/* * Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "gc/z/zAddress.inline.hpp" #include "gc/z/zBackingFile_linux_x86.hpp" #include "gc/z/zErrno.hpp" #include "gc/z/zLargePages.inline.hpp" #include "gc/z/zMemory.hpp" #include "gc/z/zNUMA.hpp" #include "gc/z/zPhysicalMemory.inline.hpp" #include "gc/z/zPhysicalMemoryBacking_linux_x86.hpp" #include "logging/log.hpp" #include "runtime/os.hpp" #include "utilities/align.hpp" #include "utilities/debug.hpp" #include #include #include // Support for building on older Linux systems #ifndef MADV_HUGEPAGE #define MADV_HUGEPAGE 14 #endif // Proc file entry for max map mount #define ZFILENAME_PROC_MAX_MAP_COUNT "/proc/sys/vm/max_map_count" ZPhysicalMemoryBacking::ZPhysicalMemoryBacking(size_t max_capacity, size_t granule_size) : _manager(), _file(), _granule_size(granule_size) { // Check and warn if max map count seems too low check_max_map_count(max_capacity, granule_size); } void ZPhysicalMemoryBacking::check_max_map_count(size_t max_capacity, size_t granule_size) const { const char* const filename = ZFILENAME_PROC_MAX_MAP_COUNT; FILE* const file = fopen(filename, "r"); if (file == NULL) { // Failed to open file, skip check log_debug(gc)("Failed to open %s", filename); return; } size_t actual_max_map_count = 0; const int result = fscanf(file, SIZE_FORMAT, &actual_max_map_count); fclose(file); if (result != 1) { // Failed to read file, skip check log_debug(gc)("Failed to read %s", filename); return; } // The required max map count is impossible to calculate exactly since subsystems // other than ZGC are also creating memory mappings, and we have no control over that. // However, ZGC tends to create the most mappings and dominate the total count. // In the worst cases, ZGC will map each granule three times, i.e. once per heap view. // We speculate that we need another 20% to allow for non-ZGC subsystems to map memory. const size_t required_max_map_count = (max_capacity / granule_size) * 3 * 1.2; if (actual_max_map_count < required_max_map_count) { log_warning(gc)("The system limit on number of memory mappings " "per process might be too low for the given"); log_warning(gc)("Java heap size (" SIZE_FORMAT "M). Please " "adjust %s to allow for at least", max_capacity / M, filename); log_warning(gc)(SIZE_FORMAT " mappings (current limit is " SIZE_FORMAT "). " "Continuing execution with the current limit could", required_max_map_count, actual_max_map_count); log_warning(gc)("lead to a fatal error down the line, due to failed " "attempts to map memory."); } } bool ZPhysicalMemoryBacking::is_initialized() const { return _file.is_initialized(); } bool ZPhysicalMemoryBacking::expand(size_t from, size_t to) { const size_t size = to - from; // Expand if (!_file.expand(from, size)) { return false; } // Add expanded space to free list _manager.free(from, size); return true; } ZPhysicalMemory ZPhysicalMemoryBacking::alloc(size_t size) { assert(is_aligned(size, _granule_size), "Invalid size"); ZPhysicalMemory pmem; // Allocate segments for (size_t allocated = 0; allocated < size; allocated += _granule_size) { const uintptr_t start = _manager.alloc_from_front(_granule_size); assert(start != UINTPTR_MAX, "Allocation should never fail"); pmem.add_segment(ZPhysicalMemorySegment(start, _granule_size)); } return pmem; } void ZPhysicalMemoryBacking::free(ZPhysicalMemory pmem) { const size_t nsegments = pmem.nsegments(); // Free segments for (size_t i = 0; i < nsegments; i++) { const ZPhysicalMemorySegment segment = pmem.segment(i); _manager.free(segment.start(), segment.size()); } } void ZPhysicalMemoryBacking::map_failed(ZErrno err) const { if (err == ENOMEM) { fatal("Failed to map memory. Please check the system limit on number of " "memory mappings allowed per process (see %s)", ZFILENAME_PROC_MAX_MAP_COUNT); } else { fatal("Failed to map memory (%s)", err.to_string()); } } void ZPhysicalMemoryBacking::advise_view(uintptr_t addr, size_t size) const { if (madvise((void*)addr, size, MADV_HUGEPAGE) == -1) { ZErrno err; log_error(gc)("Failed to advise use of transparent huge pages (%s)", err.to_string()); } } void ZPhysicalMemoryBacking::pretouch_view(uintptr_t addr, size_t size) const { const size_t page_size = ZLargePages::is_explicit() ? os::large_page_size() : os::vm_page_size(); os::pretouch_memory((void*)addr, (void*)(addr + size), page_size); } void ZPhysicalMemoryBacking::map_view(ZPhysicalMemory pmem, uintptr_t addr, bool pretouch) const { const size_t nsegments = pmem.nsegments(); // Map segments for (size_t i = 0; i < nsegments; i++) { const ZPhysicalMemorySegment segment = pmem.segment(i); const size_t size = segment.size(); const void* const res = mmap((void*)addr, size, PROT_READ|PROT_WRITE, MAP_FIXED|MAP_SHARED, _file.fd(), segment.start()); if (res == MAP_FAILED) { ZErrno err; map_failed(err); } // Advise on use of transparent huge pages before touching it if (ZLargePages::is_transparent()) { advise_view(addr, size); } // NUMA interleave memory before touching it ZNUMA::memory_interleave(addr, size); if (pretouch) { pretouch_view(addr, size); } addr += size; } } void ZPhysicalMemoryBacking::unmap_view(ZPhysicalMemory pmem, uintptr_t addr) const { // Note that we must keep the address space reservation intact and just detach // the backing memory. For this reason we map a new anonymous, non-accessible // and non-reserved page over the mapping instead of actually unmapping. const size_t size = pmem.size(); const void* const res = mmap((void*)addr, size, PROT_NONE, MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE|MAP_NORESERVE, -1, 0); if (res == MAP_FAILED) { ZErrno err; map_failed(err); } } uintptr_t ZPhysicalMemoryBacking::nmt_address(uintptr_t offset) const { // From an NMT point of view we treat the first heap mapping (marked0) as committed return ZAddress::marked0(offset); } void ZPhysicalMemoryBacking::map(ZPhysicalMemory pmem, uintptr_t offset) const { if (ZUnmapBadViews) { // Only map the good view, for debugging only map_view(pmem, ZAddress::good(offset), AlwaysPreTouch); } else { // Map all views map_view(pmem, ZAddress::marked0(offset), AlwaysPreTouch); map_view(pmem, ZAddress::marked1(offset), AlwaysPreTouch); map_view(pmem, ZAddress::remapped(offset), AlwaysPreTouch); } } void ZPhysicalMemoryBacking::unmap(ZPhysicalMemory pmem, uintptr_t offset) const { if (ZUnmapBadViews) { // Only map the good view, for debugging only unmap_view(pmem, ZAddress::good(offset)); } else { // Unmap all views unmap_view(pmem, ZAddress::marked0(offset)); unmap_view(pmem, ZAddress::marked1(offset)); unmap_view(pmem, ZAddress::remapped(offset)); } } void ZPhysicalMemoryBacking::flip(ZPhysicalMemory pmem, uintptr_t offset) const { assert(ZUnmapBadViews, "Should be enabled"); const uintptr_t addr_good = ZAddress::good(offset); const uintptr_t addr_bad = ZAddress::is_marked(ZAddressGoodMask) ? ZAddress::remapped(offset) : ZAddress::marked(offset); // Map/Unmap views map_view(pmem, addr_good, false /* pretouch */); unmap_view(pmem, addr_bad); }