1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/c2compiler.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/escape.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/movenode.hpp"
  40 #include "opto/rootnode.hpp"
  41 #if INCLUDE_G1GC
  42 #include "gc/g1/g1ThreadLocalData.hpp"
  43 #endif // INCLUDE_G1GC
  44 
  45 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  46   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  47   _in_worklist(C->comp_arena()),
  48   _next_pidx(0),
  49   _collecting(true),
  50   _verify(false),
  51   _compile(C),
  52   _igvn(igvn),
  53   _node_map(C->comp_arena()) {
  54   // Add unknown java object.
  55   add_java_object(C->top(), PointsToNode::GlobalEscape);
  56   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  57   // Add ConP(#NULL) and ConN(#NULL) nodes.
  58   Node* oop_null = igvn->zerocon(T_OBJECT);
  59   assert(oop_null->_idx < nodes_size(), "should be created already");
  60   add_java_object(oop_null, PointsToNode::NoEscape);
  61   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  62   if (UseCompressedOops) {
  63     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  64     assert(noop_null->_idx < nodes_size(), "should be created already");
  65     map_ideal_node(noop_null, null_obj);
  66   }
  67   _pcmp_neq = NULL; // Should be initialized
  68   _pcmp_eq  = NULL;
  69 }
  70 
  71 bool ConnectionGraph::has_candidates(Compile *C) {
  72   // EA brings benefits only when the code has allocations and/or locks which
  73   // are represented by ideal Macro nodes.
  74   int cnt = C->macro_count();
  75   for (int i = 0; i < cnt; i++) {
  76     Node *n = C->macro_node(i);
  77     if (n->is_Allocate())
  78       return true;
  79     if (n->is_Lock()) {
  80       Node* obj = n->as_Lock()->obj_node()->uncast();
  81       if (!(obj->is_Parm() || obj->is_Con()))
  82         return true;
  83     }
  84     if (n->is_CallStaticJava() &&
  85         n->as_CallStaticJava()->is_boxing_method()) {
  86       return true;
  87     }
  88   }
  89   return false;
  90 }
  91 
  92 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  93   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  94   ResourceMark rm;
  95 
  96   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  97   // to create space for them in ConnectionGraph::_nodes[].
  98   Node* oop_null = igvn->zerocon(T_OBJECT);
  99   Node* noop_null = igvn->zerocon(T_NARROWOOP);
 100   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
 101   // Perform escape analysis
 102   if (congraph->compute_escape()) {
 103     // There are non escaping objects.
 104     C->set_congraph(congraph);
 105   }
 106   // Cleanup.
 107   if (oop_null->outcnt() == 0)
 108     igvn->hash_delete(oop_null);
 109   if (noop_null->outcnt() == 0)
 110     igvn->hash_delete(noop_null);
 111 }
 112 
 113 bool ConnectionGraph::compute_escape() {
 114   Compile* C = _compile;
 115   PhaseGVN* igvn = _igvn;
 116 
 117   // Worklists used by EA.
 118   Unique_Node_List delayed_worklist;
 119   GrowableArray<Node*> alloc_worklist;
 120   GrowableArray<Node*> ptr_cmp_worklist;
 121   GrowableArray<Node*> storestore_worklist;
 122   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 123   GrowableArray<PointsToNode*>   ptnodes_worklist;
 124   GrowableArray<JavaObjectNode*> java_objects_worklist;
 125   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 126   GrowableArray<FieldNode*>      oop_fields_worklist;
 127   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 128 
 129   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 130 
 131   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 132   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 133   // Initialize worklist
 134   if (C->root() != NULL) {
 135     ideal_nodes.push(C->root());
 136   }
 137   // Processed ideal nodes are unique on ideal_nodes list
 138   // but several ideal nodes are mapped to the phantom_obj.
 139   // To avoid duplicated entries on the following worklists
 140   // add the phantom_obj only once to them.
 141   ptnodes_worklist.append(phantom_obj);
 142   java_objects_worklist.append(phantom_obj);
 143   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 144     Node* n = ideal_nodes.at(next);
 145     // Create PointsTo nodes and add them to Connection Graph. Called
 146     // only once per ideal node since ideal_nodes is Unique_Node list.
 147     add_node_to_connection_graph(n, &delayed_worklist);
 148     PointsToNode* ptn = ptnode_adr(n->_idx);
 149     if (ptn != NULL && ptn != phantom_obj) {
 150       ptnodes_worklist.append(ptn);
 151       if (ptn->is_JavaObject()) {
 152         java_objects_worklist.append(ptn->as_JavaObject());
 153         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 154             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 155           // Only allocations and java static calls results are interesting.
 156           non_escaped_worklist.append(ptn->as_JavaObject());
 157         }
 158       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 159         oop_fields_worklist.append(ptn->as_Field());
 160       }
 161     }
 162     if (n->is_MergeMem()) {
 163       // Collect all MergeMem nodes to add memory slices for
 164       // scalar replaceable objects in split_unique_types().
 165       _mergemem_worklist.append(n->as_MergeMem());
 166     } else if (OptimizePtrCompare && n->is_Cmp() &&
 167                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 168       // Collect compare pointers nodes.
 169       ptr_cmp_worklist.append(n);
 170     } else if (n->is_MemBarStoreStore()) {
 171       // Collect all MemBarStoreStore nodes so that depending on the
 172       // escape status of the associated Allocate node some of them
 173       // may be eliminated.
 174       storestore_worklist.append(n);
 175     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 176                (n->req() > MemBarNode::Precedent)) {
 177       record_for_optimizer(n);
 178 #ifdef ASSERT
 179     } else if (n->is_AddP()) {
 180       // Collect address nodes for graph verification.
 181       addp_worklist.append(n);
 182 #endif
 183     } else if (n->is_ArrayCopy()) {
 184       // Keep a list of ArrayCopy nodes so if one of its input is non
 185       // escaping, we can record a unique type
 186       arraycopy_worklist.append(n->as_ArrayCopy());
 187     }
 188     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 189       Node* m = n->fast_out(i);   // Get user
 190       ideal_nodes.push(m);
 191     }
 192   }
 193   if (non_escaped_worklist.length() == 0) {
 194     _collecting = false;
 195     return false; // Nothing to do.
 196   }
 197   // Add final simple edges to graph.
 198   while(delayed_worklist.size() > 0) {
 199     Node* n = delayed_worklist.pop();
 200     add_final_edges(n);
 201   }
 202   int ptnodes_length = ptnodes_worklist.length();
 203 
 204 #ifdef ASSERT
 205   if (VerifyConnectionGraph) {
 206     // Verify that no new simple edges could be created and all
 207     // local vars has edges.
 208     _verify = true;
 209     for (int next = 0; next < ptnodes_length; ++next) {
 210       PointsToNode* ptn = ptnodes_worklist.at(next);
 211       add_final_edges(ptn->ideal_node());
 212       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 213         ptn->dump();
 214         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 215       }
 216     }
 217     _verify = false;
 218   }
 219 #endif
 220   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 221   // processing, calls to CI to resolve symbols (types, fields, methods)
 222   // referenced in bytecode. During symbol resolution VM may throw
 223   // an exception which CI cleans and converts to compilation failure.
 224   if (C->failing())  return false;
 225 
 226   // 2. Finish Graph construction by propagating references to all
 227   //    java objects through graph.
 228   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 229                                  java_objects_worklist, oop_fields_worklist)) {
 230     // All objects escaped or hit time or iterations limits.
 231     _collecting = false;
 232     return false;
 233   }
 234 
 235   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 236   //    scalar replaceable allocations on alloc_worklist for processing
 237   //    in split_unique_types().
 238   int non_escaped_length = non_escaped_worklist.length();
 239   for (int next = 0; next < non_escaped_length; next++) {
 240     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 241     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 242     Node* n = ptn->ideal_node();
 243     if (n->is_Allocate()) {
 244       n->as_Allocate()->_is_non_escaping = noescape;
 245     }
 246     if (n->is_CallStaticJava()) {
 247       n->as_CallStaticJava()->_is_non_escaping = noescape;
 248     }
 249     if (noescape && ptn->scalar_replaceable()) {
 250       adjust_scalar_replaceable_state(ptn);
 251       if (ptn->scalar_replaceable()) {
 252         alloc_worklist.append(ptn->ideal_node());
 253       }
 254     }
 255   }
 256 
 257 #ifdef ASSERT
 258   if (VerifyConnectionGraph) {
 259     // Verify that graph is complete - no new edges could be added or needed.
 260     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 261                             java_objects_worklist, addp_worklist);
 262   }
 263   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 264   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 265          null_obj->edge_count() == 0 &&
 266          !null_obj->arraycopy_src() &&
 267          !null_obj->arraycopy_dst(), "sanity");
 268 #endif
 269 
 270   _collecting = false;
 271 
 272   } // TracePhase t3("connectionGraph")
 273 
 274   // 4. Optimize ideal graph based on EA information.
 275   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 276   if (has_non_escaping_obj) {
 277     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 278   }
 279 
 280 #ifndef PRODUCT
 281   if (PrintEscapeAnalysis) {
 282     dump(ptnodes_worklist); // Dump ConnectionGraph
 283   }
 284 #endif
 285 
 286   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 287 #ifdef ASSERT
 288   if (VerifyConnectionGraph) {
 289     int alloc_length = alloc_worklist.length();
 290     for (int next = 0; next < alloc_length; ++next) {
 291       Node* n = alloc_worklist.at(next);
 292       PointsToNode* ptn = ptnode_adr(n->_idx);
 293       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 294     }
 295   }
 296 #endif
 297 
 298   // 5. Separate memory graph for scalar replaceable allcations.
 299   if (has_scalar_replaceable_candidates &&
 300       C->AliasLevel() >= 3 && EliminateAllocations) {
 301     // Now use the escape information to create unique types for
 302     // scalar replaceable objects.
 303     split_unique_types(alloc_worklist, arraycopy_worklist);
 304     if (C->failing())  return false;
 305     C->print_method(PHASE_AFTER_EA, 2);
 306 
 307 #ifdef ASSERT
 308   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 309     tty->print("=== No allocations eliminated for ");
 310     C->method()->print_short_name();
 311     if(!EliminateAllocations) {
 312       tty->print(" since EliminateAllocations is off ===");
 313     } else if(!has_scalar_replaceable_candidates) {
 314       tty->print(" since there are no scalar replaceable candidates ===");
 315     } else if(C->AliasLevel() < 3) {
 316       tty->print(" since AliasLevel < 3 ===");
 317     }
 318     tty->cr();
 319 #endif
 320   }
 321   return has_non_escaping_obj;
 322 }
 323 
 324 // Utility function for nodes that load an object
 325 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 326   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 327   // ThreadLocal has RawPtr type.
 328   const Type* t = _igvn->type(n);
 329   if (t->make_ptr() != NULL) {
 330     Node* adr = n->in(MemNode::Address);
 331 #ifdef ASSERT
 332     if (!adr->is_AddP()) {
 333       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 334     } else {
 335       assert((ptnode_adr(adr->_idx) == NULL ||
 336               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 337     }
 338 #endif
 339     add_local_var_and_edge(n, PointsToNode::NoEscape,
 340                            adr, delayed_worklist);
 341   }
 342 }
 343 
 344 // Populate Connection Graph with PointsTo nodes and create simple
 345 // connection graph edges.
 346 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 347   assert(!_verify, "this method should not be called for verification");
 348   PhaseGVN* igvn = _igvn;
 349   uint n_idx = n->_idx;
 350   PointsToNode* n_ptn = ptnode_adr(n_idx);
 351   if (n_ptn != NULL)
 352     return; // No need to redefine PointsTo node during first iteration.
 353 
 354   if (n->is_Call()) {
 355     // Arguments to allocation and locking don't escape.
 356     if (n->is_AbstractLock()) {
 357       // Put Lock and Unlock nodes on IGVN worklist to process them during
 358       // first IGVN optimization when escape information is still available.
 359       record_for_optimizer(n);
 360     } else if (n->is_Allocate()) {
 361       add_call_node(n->as_Call());
 362       record_for_optimizer(n);
 363     } else {
 364       if (n->is_CallStaticJava()) {
 365         const char* name = n->as_CallStaticJava()->_name;
 366         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 367           return; // Skip uncommon traps
 368       }
 369       // Don't mark as processed since call's arguments have to be processed.
 370       delayed_worklist->push(n);
 371       // Check if a call returns an object.
 372       if ((n->as_Call()->returns_pointer() &&
 373            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) ||
 374           (n->is_CallStaticJava() &&
 375            n->as_CallStaticJava()->is_boxing_method())) {
 376         add_call_node(n->as_Call());
 377       }
 378     }
 379     return;
 380   }
 381   // Put this check here to process call arguments since some call nodes
 382   // point to phantom_obj.
 383   if (n_ptn == phantom_obj || n_ptn == null_obj)
 384     return; // Skip predefined nodes.
 385 
 386   int opcode = n->Opcode();
 387   switch (opcode) {
 388     case Op_AddP: {
 389       Node* base = get_addp_base(n);
 390       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 391       // Field nodes are created for all field types. They are used in
 392       // adjust_scalar_replaceable_state() and split_unique_types().
 393       // Note, non-oop fields will have only base edges in Connection
 394       // Graph because such fields are not used for oop loads and stores.
 395       int offset = address_offset(n, igvn);
 396       add_field(n, PointsToNode::NoEscape, offset);
 397       if (ptn_base == NULL) {
 398         delayed_worklist->push(n); // Process it later.
 399       } else {
 400         n_ptn = ptnode_adr(n_idx);
 401         add_base(n_ptn->as_Field(), ptn_base);
 402       }
 403       break;
 404     }
 405     case Op_CastX2P: {
 406       map_ideal_node(n, phantom_obj);
 407       break;
 408     }
 409     case Op_CastPP:
 410     case Op_CheckCastPP:
 411     case Op_EncodeP:
 412     case Op_DecodeN:
 413     case Op_EncodePKlass:
 414     case Op_DecodeNKlass: {
 415       add_local_var_and_edge(n, PointsToNode::NoEscape,
 416                              n->in(1), delayed_worklist);
 417       break;
 418     }
 419     case Op_CMoveP: {
 420       add_local_var(n, PointsToNode::NoEscape);
 421       // Do not add edges during first iteration because some could be
 422       // not defined yet.
 423       delayed_worklist->push(n);
 424       break;
 425     }
 426     case Op_ConP:
 427     case Op_ConN:
 428     case Op_ConNKlass: {
 429       // assume all oop constants globally escape except for null
 430       PointsToNode::EscapeState es;
 431       const Type* t = igvn->type(n);
 432       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 433         es = PointsToNode::NoEscape;
 434       } else {
 435         es = PointsToNode::GlobalEscape;
 436       }
 437       add_java_object(n, es);
 438       break;
 439     }
 440     case Op_CreateEx: {
 441       // assume that all exception objects globally escape
 442       map_ideal_node(n, phantom_obj);
 443       break;
 444     }
 445     case Op_LoadKlass:
 446     case Op_LoadNKlass: {
 447       // Unknown class is loaded
 448       map_ideal_node(n, phantom_obj);
 449       break;
 450     }
 451     case Op_LoadP:
 452     case Op_LoadN:
 453     case Op_LoadPLocked: {
 454       add_objload_to_connection_graph(n, delayed_worklist);
 455       break;
 456     }
 457     case Op_Parm: {
 458       map_ideal_node(n, phantom_obj);
 459       break;
 460     }
 461     case Op_PartialSubtypeCheck: {
 462       // Produces Null or notNull and is used in only in CmpP so
 463       // phantom_obj could be used.
 464       map_ideal_node(n, phantom_obj); // Result is unknown
 465       break;
 466     }
 467     case Op_Phi: {
 468       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 469       // ThreadLocal has RawPtr type.
 470       const Type* t = n->as_Phi()->type();
 471       if (t->make_ptr() != NULL) {
 472         add_local_var(n, PointsToNode::NoEscape);
 473         // Do not add edges during first iteration because some could be
 474         // not defined yet.
 475         delayed_worklist->push(n);
 476       }
 477       break;
 478     }
 479     case Op_Proj: {
 480       // we are only interested in the oop result projection from a call
 481       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 482           n->in(0)->as_Call()->returns_pointer()) {
 483         add_local_var_and_edge(n, PointsToNode::NoEscape,
 484                                n->in(0), delayed_worklist);
 485       }
 486       break;
 487     }
 488     case Op_Rethrow: // Exception object escapes
 489     case Op_Return: {
 490       if (n->req() > TypeFunc::Parms &&
 491           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 492         // Treat Return value as LocalVar with GlobalEscape escape state.
 493         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 494                                n->in(TypeFunc::Parms), delayed_worklist);
 495       }
 496       break;
 497     }
 498     case Op_CompareAndExchangeP:
 499     case Op_CompareAndExchangeN:
 500     case Op_GetAndSetP:
 501     case Op_GetAndSetN: {
 502       add_objload_to_connection_graph(n, delayed_worklist);
 503       // fallthrough
 504     }
 505     case Op_StoreP:
 506     case Op_StoreN:
 507     case Op_StoreNKlass:
 508     case Op_StorePConditional:
 509     case Op_WeakCompareAndSwapP:
 510     case Op_WeakCompareAndSwapN:
 511     case Op_CompareAndSwapP:
 512     case Op_CompareAndSwapN: {
 513       Node* adr = n->in(MemNode::Address);
 514       const Type *adr_type = igvn->type(adr);
 515       adr_type = adr_type->make_ptr();
 516       if (adr_type == NULL) {
 517         break; // skip dead nodes
 518       }
 519       if (   adr_type->isa_oopptr()
 520           || (   (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 521               && adr_type == TypeRawPtr::NOTNULL
 522               && adr->in(AddPNode::Address)->is_Proj()
 523               && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 524         delayed_worklist->push(n); // Process it later.
 525 #ifdef ASSERT
 526         assert(adr->is_AddP(), "expecting an AddP");
 527         if (adr_type == TypeRawPtr::NOTNULL) {
 528           // Verify a raw address for a store captured by Initialize node.
 529           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 530           assert(offs != Type::OffsetBot, "offset must be a constant");
 531         }
 532 #endif
 533       } else {
 534         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 535         if (adr->is_BoxLock())
 536           break;
 537         // Stored value escapes in unsafe access.
 538         if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 539           // Pointer stores in G1 barriers looks like unsafe access.
 540           // Ignore such stores to be able scalar replace non-escaping
 541           // allocations.
 542 #if INCLUDE_G1GC
 543           if (UseG1GC && adr->is_AddP()) {
 544             Node* base = get_addp_base(adr);
 545             if (base->Opcode() == Op_LoadP &&
 546                 base->in(MemNode::Address)->is_AddP()) {
 547               adr = base->in(MemNode::Address);
 548               Node* tls = get_addp_base(adr);
 549               if (tls->Opcode() == Op_ThreadLocal) {
 550                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 551                 if (offs == in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset())) {
 552                   break; // G1 pre barrier previous oop value store.
 553                 }
 554                 if (offs == in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset())) {
 555                   break; // G1 post barrier card address store.
 556                 }
 557               }
 558             }
 559           }
 560 #endif
 561           delayed_worklist->push(n); // Process unsafe access later.
 562           break;
 563         }
 564 #ifdef ASSERT
 565         n->dump(1);
 566         assert(false, "not unsafe or G1 barrier raw StoreP");
 567 #endif
 568       }
 569       break;
 570     }
 571     case Op_AryEq:
 572     case Op_HasNegatives:
 573     case Op_StrComp:
 574     case Op_StrEquals:
 575     case Op_StrIndexOf:
 576     case Op_StrIndexOfChar:
 577     case Op_StrInflatedCopy:
 578     case Op_StrCompressedCopy:
 579     case Op_EncodeISOArray: {
 580       add_local_var(n, PointsToNode::ArgEscape);
 581       delayed_worklist->push(n); // Process it later.
 582       break;
 583     }
 584     case Op_ThreadLocal: {
 585       add_java_object(n, PointsToNode::ArgEscape);
 586       break;
 587     }
 588     default:
 589       ; // Do nothing for nodes not related to EA.
 590   }
 591   return;
 592 }
 593 
 594 #ifdef ASSERT
 595 #define ELSE_FAIL(name)                               \
 596       /* Should not be called for not pointer type. */  \
 597       n->dump(1);                                       \
 598       assert(false, name);                              \
 599       break;
 600 #else
 601 #define ELSE_FAIL(name) \
 602       break;
 603 #endif
 604 
 605 // Add final simple edges to graph.
 606 void ConnectionGraph::add_final_edges(Node *n) {
 607   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 608 #ifdef ASSERT
 609   if (_verify && n_ptn->is_JavaObject())
 610     return; // This method does not change graph for JavaObject.
 611 #endif
 612 
 613   if (n->is_Call()) {
 614     process_call_arguments(n->as_Call());
 615     return;
 616   }
 617   assert(n->is_Store() || n->is_LoadStore() ||
 618          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 619          "node should be registered already");
 620   int opcode = n->Opcode();
 621   switch (opcode) {
 622     case Op_AddP: {
 623       Node* base = get_addp_base(n);
 624       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 625       assert(ptn_base != NULL, "field's base should be registered");
 626       add_base(n_ptn->as_Field(), ptn_base);
 627       break;
 628     }
 629     case Op_CastPP:
 630     case Op_CheckCastPP:
 631     case Op_EncodeP:
 632     case Op_DecodeN:
 633     case Op_EncodePKlass:
 634     case Op_DecodeNKlass: {
 635       add_local_var_and_edge(n, PointsToNode::NoEscape,
 636                              n->in(1), NULL);
 637       break;
 638     }
 639     case Op_CMoveP: {
 640       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 641         Node* in = n->in(i);
 642         if (in == NULL)
 643           continue;  // ignore NULL
 644         Node* uncast_in = in->uncast();
 645         if (uncast_in->is_top() || uncast_in == n)
 646           continue;  // ignore top or inputs which go back this node
 647         PointsToNode* ptn = ptnode_adr(in->_idx);
 648         assert(ptn != NULL, "node should be registered");
 649         add_edge(n_ptn, ptn);
 650       }
 651       break;
 652     }
 653     case Op_LoadP:
 654     case Op_LoadN:
 655     case Op_LoadPLocked: {
 656       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 657       // ThreadLocal has RawPtr type.
 658       const Type* t = _igvn->type(n);
 659       if (t->make_ptr() != NULL) {
 660         Node* adr = n->in(MemNode::Address);
 661         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 662         break;
 663       }
 664       ELSE_FAIL("Op_LoadP");
 665     }
 666     case Op_Phi: {
 667       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 668       // ThreadLocal has RawPtr type.
 669       const Type* t = n->as_Phi()->type();
 670       if (t->make_ptr() != NULL) {
 671         for (uint i = 1; i < n->req(); i++) {
 672           Node* in = n->in(i);
 673           if (in == NULL)
 674             continue;  // ignore NULL
 675           Node* uncast_in = in->uncast();
 676           if (uncast_in->is_top() || uncast_in == n)
 677             continue;  // ignore top or inputs which go back this node
 678           PointsToNode* ptn = ptnode_adr(in->_idx);
 679           assert(ptn != NULL, "node should be registered");
 680           add_edge(n_ptn, ptn);
 681         }
 682         break;
 683       }
 684       ELSE_FAIL("Op_Phi");
 685     }
 686     case Op_Proj: {
 687       // we are only interested in the oop result projection from a call
 688       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 689           n->in(0)->as_Call()->returns_pointer()) {
 690         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 691         break;
 692       }
 693       ELSE_FAIL("Op_Proj");
 694     }
 695     case Op_Rethrow: // Exception object escapes
 696     case Op_Return: {
 697       if (n->req() > TypeFunc::Parms &&
 698           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 699         // Treat Return value as LocalVar with GlobalEscape escape state.
 700         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 701                                n->in(TypeFunc::Parms), NULL);
 702         break;
 703       }
 704       ELSE_FAIL("Op_Return");
 705     }
 706     case Op_StoreP:
 707     case Op_StoreN:
 708     case Op_StoreNKlass:
 709     case Op_StorePConditional:
 710     case Op_CompareAndExchangeP:
 711     case Op_CompareAndExchangeN:
 712     case Op_CompareAndSwapP:
 713     case Op_CompareAndSwapN:
 714     case Op_WeakCompareAndSwapP:
 715     case Op_WeakCompareAndSwapN:
 716     case Op_GetAndSetP:
 717     case Op_GetAndSetN: {
 718       Node* adr = n->in(MemNode::Address);
 719       const Type *adr_type = _igvn->type(adr);
 720       adr_type = adr_type->make_ptr();
 721 #ifdef ASSERT
 722       if (adr_type == NULL) {
 723         n->dump(1);
 724         assert(adr_type != NULL, "dead node should not be on list");
 725         break;
 726       }
 727 #endif
 728       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 729           opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 730         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 731       }
 732       if (   adr_type->isa_oopptr()
 733           || (   (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 734               && adr_type == TypeRawPtr::NOTNULL
 735               && adr->in(AddPNode::Address)->is_Proj()
 736               && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 737         // Point Address to Value
 738         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 739         assert(adr_ptn != NULL &&
 740                adr_ptn->as_Field()->is_oop(), "node should be registered");
 741         Node *val = n->in(MemNode::ValueIn);
 742         PointsToNode* ptn = ptnode_adr(val->_idx);
 743         assert(ptn != NULL, "node should be registered");
 744         add_edge(adr_ptn, ptn);
 745         break;
 746       } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 747         // Stored value escapes in unsafe access.
 748         Node *val = n->in(MemNode::ValueIn);
 749         PointsToNode* ptn = ptnode_adr(val->_idx);
 750         assert(ptn != NULL, "node should be registered");
 751         set_escape_state(ptn, PointsToNode::GlobalEscape);
 752         // Add edge to object for unsafe access with offset.
 753         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 754         assert(adr_ptn != NULL, "node should be registered");
 755         if (adr_ptn->is_Field()) {
 756           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 757           add_edge(adr_ptn, ptn);
 758         }
 759         break;
 760       }
 761       ELSE_FAIL("Op_StoreP");
 762     }
 763     case Op_AryEq:
 764     case Op_HasNegatives:
 765     case Op_StrComp:
 766     case Op_StrEquals:
 767     case Op_StrIndexOf:
 768     case Op_StrIndexOfChar:
 769     case Op_StrInflatedCopy:
 770     case Op_StrCompressedCopy:
 771     case Op_EncodeISOArray: {
 772       // char[]/byte[] arrays passed to string intrinsic do not escape but
 773       // they are not scalar replaceable. Adjust escape state for them.
 774       // Start from in(2) edge since in(1) is memory edge.
 775       for (uint i = 2; i < n->req(); i++) {
 776         Node* adr = n->in(i);
 777         const Type* at = _igvn->type(adr);
 778         if (!adr->is_top() && at->isa_ptr()) {
 779           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 780                  at->isa_ptr() != NULL, "expecting a pointer");
 781           if (adr->is_AddP()) {
 782             adr = get_addp_base(adr);
 783           }
 784           PointsToNode* ptn = ptnode_adr(adr->_idx);
 785           assert(ptn != NULL, "node should be registered");
 786           add_edge(n_ptn, ptn);
 787         }
 788       }
 789       break;
 790     }
 791     default: {
 792       // This method should be called only for EA specific nodes which may
 793       // miss some edges when they were created.
 794 #ifdef ASSERT
 795       n->dump(1);
 796 #endif
 797       guarantee(false, "unknown node");
 798     }
 799   }
 800   return;
 801 }
 802 
 803 void ConnectionGraph::add_call_node(CallNode* call) {
 804   assert(call->returns_pointer(), "only for call which returns pointer");
 805   uint call_idx = call->_idx;
 806   if (call->is_Allocate()) {
 807     Node* k = call->in(AllocateNode::KlassNode);
 808     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 809     assert(kt != NULL, "TypeKlassPtr  required.");
 810     ciKlass* cik = kt->klass();
 811     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 812     bool scalar_replaceable = true;
 813     if (call->is_AllocateArray()) {
 814       if (!cik->is_array_klass()) { // StressReflectiveCode
 815         es = PointsToNode::GlobalEscape;
 816       } else {
 817         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 818         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 819           // Not scalar replaceable if the length is not constant or too big.
 820           scalar_replaceable = false;
 821         }
 822       }
 823     } else {  // Allocate instance
 824       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 825           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 826          !cik->is_instance_klass() || // StressReflectiveCode
 827          !cik->as_instance_klass()->can_be_instantiated() ||
 828           cik->as_instance_klass()->has_finalizer()) {
 829         es = PointsToNode::GlobalEscape;
 830       }
 831     }
 832     add_java_object(call, es);
 833     PointsToNode* ptn = ptnode_adr(call_idx);
 834     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 835       ptn->set_scalar_replaceable(false);
 836     }
 837   } else if (call->is_CallStaticJava()) {
 838     // Call nodes could be different types:
 839     //
 840     // 1. CallDynamicJavaNode (what happened during call is unknown):
 841     //
 842     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 843     //
 844     //    - all oop arguments are escaping globally;
 845     //
 846     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 847     //
 848     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 849     //
 850     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 851     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 852     //      during call is returned;
 853     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 854     //      which are returned and does not escape during call;
 855     //
 856     //    - oop arguments escaping status is defined by bytecode analysis;
 857     //
 858     // For a static call, we know exactly what method is being called.
 859     // Use bytecode estimator to record whether the call's return value escapes.
 860     ciMethod* meth = call->as_CallJava()->method();
 861     if (meth == NULL) {
 862       const char* name = call->as_CallStaticJava()->_name;
 863       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 864       // Returns a newly allocated unescaped object.
 865       add_java_object(call, PointsToNode::NoEscape);
 866       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 867     } else if (meth->is_boxing_method()) {
 868       // Returns boxing object
 869       PointsToNode::EscapeState es;
 870       vmIntrinsics::ID intr = meth->intrinsic_id();
 871       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 872         // It does not escape if object is always allocated.
 873         es = PointsToNode::NoEscape;
 874       } else {
 875         // It escapes globally if object could be loaded from cache.
 876         es = PointsToNode::GlobalEscape;
 877       }
 878       add_java_object(call, es);
 879     } else {
 880       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 881       call_analyzer->copy_dependencies(_compile->dependencies());
 882       if (call_analyzer->is_return_allocated()) {
 883         // Returns a newly allocated unescaped object, simply
 884         // update dependency information.
 885         // Mark it as NoEscape so that objects referenced by
 886         // it's fields will be marked as NoEscape at least.
 887         add_java_object(call, PointsToNode::NoEscape);
 888         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 889       } else {
 890         // Determine whether any arguments are returned.
 891         const TypeTuple* d = call->tf()->domain();
 892         bool ret_arg = false;
 893         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 894           if (d->field_at(i)->isa_ptr() != NULL &&
 895               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 896             ret_arg = true;
 897             break;
 898           }
 899         }
 900         if (ret_arg) {
 901           add_local_var(call, PointsToNode::ArgEscape);
 902         } else {
 903           // Returns unknown object.
 904           map_ideal_node(call, phantom_obj);
 905         }
 906       }
 907     }
 908   } else {
 909     // An other type of call, assume the worst case:
 910     // returned value is unknown and globally escapes.
 911     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 912     map_ideal_node(call, phantom_obj);
 913   }
 914 }
 915 
 916 void ConnectionGraph::process_call_arguments(CallNode *call) {
 917     bool is_arraycopy = false;
 918     switch (call->Opcode()) {
 919 #ifdef ASSERT
 920     case Op_Allocate:
 921     case Op_AllocateArray:
 922     case Op_Lock:
 923     case Op_Unlock:
 924       assert(false, "should be done already");
 925       break;
 926 #endif
 927     case Op_ArrayCopy:
 928     case Op_CallLeafNoFP:
 929       // Most array copies are ArrayCopy nodes at this point but there
 930       // are still a few direct calls to the copy subroutines (See
 931       // PhaseStringOpts::copy_string())
 932       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 933         call->as_CallLeaf()->is_call_to_arraycopystub();
 934       // fall through
 935     case Op_CallLeaf: {
 936       // Stub calls, objects do not escape but they are not scale replaceable.
 937       // Adjust escape state for outgoing arguments.
 938       const TypeTuple * d = call->tf()->domain();
 939       bool src_has_oops = false;
 940       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 941         const Type* at = d->field_at(i);
 942         Node *arg = call->in(i);
 943         if (arg == NULL) {
 944           continue;
 945         }
 946         const Type *aat = _igvn->type(arg);
 947         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 948           continue;
 949         if (arg->is_AddP()) {
 950           //
 951           // The inline_native_clone() case when the arraycopy stub is called
 952           // after the allocation before Initialize and CheckCastPP nodes.
 953           // Or normal arraycopy for object arrays case.
 954           //
 955           // Set AddP's base (Allocate) as not scalar replaceable since
 956           // pointer to the base (with offset) is passed as argument.
 957           //
 958           arg = get_addp_base(arg);
 959         }
 960         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 961         assert(arg_ptn != NULL, "should be registered");
 962         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 963         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 964           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 965                  aat->isa_ptr() != NULL, "expecting an Ptr");
 966           bool arg_has_oops = aat->isa_oopptr() &&
 967                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 968                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 969           if (i == TypeFunc::Parms) {
 970             src_has_oops = arg_has_oops;
 971           }
 972           //
 973           // src or dst could be j.l.Object when other is basic type array:
 974           //
 975           //   arraycopy(char[],0,Object*,0,size);
 976           //   arraycopy(Object*,0,char[],0,size);
 977           //
 978           // Don't add edges in such cases.
 979           //
 980           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 981                                        arg_has_oops && (i > TypeFunc::Parms);
 982 #ifdef ASSERT
 983           if (!(is_arraycopy ||
 984                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
 985                 (call->as_CallLeaf()->_name != NULL &&
 986                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 987                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 988                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
 989                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 990                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 991                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 992                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 993                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
 994                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 995                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 996                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 997                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 998                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 999                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1000                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1001                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1002                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1003                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1004                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1005                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1006                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1007                  ))) {
1008             call->dump();
1009             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1010           }
1011 #endif
1012           // Always process arraycopy's destination object since
1013           // we need to add all possible edges to references in
1014           // source object.
1015           if (arg_esc >= PointsToNode::ArgEscape &&
1016               !arg_is_arraycopy_dest) {
1017             continue;
1018           }
1019           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1020           if (call->is_ArrayCopy()) {
1021             ArrayCopyNode* ac = call->as_ArrayCopy();
1022             if (ac->is_clonebasic() ||
1023                 ac->is_arraycopy_validated() ||
1024                 ac->is_copyof_validated() ||
1025                 ac->is_copyofrange_validated()) {
1026               es = PointsToNode::NoEscape;
1027             }
1028           }
1029           set_escape_state(arg_ptn, es);
1030           if (arg_is_arraycopy_dest) {
1031             Node* src = call->in(TypeFunc::Parms);
1032             if (src->is_AddP()) {
1033               src = get_addp_base(src);
1034             }
1035             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1036             assert(src_ptn != NULL, "should be registered");
1037             if (arg_ptn != src_ptn) {
1038               // Special arraycopy edge:
1039               // A destination object's field can't have the source object
1040               // as base since objects escape states are not related.
1041               // Only escape state of destination object's fields affects
1042               // escape state of fields in source object.
1043               add_arraycopy(call, es, src_ptn, arg_ptn);
1044             }
1045           }
1046         }
1047       }
1048       break;
1049     }
1050     case Op_CallStaticJava: {
1051       // For a static call, we know exactly what method is being called.
1052       // Use bytecode estimator to record the call's escape affects
1053 #ifdef ASSERT
1054       const char* name = call->as_CallStaticJava()->_name;
1055       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1056 #endif
1057       ciMethod* meth = call->as_CallJava()->method();
1058       if ((meth != NULL) && meth->is_boxing_method()) {
1059         break; // Boxing methods do not modify any oops.
1060       }
1061       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1062       // fall-through if not a Java method or no analyzer information
1063       if (call_analyzer != NULL) {
1064         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1065         const TypeTuple* d = call->tf()->domain();
1066         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1067           const Type* at = d->field_at(i);
1068           int k = i - TypeFunc::Parms;
1069           Node* arg = call->in(i);
1070           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1071           if (at->isa_ptr() != NULL &&
1072               call_analyzer->is_arg_returned(k)) {
1073             // The call returns arguments.
1074             if (call_ptn != NULL) { // Is call's result used?
1075               assert(call_ptn->is_LocalVar(), "node should be registered");
1076               assert(arg_ptn != NULL, "node should be registered");
1077               add_edge(call_ptn, arg_ptn);
1078             }
1079           }
1080           if (at->isa_oopptr() != NULL &&
1081               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1082             if (!call_analyzer->is_arg_stack(k)) {
1083               // The argument global escapes
1084               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1085             } else {
1086               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1087               if (!call_analyzer->is_arg_local(k)) {
1088                 // The argument itself doesn't escape, but any fields might
1089                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1090               }
1091             }
1092           }
1093         }
1094         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1095           // The call returns arguments.
1096           assert(call_ptn->edge_count() > 0, "sanity");
1097           if (!call_analyzer->is_return_local()) {
1098             // Returns also unknown object.
1099             add_edge(call_ptn, phantom_obj);
1100           }
1101         }
1102         break;
1103       }
1104     }
1105     default: {
1106       // Fall-through here if not a Java method or no analyzer information
1107       // or some other type of call, assume the worst case: all arguments
1108       // globally escape.
1109       const TypeTuple* d = call->tf()->domain();
1110       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1111         const Type* at = d->field_at(i);
1112         if (at->isa_oopptr() != NULL) {
1113           Node* arg = call->in(i);
1114           if (arg->is_AddP()) {
1115             arg = get_addp_base(arg);
1116           }
1117           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1118           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1119         }
1120       }
1121     }
1122   }
1123 }
1124 
1125 
1126 // Finish Graph construction.
1127 bool ConnectionGraph::complete_connection_graph(
1128                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1129                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1130                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1131                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1132   // Normally only 1-3 passes needed to build Connection Graph depending
1133   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1134   // Set limit to 20 to catch situation when something did go wrong and
1135   // bailout Escape Analysis.
1136   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1137 #define CG_BUILD_ITER_LIMIT 20
1138 
1139   // Propagate GlobalEscape and ArgEscape escape states and check that
1140   // we still have non-escaping objects. The method pushs on _worklist
1141   // Field nodes which reference phantom_object.
1142   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1143     return false; // Nothing to do.
1144   }
1145   // Now propagate references to all JavaObject nodes.
1146   int java_objects_length = java_objects_worklist.length();
1147   elapsedTimer time;
1148   bool timeout = false;
1149   int new_edges = 1;
1150   int iterations = 0;
1151   do {
1152     while ((new_edges > 0) &&
1153            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1154       double start_time = time.seconds();
1155       time.start();
1156       new_edges = 0;
1157       // Propagate references to phantom_object for nodes pushed on _worklist
1158       // by find_non_escaped_objects() and find_field_value().
1159       new_edges += add_java_object_edges(phantom_obj, false);
1160       for (int next = 0; next < java_objects_length; ++next) {
1161         JavaObjectNode* ptn = java_objects_worklist.at(next);
1162         new_edges += add_java_object_edges(ptn, true);
1163 
1164 #define SAMPLE_SIZE 4
1165         if ((next % SAMPLE_SIZE) == 0) {
1166           // Each 4 iterations calculate how much time it will take
1167           // to complete graph construction.
1168           time.stop();
1169           // Poll for requests from shutdown mechanism to quiesce compiler
1170           // because Connection graph construction may take long time.
1171           CompileBroker::maybe_block();
1172           double stop_time = time.seconds();
1173           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1174           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1175           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1176             timeout = true;
1177             break; // Timeout
1178           }
1179           start_time = stop_time;
1180           time.start();
1181         }
1182 #undef SAMPLE_SIZE
1183 
1184       }
1185       if (timeout) break;
1186       if (new_edges > 0) {
1187         // Update escape states on each iteration if graph was updated.
1188         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1189           return false; // Nothing to do.
1190         }
1191       }
1192       time.stop();
1193       if (time.seconds() >= EscapeAnalysisTimeout) {
1194         timeout = true;
1195         break;
1196       }
1197     }
1198     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1199       time.start();
1200       // Find fields which have unknown value.
1201       int fields_length = oop_fields_worklist.length();
1202       for (int next = 0; next < fields_length; next++) {
1203         FieldNode* field = oop_fields_worklist.at(next);
1204         if (field->edge_count() == 0) {
1205           new_edges += find_field_value(field);
1206           // This code may added new edges to phantom_object.
1207           // Need an other cycle to propagate references to phantom_object.
1208         }
1209       }
1210       time.stop();
1211       if (time.seconds() >= EscapeAnalysisTimeout) {
1212         timeout = true;
1213         break;
1214       }
1215     } else {
1216       new_edges = 0; // Bailout
1217     }
1218   } while (new_edges > 0);
1219 
1220   // Bailout if passed limits.
1221   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1222     Compile* C = _compile;
1223     if (C->log() != NULL) {
1224       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1225       C->log()->text("%s", timeout ? "time" : "iterations");
1226       C->log()->end_elem(" limit'");
1227     }
1228     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1229            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1230     // Possible infinite build_connection_graph loop,
1231     // bailout (no changes to ideal graph were made).
1232     return false;
1233   }
1234 #ifdef ASSERT
1235   if (Verbose && PrintEscapeAnalysis) {
1236     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1237                   iterations, nodes_size(), ptnodes_worklist.length());
1238   }
1239 #endif
1240 
1241 #undef CG_BUILD_ITER_LIMIT
1242 
1243   // Find fields initialized by NULL for non-escaping Allocations.
1244   int non_escaped_length = non_escaped_worklist.length();
1245   for (int next = 0; next < non_escaped_length; next++) {
1246     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1247     PointsToNode::EscapeState es = ptn->escape_state();
1248     assert(es <= PointsToNode::ArgEscape, "sanity");
1249     if (es == PointsToNode::NoEscape) {
1250       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1251         // Adding references to NULL object does not change escape states
1252         // since it does not escape. Also no fields are added to NULL object.
1253         add_java_object_edges(null_obj, false);
1254       }
1255     }
1256     Node* n = ptn->ideal_node();
1257     if (n->is_Allocate()) {
1258       // The object allocated by this Allocate node will never be
1259       // seen by an other thread. Mark it so that when it is
1260       // expanded no MemBarStoreStore is added.
1261       InitializeNode* ini = n->as_Allocate()->initialization();
1262       if (ini != NULL)
1263         ini->set_does_not_escape();
1264     }
1265   }
1266   return true; // Finished graph construction.
1267 }
1268 
1269 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1270 // and check that we still have non-escaping java objects.
1271 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1272                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1273   GrowableArray<PointsToNode*> escape_worklist;
1274   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1275   int ptnodes_length = ptnodes_worklist.length();
1276   for (int next = 0; next < ptnodes_length; ++next) {
1277     PointsToNode* ptn = ptnodes_worklist.at(next);
1278     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1279         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1280       escape_worklist.push(ptn);
1281     }
1282   }
1283   // Set escape states to referenced nodes (edges list).
1284   while (escape_worklist.length() > 0) {
1285     PointsToNode* ptn = escape_worklist.pop();
1286     PointsToNode::EscapeState es  = ptn->escape_state();
1287     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1288     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1289         es >= PointsToNode::ArgEscape) {
1290       // GlobalEscape or ArgEscape state of field means it has unknown value.
1291       if (add_edge(ptn, phantom_obj)) {
1292         // New edge was added
1293         add_field_uses_to_worklist(ptn->as_Field());
1294       }
1295     }
1296     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1297       PointsToNode* e = i.get();
1298       if (e->is_Arraycopy()) {
1299         assert(ptn->arraycopy_dst(), "sanity");
1300         // Propagate only fields escape state through arraycopy edge.
1301         if (e->fields_escape_state() < field_es) {
1302           set_fields_escape_state(e, field_es);
1303           escape_worklist.push(e);
1304         }
1305       } else if (es >= field_es) {
1306         // fields_escape_state is also set to 'es' if it is less than 'es'.
1307         if (e->escape_state() < es) {
1308           set_escape_state(e, es);
1309           escape_worklist.push(e);
1310         }
1311       } else {
1312         // Propagate field escape state.
1313         bool es_changed = false;
1314         if (e->fields_escape_state() < field_es) {
1315           set_fields_escape_state(e, field_es);
1316           es_changed = true;
1317         }
1318         if ((e->escape_state() < field_es) &&
1319             e->is_Field() && ptn->is_JavaObject() &&
1320             e->as_Field()->is_oop()) {
1321           // Change escape state of referenced fields.
1322           set_escape_state(e, field_es);
1323           es_changed = true;
1324         } else if (e->escape_state() < es) {
1325           set_escape_state(e, es);
1326           es_changed = true;
1327         }
1328         if (es_changed) {
1329           escape_worklist.push(e);
1330         }
1331       }
1332     }
1333   }
1334   // Remove escaped objects from non_escaped list.
1335   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1336     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1337     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1338       non_escaped_worklist.delete_at(next);
1339     }
1340     if (ptn->escape_state() == PointsToNode::NoEscape) {
1341       // Find fields in non-escaped allocations which have unknown value.
1342       find_init_values(ptn, phantom_obj, NULL);
1343     }
1344   }
1345   return (non_escaped_worklist.length() > 0);
1346 }
1347 
1348 // Add all references to JavaObject node by walking over all uses.
1349 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1350   int new_edges = 0;
1351   if (populate_worklist) {
1352     // Populate _worklist by uses of jobj's uses.
1353     for (UseIterator i(jobj); i.has_next(); i.next()) {
1354       PointsToNode* use = i.get();
1355       if (use->is_Arraycopy())
1356         continue;
1357       add_uses_to_worklist(use);
1358       if (use->is_Field() && use->as_Field()->is_oop()) {
1359         // Put on worklist all field's uses (loads) and
1360         // related field nodes (same base and offset).
1361         add_field_uses_to_worklist(use->as_Field());
1362       }
1363     }
1364   }
1365   for (int l = 0; l < _worklist.length(); l++) {
1366     PointsToNode* use = _worklist.at(l);
1367     if (PointsToNode::is_base_use(use)) {
1368       // Add reference from jobj to field and from field to jobj (field's base).
1369       use = PointsToNode::get_use_node(use)->as_Field();
1370       if (add_base(use->as_Field(), jobj)) {
1371         new_edges++;
1372       }
1373       continue;
1374     }
1375     assert(!use->is_JavaObject(), "sanity");
1376     if (use->is_Arraycopy()) {
1377       if (jobj == null_obj) // NULL object does not have field edges
1378         continue;
1379       // Added edge from Arraycopy node to arraycopy's source java object
1380       if (add_edge(use, jobj)) {
1381         jobj->set_arraycopy_src();
1382         new_edges++;
1383       }
1384       // and stop here.
1385       continue;
1386     }
1387     if (!add_edge(use, jobj))
1388       continue; // No new edge added, there was such edge already.
1389     new_edges++;
1390     if (use->is_LocalVar()) {
1391       add_uses_to_worklist(use);
1392       if (use->arraycopy_dst()) {
1393         for (EdgeIterator i(use); i.has_next(); i.next()) {
1394           PointsToNode* e = i.get();
1395           if (e->is_Arraycopy()) {
1396             if (jobj == null_obj) // NULL object does not have field edges
1397               continue;
1398             // Add edge from arraycopy's destination java object to Arraycopy node.
1399             if (add_edge(jobj, e)) {
1400               new_edges++;
1401               jobj->set_arraycopy_dst();
1402             }
1403           }
1404         }
1405       }
1406     } else {
1407       // Added new edge to stored in field values.
1408       // Put on worklist all field's uses (loads) and
1409       // related field nodes (same base and offset).
1410       add_field_uses_to_worklist(use->as_Field());
1411     }
1412   }
1413   _worklist.clear();
1414   _in_worklist.Reset();
1415   return new_edges;
1416 }
1417 
1418 // Put on worklist all related field nodes.
1419 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1420   assert(field->is_oop(), "sanity");
1421   int offset = field->offset();
1422   add_uses_to_worklist(field);
1423   // Loop over all bases of this field and push on worklist Field nodes
1424   // with the same offset and base (since they may reference the same field).
1425   for (BaseIterator i(field); i.has_next(); i.next()) {
1426     PointsToNode* base = i.get();
1427     add_fields_to_worklist(field, base);
1428     // Check if the base was source object of arraycopy and go over arraycopy's
1429     // destination objects since values stored to a field of source object are
1430     // accessable by uses (loads) of fields of destination objects.
1431     if (base->arraycopy_src()) {
1432       for (UseIterator j(base); j.has_next(); j.next()) {
1433         PointsToNode* arycp = j.get();
1434         if (arycp->is_Arraycopy()) {
1435           for (UseIterator k(arycp); k.has_next(); k.next()) {
1436             PointsToNode* abase = k.get();
1437             if (abase->arraycopy_dst() && abase != base) {
1438               // Look for the same arraycopy reference.
1439               add_fields_to_worklist(field, abase);
1440             }
1441           }
1442         }
1443       }
1444     }
1445   }
1446 }
1447 
1448 // Put on worklist all related field nodes.
1449 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1450   int offset = field->offset();
1451   if (base->is_LocalVar()) {
1452     for (UseIterator j(base); j.has_next(); j.next()) {
1453       PointsToNode* f = j.get();
1454       if (PointsToNode::is_base_use(f)) { // Field
1455         f = PointsToNode::get_use_node(f);
1456         if (f == field || !f->as_Field()->is_oop())
1457           continue;
1458         int offs = f->as_Field()->offset();
1459         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1460           add_to_worklist(f);
1461         }
1462       }
1463     }
1464   } else {
1465     assert(base->is_JavaObject(), "sanity");
1466     if (// Skip phantom_object since it is only used to indicate that
1467         // this field's content globally escapes.
1468         (base != phantom_obj) &&
1469         // NULL object node does not have fields.
1470         (base != null_obj)) {
1471       for (EdgeIterator i(base); i.has_next(); i.next()) {
1472         PointsToNode* f = i.get();
1473         // Skip arraycopy edge since store to destination object field
1474         // does not update value in source object field.
1475         if (f->is_Arraycopy()) {
1476           assert(base->arraycopy_dst(), "sanity");
1477           continue;
1478         }
1479         if (f == field || !f->as_Field()->is_oop())
1480           continue;
1481         int offs = f->as_Field()->offset();
1482         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1483           add_to_worklist(f);
1484         }
1485       }
1486     }
1487   }
1488 }
1489 
1490 // Find fields which have unknown value.
1491 int ConnectionGraph::find_field_value(FieldNode* field) {
1492   // Escaped fields should have init value already.
1493   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1494   int new_edges = 0;
1495   for (BaseIterator i(field); i.has_next(); i.next()) {
1496     PointsToNode* base = i.get();
1497     if (base->is_JavaObject()) {
1498       // Skip Allocate's fields which will be processed later.
1499       if (base->ideal_node()->is_Allocate())
1500         return 0;
1501       assert(base == null_obj, "only NULL ptr base expected here");
1502     }
1503   }
1504   if (add_edge(field, phantom_obj)) {
1505     // New edge was added
1506     new_edges++;
1507     add_field_uses_to_worklist(field);
1508   }
1509   return new_edges;
1510 }
1511 
1512 // Find fields initializing values for allocations.
1513 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1514   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1515   int new_edges = 0;
1516   Node* alloc = pta->ideal_node();
1517   if (init_val == phantom_obj) {
1518     // Do nothing for Allocate nodes since its fields values are
1519     // "known" unless they are initialized by arraycopy/clone.
1520     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1521       return 0;
1522     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1523 #ifdef ASSERT
1524     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1525       const char* name = alloc->as_CallStaticJava()->_name;
1526       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1527     }
1528 #endif
1529     // Non-escaped allocation returned from Java or runtime call have
1530     // unknown values in fields.
1531     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1532       PointsToNode* field = i.get();
1533       if (field->is_Field() && field->as_Field()->is_oop()) {
1534         if (add_edge(field, phantom_obj)) {
1535           // New edge was added
1536           new_edges++;
1537           add_field_uses_to_worklist(field->as_Field());
1538         }
1539       }
1540     }
1541     return new_edges;
1542   }
1543   assert(init_val == null_obj, "sanity");
1544   // Do nothing for Call nodes since its fields values are unknown.
1545   if (!alloc->is_Allocate())
1546     return 0;
1547 
1548   InitializeNode* ini = alloc->as_Allocate()->initialization();
1549   bool visited_bottom_offset = false;
1550   GrowableArray<int> offsets_worklist;
1551 
1552   // Check if an oop field's initializing value is recorded and add
1553   // a corresponding NULL if field's value if it is not recorded.
1554   // Connection Graph does not record a default initialization by NULL
1555   // captured by Initialize node.
1556   //
1557   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1558     PointsToNode* field = i.get(); // Field (AddP)
1559     if (!field->is_Field() || !field->as_Field()->is_oop())
1560       continue; // Not oop field
1561     int offset = field->as_Field()->offset();
1562     if (offset == Type::OffsetBot) {
1563       if (!visited_bottom_offset) {
1564         // OffsetBot is used to reference array's element,
1565         // always add reference to NULL to all Field nodes since we don't
1566         // known which element is referenced.
1567         if (add_edge(field, null_obj)) {
1568           // New edge was added
1569           new_edges++;
1570           add_field_uses_to_worklist(field->as_Field());
1571           visited_bottom_offset = true;
1572         }
1573       }
1574     } else {
1575       // Check only oop fields.
1576       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1577       if (adr_type->isa_rawptr()) {
1578 #ifdef ASSERT
1579         // Raw pointers are used for initializing stores so skip it
1580         // since it should be recorded already
1581         Node* base = get_addp_base(field->ideal_node());
1582         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1583                (base->in(0) == alloc),"unexpected pointer type");
1584 #endif
1585         continue;
1586       }
1587       if (!offsets_worklist.contains(offset)) {
1588         offsets_worklist.append(offset);
1589         Node* value = NULL;
1590         if (ini != NULL) {
1591           // StoreP::memory_type() == T_ADDRESS
1592           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1593           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1594           // Make sure initializing store has the same type as this AddP.
1595           // This AddP may reference non existing field because it is on a
1596           // dead branch of bimorphic call which is not eliminated yet.
1597           if (store != NULL && store->is_Store() &&
1598               store->as_Store()->memory_type() == ft) {
1599             value = store->in(MemNode::ValueIn);
1600 #ifdef ASSERT
1601             if (VerifyConnectionGraph) {
1602               // Verify that AddP already points to all objects the value points to.
1603               PointsToNode* val = ptnode_adr(value->_idx);
1604               assert((val != NULL), "should be processed already");
1605               PointsToNode* missed_obj = NULL;
1606               if (val->is_JavaObject()) {
1607                 if (!field->points_to(val->as_JavaObject())) {
1608                   missed_obj = val;
1609                 }
1610               } else {
1611                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1612                   tty->print_cr("----------init store has invalid value -----");
1613                   store->dump();
1614                   val->dump();
1615                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1616                 }
1617                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1618                   PointsToNode* obj = j.get();
1619                   if (obj->is_JavaObject()) {
1620                     if (!field->points_to(obj->as_JavaObject())) {
1621                       missed_obj = obj;
1622                       break;
1623                     }
1624                   }
1625                 }
1626               }
1627               if (missed_obj != NULL) {
1628                 tty->print_cr("----------field---------------------------------");
1629                 field->dump();
1630                 tty->print_cr("----------missed referernce to object-----------");
1631                 missed_obj->dump();
1632                 tty->print_cr("----------object referernced by init store -----");
1633                 store->dump();
1634                 val->dump();
1635                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1636               }
1637             }
1638 #endif
1639           } else {
1640             // There could be initializing stores which follow allocation.
1641             // For example, a volatile field store is not collected
1642             // by Initialize node.
1643             //
1644             // Need to check for dependent loads to separate such stores from
1645             // stores which follow loads. For now, add initial value NULL so
1646             // that compare pointers optimization works correctly.
1647           }
1648         }
1649         if (value == NULL) {
1650           // A field's initializing value was not recorded. Add NULL.
1651           if (add_edge(field, null_obj)) {
1652             // New edge was added
1653             new_edges++;
1654             add_field_uses_to_worklist(field->as_Field());
1655           }
1656         }
1657       }
1658     }
1659   }
1660   return new_edges;
1661 }
1662 
1663 // Adjust scalar_replaceable state after Connection Graph is built.
1664 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1665   // Search for non-escaping objects which are not scalar replaceable
1666   // and mark them to propagate the state to referenced objects.
1667 
1668   // 1. An object is not scalar replaceable if the field into which it is
1669   // stored has unknown offset (stored into unknown element of an array).
1670   //
1671   for (UseIterator i(jobj); i.has_next(); i.next()) {
1672     PointsToNode* use = i.get();
1673     if (use->is_Arraycopy()) {
1674       continue;
1675     }
1676     if (use->is_Field()) {
1677       FieldNode* field = use->as_Field();
1678       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1679       if (field->offset() == Type::OffsetBot) {
1680         jobj->set_scalar_replaceable(false);
1681         return;
1682       }
1683       // 2. An object is not scalar replaceable if the field into which it is
1684       // stored has multiple bases one of which is null.
1685       if (field->base_count() > 1) {
1686         for (BaseIterator i(field); i.has_next(); i.next()) {
1687           PointsToNode* base = i.get();
1688           if (base == null_obj) {
1689             jobj->set_scalar_replaceable(false);
1690             return;
1691           }
1692         }
1693       }
1694     }
1695     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1696     // 3. An object is not scalar replaceable if it is merged with other objects.
1697     for (EdgeIterator j(use); j.has_next(); j.next()) {
1698       PointsToNode* ptn = j.get();
1699       if (ptn->is_JavaObject() && ptn != jobj) {
1700         // Mark all objects.
1701         jobj->set_scalar_replaceable(false);
1702          ptn->set_scalar_replaceable(false);
1703       }
1704     }
1705     if (!jobj->scalar_replaceable()) {
1706       return;
1707     }
1708   }
1709 
1710   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1711     if (j.get()->is_Arraycopy()) {
1712       continue;
1713     }
1714 
1715     // Non-escaping object node should point only to field nodes.
1716     FieldNode* field = j.get()->as_Field();
1717     int offset = field->as_Field()->offset();
1718 
1719     // 4. An object is not scalar replaceable if it has a field with unknown
1720     // offset (array's element is accessed in loop).
1721     if (offset == Type::OffsetBot) {
1722       jobj->set_scalar_replaceable(false);
1723       return;
1724     }
1725     // 5. Currently an object is not scalar replaceable if a LoadStore node
1726     // access its field since the field value is unknown after it.
1727     //
1728     Node* n = field->ideal_node();
1729     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1730       if (n->fast_out(i)->is_LoadStore()) {
1731         jobj->set_scalar_replaceable(false);
1732         return;
1733       }
1734     }
1735 
1736     // 6. Or the address may point to more then one object. This may produce
1737     // the false positive result (set not scalar replaceable)
1738     // since the flow-insensitive escape analysis can't separate
1739     // the case when stores overwrite the field's value from the case
1740     // when stores happened on different control branches.
1741     //
1742     // Note: it will disable scalar replacement in some cases:
1743     //
1744     //    Point p[] = new Point[1];
1745     //    p[0] = new Point(); // Will be not scalar replaced
1746     //
1747     // but it will save us from incorrect optimizations in next cases:
1748     //
1749     //    Point p[] = new Point[1];
1750     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1751     //
1752     if (field->base_count() > 1) {
1753       for (BaseIterator i(field); i.has_next(); i.next()) {
1754         PointsToNode* base = i.get();
1755         // Don't take into account LocalVar nodes which
1756         // may point to only one object which should be also
1757         // this field's base by now.
1758         if (base->is_JavaObject() && base != jobj) {
1759           // Mark all bases.
1760           jobj->set_scalar_replaceable(false);
1761           base->set_scalar_replaceable(false);
1762         }
1763       }
1764     }
1765   }
1766 }
1767 
1768 #ifdef ASSERT
1769 void ConnectionGraph::verify_connection_graph(
1770                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1771                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1772                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1773                          GrowableArray<Node*>& addp_worklist) {
1774   // Verify that graph is complete - no new edges could be added.
1775   int java_objects_length = java_objects_worklist.length();
1776   int non_escaped_length  = non_escaped_worklist.length();
1777   int new_edges = 0;
1778   for (int next = 0; next < java_objects_length; ++next) {
1779     JavaObjectNode* ptn = java_objects_worklist.at(next);
1780     new_edges += add_java_object_edges(ptn, true);
1781   }
1782   assert(new_edges == 0, "graph was not complete");
1783   // Verify that escape state is final.
1784   int length = non_escaped_worklist.length();
1785   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1786   assert((non_escaped_length == non_escaped_worklist.length()) &&
1787          (non_escaped_length == length) &&
1788          (_worklist.length() == 0), "escape state was not final");
1789 
1790   // Verify fields information.
1791   int addp_length = addp_worklist.length();
1792   for (int next = 0; next < addp_length; ++next ) {
1793     Node* n = addp_worklist.at(next);
1794     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1795     if (field->is_oop()) {
1796       // Verify that field has all bases
1797       Node* base = get_addp_base(n);
1798       PointsToNode* ptn = ptnode_adr(base->_idx);
1799       if (ptn->is_JavaObject()) {
1800         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1801       } else {
1802         assert(ptn->is_LocalVar(), "sanity");
1803         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1804           PointsToNode* e = i.get();
1805           if (e->is_JavaObject()) {
1806             assert(field->has_base(e->as_JavaObject()), "sanity");
1807           }
1808         }
1809       }
1810       // Verify that all fields have initializing values.
1811       if (field->edge_count() == 0) {
1812         tty->print_cr("----------field does not have references----------");
1813         field->dump();
1814         for (BaseIterator i(field); i.has_next(); i.next()) {
1815           PointsToNode* base = i.get();
1816           tty->print_cr("----------field has next base---------------------");
1817           base->dump();
1818           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1819             tty->print_cr("----------base has fields-------------------------");
1820             for (EdgeIterator j(base); j.has_next(); j.next()) {
1821               j.get()->dump();
1822             }
1823             tty->print_cr("----------base has references---------------------");
1824             for (UseIterator j(base); j.has_next(); j.next()) {
1825               j.get()->dump();
1826             }
1827           }
1828         }
1829         for (UseIterator i(field); i.has_next(); i.next()) {
1830           i.get()->dump();
1831         }
1832         assert(field->edge_count() > 0, "sanity");
1833       }
1834     }
1835   }
1836 }
1837 #endif
1838 
1839 // Optimize ideal graph.
1840 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1841                                            GrowableArray<Node*>& storestore_worklist) {
1842   Compile* C = _compile;
1843   PhaseIterGVN* igvn = _igvn;
1844   if (EliminateLocks) {
1845     // Mark locks before changing ideal graph.
1846     int cnt = C->macro_count();
1847     for( int i=0; i < cnt; i++ ) {
1848       Node *n = C->macro_node(i);
1849       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1850         AbstractLockNode* alock = n->as_AbstractLock();
1851         if (!alock->is_non_esc_obj()) {
1852           if (not_global_escape(alock->obj_node())) {
1853             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1854             // The lock could be marked eliminated by lock coarsening
1855             // code during first IGVN before EA. Replace coarsened flag
1856             // to eliminate all associated locks/unlocks.
1857 #ifdef ASSERT
1858             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1859 #endif
1860             alock->set_non_esc_obj();
1861           }
1862         }
1863       }
1864     }
1865   }
1866 
1867   if (OptimizePtrCompare) {
1868     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1869     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1870     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1871     // Optimize objects compare.
1872     while (ptr_cmp_worklist.length() != 0) {
1873       Node *n = ptr_cmp_worklist.pop();
1874       Node *res = optimize_ptr_compare(n);
1875       if (res != NULL) {
1876 #ifndef PRODUCT
1877         if (PrintOptimizePtrCompare) {
1878           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1879           if (Verbose) {
1880             n->dump(1);
1881           }
1882         }
1883 #endif
1884         igvn->replace_node(n, res);
1885       }
1886     }
1887     // cleanup
1888     if (_pcmp_neq->outcnt() == 0)
1889       igvn->hash_delete(_pcmp_neq);
1890     if (_pcmp_eq->outcnt()  == 0)
1891       igvn->hash_delete(_pcmp_eq);
1892   }
1893 
1894   // For MemBarStoreStore nodes added in library_call.cpp, check
1895   // escape status of associated AllocateNode and optimize out
1896   // MemBarStoreStore node if the allocated object never escapes.
1897   while (storestore_worklist.length() != 0) {
1898     Node *n = storestore_worklist.pop();
1899     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1900     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1901     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1902     if (not_global_escape(alloc)) {
1903       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1904       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1905       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1906       igvn->register_new_node_with_optimizer(mb);
1907       igvn->replace_node(storestore, mb);
1908     }
1909   }
1910 }
1911 
1912 // Optimize objects compare.
1913 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1914   assert(OptimizePtrCompare, "sanity");
1915   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1916   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1917   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1918   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1919   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1920   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1921 
1922   // Check simple cases first.
1923   if (jobj1 != NULL) {
1924     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1925       if (jobj1 == jobj2) {
1926         // Comparing the same not escaping object.
1927         return _pcmp_eq;
1928       }
1929       Node* obj = jobj1->ideal_node();
1930       // Comparing not escaping allocation.
1931       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1932           !ptn2->points_to(jobj1)) {
1933         return _pcmp_neq; // This includes nullness check.
1934       }
1935     }
1936   }
1937   if (jobj2 != NULL) {
1938     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1939       Node* obj = jobj2->ideal_node();
1940       // Comparing not escaping allocation.
1941       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1942           !ptn1->points_to(jobj2)) {
1943         return _pcmp_neq; // This includes nullness check.
1944       }
1945     }
1946   }
1947   if (jobj1 != NULL && jobj1 != phantom_obj &&
1948       jobj2 != NULL && jobj2 != phantom_obj &&
1949       jobj1->ideal_node()->is_Con() &&
1950       jobj2->ideal_node()->is_Con()) {
1951     // Klass or String constants compare. Need to be careful with
1952     // compressed pointers - compare types of ConN and ConP instead of nodes.
1953     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1954     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1955     if (t1->make_ptr() == t2->make_ptr()) {
1956       return _pcmp_eq;
1957     } else {
1958       return _pcmp_neq;
1959     }
1960   }
1961   if (ptn1->meet(ptn2)) {
1962     return NULL; // Sets are not disjoint
1963   }
1964 
1965   // Sets are disjoint.
1966   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1967   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1968   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1969   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1970   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
1971       (set2_has_unknown_ptr && set1_has_null_ptr)) {
1972     // Check nullness of unknown object.
1973     return NULL;
1974   }
1975 
1976   // Disjointness by itself is not sufficient since
1977   // alias analysis is not complete for escaped objects.
1978   // Disjoint sets are definitely unrelated only when
1979   // at least one set has only not escaping allocations.
1980   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1981     if (ptn1->non_escaping_allocation()) {
1982       return _pcmp_neq;
1983     }
1984   }
1985   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1986     if (ptn2->non_escaping_allocation()) {
1987       return _pcmp_neq;
1988     }
1989   }
1990   return NULL;
1991 }
1992 
1993 // Connection Graph constuction functions.
1994 
1995 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1996   PointsToNode* ptadr = _nodes.at(n->_idx);
1997   if (ptadr != NULL) {
1998     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1999     return;
2000   }
2001   Compile* C = _compile;
2002   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2003   _nodes.at_put(n->_idx, ptadr);
2004 }
2005 
2006 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2007   PointsToNode* ptadr = _nodes.at(n->_idx);
2008   if (ptadr != NULL) {
2009     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2010     return;
2011   }
2012   Compile* C = _compile;
2013   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2014   _nodes.at_put(n->_idx, ptadr);
2015 }
2016 
2017 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2018   PointsToNode* ptadr = _nodes.at(n->_idx);
2019   if (ptadr != NULL) {
2020     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2021     return;
2022   }
2023   bool unsafe = false;
2024   bool is_oop = is_oop_field(n, offset, &unsafe);
2025   if (unsafe) {
2026     es = PointsToNode::GlobalEscape;
2027   }
2028   Compile* C = _compile;
2029   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2030   _nodes.at_put(n->_idx, field);
2031 }
2032 
2033 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2034                                     PointsToNode* src, PointsToNode* dst) {
2035   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2036   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2037   PointsToNode* ptadr = _nodes.at(n->_idx);
2038   if (ptadr != NULL) {
2039     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2040     return;
2041   }
2042   Compile* C = _compile;
2043   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2044   _nodes.at_put(n->_idx, ptadr);
2045   // Add edge from arraycopy node to source object.
2046   (void)add_edge(ptadr, src);
2047   src->set_arraycopy_src();
2048   // Add edge from destination object to arraycopy node.
2049   (void)add_edge(dst, ptadr);
2050   dst->set_arraycopy_dst();
2051 }
2052 
2053 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2054   const Type* adr_type = n->as_AddP()->bottom_type();
2055   BasicType bt = T_INT;
2056   if (offset == Type::OffsetBot) {
2057     // Check only oop fields.
2058     if (!adr_type->isa_aryptr() ||
2059         (adr_type->isa_aryptr()->klass() == NULL) ||
2060          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2061       // OffsetBot is used to reference array's element. Ignore first AddP.
2062       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2063         bt = T_OBJECT;
2064       }
2065     }
2066   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2067     if (adr_type->isa_instptr()) {
2068       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2069       if (field != NULL) {
2070         bt = field->layout_type();
2071       } else {
2072         // Check for unsafe oop field access
2073         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2074             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2075             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
2076           bt = T_OBJECT;
2077           (*unsafe) = true;
2078         }
2079       }
2080     } else if (adr_type->isa_aryptr()) {
2081       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2082         // Ignore array length load.
2083       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2084         // Ignore first AddP.
2085       } else {
2086         const Type* elemtype = adr_type->isa_aryptr()->elem();
2087         bt = elemtype->array_element_basic_type();
2088       }
2089     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2090       // Allocation initialization, ThreadLocal field access, unsafe access
2091       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2092           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2093           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
2094         bt = T_OBJECT;
2095       }
2096     }
2097   }
2098   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2099 }
2100 
2101 // Returns unique pointed java object or NULL.
2102 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2103   assert(!_collecting, "should not call when contructed graph");
2104   // If the node was created after the escape computation we can't answer.
2105   uint idx = n->_idx;
2106   if (idx >= nodes_size()) {
2107     return NULL;
2108   }
2109   PointsToNode* ptn = ptnode_adr(idx);
2110   if (ptn->is_JavaObject()) {
2111     return ptn->as_JavaObject();
2112   }
2113   assert(ptn->is_LocalVar(), "sanity");
2114   // Check all java objects it points to.
2115   JavaObjectNode* jobj = NULL;
2116   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2117     PointsToNode* e = i.get();
2118     if (e->is_JavaObject()) {
2119       if (jobj == NULL) {
2120         jobj = e->as_JavaObject();
2121       } else if (jobj != e) {
2122         return NULL;
2123       }
2124     }
2125   }
2126   return jobj;
2127 }
2128 
2129 // Return true if this node points only to non-escaping allocations.
2130 bool PointsToNode::non_escaping_allocation() {
2131   if (is_JavaObject()) {
2132     Node* n = ideal_node();
2133     if (n->is_Allocate() || n->is_CallStaticJava()) {
2134       return (escape_state() == PointsToNode::NoEscape);
2135     } else {
2136       return false;
2137     }
2138   }
2139   assert(is_LocalVar(), "sanity");
2140   // Check all java objects it points to.
2141   for (EdgeIterator i(this); i.has_next(); i.next()) {
2142     PointsToNode* e = i.get();
2143     if (e->is_JavaObject()) {
2144       Node* n = e->ideal_node();
2145       if ((e->escape_state() != PointsToNode::NoEscape) ||
2146           !(n->is_Allocate() || n->is_CallStaticJava())) {
2147         return false;
2148       }
2149     }
2150   }
2151   return true;
2152 }
2153 
2154 // Return true if we know the node does not escape globally.
2155 bool ConnectionGraph::not_global_escape(Node *n) {
2156   assert(!_collecting, "should not call during graph construction");
2157   // If the node was created after the escape computation we can't answer.
2158   uint idx = n->_idx;
2159   if (idx >= nodes_size()) {
2160     return false;
2161   }
2162   PointsToNode* ptn = ptnode_adr(idx);
2163   PointsToNode::EscapeState es = ptn->escape_state();
2164   // If we have already computed a value, return it.
2165   if (es >= PointsToNode::GlobalEscape)
2166     return false;
2167   if (ptn->is_JavaObject()) {
2168     return true; // (es < PointsToNode::GlobalEscape);
2169   }
2170   assert(ptn->is_LocalVar(), "sanity");
2171   // Check all java objects it points to.
2172   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2173     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2174       return false;
2175   }
2176   return true;
2177 }
2178 
2179 
2180 // Helper functions
2181 
2182 // Return true if this node points to specified node or nodes it points to.
2183 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2184   if (is_JavaObject()) {
2185     return (this == ptn);
2186   }
2187   assert(is_LocalVar() || is_Field(), "sanity");
2188   for (EdgeIterator i(this); i.has_next(); i.next()) {
2189     if (i.get() == ptn)
2190       return true;
2191   }
2192   return false;
2193 }
2194 
2195 // Return true if one node points to an other.
2196 bool PointsToNode::meet(PointsToNode* ptn) {
2197   if (this == ptn) {
2198     return true;
2199   } else if (ptn->is_JavaObject()) {
2200     return this->points_to(ptn->as_JavaObject());
2201   } else if (this->is_JavaObject()) {
2202     return ptn->points_to(this->as_JavaObject());
2203   }
2204   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2205   int ptn_count =  ptn->edge_count();
2206   for (EdgeIterator i(this); i.has_next(); i.next()) {
2207     PointsToNode* this_e = i.get();
2208     for (int j = 0; j < ptn_count; j++) {
2209       if (this_e == ptn->edge(j))
2210         return true;
2211     }
2212   }
2213   return false;
2214 }
2215 
2216 #ifdef ASSERT
2217 // Return true if bases point to this java object.
2218 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2219   for (BaseIterator i(this); i.has_next(); i.next()) {
2220     if (i.get() == jobj)
2221       return true;
2222   }
2223   return false;
2224 }
2225 #endif
2226 
2227 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2228   const Type *adr_type = phase->type(adr);
2229   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2230       adr->in(AddPNode::Address)->is_Proj() &&
2231       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2232     // We are computing a raw address for a store captured by an Initialize
2233     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2234     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2235     assert(offs != Type::OffsetBot ||
2236            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2237            "offset must be a constant or it is initialization of array");
2238     return offs;
2239   }
2240   const TypePtr *t_ptr = adr_type->isa_ptr();
2241   assert(t_ptr != NULL, "must be a pointer type");
2242   return t_ptr->offset();
2243 }
2244 
2245 Node* ConnectionGraph::get_addp_base(Node *addp) {
2246   assert(addp->is_AddP(), "must be AddP");
2247   //
2248   // AddP cases for Base and Address inputs:
2249   // case #1. Direct object's field reference:
2250   //     Allocate
2251   //       |
2252   //     Proj #5 ( oop result )
2253   //       |
2254   //     CheckCastPP (cast to instance type)
2255   //      | |
2256   //     AddP  ( base == address )
2257   //
2258   // case #2. Indirect object's field reference:
2259   //      Phi
2260   //       |
2261   //     CastPP (cast to instance type)
2262   //      | |
2263   //     AddP  ( base == address )
2264   //
2265   // case #3. Raw object's field reference for Initialize node:
2266   //      Allocate
2267   //        |
2268   //      Proj #5 ( oop result )
2269   //  top   |
2270   //     \  |
2271   //     AddP  ( base == top )
2272   //
2273   // case #4. Array's element reference:
2274   //   {CheckCastPP | CastPP}
2275   //     |  | |
2276   //     |  AddP ( array's element offset )
2277   //     |  |
2278   //     AddP ( array's offset )
2279   //
2280   // case #5. Raw object's field reference for arraycopy stub call:
2281   //          The inline_native_clone() case when the arraycopy stub is called
2282   //          after the allocation before Initialize and CheckCastPP nodes.
2283   //      Allocate
2284   //        |
2285   //      Proj #5 ( oop result )
2286   //       | |
2287   //       AddP  ( base == address )
2288   //
2289   // case #6. Constant Pool, ThreadLocal, CastX2P or
2290   //          Raw object's field reference:
2291   //      {ConP, ThreadLocal, CastX2P, raw Load}
2292   //  top   |
2293   //     \  |
2294   //     AddP  ( base == top )
2295   //
2296   // case #7. Klass's field reference.
2297   //      LoadKlass
2298   //       | |
2299   //       AddP  ( base == address )
2300   //
2301   // case #8. narrow Klass's field reference.
2302   //      LoadNKlass
2303   //       |
2304   //      DecodeN
2305   //       | |
2306   //       AddP  ( base == address )
2307   //
2308   // case #9. Mixed unsafe access
2309   //    {instance}
2310   //        |
2311   //      CheckCastPP (raw)
2312   //  top   |
2313   //     \  |
2314   //     AddP  ( base == top )
2315   //
2316   Node *base = addp->in(AddPNode::Base);
2317   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
2318     base = addp->in(AddPNode::Address);
2319     while (base->is_AddP()) {
2320       // Case #6 (unsafe access) may have several chained AddP nodes.
2321       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2322       base = base->in(AddPNode::Address);
2323     }
2324     if (base->Opcode() == Op_CheckCastPP &&
2325         base->bottom_type()->isa_rawptr() &&
2326         _igvn->type(base->in(1))->isa_oopptr()) {
2327       base = base->in(1); // Case #9
2328     } else {
2329       Node* uncast_base = base->uncast();
2330       int opcode = uncast_base->Opcode();
2331       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2332              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2333              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2334              (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2335     }
2336   }
2337   return base;
2338 }
2339 
2340 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2341   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2342   Node* addp2 = addp->raw_out(0);
2343   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2344       addp2->in(AddPNode::Base) == n &&
2345       addp2->in(AddPNode::Address) == addp) {
2346     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2347     //
2348     // Find array's offset to push it on worklist first and
2349     // as result process an array's element offset first (pushed second)
2350     // to avoid CastPP for the array's offset.
2351     // Otherwise the inserted CastPP (LocalVar) will point to what
2352     // the AddP (Field) points to. Which would be wrong since
2353     // the algorithm expects the CastPP has the same point as
2354     // as AddP's base CheckCastPP (LocalVar).
2355     //
2356     //    ArrayAllocation
2357     //     |
2358     //    CheckCastPP
2359     //     |
2360     //    memProj (from ArrayAllocation CheckCastPP)
2361     //     |  ||
2362     //     |  ||   Int (element index)
2363     //     |  ||    |   ConI (log(element size))
2364     //     |  ||    |   /
2365     //     |  ||   LShift
2366     //     |  ||  /
2367     //     |  AddP (array's element offset)
2368     //     |  |
2369     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2370     //     | / /
2371     //     AddP (array's offset)
2372     //      |
2373     //     Load/Store (memory operation on array's element)
2374     //
2375     return addp2;
2376   }
2377   return NULL;
2378 }
2379 
2380 //
2381 // Adjust the type and inputs of an AddP which computes the
2382 // address of a field of an instance
2383 //
2384 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2385   PhaseGVN* igvn = _igvn;
2386   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2387   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2388   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2389   if (t == NULL) {
2390     // We are computing a raw address for a store captured by an Initialize
2391     // compute an appropriate address type (cases #3 and #5).
2392     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2393     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2394     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2395     assert(offs != Type::OffsetBot, "offset must be a constant");
2396     t = base_t->add_offset(offs)->is_oopptr();
2397   }
2398   int inst_id =  base_t->instance_id();
2399   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2400                              "old type must be non-instance or match new type");
2401 
2402   // The type 't' could be subclass of 'base_t'.
2403   // As result t->offset() could be large then base_t's size and it will
2404   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2405   // constructor verifies correctness of the offset.
2406   //
2407   // It could happened on subclass's branch (from the type profiling
2408   // inlining) which was not eliminated during parsing since the exactness
2409   // of the allocation type was not propagated to the subclass type check.
2410   //
2411   // Or the type 't' could be not related to 'base_t' at all.
2412   // It could happened when CHA type is different from MDO type on a dead path
2413   // (for example, from instanceof check) which is not collapsed during parsing.
2414   //
2415   // Do nothing for such AddP node and don't process its users since
2416   // this code branch will go away.
2417   //
2418   if (!t->is_known_instance() &&
2419       !base_t->klass()->is_subtype_of(t->klass())) {
2420      return false; // bail out
2421   }
2422   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2423   // Do NOT remove the next line: ensure a new alias index is allocated
2424   // for the instance type. Note: C++ will not remove it since the call
2425   // has side effect.
2426   int alias_idx = _compile->get_alias_index(tinst);
2427   igvn->set_type(addp, tinst);
2428   // record the allocation in the node map
2429   set_map(addp, get_map(base->_idx));
2430   // Set addp's Base and Address to 'base'.
2431   Node *abase = addp->in(AddPNode::Base);
2432   Node *adr   = addp->in(AddPNode::Address);
2433   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2434       adr->in(0)->_idx == (uint)inst_id) {
2435     // Skip AddP cases #3 and #5.
2436   } else {
2437     assert(!abase->is_top(), "sanity"); // AddP case #3
2438     if (abase != base) {
2439       igvn->hash_delete(addp);
2440       addp->set_req(AddPNode::Base, base);
2441       if (abase == adr) {
2442         addp->set_req(AddPNode::Address, base);
2443       } else {
2444         // AddP case #4 (adr is array's element offset AddP node)
2445 #ifdef ASSERT
2446         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2447         assert(adr->is_AddP() && atype != NULL &&
2448                atype->instance_id() == inst_id, "array's element offset should be processed first");
2449 #endif
2450       }
2451       igvn->hash_insert(addp);
2452     }
2453   }
2454   // Put on IGVN worklist since at least addp's type was changed above.
2455   record_for_optimizer(addp);
2456   return true;
2457 }
2458 
2459 //
2460 // Create a new version of orig_phi if necessary. Returns either the newly
2461 // created phi or an existing phi.  Sets create_new to indicate whether a new
2462 // phi was created.  Cache the last newly created phi in the node map.
2463 //
2464 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2465   Compile *C = _compile;
2466   PhaseGVN* igvn = _igvn;
2467   new_created = false;
2468   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2469   // nothing to do if orig_phi is bottom memory or matches alias_idx
2470   if (phi_alias_idx == alias_idx) {
2471     return orig_phi;
2472   }
2473   // Have we recently created a Phi for this alias index?
2474   PhiNode *result = get_map_phi(orig_phi->_idx);
2475   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2476     return result;
2477   }
2478   // Previous check may fail when the same wide memory Phi was split into Phis
2479   // for different memory slices. Search all Phis for this region.
2480   if (result != NULL) {
2481     Node* region = orig_phi->in(0);
2482     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2483       Node* phi = region->fast_out(i);
2484       if (phi->is_Phi() &&
2485           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2486         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2487         return phi->as_Phi();
2488       }
2489     }
2490   }
2491   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2492     if (C->do_escape_analysis() == true && !C->failing()) {
2493       // Retry compilation without escape analysis.
2494       // If this is the first failure, the sentinel string will "stick"
2495       // to the Compile object, and the C2Compiler will see it and retry.
2496       C->record_failure(C2Compiler::retry_no_escape_analysis());
2497     }
2498     return NULL;
2499   }
2500   orig_phi_worklist.append_if_missing(orig_phi);
2501   const TypePtr *atype = C->get_adr_type(alias_idx);
2502   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2503   C->copy_node_notes_to(result, orig_phi);
2504   igvn->set_type(result, result->bottom_type());
2505   record_for_optimizer(result);
2506   set_map(orig_phi, result);
2507   new_created = true;
2508   return result;
2509 }
2510 
2511 //
2512 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2513 // specified alias index.
2514 //
2515 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2516   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2517   Compile *C = _compile;
2518   PhaseGVN* igvn = _igvn;
2519   bool new_phi_created;
2520   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2521   if (!new_phi_created) {
2522     return result;
2523   }
2524   GrowableArray<PhiNode *>  phi_list;
2525   GrowableArray<uint>  cur_input;
2526   PhiNode *phi = orig_phi;
2527   uint idx = 1;
2528   bool finished = false;
2529   while(!finished) {
2530     while (idx < phi->req()) {
2531       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2532       if (mem != NULL && mem->is_Phi()) {
2533         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2534         if (new_phi_created) {
2535           // found an phi for which we created a new split, push current one on worklist and begin
2536           // processing new one
2537           phi_list.push(phi);
2538           cur_input.push(idx);
2539           phi = mem->as_Phi();
2540           result = newphi;
2541           idx = 1;
2542           continue;
2543         } else {
2544           mem = newphi;
2545         }
2546       }
2547       if (C->failing()) {
2548         return NULL;
2549       }
2550       result->set_req(idx++, mem);
2551     }
2552 #ifdef ASSERT
2553     // verify that the new Phi has an input for each input of the original
2554     assert( phi->req() == result->req(), "must have same number of inputs.");
2555     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2556 #endif
2557     // Check if all new phi's inputs have specified alias index.
2558     // Otherwise use old phi.
2559     for (uint i = 1; i < phi->req(); i++) {
2560       Node* in = result->in(i);
2561       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2562     }
2563     // we have finished processing a Phi, see if there are any more to do
2564     finished = (phi_list.length() == 0 );
2565     if (!finished) {
2566       phi = phi_list.pop();
2567       idx = cur_input.pop();
2568       PhiNode *prev_result = get_map_phi(phi->_idx);
2569       prev_result->set_req(idx++, result);
2570       result = prev_result;
2571     }
2572   }
2573   return result;
2574 }
2575 
2576 //
2577 // The next methods are derived from methods in MemNode.
2578 //
2579 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2580   Node *mem = mmem;
2581   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2582   // means an array I have not precisely typed yet.  Do not do any
2583   // alias stuff with it any time soon.
2584   if (toop->base() != Type::AnyPtr &&
2585       !(toop->klass() != NULL &&
2586         toop->klass()->is_java_lang_Object() &&
2587         toop->offset() == Type::OffsetBot)) {
2588     mem = mmem->memory_at(alias_idx);
2589     // Update input if it is progress over what we have now
2590   }
2591   return mem;
2592 }
2593 
2594 //
2595 // Move memory users to their memory slices.
2596 //
2597 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2598   Compile* C = _compile;
2599   PhaseGVN* igvn = _igvn;
2600   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2601   assert(tp != NULL, "ptr type");
2602   int alias_idx = C->get_alias_index(tp);
2603   int general_idx = C->get_general_index(alias_idx);
2604 
2605   // Move users first
2606   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2607     Node* use = n->fast_out(i);
2608     if (use->is_MergeMem()) {
2609       MergeMemNode* mmem = use->as_MergeMem();
2610       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2611       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2612         continue; // Nothing to do
2613       }
2614       // Replace previous general reference to mem node.
2615       uint orig_uniq = C->unique();
2616       Node* m = find_inst_mem(n, general_idx, orig_phis);
2617       assert(orig_uniq == C->unique(), "no new nodes");
2618       mmem->set_memory_at(general_idx, m);
2619       --imax;
2620       --i;
2621     } else if (use->is_MemBar()) {
2622       assert(!use->is_Initialize(), "initializing stores should not be moved");
2623       if (use->req() > MemBarNode::Precedent &&
2624           use->in(MemBarNode::Precedent) == n) {
2625         // Don't move related membars.
2626         record_for_optimizer(use);
2627         continue;
2628       }
2629       tp = use->as_MemBar()->adr_type()->isa_ptr();
2630       if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
2631           alias_idx == general_idx) {
2632         continue; // Nothing to do
2633       }
2634       // Move to general memory slice.
2635       uint orig_uniq = C->unique();
2636       Node* m = find_inst_mem(n, general_idx, orig_phis);
2637       assert(orig_uniq == C->unique(), "no new nodes");
2638       igvn->hash_delete(use);
2639       imax -= use->replace_edge(n, m);
2640       igvn->hash_insert(use);
2641       record_for_optimizer(use);
2642       --i;
2643 #ifdef ASSERT
2644     } else if (use->is_Mem()) {
2645       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2646         // Don't move related cardmark.
2647         continue;
2648       }
2649       // Memory nodes should have new memory input.
2650       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2651       assert(tp != NULL, "ptr type");
2652       int idx = C->get_alias_index(tp);
2653       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2654              "Following memory nodes should have new memory input or be on the same memory slice");
2655     } else if (use->is_Phi()) {
2656       // Phi nodes should be split and moved already.
2657       tp = use->as_Phi()->adr_type()->isa_ptr();
2658       assert(tp != NULL, "ptr type");
2659       int idx = C->get_alias_index(tp);
2660       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2661     } else {
2662       use->dump();
2663       assert(false, "should not be here");
2664 #endif
2665     }
2666   }
2667 }
2668 
2669 //
2670 // Search memory chain of "mem" to find a MemNode whose address
2671 // is the specified alias index.
2672 //
2673 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2674   if (orig_mem == NULL)
2675     return orig_mem;
2676   Compile* C = _compile;
2677   PhaseGVN* igvn = _igvn;
2678   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2679   bool is_instance = (toop != NULL) && toop->is_known_instance();
2680   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
2681   Node *prev = NULL;
2682   Node *result = orig_mem;
2683   while (prev != result) {
2684     prev = result;
2685     if (result == start_mem)
2686       break;  // hit one of our sentinels
2687     if (result->is_Mem()) {
2688       const Type *at = igvn->type(result->in(MemNode::Address));
2689       if (at == Type::TOP)
2690         break; // Dead
2691       assert (at->isa_ptr() != NULL, "pointer type required.");
2692       int idx = C->get_alias_index(at->is_ptr());
2693       if (idx == alias_idx)
2694         break; // Found
2695       if (!is_instance && (at->isa_oopptr() == NULL ||
2696                            !at->is_oopptr()->is_known_instance())) {
2697         break; // Do not skip store to general memory slice.
2698       }
2699       result = result->in(MemNode::Memory);
2700     }
2701     if (!is_instance)
2702       continue;  // don't search further for non-instance types
2703     // skip over a call which does not affect this memory slice
2704     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2705       Node *proj_in = result->in(0);
2706       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2707         break;  // hit one of our sentinels
2708       } else if (proj_in->is_Call()) {
2709         // ArrayCopy node processed here as well
2710         CallNode *call = proj_in->as_Call();
2711         if (!call->may_modify(toop, igvn)) {
2712           result = call->in(TypeFunc::Memory);
2713         }
2714       } else if (proj_in->is_Initialize()) {
2715         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2716         // Stop if this is the initialization for the object instance which
2717         // which contains this memory slice, otherwise skip over it.
2718         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2719           result = proj_in->in(TypeFunc::Memory);
2720         }
2721       } else if (proj_in->is_MemBar()) {
2722         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2723             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2724             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2725           // clone
2726           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2727           if (ac->may_modify(toop, igvn)) {
2728             break;
2729           }
2730         }
2731         result = proj_in->in(TypeFunc::Memory);
2732       }
2733     } else if (result->is_MergeMem()) {
2734       MergeMemNode *mmem = result->as_MergeMem();
2735       result = step_through_mergemem(mmem, alias_idx, toop);
2736       if (result == mmem->base_memory()) {
2737         // Didn't find instance memory, search through general slice recursively.
2738         result = mmem->memory_at(C->get_general_index(alias_idx));
2739         result = find_inst_mem(result, alias_idx, orig_phis);
2740         if (C->failing()) {
2741           return NULL;
2742         }
2743         mmem->set_memory_at(alias_idx, result);
2744       }
2745     } else if (result->is_Phi() &&
2746                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2747       Node *un = result->as_Phi()->unique_input(igvn);
2748       if (un != NULL) {
2749         orig_phis.append_if_missing(result->as_Phi());
2750         result = un;
2751       } else {
2752         break;
2753       }
2754     } else if (result->is_ClearArray()) {
2755       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2756         // Can not bypass initialization of the instance
2757         // we are looking for.
2758         break;
2759       }
2760       // Otherwise skip it (the call updated 'result' value).
2761     } else if (result->Opcode() == Op_SCMemProj) {
2762       Node* mem = result->in(0);
2763       Node* adr = NULL;
2764       if (mem->is_LoadStore()) {
2765         adr = mem->in(MemNode::Address);
2766       } else {
2767         assert(mem->Opcode() == Op_EncodeISOArray ||
2768                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2769         adr = mem->in(3); // Memory edge corresponds to destination array
2770       }
2771       const Type *at = igvn->type(adr);
2772       if (at != Type::TOP) {
2773         assert(at->isa_ptr() != NULL, "pointer type required.");
2774         int idx = C->get_alias_index(at->is_ptr());
2775         if (idx == alias_idx) {
2776           // Assert in debug mode
2777           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2778           break; // In product mode return SCMemProj node
2779         }
2780       }
2781       result = mem->in(MemNode::Memory);
2782     } else if (result->Opcode() == Op_StrInflatedCopy) {
2783       Node* adr = result->in(3); // Memory edge corresponds to destination array
2784       const Type *at = igvn->type(adr);
2785       if (at != Type::TOP) {
2786         assert(at->isa_ptr() != NULL, "pointer type required.");
2787         int idx = C->get_alias_index(at->is_ptr());
2788         if (idx == alias_idx) {
2789           // Assert in debug mode
2790           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2791           break; // In product mode return SCMemProj node
2792         }
2793       }
2794       result = result->in(MemNode::Memory);
2795     }
2796   }
2797   if (result->is_Phi()) {
2798     PhiNode *mphi = result->as_Phi();
2799     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2800     const TypePtr *t = mphi->adr_type();
2801     if (!is_instance) {
2802       // Push all non-instance Phis on the orig_phis worklist to update inputs
2803       // during Phase 4 if needed.
2804       orig_phis.append_if_missing(mphi);
2805     } else if (C->get_alias_index(t) != alias_idx) {
2806       // Create a new Phi with the specified alias index type.
2807       result = split_memory_phi(mphi, alias_idx, orig_phis);
2808     }
2809   }
2810   // the result is either MemNode, PhiNode, InitializeNode.
2811   return result;
2812 }
2813 
2814 //
2815 //  Convert the types of unescaped object to instance types where possible,
2816 //  propagate the new type information through the graph, and update memory
2817 //  edges and MergeMem inputs to reflect the new type.
2818 //
2819 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2820 //  The processing is done in 4 phases:
2821 //
2822 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2823 //            types for the CheckCastPP for allocations where possible.
2824 //            Propagate the new types through users as follows:
2825 //               casts and Phi:  push users on alloc_worklist
2826 //               AddP:  cast Base and Address inputs to the instance type
2827 //                      push any AddP users on alloc_worklist and push any memnode
2828 //                      users onto memnode_worklist.
2829 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2830 //            search the Memory chain for a store with the appropriate type
2831 //            address type.  If a Phi is found, create a new version with
2832 //            the appropriate memory slices from each of the Phi inputs.
2833 //            For stores, process the users as follows:
2834 //               MemNode:  push on memnode_worklist
2835 //               MergeMem: push on mergemem_worklist
2836 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2837 //            moving the first node encountered of each  instance type to the
2838 //            the input corresponding to its alias index.
2839 //            appropriate memory slice.
2840 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2841 //
2842 // In the following example, the CheckCastPP nodes are the cast of allocation
2843 // results and the allocation of node 29 is unescaped and eligible to be an
2844 // instance type.
2845 //
2846 // We start with:
2847 //
2848 //     7 Parm #memory
2849 //    10  ConI  "12"
2850 //    19  CheckCastPP   "Foo"
2851 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2852 //    29  CheckCastPP   "Foo"
2853 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2854 //
2855 //    40  StoreP  25   7  20   ... alias_index=4
2856 //    50  StoreP  35  40  30   ... alias_index=4
2857 //    60  StoreP  45  50  20   ... alias_index=4
2858 //    70  LoadP    _  60  30   ... alias_index=4
2859 //    80  Phi     75  50  60   Memory alias_index=4
2860 //    90  LoadP    _  80  30   ... alias_index=4
2861 //   100  LoadP    _  80  20   ... alias_index=4
2862 //
2863 //
2864 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2865 // and creating a new alias index for node 30.  This gives:
2866 //
2867 //     7 Parm #memory
2868 //    10  ConI  "12"
2869 //    19  CheckCastPP   "Foo"
2870 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2871 //    29  CheckCastPP   "Foo"  iid=24
2872 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2873 //
2874 //    40  StoreP  25   7  20   ... alias_index=4
2875 //    50  StoreP  35  40  30   ... alias_index=6
2876 //    60  StoreP  45  50  20   ... alias_index=4
2877 //    70  LoadP    _  60  30   ... alias_index=6
2878 //    80  Phi     75  50  60   Memory alias_index=4
2879 //    90  LoadP    _  80  30   ... alias_index=6
2880 //   100  LoadP    _  80  20   ... alias_index=4
2881 //
2882 // In phase 2, new memory inputs are computed for the loads and stores,
2883 // And a new version of the phi is created.  In phase 4, the inputs to
2884 // node 80 are updated and then the memory nodes are updated with the
2885 // values computed in phase 2.  This results in:
2886 //
2887 //     7 Parm #memory
2888 //    10  ConI  "12"
2889 //    19  CheckCastPP   "Foo"
2890 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2891 //    29  CheckCastPP   "Foo"  iid=24
2892 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2893 //
2894 //    40  StoreP  25  7   20   ... alias_index=4
2895 //    50  StoreP  35  7   30   ... alias_index=6
2896 //    60  StoreP  45  40  20   ... alias_index=4
2897 //    70  LoadP    _  50  30   ... alias_index=6
2898 //    80  Phi     75  40  60   Memory alias_index=4
2899 //   120  Phi     75  50  50   Memory alias_index=6
2900 //    90  LoadP    _ 120  30   ... alias_index=6
2901 //   100  LoadP    _  80  20   ... alias_index=4
2902 //
2903 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2904   GrowableArray<Node *>  memnode_worklist;
2905   GrowableArray<PhiNode *>  orig_phis;
2906   PhaseIterGVN  *igvn = _igvn;
2907   uint new_index_start = (uint) _compile->num_alias_types();
2908   Arena* arena = Thread::current()->resource_area();
2909   VectorSet visited(arena);
2910   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2911   uint unique_old = _compile->unique();
2912 
2913   //  Phase 1:  Process possible allocations from alloc_worklist.
2914   //  Create instance types for the CheckCastPP for allocations where possible.
2915   //
2916   // (Note: don't forget to change the order of the second AddP node on
2917   //  the alloc_worklist if the order of the worklist processing is changed,
2918   //  see the comment in find_second_addp().)
2919   //
2920   while (alloc_worklist.length() != 0) {
2921     Node *n = alloc_worklist.pop();
2922     uint ni = n->_idx;
2923     if (n->is_Call()) {
2924       CallNode *alloc = n->as_Call();
2925       // copy escape information to call node
2926       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2927       PointsToNode::EscapeState es = ptn->escape_state();
2928       // We have an allocation or call which returns a Java object,
2929       // see if it is unescaped.
2930       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2931         continue;
2932       // Find CheckCastPP for the allocate or for the return value of a call
2933       n = alloc->result_cast();
2934       if (n == NULL) {            // No uses except Initialize node
2935         if (alloc->is_Allocate()) {
2936           // Set the scalar_replaceable flag for allocation
2937           // so it could be eliminated if it has no uses.
2938           alloc->as_Allocate()->_is_scalar_replaceable = true;
2939         }
2940         if (alloc->is_CallStaticJava()) {
2941           // Set the scalar_replaceable flag for boxing method
2942           // so it could be eliminated if it has no uses.
2943           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2944         }
2945         continue;
2946       }
2947       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2948         assert(!alloc->is_Allocate(), "allocation should have unique type");
2949         continue;
2950       }
2951 
2952       // The inline code for Object.clone() casts the allocation result to
2953       // java.lang.Object and then to the actual type of the allocated
2954       // object. Detect this case and use the second cast.
2955       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2956       // the allocation result is cast to java.lang.Object and then
2957       // to the actual Array type.
2958       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2959           && (alloc->is_AllocateArray() ||
2960               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2961         Node *cast2 = NULL;
2962         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2963           Node *use = n->fast_out(i);
2964           if (use->is_CheckCastPP()) {
2965             cast2 = use;
2966             break;
2967           }
2968         }
2969         if (cast2 != NULL) {
2970           n = cast2;
2971         } else {
2972           // Non-scalar replaceable if the allocation type is unknown statically
2973           // (reflection allocation), the object can't be restored during
2974           // deoptimization without precise type.
2975           continue;
2976         }
2977       }
2978 
2979       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2980       if (t == NULL)
2981         continue;  // not a TypeOopPtr
2982       if (!t->klass_is_exact())
2983         continue; // not an unique type
2984 
2985       if (alloc->is_Allocate()) {
2986         // Set the scalar_replaceable flag for allocation
2987         // so it could be eliminated.
2988         alloc->as_Allocate()->_is_scalar_replaceable = true;
2989       }
2990       if (alloc->is_CallStaticJava()) {
2991         // Set the scalar_replaceable flag for boxing method
2992         // so it could be eliminated.
2993         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2994       }
2995       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2996       // in order for an object to be scalar-replaceable, it must be:
2997       //   - a direct allocation (not a call returning an object)
2998       //   - non-escaping
2999       //   - eligible to be a unique type
3000       //   - not determined to be ineligible by escape analysis
3001       set_map(alloc, n);
3002       set_map(n, alloc);
3003       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3004       igvn->hash_delete(n);
3005       igvn->set_type(n,  tinst);
3006       n->raise_bottom_type(tinst);
3007       igvn->hash_insert(n);
3008       record_for_optimizer(n);
3009       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
3010 
3011         // First, put on the worklist all Field edges from Connection Graph
3012         // which is more accurate than putting immediate users from Ideal Graph.
3013         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3014           PointsToNode* tgt = e.get();
3015           if (tgt->is_Arraycopy()) {
3016             continue;
3017           }
3018           Node* use = tgt->ideal_node();
3019           assert(tgt->is_Field() && use->is_AddP(),
3020                  "only AddP nodes are Field edges in CG");
3021           if (use->outcnt() > 0) { // Don't process dead nodes
3022             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3023             if (addp2 != NULL) {
3024               assert(alloc->is_AllocateArray(),"array allocation was expected");
3025               alloc_worklist.append_if_missing(addp2);
3026             }
3027             alloc_worklist.append_if_missing(use);
3028           }
3029         }
3030 
3031         // An allocation may have an Initialize which has raw stores. Scan
3032         // the users of the raw allocation result and push AddP users
3033         // on alloc_worklist.
3034         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
3035         assert (raw_result != NULL, "must have an allocation result");
3036         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3037           Node *use = raw_result->fast_out(i);
3038           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3039             Node* addp2 = find_second_addp(use, raw_result);
3040             if (addp2 != NULL) {
3041               assert(alloc->is_AllocateArray(),"array allocation was expected");
3042               alloc_worklist.append_if_missing(addp2);
3043             }
3044             alloc_worklist.append_if_missing(use);
3045           } else if (use->is_MemBar()) {
3046             memnode_worklist.append_if_missing(use);
3047           }
3048         }
3049       }
3050     } else if (n->is_AddP()) {
3051       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3052       if (jobj == NULL || jobj == phantom_obj) {
3053 #ifdef ASSERT
3054         ptnode_adr(get_addp_base(n)->_idx)->dump();
3055         ptnode_adr(n->_idx)->dump();
3056         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3057 #endif
3058         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3059         return;
3060       }
3061       Node *base = get_map(jobj->idx());  // CheckCastPP node
3062       if (!split_AddP(n, base)) continue; // wrong type from dead path
3063     } else if (n->is_Phi() ||
3064                n->is_CheckCastPP() ||
3065                n->is_EncodeP() ||
3066                n->is_DecodeN() ||
3067                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3068       if (visited.test_set(n->_idx)) {
3069         assert(n->is_Phi(), "loops only through Phi's");
3070         continue;  // already processed
3071       }
3072       JavaObjectNode* jobj = unique_java_object(n);
3073       if (jobj == NULL || jobj == phantom_obj) {
3074 #ifdef ASSERT
3075         ptnode_adr(n->_idx)->dump();
3076         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3077 #endif
3078         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3079         return;
3080       } else {
3081         Node *val = get_map(jobj->idx());   // CheckCastPP node
3082         TypeNode *tn = n->as_Type();
3083         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3084         assert(tinst != NULL && tinst->is_known_instance() &&
3085                tinst->instance_id() == jobj->idx() , "instance type expected.");
3086 
3087         const Type *tn_type = igvn->type(tn);
3088         const TypeOopPtr *tn_t;
3089         if (tn_type->isa_narrowoop()) {
3090           tn_t = tn_type->make_ptr()->isa_oopptr();
3091         } else {
3092           tn_t = tn_type->isa_oopptr();
3093         }
3094         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3095           if (tn_type->isa_narrowoop()) {
3096             tn_type = tinst->make_narrowoop();
3097           } else {
3098             tn_type = tinst;
3099           }
3100           igvn->hash_delete(tn);
3101           igvn->set_type(tn, tn_type);
3102           tn->set_type(tn_type);
3103           igvn->hash_insert(tn);
3104           record_for_optimizer(n);
3105         } else {
3106           assert(tn_type == TypePtr::NULL_PTR ||
3107                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3108                  "unexpected type");
3109           continue; // Skip dead path with different type
3110         }
3111       }
3112     } else {
3113       debug_only(n->dump();)
3114       assert(false, "EA: unexpected node");
3115       continue;
3116     }
3117     // push allocation's users on appropriate worklist
3118     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3119       Node *use = n->fast_out(i);
3120       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3121         // Load/store to instance's field
3122         memnode_worklist.append_if_missing(use);
3123       } else if (use->is_MemBar()) {
3124         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3125           memnode_worklist.append_if_missing(use);
3126         }
3127       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3128         Node* addp2 = find_second_addp(use, n);
3129         if (addp2 != NULL) {
3130           alloc_worklist.append_if_missing(addp2);
3131         }
3132         alloc_worklist.append_if_missing(use);
3133       } else if (use->is_Phi() ||
3134                  use->is_CheckCastPP() ||
3135                  use->is_EncodeNarrowPtr() ||
3136                  use->is_DecodeNarrowPtr() ||
3137                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3138         alloc_worklist.append_if_missing(use);
3139 #ifdef ASSERT
3140       } else if (use->is_Mem()) {
3141         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3142       } else if (use->is_MergeMem()) {
3143         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3144       } else if (use->is_SafePoint()) {
3145         // Look for MergeMem nodes for calls which reference unique allocation
3146         // (through CheckCastPP nodes) even for debug info.
3147         Node* m = use->in(TypeFunc::Memory);
3148         if (m->is_MergeMem()) {
3149           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3150         }
3151       } else if (use->Opcode() == Op_EncodeISOArray) {
3152         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3153           // EncodeISOArray overwrites destination array
3154           memnode_worklist.append_if_missing(use);
3155         }
3156       } else {
3157         uint op = use->Opcode();
3158         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3159             (use->in(MemNode::Memory) == n)) {
3160           // They overwrite memory edge corresponding to destination array,
3161           memnode_worklist.append_if_missing(use);
3162         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3163               op == Op_CastP2X || op == Op_StoreCM ||
3164               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3165               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3166               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3167           n->dump();
3168           use->dump();
3169           assert(false, "EA: missing allocation reference path");
3170         }
3171 #endif
3172       }
3173     }
3174 
3175   }
3176 
3177   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3178   // type, record it in the ArrayCopy node so we know what memory this
3179   // node uses/modified.
3180   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3181     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3182     Node* dest = ac->in(ArrayCopyNode::Dest);
3183     if (dest->is_AddP()) {
3184       dest = get_addp_base(dest);
3185     }
3186     JavaObjectNode* jobj = unique_java_object(dest);
3187     if (jobj != NULL) {
3188       Node *base = get_map(jobj->idx());
3189       if (base != NULL) {
3190         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3191         ac->_dest_type = base_t;
3192       }
3193     }
3194     Node* src = ac->in(ArrayCopyNode::Src);
3195     if (src->is_AddP()) {
3196       src = get_addp_base(src);
3197     }
3198     jobj = unique_java_object(src);
3199     if (jobj != NULL) {
3200       Node* base = get_map(jobj->idx());
3201       if (base != NULL) {
3202         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3203         ac->_src_type = base_t;
3204       }
3205     }
3206   }
3207 
3208   // New alias types were created in split_AddP().
3209   uint new_index_end = (uint) _compile->num_alias_types();
3210   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3211 
3212   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3213   //            compute new values for Memory inputs  (the Memory inputs are not
3214   //            actually updated until phase 4.)
3215   if (memnode_worklist.length() == 0)
3216     return;  // nothing to do
3217   while (memnode_worklist.length() != 0) {
3218     Node *n = memnode_worklist.pop();
3219     if (visited.test_set(n->_idx))
3220       continue;
3221     if (n->is_Phi() || n->is_ClearArray()) {
3222       // we don't need to do anything, but the users must be pushed
3223     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3224       // we don't need to do anything, but the users must be pushed
3225       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
3226       if (n == NULL)
3227         continue;
3228     } else if (n->Opcode() == Op_StrCompressedCopy ||
3229                n->Opcode() == Op_EncodeISOArray) {
3230       // get the memory projection
3231       n = n->find_out_with(Op_SCMemProj);
3232       assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3233     } else {
3234       assert(n->is_Mem(), "memory node required.");
3235       Node *addr = n->in(MemNode::Address);
3236       const Type *addr_t = igvn->type(addr);
3237       if (addr_t == Type::TOP)
3238         continue;
3239       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3240       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3241       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3242       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3243       if (_compile->failing()) {
3244         return;
3245       }
3246       if (mem != n->in(MemNode::Memory)) {
3247         // We delay the memory edge update since we need old one in
3248         // MergeMem code below when instances memory slices are separated.
3249         set_map(n, mem);
3250       }
3251       if (n->is_Load()) {
3252         continue;  // don't push users
3253       } else if (n->is_LoadStore()) {
3254         // get the memory projection
3255         n = n->find_out_with(Op_SCMemProj);
3256         assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3257       }
3258     }
3259     // push user on appropriate worklist
3260     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3261       Node *use = n->fast_out(i);
3262       if (use->is_Phi() || use->is_ClearArray()) {
3263         memnode_worklist.append_if_missing(use);
3264       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3265         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3266           continue;
3267         memnode_worklist.append_if_missing(use);
3268       } else if (use->is_MemBar()) {
3269         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3270           memnode_worklist.append_if_missing(use);
3271         }
3272 #ifdef ASSERT
3273       } else if(use->is_Mem()) {
3274         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3275       } else if (use->is_MergeMem()) {
3276         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3277       } else if (use->Opcode() == Op_EncodeISOArray) {
3278         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3279           // EncodeISOArray overwrites destination array
3280           memnode_worklist.append_if_missing(use);
3281         }
3282       } else {
3283         uint op = use->Opcode();
3284         if ((use->in(MemNode::Memory) == n) &&
3285             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3286           // They overwrite memory edge corresponding to destination array,
3287           memnode_worklist.append_if_missing(use);
3288         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3289               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3290               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3291               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3292           n->dump();
3293           use->dump();
3294           assert(false, "EA: missing memory path");
3295         }
3296 #endif
3297       }
3298     }
3299   }
3300 
3301   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3302   //            Walk each memory slice moving the first node encountered of each
3303   //            instance type to the the input corresponding to its alias index.
3304   uint length = _mergemem_worklist.length();
3305   for( uint next = 0; next < length; ++next ) {
3306     MergeMemNode* nmm = _mergemem_worklist.at(next);
3307     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3308     // Note: we don't want to use MergeMemStream here because we only want to
3309     // scan inputs which exist at the start, not ones we add during processing.
3310     // Note 2: MergeMem may already contains instance memory slices added
3311     // during find_inst_mem() call when memory nodes were processed above.
3312     igvn->hash_delete(nmm);
3313     uint nslices = MIN2(nmm->req(), new_index_start);
3314     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3315       Node* mem = nmm->in(i);
3316       Node* cur = NULL;
3317       if (mem == NULL || mem->is_top())
3318         continue;
3319       // First, update mergemem by moving memory nodes to corresponding slices
3320       // if their type became more precise since this mergemem was created.
3321       while (mem->is_Mem()) {
3322         const Type *at = igvn->type(mem->in(MemNode::Address));
3323         if (at != Type::TOP) {
3324           assert (at->isa_ptr() != NULL, "pointer type required.");
3325           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3326           if (idx == i) {
3327             if (cur == NULL)
3328               cur = mem;
3329           } else {
3330             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3331               nmm->set_memory_at(idx, mem);
3332             }
3333           }
3334         }
3335         mem = mem->in(MemNode::Memory);
3336       }
3337       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3338       // Find any instance of the current type if we haven't encountered
3339       // already a memory slice of the instance along the memory chain.
3340       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3341         if((uint)_compile->get_general_index(ni) == i) {
3342           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3343           if (nmm->is_empty_memory(m)) {
3344             Node* result = find_inst_mem(mem, ni, orig_phis);
3345             if (_compile->failing()) {
3346               return;
3347             }
3348             nmm->set_memory_at(ni, result);
3349           }
3350         }
3351       }
3352     }
3353     // Find the rest of instances values
3354     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3355       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3356       Node* result = step_through_mergemem(nmm, ni, tinst);
3357       if (result == nmm->base_memory()) {
3358         // Didn't find instance memory, search through general slice recursively.
3359         result = nmm->memory_at(_compile->get_general_index(ni));
3360         result = find_inst_mem(result, ni, orig_phis);
3361         if (_compile->failing()) {
3362           return;
3363         }
3364         nmm->set_memory_at(ni, result);
3365       }
3366     }
3367     igvn->hash_insert(nmm);
3368     record_for_optimizer(nmm);
3369   }
3370 
3371   //  Phase 4:  Update the inputs of non-instance memory Phis and
3372   //            the Memory input of memnodes
3373   // First update the inputs of any non-instance Phi's from
3374   // which we split out an instance Phi.  Note we don't have
3375   // to recursively process Phi's encounted on the input memory
3376   // chains as is done in split_memory_phi() since they  will
3377   // also be processed here.
3378   for (int j = 0; j < orig_phis.length(); j++) {
3379     PhiNode *phi = orig_phis.at(j);
3380     int alias_idx = _compile->get_alias_index(phi->adr_type());
3381     igvn->hash_delete(phi);
3382     for (uint i = 1; i < phi->req(); i++) {
3383       Node *mem = phi->in(i);
3384       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3385       if (_compile->failing()) {
3386         return;
3387       }
3388       if (mem != new_mem) {
3389         phi->set_req(i, new_mem);
3390       }
3391     }
3392     igvn->hash_insert(phi);
3393     record_for_optimizer(phi);
3394   }
3395 
3396   // Update the memory inputs of MemNodes with the value we computed
3397   // in Phase 2 and move stores memory users to corresponding memory slices.
3398   // Disable memory split verification code until the fix for 6984348.
3399   // Currently it produces false negative results since it does not cover all cases.
3400 #if 0 // ifdef ASSERT
3401   visited.Reset();
3402   Node_Stack old_mems(arena, _compile->unique() >> 2);
3403 #endif
3404   for (uint i = 0; i < ideal_nodes.size(); i++) {
3405     Node*    n = ideal_nodes.at(i);
3406     Node* nmem = get_map(n->_idx);
3407     assert(nmem != NULL, "sanity");
3408     if (n->is_Mem()) {
3409 #if 0 // ifdef ASSERT
3410       Node* old_mem = n->in(MemNode::Memory);
3411       if (!visited.test_set(old_mem->_idx)) {
3412         old_mems.push(old_mem, old_mem->outcnt());
3413       }
3414 #endif
3415       assert(n->in(MemNode::Memory) != nmem, "sanity");
3416       if (!n->is_Load()) {
3417         // Move memory users of a store first.
3418         move_inst_mem(n, orig_phis);
3419       }
3420       // Now update memory input
3421       igvn->hash_delete(n);
3422       n->set_req(MemNode::Memory, nmem);
3423       igvn->hash_insert(n);
3424       record_for_optimizer(n);
3425     } else {
3426       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3427              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3428     }
3429   }
3430 #if 0 // ifdef ASSERT
3431   // Verify that memory was split correctly
3432   while (old_mems.is_nonempty()) {
3433     Node* old_mem = old_mems.node();
3434     uint  old_cnt = old_mems.index();
3435     old_mems.pop();
3436     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3437   }
3438 #endif
3439 }
3440 
3441 #ifndef PRODUCT
3442 static const char *node_type_names[] = {
3443   "UnknownType",
3444   "JavaObject",
3445   "LocalVar",
3446   "Field",
3447   "Arraycopy"
3448 };
3449 
3450 static const char *esc_names[] = {
3451   "UnknownEscape",
3452   "NoEscape",
3453   "ArgEscape",
3454   "GlobalEscape"
3455 };
3456 
3457 void PointsToNode::dump(bool print_state) const {
3458   NodeType nt = node_type();
3459   tty->print("%s ", node_type_names[(int) nt]);
3460   if (print_state) {
3461     EscapeState es = escape_state();
3462     EscapeState fields_es = fields_escape_state();
3463     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3464     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3465       tty->print("NSR ");
3466   }
3467   if (is_Field()) {
3468     FieldNode* f = (FieldNode*)this;
3469     if (f->is_oop())
3470       tty->print("oop ");
3471     if (f->offset() > 0)
3472       tty->print("+%d ", f->offset());
3473     tty->print("(");
3474     for (BaseIterator i(f); i.has_next(); i.next()) {
3475       PointsToNode* b = i.get();
3476       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3477     }
3478     tty->print(" )");
3479   }
3480   tty->print("[");
3481   for (EdgeIterator i(this); i.has_next(); i.next()) {
3482     PointsToNode* e = i.get();
3483     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3484   }
3485   tty->print(" [");
3486   for (UseIterator i(this); i.has_next(); i.next()) {
3487     PointsToNode* u = i.get();
3488     bool is_base = false;
3489     if (PointsToNode::is_base_use(u)) {
3490       is_base = true;
3491       u = PointsToNode::get_use_node(u)->as_Field();
3492     }
3493     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3494   }
3495   tty->print(" ]]  ");
3496   if (_node == NULL)
3497     tty->print_cr("<null>");
3498   else
3499     _node->dump();
3500 }
3501 
3502 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3503   bool first = true;
3504   int ptnodes_length = ptnodes_worklist.length();
3505   for (int i = 0; i < ptnodes_length; i++) {
3506     PointsToNode *ptn = ptnodes_worklist.at(i);
3507     if (ptn == NULL || !ptn->is_JavaObject())
3508       continue;
3509     PointsToNode::EscapeState es = ptn->escape_state();
3510     if ((es != PointsToNode::NoEscape) && !Verbose) {
3511       continue;
3512     }
3513     Node* n = ptn->ideal_node();
3514     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3515                              n->as_CallStaticJava()->is_boxing_method())) {
3516       if (first) {
3517         tty->cr();
3518         tty->print("======== Connection graph for ");
3519         _compile->method()->print_short_name();
3520         tty->cr();
3521         first = false;
3522       }
3523       ptn->dump();
3524       // Print all locals and fields which reference this allocation
3525       for (UseIterator j(ptn); j.has_next(); j.next()) {
3526         PointsToNode* use = j.get();
3527         if (use->is_LocalVar()) {
3528           use->dump(Verbose);
3529         } else if (Verbose) {
3530           use->dump();
3531         }
3532       }
3533       tty->cr();
3534     }
3535   }
3536 }
3537 #endif