--- /dev/null 2018-04-03 12:55:20.301839954 +0200 +++ new/src/hotspot/share/gc/z/zReferenceProcessor.cpp 2018-06-08 19:46:34.951360825 +0200 @@ -0,0 +1,429 @@ +/* + * Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +#include "precompiled.hpp" +#include "classfile/javaClasses.inline.hpp" +#include "gc/shared/referencePolicy.hpp" +#include "gc/shared/referenceProcessorStats.hpp" +#include "gc/z/zHeap.inline.hpp" +#include "gc/z/zOopClosures.inline.hpp" +#include "gc/z/zReferenceProcessor.hpp" +#include "gc/z/zStat.hpp" +#include "gc/z/zTask.hpp" +#include "gc/z/zTracer.inline.hpp" +#include "gc/z/zUtils.inline.hpp" +#include "memory/universe.hpp" +#include "runtime/mutexLocker.hpp" +#include "runtime/os.hpp" + +static const ZStatSubPhase ZSubPhaseConcurrentReferencesProcess("Concurrent References Process"); +static const ZStatSubPhase ZSubPhaseConcurrentReferencesEnqueue("Concurrent References Enqueue"); + +ZReferenceProcessor::ZReferenceProcessor(ZWorkers* workers) : + _workers(workers), + _soft_reference_policy(NULL), + _encountered_count(), + _discovered_count(), + _enqueued_count(), + _discovered_list(NULL), + _pending_list(NULL), + _pending_list_tail(_pending_list.addr()) {} + +void ZReferenceProcessor::set_soft_reference_policy(bool clear) { + static AlwaysClearPolicy always_clear_policy; + static LRUMaxHeapPolicy lru_max_heap_policy; + + if (clear) { + log_info(gc, ref)("Clearing All Soft References"); + _soft_reference_policy = &always_clear_policy; + } else { + _soft_reference_policy = &lru_max_heap_policy; + } + + _soft_reference_policy->setup(); +} + +void ZReferenceProcessor::update_soft_reference_clock() const { + const jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; + java_lang_ref_SoftReference::set_clock(now); +} + +bool ZReferenceProcessor::is_reference_inactive(oop obj) const { + // A non-null next field means the reference is inactive + return java_lang_ref_Reference::next(obj) != NULL; +} + +ReferenceType ZReferenceProcessor::reference_type(oop obj) const { + return InstanceKlass::cast(obj->klass())->reference_type(); +} + +const char* ZReferenceProcessor::reference_type_name(ReferenceType type) const { + switch (type) { + case REF_SOFT: + return "Soft"; + + case REF_WEAK: + return "Weak"; + + case REF_FINAL: + return "Final"; + + case REF_PHANTOM: + return "Phantom"; + + default: + ShouldNotReachHere(); + return NULL; + } +} + +volatile oop* ZReferenceProcessor::reference_referent_addr(oop obj) const { + return (volatile oop*)java_lang_ref_Reference::referent_addr_raw(obj); +} + +oop ZReferenceProcessor::reference_referent(oop obj) const { + return *reference_referent_addr(obj); +} + +bool ZReferenceProcessor::is_referent_alive_or_null(oop obj, ReferenceType type) const { + volatile oop* const p = reference_referent_addr(obj); + + // Check if the referent is alive or null, in which case we don't want to discover + // the reference. It can only be null if the application called Reference.enqueue() + // or Reference.clear(). + if (type == REF_PHANTOM) { + const oop o = ZBarrier::weak_load_barrier_on_phantom_oop_field(p); + return o == NULL || ZHeap::heap()->is_object_live(ZOop::to_address(o)); + } else { + const oop o = ZBarrier::weak_load_barrier_on_weak_oop_field(p); + return o == NULL || ZHeap::heap()->is_object_strongly_live(ZOop::to_address(o)); + } +} + +bool ZReferenceProcessor::is_referent_softly_alive(oop obj, ReferenceType type) const { + if (type != REF_SOFT) { + // Not a soft reference + return false; + } + + // Ask soft reference policy + const jlong clock = java_lang_ref_SoftReference::clock(); + assert(clock != 0, "Clock not initialized"); + assert(_soft_reference_policy != NULL, "Policy not initialized"); + return !_soft_reference_policy->should_clear_reference(obj, clock); +} + +bool ZReferenceProcessor::should_drop_reference(oop obj, ReferenceType type) const { + // This check is racing with a call to Reference.clear() from the application. + // If the application clears the reference after this check it will still end + // up on the pending list, and there's nothing we can do about that without + // changing the Reference.clear() API. This check is also racing with a call + // to Reference.enqueue() from the application, which is unproblematic, since + // the application wants the reference to be enqueued anyway. + const oop o = reference_referent(obj); + if (o == NULL) { + // Reference has been cleared, by a call to Reference.enqueue() + // or Reference.clear() from the application, which means we + // should drop the reference. + return true; + } + + // Check if the referent is still alive, in which case we should + // drop the reference. + if (type == REF_PHANTOM) { + return ZBarrier::is_alive_barrier_on_phantom_oop(o); + } else { + return ZBarrier::is_alive_barrier_on_weak_oop(o); + } +} + +bool ZReferenceProcessor::should_mark_referent(ReferenceType type) const { + // Referents of final references (and its reachable sub graph) are + // always marked finalizable during discovery. This avoids the problem + // of later having to mark those objects if the referent is still final + // reachable during processing. + return type == REF_FINAL; +} + +bool ZReferenceProcessor::should_clear_referent(ReferenceType type) const { + // Referents that were not marked must be cleared + return !should_mark_referent(type); +} + +void ZReferenceProcessor::keep_referent_alive(oop obj, ReferenceType type) const { + volatile oop* const p = reference_referent_addr(obj); + if (type == REF_PHANTOM) { + ZBarrier::keep_alive_barrier_on_phantom_oop_field(p); + } else { + ZBarrier::keep_alive_barrier_on_weak_oop_field(p); + } +} + +bool ZReferenceProcessor::discover_reference(oop obj, ReferenceType type) { + if (!RegisterReferences) { + // Reference processing disabled + return false; + } + + log_trace(gc, ref)("Encountered Reference: " PTR_FORMAT " (%s)", p2i(obj), reference_type_name(type)); + + // Update statistics + _encountered_count.get()[type]++; + + if (is_reference_inactive(obj) || + is_referent_alive_or_null(obj, type) || + is_referent_softly_alive(obj, type)) { + // Not discovered + return false; + } + + discover(obj, type); + + // Discovered + return true; +} + +void ZReferenceProcessor::discover(oop obj, ReferenceType type) { + log_trace(gc, ref)("Discovered Reference: " PTR_FORMAT " (%s)", p2i(obj), reference_type_name(type)); + + // Update statistics + _discovered_count.get()[type]++; + + // Mark referent finalizable + if (should_mark_referent(type)) { + oop* const referent_addr = (oop*)java_lang_ref_Reference::referent_addr_raw(obj); + ZBarrier::mark_barrier_on_oop_field(referent_addr, true /* finalizable */); + } + + // Add reference to discovered list + assert(java_lang_ref_Reference::discovered(obj) == NULL, "Already discovered"); + oop* const list = _discovered_list.addr(); + java_lang_ref_Reference::set_discovered(obj, *list); + *list = obj; +} + +oop ZReferenceProcessor::drop(oop obj, ReferenceType type) { + log_trace(gc, ref)("Dropped Reference: " PTR_FORMAT " (%s)", p2i(obj), reference_type_name(type)); + + // Keep referent alive + keep_referent_alive(obj, type); + + // Unlink and return next in list + const oop next = java_lang_ref_Reference::discovered(obj); + java_lang_ref_Reference::set_discovered(obj, NULL); + return next; +} + +oop* ZReferenceProcessor::keep(oop obj, ReferenceType type) { + log_trace(gc, ref)("Enqueued Reference: " PTR_FORMAT " (%s)", p2i(obj), reference_type_name(type)); + + // Update statistics + _enqueued_count.get()[type]++; + + // Clear referent + if (should_clear_referent(type)) { + java_lang_ref_Reference::set_referent(obj, NULL); + } + + // Make reference inactive by self-looping the next field. We could be racing with a + // call to Reference.enqueue() from the application, which is why we are using a CAS + // to make sure we change the next field only if it is NULL. A failing CAS means the + // reference has already been enqueued. However, we don't check the result of the CAS, + // since we still have no option other than keeping the reference on the pending list. + // It's ok to have the reference both on the pending list and enqueued at the same + // time (the pending list is linked through the discovered field, while the reference + // queue is linked through the next field). When the ReferenceHandler thread later + // calls Reference.enqueue() we detect that it has already been enqueued and drop it. + oop* const next_addr = (oop*)java_lang_ref_Reference::next_addr_raw(obj); + Atomic::cmpxchg(obj, next_addr, oop(NULL)); + + // Return next in list + return (oop*)java_lang_ref_Reference::discovered_addr_raw(obj); +} + +void ZReferenceProcessor::work() { + // Process discovered references + oop* const list = _discovered_list.addr(); + oop* p = list; + + while (*p != NULL) { + const oop obj = *p; + const ReferenceType type = reference_type(obj); + + if (should_drop_reference(obj, type)) { + *p = drop(obj, type); + } else { + p = keep(obj, type); + } + } + + // Prepend discovered references to internal pending list + if (*list != NULL) { + *p = Atomic::xchg(*list, _pending_list.addr()); + if (*p == NULL) { + // First to prepend to list, record tail + _pending_list_tail = p; + } + + // Clear discovered list + *list = NULL; + } +} + +bool ZReferenceProcessor::is_empty() const { + ZPerWorkerConstIterator iter(&_discovered_list); + for (const oop* list; iter.next(&list);) { + if (*list != NULL) { + return false; + } + } + + if (_pending_list.get() != NULL) { + return false; + } + + return true; +} + +void ZReferenceProcessor::reset_statistics() { + assert(is_empty(), "Should be empty"); + + // Reset encountered + ZPerWorkerIterator iter_encountered(&_encountered_count); + for (Counters* counters; iter_encountered.next(&counters);) { + for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { + (*counters)[i] = 0; + } + } + + // Reset discovered + ZPerWorkerIterator iter_discovered(&_discovered_count); + for (Counters* counters; iter_discovered.next(&counters);) { + for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { + (*counters)[i] = 0; + } + } + + // Reset enqueued + ZPerWorkerIterator iter_enqueued(&_enqueued_count); + for (Counters* counters; iter_enqueued.next(&counters);) { + for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { + (*counters)[i] = 0; + } + } +} + +void ZReferenceProcessor::collect_statistics() { + Counters encountered = {}; + Counters discovered = {}; + Counters enqueued = {}; + + // Sum encountered + ZPerWorkerConstIterator iter_encountered(&_encountered_count); + for (const Counters* counters; iter_encountered.next(&counters);) { + for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { + encountered[i] += (*counters)[i]; + } + } + + // Sum discovered + ZPerWorkerConstIterator iter_discovered(&_discovered_count); + for (const Counters* counters; iter_discovered.next(&counters);) { + for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { + discovered[i] += (*counters)[i]; + } + } + + // Sum enqueued + ZPerWorkerConstIterator iter_enqueued(&_enqueued_count); + for (const Counters* counters; iter_enqueued.next(&counters);) { + for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { + enqueued[i] += (*counters)[i]; + } + } + + // Update statistics + ZStatReferences::set_soft(encountered[REF_SOFT], discovered[REF_SOFT], enqueued[REF_SOFT]); + ZStatReferences::set_weak(encountered[REF_WEAK], discovered[REF_WEAK], enqueued[REF_WEAK]); + ZStatReferences::set_final(encountered[REF_FINAL], discovered[REF_FINAL], enqueued[REF_FINAL]); + ZStatReferences::set_phantom(encountered[REF_PHANTOM], discovered[REF_PHANTOM], enqueued[REF_PHANTOM]); + + // Trace statistics + const ReferenceProcessorStats stats(discovered[REF_SOFT], + discovered[REF_WEAK], + discovered[REF_FINAL], + discovered[REF_PHANTOM]); + ZTracer::tracer()->report_gc_reference_stats(stats); +} + +class ZReferenceProcessorTask : public ZTask { +private: + ZReferenceProcessor* const _reference_processor; + +public: + ZReferenceProcessorTask(ZReferenceProcessor* reference_processor) : + ZTask("ZReferenceProcessorTask"), + _reference_processor(reference_processor) {} + + virtual void work() { + _reference_processor->work(); + } +}; + +void ZReferenceProcessor::process_references() { + ZStatTimer timer(ZSubPhaseConcurrentReferencesProcess); + + // Process discovered lists + ZReferenceProcessorTask task(this); + _workers->run_concurrent(&task); + + // Update soft reference clock + update_soft_reference_clock(); + + // Collect, log and trace statistics + collect_statistics(); +} + +void ZReferenceProcessor::enqueue_references() { + ZStatTimer timer(ZSubPhaseConcurrentReferencesEnqueue); + + if (_pending_list.get() == NULL) { + // Nothing to enqueue + return; + } + + { + // Heap_lock protects external pending list + MonitorLockerEx ml(Heap_lock); + + // Prepend internal pending list to external pending list + *_pending_list_tail = Universe::swap_reference_pending_list(_pending_list.get()); + + // Notify ReferenceHandler thread + ml.notify_all(); + } + + // Reset internal pending list + _pending_list.set(NULL); + _pending_list_tail = _pending_list.addr(); +}