1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/c2compiler.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/escape.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/movenode.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_G1GC
  43 #include "gc/g1/g1ThreadLocalData.hpp"
  44 #endif // INCLUDE_G1GC
  45 #if INCLUDE_ZGC
  46 #include "gc/z/c2/zBarrierSetC2.hpp"
  47 #endif
  48 
  49 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  50   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  51   _in_worklist(C->comp_arena()),
  52   _next_pidx(0),
  53   _collecting(true),
  54   _verify(false),
  55   _compile(C),
  56   _igvn(igvn),
  57   _node_map(C->comp_arena()) {
  58   // Add unknown java object.
  59   add_java_object(C->top(), PointsToNode::GlobalEscape);
  60   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  61   // Add ConP(#NULL) and ConN(#NULL) nodes.
  62   Node* oop_null = igvn->zerocon(T_OBJECT);
  63   assert(oop_null->_idx < nodes_size(), "should be created already");
  64   add_java_object(oop_null, PointsToNode::NoEscape);
  65   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  66   if (UseCompressedOops) {
  67     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  68     assert(noop_null->_idx < nodes_size(), "should be created already");
  69     map_ideal_node(noop_null, null_obj);
  70   }
  71   _pcmp_neq = NULL; // Should be initialized
  72   _pcmp_eq  = NULL;
  73 }
  74 
  75 bool ConnectionGraph::has_candidates(Compile *C) {
  76   // EA brings benefits only when the code has allocations and/or locks which
  77   // are represented by ideal Macro nodes.
  78   int cnt = C->macro_count();
  79   for (int i = 0; i < cnt; i++) {
  80     Node *n = C->macro_node(i);
  81     if (n->is_Allocate())
  82       return true;
  83     if (n->is_Lock()) {
  84       Node* obj = n->as_Lock()->obj_node()->uncast();
  85       if (!(obj->is_Parm() || obj->is_Con()))
  86         return true;
  87     }
  88     if (n->is_CallStaticJava() &&
  89         n->as_CallStaticJava()->is_boxing_method()) {
  90       return true;
  91     }
  92   }
  93   return false;
  94 }
  95 
  96 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  97   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  98   ResourceMark rm;
  99 
 100   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
 101   // to create space for them in ConnectionGraph::_nodes[].
 102   Node* oop_null = igvn->zerocon(T_OBJECT);
 103   Node* noop_null = igvn->zerocon(T_NARROWOOP);
 104   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
 105   // Perform escape analysis
 106   if (congraph->compute_escape()) {
 107     // There are non escaping objects.
 108     C->set_congraph(congraph);
 109   }
 110   // Cleanup.
 111   if (oop_null->outcnt() == 0)
 112     igvn->hash_delete(oop_null);
 113   if (noop_null->outcnt() == 0)
 114     igvn->hash_delete(noop_null);
 115 }
 116 
 117 bool ConnectionGraph::compute_escape() {
 118   Compile* C = _compile;
 119   PhaseGVN* igvn = _igvn;
 120 
 121   // Worklists used by EA.
 122   Unique_Node_List delayed_worklist;
 123   GrowableArray<Node*> alloc_worklist;
 124   GrowableArray<Node*> ptr_cmp_worklist;
 125   GrowableArray<Node*> storestore_worklist;
 126   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 127   GrowableArray<PointsToNode*>   ptnodes_worklist;
 128   GrowableArray<JavaObjectNode*> java_objects_worklist;
 129   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 130   GrowableArray<FieldNode*>      oop_fields_worklist;
 131   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 132 
 133   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 134 
 135   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 136   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 137   // Initialize worklist
 138   if (C->root() != NULL) {
 139     ideal_nodes.push(C->root());
 140   }
 141   // Processed ideal nodes are unique on ideal_nodes list
 142   // but several ideal nodes are mapped to the phantom_obj.
 143   // To avoid duplicated entries on the following worklists
 144   // add the phantom_obj only once to them.
 145   ptnodes_worklist.append(phantom_obj);
 146   java_objects_worklist.append(phantom_obj);
 147   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 148     Node* n = ideal_nodes.at(next);
 149     // Create PointsTo nodes and add them to Connection Graph. Called
 150     // only once per ideal node since ideal_nodes is Unique_Node list.
 151     add_node_to_connection_graph(n, &delayed_worklist);
 152     PointsToNode* ptn = ptnode_adr(n->_idx);
 153     if (ptn != NULL && ptn != phantom_obj) {
 154       ptnodes_worklist.append(ptn);
 155       if (ptn->is_JavaObject()) {
 156         java_objects_worklist.append(ptn->as_JavaObject());
 157         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 158             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 159           // Only allocations and java static calls results are interesting.
 160           non_escaped_worklist.append(ptn->as_JavaObject());
 161         }
 162       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 163         oop_fields_worklist.append(ptn->as_Field());
 164       }
 165     }
 166     if (n->is_MergeMem()) {
 167       // Collect all MergeMem nodes to add memory slices for
 168       // scalar replaceable objects in split_unique_types().
 169       _mergemem_worklist.append(n->as_MergeMem());
 170     } else if (OptimizePtrCompare && n->is_Cmp() &&
 171                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 172       // Collect compare pointers nodes.
 173       ptr_cmp_worklist.append(n);
 174     } else if (n->is_MemBarStoreStore()) {
 175       // Collect all MemBarStoreStore nodes so that depending on the
 176       // escape status of the associated Allocate node some of them
 177       // may be eliminated.
 178       storestore_worklist.append(n);
 179     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 180                (n->req() > MemBarNode::Precedent)) {
 181       record_for_optimizer(n);
 182 #ifdef ASSERT
 183     } else if (n->is_AddP()) {
 184       // Collect address nodes for graph verification.
 185       addp_worklist.append(n);
 186 #endif
 187     } else if (n->is_ArrayCopy()) {
 188       // Keep a list of ArrayCopy nodes so if one of its input is non
 189       // escaping, we can record a unique type
 190       arraycopy_worklist.append(n->as_ArrayCopy());
 191     }
 192     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 193       Node* m = n->fast_out(i);   // Get user
 194       ideal_nodes.push(m);
 195     }
 196   }
 197   if (non_escaped_worklist.length() == 0) {
 198     _collecting = false;
 199     return false; // Nothing to do.
 200   }
 201   // Add final simple edges to graph.
 202   while(delayed_worklist.size() > 0) {
 203     Node* n = delayed_worklist.pop();
 204     add_final_edges(n);
 205   }
 206   int ptnodes_length = ptnodes_worklist.length();
 207 
 208 #ifdef ASSERT
 209   if (VerifyConnectionGraph) {
 210     // Verify that no new simple edges could be created and all
 211     // local vars has edges.
 212     _verify = true;
 213     for (int next = 0; next < ptnodes_length; ++next) {
 214       PointsToNode* ptn = ptnodes_worklist.at(next);
 215       add_final_edges(ptn->ideal_node());
 216       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 217         ptn->dump();
 218         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 219       }
 220     }
 221     _verify = false;
 222   }
 223 #endif
 224   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 225   // processing, calls to CI to resolve symbols (types, fields, methods)
 226   // referenced in bytecode. During symbol resolution VM may throw
 227   // an exception which CI cleans and converts to compilation failure.
 228   if (C->failing())  return false;
 229 
 230   // 2. Finish Graph construction by propagating references to all
 231   //    java objects through graph.
 232   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 233                                  java_objects_worklist, oop_fields_worklist)) {
 234     // All objects escaped or hit time or iterations limits.
 235     _collecting = false;
 236     return false;
 237   }
 238 
 239   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 240   //    scalar replaceable allocations on alloc_worklist for processing
 241   //    in split_unique_types().
 242   int non_escaped_length = non_escaped_worklist.length();
 243   for (int next = 0; next < non_escaped_length; next++) {
 244     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 245     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 246     Node* n = ptn->ideal_node();
 247     if (n->is_Allocate()) {
 248       n->as_Allocate()->_is_non_escaping = noescape;
 249     }
 250     if (n->is_CallStaticJava()) {
 251       n->as_CallStaticJava()->_is_non_escaping = noescape;
 252     }
 253     if (noescape && ptn->scalar_replaceable()) {
 254       adjust_scalar_replaceable_state(ptn);
 255       if (ptn->scalar_replaceable()) {
 256         alloc_worklist.append(ptn->ideal_node());
 257       }
 258     }
 259   }
 260 
 261 #ifdef ASSERT
 262   if (VerifyConnectionGraph) {
 263     // Verify that graph is complete - no new edges could be added or needed.
 264     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 265                             java_objects_worklist, addp_worklist);
 266   }
 267   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 268   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 269          null_obj->edge_count() == 0 &&
 270          !null_obj->arraycopy_src() &&
 271          !null_obj->arraycopy_dst(), "sanity");
 272 #endif
 273 
 274   _collecting = false;
 275 
 276   } // TracePhase t3("connectionGraph")
 277 
 278   // 4. Optimize ideal graph based on EA information.
 279   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 280   if (has_non_escaping_obj) {
 281     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 282   }
 283 
 284 #ifndef PRODUCT
 285   if (PrintEscapeAnalysis) {
 286     dump(ptnodes_worklist); // Dump ConnectionGraph
 287   }
 288 #endif
 289 
 290   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 291 #ifdef ASSERT
 292   if (VerifyConnectionGraph) {
 293     int alloc_length = alloc_worklist.length();
 294     for (int next = 0; next < alloc_length; ++next) {
 295       Node* n = alloc_worklist.at(next);
 296       PointsToNode* ptn = ptnode_adr(n->_idx);
 297       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 298     }
 299   }
 300 #endif
 301 
 302   // 5. Separate memory graph for scalar replaceable allcations.
 303   if (has_scalar_replaceable_candidates &&
 304       C->AliasLevel() >= 3 && EliminateAllocations) {
 305     // Now use the escape information to create unique types for
 306     // scalar replaceable objects.
 307     split_unique_types(alloc_worklist, arraycopy_worklist);
 308     if (C->failing())  return false;
 309     C->print_method(PHASE_AFTER_EA, 2);
 310 
 311 #ifdef ASSERT
 312   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 313     tty->print("=== No allocations eliminated for ");
 314     C->method()->print_short_name();
 315     if(!EliminateAllocations) {
 316       tty->print(" since EliminateAllocations is off ===");
 317     } else if(!has_scalar_replaceable_candidates) {
 318       tty->print(" since there are no scalar replaceable candidates ===");
 319     } else if(C->AliasLevel() < 3) {
 320       tty->print(" since AliasLevel < 3 ===");
 321     }
 322     tty->cr();
 323 #endif
 324   }
 325   return has_non_escaping_obj;
 326 }
 327 
 328 // Utility function for nodes that load an object
 329 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 330   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 331   // ThreadLocal has RawPtr type.
 332   const Type* t = _igvn->type(n);
 333   if (t->make_ptr() != NULL) {
 334     Node* adr = n->in(MemNode::Address);
 335 #ifdef ASSERT
 336     if (!adr->is_AddP()) {
 337       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 338     } else {
 339       assert((ptnode_adr(adr->_idx) == NULL ||
 340               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 341     }
 342 #endif
 343     add_local_var_and_edge(n, PointsToNode::NoEscape,
 344                            adr, delayed_worklist);
 345   }
 346 }
 347 
 348 // Populate Connection Graph with PointsTo nodes and create simple
 349 // connection graph edges.
 350 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 351   assert(!_verify, "this method should not be called for verification");
 352   PhaseGVN* igvn = _igvn;
 353   uint n_idx = n->_idx;
 354   PointsToNode* n_ptn = ptnode_adr(n_idx);
 355   if (n_ptn != NULL)
 356     return; // No need to redefine PointsTo node during first iteration.
 357 
 358   if (n->is_Call()) {
 359     // Arguments to allocation and locking don't escape.
 360     if (n->is_AbstractLock()) {
 361       // Put Lock and Unlock nodes on IGVN worklist to process them during
 362       // first IGVN optimization when escape information is still available.
 363       record_for_optimizer(n);
 364     } else if (n->is_Allocate()) {
 365       add_call_node(n->as_Call());
 366       record_for_optimizer(n);
 367     } else {
 368       if (n->is_CallStaticJava()) {
 369         const char* name = n->as_CallStaticJava()->_name;
 370         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 371           return; // Skip uncommon traps
 372       }
 373       // Don't mark as processed since call's arguments have to be processed.
 374       delayed_worklist->push(n);
 375       // Check if a call returns an object.
 376       if ((n->as_Call()->returns_pointer() &&
 377            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) ||
 378           (n->is_CallStaticJava() &&
 379            n->as_CallStaticJava()->is_boxing_method())) {
 380         add_call_node(n->as_Call());
 381       }
 382     }
 383     return;
 384   }
 385   // Put this check here to process call arguments since some call nodes
 386   // point to phantom_obj.
 387   if (n_ptn == phantom_obj || n_ptn == null_obj)
 388     return; // Skip predefined nodes.
 389 
 390   int opcode = n->Opcode();
 391   switch (opcode) {
 392     case Op_AddP: {
 393       Node* base = get_addp_base(n);
 394       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 395       // Field nodes are created for all field types. They are used in
 396       // adjust_scalar_replaceable_state() and split_unique_types().
 397       // Note, non-oop fields will have only base edges in Connection
 398       // Graph because such fields are not used for oop loads and stores.
 399       int offset = address_offset(n, igvn);
 400       add_field(n, PointsToNode::NoEscape, offset);
 401       if (ptn_base == NULL) {
 402         delayed_worklist->push(n); // Process it later.
 403       } else {
 404         n_ptn = ptnode_adr(n_idx);
 405         add_base(n_ptn->as_Field(), ptn_base);
 406       }
 407       break;
 408     }
 409     case Op_CastX2P: {
 410       map_ideal_node(n, phantom_obj);
 411       break;
 412     }
 413     case Op_CastPP:
 414     case Op_CheckCastPP:
 415     case Op_EncodeP:
 416     case Op_DecodeN:
 417     case Op_EncodePKlass:
 418     case Op_DecodeNKlass: {
 419       add_local_var_and_edge(n, PointsToNode::NoEscape,
 420                              n->in(1), delayed_worklist);
 421       break;
 422     }
 423     case Op_CMoveP: {
 424       add_local_var(n, PointsToNode::NoEscape);
 425       // Do not add edges during first iteration because some could be
 426       // not defined yet.
 427       delayed_worklist->push(n);
 428       break;
 429     }
 430     case Op_ConP:
 431     case Op_ConN:
 432     case Op_ConNKlass: {
 433       // assume all oop constants globally escape except for null
 434       PointsToNode::EscapeState es;
 435       const Type* t = igvn->type(n);
 436       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 437         es = PointsToNode::NoEscape;
 438       } else {
 439         es = PointsToNode::GlobalEscape;
 440       }
 441       add_java_object(n, es);
 442       break;
 443     }
 444     case Op_CreateEx: {
 445       // assume that all exception objects globally escape
 446       map_ideal_node(n, phantom_obj);
 447       break;
 448     }
 449     case Op_LoadKlass:
 450     case Op_LoadNKlass: {
 451       // Unknown class is loaded
 452       map_ideal_node(n, phantom_obj);
 453       break;
 454     }
 455     case Op_LoadP:
 456 #if INCLUDE_ZGC
 457     case Op_LoadBarrierSlowReg:
 458     case Op_LoadBarrierWeakSlowReg:
 459 #endif
 460     case Op_LoadN:
 461     case Op_LoadPLocked: {
 462       add_objload_to_connection_graph(n, delayed_worklist);
 463       break;
 464     }
 465     case Op_Parm: {
 466       map_ideal_node(n, phantom_obj);
 467       break;
 468     }
 469     case Op_PartialSubtypeCheck: {
 470       // Produces Null or notNull and is used in only in CmpP so
 471       // phantom_obj could be used.
 472       map_ideal_node(n, phantom_obj); // Result is unknown
 473       break;
 474     }
 475     case Op_Phi: {
 476       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 477       // ThreadLocal has RawPtr type.
 478       const Type* t = n->as_Phi()->type();
 479       if (t->make_ptr() != NULL) {
 480         add_local_var(n, PointsToNode::NoEscape);
 481         // Do not add edges during first iteration because some could be
 482         // not defined yet.
 483         delayed_worklist->push(n);
 484       }
 485       break;
 486     }
 487     case Op_Proj: {
 488       // we are only interested in the oop result projection from a call
 489       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 490           n->in(0)->as_Call()->returns_pointer()) {
 491         add_local_var_and_edge(n, PointsToNode::NoEscape,
 492                                n->in(0), delayed_worklist);
 493       }
 494 #if INCLUDE_ZGC
 495       else if (UseZGC) {
 496         if (n->as_Proj()->_con == LoadBarrierNode::Oop && n->in(0)->is_LoadBarrier()) {
 497           add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0)->in(LoadBarrierNode::Oop), delayed_worklist);
 498         }
 499       }
 500 #endif
 501       break;
 502     }
 503     case Op_Rethrow: // Exception object escapes
 504     case Op_Return: {
 505       if (n->req() > TypeFunc::Parms &&
 506           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 507         // Treat Return value as LocalVar with GlobalEscape escape state.
 508         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 509                                n->in(TypeFunc::Parms), delayed_worklist);
 510       }
 511       break;
 512     }
 513     case Op_CompareAndExchangeP:
 514     case Op_CompareAndExchangeN:
 515     case Op_GetAndSetP:
 516     case Op_GetAndSetN: {
 517       add_objload_to_connection_graph(n, delayed_worklist);
 518       // fallthrough
 519     }
 520     case Op_StoreP:
 521     case Op_StoreN:
 522     case Op_StoreNKlass:
 523     case Op_StorePConditional:
 524     case Op_WeakCompareAndSwapP:
 525     case Op_WeakCompareAndSwapN:
 526     case Op_CompareAndSwapP:
 527     case Op_CompareAndSwapN: {
 528       Node* adr = n->in(MemNode::Address);
 529       const Type *adr_type = igvn->type(adr);
 530       adr_type = adr_type->make_ptr();
 531       if (adr_type == NULL) {
 532         break; // skip dead nodes
 533       }
 534       if (   adr_type->isa_oopptr()
 535           || (   (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 536               && adr_type == TypeRawPtr::NOTNULL
 537               && adr->in(AddPNode::Address)->is_Proj()
 538               && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 539         delayed_worklist->push(n); // Process it later.
 540 #ifdef ASSERT
 541         assert(adr->is_AddP(), "expecting an AddP");
 542         if (adr_type == TypeRawPtr::NOTNULL) {
 543           // Verify a raw address for a store captured by Initialize node.
 544           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 545           assert(offs != Type::OffsetBot, "offset must be a constant");
 546         }
 547 #endif
 548       } else {
 549         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 550         if (adr->is_BoxLock())
 551           break;
 552         // Stored value escapes in unsafe access.
 553         if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 554           // Pointer stores in G1 barriers looks like unsafe access.
 555           // Ignore such stores to be able scalar replace non-escaping
 556           // allocations.
 557 #if INCLUDE_G1GC
 558           if (UseG1GC && adr->is_AddP()) {
 559             Node* base = get_addp_base(adr);
 560             if (base->Opcode() == Op_LoadP &&
 561                 base->in(MemNode::Address)->is_AddP()) {
 562               adr = base->in(MemNode::Address);
 563               Node* tls = get_addp_base(adr);
 564               if (tls->Opcode() == Op_ThreadLocal) {
 565                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 566                 if (offs == in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset())) {
 567                   break; // G1 pre barrier previous oop value store.
 568                 }
 569                 if (offs == in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset())) {
 570                   break; // G1 post barrier card address store.
 571                 }
 572               }
 573             }
 574           }
 575 #endif
 576           delayed_worklist->push(n); // Process unsafe access later.
 577           break;
 578         }
 579 #ifdef ASSERT
 580         n->dump(1);
 581         assert(false, "not unsafe or G1 barrier raw StoreP");
 582 #endif
 583       }
 584       break;
 585     }
 586     case Op_AryEq:
 587     case Op_HasNegatives:
 588     case Op_StrComp:
 589     case Op_StrEquals:
 590     case Op_StrIndexOf:
 591     case Op_StrIndexOfChar:
 592     case Op_StrInflatedCopy:
 593     case Op_StrCompressedCopy:
 594     case Op_EncodeISOArray: {
 595       add_local_var(n, PointsToNode::ArgEscape);
 596       delayed_worklist->push(n); // Process it later.
 597       break;
 598     }
 599     case Op_ThreadLocal: {
 600       add_java_object(n, PointsToNode::ArgEscape);
 601       break;
 602     }
 603     default:
 604       ; // Do nothing for nodes not related to EA.
 605   }
 606   return;
 607 }
 608 
 609 #ifdef ASSERT
 610 #define ELSE_FAIL(name)                               \
 611       /* Should not be called for not pointer type. */  \
 612       n->dump(1);                                       \
 613       assert(false, name);                              \
 614       break;
 615 #else
 616 #define ELSE_FAIL(name) \
 617       break;
 618 #endif
 619 
 620 // Add final simple edges to graph.
 621 void ConnectionGraph::add_final_edges(Node *n) {
 622   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 623 #ifdef ASSERT
 624   if (_verify && n_ptn->is_JavaObject())
 625     return; // This method does not change graph for JavaObject.
 626 #endif
 627 
 628   if (n->is_Call()) {
 629     process_call_arguments(n->as_Call());
 630     return;
 631   }
 632   assert(n->is_Store() || n->is_LoadStore() ||
 633          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 634          "node should be registered already");
 635   int opcode = n->Opcode();
 636   switch (opcode) {
 637     case Op_AddP: {
 638       Node* base = get_addp_base(n);
 639       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 640       assert(ptn_base != NULL, "field's base should be registered");
 641       add_base(n_ptn->as_Field(), ptn_base);
 642       break;
 643     }
 644     case Op_CastPP:
 645     case Op_CheckCastPP:
 646     case Op_EncodeP:
 647     case Op_DecodeN:
 648     case Op_EncodePKlass:
 649     case Op_DecodeNKlass: {
 650       add_local_var_and_edge(n, PointsToNode::NoEscape,
 651                              n->in(1), NULL);
 652       break;
 653     }
 654     case Op_CMoveP: {
 655       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 656         Node* in = n->in(i);
 657         if (in == NULL)
 658           continue;  // ignore NULL
 659         Node* uncast_in = in->uncast();
 660         if (uncast_in->is_top() || uncast_in == n)
 661           continue;  // ignore top or inputs which go back this node
 662         PointsToNode* ptn = ptnode_adr(in->_idx);
 663         assert(ptn != NULL, "node should be registered");
 664         add_edge(n_ptn, ptn);
 665       }
 666       break;
 667     }
 668     case Op_LoadP:
 669 #if INCLUDE_ZGC
 670     case Op_LoadBarrierSlowReg:
 671     case Op_LoadBarrierWeakSlowReg:
 672 #endif
 673     case Op_LoadN:
 674     case Op_LoadPLocked: {
 675       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 676       // ThreadLocal has RawPtr type.
 677       const Type* t = _igvn->type(n);
 678       if (t->make_ptr() != NULL) {
 679         Node* adr = n->in(MemNode::Address);
 680         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 681         break;
 682       }
 683       ELSE_FAIL("Op_LoadP");
 684     }
 685     case Op_Phi: {
 686       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 687       // ThreadLocal has RawPtr type.
 688       const Type* t = n->as_Phi()->type();
 689       if (t->make_ptr() != NULL) {
 690         for (uint i = 1; i < n->req(); i++) {
 691           Node* in = n->in(i);
 692           if (in == NULL)
 693             continue;  // ignore NULL
 694           Node* uncast_in = in->uncast();
 695           if (uncast_in->is_top() || uncast_in == n)
 696             continue;  // ignore top or inputs which go back this node
 697           PointsToNode* ptn = ptnode_adr(in->_idx);
 698           assert(ptn != NULL, "node should be registered");
 699           add_edge(n_ptn, ptn);
 700         }
 701         break;
 702       }
 703       ELSE_FAIL("Op_Phi");
 704     }
 705     case Op_Proj: {
 706       // we are only interested in the oop result projection from a call
 707       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 708           n->in(0)->as_Call()->returns_pointer()) {
 709         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 710         break;
 711       }
 712 #if INCLUDE_ZGC
 713       else if (UseZGC) {
 714         if (n->as_Proj()->_con == LoadBarrierNode::Oop && n->in(0)->is_LoadBarrier()) {
 715           add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0)->in(LoadBarrierNode::Oop), NULL);
 716           break;
 717         }
 718       }
 719 #endif
 720       ELSE_FAIL("Op_Proj");
 721     }
 722     case Op_Rethrow: // Exception object escapes
 723     case Op_Return: {
 724       if (n->req() > TypeFunc::Parms &&
 725           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 726         // Treat Return value as LocalVar with GlobalEscape escape state.
 727         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 728                                n->in(TypeFunc::Parms), NULL);
 729         break;
 730       }
 731       ELSE_FAIL("Op_Return");
 732     }
 733     case Op_StoreP:
 734     case Op_StoreN:
 735     case Op_StoreNKlass:
 736     case Op_StorePConditional:
 737     case Op_CompareAndExchangeP:
 738     case Op_CompareAndExchangeN:
 739     case Op_CompareAndSwapP:
 740     case Op_CompareAndSwapN:
 741     case Op_WeakCompareAndSwapP:
 742     case Op_WeakCompareAndSwapN:
 743     case Op_GetAndSetP:
 744     case Op_GetAndSetN: {
 745       Node* adr = n->in(MemNode::Address);
 746       const Type *adr_type = _igvn->type(adr);
 747       adr_type = adr_type->make_ptr();
 748 #ifdef ASSERT
 749       if (adr_type == NULL) {
 750         n->dump(1);
 751         assert(adr_type != NULL, "dead node should not be on list");
 752         break;
 753       }
 754 #endif
 755       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 756           opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 757         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 758       }
 759       if (   adr_type->isa_oopptr()
 760           || (   (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 761               && adr_type == TypeRawPtr::NOTNULL
 762               && adr->in(AddPNode::Address)->is_Proj()
 763               && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 764         // Point Address to Value
 765         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 766         assert(adr_ptn != NULL &&
 767                adr_ptn->as_Field()->is_oop(), "node should be registered");
 768         Node *val = n->in(MemNode::ValueIn);
 769         PointsToNode* ptn = ptnode_adr(val->_idx);
 770         assert(ptn != NULL, "node should be registered");
 771         add_edge(adr_ptn, ptn);
 772         break;
 773       } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 774         // Stored value escapes in unsafe access.
 775         Node *val = n->in(MemNode::ValueIn);
 776         PointsToNode* ptn = ptnode_adr(val->_idx);
 777         assert(ptn != NULL, "node should be registered");
 778         set_escape_state(ptn, PointsToNode::GlobalEscape);
 779         // Add edge to object for unsafe access with offset.
 780         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 781         assert(adr_ptn != NULL, "node should be registered");
 782         if (adr_ptn->is_Field()) {
 783           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 784           add_edge(adr_ptn, ptn);
 785         }
 786         break;
 787       }
 788       ELSE_FAIL("Op_StoreP");
 789     }
 790     case Op_AryEq:
 791     case Op_HasNegatives:
 792     case Op_StrComp:
 793     case Op_StrEquals:
 794     case Op_StrIndexOf:
 795     case Op_StrIndexOfChar:
 796     case Op_StrInflatedCopy:
 797     case Op_StrCompressedCopy:
 798     case Op_EncodeISOArray: {
 799       // char[]/byte[] arrays passed to string intrinsic do not escape but
 800       // they are not scalar replaceable. Adjust escape state for them.
 801       // Start from in(2) edge since in(1) is memory edge.
 802       for (uint i = 2; i < n->req(); i++) {
 803         Node* adr = n->in(i);
 804         const Type* at = _igvn->type(adr);
 805         if (!adr->is_top() && at->isa_ptr()) {
 806           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 807                  at->isa_ptr() != NULL, "expecting a pointer");
 808           if (adr->is_AddP()) {
 809             adr = get_addp_base(adr);
 810           }
 811           PointsToNode* ptn = ptnode_adr(adr->_idx);
 812           assert(ptn != NULL, "node should be registered");
 813           add_edge(n_ptn, ptn);
 814         }
 815       }
 816       break;
 817     }
 818     default: {
 819       // This method should be called only for EA specific nodes which may
 820       // miss some edges when they were created.
 821 #ifdef ASSERT
 822       n->dump(1);
 823 #endif
 824       guarantee(false, "unknown node");
 825     }
 826   }
 827   return;
 828 }
 829 
 830 void ConnectionGraph::add_call_node(CallNode* call) {
 831   assert(call->returns_pointer(), "only for call which returns pointer");
 832   uint call_idx = call->_idx;
 833   if (call->is_Allocate()) {
 834     Node* k = call->in(AllocateNode::KlassNode);
 835     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 836     assert(kt != NULL, "TypeKlassPtr  required.");
 837     ciKlass* cik = kt->klass();
 838     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 839     bool scalar_replaceable = true;
 840     if (call->is_AllocateArray()) {
 841       if (!cik->is_array_klass()) { // StressReflectiveCode
 842         es = PointsToNode::GlobalEscape;
 843       } else {
 844         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 845         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 846           // Not scalar replaceable if the length is not constant or too big.
 847           scalar_replaceable = false;
 848         }
 849       }
 850     } else {  // Allocate instance
 851       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 852           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 853          !cik->is_instance_klass() || // StressReflectiveCode
 854          !cik->as_instance_klass()->can_be_instantiated() ||
 855           cik->as_instance_klass()->has_finalizer()) {
 856         es = PointsToNode::GlobalEscape;
 857       }
 858     }
 859     add_java_object(call, es);
 860     PointsToNode* ptn = ptnode_adr(call_idx);
 861     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 862       ptn->set_scalar_replaceable(false);
 863     }
 864   } else if (call->is_CallStaticJava()) {
 865     // Call nodes could be different types:
 866     //
 867     // 1. CallDynamicJavaNode (what happened during call is unknown):
 868     //
 869     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 870     //
 871     //    - all oop arguments are escaping globally;
 872     //
 873     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 874     //
 875     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 876     //
 877     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 878     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 879     //      during call is returned;
 880     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 881     //      which are returned and does not escape during call;
 882     //
 883     //    - oop arguments escaping status is defined by bytecode analysis;
 884     //
 885     // For a static call, we know exactly what method is being called.
 886     // Use bytecode estimator to record whether the call's return value escapes.
 887     ciMethod* meth = call->as_CallJava()->method();
 888     if (meth == NULL) {
 889       const char* name = call->as_CallStaticJava()->_name;
 890       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 891       // Returns a newly allocated unescaped object.
 892       add_java_object(call, PointsToNode::NoEscape);
 893       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 894     } else if (meth->is_boxing_method()) {
 895       // Returns boxing object
 896       PointsToNode::EscapeState es;
 897       vmIntrinsics::ID intr = meth->intrinsic_id();
 898       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 899         // It does not escape if object is always allocated.
 900         es = PointsToNode::NoEscape;
 901       } else {
 902         // It escapes globally if object could be loaded from cache.
 903         es = PointsToNode::GlobalEscape;
 904       }
 905       add_java_object(call, es);
 906     } else {
 907       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 908       call_analyzer->copy_dependencies(_compile->dependencies());
 909       if (call_analyzer->is_return_allocated()) {
 910         // Returns a newly allocated unescaped object, simply
 911         // update dependency information.
 912         // Mark it as NoEscape so that objects referenced by
 913         // it's fields will be marked as NoEscape at least.
 914         add_java_object(call, PointsToNode::NoEscape);
 915         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 916       } else {
 917         // Determine whether any arguments are returned.
 918         const TypeTuple* d = call->tf()->domain();
 919         bool ret_arg = false;
 920         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 921           if (d->field_at(i)->isa_ptr() != NULL &&
 922               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 923             ret_arg = true;
 924             break;
 925           }
 926         }
 927         if (ret_arg) {
 928           add_local_var(call, PointsToNode::ArgEscape);
 929         } else {
 930           // Returns unknown object.
 931           map_ideal_node(call, phantom_obj);
 932         }
 933       }
 934     }
 935   } else {
 936     // An other type of call, assume the worst case:
 937     // returned value is unknown and globally escapes.
 938     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 939     map_ideal_node(call, phantom_obj);
 940   }
 941 }
 942 
 943 void ConnectionGraph::process_call_arguments(CallNode *call) {
 944     bool is_arraycopy = false;
 945     switch (call->Opcode()) {
 946 #ifdef ASSERT
 947     case Op_Allocate:
 948     case Op_AllocateArray:
 949     case Op_Lock:
 950     case Op_Unlock:
 951       assert(false, "should be done already");
 952       break;
 953 #endif
 954     case Op_ArrayCopy:
 955     case Op_CallLeafNoFP:
 956       // Most array copies are ArrayCopy nodes at this point but there
 957       // are still a few direct calls to the copy subroutines (See
 958       // PhaseStringOpts::copy_string())
 959       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 960         call->as_CallLeaf()->is_call_to_arraycopystub();
 961       // fall through
 962     case Op_CallLeaf: {
 963       // Stub calls, objects do not escape but they are not scale replaceable.
 964       // Adjust escape state for outgoing arguments.
 965       const TypeTuple * d = call->tf()->domain();
 966       bool src_has_oops = false;
 967       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 968         const Type* at = d->field_at(i);
 969         Node *arg = call->in(i);
 970         if (arg == NULL) {
 971           continue;
 972         }
 973         const Type *aat = _igvn->type(arg);
 974         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 975           continue;
 976         if (arg->is_AddP()) {
 977           //
 978           // The inline_native_clone() case when the arraycopy stub is called
 979           // after the allocation before Initialize and CheckCastPP nodes.
 980           // Or normal arraycopy for object arrays case.
 981           //
 982           // Set AddP's base (Allocate) as not scalar replaceable since
 983           // pointer to the base (with offset) is passed as argument.
 984           //
 985           arg = get_addp_base(arg);
 986         }
 987         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 988         assert(arg_ptn != NULL, "should be registered");
 989         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 990         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 991           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 992                  aat->isa_ptr() != NULL, "expecting an Ptr");
 993           bool arg_has_oops = aat->isa_oopptr() &&
 994                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 995                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 996           if (i == TypeFunc::Parms) {
 997             src_has_oops = arg_has_oops;
 998           }
 999           //
1000           // src or dst could be j.l.Object when other is basic type array:
1001           //
1002           //   arraycopy(char[],0,Object*,0,size);
1003           //   arraycopy(Object*,0,char[],0,size);
1004           //
1005           // Don't add edges in such cases.
1006           //
1007           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
1008                                        arg_has_oops && (i > TypeFunc::Parms);
1009 #ifdef ASSERT
1010           if (!(is_arraycopy ||
1011                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
1012                 (call->as_CallLeaf()->_name != NULL &&
1013                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
1014                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
1015                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
1016                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
1017                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
1018                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
1019                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
1020                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
1021                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
1022                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
1023                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
1024                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
1025                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
1026                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1027                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1028                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1029                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1030                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1031                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1032                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1033                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1034                  ))) {
1035             call->dump();
1036             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1037           }
1038 #endif
1039           // Always process arraycopy's destination object since
1040           // we need to add all possible edges to references in
1041           // source object.
1042           if (arg_esc >= PointsToNode::ArgEscape &&
1043               !arg_is_arraycopy_dest) {
1044             continue;
1045           }
1046           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1047           if (call->is_ArrayCopy()) {
1048             ArrayCopyNode* ac = call->as_ArrayCopy();
1049             if (ac->is_clonebasic() ||
1050                 ac->is_arraycopy_validated() ||
1051                 ac->is_copyof_validated() ||
1052                 ac->is_copyofrange_validated()) {
1053               es = PointsToNode::NoEscape;
1054             }
1055           }
1056           set_escape_state(arg_ptn, es);
1057           if (arg_is_arraycopy_dest) {
1058             Node* src = call->in(TypeFunc::Parms);
1059             if (src->is_AddP()) {
1060               src = get_addp_base(src);
1061             }
1062             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1063             assert(src_ptn != NULL, "should be registered");
1064             if (arg_ptn != src_ptn) {
1065               // Special arraycopy edge:
1066               // A destination object's field can't have the source object
1067               // as base since objects escape states are not related.
1068               // Only escape state of destination object's fields affects
1069               // escape state of fields in source object.
1070               add_arraycopy(call, es, src_ptn, arg_ptn);
1071             }
1072           }
1073         }
1074       }
1075       break;
1076     }
1077     case Op_CallStaticJava: {
1078       // For a static call, we know exactly what method is being called.
1079       // Use bytecode estimator to record the call's escape affects
1080 #ifdef ASSERT
1081       const char* name = call->as_CallStaticJava()->_name;
1082       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1083 #endif
1084       ciMethod* meth = call->as_CallJava()->method();
1085       if ((meth != NULL) && meth->is_boxing_method()) {
1086         break; // Boxing methods do not modify any oops.
1087       }
1088       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1089       // fall-through if not a Java method or no analyzer information
1090       if (call_analyzer != NULL) {
1091         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1092         const TypeTuple* d = call->tf()->domain();
1093         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1094           const Type* at = d->field_at(i);
1095           int k = i - TypeFunc::Parms;
1096           Node* arg = call->in(i);
1097           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1098           if (at->isa_ptr() != NULL &&
1099               call_analyzer->is_arg_returned(k)) {
1100             // The call returns arguments.
1101             if (call_ptn != NULL) { // Is call's result used?
1102               assert(call_ptn->is_LocalVar(), "node should be registered");
1103               assert(arg_ptn != NULL, "node should be registered");
1104               add_edge(call_ptn, arg_ptn);
1105             }
1106           }
1107           if (at->isa_oopptr() != NULL &&
1108               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1109             if (!call_analyzer->is_arg_stack(k)) {
1110               // The argument global escapes
1111               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1112             } else {
1113               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1114               if (!call_analyzer->is_arg_local(k)) {
1115                 // The argument itself doesn't escape, but any fields might
1116                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1117               }
1118             }
1119           }
1120         }
1121         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1122           // The call returns arguments.
1123           assert(call_ptn->edge_count() > 0, "sanity");
1124           if (!call_analyzer->is_return_local()) {
1125             // Returns also unknown object.
1126             add_edge(call_ptn, phantom_obj);
1127           }
1128         }
1129         break;
1130       }
1131     }
1132     default: {
1133       // Fall-through here if not a Java method or no analyzer information
1134       // or some other type of call, assume the worst case: all arguments
1135       // globally escape.
1136       const TypeTuple* d = call->tf()->domain();
1137       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1138         const Type* at = d->field_at(i);
1139         if (at->isa_oopptr() != NULL) {
1140           Node* arg = call->in(i);
1141           if (arg->is_AddP()) {
1142             arg = get_addp_base(arg);
1143           }
1144           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1145           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1146         }
1147       }
1148     }
1149   }
1150 }
1151 
1152 
1153 // Finish Graph construction.
1154 bool ConnectionGraph::complete_connection_graph(
1155                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1156                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1157                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1158                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1159   // Normally only 1-3 passes needed to build Connection Graph depending
1160   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1161   // Set limit to 20 to catch situation when something did go wrong and
1162   // bailout Escape Analysis.
1163   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1164 #define CG_BUILD_ITER_LIMIT 20
1165 
1166   // Propagate GlobalEscape and ArgEscape escape states and check that
1167   // we still have non-escaping objects. The method pushs on _worklist
1168   // Field nodes which reference phantom_object.
1169   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1170     return false; // Nothing to do.
1171   }
1172   // Now propagate references to all JavaObject nodes.
1173   int java_objects_length = java_objects_worklist.length();
1174   elapsedTimer time;
1175   bool timeout = false;
1176   int new_edges = 1;
1177   int iterations = 0;
1178   do {
1179     while ((new_edges > 0) &&
1180            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1181       double start_time = time.seconds();
1182       time.start();
1183       new_edges = 0;
1184       // Propagate references to phantom_object for nodes pushed on _worklist
1185       // by find_non_escaped_objects() and find_field_value().
1186       new_edges += add_java_object_edges(phantom_obj, false);
1187       for (int next = 0; next < java_objects_length; ++next) {
1188         JavaObjectNode* ptn = java_objects_worklist.at(next);
1189         new_edges += add_java_object_edges(ptn, true);
1190 
1191 #define SAMPLE_SIZE 4
1192         if ((next % SAMPLE_SIZE) == 0) {
1193           // Each 4 iterations calculate how much time it will take
1194           // to complete graph construction.
1195           time.stop();
1196           // Poll for requests from shutdown mechanism to quiesce compiler
1197           // because Connection graph construction may take long time.
1198           CompileBroker::maybe_block();
1199           double stop_time = time.seconds();
1200           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1201           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1202           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1203             timeout = true;
1204             break; // Timeout
1205           }
1206           start_time = stop_time;
1207           time.start();
1208         }
1209 #undef SAMPLE_SIZE
1210 
1211       }
1212       if (timeout) break;
1213       if (new_edges > 0) {
1214         // Update escape states on each iteration if graph was updated.
1215         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1216           return false; // Nothing to do.
1217         }
1218       }
1219       time.stop();
1220       if (time.seconds() >= EscapeAnalysisTimeout) {
1221         timeout = true;
1222         break;
1223       }
1224     }
1225     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1226       time.start();
1227       // Find fields which have unknown value.
1228       int fields_length = oop_fields_worklist.length();
1229       for (int next = 0; next < fields_length; next++) {
1230         FieldNode* field = oop_fields_worklist.at(next);
1231         if (field->edge_count() == 0) {
1232           new_edges += find_field_value(field);
1233           // This code may added new edges to phantom_object.
1234           // Need an other cycle to propagate references to phantom_object.
1235         }
1236       }
1237       time.stop();
1238       if (time.seconds() >= EscapeAnalysisTimeout) {
1239         timeout = true;
1240         break;
1241       }
1242     } else {
1243       new_edges = 0; // Bailout
1244     }
1245   } while (new_edges > 0);
1246 
1247   // Bailout if passed limits.
1248   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1249     Compile* C = _compile;
1250     if (C->log() != NULL) {
1251       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1252       C->log()->text("%s", timeout ? "time" : "iterations");
1253       C->log()->end_elem(" limit'");
1254     }
1255     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1256            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1257     // Possible infinite build_connection_graph loop,
1258     // bailout (no changes to ideal graph were made).
1259     return false;
1260   }
1261 #ifdef ASSERT
1262   if (Verbose && PrintEscapeAnalysis) {
1263     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1264                   iterations, nodes_size(), ptnodes_worklist.length());
1265   }
1266 #endif
1267 
1268 #undef CG_BUILD_ITER_LIMIT
1269 
1270   // Find fields initialized by NULL for non-escaping Allocations.
1271   int non_escaped_length = non_escaped_worklist.length();
1272   for (int next = 0; next < non_escaped_length; next++) {
1273     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1274     PointsToNode::EscapeState es = ptn->escape_state();
1275     assert(es <= PointsToNode::ArgEscape, "sanity");
1276     if (es == PointsToNode::NoEscape) {
1277       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1278         // Adding references to NULL object does not change escape states
1279         // since it does not escape. Also no fields are added to NULL object.
1280         add_java_object_edges(null_obj, false);
1281       }
1282     }
1283     Node* n = ptn->ideal_node();
1284     if (n->is_Allocate()) {
1285       // The object allocated by this Allocate node will never be
1286       // seen by an other thread. Mark it so that when it is
1287       // expanded no MemBarStoreStore is added.
1288       InitializeNode* ini = n->as_Allocate()->initialization();
1289       if (ini != NULL)
1290         ini->set_does_not_escape();
1291     }
1292   }
1293   return true; // Finished graph construction.
1294 }
1295 
1296 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1297 // and check that we still have non-escaping java objects.
1298 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1299                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1300   GrowableArray<PointsToNode*> escape_worklist;
1301   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1302   int ptnodes_length = ptnodes_worklist.length();
1303   for (int next = 0; next < ptnodes_length; ++next) {
1304     PointsToNode* ptn = ptnodes_worklist.at(next);
1305     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1306         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1307       escape_worklist.push(ptn);
1308     }
1309   }
1310   // Set escape states to referenced nodes (edges list).
1311   while (escape_worklist.length() > 0) {
1312     PointsToNode* ptn = escape_worklist.pop();
1313     PointsToNode::EscapeState es  = ptn->escape_state();
1314     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1315     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1316         es >= PointsToNode::ArgEscape) {
1317       // GlobalEscape or ArgEscape state of field means it has unknown value.
1318       if (add_edge(ptn, phantom_obj)) {
1319         // New edge was added
1320         add_field_uses_to_worklist(ptn->as_Field());
1321       }
1322     }
1323     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1324       PointsToNode* e = i.get();
1325       if (e->is_Arraycopy()) {
1326         assert(ptn->arraycopy_dst(), "sanity");
1327         // Propagate only fields escape state through arraycopy edge.
1328         if (e->fields_escape_state() < field_es) {
1329           set_fields_escape_state(e, field_es);
1330           escape_worklist.push(e);
1331         }
1332       } else if (es >= field_es) {
1333         // fields_escape_state is also set to 'es' if it is less than 'es'.
1334         if (e->escape_state() < es) {
1335           set_escape_state(e, es);
1336           escape_worklist.push(e);
1337         }
1338       } else {
1339         // Propagate field escape state.
1340         bool es_changed = false;
1341         if (e->fields_escape_state() < field_es) {
1342           set_fields_escape_state(e, field_es);
1343           es_changed = true;
1344         }
1345         if ((e->escape_state() < field_es) &&
1346             e->is_Field() && ptn->is_JavaObject() &&
1347             e->as_Field()->is_oop()) {
1348           // Change escape state of referenced fields.
1349           set_escape_state(e, field_es);
1350           es_changed = true;
1351         } else if (e->escape_state() < es) {
1352           set_escape_state(e, es);
1353           es_changed = true;
1354         }
1355         if (es_changed) {
1356           escape_worklist.push(e);
1357         }
1358       }
1359     }
1360   }
1361   // Remove escaped objects from non_escaped list.
1362   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1363     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1364     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1365       non_escaped_worklist.delete_at(next);
1366     }
1367     if (ptn->escape_state() == PointsToNode::NoEscape) {
1368       // Find fields in non-escaped allocations which have unknown value.
1369       find_init_values(ptn, phantom_obj, NULL);
1370     }
1371   }
1372   return (non_escaped_worklist.length() > 0);
1373 }
1374 
1375 // Add all references to JavaObject node by walking over all uses.
1376 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1377   int new_edges = 0;
1378   if (populate_worklist) {
1379     // Populate _worklist by uses of jobj's uses.
1380     for (UseIterator i(jobj); i.has_next(); i.next()) {
1381       PointsToNode* use = i.get();
1382       if (use->is_Arraycopy())
1383         continue;
1384       add_uses_to_worklist(use);
1385       if (use->is_Field() && use->as_Field()->is_oop()) {
1386         // Put on worklist all field's uses (loads) and
1387         // related field nodes (same base and offset).
1388         add_field_uses_to_worklist(use->as_Field());
1389       }
1390     }
1391   }
1392   for (int l = 0; l < _worklist.length(); l++) {
1393     PointsToNode* use = _worklist.at(l);
1394     if (PointsToNode::is_base_use(use)) {
1395       // Add reference from jobj to field and from field to jobj (field's base).
1396       use = PointsToNode::get_use_node(use)->as_Field();
1397       if (add_base(use->as_Field(), jobj)) {
1398         new_edges++;
1399       }
1400       continue;
1401     }
1402     assert(!use->is_JavaObject(), "sanity");
1403     if (use->is_Arraycopy()) {
1404       if (jobj == null_obj) // NULL object does not have field edges
1405         continue;
1406       // Added edge from Arraycopy node to arraycopy's source java object
1407       if (add_edge(use, jobj)) {
1408         jobj->set_arraycopy_src();
1409         new_edges++;
1410       }
1411       // and stop here.
1412       continue;
1413     }
1414     if (!add_edge(use, jobj))
1415       continue; // No new edge added, there was such edge already.
1416     new_edges++;
1417     if (use->is_LocalVar()) {
1418       add_uses_to_worklist(use);
1419       if (use->arraycopy_dst()) {
1420         for (EdgeIterator i(use); i.has_next(); i.next()) {
1421           PointsToNode* e = i.get();
1422           if (e->is_Arraycopy()) {
1423             if (jobj == null_obj) // NULL object does not have field edges
1424               continue;
1425             // Add edge from arraycopy's destination java object to Arraycopy node.
1426             if (add_edge(jobj, e)) {
1427               new_edges++;
1428               jobj->set_arraycopy_dst();
1429             }
1430           }
1431         }
1432       }
1433     } else {
1434       // Added new edge to stored in field values.
1435       // Put on worklist all field's uses (loads) and
1436       // related field nodes (same base and offset).
1437       add_field_uses_to_worklist(use->as_Field());
1438     }
1439   }
1440   _worklist.clear();
1441   _in_worklist.Reset();
1442   return new_edges;
1443 }
1444 
1445 // Put on worklist all related field nodes.
1446 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1447   assert(field->is_oop(), "sanity");
1448   int offset = field->offset();
1449   add_uses_to_worklist(field);
1450   // Loop over all bases of this field and push on worklist Field nodes
1451   // with the same offset and base (since they may reference the same field).
1452   for (BaseIterator i(field); i.has_next(); i.next()) {
1453     PointsToNode* base = i.get();
1454     add_fields_to_worklist(field, base);
1455     // Check if the base was source object of arraycopy and go over arraycopy's
1456     // destination objects since values stored to a field of source object are
1457     // accessable by uses (loads) of fields of destination objects.
1458     if (base->arraycopy_src()) {
1459       for (UseIterator j(base); j.has_next(); j.next()) {
1460         PointsToNode* arycp = j.get();
1461         if (arycp->is_Arraycopy()) {
1462           for (UseIterator k(arycp); k.has_next(); k.next()) {
1463             PointsToNode* abase = k.get();
1464             if (abase->arraycopy_dst() && abase != base) {
1465               // Look for the same arraycopy reference.
1466               add_fields_to_worklist(field, abase);
1467             }
1468           }
1469         }
1470       }
1471     }
1472   }
1473 }
1474 
1475 // Put on worklist all related field nodes.
1476 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1477   int offset = field->offset();
1478   if (base->is_LocalVar()) {
1479     for (UseIterator j(base); j.has_next(); j.next()) {
1480       PointsToNode* f = j.get();
1481       if (PointsToNode::is_base_use(f)) { // Field
1482         f = PointsToNode::get_use_node(f);
1483         if (f == field || !f->as_Field()->is_oop())
1484           continue;
1485         int offs = f->as_Field()->offset();
1486         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1487           add_to_worklist(f);
1488         }
1489       }
1490     }
1491   } else {
1492     assert(base->is_JavaObject(), "sanity");
1493     if (// Skip phantom_object since it is only used to indicate that
1494         // this field's content globally escapes.
1495         (base != phantom_obj) &&
1496         // NULL object node does not have fields.
1497         (base != null_obj)) {
1498       for (EdgeIterator i(base); i.has_next(); i.next()) {
1499         PointsToNode* f = i.get();
1500         // Skip arraycopy edge since store to destination object field
1501         // does not update value in source object field.
1502         if (f->is_Arraycopy()) {
1503           assert(base->arraycopy_dst(), "sanity");
1504           continue;
1505         }
1506         if (f == field || !f->as_Field()->is_oop())
1507           continue;
1508         int offs = f->as_Field()->offset();
1509         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1510           add_to_worklist(f);
1511         }
1512       }
1513     }
1514   }
1515 }
1516 
1517 // Find fields which have unknown value.
1518 int ConnectionGraph::find_field_value(FieldNode* field) {
1519   // Escaped fields should have init value already.
1520   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1521   int new_edges = 0;
1522   for (BaseIterator i(field); i.has_next(); i.next()) {
1523     PointsToNode* base = i.get();
1524     if (base->is_JavaObject()) {
1525       // Skip Allocate's fields which will be processed later.
1526       if (base->ideal_node()->is_Allocate())
1527         return 0;
1528       assert(base == null_obj, "only NULL ptr base expected here");
1529     }
1530   }
1531   if (add_edge(field, phantom_obj)) {
1532     // New edge was added
1533     new_edges++;
1534     add_field_uses_to_worklist(field);
1535   }
1536   return new_edges;
1537 }
1538 
1539 // Find fields initializing values for allocations.
1540 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1541   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1542   int new_edges = 0;
1543   Node* alloc = pta->ideal_node();
1544   if (init_val == phantom_obj) {
1545     // Do nothing for Allocate nodes since its fields values are
1546     // "known" unless they are initialized by arraycopy/clone.
1547     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1548       return 0;
1549     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1550 #ifdef ASSERT
1551     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1552       const char* name = alloc->as_CallStaticJava()->_name;
1553       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1554     }
1555 #endif
1556     // Non-escaped allocation returned from Java or runtime call have
1557     // unknown values in fields.
1558     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1559       PointsToNode* field = i.get();
1560       if (field->is_Field() && field->as_Field()->is_oop()) {
1561         if (add_edge(field, phantom_obj)) {
1562           // New edge was added
1563           new_edges++;
1564           add_field_uses_to_worklist(field->as_Field());
1565         }
1566       }
1567     }
1568     return new_edges;
1569   }
1570   assert(init_val == null_obj, "sanity");
1571   // Do nothing for Call nodes since its fields values are unknown.
1572   if (!alloc->is_Allocate())
1573     return 0;
1574 
1575   InitializeNode* ini = alloc->as_Allocate()->initialization();
1576   bool visited_bottom_offset = false;
1577   GrowableArray<int> offsets_worklist;
1578 
1579   // Check if an oop field's initializing value is recorded and add
1580   // a corresponding NULL if field's value if it is not recorded.
1581   // Connection Graph does not record a default initialization by NULL
1582   // captured by Initialize node.
1583   //
1584   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1585     PointsToNode* field = i.get(); // Field (AddP)
1586     if (!field->is_Field() || !field->as_Field()->is_oop())
1587       continue; // Not oop field
1588     int offset = field->as_Field()->offset();
1589     if (offset == Type::OffsetBot) {
1590       if (!visited_bottom_offset) {
1591         // OffsetBot is used to reference array's element,
1592         // always add reference to NULL to all Field nodes since we don't
1593         // known which element is referenced.
1594         if (add_edge(field, null_obj)) {
1595           // New edge was added
1596           new_edges++;
1597           add_field_uses_to_worklist(field->as_Field());
1598           visited_bottom_offset = true;
1599         }
1600       }
1601     } else {
1602       // Check only oop fields.
1603       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1604       if (adr_type->isa_rawptr()) {
1605 #ifdef ASSERT
1606         // Raw pointers are used for initializing stores so skip it
1607         // since it should be recorded already
1608         Node* base = get_addp_base(field->ideal_node());
1609         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1610                (base->in(0) == alloc),"unexpected pointer type");
1611 #endif
1612         continue;
1613       }
1614       if (!offsets_worklist.contains(offset)) {
1615         offsets_worklist.append(offset);
1616         Node* value = NULL;
1617         if (ini != NULL) {
1618           // StoreP::memory_type() == T_ADDRESS
1619           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1620           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1621           // Make sure initializing store has the same type as this AddP.
1622           // This AddP may reference non existing field because it is on a
1623           // dead branch of bimorphic call which is not eliminated yet.
1624           if (store != NULL && store->is_Store() &&
1625               store->as_Store()->memory_type() == ft) {
1626             value = store->in(MemNode::ValueIn);
1627 #ifdef ASSERT
1628             if (VerifyConnectionGraph) {
1629               // Verify that AddP already points to all objects the value points to.
1630               PointsToNode* val = ptnode_adr(value->_idx);
1631               assert((val != NULL), "should be processed already");
1632               PointsToNode* missed_obj = NULL;
1633               if (val->is_JavaObject()) {
1634                 if (!field->points_to(val->as_JavaObject())) {
1635                   missed_obj = val;
1636                 }
1637               } else {
1638                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1639                   tty->print_cr("----------init store has invalid value -----");
1640                   store->dump();
1641                   val->dump();
1642                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1643                 }
1644                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1645                   PointsToNode* obj = j.get();
1646                   if (obj->is_JavaObject()) {
1647                     if (!field->points_to(obj->as_JavaObject())) {
1648                       missed_obj = obj;
1649                       break;
1650                     }
1651                   }
1652                 }
1653               }
1654               if (missed_obj != NULL) {
1655                 tty->print_cr("----------field---------------------------------");
1656                 field->dump();
1657                 tty->print_cr("----------missed referernce to object-----------");
1658                 missed_obj->dump();
1659                 tty->print_cr("----------object referernced by init store -----");
1660                 store->dump();
1661                 val->dump();
1662                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1663               }
1664             }
1665 #endif
1666           } else {
1667             // There could be initializing stores which follow allocation.
1668             // For example, a volatile field store is not collected
1669             // by Initialize node.
1670             //
1671             // Need to check for dependent loads to separate such stores from
1672             // stores which follow loads. For now, add initial value NULL so
1673             // that compare pointers optimization works correctly.
1674           }
1675         }
1676         if (value == NULL) {
1677           // A field's initializing value was not recorded. Add NULL.
1678           if (add_edge(field, null_obj)) {
1679             // New edge was added
1680             new_edges++;
1681             add_field_uses_to_worklist(field->as_Field());
1682           }
1683         }
1684       }
1685     }
1686   }
1687   return new_edges;
1688 }
1689 
1690 // Adjust scalar_replaceable state after Connection Graph is built.
1691 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1692   // Search for non-escaping objects which are not scalar replaceable
1693   // and mark them to propagate the state to referenced objects.
1694 
1695   // 1. An object is not scalar replaceable if the field into which it is
1696   // stored has unknown offset (stored into unknown element of an array).
1697   //
1698   for (UseIterator i(jobj); i.has_next(); i.next()) {
1699     PointsToNode* use = i.get();
1700     if (use->is_Arraycopy()) {
1701       continue;
1702     }
1703     if (use->is_Field()) {
1704       FieldNode* field = use->as_Field();
1705       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1706       if (field->offset() == Type::OffsetBot) {
1707         jobj->set_scalar_replaceable(false);
1708         return;
1709       }
1710       // 2. An object is not scalar replaceable if the field into which it is
1711       // stored has multiple bases one of which is null.
1712       if (field->base_count() > 1) {
1713         for (BaseIterator i(field); i.has_next(); i.next()) {
1714           PointsToNode* base = i.get();
1715           if (base == null_obj) {
1716             jobj->set_scalar_replaceable(false);
1717             return;
1718           }
1719         }
1720       }
1721     }
1722     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1723     // 3. An object is not scalar replaceable if it is merged with other objects.
1724     for (EdgeIterator j(use); j.has_next(); j.next()) {
1725       PointsToNode* ptn = j.get();
1726       if (ptn->is_JavaObject() && ptn != jobj) {
1727         // Mark all objects.
1728         jobj->set_scalar_replaceable(false);
1729          ptn->set_scalar_replaceable(false);
1730       }
1731     }
1732     if (!jobj->scalar_replaceable()) {
1733       return;
1734     }
1735   }
1736 
1737   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1738     if (j.get()->is_Arraycopy()) {
1739       continue;
1740     }
1741 
1742     // Non-escaping object node should point only to field nodes.
1743     FieldNode* field = j.get()->as_Field();
1744     int offset = field->as_Field()->offset();
1745 
1746     // 4. An object is not scalar replaceable if it has a field with unknown
1747     // offset (array's element is accessed in loop).
1748     if (offset == Type::OffsetBot) {
1749       jobj->set_scalar_replaceable(false);
1750       return;
1751     }
1752     // 5. Currently an object is not scalar replaceable if a LoadStore node
1753     // access its field since the field value is unknown after it.
1754     //
1755     Node* n = field->ideal_node();
1756     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1757       if (n->fast_out(i)->is_LoadStore()) {
1758         jobj->set_scalar_replaceable(false);
1759         return;
1760       }
1761     }
1762 
1763     // 6. Or the address may point to more then one object. This may produce
1764     // the false positive result (set not scalar replaceable)
1765     // since the flow-insensitive escape analysis can't separate
1766     // the case when stores overwrite the field's value from the case
1767     // when stores happened on different control branches.
1768     //
1769     // Note: it will disable scalar replacement in some cases:
1770     //
1771     //    Point p[] = new Point[1];
1772     //    p[0] = new Point(); // Will be not scalar replaced
1773     //
1774     // but it will save us from incorrect optimizations in next cases:
1775     //
1776     //    Point p[] = new Point[1];
1777     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1778     //
1779     if (field->base_count() > 1) {
1780       for (BaseIterator i(field); i.has_next(); i.next()) {
1781         PointsToNode* base = i.get();
1782         // Don't take into account LocalVar nodes which
1783         // may point to only one object which should be also
1784         // this field's base by now.
1785         if (base->is_JavaObject() && base != jobj) {
1786           // Mark all bases.
1787           jobj->set_scalar_replaceable(false);
1788           base->set_scalar_replaceable(false);
1789         }
1790       }
1791     }
1792   }
1793 }
1794 
1795 #ifdef ASSERT
1796 void ConnectionGraph::verify_connection_graph(
1797                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1798                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1799                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1800                          GrowableArray<Node*>& addp_worklist) {
1801   // Verify that graph is complete - no new edges could be added.
1802   int java_objects_length = java_objects_worklist.length();
1803   int non_escaped_length  = non_escaped_worklist.length();
1804   int new_edges = 0;
1805   for (int next = 0; next < java_objects_length; ++next) {
1806     JavaObjectNode* ptn = java_objects_worklist.at(next);
1807     new_edges += add_java_object_edges(ptn, true);
1808   }
1809   assert(new_edges == 0, "graph was not complete");
1810   // Verify that escape state is final.
1811   int length = non_escaped_worklist.length();
1812   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1813   assert((non_escaped_length == non_escaped_worklist.length()) &&
1814          (non_escaped_length == length) &&
1815          (_worklist.length() == 0), "escape state was not final");
1816 
1817   // Verify fields information.
1818   int addp_length = addp_worklist.length();
1819   for (int next = 0; next < addp_length; ++next ) {
1820     Node* n = addp_worklist.at(next);
1821     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1822     if (field->is_oop()) {
1823       // Verify that field has all bases
1824       Node* base = get_addp_base(n);
1825       PointsToNode* ptn = ptnode_adr(base->_idx);
1826       if (ptn->is_JavaObject()) {
1827         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1828       } else {
1829         assert(ptn->is_LocalVar(), "sanity");
1830         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1831           PointsToNode* e = i.get();
1832           if (e->is_JavaObject()) {
1833             assert(field->has_base(e->as_JavaObject()), "sanity");
1834           }
1835         }
1836       }
1837       // Verify that all fields have initializing values.
1838       if (field->edge_count() == 0) {
1839         tty->print_cr("----------field does not have references----------");
1840         field->dump();
1841         for (BaseIterator i(field); i.has_next(); i.next()) {
1842           PointsToNode* base = i.get();
1843           tty->print_cr("----------field has next base---------------------");
1844           base->dump();
1845           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1846             tty->print_cr("----------base has fields-------------------------");
1847             for (EdgeIterator j(base); j.has_next(); j.next()) {
1848               j.get()->dump();
1849             }
1850             tty->print_cr("----------base has references---------------------");
1851             for (UseIterator j(base); j.has_next(); j.next()) {
1852               j.get()->dump();
1853             }
1854           }
1855         }
1856         for (UseIterator i(field); i.has_next(); i.next()) {
1857           i.get()->dump();
1858         }
1859         assert(field->edge_count() > 0, "sanity");
1860       }
1861     }
1862   }
1863 }
1864 #endif
1865 
1866 // Optimize ideal graph.
1867 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1868                                            GrowableArray<Node*>& storestore_worklist) {
1869   Compile* C = _compile;
1870   PhaseIterGVN* igvn = _igvn;
1871   if (EliminateLocks) {
1872     // Mark locks before changing ideal graph.
1873     int cnt = C->macro_count();
1874     for( int i=0; i < cnt; i++ ) {
1875       Node *n = C->macro_node(i);
1876       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1877         AbstractLockNode* alock = n->as_AbstractLock();
1878         if (!alock->is_non_esc_obj()) {
1879           if (not_global_escape(alock->obj_node())) {
1880             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1881             // The lock could be marked eliminated by lock coarsening
1882             // code during first IGVN before EA. Replace coarsened flag
1883             // to eliminate all associated locks/unlocks.
1884 #ifdef ASSERT
1885             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1886 #endif
1887             alock->set_non_esc_obj();
1888           }
1889         }
1890       }
1891     }
1892   }
1893 
1894   if (OptimizePtrCompare) {
1895     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1896     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1897     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1898     // Optimize objects compare.
1899     while (ptr_cmp_worklist.length() != 0) {
1900       Node *n = ptr_cmp_worklist.pop();
1901       Node *res = optimize_ptr_compare(n);
1902       if (res != NULL) {
1903 #ifndef PRODUCT
1904         if (PrintOptimizePtrCompare) {
1905           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1906           if (Verbose) {
1907             n->dump(1);
1908           }
1909         }
1910 #endif
1911         igvn->replace_node(n, res);
1912       }
1913     }
1914     // cleanup
1915     if (_pcmp_neq->outcnt() == 0)
1916       igvn->hash_delete(_pcmp_neq);
1917     if (_pcmp_eq->outcnt()  == 0)
1918       igvn->hash_delete(_pcmp_eq);
1919   }
1920 
1921   // For MemBarStoreStore nodes added in library_call.cpp, check
1922   // escape status of associated AllocateNode and optimize out
1923   // MemBarStoreStore node if the allocated object never escapes.
1924   while (storestore_worklist.length() != 0) {
1925     Node *n = storestore_worklist.pop();
1926     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1927     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1928     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1929     if (not_global_escape(alloc)) {
1930       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1931       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1932       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1933       igvn->register_new_node_with_optimizer(mb);
1934       igvn->replace_node(storestore, mb);
1935     }
1936   }
1937 }
1938 
1939 // Optimize objects compare.
1940 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1941   assert(OptimizePtrCompare, "sanity");
1942   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1943   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1944   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1945   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1946   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1947   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1948 
1949   // Check simple cases first.
1950   if (jobj1 != NULL) {
1951     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1952       if (jobj1 == jobj2) {
1953         // Comparing the same not escaping object.
1954         return _pcmp_eq;
1955       }
1956       Node* obj = jobj1->ideal_node();
1957       // Comparing not escaping allocation.
1958       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1959           !ptn2->points_to(jobj1)) {
1960         return _pcmp_neq; // This includes nullness check.
1961       }
1962     }
1963   }
1964   if (jobj2 != NULL) {
1965     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1966       Node* obj = jobj2->ideal_node();
1967       // Comparing not escaping allocation.
1968       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1969           !ptn1->points_to(jobj2)) {
1970         return _pcmp_neq; // This includes nullness check.
1971       }
1972     }
1973   }
1974   if (jobj1 != NULL && jobj1 != phantom_obj &&
1975       jobj2 != NULL && jobj2 != phantom_obj &&
1976       jobj1->ideal_node()->is_Con() &&
1977       jobj2->ideal_node()->is_Con()) {
1978     // Klass or String constants compare. Need to be careful with
1979     // compressed pointers - compare types of ConN and ConP instead of nodes.
1980     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1981     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1982     if (t1->make_ptr() == t2->make_ptr()) {
1983       return _pcmp_eq;
1984     } else {
1985       return _pcmp_neq;
1986     }
1987   }
1988   if (ptn1->meet(ptn2)) {
1989     return NULL; // Sets are not disjoint
1990   }
1991 
1992   // Sets are disjoint.
1993   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1994   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1995   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1996   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1997   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
1998       (set2_has_unknown_ptr && set1_has_null_ptr)) {
1999     // Check nullness of unknown object.
2000     return NULL;
2001   }
2002 
2003   // Disjointness by itself is not sufficient since
2004   // alias analysis is not complete for escaped objects.
2005   // Disjoint sets are definitely unrelated only when
2006   // at least one set has only not escaping allocations.
2007   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
2008     if (ptn1->non_escaping_allocation()) {
2009       return _pcmp_neq;
2010     }
2011   }
2012   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
2013     if (ptn2->non_escaping_allocation()) {
2014       return _pcmp_neq;
2015     }
2016   }
2017   return NULL;
2018 }
2019 
2020 // Connection Graph constuction functions.
2021 
2022 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
2023   PointsToNode* ptadr = _nodes.at(n->_idx);
2024   if (ptadr != NULL) {
2025     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
2026     return;
2027   }
2028   Compile* C = _compile;
2029   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2030   _nodes.at_put(n->_idx, ptadr);
2031 }
2032 
2033 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2034   PointsToNode* ptadr = _nodes.at(n->_idx);
2035   if (ptadr != NULL) {
2036     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2037     return;
2038   }
2039   Compile* C = _compile;
2040   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2041   _nodes.at_put(n->_idx, ptadr);
2042 }
2043 
2044 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2045   PointsToNode* ptadr = _nodes.at(n->_idx);
2046   if (ptadr != NULL) {
2047     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2048     return;
2049   }
2050   bool unsafe = false;
2051   bool is_oop = is_oop_field(n, offset, &unsafe);
2052   if (unsafe) {
2053     es = PointsToNode::GlobalEscape;
2054   }
2055   Compile* C = _compile;
2056   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2057   _nodes.at_put(n->_idx, field);
2058 }
2059 
2060 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2061                                     PointsToNode* src, PointsToNode* dst) {
2062   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2063   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2064   PointsToNode* ptadr = _nodes.at(n->_idx);
2065   if (ptadr != NULL) {
2066     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2067     return;
2068   }
2069   Compile* C = _compile;
2070   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2071   _nodes.at_put(n->_idx, ptadr);
2072   // Add edge from arraycopy node to source object.
2073   (void)add_edge(ptadr, src);
2074   src->set_arraycopy_src();
2075   // Add edge from destination object to arraycopy node.
2076   (void)add_edge(dst, ptadr);
2077   dst->set_arraycopy_dst();
2078 }
2079 
2080 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2081   const Type* adr_type = n->as_AddP()->bottom_type();
2082   BasicType bt = T_INT;
2083   if (offset == Type::OffsetBot) {
2084     // Check only oop fields.
2085     if (!adr_type->isa_aryptr() ||
2086         (adr_type->isa_aryptr()->klass() == NULL) ||
2087          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2088       // OffsetBot is used to reference array's element. Ignore first AddP.
2089       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2090         bt = T_OBJECT;
2091       }
2092     }
2093   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2094     if (adr_type->isa_instptr()) {
2095       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2096       if (field != NULL) {
2097         bt = field->layout_type();
2098       } else {
2099         // Check for unsafe oop field access
2100         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2101             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2102             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
2103           bt = T_OBJECT;
2104           (*unsafe) = true;
2105         }
2106       }
2107     } else if (adr_type->isa_aryptr()) {
2108       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2109         // Ignore array length load.
2110       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2111         // Ignore first AddP.
2112       } else {
2113         const Type* elemtype = adr_type->isa_aryptr()->elem();
2114         bt = elemtype->array_element_basic_type();
2115       }
2116     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2117       // Allocation initialization, ThreadLocal field access, unsafe access
2118       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2119           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2120           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
2121         bt = T_OBJECT;
2122       }
2123     }
2124   }
2125   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2126 }
2127 
2128 // Returns unique pointed java object or NULL.
2129 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2130   assert(!_collecting, "should not call when contructed graph");
2131   // If the node was created after the escape computation we can't answer.
2132   uint idx = n->_idx;
2133   if (idx >= nodes_size()) {
2134     return NULL;
2135   }
2136   PointsToNode* ptn = ptnode_adr(idx);
2137   if (ptn->is_JavaObject()) {
2138     return ptn->as_JavaObject();
2139   }
2140   assert(ptn->is_LocalVar(), "sanity");
2141   // Check all java objects it points to.
2142   JavaObjectNode* jobj = NULL;
2143   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2144     PointsToNode* e = i.get();
2145     if (e->is_JavaObject()) {
2146       if (jobj == NULL) {
2147         jobj = e->as_JavaObject();
2148       } else if (jobj != e) {
2149         return NULL;
2150       }
2151     }
2152   }
2153   return jobj;
2154 }
2155 
2156 // Return true if this node points only to non-escaping allocations.
2157 bool PointsToNode::non_escaping_allocation() {
2158   if (is_JavaObject()) {
2159     Node* n = ideal_node();
2160     if (n->is_Allocate() || n->is_CallStaticJava()) {
2161       return (escape_state() == PointsToNode::NoEscape);
2162     } else {
2163       return false;
2164     }
2165   }
2166   assert(is_LocalVar(), "sanity");
2167   // Check all java objects it points to.
2168   for (EdgeIterator i(this); i.has_next(); i.next()) {
2169     PointsToNode* e = i.get();
2170     if (e->is_JavaObject()) {
2171       Node* n = e->ideal_node();
2172       if ((e->escape_state() != PointsToNode::NoEscape) ||
2173           !(n->is_Allocate() || n->is_CallStaticJava())) {
2174         return false;
2175       }
2176     }
2177   }
2178   return true;
2179 }
2180 
2181 // Return true if we know the node does not escape globally.
2182 bool ConnectionGraph::not_global_escape(Node *n) {
2183   assert(!_collecting, "should not call during graph construction");
2184   // If the node was created after the escape computation we can't answer.
2185   uint idx = n->_idx;
2186   if (idx >= nodes_size()) {
2187     return false;
2188   }
2189   PointsToNode* ptn = ptnode_adr(idx);
2190   PointsToNode::EscapeState es = ptn->escape_state();
2191   // If we have already computed a value, return it.
2192   if (es >= PointsToNode::GlobalEscape)
2193     return false;
2194   if (ptn->is_JavaObject()) {
2195     return true; // (es < PointsToNode::GlobalEscape);
2196   }
2197   assert(ptn->is_LocalVar(), "sanity");
2198   // Check all java objects it points to.
2199   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2200     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2201       return false;
2202   }
2203   return true;
2204 }
2205 
2206 
2207 // Helper functions
2208 
2209 // Return true if this node points to specified node or nodes it points to.
2210 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2211   if (is_JavaObject()) {
2212     return (this == ptn);
2213   }
2214   assert(is_LocalVar() || is_Field(), "sanity");
2215   for (EdgeIterator i(this); i.has_next(); i.next()) {
2216     if (i.get() == ptn)
2217       return true;
2218   }
2219   return false;
2220 }
2221 
2222 // Return true if one node points to an other.
2223 bool PointsToNode::meet(PointsToNode* ptn) {
2224   if (this == ptn) {
2225     return true;
2226   } else if (ptn->is_JavaObject()) {
2227     return this->points_to(ptn->as_JavaObject());
2228   } else if (this->is_JavaObject()) {
2229     return ptn->points_to(this->as_JavaObject());
2230   }
2231   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2232   int ptn_count =  ptn->edge_count();
2233   for (EdgeIterator i(this); i.has_next(); i.next()) {
2234     PointsToNode* this_e = i.get();
2235     for (int j = 0; j < ptn_count; j++) {
2236       if (this_e == ptn->edge(j))
2237         return true;
2238     }
2239   }
2240   return false;
2241 }
2242 
2243 #ifdef ASSERT
2244 // Return true if bases point to this java object.
2245 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2246   for (BaseIterator i(this); i.has_next(); i.next()) {
2247     if (i.get() == jobj)
2248       return true;
2249   }
2250   return false;
2251 }
2252 #endif
2253 
2254 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2255   const Type *adr_type = phase->type(adr);
2256   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2257       adr->in(AddPNode::Address)->is_Proj() &&
2258       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2259     // We are computing a raw address for a store captured by an Initialize
2260     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2261     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2262     assert(offs != Type::OffsetBot ||
2263            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2264            "offset must be a constant or it is initialization of array");
2265     return offs;
2266   }
2267   const TypePtr *t_ptr = adr_type->isa_ptr();
2268   assert(t_ptr != NULL, "must be a pointer type");
2269   return t_ptr->offset();
2270 }
2271 
2272 Node* ConnectionGraph::get_addp_base(Node *addp) {
2273   assert(addp->is_AddP(), "must be AddP");
2274   //
2275   // AddP cases for Base and Address inputs:
2276   // case #1. Direct object's field reference:
2277   //     Allocate
2278   //       |
2279   //     Proj #5 ( oop result )
2280   //       |
2281   //     CheckCastPP (cast to instance type)
2282   //      | |
2283   //     AddP  ( base == address )
2284   //
2285   // case #2. Indirect object's field reference:
2286   //      Phi
2287   //       |
2288   //     CastPP (cast to instance type)
2289   //      | |
2290   //     AddP  ( base == address )
2291   //
2292   // case #3. Raw object's field reference for Initialize node:
2293   //      Allocate
2294   //        |
2295   //      Proj #5 ( oop result )
2296   //  top   |
2297   //     \  |
2298   //     AddP  ( base == top )
2299   //
2300   // case #4. Array's element reference:
2301   //   {CheckCastPP | CastPP}
2302   //     |  | |
2303   //     |  AddP ( array's element offset )
2304   //     |  |
2305   //     AddP ( array's offset )
2306   //
2307   // case #5. Raw object's field reference for arraycopy stub call:
2308   //          The inline_native_clone() case when the arraycopy stub is called
2309   //          after the allocation before Initialize and CheckCastPP nodes.
2310   //      Allocate
2311   //        |
2312   //      Proj #5 ( oop result )
2313   //       | |
2314   //       AddP  ( base == address )
2315   //
2316   // case #6. Constant Pool, ThreadLocal, CastX2P or
2317   //          Raw object's field reference:
2318   //      {ConP, ThreadLocal, CastX2P, raw Load}
2319   //  top   |
2320   //     \  |
2321   //     AddP  ( base == top )
2322   //
2323   // case #7. Klass's field reference.
2324   //      LoadKlass
2325   //       | |
2326   //       AddP  ( base == address )
2327   //
2328   // case #8. narrow Klass's field reference.
2329   //      LoadNKlass
2330   //       |
2331   //      DecodeN
2332   //       | |
2333   //       AddP  ( base == address )
2334   //
2335   // case #9. Mixed unsafe access
2336   //    {instance}
2337   //        |
2338   //      CheckCastPP (raw)
2339   //  top   |
2340   //     \  |
2341   //     AddP  ( base == top )
2342   //
2343   Node *base = addp->in(AddPNode::Base);
2344   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
2345     base = addp->in(AddPNode::Address);
2346     while (base->is_AddP()) {
2347       // Case #6 (unsafe access) may have several chained AddP nodes.
2348       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2349       base = base->in(AddPNode::Address);
2350     }
2351     if (base->Opcode() == Op_CheckCastPP &&
2352         base->bottom_type()->isa_rawptr() &&
2353         _igvn->type(base->in(1))->isa_oopptr()) {
2354       base = base->in(1); // Case #9
2355     } else {
2356       Node* uncast_base = base->uncast();
2357       int opcode = uncast_base->Opcode();
2358       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2359              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2360              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2361              (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2362     }
2363   }
2364   return base;
2365 }
2366 
2367 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2368   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2369   Node* addp2 = addp->raw_out(0);
2370   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2371       addp2->in(AddPNode::Base) == n &&
2372       addp2->in(AddPNode::Address) == addp) {
2373     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2374     //
2375     // Find array's offset to push it on worklist first and
2376     // as result process an array's element offset first (pushed second)
2377     // to avoid CastPP for the array's offset.
2378     // Otherwise the inserted CastPP (LocalVar) will point to what
2379     // the AddP (Field) points to. Which would be wrong since
2380     // the algorithm expects the CastPP has the same point as
2381     // as AddP's base CheckCastPP (LocalVar).
2382     //
2383     //    ArrayAllocation
2384     //     |
2385     //    CheckCastPP
2386     //     |
2387     //    memProj (from ArrayAllocation CheckCastPP)
2388     //     |  ||
2389     //     |  ||   Int (element index)
2390     //     |  ||    |   ConI (log(element size))
2391     //     |  ||    |   /
2392     //     |  ||   LShift
2393     //     |  ||  /
2394     //     |  AddP (array's element offset)
2395     //     |  |
2396     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2397     //     | / /
2398     //     AddP (array's offset)
2399     //      |
2400     //     Load/Store (memory operation on array's element)
2401     //
2402     return addp2;
2403   }
2404   return NULL;
2405 }
2406 
2407 //
2408 // Adjust the type and inputs of an AddP which computes the
2409 // address of a field of an instance
2410 //
2411 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2412   PhaseGVN* igvn = _igvn;
2413   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2414   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2415   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2416   if (t == NULL) {
2417     // We are computing a raw address for a store captured by an Initialize
2418     // compute an appropriate address type (cases #3 and #5).
2419     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2420     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2421     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2422     assert(offs != Type::OffsetBot, "offset must be a constant");
2423     t = base_t->add_offset(offs)->is_oopptr();
2424   }
2425   int inst_id =  base_t->instance_id();
2426   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2427                              "old type must be non-instance or match new type");
2428 
2429   // The type 't' could be subclass of 'base_t'.
2430   // As result t->offset() could be large then base_t's size and it will
2431   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2432   // constructor verifies correctness of the offset.
2433   //
2434   // It could happened on subclass's branch (from the type profiling
2435   // inlining) which was not eliminated during parsing since the exactness
2436   // of the allocation type was not propagated to the subclass type check.
2437   //
2438   // Or the type 't' could be not related to 'base_t' at all.
2439   // It could happened when CHA type is different from MDO type on a dead path
2440   // (for example, from instanceof check) which is not collapsed during parsing.
2441   //
2442   // Do nothing for such AddP node and don't process its users since
2443   // this code branch will go away.
2444   //
2445   if (!t->is_known_instance() &&
2446       !base_t->klass()->is_subtype_of(t->klass())) {
2447      return false; // bail out
2448   }
2449   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2450   // Do NOT remove the next line: ensure a new alias index is allocated
2451   // for the instance type. Note: C++ will not remove it since the call
2452   // has side effect.
2453   int alias_idx = _compile->get_alias_index(tinst);
2454   igvn->set_type(addp, tinst);
2455   // record the allocation in the node map
2456   set_map(addp, get_map(base->_idx));
2457   // Set addp's Base and Address to 'base'.
2458   Node *abase = addp->in(AddPNode::Base);
2459   Node *adr   = addp->in(AddPNode::Address);
2460   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2461       adr->in(0)->_idx == (uint)inst_id) {
2462     // Skip AddP cases #3 and #5.
2463   } else {
2464     assert(!abase->is_top(), "sanity"); // AddP case #3
2465     if (abase != base) {
2466       igvn->hash_delete(addp);
2467       addp->set_req(AddPNode::Base, base);
2468       if (abase == adr) {
2469         addp->set_req(AddPNode::Address, base);
2470       } else {
2471         // AddP case #4 (adr is array's element offset AddP node)
2472 #ifdef ASSERT
2473         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2474         assert(adr->is_AddP() && atype != NULL &&
2475                atype->instance_id() == inst_id, "array's element offset should be processed first");
2476 #endif
2477       }
2478       igvn->hash_insert(addp);
2479     }
2480   }
2481   // Put on IGVN worklist since at least addp's type was changed above.
2482   record_for_optimizer(addp);
2483   return true;
2484 }
2485 
2486 //
2487 // Create a new version of orig_phi if necessary. Returns either the newly
2488 // created phi or an existing phi.  Sets create_new to indicate whether a new
2489 // phi was created.  Cache the last newly created phi in the node map.
2490 //
2491 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2492   Compile *C = _compile;
2493   PhaseGVN* igvn = _igvn;
2494   new_created = false;
2495   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2496   // nothing to do if orig_phi is bottom memory or matches alias_idx
2497   if (phi_alias_idx == alias_idx) {
2498     return orig_phi;
2499   }
2500   // Have we recently created a Phi for this alias index?
2501   PhiNode *result = get_map_phi(orig_phi->_idx);
2502   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2503     return result;
2504   }
2505   // Previous check may fail when the same wide memory Phi was split into Phis
2506   // for different memory slices. Search all Phis for this region.
2507   if (result != NULL) {
2508     Node* region = orig_phi->in(0);
2509     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2510       Node* phi = region->fast_out(i);
2511       if (phi->is_Phi() &&
2512           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2513         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2514         return phi->as_Phi();
2515       }
2516     }
2517   }
2518   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2519     if (C->do_escape_analysis() == true && !C->failing()) {
2520       // Retry compilation without escape analysis.
2521       // If this is the first failure, the sentinel string will "stick"
2522       // to the Compile object, and the C2Compiler will see it and retry.
2523       C->record_failure(C2Compiler::retry_no_escape_analysis());
2524     }
2525     return NULL;
2526   }
2527   orig_phi_worklist.append_if_missing(orig_phi);
2528   const TypePtr *atype = C->get_adr_type(alias_idx);
2529   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2530   C->copy_node_notes_to(result, orig_phi);
2531   igvn->set_type(result, result->bottom_type());
2532   record_for_optimizer(result);
2533   set_map(orig_phi, result);
2534   new_created = true;
2535   return result;
2536 }
2537 
2538 //
2539 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2540 // specified alias index.
2541 //
2542 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2543   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2544   Compile *C = _compile;
2545   PhaseGVN* igvn = _igvn;
2546   bool new_phi_created;
2547   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2548   if (!new_phi_created) {
2549     return result;
2550   }
2551   GrowableArray<PhiNode *>  phi_list;
2552   GrowableArray<uint>  cur_input;
2553   PhiNode *phi = orig_phi;
2554   uint idx = 1;
2555   bool finished = false;
2556   while(!finished) {
2557     while (idx < phi->req()) {
2558       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2559       if (mem != NULL && mem->is_Phi()) {
2560         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2561         if (new_phi_created) {
2562           // found an phi for which we created a new split, push current one on worklist and begin
2563           // processing new one
2564           phi_list.push(phi);
2565           cur_input.push(idx);
2566           phi = mem->as_Phi();
2567           result = newphi;
2568           idx = 1;
2569           continue;
2570         } else {
2571           mem = newphi;
2572         }
2573       }
2574       if (C->failing()) {
2575         return NULL;
2576       }
2577       result->set_req(idx++, mem);
2578     }
2579 #ifdef ASSERT
2580     // verify that the new Phi has an input for each input of the original
2581     assert( phi->req() == result->req(), "must have same number of inputs.");
2582     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2583 #endif
2584     // Check if all new phi's inputs have specified alias index.
2585     // Otherwise use old phi.
2586     for (uint i = 1; i < phi->req(); i++) {
2587       Node* in = result->in(i);
2588       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2589     }
2590     // we have finished processing a Phi, see if there are any more to do
2591     finished = (phi_list.length() == 0 );
2592     if (!finished) {
2593       phi = phi_list.pop();
2594       idx = cur_input.pop();
2595       PhiNode *prev_result = get_map_phi(phi->_idx);
2596       prev_result->set_req(idx++, result);
2597       result = prev_result;
2598     }
2599   }
2600   return result;
2601 }
2602 
2603 //
2604 // The next methods are derived from methods in MemNode.
2605 //
2606 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2607   Node *mem = mmem;
2608   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2609   // means an array I have not precisely typed yet.  Do not do any
2610   // alias stuff with it any time soon.
2611   if (toop->base() != Type::AnyPtr &&
2612       !(toop->klass() != NULL &&
2613         toop->klass()->is_java_lang_Object() &&
2614         toop->offset() == Type::OffsetBot)) {
2615     mem = mmem->memory_at(alias_idx);
2616     // Update input if it is progress over what we have now
2617   }
2618   return mem;
2619 }
2620 
2621 //
2622 // Move memory users to their memory slices.
2623 //
2624 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2625   Compile* C = _compile;
2626   PhaseGVN* igvn = _igvn;
2627   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2628   assert(tp != NULL, "ptr type");
2629   int alias_idx = C->get_alias_index(tp);
2630   int general_idx = C->get_general_index(alias_idx);
2631 
2632   // Move users first
2633   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2634     Node* use = n->fast_out(i);
2635     if (use->is_MergeMem()) {
2636       MergeMemNode* mmem = use->as_MergeMem();
2637       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2638       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2639         continue; // Nothing to do
2640       }
2641       // Replace previous general reference to mem node.
2642       uint orig_uniq = C->unique();
2643       Node* m = find_inst_mem(n, general_idx, orig_phis);
2644       assert(orig_uniq == C->unique(), "no new nodes");
2645       mmem->set_memory_at(general_idx, m);
2646       --imax;
2647       --i;
2648     } else if (use->is_MemBar()) {
2649       assert(!use->is_Initialize(), "initializing stores should not be moved");
2650       if (use->req() > MemBarNode::Precedent &&
2651           use->in(MemBarNode::Precedent) == n) {
2652         // Don't move related membars.
2653         record_for_optimizer(use);
2654         continue;
2655       }
2656       tp = use->as_MemBar()->adr_type()->isa_ptr();
2657       if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
2658           alias_idx == general_idx) {
2659         continue; // Nothing to do
2660       }
2661       // Move to general memory slice.
2662       uint orig_uniq = C->unique();
2663       Node* m = find_inst_mem(n, general_idx, orig_phis);
2664       assert(orig_uniq == C->unique(), "no new nodes");
2665       igvn->hash_delete(use);
2666       imax -= use->replace_edge(n, m);
2667       igvn->hash_insert(use);
2668       record_for_optimizer(use);
2669       --i;
2670 #ifdef ASSERT
2671     } else if (use->is_Mem()) {
2672       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2673         // Don't move related cardmark.
2674         continue;
2675       }
2676       // Memory nodes should have new memory input.
2677       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2678       assert(tp != NULL, "ptr type");
2679       int idx = C->get_alias_index(tp);
2680       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2681              "Following memory nodes should have new memory input or be on the same memory slice");
2682     } else if (use->is_Phi()) {
2683       // Phi nodes should be split and moved already.
2684       tp = use->as_Phi()->adr_type()->isa_ptr();
2685       assert(tp != NULL, "ptr type");
2686       int idx = C->get_alias_index(tp);
2687       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2688     } else {
2689       use->dump();
2690       assert(false, "should not be here");
2691 #endif
2692     }
2693   }
2694 }
2695 
2696 //
2697 // Search memory chain of "mem" to find a MemNode whose address
2698 // is the specified alias index.
2699 //
2700 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2701   if (orig_mem == NULL)
2702     return orig_mem;
2703   Compile* C = _compile;
2704   PhaseGVN* igvn = _igvn;
2705   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2706   bool is_instance = (toop != NULL) && toop->is_known_instance();
2707   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
2708   Node *prev = NULL;
2709   Node *result = orig_mem;
2710   while (prev != result) {
2711     prev = result;
2712     if (result == start_mem)
2713       break;  // hit one of our sentinels
2714     if (result->is_Mem()) {
2715       const Type *at = igvn->type(result->in(MemNode::Address));
2716       if (at == Type::TOP)
2717         break; // Dead
2718       assert (at->isa_ptr() != NULL, "pointer type required.");
2719       int idx = C->get_alias_index(at->is_ptr());
2720       if (idx == alias_idx)
2721         break; // Found
2722       if (!is_instance && (at->isa_oopptr() == NULL ||
2723                            !at->is_oopptr()->is_known_instance())) {
2724         break; // Do not skip store to general memory slice.
2725       }
2726       result = result->in(MemNode::Memory);
2727     }
2728     if (!is_instance)
2729       continue;  // don't search further for non-instance types
2730     // skip over a call which does not affect this memory slice
2731     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2732       Node *proj_in = result->in(0);
2733       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2734         break;  // hit one of our sentinels
2735       } else if (proj_in->is_Call()) {
2736         // ArrayCopy node processed here as well
2737         CallNode *call = proj_in->as_Call();
2738         if (!call->may_modify(toop, igvn)) {
2739           result = call->in(TypeFunc::Memory);
2740         }
2741       } else if (proj_in->is_Initialize()) {
2742         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2743         // Stop if this is the initialization for the object instance which
2744         // which contains this memory slice, otherwise skip over it.
2745         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2746           result = proj_in->in(TypeFunc::Memory);
2747         }
2748       } else if (proj_in->is_MemBar()) {
2749         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2750             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2751             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2752           // clone
2753           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2754           if (ac->may_modify(toop, igvn)) {
2755             break;
2756           }
2757         }
2758         result = proj_in->in(TypeFunc::Memory);
2759       }
2760     } else if (result->is_MergeMem()) {
2761       MergeMemNode *mmem = result->as_MergeMem();
2762       result = step_through_mergemem(mmem, alias_idx, toop);
2763       if (result == mmem->base_memory()) {
2764         // Didn't find instance memory, search through general slice recursively.
2765         result = mmem->memory_at(C->get_general_index(alias_idx));
2766         result = find_inst_mem(result, alias_idx, orig_phis);
2767         if (C->failing()) {
2768           return NULL;
2769         }
2770         mmem->set_memory_at(alias_idx, result);
2771       }
2772     } else if (result->is_Phi() &&
2773                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2774       Node *un = result->as_Phi()->unique_input(igvn);
2775       if (un != NULL) {
2776         orig_phis.append_if_missing(result->as_Phi());
2777         result = un;
2778       } else {
2779         break;
2780       }
2781     } else if (result->is_ClearArray()) {
2782       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2783         // Can not bypass initialization of the instance
2784         // we are looking for.
2785         break;
2786       }
2787       // Otherwise skip it (the call updated 'result' value).
2788     } else if (result->Opcode() == Op_SCMemProj) {
2789       Node* mem = result->in(0);
2790       Node* adr = NULL;
2791       if (mem->is_LoadStore()) {
2792         adr = mem->in(MemNode::Address);
2793       } else {
2794         assert(mem->Opcode() == Op_EncodeISOArray ||
2795                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2796         adr = mem->in(3); // Memory edge corresponds to destination array
2797       }
2798       const Type *at = igvn->type(adr);
2799       if (at != Type::TOP) {
2800         assert(at->isa_ptr() != NULL, "pointer type required.");
2801         int idx = C->get_alias_index(at->is_ptr());
2802         if (idx == alias_idx) {
2803           // Assert in debug mode
2804           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2805           break; // In product mode return SCMemProj node
2806         }
2807       }
2808       result = mem->in(MemNode::Memory);
2809     } else if (result->Opcode() == Op_StrInflatedCopy) {
2810       Node* adr = result->in(3); // Memory edge corresponds to destination array
2811       const Type *at = igvn->type(adr);
2812       if (at != Type::TOP) {
2813         assert(at->isa_ptr() != NULL, "pointer type required.");
2814         int idx = C->get_alias_index(at->is_ptr());
2815         if (idx == alias_idx) {
2816           // Assert in debug mode
2817           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2818           break; // In product mode return SCMemProj node
2819         }
2820       }
2821       result = result->in(MemNode::Memory);
2822     }
2823   }
2824   if (result->is_Phi()) {
2825     PhiNode *mphi = result->as_Phi();
2826     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2827     const TypePtr *t = mphi->adr_type();
2828     if (!is_instance) {
2829       // Push all non-instance Phis on the orig_phis worklist to update inputs
2830       // during Phase 4 if needed.
2831       orig_phis.append_if_missing(mphi);
2832     } else if (C->get_alias_index(t) != alias_idx) {
2833       // Create a new Phi with the specified alias index type.
2834       result = split_memory_phi(mphi, alias_idx, orig_phis);
2835     }
2836   }
2837   // the result is either MemNode, PhiNode, InitializeNode.
2838   return result;
2839 }
2840 
2841 //
2842 //  Convert the types of unescaped object to instance types where possible,
2843 //  propagate the new type information through the graph, and update memory
2844 //  edges and MergeMem inputs to reflect the new type.
2845 //
2846 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2847 //  The processing is done in 4 phases:
2848 //
2849 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2850 //            types for the CheckCastPP for allocations where possible.
2851 //            Propagate the new types through users as follows:
2852 //               casts and Phi:  push users on alloc_worklist
2853 //               AddP:  cast Base and Address inputs to the instance type
2854 //                      push any AddP users on alloc_worklist and push any memnode
2855 //                      users onto memnode_worklist.
2856 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2857 //            search the Memory chain for a store with the appropriate type
2858 //            address type.  If a Phi is found, create a new version with
2859 //            the appropriate memory slices from each of the Phi inputs.
2860 //            For stores, process the users as follows:
2861 //               MemNode:  push on memnode_worklist
2862 //               MergeMem: push on mergemem_worklist
2863 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2864 //            moving the first node encountered of each  instance type to the
2865 //            the input corresponding to its alias index.
2866 //            appropriate memory slice.
2867 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2868 //
2869 // In the following example, the CheckCastPP nodes are the cast of allocation
2870 // results and the allocation of node 29 is unescaped and eligible to be an
2871 // instance type.
2872 //
2873 // We start with:
2874 //
2875 //     7 Parm #memory
2876 //    10  ConI  "12"
2877 //    19  CheckCastPP   "Foo"
2878 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2879 //    29  CheckCastPP   "Foo"
2880 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2881 //
2882 //    40  StoreP  25   7  20   ... alias_index=4
2883 //    50  StoreP  35  40  30   ... alias_index=4
2884 //    60  StoreP  45  50  20   ... alias_index=4
2885 //    70  LoadP    _  60  30   ... alias_index=4
2886 //    80  Phi     75  50  60   Memory alias_index=4
2887 //    90  LoadP    _  80  30   ... alias_index=4
2888 //   100  LoadP    _  80  20   ... alias_index=4
2889 //
2890 //
2891 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2892 // and creating a new alias index for node 30.  This gives:
2893 //
2894 //     7 Parm #memory
2895 //    10  ConI  "12"
2896 //    19  CheckCastPP   "Foo"
2897 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2898 //    29  CheckCastPP   "Foo"  iid=24
2899 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2900 //
2901 //    40  StoreP  25   7  20   ... alias_index=4
2902 //    50  StoreP  35  40  30   ... alias_index=6
2903 //    60  StoreP  45  50  20   ... alias_index=4
2904 //    70  LoadP    _  60  30   ... alias_index=6
2905 //    80  Phi     75  50  60   Memory alias_index=4
2906 //    90  LoadP    _  80  30   ... alias_index=6
2907 //   100  LoadP    _  80  20   ... alias_index=4
2908 //
2909 // In phase 2, new memory inputs are computed for the loads and stores,
2910 // And a new version of the phi is created.  In phase 4, the inputs to
2911 // node 80 are updated and then the memory nodes are updated with the
2912 // values computed in phase 2.  This results in:
2913 //
2914 //     7 Parm #memory
2915 //    10  ConI  "12"
2916 //    19  CheckCastPP   "Foo"
2917 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2918 //    29  CheckCastPP   "Foo"  iid=24
2919 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2920 //
2921 //    40  StoreP  25  7   20   ... alias_index=4
2922 //    50  StoreP  35  7   30   ... alias_index=6
2923 //    60  StoreP  45  40  20   ... alias_index=4
2924 //    70  LoadP    _  50  30   ... alias_index=6
2925 //    80  Phi     75  40  60   Memory alias_index=4
2926 //   120  Phi     75  50  50   Memory alias_index=6
2927 //    90  LoadP    _ 120  30   ... alias_index=6
2928 //   100  LoadP    _  80  20   ... alias_index=4
2929 //
2930 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2931   GrowableArray<Node *>  memnode_worklist;
2932   GrowableArray<PhiNode *>  orig_phis;
2933   PhaseIterGVN  *igvn = _igvn;
2934   uint new_index_start = (uint) _compile->num_alias_types();
2935   Arena* arena = Thread::current()->resource_area();
2936   VectorSet visited(arena);
2937   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2938   uint unique_old = _compile->unique();
2939 
2940   //  Phase 1:  Process possible allocations from alloc_worklist.
2941   //  Create instance types for the CheckCastPP for allocations where possible.
2942   //
2943   // (Note: don't forget to change the order of the second AddP node on
2944   //  the alloc_worklist if the order of the worklist processing is changed,
2945   //  see the comment in find_second_addp().)
2946   //
2947   while (alloc_worklist.length() != 0) {
2948     Node *n = alloc_worklist.pop();
2949     uint ni = n->_idx;
2950     if (n->is_Call()) {
2951       CallNode *alloc = n->as_Call();
2952       // copy escape information to call node
2953       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2954       PointsToNode::EscapeState es = ptn->escape_state();
2955       // We have an allocation or call which returns a Java object,
2956       // see if it is unescaped.
2957       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2958         continue;
2959       // Find CheckCastPP for the allocate or for the return value of a call
2960       n = alloc->result_cast();
2961       if (n == NULL) {            // No uses except Initialize node
2962         if (alloc->is_Allocate()) {
2963           // Set the scalar_replaceable flag for allocation
2964           // so it could be eliminated if it has no uses.
2965           alloc->as_Allocate()->_is_scalar_replaceable = true;
2966         }
2967         if (alloc->is_CallStaticJava()) {
2968           // Set the scalar_replaceable flag for boxing method
2969           // so it could be eliminated if it has no uses.
2970           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2971         }
2972         continue;
2973       }
2974       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2975         assert(!alloc->is_Allocate(), "allocation should have unique type");
2976         continue;
2977       }
2978 
2979       // The inline code for Object.clone() casts the allocation result to
2980       // java.lang.Object and then to the actual type of the allocated
2981       // object. Detect this case and use the second cast.
2982       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2983       // the allocation result is cast to java.lang.Object and then
2984       // to the actual Array type.
2985       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2986           && (alloc->is_AllocateArray() ||
2987               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2988         Node *cast2 = NULL;
2989         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2990           Node *use = n->fast_out(i);
2991           if (use->is_CheckCastPP()) {
2992             cast2 = use;
2993             break;
2994           }
2995         }
2996         if (cast2 != NULL) {
2997           n = cast2;
2998         } else {
2999           // Non-scalar replaceable if the allocation type is unknown statically
3000           // (reflection allocation), the object can't be restored during
3001           // deoptimization without precise type.
3002           continue;
3003         }
3004       }
3005 
3006       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
3007       if (t == NULL)
3008         continue;  // not a TypeOopPtr
3009       if (!t->klass_is_exact())
3010         continue; // not an unique type
3011 
3012       if (alloc->is_Allocate()) {
3013         // Set the scalar_replaceable flag for allocation
3014         // so it could be eliminated.
3015         alloc->as_Allocate()->_is_scalar_replaceable = true;
3016       }
3017       if (alloc->is_CallStaticJava()) {
3018         // Set the scalar_replaceable flag for boxing method
3019         // so it could be eliminated.
3020         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
3021       }
3022       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
3023       // in order for an object to be scalar-replaceable, it must be:
3024       //   - a direct allocation (not a call returning an object)
3025       //   - non-escaping
3026       //   - eligible to be a unique type
3027       //   - not determined to be ineligible by escape analysis
3028       set_map(alloc, n);
3029       set_map(n, alloc);
3030       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3031       igvn->hash_delete(n);
3032       igvn->set_type(n,  tinst);
3033       n->raise_bottom_type(tinst);
3034       igvn->hash_insert(n);
3035       record_for_optimizer(n);
3036       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
3037 
3038         // First, put on the worklist all Field edges from Connection Graph
3039         // which is more accurate than putting immediate users from Ideal Graph.
3040         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3041           PointsToNode* tgt = e.get();
3042           if (tgt->is_Arraycopy()) {
3043             continue;
3044           }
3045           Node* use = tgt->ideal_node();
3046           assert(tgt->is_Field() && use->is_AddP(),
3047                  "only AddP nodes are Field edges in CG");
3048           if (use->outcnt() > 0) { // Don't process dead nodes
3049             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3050             if (addp2 != NULL) {
3051               assert(alloc->is_AllocateArray(),"array allocation was expected");
3052               alloc_worklist.append_if_missing(addp2);
3053             }
3054             alloc_worklist.append_if_missing(use);
3055           }
3056         }
3057 
3058         // An allocation may have an Initialize which has raw stores. Scan
3059         // the users of the raw allocation result and push AddP users
3060         // on alloc_worklist.
3061         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
3062         assert (raw_result != NULL, "must have an allocation result");
3063         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3064           Node *use = raw_result->fast_out(i);
3065           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3066             Node* addp2 = find_second_addp(use, raw_result);
3067             if (addp2 != NULL) {
3068               assert(alloc->is_AllocateArray(),"array allocation was expected");
3069               alloc_worklist.append_if_missing(addp2);
3070             }
3071             alloc_worklist.append_if_missing(use);
3072           } else if (use->is_MemBar()) {
3073             memnode_worklist.append_if_missing(use);
3074           }
3075         }
3076       }
3077     } else if (n->is_AddP()) {
3078       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3079       if (jobj == NULL || jobj == phantom_obj) {
3080 #ifdef ASSERT
3081         ptnode_adr(get_addp_base(n)->_idx)->dump();
3082         ptnode_adr(n->_idx)->dump();
3083         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3084 #endif
3085         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3086         return;
3087       }
3088       Node *base = get_map(jobj->idx());  // CheckCastPP node
3089       if (!split_AddP(n, base)) continue; // wrong type from dead path
3090     } else if (n->is_Phi() ||
3091                n->is_CheckCastPP() ||
3092                n->is_EncodeP() ||
3093                n->is_DecodeN() ||
3094                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3095       if (visited.test_set(n->_idx)) {
3096         assert(n->is_Phi(), "loops only through Phi's");
3097         continue;  // already processed
3098       }
3099       JavaObjectNode* jobj = unique_java_object(n);
3100       if (jobj == NULL || jobj == phantom_obj) {
3101 #ifdef ASSERT
3102         ptnode_adr(n->_idx)->dump();
3103         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3104 #endif
3105         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3106         return;
3107       } else {
3108         Node *val = get_map(jobj->idx());   // CheckCastPP node
3109         TypeNode *tn = n->as_Type();
3110         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3111         assert(tinst != NULL && tinst->is_known_instance() &&
3112                tinst->instance_id() == jobj->idx() , "instance type expected.");
3113 
3114         const Type *tn_type = igvn->type(tn);
3115         const TypeOopPtr *tn_t;
3116         if (tn_type->isa_narrowoop()) {
3117           tn_t = tn_type->make_ptr()->isa_oopptr();
3118         } else {
3119           tn_t = tn_type->isa_oopptr();
3120         }
3121         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3122           if (tn_type->isa_narrowoop()) {
3123             tn_type = tinst->make_narrowoop();
3124           } else {
3125             tn_type = tinst;
3126           }
3127           igvn->hash_delete(tn);
3128           igvn->set_type(tn, tn_type);
3129           tn->set_type(tn_type);
3130           igvn->hash_insert(tn);
3131           record_for_optimizer(n);
3132         } else {
3133           assert(tn_type == TypePtr::NULL_PTR ||
3134                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3135                  "unexpected type");
3136           continue; // Skip dead path with different type
3137         }
3138       }
3139     } else {
3140       debug_only(n->dump();)
3141       assert(false, "EA: unexpected node");
3142       continue;
3143     }
3144     // push allocation's users on appropriate worklist
3145     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3146       Node *use = n->fast_out(i);
3147       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3148         // Load/store to instance's field
3149         memnode_worklist.append_if_missing(use);
3150       } else if (use->is_MemBar()) {
3151         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3152           memnode_worklist.append_if_missing(use);
3153         }
3154       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3155         Node* addp2 = find_second_addp(use, n);
3156         if (addp2 != NULL) {
3157           alloc_worklist.append_if_missing(addp2);
3158         }
3159         alloc_worklist.append_if_missing(use);
3160       } else if (use->is_Phi() ||
3161                  use->is_CheckCastPP() ||
3162                  use->is_EncodeNarrowPtr() ||
3163                  use->is_DecodeNarrowPtr() ||
3164                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3165         alloc_worklist.append_if_missing(use);
3166 #ifdef ASSERT
3167       } else if (use->is_Mem()) {
3168         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3169       } else if (use->is_MergeMem()) {
3170         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3171       } else if (use->is_SafePoint()) {
3172         // Look for MergeMem nodes for calls which reference unique allocation
3173         // (through CheckCastPP nodes) even for debug info.
3174         Node* m = use->in(TypeFunc::Memory);
3175         if (m->is_MergeMem()) {
3176           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3177         }
3178       } else if (use->Opcode() == Op_EncodeISOArray) {
3179         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3180           // EncodeISOArray overwrites destination array
3181           memnode_worklist.append_if_missing(use);
3182         }
3183       } else {
3184         uint op = use->Opcode();
3185         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3186             (use->in(MemNode::Memory) == n)) {
3187           // They overwrite memory edge corresponding to destination array,
3188           memnode_worklist.append_if_missing(use);
3189         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3190               op == Op_CastP2X || op == Op_StoreCM ||
3191               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3192               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3193               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
3194               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
3195           n->dump();
3196           use->dump();
3197           assert(false, "EA: missing allocation reference path");
3198         }
3199 #endif
3200       }
3201     }
3202 
3203   }
3204 
3205   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3206   // type, record it in the ArrayCopy node so we know what memory this
3207   // node uses/modified.
3208   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3209     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3210     Node* dest = ac->in(ArrayCopyNode::Dest);
3211     if (dest->is_AddP()) {
3212       dest = get_addp_base(dest);
3213     }
3214     JavaObjectNode* jobj = unique_java_object(dest);
3215     if (jobj != NULL) {
3216       Node *base = get_map(jobj->idx());
3217       if (base != NULL) {
3218         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3219         ac->_dest_type = base_t;
3220       }
3221     }
3222     Node* src = ac->in(ArrayCopyNode::Src);
3223     if (src->is_AddP()) {
3224       src = get_addp_base(src);
3225     }
3226     jobj = unique_java_object(src);
3227     if (jobj != NULL) {
3228       Node* base = get_map(jobj->idx());
3229       if (base != NULL) {
3230         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3231         ac->_src_type = base_t;
3232       }
3233     }
3234   }
3235 
3236   // New alias types were created in split_AddP().
3237   uint new_index_end = (uint) _compile->num_alias_types();
3238   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3239 
3240   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3241   //            compute new values for Memory inputs  (the Memory inputs are not
3242   //            actually updated until phase 4.)
3243   if (memnode_worklist.length() == 0)
3244     return;  // nothing to do
3245   while (memnode_worklist.length() != 0) {
3246     Node *n = memnode_worklist.pop();
3247     if (visited.test_set(n->_idx))
3248       continue;
3249     if (n->is_Phi() || n->is_ClearArray()) {
3250       // we don't need to do anything, but the users must be pushed
3251     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3252       // we don't need to do anything, but the users must be pushed
3253       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
3254       if (n == NULL)
3255         continue;
3256     } else if (n->Opcode() == Op_StrCompressedCopy ||
3257                n->Opcode() == Op_EncodeISOArray) {
3258       // get the memory projection
3259       n = n->find_out_with(Op_SCMemProj);
3260       assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3261     } else {
3262       assert(n->is_Mem(), "memory node required.");
3263       Node *addr = n->in(MemNode::Address);
3264       const Type *addr_t = igvn->type(addr);
3265       if (addr_t == Type::TOP)
3266         continue;
3267       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3268       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3269       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3270       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3271       if (_compile->failing()) {
3272         return;
3273       }
3274       if (mem != n->in(MemNode::Memory)) {
3275         // We delay the memory edge update since we need old one in
3276         // MergeMem code below when instances memory slices are separated.
3277         set_map(n, mem);
3278       }
3279       if (n->is_Load()) {
3280         continue;  // don't push users
3281       } else if (n->is_LoadStore()) {
3282         // get the memory projection
3283         n = n->find_out_with(Op_SCMemProj);
3284         assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3285       }
3286     }
3287     // push user on appropriate worklist
3288     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3289       Node *use = n->fast_out(i);
3290       if (use->is_Phi() || use->is_ClearArray()) {
3291         memnode_worklist.append_if_missing(use);
3292       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3293         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3294           continue;
3295         memnode_worklist.append_if_missing(use);
3296       } else if (use->is_MemBar()) {
3297         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3298           memnode_worklist.append_if_missing(use);
3299         }
3300 #ifdef ASSERT
3301       } else if(use->is_Mem()) {
3302         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3303       } else if (use->is_MergeMem()) {
3304         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3305       } else if (use->Opcode() == Op_EncodeISOArray) {
3306         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3307           // EncodeISOArray overwrites destination array
3308           memnode_worklist.append_if_missing(use);
3309         }
3310       } else {
3311         uint op = use->Opcode();
3312         if ((use->in(MemNode::Memory) == n) &&
3313             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3314           // They overwrite memory edge corresponding to destination array,
3315           memnode_worklist.append_if_missing(use);
3316         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3317               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3318               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3319               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3320           n->dump();
3321           use->dump();
3322           assert(false, "EA: missing memory path");
3323         }
3324 #endif
3325       }
3326     }
3327   }
3328 
3329   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3330   //            Walk each memory slice moving the first node encountered of each
3331   //            instance type to the the input corresponding to its alias index.
3332   uint length = _mergemem_worklist.length();
3333   for( uint next = 0; next < length; ++next ) {
3334     MergeMemNode* nmm = _mergemem_worklist.at(next);
3335     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3336     // Note: we don't want to use MergeMemStream here because we only want to
3337     // scan inputs which exist at the start, not ones we add during processing.
3338     // Note 2: MergeMem may already contains instance memory slices added
3339     // during find_inst_mem() call when memory nodes were processed above.
3340     igvn->hash_delete(nmm);
3341     uint nslices = MIN2(nmm->req(), new_index_start);
3342     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3343       Node* mem = nmm->in(i);
3344       Node* cur = NULL;
3345       if (mem == NULL || mem->is_top())
3346         continue;
3347       // First, update mergemem by moving memory nodes to corresponding slices
3348       // if their type became more precise since this mergemem was created.
3349       while (mem->is_Mem()) {
3350         const Type *at = igvn->type(mem->in(MemNode::Address));
3351         if (at != Type::TOP) {
3352           assert (at->isa_ptr() != NULL, "pointer type required.");
3353           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3354           if (idx == i) {
3355             if (cur == NULL)
3356               cur = mem;
3357           } else {
3358             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3359               nmm->set_memory_at(idx, mem);
3360             }
3361           }
3362         }
3363         mem = mem->in(MemNode::Memory);
3364       }
3365       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3366       // Find any instance of the current type if we haven't encountered
3367       // already a memory slice of the instance along the memory chain.
3368       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3369         if((uint)_compile->get_general_index(ni) == i) {
3370           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3371           if (nmm->is_empty_memory(m)) {
3372             Node* result = find_inst_mem(mem, ni, orig_phis);
3373             if (_compile->failing()) {
3374               return;
3375             }
3376             nmm->set_memory_at(ni, result);
3377           }
3378         }
3379       }
3380     }
3381     // Find the rest of instances values
3382     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3383       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3384       Node* result = step_through_mergemem(nmm, ni, tinst);
3385       if (result == nmm->base_memory()) {
3386         // Didn't find instance memory, search through general slice recursively.
3387         result = nmm->memory_at(_compile->get_general_index(ni));
3388         result = find_inst_mem(result, ni, orig_phis);
3389         if (_compile->failing()) {
3390           return;
3391         }
3392         nmm->set_memory_at(ni, result);
3393       }
3394     }
3395     igvn->hash_insert(nmm);
3396     record_for_optimizer(nmm);
3397   }
3398 
3399   //  Phase 4:  Update the inputs of non-instance memory Phis and
3400   //            the Memory input of memnodes
3401   // First update the inputs of any non-instance Phi's from
3402   // which we split out an instance Phi.  Note we don't have
3403   // to recursively process Phi's encounted on the input memory
3404   // chains as is done in split_memory_phi() since they  will
3405   // also be processed here.
3406   for (int j = 0; j < orig_phis.length(); j++) {
3407     PhiNode *phi = orig_phis.at(j);
3408     int alias_idx = _compile->get_alias_index(phi->adr_type());
3409     igvn->hash_delete(phi);
3410     for (uint i = 1; i < phi->req(); i++) {
3411       Node *mem = phi->in(i);
3412       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3413       if (_compile->failing()) {
3414         return;
3415       }
3416       if (mem != new_mem) {
3417         phi->set_req(i, new_mem);
3418       }
3419     }
3420     igvn->hash_insert(phi);
3421     record_for_optimizer(phi);
3422   }
3423 
3424   // Update the memory inputs of MemNodes with the value we computed
3425   // in Phase 2 and move stores memory users to corresponding memory slices.
3426   // Disable memory split verification code until the fix for 6984348.
3427   // Currently it produces false negative results since it does not cover all cases.
3428 #if 0 // ifdef ASSERT
3429   visited.Reset();
3430   Node_Stack old_mems(arena, _compile->unique() >> 2);
3431 #endif
3432   for (uint i = 0; i < ideal_nodes.size(); i++) {
3433     Node*    n = ideal_nodes.at(i);
3434     Node* nmem = get_map(n->_idx);
3435     assert(nmem != NULL, "sanity");
3436     if (n->is_Mem()) {
3437 #if 0 // ifdef ASSERT
3438       Node* old_mem = n->in(MemNode::Memory);
3439       if (!visited.test_set(old_mem->_idx)) {
3440         old_mems.push(old_mem, old_mem->outcnt());
3441       }
3442 #endif
3443       assert(n->in(MemNode::Memory) != nmem, "sanity");
3444       if (!n->is_Load()) {
3445         // Move memory users of a store first.
3446         move_inst_mem(n, orig_phis);
3447       }
3448       // Now update memory input
3449       igvn->hash_delete(n);
3450       n->set_req(MemNode::Memory, nmem);
3451       igvn->hash_insert(n);
3452       record_for_optimizer(n);
3453     } else {
3454       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3455              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3456     }
3457   }
3458 #if 0 // ifdef ASSERT
3459   // Verify that memory was split correctly
3460   while (old_mems.is_nonempty()) {
3461     Node* old_mem = old_mems.node();
3462     uint  old_cnt = old_mems.index();
3463     old_mems.pop();
3464     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3465   }
3466 #endif
3467 }
3468 
3469 #ifndef PRODUCT
3470 static const char *node_type_names[] = {
3471   "UnknownType",
3472   "JavaObject",
3473   "LocalVar",
3474   "Field",
3475   "Arraycopy"
3476 };
3477 
3478 static const char *esc_names[] = {
3479   "UnknownEscape",
3480   "NoEscape",
3481   "ArgEscape",
3482   "GlobalEscape"
3483 };
3484 
3485 void PointsToNode::dump(bool print_state) const {
3486   NodeType nt = node_type();
3487   tty->print("%s ", node_type_names[(int) nt]);
3488   if (print_state) {
3489     EscapeState es = escape_state();
3490     EscapeState fields_es = fields_escape_state();
3491     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3492     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3493       tty->print("NSR ");
3494   }
3495   if (is_Field()) {
3496     FieldNode* f = (FieldNode*)this;
3497     if (f->is_oop())
3498       tty->print("oop ");
3499     if (f->offset() > 0)
3500       tty->print("+%d ", f->offset());
3501     tty->print("(");
3502     for (BaseIterator i(f); i.has_next(); i.next()) {
3503       PointsToNode* b = i.get();
3504       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3505     }
3506     tty->print(" )");
3507   }
3508   tty->print("[");
3509   for (EdgeIterator i(this); i.has_next(); i.next()) {
3510     PointsToNode* e = i.get();
3511     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3512   }
3513   tty->print(" [");
3514   for (UseIterator i(this); i.has_next(); i.next()) {
3515     PointsToNode* u = i.get();
3516     bool is_base = false;
3517     if (PointsToNode::is_base_use(u)) {
3518       is_base = true;
3519       u = PointsToNode::get_use_node(u)->as_Field();
3520     }
3521     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3522   }
3523   tty->print(" ]]  ");
3524   if (_node == NULL)
3525     tty->print_cr("<null>");
3526   else
3527     _node->dump();
3528 }
3529 
3530 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3531   bool first = true;
3532   int ptnodes_length = ptnodes_worklist.length();
3533   for (int i = 0; i < ptnodes_length; i++) {
3534     PointsToNode *ptn = ptnodes_worklist.at(i);
3535     if (ptn == NULL || !ptn->is_JavaObject())
3536       continue;
3537     PointsToNode::EscapeState es = ptn->escape_state();
3538     if ((es != PointsToNode::NoEscape) && !Verbose) {
3539       continue;
3540     }
3541     Node* n = ptn->ideal_node();
3542     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3543                              n->as_CallStaticJava()->is_boxing_method())) {
3544       if (first) {
3545         tty->cr();
3546         tty->print("======== Connection graph for ");
3547         _compile->method()->print_short_name();
3548         tty->cr();
3549         first = false;
3550       }
3551       ptn->dump();
3552       // Print all locals and fields which reference this allocation
3553       for (UseIterator j(ptn); j.has_next(); j.next()) {
3554         PointsToNode* use = j.get();
3555         if (use->is_LocalVar()) {
3556           use->dump(Verbose);
3557         } else if (Verbose) {
3558           use->dump();
3559         }
3560       }
3561       tty->cr();
3562     }
3563   }
3564 }
3565 #endif