empty
1579   }
1580 
1581   Node_Stack(Arena *a, int size) : _a(a) {
1582     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1583     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1584     _inode_max = _inodes + max;
1585     _inode_top = _inodes - 1; // stack is empty
1586   }
1587 
1588   void pop() {
1589     assert(_inode_top >= _inodes, "node stack underflow");
1590     --_inode_top;
1591   }
1592   void push(Node *n, uint i) {
1593     ++_inode_top;
1594     if (_inode_top >= _inode_max) grow();
1595     INode *top = _inode_top; // optimization
1596     top->node = n;
1597     top->indx = i;
1598   }
1599   Node *node() const {
1600     return _inode_top->node;
1601   }
1602   Node* node_at(uint i) const {
1603     assert(_inodes + i <= _inode_top, "in range");
1604     return _inodes[i].node;
1605   }
1606   uint index() const {
1607     return _inode_top->indx;
1608   }
1609   uint index_at(uint i) const {
1610     assert(_inodes + i <= _inode_top, "in range");
1611     return _inodes[i].indx;
1612   }
1613   void set_node(Node *n) {
1614     _inode_top->node = n;
1615   }
1616   void set_index(uint i) {
1617     _inode_top->indx = i;
1618   }
1619   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1620   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1621   bool is_nonempty() const { return (_inode_top >= _inodes); }
1622   bool is_empty() const { return (_inode_top < _inodes); }
1623   void clear() { _inode_top = _inodes - 1; } // retain storage
1624 
1625   // Node_Stack is used to map nodes.
1626   Node* find(uint idx) const;
1627 };
1628 
1629 
1630 //-----------------------------Node_Notes--------------------------------------
1631 // Debugging or profiling annotations loosely and sparsely associated
1632 // with some nodes.  See Compile::node_notes_at for the accessor.
1633 class Node_Notes {
1634   friend class VMStructs;
1635   JVMState* _jvms;
1636 
1637 public:
1638   Node_Notes(JVMState* jvms = NULL) {
1639     _jvms = jvms;
1640   }
1641 
1642   JVMState* jvms()            { return _jvms; }
1643   void  set_jvms(JVMState* x) {        _jvms = x; }
1644 
1645   // True if there is nothing here.
1646   bool is_clear() {
1647     return (_jvms == NULL);
1648   }
1649 
1650   // Make there be nothing here.
1651   void clear() {
1652     _jvms = NULL;
1653   }
1654 
1655   // Make a new, clean node notes.
1656   static Node_Notes* make(Compile* C) {
1657     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1658     nn->clear();
1659     return nn;
1660   }
1661 
1662   Node_Notes* clone(Compile* C) {
1663     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1664     (*nn) = (*this);
1665     return nn;
1666   }
1667 
1668   // Absorb any information from source.
1669   bool update_from(Node_Notes* source) {
1670     bool changed = false;
1671     if (source != NULL) {
1672       if (source->jvms() != NULL) {
1673         set_jvms(source->jvms());
1674         changed = true;
1675       }
1676     }
1677     return changed;
1678   }
1679 };
1680 
1681 // Inlined accessors for Compile::node_nodes that require the preceding class:
1682 inline Node_Notes*
1683 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1684                            int idx, bool can_grow) {
1685   assert(idx >= 0, "oob");
1686   int block_idx = (idx >> _log2_node_notes_block_size);
1687   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1688   if (grow_by >= 0) {
1689     if (!can_grow)  return NULL;
1690     grow_node_notes(arr, grow_by + 1);
1691   }
1692   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1693   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1694 }
1695 
1696 inline bool
1697 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1698   if (value == NULL || value->is_clear())
1699     return false;  // nothing to write => write nothing
1700   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1701   assert(loc != NULL, "");
1702   return loc->update_from(value);
1703 }
1704 
1705 
1706 //------------------------------TypeNode---------------------------------------
1707 // Node with a Type constant.
1708 class TypeNode : public Node {
1709 protected:
1710   virtual uint hash() const;    // Check the type
1711   virtual uint cmp( const Node &n ) const;
1712   virtual uint size_of() const; // Size is bigger
1713   const Type* const _type;
1714 public:
1715   void set_type(const Type* t) {
1716     assert(t != NULL, "sanity");
1717     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1718     *(const Type**)&_type = t;   // cast away const-ness
1719     // If this node is in the hash table, make sure it doesn't need a rehash.
1720     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1721   }
1722   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1723   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1724     init_class_id(Class_Type);
1725   }
1726   virtual const Type* Value(PhaseGVN* phase) const;
1727   virtual const Type *bottom_type() const;
1728   virtual       uint  ideal_reg() const;
1729 
1730 #ifndef PRODUCT
1731   virtual void dump_spec(outputStream *st) const;
1732   virtual void dump_compact_spec(outputStream *st) const;
1733 #endif
1734 };
1735 
1736 #endif // SHARE_VM_OPTO_NODE_HPP