1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/divnode.hpp"
  38 #include "opto/idealGraphPrinter.hpp"
  39 #include "opto/loopnode.hpp"
  40 #include "opto/mulnode.hpp"
  41 #include "opto/rootnode.hpp"
  42 #include "opto/superword.hpp"
  43 
  44 //=============================================================================
  45 //------------------------------is_loop_iv-------------------------------------
  46 // Determine if a node is Counted loop induction variable.
  47 // The method is declared in node.hpp.
  48 const Node* Node::is_loop_iv() const {
  49   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
  50       this->as_Phi()->region()->is_CountedLoop() &&
  51       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
  52     return this;
  53   } else {
  54     return NULL;
  55   }
  56 }
  57 
  58 //=============================================================================
  59 //------------------------------dump_spec--------------------------------------
  60 // Dump special per-node info
  61 #ifndef PRODUCT
  62 void LoopNode::dump_spec(outputStream *st) const {
  63   if (is_inner_loop()) st->print( "inner " );
  64   if (is_partial_peel_loop()) st->print( "partial_peel " );
  65   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  66 }
  67 #endif
  68 
  69 //------------------------------is_valid_counted_loop-------------------------
  70 bool LoopNode::is_valid_counted_loop() const {
  71   if (is_CountedLoop()) {
  72     CountedLoopNode*    l  = as_CountedLoop();
  73     CountedLoopEndNode* le = l->loopexit_or_null();
  74     if (le != NULL &&
  75         le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  76       Node* phi  = l->phi();
  77       Node* exit = le->proj_out_or_null(0 /* false */);
  78       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
  79           phi != NULL && phi->is_Phi() &&
  80           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  81           le->loopnode() == l && le->stride_is_con()) {
  82         return true;
  83       }
  84     }
  85   }
  86   return false;
  87 }
  88 
  89 //------------------------------get_early_ctrl---------------------------------
  90 // Compute earliest legal control
  91 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  92   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  93   uint i;
  94   Node *early;
  95   if (n->in(0) && !n->is_expensive()) {
  96     early = n->in(0);
  97     if (!early->is_CFG()) // Might be a non-CFG multi-def
  98       early = get_ctrl(early);        // So treat input as a straight data input
  99     i = 1;
 100   } else {
 101     early = get_ctrl(n->in(1));
 102     i = 2;
 103   }
 104   uint e_d = dom_depth(early);
 105   assert( early, "" );
 106   for (; i < n->req(); i++) {
 107     Node *cin = get_ctrl(n->in(i));
 108     assert( cin, "" );
 109     // Keep deepest dominator depth
 110     uint c_d = dom_depth(cin);
 111     if (c_d > e_d) {           // Deeper guy?
 112       early = cin;              // Keep deepest found so far
 113       e_d = c_d;
 114     } else if (c_d == e_d &&    // Same depth?
 115                early != cin) { // If not equal, must use slower algorithm
 116       // If same depth but not equal, one _must_ dominate the other
 117       // and we want the deeper (i.e., dominated) guy.
 118       Node *n1 = early;
 119       Node *n2 = cin;
 120       while (1) {
 121         n1 = idom(n1);          // Walk up until break cycle
 122         n2 = idom(n2);
 123         if (n1 == cin ||        // Walked early up to cin
 124             dom_depth(n2) < c_d)
 125           break;                // early is deeper; keep him
 126         if (n2 == early ||      // Walked cin up to early
 127             dom_depth(n1) < c_d) {
 128           early = cin;          // cin is deeper; keep him
 129           break;
 130         }
 131       }
 132       e_d = dom_depth(early);   // Reset depth register cache
 133     }
 134   }
 135 
 136   // Return earliest legal location
 137   assert(early == find_non_split_ctrl(early), "unexpected early control");
 138 
 139   if (n->is_expensive() && !_verify_only && !_verify_me) {
 140     assert(n->in(0), "should have control input");
 141     early = get_early_ctrl_for_expensive(n, early);
 142   }
 143 
 144   return early;
 145 }
 146 
 147 //------------------------------get_early_ctrl_for_expensive---------------------------------
 148 // Move node up the dominator tree as high as legal while still beneficial
 149 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 150   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 151   assert(OptimizeExpensiveOps, "optimization off?");
 152 
 153   Node* ctl = n->in(0);
 154   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 155   uint min_dom_depth = dom_depth(earliest);
 156 #ifdef ASSERT
 157   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 158     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 159     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 160   }
 161 #endif
 162   if (dom_depth(ctl) < min_dom_depth) {
 163     return earliest;
 164   }
 165 
 166   while (1) {
 167     Node *next = ctl;
 168     // Moving the node out of a loop on the projection of a If
 169     // confuses loop predication. So once we hit a Loop in a If branch
 170     // that doesn't branch to an UNC, we stop. The code that process
 171     // expensive nodes will notice the loop and skip over it to try to
 172     // move the node further up.
 173     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
 174       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 175         break;
 176       }
 177       next = idom(ctl->in(1)->in(0));
 178     } else if (ctl->is_Proj()) {
 179       // We only move it up along a projection if the projection is
 180       // the single control projection for its parent: same code path,
 181       // if it's a If with UNC or fallthrough of a call.
 182       Node* parent_ctl = ctl->in(0);
 183       if (parent_ctl == NULL) {
 184         break;
 185       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
 186         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 187       } else if (parent_ctl->is_If()) {
 188         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 189           break;
 190         }
 191         assert(idom(ctl) == parent_ctl, "strange");
 192         next = idom(parent_ctl);
 193       } else if (ctl->is_CatchProj()) {
 194         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 195           break;
 196         }
 197         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 198         next = parent_ctl->in(0)->in(0)->in(0);
 199       } else {
 200         // Check if parent control has a single projection (this
 201         // control is the only possible successor of the parent
 202         // control). If so, we can try to move the node above the
 203         // parent control.
 204         int nb_ctl_proj = 0;
 205         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 206           Node *p = parent_ctl->fast_out(i);
 207           if (p->is_Proj() && p->is_CFG()) {
 208             nb_ctl_proj++;
 209             if (nb_ctl_proj > 1) {
 210               break;
 211             }
 212           }
 213         }
 214 
 215         if (nb_ctl_proj > 1) {
 216           break;
 217         }
 218         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() ||
 219                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node");
 220         assert(idom(ctl) == parent_ctl, "strange");
 221         next = idom(parent_ctl);
 222       }
 223     } else {
 224       next = idom(ctl);
 225     }
 226     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 227       break;
 228     }
 229     ctl = next;
 230   }
 231 
 232   if (ctl != n->in(0)) {
 233     _igvn.replace_input_of(n, 0, ctl);
 234     _igvn.hash_insert(n);
 235   }
 236 
 237   return ctl;
 238 }
 239 
 240 
 241 //------------------------------set_early_ctrl---------------------------------
 242 // Set earliest legal control
 243 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
 244   Node *early = get_early_ctrl(n);
 245 
 246   // Record earliest legal location
 247   set_ctrl(n, early);
 248 }
 249 
 250 //------------------------------set_subtree_ctrl-------------------------------
 251 // set missing _ctrl entries on new nodes
 252 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
 253   // Already set?  Get out.
 254   if( _nodes[n->_idx] ) return;
 255   // Recursively set _nodes array to indicate where the Node goes
 256   uint i;
 257   for( i = 0; i < n->req(); ++i ) {
 258     Node *m = n->in(i);
 259     if( m && m != C->root() )
 260       set_subtree_ctrl( m );
 261   }
 262 
 263   // Fixup self
 264   set_early_ctrl( n );
 265 }
 266 
 267 // Create a skeleton strip mined outer loop: a Loop head before the
 268 // inner strip mined loop, a safepoint and an exit condition guarded
 269 // by an opaque node after the inner strip mined loop with a backedge
 270 // to the loop head. The inner strip mined loop is left as it is. Only
 271 // once loop optimizations are over, do we adjust the inner loop exit
 272 // condition to limit its number of iterations, set the outer loop
 273 // exit condition and add Phis to the outer loop head. Some loop
 274 // optimizations that operate on the inner strip mined loop need to be
 275 // aware of the outer strip mined loop: loop unswitching needs to
 276 // clone the outer loop as well as the inner, unrolling needs to only
 277 // clone the inner loop etc. No optimizations need to change the outer
 278 // strip mined loop as it is only a skeleton.
 279 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
 280                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
 281                                                              Node*& entry_control, Node*& iffalse) {
 282   Node* outer_test = _igvn.intcon(0);
 283   set_ctrl(outer_test, C->root());
 284   Node *orig = iffalse;
 285   iffalse = iffalse->clone();
 286   _igvn.register_new_node_with_optimizer(iffalse);
 287   set_idom(iffalse, idom(orig), dom_depth(orig));
 288 
 289   IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt);
 290   Node *outer_ift = new IfTrueNode (outer_le);
 291   Node* outer_iff = orig;
 292   _igvn.replace_input_of(outer_iff, 0, outer_le);
 293 
 294   LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift);
 295   entry_control = outer_l;
 296 
 297   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
 298   IdealLoopTree* parent = loop->_parent;
 299   IdealLoopTree* sibling = parent->_child;
 300   if (sibling == loop) {
 301     parent->_child = outer_ilt;
 302   } else {
 303     while (sibling->_next != loop) {
 304       sibling = sibling->_next;
 305     }
 306     sibling->_next = outer_ilt;
 307   }
 308   outer_ilt->_next = loop->_next;
 309   outer_ilt->_parent = parent;
 310   outer_ilt->_child = loop;
 311   outer_ilt->_nest = loop->_nest;
 312   loop->_parent = outer_ilt;
 313   loop->_next = NULL;
 314   loop->_nest++;
 315 
 316   set_loop(iffalse, outer_ilt);
 317   register_control(outer_le, outer_ilt, iffalse);
 318   register_control(outer_ift, outer_ilt, outer_le);
 319   set_idom(outer_iff, outer_le, dom_depth(outer_le));
 320   _igvn.register_new_node_with_optimizer(outer_l);
 321   set_loop(outer_l, outer_ilt);
 322   set_idom(outer_l, init_control, dom_depth(init_control)+1);
 323 
 324   return outer_ilt;
 325 }
 326 
 327 //------------------------------is_counted_loop--------------------------------
 328 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*& loop) {
 329   PhaseGVN *gvn = &_igvn;
 330 
 331   // Counted loop head must be a good RegionNode with only 3 not NULL
 332   // control input edges: Self, Entry, LoopBack.
 333   if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
 334     return false;
 335   }
 336   Node *init_control = x->in(LoopNode::EntryControl);
 337   Node *back_control = x->in(LoopNode::LoopBackControl);
 338   if (init_control == NULL || back_control == NULL)    // Partially dead
 339     return false;
 340   // Must also check for TOP when looking for a dead loop
 341   if (init_control->is_top() || back_control->is_top())
 342     return false;
 343 
 344   // Allow funny placement of Safepoint
 345   if (back_control->Opcode() == Op_SafePoint) {
 346     if (LoopStripMiningIter != 0) {
 347       // Leaving the safepoint on the backedge and creating a
 348       // CountedLoop will confuse optimizations. We can't move the
 349       // safepoint around because its jvm state wouldn't match a new
 350       // location. Give up on that loop.
 351       return false;
 352     }
 353     back_control = back_control->in(TypeFunc::Control);
 354   }
 355 
 356   // Controlling test for loop
 357   Node *iftrue = back_control;
 358   uint iftrue_op = iftrue->Opcode();
 359   if (iftrue_op != Op_IfTrue &&
 360       iftrue_op != Op_IfFalse)
 361     // I have a weird back-control.  Probably the loop-exit test is in
 362     // the middle of the loop and I am looking at some trailing control-flow
 363     // merge point.  To fix this I would have to partially peel the loop.
 364     return false; // Obscure back-control
 365 
 366   // Get boolean guarding loop-back test
 367   Node *iff = iftrue->in(0);
 368   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
 369     return false;
 370   BoolNode *test = iff->in(1)->as_Bool();
 371   BoolTest::mask bt = test->_test._test;
 372   float cl_prob = iff->as_If()->_prob;
 373   if (iftrue_op == Op_IfFalse) {
 374     bt = BoolTest(bt).negate();
 375     cl_prob = 1.0 - cl_prob;
 376   }
 377   // Get backedge compare
 378   Node *cmp = test->in(1);
 379   int cmp_op = cmp->Opcode();
 380   if (cmp_op != Op_CmpI)
 381     return false;                // Avoid pointer & float compares
 382 
 383   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 384   Node *incr  = cmp->in(1);
 385   Node *limit = cmp->in(2);
 386 
 387   // ---------
 388   // need 'loop()' test to tell if limit is loop invariant
 389   // ---------
 390 
 391   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 392     Node *tmp = incr;            // Then reverse order into the CmpI
 393     incr = limit;
 394     limit = tmp;
 395     bt = BoolTest(bt).commute(); // And commute the exit test
 396   }
 397   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
 398     return false;
 399   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 400     return false;
 401 
 402   Node* phi_incr = NULL;
 403   // Trip-counter increment must be commutative & associative.
 404   if (incr->Opcode() == Op_CastII) {
 405     incr = incr->in(1);
 406   }
 407   if (incr->is_Phi()) {
 408     if (incr->as_Phi()->region() != x || incr->req() != 3)
 409       return false; // Not simple trip counter expression
 410     phi_incr = incr;
 411     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 412     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 413       return false;
 414   }
 415 
 416   Node* trunc1 = NULL;
 417   Node* trunc2 = NULL;
 418   const TypeInt* iv_trunc_t = NULL;
 419   Node* orig_incr = incr;
 420   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
 421     return false; // Funny increment opcode
 422   }
 423   assert(incr->Opcode() == Op_AddI, "wrong increment code");
 424 
 425   const TypeInt* limit_t = gvn->type(limit)->is_int();
 426   if (trunc1 != NULL) {
 427     // When there is a truncation, we must be sure that after the truncation
 428     // the trip counter will end up higher than the limit, otherwise we are looking
 429     // at an endless loop. Can happen with range checks.
 430 
 431     // Example:
 432     // int i = 0;
 433     // while (true)
 434     //    sum + = array[i];
 435     //    i++;
 436     //    i = i && 0x7fff;
 437     //  }
 438     //
 439     // If the array is shorter than 0x8000 this exits through a AIOOB
 440     //  - Counted loop transformation is ok
 441     // If the array is longer then this is an endless loop
 442     //  - No transformation can be done.
 443 
 444     const TypeInt* incr_t = gvn->type(orig_incr)->is_int();
 445     if (limit_t->_hi > incr_t->_hi) {
 446       // if the limit can have a higher value than the increment (before the phi)
 447       return false;
 448     }
 449   }
 450 
 451   // Get merge point
 452   Node *xphi = incr->in(1);
 453   Node *stride = incr->in(2);
 454   if (!stride->is_Con()) {     // Oops, swap these
 455     if (!xphi->is_Con())       // Is the other guy a constant?
 456       return false;             // Nope, unknown stride, bail out
 457     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
 458     xphi = stride;
 459     stride = tmp;
 460   }
 461   if (xphi->Opcode() == Op_CastII) {
 462     xphi = xphi->in(1);
 463   }
 464   // Stride must be constant
 465   int stride_con = stride->get_int();
 466   if (stride_con == 0)
 467     return false; // missed some peephole opt
 468 
 469   if (!xphi->is_Phi())
 470     return false; // Too much math on the trip counter
 471   if (phi_incr != NULL && phi_incr != xphi)
 472     return false;
 473   PhiNode *phi = xphi->as_Phi();
 474 
 475   // Phi must be of loop header; backedge must wrap to increment
 476   if (phi->region() != x)
 477     return false;
 478   if ((trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr) ||
 479       (trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1)) {
 480     return false;
 481   }
 482   Node *init_trip = phi->in(LoopNode::EntryControl);
 483 
 484   // If iv trunc type is smaller than int, check for possible wrap.
 485   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
 486     assert(trunc1 != NULL, "must have found some truncation");
 487 
 488     // Get a better type for the phi (filtered thru if's)
 489     const TypeInt* phi_ft = filtered_type(phi);
 490 
 491     // Can iv take on a value that will wrap?
 492     //
 493     // Ensure iv's limit is not within "stride" of the wrap value.
 494     //
 495     // Example for "short" type
 496     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
 497     //    If the stride is +10, then the last value of the induction
 498     //    variable before the increment (phi_ft->_hi) must be
 499     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
 500     //    ensure no truncation occurs after the increment.
 501 
 502     if (stride_con > 0) {
 503       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
 504           iv_trunc_t->_lo > phi_ft->_lo) {
 505         return false;  // truncation may occur
 506       }
 507     } else if (stride_con < 0) {
 508       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
 509           iv_trunc_t->_hi < phi_ft->_hi) {
 510         return false;  // truncation may occur
 511       }
 512     }
 513     // No possibility of wrap so truncation can be discarded
 514     // Promote iv type to Int
 515   } else {
 516     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
 517   }
 518 
 519   // If the condition is inverted and we will be rolling
 520   // through MININT to MAXINT, then bail out.
 521   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 522       // Odd stride
 523       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
 524       // Count down loop rolls through MAXINT
 525       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
 526       // Count up loop rolls through MININT
 527       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
 528     return false; // Bail out
 529   }
 530 
 531   const TypeInt* init_t = gvn->type(init_trip)->is_int();
 532 
 533   if (stride_con > 0) {
 534     jlong init_p = (jlong)init_t->_lo + stride_con;
 535     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
 536       return false; // cyclic loop or this loop trips only once
 537   } else {
 538     jlong init_p = (jlong)init_t->_hi + stride_con;
 539     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
 540       return false; // cyclic loop or this loop trips only once
 541   }
 542 
 543   if (phi_incr != NULL) {
 544     // check if there is a possiblity of IV overflowing after the first increment
 545     if (stride_con > 0) {
 546       if (init_t->_hi > max_jint - stride_con) {
 547         return false;
 548       }
 549     } else {
 550       if (init_t->_lo < min_jint - stride_con) {
 551         return false;
 552       }
 553     }
 554   }
 555 
 556   // =================================================
 557   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
 558   //
 559   assert(x->Opcode() == Op_Loop, "regular loops only");
 560   C->print_method(PHASE_BEFORE_CLOOPS, 3);
 561 
 562   Node *hook = new Node(6);
 563 
 564   // ===================================================
 565   // Generate loop limit check to avoid integer overflow
 566   // in cases like next (cyclic loops):
 567   //
 568   // for (i=0; i <= max_jint; i++) {}
 569   // for (i=0; i <  max_jint; i+=2) {}
 570   //
 571   //
 572   // Limit check predicate depends on the loop test:
 573   //
 574   // for(;i != limit; i++)       --> limit <= (max_jint)
 575   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
 576   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
 577   //
 578 
 579   // Check if limit is excluded to do more precise int overflow check.
 580   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
 581   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
 582 
 583   // If compare points directly to the phi we need to adjust
 584   // the compare so that it points to the incr. Limit have
 585   // to be adjusted to keep trip count the same and the
 586   // adjusted limit should be checked for int overflow.
 587   if (phi_incr != NULL) {
 588     stride_m  += stride_con;
 589   }
 590 
 591   if (limit->is_Con()) {
 592     int limit_con = limit->get_int();
 593     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
 594         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
 595       // Bailout: it could be integer overflow.
 596       return false;
 597     }
 598   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
 599              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
 600       // Limit's type may satisfy the condition, for example,
 601       // when it is an array length.
 602   } else {
 603     // Generate loop's limit check.
 604     // Loop limit check predicate should be near the loop.
 605     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
 606     if (!limit_check_proj) {
 607       // The limit check predicate is not generated if this method trapped here before.
 608 #ifdef ASSERT
 609       if (TraceLoopLimitCheck) {
 610         tty->print("missing loop limit check:");
 611         loop->dump_head();
 612         x->dump(1);
 613       }
 614 #endif
 615       return false;
 616     }
 617 
 618     IfNode* check_iff = limit_check_proj->in(0)->as_If();
 619     Node* cmp_limit;
 620     Node* bol;
 621 
 622     if (stride_con > 0) {
 623       cmp_limit = new CmpINode(limit, _igvn.intcon(max_jint - stride_m));
 624       bol = new BoolNode(cmp_limit, BoolTest::le);
 625     } else {
 626       cmp_limit = new CmpINode(limit, _igvn.intcon(min_jint - stride_m));
 627       bol = new BoolNode(cmp_limit, BoolTest::ge);
 628     }
 629     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 630     bol = _igvn.register_new_node_with_optimizer(bol);
 631     set_subtree_ctrl(bol);
 632 
 633     // Replace condition in original predicate but preserve Opaque node
 634     // so that previous predicates could be found.
 635     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
 636            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
 637     Node* opq = check_iff->in(1)->in(1);
 638     _igvn.replace_input_of(opq, 1, bol);
 639     // Update ctrl.
 640     set_ctrl(opq, check_iff->in(0));
 641     set_ctrl(check_iff->in(1), check_iff->in(0));
 642 
 643 #ifndef PRODUCT
 644     // report that the loop predication has been actually performed
 645     // for this loop
 646     if (TraceLoopLimitCheck) {
 647       tty->print_cr("Counted Loop Limit Check generated:");
 648       debug_only( bol->dump(2); )
 649     }
 650 #endif
 651   }
 652 
 653   if (phi_incr != NULL) {
 654     // If compare points directly to the phi we need to adjust
 655     // the compare so that it points to the incr. Limit have
 656     // to be adjusted to keep trip count the same and we
 657     // should avoid int overflow.
 658     //
 659     //   i = init; do {} while(i++ < limit);
 660     // is converted to
 661     //   i = init; do {} while(++i < limit+1);
 662     //
 663     limit = gvn->transform(new AddINode(limit, stride));
 664   }
 665 
 666   // Now we need to canonicalize loop condition.
 667   if (bt == BoolTest::ne) {
 668     assert(stride_con == 1 || stride_con == -1, "simple increment only");
 669     // 'ne' can be replaced with 'lt' only when init < limit.
 670     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
 671       bt = BoolTest::lt;
 672     // 'ne' can be replaced with 'gt' only when init > limit.
 673     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
 674       bt = BoolTest::gt;
 675   }
 676 
 677   if (incl_limit) {
 678     // The limit check guaranties that 'limit <= (max_jint - stride)' so
 679     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
 680     //
 681     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
 682     limit = gvn->transform(new AddINode(limit, one));
 683     if (bt == BoolTest::le)
 684       bt = BoolTest::lt;
 685     else if (bt == BoolTest::ge)
 686       bt = BoolTest::gt;
 687     else
 688       ShouldNotReachHere();
 689   }
 690   set_subtree_ctrl( limit );
 691 
 692   if (LoopStripMiningIter == 0) {
 693     // Check for SafePoint on backedge and remove
 694     Node *sfpt = x->in(LoopNode::LoopBackControl);
 695     if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
 696       lazy_replace( sfpt, iftrue );
 697       if (loop->_safepts != NULL) {
 698         loop->_safepts->yank(sfpt);
 699       }
 700       loop->_tail = iftrue;
 701     }
 702   }
 703 
 704   // Build a canonical trip test.
 705   // Clone code, as old values may be in use.
 706   incr = incr->clone();
 707   incr->set_req(1,phi);
 708   incr->set_req(2,stride);
 709   incr = _igvn.register_new_node_with_optimizer(incr);
 710   set_early_ctrl( incr );
 711   _igvn.rehash_node_delayed(phi);
 712   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
 713 
 714   // If phi type is more restrictive than Int, raise to
 715   // Int to prevent (almost) infinite recursion in igvn
 716   // which can only handle integer types for constants or minint..maxint.
 717   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
 718     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
 719     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
 720     nphi = _igvn.register_new_node_with_optimizer(nphi);
 721     set_ctrl(nphi, get_ctrl(phi));
 722     _igvn.replace_node(phi, nphi);
 723     phi = nphi->as_Phi();
 724   }
 725   cmp = cmp->clone();
 726   cmp->set_req(1,incr);
 727   cmp->set_req(2,limit);
 728   cmp = _igvn.register_new_node_with_optimizer(cmp);
 729   set_ctrl(cmp, iff->in(0));
 730 
 731   test = test->clone()->as_Bool();
 732   (*(BoolTest*)&test->_test)._test = bt;
 733   test->set_req(1,cmp);
 734   _igvn.register_new_node_with_optimizer(test);
 735   set_ctrl(test, iff->in(0));
 736 
 737   // Replace the old IfNode with a new LoopEndNode
 738   Node *lex = _igvn.register_new_node_with_optimizer(new CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
 739   IfNode *le = lex->as_If();
 740   uint dd = dom_depth(iff);
 741   set_idom(le, le->in(0), dd); // Update dominance for loop exit
 742   set_loop(le, loop);
 743 
 744   // Get the loop-exit control
 745   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
 746 
 747   // Need to swap loop-exit and loop-back control?
 748   if (iftrue_op == Op_IfFalse) {
 749     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
 750     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
 751 
 752     loop->_tail = back_control = ift2;
 753     set_loop(ift2, loop);
 754     set_loop(iff2, get_loop(iffalse));
 755 
 756     // Lazy update of 'get_ctrl' mechanism.
 757     lazy_replace(iffalse, iff2);
 758     lazy_replace(iftrue,  ift2);
 759 
 760     // Swap names
 761     iffalse = iff2;
 762     iftrue  = ift2;
 763   } else {
 764     _igvn.rehash_node_delayed(iffalse);
 765     _igvn.rehash_node_delayed(iftrue);
 766     iffalse->set_req_X( 0, le, &_igvn );
 767     iftrue ->set_req_X( 0, le, &_igvn );
 768   }
 769 
 770   set_idom(iftrue,  le, dd+1);
 771   set_idom(iffalse, le, dd+1);
 772   assert(iff->outcnt() == 0, "should be dead now");
 773   lazy_replace( iff, le ); // fix 'get_ctrl'
 774 
 775   Node *sfpt2 = le->in(0);
 776 
 777   Node* entry_control = init_control;
 778   bool strip_mine_loop = LoopStripMiningIter > 1 && loop->_child == NULL &&
 779     sfpt2->Opcode() == Op_SafePoint && !loop->_has_call;
 780   IdealLoopTree* outer_ilt = NULL;
 781   if (strip_mine_loop) {
 782     outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop,
 783                                               cl_prob, le->_fcnt, entry_control,
 784                                               iffalse);
 785   }
 786 
 787   // Now setup a new CountedLoopNode to replace the existing LoopNode
 788   CountedLoopNode *l = new CountedLoopNode(entry_control, back_control);
 789   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
 790   // The following assert is approximately true, and defines the intention
 791   // of can_be_counted_loop.  It fails, however, because phase->type
 792   // is not yet initialized for this loop and its parts.
 793   //assert(l->can_be_counted_loop(this), "sanity");
 794   _igvn.register_new_node_with_optimizer(l);
 795   set_loop(l, loop);
 796   loop->_head = l;
 797   // Fix all data nodes placed at the old loop head.
 798   // Uses the lazy-update mechanism of 'get_ctrl'.
 799   lazy_replace( x, l );
 800   set_idom(l, entry_control, dom_depth(entry_control) + 1);
 801 
 802   if (LoopStripMiningIter == 0 || strip_mine_loop) {
 803     // Check for immediately preceding SafePoint and remove
 804     if (sfpt2->Opcode() == Op_SafePoint && (LoopStripMiningIter != 0 || is_deleteable_safept(sfpt2))) {
 805       if (strip_mine_loop) {
 806         Node* outer_le = outer_ilt->_tail->in(0);
 807         Node* sfpt = sfpt2->clone();
 808         sfpt->set_req(0, iffalse);
 809         outer_le->set_req(0, sfpt);
 810         register_control(sfpt, outer_ilt, iffalse);
 811         set_idom(outer_le, sfpt, dom_depth(sfpt));
 812       }
 813       lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
 814       if (loop->_safepts != NULL) {
 815         loop->_safepts->yank(sfpt2);
 816       }
 817     }
 818   }
 819 
 820   // Free up intermediate goo
 821   _igvn.remove_dead_node(hook);
 822 
 823 #ifdef ASSERT
 824   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
 825   assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" );
 826 #endif
 827 #ifndef PRODUCT
 828   if (TraceLoopOpts) {
 829     tty->print("Counted      ");
 830     loop->dump_head();
 831   }
 832 #endif
 833 
 834   C->print_method(PHASE_AFTER_CLOOPS, 3);
 835 
 836   // Capture bounds of the loop in the induction variable Phi before
 837   // subsequent transformation (iteration splitting) obscures the
 838   // bounds
 839   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
 840 
 841   if (strip_mine_loop) {
 842     l->mark_strip_mined();
 843     l->verify_strip_mined(1);
 844     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
 845     loop = outer_ilt;
 846   }
 847 
 848   return true;
 849 }
 850 
 851 //----------------------exact_limit-------------------------------------------
 852 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
 853   assert(loop->_head->is_CountedLoop(), "");
 854   CountedLoopNode *cl = loop->_head->as_CountedLoop();
 855   assert(cl->is_valid_counted_loop(), "");
 856 
 857   if (ABS(cl->stride_con()) == 1 ||
 858       cl->limit()->Opcode() == Op_LoopLimit) {
 859     // Old code has exact limit (it could be incorrect in case of int overflow).
 860     // Loop limit is exact with stride == 1. And loop may already have exact limit.
 861     return cl->limit();
 862   }
 863   Node *limit = NULL;
 864 #ifdef ASSERT
 865   BoolTest::mask bt = cl->loopexit()->test_trip();
 866   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
 867 #endif
 868   if (cl->has_exact_trip_count()) {
 869     // Simple case: loop has constant boundaries.
 870     // Use jlongs to avoid integer overflow.
 871     int stride_con = cl->stride_con();
 872     jlong  init_con = cl->init_trip()->get_int();
 873     jlong limit_con = cl->limit()->get_int();
 874     julong trip_cnt = cl->trip_count();
 875     jlong final_con = init_con + trip_cnt*stride_con;
 876     int final_int = (int)final_con;
 877     // The final value should be in integer range since the loop
 878     // is counted and the limit was checked for overflow.
 879     assert(final_con == (jlong)final_int, "final value should be integer");
 880     limit = _igvn.intcon(final_int);
 881   } else {
 882     // Create new LoopLimit node to get exact limit (final iv value).
 883     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
 884     register_new_node(limit, cl->in(LoopNode::EntryControl));
 885   }
 886   assert(limit != NULL, "sanity");
 887   return limit;
 888 }
 889 
 890 //------------------------------Ideal------------------------------------------
 891 // Return a node which is more "ideal" than the current node.
 892 // Attempt to convert into a counted-loop.
 893 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 894   if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) {
 895     phase->C->set_major_progress();
 896   }
 897   return RegionNode::Ideal(phase, can_reshape);
 898 }
 899 
 900 void LoopNode::verify_strip_mined(int expect_skeleton) const {
 901 #ifdef ASSERT
 902   const OuterStripMinedLoopNode* outer = NULL;
 903   const CountedLoopNode* inner = NULL;
 904   if (is_strip_mined()) {
 905     assert(is_CountedLoop(), "no Loop should be marked strip mined");
 906     inner = as_CountedLoop();
 907     outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop();
 908   } else if (is_OuterStripMinedLoop()) {
 909     outer = this->as_OuterStripMinedLoop();
 910     inner = outer->unique_ctrl_out()->as_CountedLoop();
 911     assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined");
 912   }
 913   if (inner != NULL || outer != NULL) {
 914     assert(inner != NULL && outer != NULL, "missing loop in strip mined nest");
 915     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
 916     Node* outer_le = outer_tail->in(0);
 917     assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If");
 918     Node* sfpt = outer_le->in(0);
 919     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
 920     Node* inner_out = sfpt->in(0);
 921     if (inner_out->outcnt() != 1) {
 922       ResourceMark rm;
 923       Unique_Node_List wq;
 924 
 925       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
 926         Node* u = inner_out->fast_out(i);
 927         if (u == sfpt) {
 928           continue;
 929         }
 930         wq.clear();
 931         wq.push(u);
 932         bool found_sfpt = false;
 933         for (uint next = 0; next < wq.size() && !found_sfpt; next++) {
 934           Node *n = wq.at(next);
 935           for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !found_sfpt; i++) {
 936             Node* u = n->fast_out(i);
 937             if (u == sfpt) {
 938               found_sfpt = true;
 939             }
 940             if (!u->is_CFG()) {
 941               wq.push(u);
 942             }
 943           }
 944         }
 945         assert(found_sfpt, "no node in loop that's not input to safepoint");
 946       }
 947     }
 948     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
 949     assert(cle == inner->loopexit_or_null(), "mismatch");
 950     bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0;
 951     if (has_skeleton) {
 952       assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node");
 953       assert(outer->outcnt() == 2, "only phis");
 954     } else {
 955       assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?");
 956       uint phis = 0;
 957       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
 958         Node* u = inner->fast_out(i);
 959         if (u->is_Phi()) {
 960           phis++;
 961         }
 962       }
 963       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
 964         Node* u = outer->fast_out(i);
 965         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
 966       }
 967       uint stores = 0;
 968       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
 969         Node* u = inner_out->fast_out(i);
 970         if (u->is_Store()) {
 971           stores++;
 972         }
 973       }
 974       assert(outer->outcnt() >= phis + 2 && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
 975     }
 976     assert(sfpt->outcnt() == 1, "no data node");
 977     assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node");
 978   }
 979 #endif
 980 }
 981 
 982 //=============================================================================
 983 //------------------------------Ideal------------------------------------------
 984 // Return a node which is more "ideal" than the current node.
 985 // Attempt to convert into a counted-loop.
 986 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 987   return RegionNode::Ideal(phase, can_reshape);
 988 }
 989 
 990 //------------------------------dump_spec--------------------------------------
 991 // Dump special per-node info
 992 #ifndef PRODUCT
 993 void CountedLoopNode::dump_spec(outputStream *st) const {
 994   LoopNode::dump_spec(st);
 995   if (stride_is_con()) {
 996     st->print("stride: %d ",stride_con());
 997   }
 998   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
 999   if (is_main_loop()) st->print("main of N%d", _idx);
1000   if (is_post_loop()) st->print("post of N%d", _main_idx);
1001   if (is_strip_mined()) st->print(" strip mined");
1002 }
1003 #endif
1004 
1005 //=============================================================================
1006 int CountedLoopEndNode::stride_con() const {
1007   return stride()->bottom_type()->is_int()->get_con();
1008 }
1009 
1010 //=============================================================================
1011 //------------------------------Value-----------------------------------------
1012 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
1013   const Type* init_t   = phase->type(in(Init));
1014   const Type* limit_t  = phase->type(in(Limit));
1015   const Type* stride_t = phase->type(in(Stride));
1016   // Either input is TOP ==> the result is TOP
1017   if (init_t   == Type::TOP) return Type::TOP;
1018   if (limit_t  == Type::TOP) return Type::TOP;
1019   if (stride_t == Type::TOP) return Type::TOP;
1020 
1021   int stride_con = stride_t->is_int()->get_con();
1022   if (stride_con == 1)
1023     return NULL;  // Identity
1024 
1025   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
1026     // Use jlongs to avoid integer overflow.
1027     jlong init_con   =  init_t->is_int()->get_con();
1028     jlong limit_con  = limit_t->is_int()->get_con();
1029     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
1030     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
1031     jlong final_con  = init_con + stride_con*trip_count;
1032     int final_int = (int)final_con;
1033     // The final value should be in integer range since the loop
1034     // is counted and the limit was checked for overflow.
1035     assert(final_con == (jlong)final_int, "final value should be integer");
1036     return TypeInt::make(final_int);
1037   }
1038 
1039   return bottom_type(); // TypeInt::INT
1040 }
1041 
1042 //------------------------------Ideal------------------------------------------
1043 // Return a node which is more "ideal" than the current node.
1044 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1045   if (phase->type(in(Init))   == Type::TOP ||
1046       phase->type(in(Limit))  == Type::TOP ||
1047       phase->type(in(Stride)) == Type::TOP)
1048     return NULL;  // Dead
1049 
1050   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1051   if (stride_con == 1)
1052     return NULL;  // Identity
1053 
1054   if (in(Init)->is_Con() && in(Limit)->is_Con())
1055     return NULL;  // Value
1056 
1057   // Delay following optimizations until all loop optimizations
1058   // done to keep Ideal graph simple.
1059   if (!can_reshape || phase->C->major_progress())
1060     return NULL;
1061 
1062   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
1063   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
1064   int stride_p;
1065   jlong lim, ini;
1066   julong max;
1067   if (stride_con > 0) {
1068     stride_p = stride_con;
1069     lim = limit_t->_hi;
1070     ini = init_t->_lo;
1071     max = (julong)max_jint;
1072   } else {
1073     stride_p = -stride_con;
1074     lim = init_t->_hi;
1075     ini = limit_t->_lo;
1076     max = (julong)min_jint;
1077   }
1078   julong range = lim - ini + stride_p;
1079   if (range <= max) {
1080     // Convert to integer expression if it is not overflow.
1081     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
1082     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
1083     Node *bias  = phase->transform(new AddINode(range, stride_m));
1084     Node *trip  = phase->transform(new DivINode(0, bias, in(Stride)));
1085     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
1086     return new AddINode(span, in(Init)); // exact limit
1087   }
1088 
1089   if (is_power_of_2(stride_p) ||                // divisor is 2^n
1090       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
1091     // Convert to long expression to avoid integer overflow
1092     // and let igvn optimizer convert this division.
1093     //
1094     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
1095     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
1096     Node* stride   = phase->longcon(stride_con);
1097     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
1098 
1099     Node *range = phase->transform(new SubLNode(limit, init));
1100     Node *bias  = phase->transform(new AddLNode(range, stride_m));
1101     Node *span;
1102     if (stride_con > 0 && is_power_of_2(stride_p)) {
1103       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
1104       // and avoid generating rounding for division. Zero trip guard should
1105       // guarantee that init < limit but sometimes the guard is missing and
1106       // we can get situation when init > limit. Note, for the empty loop
1107       // optimization zero trip guard is generated explicitly which leaves
1108       // only RCE predicate where exact limit is used and the predicate
1109       // will simply fail forcing recompilation.
1110       Node* neg_stride   = phase->longcon(-stride_con);
1111       span = phase->transform(new AndLNode(bias, neg_stride));
1112     } else {
1113       Node *trip  = phase->transform(new DivLNode(0, bias, stride));
1114       span = phase->transform(new MulLNode(trip, stride));
1115     }
1116     // Convert back to int
1117     Node *span_int = phase->transform(new ConvL2INode(span));
1118     return new AddINode(span_int, in(Init)); // exact limit
1119   }
1120 
1121   return NULL;    // No progress
1122 }
1123 
1124 //------------------------------Identity---------------------------------------
1125 // If stride == 1 return limit node.
1126 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
1127   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1128   if (stride_con == 1 || stride_con == -1)
1129     return in(Limit);
1130   return this;
1131 }
1132 
1133 //=============================================================================
1134 //----------------------match_incr_with_optional_truncation--------------------
1135 // Match increment with optional truncation:
1136 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
1137 // Return NULL for failure. Success returns the increment node.
1138 Node* CountedLoopNode::match_incr_with_optional_truncation(
1139                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
1140   // Quick cutouts:
1141   if (expr == NULL || expr->req() != 3)  return NULL;
1142 
1143   Node *t1 = NULL;
1144   Node *t2 = NULL;
1145   const TypeInt* trunc_t = TypeInt::INT;
1146   Node* n1 = expr;
1147   int   n1op = n1->Opcode();
1148 
1149   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
1150   if (n1op == Op_AndI &&
1151       n1->in(2)->is_Con() &&
1152       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
1153     // %%% This check should match any mask of 2**K-1.
1154     t1 = n1;
1155     n1 = t1->in(1);
1156     n1op = n1->Opcode();
1157     trunc_t = TypeInt::CHAR;
1158   } else if (n1op == Op_RShiftI &&
1159              n1->in(1) != NULL &&
1160              n1->in(1)->Opcode() == Op_LShiftI &&
1161              n1->in(2) == n1->in(1)->in(2) &&
1162              n1->in(2)->is_Con()) {
1163     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
1164     // %%% This check should match any shift in [1..31].
1165     if (shift == 16 || shift == 8) {
1166       t1 = n1;
1167       t2 = t1->in(1);
1168       n1 = t2->in(1);
1169       n1op = n1->Opcode();
1170       if (shift == 16) {
1171         trunc_t = TypeInt::SHORT;
1172       } else if (shift == 8) {
1173         trunc_t = TypeInt::BYTE;
1174       }
1175     }
1176   }
1177 
1178   // If (maybe after stripping) it is an AddI, we won:
1179   if (n1op == Op_AddI) {
1180     *trunc1 = t1;
1181     *trunc2 = t2;
1182     *trunc_type = trunc_t;
1183     return n1;
1184   }
1185 
1186   // failed
1187   return NULL;
1188 }
1189 
1190 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) {
1191   if (is_strip_mined()) {
1192     verify_strip_mined(expect_skeleton);
1193     return in(EntryControl)->as_Loop();
1194   }
1195   return this;
1196 }
1197 
1198 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const {
1199   assert(is_strip_mined(), "not a strip mined loop");
1200   Node* c = in(EntryControl);
1201   if (c == NULL || c->is_top() || !c->is_OuterStripMinedLoop()) {
1202     return NULL;
1203   }
1204   return c->as_OuterStripMinedLoop();
1205 }
1206 
1207 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const {
1208   Node* c = in(LoopBackControl);
1209   if (c == NULL || c->is_top()) {
1210     return NULL;
1211   }
1212   return c->as_IfTrue();
1213 }
1214 
1215 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
1216   LoopNode* l = outer_loop();
1217   if (l == NULL) {
1218     return NULL;
1219   }
1220   return l->outer_loop_tail();
1221 }
1222 
1223 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const {
1224   IfTrueNode* proj = outer_loop_tail();
1225   if (proj == NULL) {
1226     return NULL;
1227   }
1228   Node* c = proj->in(0);
1229   if (c == NULL || c->is_top() || c->outcnt() != 2) {
1230     return NULL;
1231   }
1232   return c->as_OuterStripMinedLoopEnd();
1233 }
1234 
1235 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const {
1236   LoopNode* l = outer_loop();
1237   if (l == NULL) {
1238     return NULL;
1239   }
1240   return l->outer_loop_end();
1241 }
1242 
1243 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const {
1244   IfNode* le = outer_loop_end();
1245   if (le == NULL) {
1246     return NULL;
1247   }
1248   Node* c = le->proj_out_or_null(false);
1249   if (c == NULL) {
1250     return NULL;
1251   }
1252   return c->as_IfFalse();
1253 }
1254 
1255 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
1256   LoopNode* l = outer_loop();
1257   if (l == NULL) {
1258     return NULL;
1259   }
1260   return l->outer_loop_exit();
1261 }
1262 
1263 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const {
1264   IfNode* le = outer_loop_end();
1265   if (le == NULL) {
1266     return NULL;
1267   }
1268   Node* c = le->in(0);
1269   if (c == NULL || c->is_top()) {
1270     return NULL;
1271   }
1272   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
1273   return c->as_SafePoint();
1274 }
1275 
1276 SafePointNode* CountedLoopNode::outer_safepoint() const {
1277   LoopNode* l = outer_loop();
1278   if (l == NULL) {
1279     return NULL;
1280   }
1281   return l->outer_safepoint();
1282 }
1283 
1284 Node* CountedLoopNode::skip_predicates() {
1285   if (is_main_loop()) {
1286     Node* ctrl = skip_strip_mined()->in(LoopNode::EntryControl);
1287     while (ctrl != NULL && ctrl->is_Proj() && ctrl->in(0)->is_If() &&
1288            ctrl->in(0)->as_If()->proj_out(1-ctrl->as_Proj()->_con)->outcnt() == 1 &&
1289            ctrl->in(0)->as_If()->proj_out(1-ctrl->as_Proj()->_con)->unique_out()->Opcode() == Op_Halt) {
1290       ctrl = ctrl->in(0)->in(0);
1291     }
1292 
1293     return ctrl;
1294   }
1295   return in(LoopNode::EntryControl);
1296 }
1297 
1298 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) {
1299   // Look for the outer & inner strip mined loop, reduce number of
1300   // iterations of the inner loop, set exit condition of outer loop,
1301   // construct required phi nodes for outer loop.
1302   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
1303   assert(inner_cl->is_strip_mined(), "inner loop should be strip mined");
1304   Node* inner_iv_phi = inner_cl->phi();
1305   if (inner_iv_phi == NULL) {
1306     IfNode* outer_le = outer_loop_end();
1307     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1308     igvn->replace_node(outer_le, iff);
1309     inner_cl->clear_strip_mined();
1310     return;
1311   }
1312   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
1313 
1314   int stride = inner_cl->stride_con();
1315   jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS(stride);
1316   int scaled_iters = (int)scaled_iters_long;
1317   int short_scaled_iters = LoopStripMiningIterShortLoop* ABS(stride);
1318   const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int();
1319   jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo;
1320   assert(iter_estimate > 0, "broken");
1321   if ((jlong)scaled_iters != scaled_iters_long || iter_estimate <= short_scaled_iters) {
1322     // Remove outer loop and safepoint (too few iterations)
1323     Node* outer_sfpt = outer_safepoint();
1324     Node* outer_out = outer_loop_exit();
1325     igvn->replace_node(outer_out, outer_sfpt->in(0));
1326     igvn->replace_input_of(outer_sfpt, 0, igvn->C->top());
1327     inner_cl->clear_strip_mined();
1328     return;
1329   }
1330   if (iter_estimate <= scaled_iters_long) {
1331     // We would only go through one iteration of
1332     // the outer loop: drop the outer loop but
1333     // keep the safepoint so we don't run for
1334     // too long without a safepoint
1335     IfNode* outer_le = outer_loop_end();
1336     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1337     igvn->replace_node(outer_le, iff);
1338     inner_cl->clear_strip_mined();
1339     return;
1340   }
1341 
1342   Node* cle_tail = inner_cle->proj_out(true);
1343   ResourceMark rm;
1344   Node_List old_new;
1345   if (cle_tail->outcnt() > 1) {
1346     // Look for nodes on backedge of inner loop and clone them
1347     Unique_Node_List backedge_nodes;
1348     for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) {
1349       Node* u = cle_tail->fast_out(i);
1350       if (u != inner_cl) {
1351         assert(!u->is_CFG(), "control flow on the backedge?");
1352         backedge_nodes.push(u);
1353       }
1354     }
1355     uint last = igvn->C->unique();
1356     for (uint next = 0; next < backedge_nodes.size(); next++) {
1357       Node* n = backedge_nodes.at(next);
1358       old_new.map(n->_idx, n->clone());
1359       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1360         Node* u = n->fast_out(i);
1361         assert(!u->is_CFG(), "broken");
1362         if (u->_idx >= last) {
1363           continue;
1364         }
1365         if (!u->is_Phi()) {
1366           backedge_nodes.push(u);
1367         } else {
1368           assert(u->in(0) == inner_cl, "strange phi on the backedge");
1369         }
1370       }
1371     }
1372     // Put the clones on the outer loop backedge
1373     Node* le_tail = outer_loop_tail();
1374     for (uint next = 0; next < backedge_nodes.size(); next++) {
1375       Node *n = old_new[backedge_nodes.at(next)->_idx];
1376       for (uint i = 1; i < n->req(); i++) {
1377         if (n->in(i) != NULL && old_new[n->in(i)->_idx] != NULL) {
1378           n->set_req(i, old_new[n->in(i)->_idx]);
1379         }
1380       }
1381       if (n->in(0) != NULL && n->in(0) == cle_tail) {
1382         n->set_req(0, le_tail);
1383       }
1384       igvn->register_new_node_with_optimizer(n);
1385     }
1386   }
1387 
1388   Node* iv_phi = NULL;
1389   // Make a clone of each phi in the inner loop
1390   // for the outer loop
1391   for (uint i = 0; i < inner_cl->outcnt(); i++) {
1392     Node* u = inner_cl->raw_out(i);
1393     if (u->is_Phi()) {
1394       assert(u->in(0) == inner_cl, "inconsistent");
1395       Node* phi = u->clone();
1396       phi->set_req(0, this);
1397       Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx];
1398       if (be != NULL) {
1399         phi->set_req(LoopNode::LoopBackControl, be);
1400       }
1401       phi = igvn->transform(phi);
1402       igvn->replace_input_of(u, LoopNode::EntryControl, phi);
1403       if (u == inner_iv_phi) {
1404         iv_phi = phi;
1405       }
1406     }
1407   }
1408   Node* cle_out = inner_cle->proj_out(false);
1409   if (cle_out->outcnt() > 1) {
1410     // Look for chains of stores that were sunk
1411     // out of the inner loop and are in the outer loop
1412     for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) {
1413       Node* u = cle_out->fast_out(i);
1414       if (u->is_Store()) {
1415         Node* first = u;
1416         for(;;) {
1417           Node* next = first->in(MemNode::Memory);
1418           if (!next->is_Store() || next->in(0) != cle_out) {
1419             break;
1420           }
1421           first = next;
1422         }
1423         Node* last = u;
1424         for(;;) {
1425           Node* next = NULL;
1426           for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) {
1427             Node* uu = last->fast_out(j);
1428             if (uu->is_Store() && uu->in(0) == cle_out) {
1429               assert(next == NULL, "only one in the outer loop");
1430               next = uu;
1431             }
1432           }
1433           if (next == NULL) {
1434             break;
1435           }
1436           last = next;
1437         }
1438         Node* phi = NULL;
1439         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
1440           Node* uu = fast_out(j);
1441           if (uu->is_Phi()) {
1442             Node* be = uu->in(LoopNode::LoopBackControl);
1443             if (be->is_Store() && old_new[be->_idx] != NULL) {
1444               assert(false, "store on the backedge + sunk stores: unsupported");
1445               // drop outer loop
1446               IfNode* outer_le = outer_loop_end();
1447               Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1448               igvn->replace_node(outer_le, iff);
1449               inner_cl->clear_strip_mined();
1450               return;
1451             }
1452             if (be == last || be == first->in(MemNode::Memory)) {
1453               assert(phi == NULL, "only one phi");
1454               phi = uu;
1455             }
1456           }
1457         }
1458 #ifdef ASSERT
1459         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
1460           Node* uu = fast_out(j);
1461           if (uu->is_Phi() && uu->bottom_type() == Type::MEMORY) {
1462             if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) {
1463               assert(phi == uu, "what's that phi?");
1464             } else if (uu->adr_type() == TypePtr::BOTTOM) {
1465               Node* n = uu->in(LoopNode::LoopBackControl);
1466               uint limit = igvn->C->live_nodes();
1467               uint i = 0;
1468               while (n != uu) {
1469                 i++;
1470                 assert(i < limit, "infinite loop");
1471                 if (n->is_Proj()) {
1472                   n = n->in(0);
1473                 } else if (n->is_SafePoint() || n->is_MemBar()) {
1474                   n = n->in(TypeFunc::Memory);
1475                 } else if (n->is_Phi()) {
1476                   n = n->in(1);
1477                 } else if (n->is_MergeMem()) {
1478                   n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type()));
1479                 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) {
1480                   n = n->in(MemNode::Memory);
1481                 } else {
1482                   n->dump();
1483                   ShouldNotReachHere();
1484                 }
1485               }
1486             }
1487           }
1488         }
1489 #endif
1490         if (phi == NULL) {
1491           // If the an entire chains was sunk, the
1492           // inner loop has no phi for that memory
1493           // slice, create one for the outer loop
1494           phi = PhiNode::make(this, first->in(MemNode::Memory), Type::MEMORY,
1495                               igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type())));
1496           phi->set_req(LoopNode::LoopBackControl, last);
1497           phi = igvn->transform(phi);
1498           igvn->replace_input_of(first, MemNode::Memory, phi);
1499         } else {
1500           // Or fix the outer loop fix to include
1501           // that chain of stores.
1502           Node* be = phi->in(LoopNode::LoopBackControl);
1503           assert(!(be->is_Store() && old_new[be->_idx] != NULL), "store on the backedge + sunk stores: unsupported");
1504           if (be == first->in(MemNode::Memory)) {
1505             if (be == phi->in(LoopNode::LoopBackControl)) {
1506               igvn->replace_input_of(phi, LoopNode::LoopBackControl, last);
1507             } else {
1508               igvn->replace_input_of(be, MemNode::Memory, last);
1509             }
1510           } else {
1511 #ifdef ASSERT
1512             if (be == phi->in(LoopNode::LoopBackControl)) {
1513               assert(phi->in(LoopNode::LoopBackControl) == last, "");
1514             } else {
1515               assert(be->in(MemNode::Memory) == last, "");
1516             }
1517 #endif
1518           }
1519         }
1520       }
1521     }
1522   }
1523 
1524   if (iv_phi != NULL) {
1525     // Now adjust the inner loop's exit condition
1526     Node* limit = inner_cl->limit();
1527     Node* sub = NULL;
1528     if (stride > 0) {
1529       sub = igvn->transform(new SubINode(limit, iv_phi));
1530     } else {
1531       sub = igvn->transform(new SubINode(iv_phi, limit));
1532     }
1533     Node* min = igvn->transform(new MinINode(sub, igvn->intcon(scaled_iters)));
1534     Node* new_limit = NULL;
1535     if (stride > 0) {
1536       new_limit = igvn->transform(new AddINode(min, iv_phi));
1537     } else {
1538       new_limit = igvn->transform(new SubINode(iv_phi, min));
1539     }
1540     Node* cmp = inner_cle->cmp_node()->clone();
1541     igvn->replace_input_of(cmp, 2, new_limit);
1542     Node* bol = inner_cle->in(CountedLoopEndNode::TestValue)->clone();
1543     cmp->set_req(2, limit);
1544     bol->set_req(1, igvn->transform(cmp));
1545     igvn->replace_input_of(outer_loop_end(), 1, igvn->transform(bol));
1546   } else {
1547     assert(false, "should be able to adjust outer loop");
1548     IfNode* outer_le = outer_loop_end();
1549     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1550     igvn->replace_node(outer_le, iff);
1551     inner_cl->clear_strip_mined();
1552   }
1553 }
1554 
1555 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const {
1556   if (!in(0)) return Type::TOP;
1557   if (phase->type(in(0)) == Type::TOP)
1558     return Type::TOP;
1559 
1560   return TypeTuple::IFBOTH;
1561 }
1562 
1563 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1564   if (remove_dead_region(phase, can_reshape))  return this;
1565 
1566   return NULL;
1567 }
1568 
1569 //------------------------------filtered_type--------------------------------
1570 // Return a type based on condition control flow
1571 // A successful return will be a type that is restricted due
1572 // to a series of dominating if-tests, such as:
1573 //    if (i < 10) {
1574 //       if (i > 0) {
1575 //          here: "i" type is [1..10)
1576 //       }
1577 //    }
1578 // or a control flow merge
1579 //    if (i < 10) {
1580 //       do {
1581 //          phi( , ) -- at top of loop type is [min_int..10)
1582 //         i = ?
1583 //       } while ( i < 10)
1584 //
1585 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
1586   assert(n && n->bottom_type()->is_int(), "must be int");
1587   const TypeInt* filtered_t = NULL;
1588   if (!n->is_Phi()) {
1589     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
1590     filtered_t = filtered_type_from_dominators(n, n_ctrl);
1591 
1592   } else {
1593     Node* phi    = n->as_Phi();
1594     Node* region = phi->in(0);
1595     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
1596     if (region && region != C->top()) {
1597       for (uint i = 1; i < phi->req(); i++) {
1598         Node* val   = phi->in(i);
1599         Node* use_c = region->in(i);
1600         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
1601         if (val_t != NULL) {
1602           if (filtered_t == NULL) {
1603             filtered_t = val_t;
1604           } else {
1605             filtered_t = filtered_t->meet(val_t)->is_int();
1606           }
1607         }
1608       }
1609     }
1610   }
1611   const TypeInt* n_t = _igvn.type(n)->is_int();
1612   if (filtered_t != NULL) {
1613     n_t = n_t->join(filtered_t)->is_int();
1614   }
1615   return n_t;
1616 }
1617 
1618 
1619 //------------------------------filtered_type_from_dominators--------------------------------
1620 // Return a possibly more restrictive type for val based on condition control flow of dominators
1621 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
1622   if (val->is_Con()) {
1623      return val->bottom_type()->is_int();
1624   }
1625   uint if_limit = 10; // Max number of dominating if's visited
1626   const TypeInt* rtn_t = NULL;
1627 
1628   if (use_ctrl && use_ctrl != C->top()) {
1629     Node* val_ctrl = get_ctrl(val);
1630     uint val_dom_depth = dom_depth(val_ctrl);
1631     Node* pred = use_ctrl;
1632     uint if_cnt = 0;
1633     while (if_cnt < if_limit) {
1634       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
1635         if_cnt++;
1636         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
1637         if (if_t != NULL) {
1638           if (rtn_t == NULL) {
1639             rtn_t = if_t;
1640           } else {
1641             rtn_t = rtn_t->join(if_t)->is_int();
1642           }
1643         }
1644       }
1645       pred = idom(pred);
1646       if (pred == NULL || pred == C->top()) {
1647         break;
1648       }
1649       // Stop if going beyond definition block of val
1650       if (dom_depth(pred) < val_dom_depth) {
1651         break;
1652       }
1653     }
1654   }
1655   return rtn_t;
1656 }
1657 
1658 
1659 //------------------------------dump_spec--------------------------------------
1660 // Dump special per-node info
1661 #ifndef PRODUCT
1662 void CountedLoopEndNode::dump_spec(outputStream *st) const {
1663   if( in(TestValue) != NULL && in(TestValue)->is_Bool() ) {
1664     BoolTest bt( test_trip()); // Added this for g++.
1665 
1666     st->print("[");
1667     bt.dump_on(st);
1668     st->print("]");
1669   }
1670   st->print(" ");
1671   IfNode::dump_spec(st);
1672 }
1673 #endif
1674 
1675 //=============================================================================
1676 //------------------------------is_member--------------------------------------
1677 // Is 'l' a member of 'this'?
1678 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
1679   while( l->_nest > _nest ) l = l->_parent;
1680   return l == this;
1681 }
1682 
1683 //------------------------------set_nest---------------------------------------
1684 // Set loop tree nesting depth.  Accumulate _has_call bits.
1685 int IdealLoopTree::set_nest( uint depth ) {
1686   _nest = depth;
1687   int bits = _has_call;
1688   if( _child ) bits |= _child->set_nest(depth+1);
1689   if( bits ) _has_call = 1;
1690   if( _next  ) bits |= _next ->set_nest(depth  );
1691   return bits;
1692 }
1693 
1694 //------------------------------split_fall_in----------------------------------
1695 // Split out multiple fall-in edges from the loop header.  Move them to a
1696 // private RegionNode before the loop.  This becomes the loop landing pad.
1697 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
1698   PhaseIterGVN &igvn = phase->_igvn;
1699   uint i;
1700 
1701   // Make a new RegionNode to be the landing pad.
1702   Node *landing_pad = new RegionNode( fall_in_cnt+1 );
1703   phase->set_loop(landing_pad,_parent);
1704   // Gather all the fall-in control paths into the landing pad
1705   uint icnt = fall_in_cnt;
1706   uint oreq = _head->req();
1707   for( i = oreq-1; i>0; i-- )
1708     if( !phase->is_member( this, _head->in(i) ) )
1709       landing_pad->set_req(icnt--,_head->in(i));
1710 
1711   // Peel off PhiNode edges as well
1712   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1713     Node *oj = _head->fast_out(j);
1714     if( oj->is_Phi() ) {
1715       PhiNode* old_phi = oj->as_Phi();
1716       assert( old_phi->region() == _head, "" );
1717       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
1718       Node *p = PhiNode::make_blank(landing_pad, old_phi);
1719       uint icnt = fall_in_cnt;
1720       for( i = oreq-1; i>0; i-- ) {
1721         if( !phase->is_member( this, _head->in(i) ) ) {
1722           p->init_req(icnt--, old_phi->in(i));
1723           // Go ahead and clean out old edges from old phi
1724           old_phi->del_req(i);
1725         }
1726       }
1727       // Search for CSE's here, because ZKM.jar does a lot of
1728       // loop hackery and we need to be a little incremental
1729       // with the CSE to avoid O(N^2) node blow-up.
1730       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
1731       if( p2 ) {                // Found CSE
1732         p->destruct();          // Recover useless new node
1733         p = p2;                 // Use old node
1734       } else {
1735         igvn.register_new_node_with_optimizer(p, old_phi);
1736       }
1737       // Make old Phi refer to new Phi.
1738       old_phi->add_req(p);
1739       // Check for the special case of making the old phi useless and
1740       // disappear it.  In JavaGrande I have a case where this useless
1741       // Phi is the loop limit and prevents recognizing a CountedLoop
1742       // which in turn prevents removing an empty loop.
1743       Node *id_old_phi = old_phi->Identity( &igvn );
1744       if( id_old_phi != old_phi ) { // Found a simple identity?
1745         // Note that I cannot call 'replace_node' here, because
1746         // that will yank the edge from old_phi to the Region and
1747         // I'm mid-iteration over the Region's uses.
1748         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
1749           Node* use = old_phi->last_out(i);
1750           igvn.rehash_node_delayed(use);
1751           uint uses_found = 0;
1752           for (uint j = 0; j < use->len(); j++) {
1753             if (use->in(j) == old_phi) {
1754               if (j < use->req()) use->set_req (j, id_old_phi);
1755               else                use->set_prec(j, id_old_phi);
1756               uses_found++;
1757             }
1758           }
1759           i -= uses_found;    // we deleted 1 or more copies of this edge
1760         }
1761       }
1762       igvn._worklist.push(old_phi);
1763     }
1764   }
1765   // Finally clean out the fall-in edges from the RegionNode
1766   for( i = oreq-1; i>0; i-- ) {
1767     if( !phase->is_member( this, _head->in(i) ) ) {
1768       _head->del_req(i);
1769     }
1770   }
1771   igvn.rehash_node_delayed(_head);
1772   // Transform landing pad
1773   igvn.register_new_node_with_optimizer(landing_pad, _head);
1774   // Insert landing pad into the header
1775   _head->add_req(landing_pad);
1776 }
1777 
1778 //------------------------------split_outer_loop-------------------------------
1779 // Split out the outermost loop from this shared header.
1780 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
1781   PhaseIterGVN &igvn = phase->_igvn;
1782 
1783   // Find index of outermost loop; it should also be my tail.
1784   uint outer_idx = 1;
1785   while( _head->in(outer_idx) != _tail ) outer_idx++;
1786 
1787   // Make a LoopNode for the outermost loop.
1788   Node *ctl = _head->in(LoopNode::EntryControl);
1789   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
1790   outer = igvn.register_new_node_with_optimizer(outer, _head);
1791   phase->set_created_loop_node();
1792 
1793   // Outermost loop falls into '_head' loop
1794   _head->set_req(LoopNode::EntryControl, outer);
1795   _head->del_req(outer_idx);
1796   // Split all the Phis up between '_head' loop and 'outer' loop.
1797   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1798     Node *out = _head->fast_out(j);
1799     if( out->is_Phi() ) {
1800       PhiNode *old_phi = out->as_Phi();
1801       assert( old_phi->region() == _head, "" );
1802       Node *phi = PhiNode::make_blank(outer, old_phi);
1803       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
1804       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
1805       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
1806       // Make old Phi point to new Phi on the fall-in path
1807       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
1808       old_phi->del_req(outer_idx);
1809     }
1810   }
1811 
1812   // Use the new loop head instead of the old shared one
1813   _head = outer;
1814   phase->set_loop(_head, this);
1815 }
1816 
1817 //------------------------------fix_parent-------------------------------------
1818 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
1819   loop->_parent = parent;
1820   if( loop->_child ) fix_parent( loop->_child, loop   );
1821   if( loop->_next  ) fix_parent( loop->_next , parent );
1822 }
1823 
1824 //------------------------------estimate_path_freq-----------------------------
1825 static float estimate_path_freq( Node *n ) {
1826   // Try to extract some path frequency info
1827   IfNode *iff;
1828   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
1829     uint nop = n->Opcode();
1830     if( nop == Op_SafePoint ) {   // Skip any safepoint
1831       n = n->in(0);
1832       continue;
1833     }
1834     if( nop == Op_CatchProj ) {   // Get count from a prior call
1835       // Assume call does not always throw exceptions: means the call-site
1836       // count is also the frequency of the fall-through path.
1837       assert( n->is_CatchProj(), "" );
1838       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
1839         return 0.0f;            // Assume call exception path is rare
1840       Node *call = n->in(0)->in(0)->in(0);
1841       assert( call->is_Call(), "expect a call here" );
1842       const JVMState *jvms = ((CallNode*)call)->jvms();
1843       ciMethodData* methodData = jvms->method()->method_data();
1844       if (!methodData->is_mature())  return 0.0f; // No call-site data
1845       ciProfileData* data = methodData->bci_to_data(jvms->bci());
1846       if ((data == NULL) || !data->is_CounterData()) {
1847         // no call profile available, try call's control input
1848         n = n->in(0);
1849         continue;
1850       }
1851       return data->as_CounterData()->count()/FreqCountInvocations;
1852     }
1853     // See if there's a gating IF test
1854     Node *n_c = n->in(0);
1855     if( !n_c->is_If() ) break;       // No estimate available
1856     iff = n_c->as_If();
1857     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
1858       // Compute how much count comes on this path
1859       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
1860     // Have no count info.  Skip dull uncommon-trap like branches.
1861     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
1862         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
1863       break;
1864     // Skip through never-taken branch; look for a real loop exit.
1865     n = iff->in(0);
1866   }
1867   return 0.0f;                  // No estimate available
1868 }
1869 
1870 //------------------------------merge_many_backedges---------------------------
1871 // Merge all the backedges from the shared header into a private Region.
1872 // Feed that region as the one backedge to this loop.
1873 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
1874   uint i;
1875 
1876   // Scan for the top 2 hottest backedges
1877   float hotcnt = 0.0f;
1878   float warmcnt = 0.0f;
1879   uint hot_idx = 0;
1880   // Loop starts at 2 because slot 1 is the fall-in path
1881   for( i = 2; i < _head->req(); i++ ) {
1882     float cnt = estimate_path_freq(_head->in(i));
1883     if( cnt > hotcnt ) {       // Grab hottest path
1884       warmcnt = hotcnt;
1885       hotcnt = cnt;
1886       hot_idx = i;
1887     } else if( cnt > warmcnt ) { // And 2nd hottest path
1888       warmcnt = cnt;
1889     }
1890   }
1891 
1892   // See if the hottest backedge is worthy of being an inner loop
1893   // by being much hotter than the next hottest backedge.
1894   if( hotcnt <= 0.0001 ||
1895       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
1896 
1897   // Peel out the backedges into a private merge point; peel
1898   // them all except optionally hot_idx.
1899   PhaseIterGVN &igvn = phase->_igvn;
1900 
1901   Node *hot_tail = NULL;
1902   // Make a Region for the merge point
1903   Node *r = new RegionNode(1);
1904   for( i = 2; i < _head->req(); i++ ) {
1905     if( i != hot_idx )
1906       r->add_req( _head->in(i) );
1907     else hot_tail = _head->in(i);
1908   }
1909   igvn.register_new_node_with_optimizer(r, _head);
1910   // Plug region into end of loop _head, followed by hot_tail
1911   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
1912   igvn.replace_input_of(_head, 2, r);
1913   if( hot_idx ) _head->add_req(hot_tail);
1914 
1915   // Split all the Phis up between '_head' loop and the Region 'r'
1916   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1917     Node *out = _head->fast_out(j);
1918     if( out->is_Phi() ) {
1919       PhiNode* n = out->as_Phi();
1920       igvn.hash_delete(n);      // Delete from hash before hacking edges
1921       Node *hot_phi = NULL;
1922       Node *phi = new PhiNode(r, n->type(), n->adr_type());
1923       // Check all inputs for the ones to peel out
1924       uint j = 1;
1925       for( uint i = 2; i < n->req(); i++ ) {
1926         if( i != hot_idx )
1927           phi->set_req( j++, n->in(i) );
1928         else hot_phi = n->in(i);
1929       }
1930       // Register the phi but do not transform until whole place transforms
1931       igvn.register_new_node_with_optimizer(phi, n);
1932       // Add the merge phi to the old Phi
1933       while( n->req() > 3 ) n->del_req( n->req()-1 );
1934       igvn.replace_input_of(n, 2, phi);
1935       if( hot_idx ) n->add_req(hot_phi);
1936     }
1937   }
1938 
1939 
1940   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
1941   // of self loop tree.  Turn self into a loop headed by _head and with
1942   // tail being the new merge point.
1943   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
1944   phase->set_loop(_tail,ilt);   // Adjust tail
1945   _tail = r;                    // Self's tail is new merge point
1946   phase->set_loop(r,this);
1947   ilt->_child = _child;         // New guy has my children
1948   _child = ilt;                 // Self has new guy as only child
1949   ilt->_parent = this;          // new guy has self for parent
1950   ilt->_nest = _nest;           // Same nesting depth (for now)
1951 
1952   // Starting with 'ilt', look for child loop trees using the same shared
1953   // header.  Flatten these out; they will no longer be loops in the end.
1954   IdealLoopTree **pilt = &_child;
1955   while( ilt ) {
1956     if( ilt->_head == _head ) {
1957       uint i;
1958       for( i = 2; i < _head->req(); i++ )
1959         if( _head->in(i) == ilt->_tail )
1960           break;                // Still a loop
1961       if( i == _head->req() ) { // No longer a loop
1962         // Flatten ilt.  Hang ilt's "_next" list from the end of
1963         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
1964         IdealLoopTree **cp = &ilt->_child;
1965         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
1966         *cp = ilt->_next;       // Hang next list at end of child list
1967         *pilt = ilt->_child;    // Move child up to replace ilt
1968         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
1969         ilt = ilt->_child;      // Repeat using new ilt
1970         continue;               // do not advance over ilt->_child
1971       }
1972       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
1973       phase->set_loop(_head,ilt);
1974     }
1975     pilt = &ilt->_child;        // Advance to next
1976     ilt = *pilt;
1977   }
1978 
1979   if( _child ) fix_parent( _child, this );
1980 }
1981 
1982 //------------------------------beautify_loops---------------------------------
1983 // Split shared headers and insert loop landing pads.
1984 // Insert a LoopNode to replace the RegionNode.
1985 // Return TRUE if loop tree is structurally changed.
1986 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
1987   bool result = false;
1988   // Cache parts in locals for easy
1989   PhaseIterGVN &igvn = phase->_igvn;
1990 
1991   igvn.hash_delete(_head);      // Yank from hash before hacking edges
1992 
1993   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
1994   int fall_in_cnt = 0;
1995   for( uint i = 1; i < _head->req(); i++ )
1996     if( !phase->is_member( this, _head->in(i) ) )
1997       fall_in_cnt++;
1998   assert( fall_in_cnt, "at least 1 fall-in path" );
1999   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
2000     split_fall_in( phase, fall_in_cnt );
2001 
2002   // Swap inputs to the _head and all Phis to move the fall-in edge to
2003   // the left.
2004   fall_in_cnt = 1;
2005   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
2006     fall_in_cnt++;
2007   if( fall_in_cnt > 1 ) {
2008     // Since I am just swapping inputs I do not need to update def-use info
2009     Node *tmp = _head->in(1);
2010     igvn.rehash_node_delayed(_head);
2011     _head->set_req( 1, _head->in(fall_in_cnt) );
2012     _head->set_req( fall_in_cnt, tmp );
2013     // Swap also all Phis
2014     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
2015       Node* phi = _head->fast_out(i);
2016       if( phi->is_Phi() ) {
2017         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
2018         tmp = phi->in(1);
2019         phi->set_req( 1, phi->in(fall_in_cnt) );
2020         phi->set_req( fall_in_cnt, tmp );
2021       }
2022     }
2023   }
2024   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
2025   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
2026 
2027   // If I am a shared header (multiple backedges), peel off the many
2028   // backedges into a private merge point and use the merge point as
2029   // the one true backedge.
2030   if( _head->req() > 3 ) {
2031     // Merge the many backedges into a single backedge but leave
2032     // the hottest backedge as separate edge for the following peel.
2033     merge_many_backedges( phase );
2034     result = true;
2035   }
2036 
2037   // If I have one hot backedge, peel off myself loop.
2038   // I better be the outermost loop.
2039   if (_head->req() > 3 && !_irreducible) {
2040     split_outer_loop( phase );
2041     result = true;
2042 
2043   } else if (!_head->is_Loop() && !_irreducible) {
2044     // Make a new LoopNode to replace the old loop head
2045     Node *l = new LoopNode( _head->in(1), _head->in(2) );
2046     l = igvn.register_new_node_with_optimizer(l, _head);
2047     phase->set_created_loop_node();
2048     // Go ahead and replace _head
2049     phase->_igvn.replace_node( _head, l );
2050     _head = l;
2051     phase->set_loop(_head, this);
2052   }
2053 
2054   // Now recursively beautify nested loops
2055   if( _child ) result |= _child->beautify_loops( phase );
2056   if( _next  ) result |= _next ->beautify_loops( phase );
2057   return result;
2058 }
2059 
2060 //------------------------------allpaths_check_safepts----------------------------
2061 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
2062 // encountered.  Helper for check_safepts.
2063 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
2064   assert(stack.size() == 0, "empty stack");
2065   stack.push(_tail);
2066   visited.Clear();
2067   visited.set(_tail->_idx);
2068   while (stack.size() > 0) {
2069     Node* n = stack.pop();
2070     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
2071       // Terminate this path
2072     } else if (n->Opcode() == Op_SafePoint) {
2073       if (_phase->get_loop(n) != this) {
2074         if (_required_safept == NULL) _required_safept = new Node_List();
2075         _required_safept->push(n);  // save the one closest to the tail
2076       }
2077       // Terminate this path
2078     } else {
2079       uint start = n->is_Region() ? 1 : 0;
2080       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
2081       for (uint i = start; i < end; i++) {
2082         Node* in = n->in(i);
2083         assert(in->is_CFG(), "must be");
2084         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
2085           stack.push(in);
2086         }
2087       }
2088     }
2089   }
2090 }
2091 
2092 //------------------------------check_safepts----------------------------
2093 // Given dominators, try to find loops with calls that must always be
2094 // executed (call dominates loop tail).  These loops do not need non-call
2095 // safepoints (ncsfpt).
2096 //
2097 // A complication is that a safepoint in a inner loop may be needed
2098 // by an outer loop. In the following, the inner loop sees it has a
2099 // call (block 3) on every path from the head (block 2) to the
2100 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
2101 // in block 2, _but_ this leaves the outer loop without a safepoint.
2102 //
2103 //          entry  0
2104 //                 |
2105 //                 v
2106 // outer 1,2    +->1
2107 //              |  |
2108 //              |  v
2109 //              |  2<---+  ncsfpt in 2
2110 //              |_/|\   |
2111 //                 | v  |
2112 // inner 2,3      /  3  |  call in 3
2113 //               /   |  |
2114 //              v    +--+
2115 //        exit  4
2116 //
2117 //
2118 // This method creates a list (_required_safept) of ncsfpt nodes that must
2119 // be protected is created for each loop. When a ncsfpt maybe deleted, it
2120 // is first looked for in the lists for the outer loops of the current loop.
2121 //
2122 // The insights into the problem:
2123 //  A) counted loops are okay
2124 //  B) innermost loops are okay (only an inner loop can delete
2125 //     a ncsfpt needed by an outer loop)
2126 //  C) a loop is immune from an inner loop deleting a safepoint
2127 //     if the loop has a call on the idom-path
2128 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
2129 //     idom-path that is not in a nested loop
2130 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
2131 //     loop needs to be prevented from deletion by an inner loop
2132 //
2133 // There are two analyses:
2134 //  1) The first, and cheaper one, scans the loop body from
2135 //     tail to head following the idom (immediate dominator)
2136 //     chain, looking for the cases (C,D,E) above.
2137 //     Since inner loops are scanned before outer loops, there is summary
2138 //     information about inner loops.  Inner loops can be skipped over
2139 //     when the tail of an inner loop is encountered.
2140 //
2141 //  2) The second, invoked if the first fails to find a call or ncsfpt on
2142 //     the idom path (which is rare), scans all predecessor control paths
2143 //     from the tail to the head, terminating a path when a call or sfpt
2144 //     is encountered, to find the ncsfpt's that are closest to the tail.
2145 //
2146 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
2147   // Bottom up traversal
2148   IdealLoopTree* ch = _child;
2149   if (_child) _child->check_safepts(visited, stack);
2150   if (_next)  _next ->check_safepts(visited, stack);
2151 
2152   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
2153     bool  has_call         = false; // call on dom-path
2154     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
2155     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
2156     // Scan the dom-path nodes from tail to head
2157     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
2158       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
2159         has_call = true;
2160         _has_sfpt = 1;          // Then no need for a safept!
2161         break;
2162       } else if (n->Opcode() == Op_SafePoint) {
2163         if (_phase->get_loop(n) == this) {
2164           has_local_ncsfpt = true;
2165           break;
2166         }
2167         if (nonlocal_ncsfpt == NULL) {
2168           nonlocal_ncsfpt = n; // save the one closest to the tail
2169         }
2170       } else {
2171         IdealLoopTree* nlpt = _phase->get_loop(n);
2172         if (this != nlpt) {
2173           // If at an inner loop tail, see if the inner loop has already
2174           // recorded seeing a call on the dom-path (and stop.)  If not,
2175           // jump to the head of the inner loop.
2176           assert(is_member(nlpt), "nested loop");
2177           Node* tail = nlpt->_tail;
2178           if (tail->in(0)->is_If()) tail = tail->in(0);
2179           if (n == tail) {
2180             // If inner loop has call on dom-path, so does outer loop
2181             if (nlpt->_has_sfpt) {
2182               has_call = true;
2183               _has_sfpt = 1;
2184               break;
2185             }
2186             // Skip to head of inner loop
2187             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
2188             n = nlpt->_head;
2189           }
2190         }
2191       }
2192     }
2193     // Record safept's that this loop needs preserved when an
2194     // inner loop attempts to delete it's safepoints.
2195     if (_child != NULL && !has_call && !has_local_ncsfpt) {
2196       if (nonlocal_ncsfpt != NULL) {
2197         if (_required_safept == NULL) _required_safept = new Node_List();
2198         _required_safept->push(nonlocal_ncsfpt);
2199       } else {
2200         // Failed to find a suitable safept on the dom-path.  Now use
2201         // an all paths walk from tail to head, looking for safepoints to preserve.
2202         allpaths_check_safepts(visited, stack);
2203       }
2204     }
2205   }
2206 }
2207 
2208 //---------------------------is_deleteable_safept----------------------------
2209 // Is safept not required by an outer loop?
2210 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
2211   assert(sfpt->Opcode() == Op_SafePoint, "");
2212   IdealLoopTree* lp = get_loop(sfpt)->_parent;
2213   while (lp != NULL) {
2214     Node_List* sfpts = lp->_required_safept;
2215     if (sfpts != NULL) {
2216       for (uint i = 0; i < sfpts->size(); i++) {
2217         if (sfpt == sfpts->at(i))
2218           return false;
2219       }
2220     }
2221     lp = lp->_parent;
2222   }
2223   return true;
2224 }
2225 
2226 //---------------------------replace_parallel_iv-------------------------------
2227 // Replace parallel induction variable (parallel to trip counter)
2228 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
2229   assert(loop->_head->is_CountedLoop(), "");
2230   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2231   if (!cl->is_valid_counted_loop())
2232     return;         // skip malformed counted loop
2233   Node *incr = cl->incr();
2234   if (incr == NULL)
2235     return;         // Dead loop?
2236   Node *init = cl->init_trip();
2237   Node *phi  = cl->phi();
2238   int stride_con = cl->stride_con();
2239 
2240   // Visit all children, looking for Phis
2241   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
2242     Node *out = cl->out(i);
2243     // Look for other phis (secondary IVs). Skip dead ones
2244     if (!out->is_Phi() || out == phi || !has_node(out))
2245       continue;
2246     PhiNode* phi2 = out->as_Phi();
2247     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
2248     // Look for induction variables of the form:  X += constant
2249     if (phi2->region() != loop->_head ||
2250         incr2->req() != 3 ||
2251         incr2->in(1) != phi2 ||
2252         incr2 == incr ||
2253         incr2->Opcode() != Op_AddI ||
2254         !incr2->in(2)->is_Con())
2255       continue;
2256 
2257     // Check for parallel induction variable (parallel to trip counter)
2258     // via an affine function.  In particular, count-down loops with
2259     // count-up array indices are common. We only RCE references off
2260     // the trip-counter, so we need to convert all these to trip-counter
2261     // expressions.
2262     Node *init2 = phi2->in( LoopNode::EntryControl );
2263     int stride_con2 = incr2->in(2)->get_int();
2264 
2265     // The ratio of the two strides cannot be represented as an int
2266     // if stride_con2 is min_int and stride_con is -1.
2267     if (stride_con2 == min_jint && stride_con == -1) {
2268       continue;
2269     }
2270 
2271     // The general case here gets a little tricky.  We want to find the
2272     // GCD of all possible parallel IV's and make a new IV using this
2273     // GCD for the loop.  Then all possible IVs are simple multiples of
2274     // the GCD.  In practice, this will cover very few extra loops.
2275     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
2276     // where +/-1 is the common case, but other integer multiples are
2277     // also easy to handle.
2278     int ratio_con = stride_con2/stride_con;
2279 
2280     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
2281 #ifndef PRODUCT
2282       if (TraceLoopOpts) {
2283         tty->print("Parallel IV: %d ", phi2->_idx);
2284         loop->dump_head();
2285       }
2286 #endif
2287       // Convert to using the trip counter.  The parallel induction
2288       // variable differs from the trip counter by a loop-invariant
2289       // amount, the difference between their respective initial values.
2290       // It is scaled by the 'ratio_con'.
2291       Node* ratio = _igvn.intcon(ratio_con);
2292       set_ctrl(ratio, C->root());
2293       Node* ratio_init = new MulINode(init, ratio);
2294       _igvn.register_new_node_with_optimizer(ratio_init, init);
2295       set_early_ctrl(ratio_init);
2296       Node* diff = new SubINode(init2, ratio_init);
2297       _igvn.register_new_node_with_optimizer(diff, init2);
2298       set_early_ctrl(diff);
2299       Node* ratio_idx = new MulINode(phi, ratio);
2300       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
2301       set_ctrl(ratio_idx, cl);
2302       Node* add = new AddINode(ratio_idx, diff);
2303       _igvn.register_new_node_with_optimizer(add);
2304       set_ctrl(add, cl);
2305       _igvn.replace_node( phi2, add );
2306       // Sometimes an induction variable is unused
2307       if (add->outcnt() == 0) {
2308         _igvn.remove_dead_node(add);
2309       }
2310       --i; // deleted this phi; rescan starting with next position
2311       continue;
2312     }
2313   }
2314 }
2315 
2316 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
2317   Node* keep = NULL;
2318   if (keep_one) {
2319     // Look for a safepoint on the idom-path.
2320     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
2321       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
2322         keep = i;
2323         break; // Found one
2324       }
2325     }
2326   }
2327 
2328   // Don't remove any safepoints if it is requested to keep a single safepoint and
2329   // no safepoint was found on idom-path. It is not safe to remove any safepoint
2330   // in this case since there's no safepoint dominating all paths in the loop body.
2331   bool prune = !keep_one || keep != NULL;
2332 
2333   // Delete other safepoints in this loop.
2334   Node_List* sfpts = _safepts;
2335   if (prune && sfpts != NULL) {
2336     assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
2337     for (uint i = 0; i < sfpts->size(); i++) {
2338       Node* n = sfpts->at(i);
2339       assert(phase->get_loop(n) == this, "");
2340       if (n != keep && phase->is_deleteable_safept(n)) {
2341         phase->lazy_replace(n, n->in(TypeFunc::Control));
2342       }
2343     }
2344   }
2345 }
2346 
2347 //------------------------------counted_loop-----------------------------------
2348 // Convert to counted loops where possible
2349 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
2350 
2351   // For grins, set the inner-loop flag here
2352   if (!_child) {
2353     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
2354   }
2355 
2356   IdealLoopTree* loop = this;
2357   if (_head->is_CountedLoop() ||
2358       phase->is_counted_loop(_head, loop)) {
2359 
2360     if (LoopStripMiningIter == 0 || (LoopStripMiningIter > 1 && _child == NULL)) {
2361       // Indicate we do not need a safepoint here
2362       _has_sfpt = 1;
2363     }
2364 
2365     // Remove safepoints
2366     bool keep_one_sfpt = !(_has_call || _has_sfpt);
2367     remove_safepoints(phase, keep_one_sfpt);
2368 
2369     // Look for induction variables
2370     phase->replace_parallel_iv(this);
2371 
2372   } else if (_parent != NULL && !_irreducible) {
2373     // Not a counted loop. Keep one safepoint.
2374     bool keep_one_sfpt = true;
2375     remove_safepoints(phase, keep_one_sfpt);
2376   }
2377 
2378   // Recursively
2379   assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
2380   assert(loop->_child != this || (loop->_child->_child == NULL && loop->_child->_next == NULL), "would miss some loops");
2381   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
2382   if (loop->_next)  loop->_next ->counted_loop(phase);
2383 }
2384 
2385 #ifndef PRODUCT
2386 //------------------------------dump_head--------------------------------------
2387 // Dump 1 liner for loop header info
2388 void IdealLoopTree::dump_head( ) const {
2389   for (uint i=0; i<_nest; i++)
2390     tty->print("  ");
2391   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
2392   if (_irreducible) tty->print(" IRREDUCIBLE");
2393   Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl) : _head->in(LoopNode::EntryControl);
2394   Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
2395   if (predicate != NULL ) {
2396     tty->print(" limit_check");
2397     entry = entry->in(0)->in(0);
2398   }
2399   if (UseLoopPredicate) {
2400     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
2401     if (entry != NULL) {
2402       tty->print(" predicated");
2403     }
2404   }
2405   if (_head->is_CountedLoop()) {
2406     CountedLoopNode *cl = _head->as_CountedLoop();
2407     tty->print(" counted");
2408 
2409     Node* init_n = cl->init_trip();
2410     if (init_n  != NULL &&  init_n->is_Con())
2411       tty->print(" [%d,", cl->init_trip()->get_int());
2412     else
2413       tty->print(" [int,");
2414     Node* limit_n = cl->limit();
2415     if (limit_n  != NULL &&  limit_n->is_Con())
2416       tty->print("%d),", cl->limit()->get_int());
2417     else
2418       tty->print("int),");
2419     int stride_con  = cl->stride_con();
2420     if (stride_con > 0) tty->print("+");
2421     tty->print("%d", stride_con);
2422 
2423     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
2424 
2425     if (cl->is_pre_loop ()) tty->print(" pre" );
2426     if (cl->is_main_loop()) tty->print(" main");
2427     if (cl->is_post_loop()) tty->print(" post");
2428     if (cl->is_vectorized_loop()) tty->print(" vector");
2429     if (cl->range_checks_present()) tty->print(" rc ");
2430     if (cl->is_multiversioned()) tty->print(" multi ");
2431   }
2432   if (_has_call) tty->print(" has_call");
2433   if (_has_sfpt) tty->print(" has_sfpt");
2434   if (_rce_candidate) tty->print(" rce");
2435   if (_safepts != NULL && _safepts->size() > 0) {
2436     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
2437   }
2438   if (_required_safept != NULL && _required_safept->size() > 0) {
2439     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
2440   }
2441   if (Verbose) {
2442     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
2443   }
2444   if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) {
2445     tty->print(" strip_mined");
2446   }
2447   tty->cr();
2448 }
2449 
2450 //------------------------------dump-------------------------------------------
2451 // Dump loops by loop tree
2452 void IdealLoopTree::dump( ) const {
2453   dump_head();
2454   if (_child) _child->dump();
2455   if (_next)  _next ->dump();
2456 }
2457 
2458 #endif
2459 
2460 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
2461   if (loop == root) {
2462     if (loop->_child != NULL) {
2463       log->begin_head("loop_tree");
2464       log->end_head();
2465       if( loop->_child ) log_loop_tree(root, loop->_child, log);
2466       log->tail("loop_tree");
2467       assert(loop->_next == NULL, "what?");
2468     }
2469   } else {
2470     Node* head = loop->_head;
2471     log->begin_head("loop");
2472     log->print(" idx='%d' ", head->_idx);
2473     if (loop->_irreducible) log->print("irreducible='1' ");
2474     if (head->is_Loop()) {
2475       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
2476       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
2477     }
2478     if (head->is_CountedLoop()) {
2479       CountedLoopNode* cl = head->as_CountedLoop();
2480       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
2481       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
2482       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
2483     }
2484     log->end_head();
2485     if( loop->_child ) log_loop_tree(root, loop->_child, log);
2486     log->tail("loop");
2487     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
2488   }
2489 }
2490 
2491 //---------------------collect_potentially_useful_predicates-----------------------
2492 // Helper function to collect potentially useful predicates to prevent them from
2493 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
2494 void PhaseIdealLoop::collect_potentially_useful_predicates(
2495                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
2496   if (loop->_child) { // child
2497     collect_potentially_useful_predicates(loop->_child, useful_predicates);
2498   }
2499 
2500   // self (only loops that we can apply loop predication may use their predicates)
2501   if (loop->_head->is_Loop() &&
2502       !loop->_irreducible    &&
2503       !loop->tail()->is_top()) {
2504     LoopNode* lpn = loop->_head->as_Loop();
2505     Node* entry = lpn->in(LoopNode::EntryControl);
2506     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
2507     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
2508       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
2509       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2510       entry = entry->in(0)->in(0);
2511     }
2512     predicate_proj = find_predicate(entry); // Predicate
2513     if (predicate_proj != NULL ) {
2514       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2515     }
2516   }
2517 
2518   if (loop->_next) { // sibling
2519     collect_potentially_useful_predicates(loop->_next, useful_predicates);
2520   }
2521 }
2522 
2523 //------------------------eliminate_useless_predicates-----------------------------
2524 // Eliminate all inserted predicates if they could not be used by loop predication.
2525 // Note: it will also eliminates loop limits check predicate since it also uses
2526 // Opaque1 node (see Parse::add_predicate()).
2527 void PhaseIdealLoop::eliminate_useless_predicates() {
2528   if (C->predicate_count() == 0)
2529     return; // no predicate left
2530 
2531   Unique_Node_List useful_predicates; // to store useful predicates
2532   if (C->has_loops()) {
2533     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
2534   }
2535 
2536   for (int i = C->predicate_count(); i > 0; i--) {
2537      Node * n = C->predicate_opaque1_node(i-1);
2538      assert(n->Opcode() == Op_Opaque1, "must be");
2539      if (!useful_predicates.member(n)) { // not in the useful list
2540        _igvn.replace_node(n, n->in(1));
2541      }
2542   }
2543 }
2544 
2545 //------------------------process_expensive_nodes-----------------------------
2546 // Expensive nodes have their control input set to prevent the GVN
2547 // from commoning them and as a result forcing the resulting node to
2548 // be in a more frequent path. Use CFG information here, to change the
2549 // control inputs so that some expensive nodes can be commoned while
2550 // not executed more frequently.
2551 bool PhaseIdealLoop::process_expensive_nodes() {
2552   assert(OptimizeExpensiveOps, "optimization off?");
2553 
2554   // Sort nodes to bring similar nodes together
2555   C->sort_expensive_nodes();
2556 
2557   bool progress = false;
2558 
2559   for (int i = 0; i < C->expensive_count(); ) {
2560     Node* n = C->expensive_node(i);
2561     int start = i;
2562     // Find nodes similar to n
2563     i++;
2564     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
2565     int end = i;
2566     // And compare them two by two
2567     for (int j = start; j < end; j++) {
2568       Node* n1 = C->expensive_node(j);
2569       if (is_node_unreachable(n1)) {
2570         continue;
2571       }
2572       for (int k = j+1; k < end; k++) {
2573         Node* n2 = C->expensive_node(k);
2574         if (is_node_unreachable(n2)) {
2575           continue;
2576         }
2577 
2578         assert(n1 != n2, "should be pair of nodes");
2579 
2580         Node* c1 = n1->in(0);
2581         Node* c2 = n2->in(0);
2582 
2583         Node* parent_c1 = c1;
2584         Node* parent_c2 = c2;
2585 
2586         // The call to get_early_ctrl_for_expensive() moves the
2587         // expensive nodes up but stops at loops that are in a if
2588         // branch. See whether we can exit the loop and move above the
2589         // If.
2590         if (c1->is_Loop()) {
2591           parent_c1 = c1->in(1);
2592         }
2593         if (c2->is_Loop()) {
2594           parent_c2 = c2->in(1);
2595         }
2596 
2597         if (parent_c1 == parent_c2) {
2598           _igvn._worklist.push(n1);
2599           _igvn._worklist.push(n2);
2600           continue;
2601         }
2602 
2603         // Look for identical expensive node up the dominator chain.
2604         if (is_dominator(c1, c2)) {
2605           c2 = c1;
2606         } else if (is_dominator(c2, c1)) {
2607           c1 = c2;
2608         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
2609                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
2610           // Both branches have the same expensive node so move it up
2611           // before the if.
2612           c1 = c2 = idom(parent_c1->in(0));
2613         }
2614         // Do the actual moves
2615         if (n1->in(0) != c1) {
2616           _igvn.hash_delete(n1);
2617           n1->set_req(0, c1);
2618           _igvn.hash_insert(n1);
2619           _igvn._worklist.push(n1);
2620           progress = true;
2621         }
2622         if (n2->in(0) != c2) {
2623           _igvn.hash_delete(n2);
2624           n2->set_req(0, c2);
2625           _igvn.hash_insert(n2);
2626           _igvn._worklist.push(n2);
2627           progress = true;
2628         }
2629       }
2630     }
2631   }
2632 
2633   return progress;
2634 }
2635 
2636 
2637 //=============================================================================
2638 //----------------------------build_and_optimize-------------------------------
2639 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
2640 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
2641 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts, bool last_round) {
2642   ResourceMark rm;
2643 
2644   int old_progress = C->major_progress();
2645   uint orig_worklist_size = _igvn._worklist.size();
2646 
2647 #ifndef PRODUCT
2648   // Capture for later assert
2649   uint unique = C->unique();
2650   _loop_invokes++;
2651   _loop_work += unique;
2652 #endif
2653 
2654   // True if the method has at least 1 irreducible loop
2655   _has_irreducible_loops = false;
2656 
2657   _created_loop_node = false;
2658 
2659   Arena *a = Thread::current()->resource_area();
2660   VectorSet visited(a);
2661   // Pre-grow the mapping from Nodes to IdealLoopTrees.
2662   _nodes.map(C->unique(), NULL);
2663   memset(_nodes.adr(), 0, wordSize * C->unique());
2664 
2665   // Pre-build the top-level outermost loop tree entry
2666   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
2667   // Do not need a safepoint at the top level
2668   _ltree_root->_has_sfpt = 1;
2669 
2670   // Initialize Dominators.
2671   // Checked in clone_loop_predicate() during beautify_loops().
2672   _idom_size = 0;
2673   _idom      = NULL;
2674   _dom_depth = NULL;
2675   _dom_stk   = NULL;
2676 
2677   // Empty pre-order array
2678   allocate_preorders();
2679 
2680   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
2681   // IdealLoopTree entries.  Data nodes are NOT walked.
2682   build_loop_tree();
2683   // Check for bailout, and return
2684   if (C->failing()) {
2685     return;
2686   }
2687 
2688   // No loops after all
2689   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
2690 
2691   // There should always be an outer loop containing the Root and Return nodes.
2692   // If not, we have a degenerate empty program.  Bail out in this case.
2693   if (!has_node(C->root())) {
2694     if (!_verify_only) {
2695       C->clear_major_progress();
2696       C->record_method_not_compilable("empty program detected during loop optimization");
2697     }
2698     return;
2699   }
2700 
2701   // Nothing to do, so get out
2702   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
2703   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
2704   if (stop_early && !do_expensive_nodes) {
2705     _igvn.optimize();           // Cleanup NeverBranches
2706     return;
2707   }
2708 
2709   // Set loop nesting depth
2710   _ltree_root->set_nest( 0 );
2711 
2712   // Split shared headers and insert loop landing pads.
2713   // Do not bother doing this on the Root loop of course.
2714   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
2715     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
2716     if( _ltree_root->_child->beautify_loops( this ) ) {
2717       // IdealLoopTree::split_outer_loop may produce phi-nodes with a single in edge.
2718       // Transform them away.
2719       _igvn.optimize();
2720 
2721       // Re-build loop tree!
2722       _ltree_root->_child = NULL;
2723       _nodes.clear();
2724       reallocate_preorders();
2725       build_loop_tree();
2726 
2727       // Check for bailout, and return
2728       if (C->failing()) {
2729         return;
2730       }
2731       // Reset loop nesting depth
2732       _ltree_root->set_nest( 0 );
2733 
2734       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
2735     }
2736   }
2737 
2738   // Reset major-progress flag for the driver's heuristics
2739   C->clear_major_progress();
2740 
2741   // Build Dominators for elision of NULL checks & loop finding.
2742   // Since nodes do not have a slot for immediate dominator, make
2743   // a persistent side array for that info indexed on node->_idx.
2744   _idom_size = C->unique();
2745   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
2746   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
2747   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
2748   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
2749 
2750   Dominators();
2751 
2752   if (!_verify_only) {
2753     // As a side effect, Dominators removed any unreachable CFG paths
2754     // into RegionNodes.  It doesn't do this test against Root, so
2755     // we do it here.
2756     for( uint i = 1; i < C->root()->req(); i++ ) {
2757       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
2758         _igvn.delete_input_of(C->root(), i);
2759         i--;                      // Rerun same iteration on compressed edges
2760       }
2761     }
2762 
2763     // Given dominators, try to find inner loops with calls that must
2764     // always be executed (call dominates loop tail).  These loops do
2765     // not need a separate safepoint.
2766     Node_List cisstack(a);
2767     _ltree_root->check_safepts(visited, cisstack);
2768   }
2769 
2770   // Walk the DATA nodes and place into loops.  Find earliest control
2771   // node.  For CFG nodes, the _nodes array starts out and remains
2772   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
2773   // _nodes array holds the earliest legal controlling CFG node.
2774 
2775   // Allocate stack with enough space to avoid frequent realloc
2776   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
2777   Node_Stack nstack( a, stack_size );
2778 
2779   visited.Clear();
2780   Node_List worklist(a);
2781   // Don't need C->root() on worklist since
2782   // it will be processed among C->top() inputs
2783   worklist.push( C->top() );
2784   visited.set( C->top()->_idx ); // Set C->top() as visited now
2785   build_loop_early( visited, worklist, nstack );
2786 
2787   // Given early legal placement, try finding counted loops.  This placement
2788   // is good enough to discover most loop invariants.
2789   if( !_verify_me && !_verify_only )
2790     _ltree_root->counted_loop( this );
2791 
2792   // Find latest loop placement.  Find ideal loop placement.
2793   visited.Clear();
2794   init_dom_lca_tags();
2795   // Need C->root() on worklist when processing outs
2796   worklist.push( C->root() );
2797   NOT_PRODUCT( C->verify_graph_edges(); )
2798   worklist.push( C->top() );
2799   build_loop_late( visited, worklist, nstack );
2800 
2801   if (_verify_only) {
2802     // restore major progress flag
2803     for (int i = 0; i < old_progress; i++)
2804       C->set_major_progress();
2805     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
2806     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
2807     return;
2808   }
2809 
2810   // clear out the dead code after build_loop_late
2811   while (_deadlist.size()) {
2812     _igvn.remove_globally_dead_node(_deadlist.pop());
2813   }
2814 
2815   if (stop_early) {
2816     assert(do_expensive_nodes, "why are we here?");
2817     if (process_expensive_nodes()) {
2818       // If we made some progress when processing expensive nodes then
2819       // the IGVN may modify the graph in a way that will allow us to
2820       // make some more progress: we need to try processing expensive
2821       // nodes again.
2822       C->set_major_progress();
2823     }
2824     _igvn.optimize();
2825     return;
2826   }
2827 
2828   // Some parser-inserted loop predicates could never be used by loop
2829   // predication or they were moved away from loop during some optimizations.
2830   // For example, peeling. Eliminate them before next loop optimizations.
2831   eliminate_useless_predicates();
2832 
2833 #ifndef PRODUCT
2834   C->verify_graph_edges();
2835   if (_verify_me) {             // Nested verify pass?
2836     // Check to see if the verify mode is broken
2837     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
2838     return;
2839   }
2840   if(VerifyLoopOptimizations) verify();
2841   if(TraceLoopOpts && C->has_loops()) {
2842     _ltree_root->dump();
2843   }
2844 #endif
2845 
2846   if (skip_loop_opts) {
2847     // restore major progress flag
2848     for (int i = 0; i < old_progress; i++) {
2849       C->set_major_progress();
2850     }
2851 
2852     // Cleanup any modified bits
2853     _igvn.optimize();
2854 
2855     if (C->log() != NULL) {
2856       log_loop_tree(_ltree_root, _ltree_root, C->log());
2857     }
2858     return;
2859   }
2860 
2861   if (ReassociateInvariants) {
2862     // Reassociate invariants and prep for split_thru_phi
2863     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2864       IdealLoopTree* lpt = iter.current();
2865       bool is_counted = lpt->is_counted();
2866       if (!is_counted || !lpt->is_inner()) continue;
2867 
2868       // check for vectorized loops, any reassociation of invariants was already done
2869       if (is_counted && lpt->_head->as_CountedLoop()->do_unroll_only()) continue;
2870 
2871       lpt->reassociate_invariants(this);
2872 
2873       // Because RCE opportunities can be masked by split_thru_phi,
2874       // look for RCE candidates and inhibit split_thru_phi
2875       // on just their loop-phi's for this pass of loop opts
2876       if (SplitIfBlocks && do_split_ifs) {
2877         if (lpt->policy_range_check(this)) {
2878           lpt->_rce_candidate = 1; // = true
2879         }
2880       }
2881     }
2882   }
2883 
2884   // Check for aggressive application of split-if and other transforms
2885   // that require basic-block info (like cloning through Phi's)
2886   if( SplitIfBlocks && do_split_ifs ) {
2887     visited.Clear();
2888     split_if_with_blocks( visited, nstack, last_round );
2889     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
2890     if (last_round) {
2891       C->set_major_progress();
2892     }
2893   }
2894 
2895   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
2896     C->set_major_progress();
2897   }
2898 
2899   // Perform loop predication before iteration splitting
2900   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
2901     _ltree_root->_child->loop_predication(this);
2902   }
2903 
2904   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
2905     if (do_intrinsify_fill()) {
2906       C->set_major_progress();
2907     }
2908   }
2909 
2910   // Perform iteration-splitting on inner loops.  Split iterations to avoid
2911   // range checks or one-shot null checks.
2912 
2913   // If split-if's didn't hack the graph too bad (no CFG changes)
2914   // then do loop opts.
2915   if (C->has_loops() && !C->major_progress()) {
2916     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
2917     _ltree_root->_child->iteration_split( this, worklist );
2918     // No verify after peeling!  GCM has hoisted code out of the loop.
2919     // After peeling, the hoisted code could sink inside the peeled area.
2920     // The peeling code does not try to recompute the best location for
2921     // all the code before the peeled area, so the verify pass will always
2922     // complain about it.
2923   }
2924   // Do verify graph edges in any case
2925   NOT_PRODUCT( C->verify_graph_edges(); );
2926 
2927   if (!do_split_ifs) {
2928     // We saw major progress in Split-If to get here.  We forced a
2929     // pass with unrolling and not split-if, however more split-if's
2930     // might make progress.  If the unrolling didn't make progress
2931     // then the major-progress flag got cleared and we won't try
2932     // another round of Split-If.  In particular the ever-common
2933     // instance-of/check-cast pattern requires at least 2 rounds of
2934     // Split-If to clear out.
2935     C->set_major_progress();
2936   }
2937 
2938   // Repeat loop optimizations if new loops were seen
2939   if (created_loop_node()) {
2940     C->set_major_progress();
2941   }
2942 
2943   // Keep loop predicates and perform optimizations with them
2944   // until no more loop optimizations could be done.
2945   // After that switch predicates off and do more loop optimizations.
2946   if (!C->major_progress() && (C->predicate_count() > 0)) {
2947      C->cleanup_loop_predicates(_igvn);
2948      if (TraceLoopOpts) {
2949        tty->print_cr("PredicatesOff");
2950      }
2951      C->set_major_progress();
2952   }
2953 
2954   // Convert scalar to superword operations at the end of all loop opts.
2955   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
2956     // SuperWord transform
2957     SuperWord sw(this);
2958     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2959       IdealLoopTree* lpt = iter.current();
2960       if (lpt->is_counted()) {
2961         CountedLoopNode *cl = lpt->_head->as_CountedLoop();
2962 
2963         if (PostLoopMultiversioning && cl->is_rce_post_loop() && !cl->is_vectorized_loop()) {
2964           // Check that the rce'd post loop is encountered first, multiversion after all
2965           // major main loop optimization are concluded
2966           if (!C->major_progress()) {
2967             IdealLoopTree *lpt_next = lpt->_next;
2968             if (lpt_next && lpt_next->is_counted()) {
2969               CountedLoopNode *cl = lpt_next->_head->as_CountedLoop();
2970               has_range_checks(lpt_next);
2971               if (cl->is_post_loop() && cl->range_checks_present()) {
2972                 if (!cl->is_multiversioned()) {
2973                   if (multi_version_post_loops(lpt, lpt_next) == false) {
2974                     // Cause the rce loop to be optimized away if we fail
2975                     cl->mark_is_multiversioned();
2976                     cl->set_slp_max_unroll(0);
2977                     poison_rce_post_loop(lpt);
2978                   }
2979                 }
2980               }
2981             }
2982             sw.transform_loop(lpt, true);
2983           }
2984         } else if (cl->is_main_loop()) {
2985           sw.transform_loop(lpt, true);
2986         }
2987       }
2988     }
2989   }
2990 
2991   // Cleanup any modified bits
2992   _igvn.optimize();
2993 
2994   // disable assert until issue with split_flow_path is resolved (6742111)
2995   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
2996   //        "shouldn't introduce irreducible loops");
2997 
2998   if (C->log() != NULL) {
2999     log_loop_tree(_ltree_root, _ltree_root, C->log());
3000   }
3001 }
3002 
3003 #ifndef PRODUCT
3004 //------------------------------print_statistics-------------------------------
3005 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
3006 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
3007 void PhaseIdealLoop::print_statistics() {
3008   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
3009 }
3010 
3011 //------------------------------verify-----------------------------------------
3012 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
3013 static int fail;                // debug only, so its multi-thread dont care
3014 void PhaseIdealLoop::verify() const {
3015   int old_progress = C->major_progress();
3016   ResourceMark rm;
3017   PhaseIdealLoop loop_verify( _igvn, this );
3018   VectorSet visited(Thread::current()->resource_area());
3019 
3020   fail = 0;
3021   verify_compare( C->root(), &loop_verify, visited );
3022   assert( fail == 0, "verify loops failed" );
3023   // Verify loop structure is the same
3024   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
3025   // Reset major-progress.  It was cleared by creating a verify version of
3026   // PhaseIdealLoop.
3027   for( int i=0; i<old_progress; i++ )
3028     C->set_major_progress();
3029 }
3030 
3031 //------------------------------verify_compare---------------------------------
3032 // Make sure me and the given PhaseIdealLoop agree on key data structures
3033 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
3034   if( !n ) return;
3035   if( visited.test_set( n->_idx ) ) return;
3036   if( !_nodes[n->_idx] ) {      // Unreachable
3037     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
3038     return;
3039   }
3040 
3041   uint i;
3042   for( i = 0; i < n->req(); i++ )
3043     verify_compare( n->in(i), loop_verify, visited );
3044 
3045   // Check the '_nodes' block/loop structure
3046   i = n->_idx;
3047   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
3048     if( _nodes[i] != loop_verify->_nodes[i] &&
3049         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
3050       tty->print("Mismatched control setting for: ");
3051       n->dump();
3052       if( fail++ > 10 ) return;
3053       Node *c = get_ctrl_no_update(n);
3054       tty->print("We have it as: ");
3055       if( c->in(0) ) c->dump();
3056         else tty->print_cr("N%d",c->_idx);
3057       tty->print("Verify thinks: ");
3058       if( loop_verify->has_ctrl(n) )
3059         loop_verify->get_ctrl_no_update(n)->dump();
3060       else
3061         loop_verify->get_loop_idx(n)->dump();
3062       tty->cr();
3063     }
3064   } else {                    // We have a loop
3065     IdealLoopTree *us = get_loop_idx(n);
3066     if( loop_verify->has_ctrl(n) ) {
3067       tty->print("Mismatched loop setting for: ");
3068       n->dump();
3069       if( fail++ > 10 ) return;
3070       tty->print("We have it as: ");
3071       us->dump();
3072       tty->print("Verify thinks: ");
3073       loop_verify->get_ctrl_no_update(n)->dump();
3074       tty->cr();
3075     } else if (!C->major_progress()) {
3076       // Loop selection can be messed up if we did a major progress
3077       // operation, like split-if.  Do not verify in that case.
3078       IdealLoopTree *them = loop_verify->get_loop_idx(n);
3079       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
3080         tty->print("Unequals loops for: ");
3081         n->dump();
3082         if( fail++ > 10 ) return;
3083         tty->print("We have it as: ");
3084         us->dump();
3085         tty->print("Verify thinks: ");
3086         them->dump();
3087         tty->cr();
3088       }
3089     }
3090   }
3091 
3092   // Check for immediate dominators being equal
3093   if( i >= _idom_size ) {
3094     if( !n->is_CFG() ) return;
3095     tty->print("CFG Node with no idom: ");
3096     n->dump();
3097     return;
3098   }
3099   if( !n->is_CFG() ) return;
3100   if( n == C->root() ) return; // No IDOM here
3101 
3102   assert(n->_idx == i, "sanity");
3103   Node *id = idom_no_update(n);
3104   if( id != loop_verify->idom_no_update(n) ) {
3105     tty->print("Unequals idoms for: ");
3106     n->dump();
3107     if( fail++ > 10 ) return;
3108     tty->print("We have it as: ");
3109     id->dump();
3110     tty->print("Verify thinks: ");
3111     loop_verify->idom_no_update(n)->dump();
3112     tty->cr();
3113   }
3114 
3115 }
3116 
3117 //------------------------------verify_tree------------------------------------
3118 // Verify that tree structures match.  Because the CFG can change, siblings
3119 // within the loop tree can be reordered.  We attempt to deal with that by
3120 // reordering the verify's loop tree if possible.
3121 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
3122   assert( _parent == parent, "Badly formed loop tree" );
3123 
3124   // Siblings not in same order?  Attempt to re-order.
3125   if( _head != loop->_head ) {
3126     // Find _next pointer to update
3127     IdealLoopTree **pp = &loop->_parent->_child;
3128     while( *pp != loop )
3129       pp = &((*pp)->_next);
3130     // Find proper sibling to be next
3131     IdealLoopTree **nn = &loop->_next;
3132     while( (*nn) && (*nn)->_head != _head )
3133       nn = &((*nn)->_next);
3134 
3135     // Check for no match.
3136     if( !(*nn) ) {
3137       // Annoyingly, irreducible loops can pick different headers
3138       // after a major_progress operation, so the rest of the loop
3139       // tree cannot be matched.
3140       if (_irreducible && Compile::current()->major_progress())  return;
3141       assert( 0, "failed to match loop tree" );
3142     }
3143 
3144     // Move (*nn) to (*pp)
3145     IdealLoopTree *hit = *nn;
3146     *nn = hit->_next;
3147     hit->_next = loop;
3148     *pp = loop;
3149     loop = hit;
3150     // Now try again to verify
3151   }
3152 
3153   assert( _head  == loop->_head , "mismatched loop head" );
3154   Node *tail = _tail;           // Inline a non-updating version of
3155   while( !tail->in(0) )         // the 'tail()' call.
3156     tail = tail->in(1);
3157   assert( tail == loop->_tail, "mismatched loop tail" );
3158 
3159   // Counted loops that are guarded should be able to find their guards
3160   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
3161     CountedLoopNode *cl = _head->as_CountedLoop();
3162     Node *init = cl->init_trip();
3163     Node *ctrl = cl->in(LoopNode::EntryControl);
3164     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
3165     Node *iff  = ctrl->in(0);
3166     assert( iff->Opcode() == Op_If, "" );
3167     Node *bol  = iff->in(1);
3168     assert( bol->Opcode() == Op_Bool, "" );
3169     Node *cmp  = bol->in(1);
3170     assert( cmp->Opcode() == Op_CmpI, "" );
3171     Node *add  = cmp->in(1);
3172     Node *opaq;
3173     if( add->Opcode() == Op_Opaque1 ) {
3174       opaq = add;
3175     } else {
3176       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
3177       assert( add == init, "" );
3178       opaq = cmp->in(2);
3179     }
3180     assert( opaq->Opcode() == Op_Opaque1, "" );
3181 
3182   }
3183 
3184   if (_child != NULL)  _child->verify_tree(loop->_child, this);
3185   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
3186   // Innermost loops need to verify loop bodies,
3187   // but only if no 'major_progress'
3188   int fail = 0;
3189   if (!Compile::current()->major_progress() && _child == NULL) {
3190     for( uint i = 0; i < _body.size(); i++ ) {
3191       Node *n = _body.at(i);
3192       if (n->outcnt() == 0)  continue; // Ignore dead
3193       uint j;
3194       for( j = 0; j < loop->_body.size(); j++ )
3195         if( loop->_body.at(j) == n )
3196           break;
3197       if( j == loop->_body.size() ) { // Not found in loop body
3198         // Last ditch effort to avoid assertion: Its possible that we
3199         // have some users (so outcnt not zero) but are still dead.
3200         // Try to find from root.
3201         if (Compile::current()->root()->find(n->_idx)) {
3202           fail++;
3203           tty->print("We have that verify does not: ");
3204           n->dump();
3205         }
3206       }
3207     }
3208     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
3209       Node *n = loop->_body.at(i2);
3210       if (n->outcnt() == 0)  continue; // Ignore dead
3211       uint j;
3212       for( j = 0; j < _body.size(); j++ )
3213         if( _body.at(j) == n )
3214           break;
3215       if( j == _body.size() ) { // Not found in loop body
3216         // Last ditch effort to avoid assertion: Its possible that we
3217         // have some users (so outcnt not zero) but are still dead.
3218         // Try to find from root.
3219         if (Compile::current()->root()->find(n->_idx)) {
3220           fail++;
3221           tty->print("Verify has that we do not: ");
3222           n->dump();
3223         }
3224       }
3225     }
3226     assert( !fail, "loop body mismatch" );
3227   }
3228 }
3229 
3230 #endif
3231 
3232 //------------------------------set_idom---------------------------------------
3233 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
3234   uint idx = d->_idx;
3235   if (idx >= _idom_size) {
3236     uint newsize = _idom_size<<1;
3237     while( idx >= newsize ) {
3238       newsize <<= 1;
3239     }
3240     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
3241     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
3242     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
3243     _idom_size = newsize;
3244   }
3245   _idom[idx] = n;
3246   _dom_depth[idx] = dom_depth;
3247 }
3248 
3249 //------------------------------recompute_dom_depth---------------------------------------
3250 // The dominator tree is constructed with only parent pointers.
3251 // This recomputes the depth in the tree by first tagging all
3252 // nodes as "no depth yet" marker.  The next pass then runs up
3253 // the dom tree from each node marked "no depth yet", and computes
3254 // the depth on the way back down.
3255 void PhaseIdealLoop::recompute_dom_depth() {
3256   uint no_depth_marker = C->unique();
3257   uint i;
3258   // Initialize depth to "no depth yet" and realize all lazy updates
3259   for (i = 0; i < _idom_size; i++) {
3260     // Only indices with a _dom_depth has a Node* or NULL (otherwise uninitalized).
3261     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
3262       _dom_depth[i] = no_depth_marker;
3263 
3264       // heal _idom if it has a fwd mapping in _nodes
3265       if (_idom[i]->in(0) == NULL) {
3266         idom(i);
3267       }
3268     }
3269   }
3270   if (_dom_stk == NULL) {
3271     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
3272     if (init_size < 10) init_size = 10;
3273     _dom_stk = new GrowableArray<uint>(init_size);
3274   }
3275   // Compute new depth for each node.
3276   for (i = 0; i < _idom_size; i++) {
3277     uint j = i;
3278     // Run up the dom tree to find a node with a depth
3279     while (_dom_depth[j] == no_depth_marker) {
3280       _dom_stk->push(j);
3281       j = _idom[j]->_idx;
3282     }
3283     // Compute the depth on the way back down this tree branch
3284     uint dd = _dom_depth[j] + 1;
3285     while (_dom_stk->length() > 0) {
3286       uint j = _dom_stk->pop();
3287       _dom_depth[j] = dd;
3288       dd++;
3289     }
3290   }
3291 }
3292 
3293 //------------------------------sort-------------------------------------------
3294 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
3295 // loop tree, not the root.
3296 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
3297   if( !innermost ) return loop; // New innermost loop
3298 
3299   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
3300   assert( loop_preorder, "not yet post-walked loop" );
3301   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
3302   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
3303 
3304   // Insert at start of list
3305   while( l ) {                  // Insertion sort based on pre-order
3306     if( l == loop ) return innermost; // Already on list!
3307     int l_preorder = get_preorder(l->_head); // Cache pre-order number
3308     assert( l_preorder, "not yet post-walked l" );
3309     // Check header pre-order number to figure proper nesting
3310     if( loop_preorder > l_preorder )
3311       break;                    // End of insertion
3312     // If headers tie (e.g., shared headers) check tail pre-order numbers.
3313     // Since I split shared headers, you'd think this could not happen.
3314     // BUT: I must first do the preorder numbering before I can discover I
3315     // have shared headers, so the split headers all get the same preorder
3316     // number as the RegionNode they split from.
3317     if( loop_preorder == l_preorder &&
3318         get_preorder(loop->_tail) < get_preorder(l->_tail) )
3319       break;                    // Also check for shared headers (same pre#)
3320     pp = &l->_parent;           // Chain up list
3321     l = *pp;
3322   }
3323   // Link into list
3324   // Point predecessor to me
3325   *pp = loop;
3326   // Point me to successor
3327   IdealLoopTree *p = loop->_parent;
3328   loop->_parent = l;            // Point me to successor
3329   if( p ) sort( p, innermost ); // Insert my parents into list as well
3330   return innermost;
3331 }
3332 
3333 //------------------------------build_loop_tree--------------------------------
3334 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
3335 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
3336 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
3337 // tightest enclosing IdealLoopTree for post-walked.
3338 //
3339 // During my forward walk I do a short 1-layer lookahead to see if I can find
3340 // a loop backedge with that doesn't have any work on the backedge.  This
3341 // helps me construct nested loops with shared headers better.
3342 //
3343 // Once I've done the forward recursion, I do the post-work.  For each child
3344 // I check to see if there is a backedge.  Backedges define a loop!  I
3345 // insert an IdealLoopTree at the target of the backedge.
3346 //
3347 // During the post-work I also check to see if I have several children
3348 // belonging to different loops.  If so, then this Node is a decision point
3349 // where control flow can choose to change loop nests.  It is at this
3350 // decision point where I can figure out how loops are nested.  At this
3351 // time I can properly order the different loop nests from my children.
3352 // Note that there may not be any backedges at the decision point!
3353 //
3354 // Since the decision point can be far removed from the backedges, I can't
3355 // order my loops at the time I discover them.  Thus at the decision point
3356 // I need to inspect loop header pre-order numbers to properly nest my
3357 // loops.  This means I need to sort my childrens' loops by pre-order.
3358 // The sort is of size number-of-control-children, which generally limits
3359 // it to size 2 (i.e., I just choose between my 2 target loops).
3360 void PhaseIdealLoop::build_loop_tree() {
3361   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3362   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
3363   Node *n = C->root();
3364   bltstack.push(n);
3365   int pre_order = 1;
3366   int stack_size;
3367 
3368   while ( ( stack_size = bltstack.length() ) != 0 ) {
3369     n = bltstack.top(); // Leave node on stack
3370     if ( !is_visited(n) ) {
3371       // ---- Pre-pass Work ----
3372       // Pre-walked but not post-walked nodes need a pre_order number.
3373 
3374       set_preorder_visited( n, pre_order ); // set as visited
3375 
3376       // ---- Scan over children ----
3377       // Scan first over control projections that lead to loop headers.
3378       // This helps us find inner-to-outer loops with shared headers better.
3379 
3380       // Scan children's children for loop headers.
3381       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
3382         Node* m = n->raw_out(i);       // Child
3383         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
3384           // Scan over children's children to find loop
3385           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3386             Node* l = m->fast_out(j);
3387             if( is_visited(l) &&       // Been visited?
3388                 !is_postvisited(l) &&  // But not post-visited
3389                 get_preorder(l) < pre_order ) { // And smaller pre-order
3390               // Found!  Scan the DFS down this path before doing other paths
3391               bltstack.push(m);
3392               break;
3393             }
3394           }
3395         }
3396       }
3397       pre_order++;
3398     }
3399     else if ( !is_postvisited(n) ) {
3400       // Note: build_loop_tree_impl() adds out edges on rare occasions,
3401       // such as com.sun.rsasign.am::a.
3402       // For non-recursive version, first, process current children.
3403       // On next iteration, check if additional children were added.
3404       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
3405         Node* u = n->raw_out(k);
3406         if ( u->is_CFG() && !is_visited(u) ) {
3407           bltstack.push(u);
3408         }
3409       }
3410       if ( bltstack.length() == stack_size ) {
3411         // There were no additional children, post visit node now
3412         (void)bltstack.pop(); // Remove node from stack
3413         pre_order = build_loop_tree_impl( n, pre_order );
3414         // Check for bailout
3415         if (C->failing()) {
3416           return;
3417         }
3418         // Check to grow _preorders[] array for the case when
3419         // build_loop_tree_impl() adds new nodes.
3420         check_grow_preorders();
3421       }
3422     }
3423     else {
3424       (void)bltstack.pop(); // Remove post-visited node from stack
3425     }
3426   }
3427 }
3428 
3429 //------------------------------build_loop_tree_impl---------------------------
3430 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
3431   // ---- Post-pass Work ----
3432   // Pre-walked but not post-walked nodes need a pre_order number.
3433 
3434   // Tightest enclosing loop for this Node
3435   IdealLoopTree *innermost = NULL;
3436 
3437   // For all children, see if any edge is a backedge.  If so, make a loop
3438   // for it.  Then find the tightest enclosing loop for the self Node.
3439   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3440     Node* m = n->fast_out(i);   // Child
3441     if( n == m ) continue;      // Ignore control self-cycles
3442     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
3443 
3444     IdealLoopTree *l;           // Child's loop
3445     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
3446       // Found a backedge
3447       assert( get_preorder(m) < pre_order, "should be backedge" );
3448       // Check for the RootNode, which is already a LoopNode and is allowed
3449       // to have multiple "backedges".
3450       if( m == C->root()) {     // Found the root?
3451         l = _ltree_root;        // Root is the outermost LoopNode
3452       } else {                  // Else found a nested loop
3453         // Insert a LoopNode to mark this loop.
3454         l = new IdealLoopTree(this, m, n);
3455       } // End of Else found a nested loop
3456       if( !has_loop(m) )        // If 'm' does not already have a loop set
3457         set_loop(m, l);         // Set loop header to loop now
3458 
3459     } else {                    // Else not a nested loop
3460       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
3461       l = get_loop(m);          // Get previously determined loop
3462       // If successor is header of a loop (nest), move up-loop till it
3463       // is a member of some outer enclosing loop.  Since there are no
3464       // shared headers (I've split them already) I only need to go up
3465       // at most 1 level.
3466       while( l && l->_head == m ) // Successor heads loop?
3467         l = l->_parent;         // Move up 1 for me
3468       // If this loop is not properly parented, then this loop
3469       // has no exit path out, i.e. its an infinite loop.
3470       if( !l ) {
3471         // Make loop "reachable" from root so the CFG is reachable.  Basically
3472         // insert a bogus loop exit that is never taken.  'm', the loop head,
3473         // points to 'n', one (of possibly many) fall-in paths.  There may be
3474         // many backedges as well.
3475 
3476         // Here I set the loop to be the root loop.  I could have, after
3477         // inserting a bogus loop exit, restarted the recursion and found my
3478         // new loop exit.  This would make the infinite loop a first-class
3479         // loop and it would then get properly optimized.  What's the use of
3480         // optimizing an infinite loop?
3481         l = _ltree_root;        // Oops, found infinite loop
3482 
3483         if (!_verify_only) {
3484           // Insert the NeverBranch between 'm' and it's control user.
3485           NeverBranchNode *iff = new NeverBranchNode( m );
3486           _igvn.register_new_node_with_optimizer(iff);
3487           set_loop(iff, l);
3488           Node *if_t = new CProjNode( iff, 0 );
3489           _igvn.register_new_node_with_optimizer(if_t);
3490           set_loop(if_t, l);
3491 
3492           Node* cfg = NULL;       // Find the One True Control User of m
3493           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3494             Node* x = m->fast_out(j);
3495             if (x->is_CFG() && x != m && x != iff)
3496               { cfg = x; break; }
3497           }
3498           assert(cfg != NULL, "must find the control user of m");
3499           uint k = 0;             // Probably cfg->in(0)
3500           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
3501           cfg->set_req( k, if_t ); // Now point to NeverBranch
3502           _igvn._worklist.push(cfg);
3503 
3504           // Now create the never-taken loop exit
3505           Node *if_f = new CProjNode( iff, 1 );
3506           _igvn.register_new_node_with_optimizer(if_f);
3507           set_loop(if_f, l);
3508           // Find frame ptr for Halt.  Relies on the optimizer
3509           // V-N'ing.  Easier and quicker than searching through
3510           // the program structure.
3511           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
3512           _igvn.register_new_node_with_optimizer(frame);
3513           // Halt & Catch Fire
3514           Node *halt = new HaltNode( if_f, frame );
3515           _igvn.register_new_node_with_optimizer(halt);
3516           set_loop(halt, l);
3517           C->root()->add_req(halt);
3518         }
3519         set_loop(C->root(), _ltree_root);
3520       }
3521     }
3522     // Weeny check for irreducible.  This child was already visited (this
3523     // IS the post-work phase).  Is this child's loop header post-visited
3524     // as well?  If so, then I found another entry into the loop.
3525     if (!_verify_only) {
3526       while( is_postvisited(l->_head) ) {
3527         // found irreducible
3528         l->_irreducible = 1; // = true
3529         l = l->_parent;
3530         _has_irreducible_loops = true;
3531         // Check for bad CFG here to prevent crash, and bailout of compile
3532         if (l == NULL) {
3533           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
3534           return pre_order;
3535         }
3536       }
3537       C->set_has_irreducible_loop(_has_irreducible_loops);
3538     }
3539 
3540     // This Node might be a decision point for loops.  It is only if
3541     // it's children belong to several different loops.  The sort call
3542     // does a trivial amount of work if there is only 1 child or all
3543     // children belong to the same loop.  If however, the children
3544     // belong to different loops, the sort call will properly set the
3545     // _parent pointers to show how the loops nest.
3546     //
3547     // In any case, it returns the tightest enclosing loop.
3548     innermost = sort( l, innermost );
3549   }
3550 
3551   // Def-use info will have some dead stuff; dead stuff will have no
3552   // loop decided on.
3553 
3554   // Am I a loop header?  If so fix up my parent's child and next ptrs.
3555   if( innermost && innermost->_head == n ) {
3556     assert( get_loop(n) == innermost, "" );
3557     IdealLoopTree *p = innermost->_parent;
3558     IdealLoopTree *l = innermost;
3559     while( p && l->_head == n ) {
3560       l->_next = p->_child;     // Put self on parents 'next child'
3561       p->_child = l;            // Make self as first child of parent
3562       l = p;                    // Now walk up the parent chain
3563       p = l->_parent;
3564     }
3565   } else {
3566     // Note that it is possible for a LoopNode to reach here, if the
3567     // backedge has been made unreachable (hence the LoopNode no longer
3568     // denotes a Loop, and will eventually be removed).
3569 
3570     // Record tightest enclosing loop for self.  Mark as post-visited.
3571     set_loop(n, innermost);
3572     // Also record has_call flag early on
3573     if( innermost ) {
3574       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
3575         // Do not count uncommon calls
3576         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
3577           Node *iff = n->in(0)->in(0);
3578           // No any calls for vectorized loops.
3579           if( UseSuperWord || !iff->is_If() ||
3580               (n->in(0)->Opcode() == Op_IfFalse &&
3581                (1.0 - iff->as_If()->_prob) >= 0.01) ||
3582               (iff->as_If()->_prob >= 0.01) )
3583             innermost->_has_call = 1;
3584         }
3585       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
3586         // Disable loop optimizations if the loop has a scalar replaceable
3587         // allocation. This disabling may cause a potential performance lost
3588         // if the allocation is not eliminated for some reason.
3589         innermost->_allow_optimizations = false;
3590         innermost->_has_call = 1; // = true
3591       } else if (n->Opcode() == Op_SafePoint) {
3592         // Record all safepoints in this loop.
3593         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
3594         innermost->_safepts->push(n);
3595       }
3596     }
3597   }
3598 
3599   // Flag as post-visited now
3600   set_postvisited(n);
3601   return pre_order;
3602 }
3603 
3604 
3605 //------------------------------build_loop_early-------------------------------
3606 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3607 // First pass computes the earliest controlling node possible.  This is the
3608 // controlling input with the deepest dominating depth.
3609 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3610   while (worklist.size() != 0) {
3611     // Use local variables nstack_top_n & nstack_top_i to cache values
3612     // on nstack's top.
3613     Node *nstack_top_n = worklist.pop();
3614     uint  nstack_top_i = 0;
3615 //while_nstack_nonempty:
3616     while (true) {
3617       // Get parent node and next input's index from stack's top.
3618       Node  *n = nstack_top_n;
3619       uint   i = nstack_top_i;
3620       uint cnt = n->req(); // Count of inputs
3621       if (i == 0) {        // Pre-process the node.
3622         if( has_node(n) &&            // Have either loop or control already?
3623             !has_ctrl(n) ) {          // Have loop picked out already?
3624           // During "merge_many_backedges" we fold up several nested loops
3625           // into a single loop.  This makes the members of the original
3626           // loop bodies pointing to dead loops; they need to move up
3627           // to the new UNION'd larger loop.  I set the _head field of these
3628           // dead loops to NULL and the _parent field points to the owning
3629           // loop.  Shades of UNION-FIND algorithm.
3630           IdealLoopTree *ilt;
3631           while( !(ilt = get_loop(n))->_head ) {
3632             // Normally I would use a set_loop here.  But in this one special
3633             // case, it is legal (and expected) to change what loop a Node
3634             // belongs to.
3635             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
3636           }
3637           // Remove safepoints ONLY if I've already seen I don't need one.
3638           // (the old code here would yank a 2nd safepoint after seeing a
3639           // first one, even though the 1st did not dominate in the loop body
3640           // and thus could be avoided indefinitely)
3641           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
3642               is_deleteable_safept(n)) {
3643             Node *in = n->in(TypeFunc::Control);
3644             lazy_replace(n,in);       // Pull safepoint now
3645             if (ilt->_safepts != NULL) {
3646               ilt->_safepts->yank(n);
3647             }
3648             // Carry on with the recursion "as if" we are walking
3649             // only the control input
3650             if( !visited.test_set( in->_idx ) ) {
3651               worklist.push(in);      // Visit this guy later, using worklist
3652             }
3653             // Get next node from nstack:
3654             // - skip n's inputs processing by setting i > cnt;
3655             // - we also will not call set_early_ctrl(n) since
3656             //   has_node(n) == true (see the condition above).
3657             i = cnt + 1;
3658           }
3659         }
3660       } // if (i == 0)
3661 
3662       // Visit all inputs
3663       bool done = true;       // Assume all n's inputs will be processed
3664       while (i < cnt) {
3665         Node *in = n->in(i);
3666         ++i;
3667         if (in == NULL) continue;
3668         if (in->pinned() && !in->is_CFG())
3669           set_ctrl(in, in->in(0));
3670         int is_visited = visited.test_set( in->_idx );
3671         if (!has_node(in)) {  // No controlling input yet?
3672           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
3673           assert( !is_visited, "visit only once" );
3674           nstack.push(n, i);  // Save parent node and next input's index.
3675           nstack_top_n = in;  // Process current input now.
3676           nstack_top_i = 0;
3677           done = false;       // Not all n's inputs processed.
3678           break; // continue while_nstack_nonempty;
3679         } else if (!is_visited) {
3680           // This guy has a location picked out for him, but has not yet
3681           // been visited.  Happens to all CFG nodes, for instance.
3682           // Visit him using the worklist instead of recursion, to break
3683           // cycles.  Since he has a location already we do not need to
3684           // find his location before proceeding with the current Node.
3685           worklist.push(in);  // Visit this guy later, using worklist
3686         }
3687       }
3688       if (done) {
3689         // All of n's inputs have been processed, complete post-processing.
3690 
3691         // Compute earliest point this Node can go.
3692         // CFG, Phi, pinned nodes already know their controlling input.
3693         if (!has_node(n)) {
3694           // Record earliest legal location
3695           set_early_ctrl( n );
3696         }
3697         if (nstack.is_empty()) {
3698           // Finished all nodes on stack.
3699           // Process next node on the worklist.
3700           break;
3701         }
3702         // Get saved parent node and next input's index.
3703         nstack_top_n = nstack.node();
3704         nstack_top_i = nstack.index();
3705         nstack.pop();
3706       }
3707     } // while (true)
3708   }
3709 }
3710 
3711 //------------------------------dom_lca_internal--------------------------------
3712 // Pair-wise LCA
3713 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
3714   if( !n1 ) return n2;          // Handle NULL original LCA
3715   assert( n1->is_CFG(), "" );
3716   assert( n2->is_CFG(), "" );
3717   // find LCA of all uses
3718   uint d1 = dom_depth(n1);
3719   uint d2 = dom_depth(n2);
3720   while (n1 != n2) {
3721     if (d1 > d2) {
3722       n1 =      idom(n1);
3723       d1 = dom_depth(n1);
3724     } else if (d1 < d2) {
3725       n2 =      idom(n2);
3726       d2 = dom_depth(n2);
3727     } else {
3728       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3729       // of the tree might have the same depth.  These sections have
3730       // to be searched more carefully.
3731 
3732       // Scan up all the n1's with equal depth, looking for n2.
3733       Node *t1 = idom(n1);
3734       while (dom_depth(t1) == d1) {
3735         if (t1 == n2)  return n2;
3736         t1 = idom(t1);
3737       }
3738       // Scan up all the n2's with equal depth, looking for n1.
3739       Node *t2 = idom(n2);
3740       while (dom_depth(t2) == d2) {
3741         if (t2 == n1)  return n1;
3742         t2 = idom(t2);
3743       }
3744       // Move up to a new dominator-depth value as well as up the dom-tree.
3745       n1 = t1;
3746       n2 = t2;
3747       d1 = dom_depth(n1);
3748       d2 = dom_depth(n2);
3749     }
3750   }
3751   return n1;
3752 }
3753 
3754 //------------------------------compute_idom-----------------------------------
3755 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
3756 // IDOMs are correct.
3757 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
3758   assert( region->is_Region(), "" );
3759   Node *LCA = NULL;
3760   for( uint i = 1; i < region->req(); i++ ) {
3761     if( region->in(i) != C->top() )
3762       LCA = dom_lca( LCA, region->in(i) );
3763   }
3764   return LCA;
3765 }
3766 
3767 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
3768   bool had_error = false;
3769 #ifdef ASSERT
3770   if (early != C->root()) {
3771     // Make sure that there's a dominance path from LCA to early
3772     Node* d = LCA;
3773     while (d != early) {
3774       if (d == C->root()) {
3775         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
3776         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
3777         had_error = true;
3778         break;
3779       }
3780       d = idom(d);
3781     }
3782   }
3783 #endif
3784   return had_error;
3785 }
3786 
3787 
3788 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
3789   // Compute LCA over list of uses
3790   bool had_error = false;
3791   Node *LCA = NULL;
3792   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
3793     Node* c = n->fast_out(i);
3794     if (_nodes[c->_idx] == NULL)
3795       continue;                 // Skip the occasional dead node
3796     if( c->is_Phi() ) {         // For Phis, we must land above on the path
3797       for( uint j=1; j<c->req(); j++ ) {// For all inputs
3798         if( c->in(j) == n ) {   // Found matching input?
3799           Node *use = c->in(0)->in(j);
3800           if (_verify_only && use->is_top()) continue;
3801           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3802           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3803         }
3804       }
3805     } else {
3806       // For CFG data-users, use is in the block just prior
3807       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
3808       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3809       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3810     }
3811   }
3812   assert(!had_error, "bad dominance");
3813   return LCA;
3814 }
3815 
3816 // Check the shape of the graph at the loop entry. In some cases,
3817 // the shape of the graph does not match the shape outlined below.
3818 // That is caused by the Opaque1 node "protecting" the shape of
3819 // the graph being removed by, for example, the IGVN performed
3820 // in PhaseIdealLoop::build_and_optimize().
3821 //
3822 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
3823 // loop unswitching, and IGVN, or a combination of them) can freely change
3824 // the graph's shape. As a result, the graph shape outlined below cannot
3825 // be guaranteed anymore.
3826 bool PhaseIdealLoop::is_canonical_loop_entry(CountedLoopNode* cl) {
3827   if (!cl->is_main_loop() && !cl->is_post_loop()) {
3828     return false;
3829   }
3830   Node* ctrl = cl->skip_predicates();
3831 
3832   if (ctrl == NULL || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
3833     return false;
3834   }
3835   Node* iffm = ctrl->in(0);
3836   if (iffm == NULL || !iffm->is_If()) {
3837     return false;
3838   }
3839   Node* bolzm = iffm->in(1);
3840   if (bolzm == NULL || !bolzm->is_Bool()) {
3841     return false;
3842   }
3843   Node* cmpzm = bolzm->in(1);
3844   if (cmpzm == NULL || !cmpzm->is_Cmp()) {
3845     return false;
3846   }
3847   // compares can get conditionally flipped
3848   bool found_opaque = false;
3849   for (uint i = 1; i < cmpzm->req(); i++) {
3850     Node* opnd = cmpzm->in(i);
3851     if (opnd && opnd->Opcode() == Op_Opaque1) {
3852       found_opaque = true;
3853       break;
3854     }
3855   }
3856   if (!found_opaque) {
3857     return false;
3858   }
3859   return true;
3860 }
3861 
3862 //------------------------------get_late_ctrl----------------------------------
3863 // Compute latest legal control.
3864 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
3865   assert(early != NULL, "early control should not be NULL");
3866 
3867   Node* LCA = compute_lca_of_uses(n, early);
3868 #ifdef ASSERT
3869   if (LCA == C->root() && LCA != early) {
3870     // def doesn't dominate uses so print some useful debugging output
3871     compute_lca_of_uses(n, early, true);
3872   }
3873 #endif
3874 
3875   // if this is a load, check for anti-dependent stores
3876   // We use a conservative algorithm to identify potential interfering
3877   // instructions and for rescheduling the load.  The users of the memory
3878   // input of this load are examined.  Any use which is not a load and is
3879   // dominated by early is considered a potentially interfering store.
3880   // This can produce false positives.
3881   if (n->is_Load() && LCA != early) {
3882     Node_List worklist;
3883 
3884     Node *mem = n->in(MemNode::Memory);
3885     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3886       Node* s = mem->fast_out(i);
3887       worklist.push(s);
3888     }
3889     while(worklist.size() != 0 && LCA != early) {
3890       Node* s = worklist.pop();
3891       if (s->is_Load() || s->Opcode() == Op_SafePoint) {
3892         continue;
3893       } else if (s->is_MergeMem()) {
3894         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
3895           Node* s1 = s->fast_out(i);
3896           worklist.push(s1);
3897         }
3898       } else {
3899         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
3900         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
3901         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
3902           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
3903         }
3904       }
3905     }
3906   }
3907 
3908   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
3909   return LCA;
3910 }
3911 
3912 // true if CFG node d dominates CFG node n
3913 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
3914   if (d == n)
3915     return true;
3916   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
3917   uint dd = dom_depth(d);
3918   while (dom_depth(n) >= dd) {
3919     if (n == d)
3920       return true;
3921     n = idom(n);
3922   }
3923   return false;
3924 }
3925 
3926 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
3927 // Pair-wise LCA with tags.
3928 // Tag each index with the node 'tag' currently being processed
3929 // before advancing up the dominator chain using idom().
3930 // Later calls that find a match to 'tag' know that this path has already
3931 // been considered in the current LCA (which is input 'n1' by convention).
3932 // Since get_late_ctrl() is only called once for each node, the tag array
3933 // does not need to be cleared between calls to get_late_ctrl().
3934 // Algorithm trades a larger constant factor for better asymptotic behavior
3935 //
3936 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
3937   uint d1 = dom_depth(n1);
3938   uint d2 = dom_depth(n2);
3939 
3940   do {
3941     if (d1 > d2) {
3942       // current lca is deeper than n2
3943       _dom_lca_tags.map(n1->_idx, tag);
3944       n1 =      idom(n1);
3945       d1 = dom_depth(n1);
3946     } else if (d1 < d2) {
3947       // n2 is deeper than current lca
3948       Node *memo = _dom_lca_tags[n2->_idx];
3949       if( memo == tag ) {
3950         return n1;    // Return the current LCA
3951       }
3952       _dom_lca_tags.map(n2->_idx, tag);
3953       n2 =      idom(n2);
3954       d2 = dom_depth(n2);
3955     } else {
3956       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3957       // of the tree might have the same depth.  These sections have
3958       // to be searched more carefully.
3959 
3960       // Scan up all the n1's with equal depth, looking for n2.
3961       _dom_lca_tags.map(n1->_idx, tag);
3962       Node *t1 = idom(n1);
3963       while (dom_depth(t1) == d1) {
3964         if (t1 == n2)  return n2;
3965         _dom_lca_tags.map(t1->_idx, tag);
3966         t1 = idom(t1);
3967       }
3968       // Scan up all the n2's with equal depth, looking for n1.
3969       _dom_lca_tags.map(n2->_idx, tag);
3970       Node *t2 = idom(n2);
3971       while (dom_depth(t2) == d2) {
3972         if (t2 == n1)  return n1;
3973         _dom_lca_tags.map(t2->_idx, tag);
3974         t2 = idom(t2);
3975       }
3976       // Move up to a new dominator-depth value as well as up the dom-tree.
3977       n1 = t1;
3978       n2 = t2;
3979       d1 = dom_depth(n1);
3980       d2 = dom_depth(n2);
3981     }
3982   } while (n1 != n2);
3983   return n1;
3984 }
3985 
3986 //------------------------------init_dom_lca_tags------------------------------
3987 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3988 // Intended use does not involve any growth for the array, so it could
3989 // be of fixed size.
3990 void PhaseIdealLoop::init_dom_lca_tags() {
3991   uint limit = C->unique() + 1;
3992   _dom_lca_tags.map( limit, NULL );
3993 #ifdef ASSERT
3994   for( uint i = 0; i < limit; ++i ) {
3995     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3996   }
3997 #endif // ASSERT
3998 }
3999 
4000 //------------------------------clear_dom_lca_tags------------------------------
4001 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
4002 // Intended use does not involve any growth for the array, so it could
4003 // be of fixed size.
4004 void PhaseIdealLoop::clear_dom_lca_tags() {
4005   uint limit = C->unique() + 1;
4006   _dom_lca_tags.map( limit, NULL );
4007   _dom_lca_tags.clear();
4008 #ifdef ASSERT
4009   for( uint i = 0; i < limit; ++i ) {
4010     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
4011   }
4012 #endif // ASSERT
4013 }
4014 
4015 //------------------------------build_loop_late--------------------------------
4016 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
4017 // Second pass finds latest legal placement, and ideal loop placement.
4018 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
4019   while (worklist.size() != 0) {
4020     Node *n = worklist.pop();
4021     // Only visit once
4022     if (visited.test_set(n->_idx)) continue;
4023     uint cnt = n->outcnt();
4024     uint   i = 0;
4025     while (true) {
4026       assert( _nodes[n->_idx], "no dead nodes" );
4027       // Visit all children
4028       if (i < cnt) {
4029         Node* use = n->raw_out(i);
4030         ++i;
4031         // Check for dead uses.  Aggressively prune such junk.  It might be
4032         // dead in the global sense, but still have local uses so I cannot
4033         // easily call 'remove_dead_node'.
4034         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
4035           // Due to cycles, we might not hit the same fixed point in the verify
4036           // pass as we do in the regular pass.  Instead, visit such phis as
4037           // simple uses of the loop head.
4038           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
4039             if( !visited.test(use->_idx) )
4040               worklist.push(use);
4041           } else if( !visited.test_set(use->_idx) ) {
4042             nstack.push(n, i); // Save parent and next use's index.
4043             n   = use;         // Process all children of current use.
4044             cnt = use->outcnt();
4045             i   = 0;
4046           }
4047         } else {
4048           // Do not visit around the backedge of loops via data edges.
4049           // push dead code onto a worklist
4050           _deadlist.push(use);
4051         }
4052       } else {
4053         // All of n's children have been processed, complete post-processing.
4054         build_loop_late_post(n);
4055         if (nstack.is_empty()) {
4056           // Finished all nodes on stack.
4057           // Process next node on the worklist.
4058           break;
4059         }
4060         // Get saved parent node and next use's index. Visit the rest of uses.
4061         n   = nstack.node();
4062         cnt = n->outcnt();
4063         i   = nstack.index();
4064         nstack.pop();
4065       }
4066     }
4067   }
4068 }
4069 
4070 // Verify that no data node is schedules in the outer loop of a strip
4071 // mined loop.
4072 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
4073 #ifdef ASSERT
4074   if (get_loop(least)->_nest == 0) {
4075     return;
4076   }
4077   IdealLoopTree* loop = get_loop(least);
4078   Node* head = loop->_head;
4079   if (head->is_OuterStripMinedLoop()) {
4080     Node* sfpt = head->as_Loop()->outer_safepoint();
4081     ResourceMark rm;
4082     Unique_Node_List wq;
4083     wq.push(sfpt);
4084     for (uint i = 0; i < wq.size(); i++) {
4085       Node *m = wq.at(i);
4086       for (uint i = 1; i < m->req(); i++) {
4087         Node* nn = m->in(i);
4088         if (nn == n) {
4089           return;
4090         }
4091         if (nn != NULL && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
4092           wq.push(nn);
4093         }
4094       }
4095     }
4096     ShouldNotReachHere();
4097   }
4098 #endif
4099 }
4100 
4101 
4102 //------------------------------build_loop_late_post---------------------------
4103 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
4104 // Second pass finds latest legal placement, and ideal loop placement.
4105 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
4106 
4107   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
4108     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
4109   }
4110 
4111 #ifdef ASSERT
4112   if (_verify_only && !n->is_CFG()) {
4113     // Check def-use domination.
4114     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
4115   }
4116 #endif
4117 
4118   // CFG and pinned nodes already handled
4119   if( n->in(0) ) {
4120     if( n->in(0)->is_top() ) return; // Dead?
4121 
4122     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
4123     // _must_ be pinned (they have to observe their control edge of course).
4124     // Unlike Stores (which modify an unallocable resource, the memory
4125     // state), Mods/Loads can float around.  So free them up.
4126     bool pinned = true;
4127     switch( n->Opcode() ) {
4128     case Op_DivI:
4129     case Op_DivF:
4130     case Op_DivD:
4131     case Op_ModI:
4132     case Op_ModF:
4133     case Op_ModD:
4134     case Op_LoadB:              // Same with Loads; they can sink
4135     case Op_LoadUB:             // during loop optimizations.
4136     case Op_LoadUS:
4137     case Op_LoadD:
4138     case Op_LoadF:
4139     case Op_LoadI:
4140     case Op_LoadKlass:
4141     case Op_LoadNKlass:
4142     case Op_LoadL:
4143     case Op_LoadS:
4144     case Op_LoadP:
4145     case Op_LoadBarrierSlowReg:
4146     case Op_LoadBarrierWeakSlowReg:
4147     case Op_LoadN:
4148     case Op_LoadRange:
4149     case Op_LoadD_unaligned:
4150     case Op_LoadL_unaligned:
4151     case Op_StrComp:            // Does a bunch of load-like effects
4152     case Op_StrEquals:
4153     case Op_StrIndexOf:
4154     case Op_StrIndexOfChar:
4155     case Op_AryEq:
4156     case Op_HasNegatives:
4157       pinned = false;
4158     }
4159     if( pinned ) {
4160       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
4161       if( !chosen_loop->_child )       // Inner loop?
4162         chosen_loop->_body.push(n); // Collect inner loops
4163       return;
4164     }
4165   } else {                      // No slot zero
4166     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
4167       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
4168       return;
4169     }
4170     assert(!n->is_CFG() || n->outcnt() == 0, "");
4171   }
4172 
4173   // Do I have a "safe range" I can select over?
4174   Node *early = get_ctrl(n);// Early location already computed
4175 
4176   // Compute latest point this Node can go
4177   Node *LCA = get_late_ctrl( n, early );
4178   // LCA is NULL due to uses being dead
4179   if( LCA == NULL ) {
4180 #ifdef ASSERT
4181     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
4182       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
4183     }
4184 #endif
4185     _nodes.map(n->_idx, 0);     // This node is useless
4186     _deadlist.push(n);
4187     return;
4188   }
4189   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
4190 
4191   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
4192   Node *least = legal;          // Best legal position so far
4193   while( early != legal ) {     // While not at earliest legal
4194 #ifdef ASSERT
4195     if (legal->is_Start() && !early->is_Root()) {
4196       // Bad graph. Print idom path and fail.
4197       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
4198       assert(false, "Bad graph detected in build_loop_late");
4199     }
4200 #endif
4201     // Find least loop nesting depth
4202     legal = idom(legal);        // Bump up the IDOM tree
4203     // Check for lower nesting depth
4204     if( get_loop(legal)->_nest < get_loop(least)->_nest )
4205       least = legal;
4206   }
4207   assert(early == legal || legal != C->root(), "bad dominance of inputs");
4208 
4209   // Try not to place code on a loop entry projection
4210   // which can inhibit range check elimination.
4211   if (least != early) {
4212     Node* ctrl_out = least->unique_ctrl_out();
4213     if (ctrl_out && ctrl_out->is_Loop() &&
4214         least == ctrl_out->in(LoopNode::EntryControl) &&
4215         (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) {
4216       Node* least_dom = idom(least);
4217       if (get_loop(least_dom)->is_member(get_loop(least))) {
4218         least = least_dom;
4219       }
4220     }
4221   }
4222 
4223 #ifdef ASSERT
4224   // If verifying, verify that 'verify_me' has a legal location
4225   // and choose it as our location.
4226   if( _verify_me ) {
4227     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
4228     Node *legal = LCA;
4229     while( early != legal ) {   // While not at earliest legal
4230       if( legal == v_ctrl ) break;  // Check for prior good location
4231       legal = idom(legal)      ;// Bump up the IDOM tree
4232     }
4233     // Check for prior good location
4234     if( legal == v_ctrl ) least = legal; // Keep prior if found
4235   }
4236 #endif
4237 
4238   // Assign discovered "here or above" point
4239   least = find_non_split_ctrl(least);
4240   verify_strip_mined_scheduling(n, least);
4241   set_ctrl(n, least);
4242 
4243   // Collect inner loop bodies
4244   IdealLoopTree *chosen_loop = get_loop(least);
4245   if( !chosen_loop->_child )   // Inner loop?
4246     chosen_loop->_body.push(n);// Collect inner loops
4247 }
4248 
4249 #ifdef ASSERT
4250 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
4251   tty->print_cr("%s", msg);
4252   tty->print("n: "); n->dump();
4253   tty->print("early(n): "); early->dump();
4254   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
4255       n->in(0) != early && !n->in(0)->is_Root()) {
4256     tty->print("n->in(0): "); n->in(0)->dump();
4257   }
4258   for (uint i = 1; i < n->req(); i++) {
4259     Node* in1 = n->in(i);
4260     if (in1 != NULL && in1 != n && !in1->is_top()) {
4261       tty->print("n->in(%d): ", i); in1->dump();
4262       Node* in1_early = get_ctrl(in1);
4263       tty->print("early(n->in(%d)): ", i); in1_early->dump();
4264       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
4265           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
4266         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
4267       }
4268       for (uint j = 1; j < in1->req(); j++) {
4269         Node* in2 = in1->in(j);
4270         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
4271           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
4272           Node* in2_early = get_ctrl(in2);
4273           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
4274           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
4275               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
4276             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
4277           }
4278         }
4279       }
4280     }
4281   }
4282   tty->cr();
4283   tty->print("LCA(n): "); LCA->dump();
4284   for (uint i = 0; i < n->outcnt(); i++) {
4285     Node* u1 = n->raw_out(i);
4286     if (u1 == n)
4287       continue;
4288     tty->print("n->out(%d): ", i); u1->dump();
4289     if (u1->is_CFG()) {
4290       for (uint j = 0; j < u1->outcnt(); j++) {
4291         Node* u2 = u1->raw_out(j);
4292         if (u2 != u1 && u2 != n && u2->is_CFG()) {
4293           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
4294         }
4295       }
4296     } else {
4297       Node* u1_later = get_ctrl(u1);
4298       tty->print("later(n->out(%d)): ", i); u1_later->dump();
4299       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
4300           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
4301         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
4302       }
4303       for (uint j = 0; j < u1->outcnt(); j++) {
4304         Node* u2 = u1->raw_out(j);
4305         if (u2 == n || u2 == u1)
4306           continue;
4307         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
4308         if (!u2->is_CFG()) {
4309           Node* u2_later = get_ctrl(u2);
4310           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
4311           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
4312               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
4313             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
4314           }
4315         }
4316       }
4317     }
4318   }
4319   tty->cr();
4320   int ct = 0;
4321   Node *dbg_legal = LCA;
4322   while(!dbg_legal->is_Start() && ct < 100) {
4323     tty->print("idom[%d] ",ct); dbg_legal->dump();
4324     ct++;
4325     dbg_legal = idom(dbg_legal);
4326   }
4327   tty->cr();
4328 }
4329 #endif
4330 
4331 #ifndef PRODUCT
4332 //------------------------------dump-------------------------------------------
4333 void PhaseIdealLoop::dump( ) const {
4334   ResourceMark rm;
4335   Arena* arena = Thread::current()->resource_area();
4336   Node_Stack stack(arena, C->live_nodes() >> 2);
4337   Node_List rpo_list;
4338   VectorSet visited(arena);
4339   visited.set(C->top()->_idx);
4340   rpo( C->root(), stack, visited, rpo_list );
4341   // Dump root loop indexed by last element in PO order
4342   dump( _ltree_root, rpo_list.size(), rpo_list );
4343 }
4344 
4345 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
4346   loop->dump_head();
4347 
4348   // Now scan for CFG nodes in the same loop
4349   for( uint j=idx; j > 0;  j-- ) {
4350     Node *n = rpo_list[j-1];
4351     if( !_nodes[n->_idx] )      // Skip dead nodes
4352       continue;
4353     if( get_loop(n) != loop ) { // Wrong loop nest
4354       if( get_loop(n)->_head == n &&    // Found nested loop?
4355           get_loop(n)->_parent == loop )
4356         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
4357       continue;
4358     }
4359 
4360     // Dump controlling node
4361     for( uint x = 0; x < loop->_nest; x++ )
4362       tty->print("  ");
4363     tty->print("C");
4364     if( n == C->root() ) {
4365       n->dump();
4366     } else {
4367       Node* cached_idom   = idom_no_update(n);
4368       Node *computed_idom = n->in(0);
4369       if( n->is_Region() ) {
4370         computed_idom = compute_idom(n);
4371         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
4372         // any MultiBranch ctrl node), so apply a similar transform to
4373         // the cached idom returned from idom_no_update.
4374         cached_idom = find_non_split_ctrl(cached_idom);
4375       }
4376       tty->print(" ID:%d",computed_idom->_idx);
4377       n->dump();
4378       if( cached_idom != computed_idom ) {
4379         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
4380                       computed_idom->_idx, cached_idom->_idx);
4381       }
4382     }
4383     // Dump nodes it controls
4384     for( uint k = 0; k < _nodes.Size(); k++ ) {
4385       // (k < C->unique() && get_ctrl(find(k)) == n)
4386       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
4387         Node *m = C->root()->find(k);
4388         if( m && m->outcnt() > 0 ) {
4389           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
4390             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
4391                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
4392           }
4393           for( uint j = 0; j < loop->_nest; j++ )
4394             tty->print("  ");
4395           tty->print(" ");
4396           m->dump();
4397         }
4398       }
4399     }
4400   }
4401 }
4402 
4403 // Collect a R-P-O for the whole CFG.
4404 // Result list is in post-order (scan backwards for RPO)
4405 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
4406   stk.push(start, 0);
4407   visited.set(start->_idx);
4408 
4409   while (stk.is_nonempty()) {
4410     Node* m   = stk.node();
4411     uint  idx = stk.index();
4412     if (idx < m->outcnt()) {
4413       stk.set_index(idx + 1);
4414       Node* n = m->raw_out(idx);
4415       if (n->is_CFG() && !visited.test_set(n->_idx)) {
4416         stk.push(n, 0);
4417       }
4418     } else {
4419       rpo_list.push(m);
4420       stk.pop();
4421     }
4422   }
4423 }
4424 #endif
4425 
4426 
4427 //=============================================================================
4428 //------------------------------LoopTreeIterator-----------------------------------
4429 
4430 // Advance to next loop tree using a preorder, left-to-right traversal.
4431 void LoopTreeIterator::next() {
4432   assert(!done(), "must not be done.");
4433   if (_curnt->_child != NULL) {
4434     _curnt = _curnt->_child;
4435   } else if (_curnt->_next != NULL) {
4436     _curnt = _curnt->_next;
4437   } else {
4438     while (_curnt != _root && _curnt->_next == NULL) {
4439       _curnt = _curnt->_parent;
4440     }
4441     if (_curnt == _root) {
4442       _curnt = NULL;
4443       assert(done(), "must be done.");
4444     } else {
4445       assert(_curnt->_next != NULL, "must be more to do");
4446       _curnt = _curnt->_next;
4447     }
4448   }
4449 }