1 /*
   2  * Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1AllocRegion.inline.hpp"
  28 #include "gc/g1/g1EvacStats.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1Policy.hpp"
  31 #include "gc/g1/heapRegion.inline.hpp"
  32 #include "gc/g1/heapRegionSet.inline.hpp"
  33 #include "gc/g1/heapRegionType.hpp"
  34 #include "gc/shared/fill.hpp"
  35 #include "utilities/align.hpp"
  36 
  37 G1Allocator::G1Allocator(G1CollectedHeap* heap) :
  38   _g1h(heap),
  39   _survivor_is_full(false),
  40   _old_is_full(false),
  41   _mutator_alloc_region(),
  42   _survivor_gc_alloc_region(heap->alloc_buffer_stats(InCSetState::Young)),
  43   _old_gc_alloc_region(heap->alloc_buffer_stats(InCSetState::Old)),
  44   _retained_old_gc_alloc_region(NULL) {
  45 }
  46 
  47 void G1Allocator::init_mutator_alloc_region() {
  48   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  49   _mutator_alloc_region.init();
  50 }
  51 
  52 void G1Allocator::release_mutator_alloc_region() {
  53   _mutator_alloc_region.release();
  54   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  55 }
  56 
  57 bool G1Allocator::is_retained_old_region(HeapRegion* hr) {
  58   return _retained_old_gc_alloc_region == hr;
  59 }
  60 
  61 void G1Allocator::reuse_retained_old_region(EvacuationInfo& evacuation_info,
  62                                             OldGCAllocRegion* old,
  63                                             HeapRegion** retained_old) {
  64   HeapRegion* retained_region = *retained_old;
  65   *retained_old = NULL;
  66   assert(retained_region == NULL || !retained_region->is_archive(),
  67          "Archive region should not be alloc region (index %u)", retained_region->hrm_index());
  68 
  69   // We will discard the current GC alloc region if:
  70   // a) it's in the collection set (it can happen!),
  71   // b) it's already full (no point in using it),
  72   // c) it's empty (this means that it was emptied during
  73   // a cleanup and it should be on the free list now), or
  74   // d) it's humongous (this means that it was emptied
  75   // during a cleanup and was added to the free list, but
  76   // has been subsequently used to allocate a humongous
  77   // object that may be less than the region size).
  78   if (retained_region != NULL &&
  79       !retained_region->in_collection_set() &&
  80       !(retained_region->top() == retained_region->end()) &&
  81       !retained_region->is_empty() &&
  82       !retained_region->is_humongous()) {
  83     // The retained region was added to the old region set when it was
  84     // retired. We have to remove it now, since we don't allow regions
  85     // we allocate to in the region sets. We'll re-add it later, when
  86     // it's retired again.
  87     _g1h->old_set_remove(retained_region);
  88     bool during_im = _g1h->collector_state()->in_initial_mark_gc();
  89     retained_region->note_start_of_copying(during_im);
  90     old->set(retained_region);
  91     _g1h->hr_printer()->reuse(retained_region);
  92     evacuation_info.set_alloc_regions_used_before(retained_region->used());
  93   }
  94 }
  95 
  96 void G1Allocator::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
  97   assert_at_safepoint_on_vm_thread();
  98 
  99   _survivor_is_full = false;
 100   _old_is_full = false;
 101 
 102   _survivor_gc_alloc_region.init();
 103   _old_gc_alloc_region.init();
 104   reuse_retained_old_region(evacuation_info,
 105                             &_old_gc_alloc_region,
 106                             &_retained_old_gc_alloc_region);
 107 }
 108 
 109 void G1Allocator::release_gc_alloc_regions(EvacuationInfo& evacuation_info) {
 110   evacuation_info.set_allocation_regions(survivor_gc_alloc_region()->count() +
 111                                          old_gc_alloc_region()->count());
 112   survivor_gc_alloc_region()->release();
 113   // If we have an old GC alloc region to release, we'll save it in
 114   // _retained_old_gc_alloc_region. If we don't
 115   // _retained_old_gc_alloc_region will become NULL. This is what we
 116   // want either way so no reason to check explicitly for either
 117   // condition.
 118   _retained_old_gc_alloc_region = old_gc_alloc_region()->release();
 119 }
 120 
 121 void G1Allocator::abandon_gc_alloc_regions() {
 122   assert(survivor_gc_alloc_region()->get() == NULL, "pre-condition");
 123   assert(old_gc_alloc_region()->get() == NULL, "pre-condition");
 124   _retained_old_gc_alloc_region = NULL;
 125 }
 126 
 127 bool G1Allocator::survivor_is_full() const {
 128   return _survivor_is_full;
 129 }
 130 
 131 bool G1Allocator::old_is_full() const {
 132   return _old_is_full;
 133 }
 134 
 135 void G1Allocator::set_survivor_full() {
 136   _survivor_is_full = true;
 137 }
 138 
 139 void G1Allocator::set_old_full() {
 140   _old_is_full = true;
 141 }
 142 
 143 size_t G1Allocator::unsafe_max_tlab_alloc() {
 144   // Return the remaining space in the cur alloc region, but not less than
 145   // the min TLAB size.
 146 
 147   // Also, this value can be at most the humongous object threshold,
 148   // since we can't allow tlabs to grow big enough to accommodate
 149   // humongous objects.
 150 
 151   HeapRegion* hr = mutator_alloc_region()->get();
 152   size_t max_tlab = _g1h->max_tlab_size() * wordSize;
 153   if (hr == NULL) {
 154     return max_tlab;
 155   } else {
 156     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
 157   }
 158 }
 159 
 160 size_t G1Allocator::used_in_alloc_regions() {
 161   assert(Heap_lock->owner() != NULL, "Should be owned on this thread's behalf.");
 162   return mutator_alloc_region()->used_in_alloc_regions();
 163 }
 164 
 165 
 166 HeapWord* G1Allocator::par_allocate_during_gc(InCSetState dest,
 167                                               size_t word_size) {
 168   size_t temp = 0;
 169   HeapWord* result = par_allocate_during_gc(dest, word_size, word_size, &temp);
 170   assert(result == NULL || temp == word_size,
 171          "Requested " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT,
 172          word_size, temp, p2i(result));
 173   return result;
 174 }
 175 
 176 HeapWord* G1Allocator::par_allocate_during_gc(InCSetState dest,
 177                                               size_t min_word_size,
 178                                               size_t desired_word_size,
 179                                               size_t* actual_word_size) {
 180   switch (dest.value()) {
 181     case InCSetState::Young:
 182       return survivor_attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 183     case InCSetState::Old:
 184       return old_attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 185     default:
 186       ShouldNotReachHere();
 187       return NULL; // Keep some compilers happy
 188   }
 189 }
 190 
 191 HeapWord* G1Allocator::survivor_attempt_allocation(size_t min_word_size,
 192                                                    size_t desired_word_size,
 193                                                    size_t* actual_word_size) {
 194   assert(!_g1h->is_humongous(desired_word_size),
 195          "we should not be seeing humongous-size allocations in this path");
 196 
 197   HeapWord* result = survivor_gc_alloc_region()->attempt_allocation(min_word_size,
 198                                                                     desired_word_size,
 199                                                                     actual_word_size);
 200   if (result == NULL && !survivor_is_full()) {
 201     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 202     result = survivor_gc_alloc_region()->attempt_allocation_locked(min_word_size,
 203                                                                    desired_word_size,
 204                                                                    actual_word_size);
 205     if (result == NULL) {
 206       set_survivor_full();
 207     }
 208   }
 209   if (result != NULL) {
 210     _g1h->dirty_young_block(result, *actual_word_size);
 211   }
 212   return result;
 213 }
 214 
 215 HeapWord* G1Allocator::old_attempt_allocation(size_t min_word_size,
 216                                               size_t desired_word_size,
 217                                               size_t* actual_word_size) {
 218   assert(!_g1h->is_humongous(desired_word_size),
 219          "we should not be seeing humongous-size allocations in this path");
 220 
 221   HeapWord* result = old_gc_alloc_region()->attempt_allocation(min_word_size,
 222                                                                desired_word_size,
 223                                                                actual_word_size);
 224   if (result == NULL && !old_is_full()) {
 225     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 226     result = old_gc_alloc_region()->attempt_allocation_locked(min_word_size,
 227                                                               desired_word_size,
 228                                                               actual_word_size);
 229     if (result == NULL) {
 230       set_old_full();
 231     }
 232   }
 233   return result;
 234 }
 235 
 236 uint G1PLABAllocator::calc_survivor_alignment_bytes() {
 237   assert(SurvivorAlignmentInBytes >= ObjectAlignmentInBytes, "sanity");
 238   if (SurvivorAlignmentInBytes == ObjectAlignmentInBytes) {
 239     // No need to align objects in the survivors differently, return 0
 240     // which means "survivor alignment is not used".
 241     return 0;
 242   } else {
 243     assert(SurvivorAlignmentInBytes > 0, "sanity");
 244     return SurvivorAlignmentInBytes;
 245   }
 246 }
 247 
 248 G1PLABAllocator::G1PLABAllocator(G1Allocator* allocator) :
 249   _g1h(G1CollectedHeap::heap()),
 250   _allocator(allocator),
 251   _surviving_alloc_buffer(_g1h->desired_plab_sz(InCSetState::Young)),
 252   _tenured_alloc_buffer(_g1h->desired_plab_sz(InCSetState::Old)),
 253   _survivor_alignment_bytes(calc_survivor_alignment_bytes()) {
 254   for (uint state = 0; state < InCSetState::Num; state++) {
 255     _direct_allocated[state] = 0;
 256     _alloc_buffers[state] = NULL;
 257   }
 258   _alloc_buffers[InCSetState::Young] = &_surviving_alloc_buffer;
 259   _alloc_buffers[InCSetState::Old]  = &_tenured_alloc_buffer;
 260 }
 261 
 262 bool G1PLABAllocator::may_throw_away_buffer(size_t const allocation_word_sz, size_t const buffer_size) const {
 263   return (allocation_word_sz * 100 < buffer_size * ParallelGCBufferWastePct);
 264 }
 265 
 266 HeapWord* G1PLABAllocator::allocate_direct_or_new_plab(InCSetState dest,
 267                                                        size_t word_sz,
 268                                                        bool* plab_refill_failed) {
 269   size_t plab_word_size = _g1h->desired_plab_sz(dest);
 270   size_t required_in_plab = PLAB::size_required_for_allocation(word_sz);
 271 
 272   // Only get a new PLAB if the allocation fits and it would not waste more than
 273   // ParallelGCBufferWastePct in the existing buffer.
 274   if ((required_in_plab <= plab_word_size) &&
 275     may_throw_away_buffer(required_in_plab, plab_word_size)) {
 276 
 277     PLAB* alloc_buf = alloc_buffer(dest);
 278     alloc_buf->retire();
 279 
 280     size_t actual_plab_size = 0;
 281     HeapWord* buf = _allocator->par_allocate_during_gc(dest,
 282                                                        required_in_plab,
 283                                                        plab_word_size,
 284                                                        &actual_plab_size);
 285 
 286     assert(buf == NULL || ((actual_plab_size >= required_in_plab) && (actual_plab_size <= plab_word_size)),
 287            "Requested at minimum " SIZE_FORMAT ", desired " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT,
 288            required_in_plab, plab_word_size, actual_plab_size, p2i(buf));
 289 
 290     if (buf != NULL) {
 291       alloc_buf->set_buf(buf, actual_plab_size);
 292 
 293       HeapWord* const obj = alloc_buf->allocate(word_sz);
 294       assert(obj != NULL, "PLAB should have been big enough, tried to allocate "
 295                           SIZE_FORMAT " requiring " SIZE_FORMAT " PLAB size " SIZE_FORMAT,
 296                           word_sz, required_in_plab, plab_word_size);
 297       return obj;
 298     }
 299     // Otherwise.
 300     *plab_refill_failed = true;
 301   }
 302   // Try direct allocation.
 303   HeapWord* result = _allocator->par_allocate_during_gc(dest, word_sz);
 304   if (result != NULL) {
 305     _direct_allocated[dest.value()] += word_sz;
 306   }
 307   return result;
 308 }
 309 
 310 void G1PLABAllocator::undo_allocation(InCSetState dest, HeapWord* obj, size_t word_sz) {
 311   alloc_buffer(dest)->undo_allocation(obj, word_sz);
 312 }
 313 
 314 void G1PLABAllocator::flush_and_retire_stats() {
 315   for (uint state = 0; state < InCSetState::Num; state++) {
 316     PLAB* const buf = _alloc_buffers[state];
 317     if (buf != NULL) {
 318       G1EvacStats* stats = _g1h->alloc_buffer_stats(state);
 319       buf->flush_and_retire_stats(stats);
 320       stats->add_direct_allocated(_direct_allocated[state]);
 321       _direct_allocated[state] = 0;
 322     }
 323   }
 324 }
 325 
 326 void G1PLABAllocator::waste(size_t& wasted, size_t& undo_wasted) {
 327   wasted = 0;
 328   undo_wasted = 0;
 329   for (uint state = 0; state < InCSetState::Num; state++) {
 330     PLAB * const buf = _alloc_buffers[state];
 331     if (buf != NULL) {
 332       wasted += buf->waste();
 333       undo_wasted += buf->undo_waste();
 334     }
 335   }
 336 }
 337 
 338 bool G1ArchiveAllocator::_archive_check_enabled = false;
 339 G1ArchiveRegionMap G1ArchiveAllocator::_closed_archive_region_map;
 340 G1ArchiveRegionMap G1ArchiveAllocator::_open_archive_region_map;
 341 
 342 G1ArchiveAllocator* G1ArchiveAllocator::create_allocator(G1CollectedHeap* g1h, bool open) {
 343   // Create the archive allocator, and also enable archive object checking
 344   // in mark-sweep, since we will be creating archive regions.
 345   G1ArchiveAllocator* result =  new G1ArchiveAllocator(g1h, open);
 346   enable_archive_object_check();
 347   return result;
 348 }
 349 
 350 bool G1ArchiveAllocator::alloc_new_region() {
 351   // Allocate the highest free region in the reserved heap,
 352   // and add it to our list of allocated regions. It is marked
 353   // archive and added to the old set.
 354   HeapRegion* hr = _g1h->alloc_highest_free_region();
 355   if (hr == NULL) {
 356     return false;
 357   }
 358   assert(hr->is_empty(), "expected empty region (index %u)", hr->hrm_index());
 359   if (_open) {
 360     hr->set_open_archive();
 361   } else {
 362     hr->set_closed_archive();
 363   }
 364   _g1h->g1_policy()->remset_tracker()->update_at_allocate(hr);
 365   _g1h->archive_set_add(hr);
 366   _g1h->hr_printer()->alloc(hr);
 367   _allocated_regions.append(hr);
 368   _allocation_region = hr;
 369 
 370   // Set up _bottom and _max to begin allocating in the lowest
 371   // min_region_size'd chunk of the allocated G1 region.
 372   _bottom = hr->bottom();
 373   _max = _bottom + HeapRegion::min_region_size_in_words();
 374 
 375   // Tell mark-sweep that objects in this region are not to be marked.
 376   set_range_archive(MemRegion(_bottom, HeapRegion::GrainWords), _open);
 377 
 378   // Since we've modified the old set, call update_sizes.
 379   _g1h->g1mm()->update_sizes();
 380   return true;
 381 }
 382 
 383 HeapWord* G1ArchiveAllocator::archive_mem_allocate(size_t word_size) {
 384   assert(word_size != 0, "size must not be zero");
 385   if (_allocation_region == NULL) {
 386     if (!alloc_new_region()) {
 387       return NULL;
 388     }
 389   }
 390   HeapWord* old_top = _allocation_region->top();
 391   assert(_bottom >= _allocation_region->bottom(),
 392          "inconsistent allocation state: " PTR_FORMAT " < " PTR_FORMAT,
 393          p2i(_bottom), p2i(_allocation_region->bottom()));
 394   assert(_max <= _allocation_region->end(),
 395          "inconsistent allocation state: " PTR_FORMAT " > " PTR_FORMAT,
 396          p2i(_max), p2i(_allocation_region->end()));
 397   assert(_bottom <= old_top && old_top <= _max,
 398          "inconsistent allocation state: expected "
 399          PTR_FORMAT " <= " PTR_FORMAT " <= " PTR_FORMAT,
 400          p2i(_bottom), p2i(old_top), p2i(_max));
 401 
 402   // Allocate the next word_size words in the current allocation chunk.
 403   // If allocation would cross the _max boundary, insert a filler and begin
 404   // at the base of the next min_region_size'd chunk. Also advance to the next
 405   // chunk if we don't yet cross the boundary, but the remainder would be too
 406   // small to fill.
 407   HeapWord* new_top = old_top + word_size;
 408   size_t remainder = pointer_delta(_max, new_top);
 409   if ((new_top > _max) ||
 410       ((new_top < _max) && (remainder < Fill::min_size()))) {
 411     if (old_top != _max) {
 412       size_t fill_size = pointer_delta(_max, old_top);
 413       Fill::range(old_top, fill_size);
 414       _summary_bytes_used += fill_size * HeapWordSize;
 415     }
 416     _allocation_region->set_top(_max);
 417     old_top = _bottom = _max;
 418 
 419     // Check if we've just used up the last min_region_size'd chunk
 420     // in the current region, and if so, allocate a new one.
 421     if (_bottom != _allocation_region->end()) {
 422       _max = _bottom + HeapRegion::min_region_size_in_words();
 423     } else {
 424       if (!alloc_new_region()) {
 425         return NULL;
 426       }
 427       old_top = _allocation_region->bottom();
 428     }
 429   }
 430   _allocation_region->set_top(old_top + word_size);
 431   _summary_bytes_used += word_size * HeapWordSize;
 432 
 433   return old_top;
 434 }
 435 
 436 void G1ArchiveAllocator::complete_archive(GrowableArray<MemRegion>* ranges,
 437                                           size_t end_alignment_in_bytes) {
 438   assert((end_alignment_in_bytes >> LogHeapWordSize) < HeapRegion::min_region_size_in_words(),
 439          "alignment " SIZE_FORMAT " too large", end_alignment_in_bytes);
 440   assert(is_aligned(end_alignment_in_bytes, HeapWordSize),
 441          "alignment " SIZE_FORMAT " is not HeapWord (%u) aligned", end_alignment_in_bytes, HeapWordSize);
 442 
 443   // If we've allocated nothing, simply return.
 444   if (_allocation_region == NULL) {
 445     return;
 446   }
 447 
 448   // If an end alignment was requested, insert filler objects.
 449   if (end_alignment_in_bytes != 0) {
 450     HeapWord* currtop = _allocation_region->top();
 451     HeapWord* newtop = align_up(currtop, end_alignment_in_bytes);
 452     size_t fill_size = pointer_delta(newtop, currtop);
 453     if (fill_size != 0) {
 454       if (fill_size < Fill::min_size()) {
 455         // If the required fill is smaller than we can represent,
 456         // bump up to the next aligned address. We know we won't exceed the current
 457         // region boundary because the max supported alignment is smaller than the min
 458         // region size, and because the allocation code never leaves space smaller than
 459         // the Fill::min_size() at the top of the current allocation region.
 460         newtop = align_up(currtop + Fill::min_size(), end_alignment_in_bytes);
 461         fill_size = pointer_delta(newtop, currtop);
 462       }
 463       HeapWord* fill = archive_mem_allocate(fill_size);
 464       Fill::range(fill, fill_size);
 465     }
 466   }
 467 
 468   // Loop through the allocated regions, and create MemRegions summarizing
 469   // the allocated address range, combining contiguous ranges. Add the
 470   // MemRegions to the GrowableArray provided by the caller.
 471   int index = _allocated_regions.length() - 1;
 472   assert(_allocated_regions.at(index) == _allocation_region,
 473          "expected region %u at end of array, found %u",
 474          _allocation_region->hrm_index(), _allocated_regions.at(index)->hrm_index());
 475   HeapWord* base_address = _allocation_region->bottom();
 476   HeapWord* top = base_address;
 477 
 478   while (index >= 0) {
 479     HeapRegion* next = _allocated_regions.at(index);
 480     HeapWord* new_base = next->bottom();
 481     HeapWord* new_top = next->top();
 482     if (new_base != top) {
 483       ranges->append(MemRegion(base_address, pointer_delta(top, base_address)));
 484       base_address = new_base;
 485     }
 486     top = new_top;
 487     index = index - 1;
 488   }
 489 
 490   assert(top != base_address, "zero-sized range, address " PTR_FORMAT, p2i(base_address));
 491   ranges->append(MemRegion(base_address, pointer_delta(top, base_address)));
 492   _allocated_regions.clear();
 493   _allocation_region = NULL;
 494 };