1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "gc/parallel/parallelScavengeHeap.hpp"
  33 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  34 #include "gc/parallel/psMarkSweep.hpp"
  35 #include "gc/parallel/psMarkSweepDecorator.hpp"
  36 #include "gc/parallel/psOldGen.hpp"
  37 #include "gc/parallel/psScavenge.hpp"
  38 #include "gc/parallel/psYoungGen.hpp"
  39 #include "gc/serial/markSweep.hpp"
  40 #include "gc/shared/fill.hpp"
  41 #include "gc/shared/gcCause.hpp"
  42 #include "gc/shared/gcHeapSummary.hpp"
  43 #include "gc/shared/gcId.hpp"
  44 #include "gc/shared/gcLocker.hpp"
  45 #include "gc/shared/gcTimer.hpp"
  46 #include "gc/shared/gcTrace.hpp"
  47 #include "gc/shared/gcTraceTime.inline.hpp"
  48 #include "gc/shared/isGCActiveMark.hpp"
  49 #include "gc/shared/referencePolicy.hpp"
  50 #include "gc/shared/referenceProcessor.hpp"
  51 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  52 #include "gc/shared/spaceDecorator.hpp"
  53 #include "gc/shared/weakProcessor.hpp"
  54 #include "logging/log.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "runtime/biasedLocking.hpp"
  57 #include "runtime/flags/flagSetting.hpp"
  58 #include "runtime/handles.inline.hpp"
  59 #include "runtime/safepoint.hpp"
  60 #include "runtime/vmThread.hpp"
  61 #include "services/management.hpp"
  62 #include "services/memoryService.hpp"
  63 #include "utilities/align.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/stack.inline.hpp"
  66 
  67 elapsedTimer        PSMarkSweep::_accumulated_time;
  68 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  69 CollectorCounters*  PSMarkSweep::_counters = NULL;
  70 
  71 SpanSubjectToDiscoveryClosure PSMarkSweep::_span_based_discoverer;
  72 
  73 void PSMarkSweep::initialize() {
  74   _span_based_discoverer.set_span(ParallelScavengeHeap::heap()->reserved_region());
  75   set_ref_processor(new ReferenceProcessor(&_span_based_discoverer));     // a vanilla ref proc
  76   _counters = new CollectorCounters("PSMarkSweep", 1);
  77   MarkSweep::initialize();
  78 }
  79 
  80 // This method contains all heap specific policy for invoking mark sweep.
  81 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
  82 // the heap. It will do nothing further. If we need to bail out for policy
  83 // reasons, scavenge before full gc, or any other specialized behavior, it
  84 // needs to be added here.
  85 //
  86 // Note that this method should only be called from the vm_thread while
  87 // at a safepoint!
  88 //
  89 // Note that the all_soft_refs_clear flag in the collector policy
  90 // may be true because this method can be called without intervening
  91 // activity.  For example when the heap space is tight and full measure
  92 // are being taken to free space.
  93 
  94 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
  95   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  96   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  97   assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant");
  98 
  99   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 100   GCCause::Cause gc_cause = heap->gc_cause();
 101   PSAdaptiveSizePolicy* policy = heap->size_policy();
 102   IsGCActiveMark mark;
 103 
 104   if (ScavengeBeforeFullGC) {
 105     PSScavenge::invoke_no_policy();
 106   }
 107 
 108   const bool clear_all_soft_refs =
 109     heap->soft_ref_policy()->should_clear_all_soft_refs();
 110 
 111   uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
 112   UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
 113   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
 114 }
 115 
 116 // This method contains no policy. You should probably
 117 // be calling invoke() instead.
 118 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
 119   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 120   assert(ref_processor() != NULL, "Sanity");
 121 
 122   if (GCLocker::check_active_before_gc()) {
 123     return false;
 124   }
 125 
 126   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 127   GCCause::Cause gc_cause = heap->gc_cause();
 128 
 129   GCIdMark gc_id_mark;
 130   _gc_timer->register_gc_start();
 131   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
 132 
 133   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 134 
 135   // The scope of casr should end after code that can change
 136   // CollectorPolicy::_should_clear_all_soft_refs.
 137   ClearedAllSoftRefs casr(clear_all_softrefs, heap->soft_ref_policy());
 138 
 139   PSYoungGen* young_gen = heap->young_gen();
 140   PSOldGen* old_gen = heap->old_gen();
 141 
 142   // Increment the invocation count
 143   heap->increment_total_collections(true /* full */);
 144 
 145   // Save information needed to minimize mangling
 146   heap->record_gen_tops_before_GC();
 147 
 148   // We need to track unique mark sweep invocations as well.
 149   _total_invocations++;
 150 
 151   heap->print_heap_before_gc();
 152   heap->trace_heap_before_gc(_gc_tracer);
 153 
 154   // Fill in TLABs
 155   heap->ensure_parsability(true);  // retire TLABs
 156 
 157   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 158     HandleMark hm;  // Discard invalid handles created during verification
 159     Universe::verify("Before GC");
 160   }
 161 
 162   // Verify object start arrays
 163   if (VerifyObjectStartArray &&
 164       VerifyBeforeGC) {
 165     old_gen->verify_object_start_array();
 166   }
 167 
 168   // Filled in below to track the state of the young gen after the collection.
 169   bool eden_empty;
 170   bool survivors_empty;
 171   bool young_gen_empty;
 172 
 173   {
 174     HandleMark hm;
 175 
 176     GCTraceCPUTime tcpu;
 177     GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause, true);
 178 
 179     heap->pre_full_gc_dump(_gc_timer);
 180 
 181     TraceCollectorStats tcs(counters());
 182     TraceMemoryManagerStats tms(heap->old_gc_manager(),gc_cause);
 183 
 184     if (log_is_enabled(Debug, gc, heap, exit)) {
 185       accumulated_time()->start();
 186     }
 187 
 188     // Let the size policy know we're starting
 189     size_policy->major_collection_begin();
 190 
 191     CodeCache::gc_prologue();
 192     BiasedLocking::preserve_marks();
 193 
 194     // Capture metadata size before collection for sizing.
 195     size_t metadata_prev_used = MetaspaceUtils::used_bytes();
 196 
 197     size_t old_gen_prev_used = old_gen->used_in_bytes();
 198     size_t young_gen_prev_used = young_gen->used_in_bytes();
 199 
 200     allocate_stacks();
 201 
 202 #if COMPILER2_OR_JVMCI
 203     DerivedPointerTable::clear();
 204 #endif
 205 
 206     ref_processor()->enable_discovery();
 207     ref_processor()->setup_policy(clear_all_softrefs);
 208 
 209     mark_sweep_phase1(clear_all_softrefs);
 210 
 211     mark_sweep_phase2();
 212 
 213 #if COMPILER2_OR_JVMCI
 214     // Don't add any more derived pointers during phase3
 215     assert(DerivedPointerTable::is_active(), "Sanity");
 216     DerivedPointerTable::set_active(false);
 217 #endif
 218 
 219     mark_sweep_phase3();
 220 
 221     mark_sweep_phase4();
 222 
 223     restore_marks();
 224 
 225     deallocate_stacks();
 226 
 227     if (ZapUnusedHeapArea) {
 228       // Do a complete mangle (top to end) because the usage for
 229       // scratch does not maintain a top pointer.
 230       young_gen->to_space()->mangle_unused_area_complete();
 231     }
 232 
 233     eden_empty = young_gen->eden_space()->is_empty();
 234     if (!eden_empty) {
 235       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
 236     }
 237 
 238     // Update heap occupancy information which is used as
 239     // input to soft ref clearing policy at the next gc.
 240     Universe::update_heap_info_at_gc();
 241 
 242     survivors_empty = young_gen->from_space()->is_empty() &&
 243                       young_gen->to_space()->is_empty();
 244     young_gen_empty = eden_empty && survivors_empty;
 245 
 246     PSCardTable* card_table = heap->card_table();
 247     MemRegion old_mr = heap->old_gen()->reserved();
 248     if (young_gen_empty) {
 249       card_table->clear(MemRegion(old_mr.start(), old_mr.end()));
 250     } else {
 251       card_table->invalidate(MemRegion(old_mr.start(), old_mr.end()));
 252     }
 253 
 254     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 255     ClassLoaderDataGraph::purge();
 256     MetaspaceUtils::verify_metrics();
 257 
 258     BiasedLocking::restore_marks();
 259     CodeCache::gc_epilogue();
 260     JvmtiExport::gc_epilogue();
 261 
 262 #if COMPILER2_OR_JVMCI
 263     DerivedPointerTable::update_pointers();
 264 #endif
 265 
 266     assert(!ref_processor()->discovery_enabled(), "Should have been disabled earlier");
 267 
 268     // Update time of last GC
 269     reset_millis_since_last_gc();
 270 
 271     // Let the size policy know we're done
 272     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 273 
 274     if (UseAdaptiveSizePolicy) {
 275 
 276      log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
 277      log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
 278                          old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
 279 
 280       // Don't check if the size_policy is ready here.  Let
 281       // the size_policy check that internally.
 282       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 283           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
 284         // Swap the survivor spaces if from_space is empty. The
 285         // resize_young_gen() called below is normally used after
 286         // a successful young GC and swapping of survivor spaces;
 287         // otherwise, it will fail to resize the young gen with
 288         // the current implementation.
 289         if (young_gen->from_space()->is_empty()) {
 290           young_gen->from_space()->clear(SpaceDecorator::Mangle);
 291           young_gen->swap_spaces();
 292         }
 293 
 294         // Calculate optimal free space amounts
 295         assert(young_gen->max_size() >
 296           young_gen->from_space()->capacity_in_bytes() +
 297           young_gen->to_space()->capacity_in_bytes(),
 298           "Sizes of space in young gen are out of bounds");
 299 
 300         size_t young_live = young_gen->used_in_bytes();
 301         size_t eden_live = young_gen->eden_space()->used_in_bytes();
 302         size_t old_live = old_gen->used_in_bytes();
 303         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
 304         size_t max_old_gen_size = old_gen->max_gen_size();
 305         size_t max_eden_size = young_gen->max_size() -
 306           young_gen->from_space()->capacity_in_bytes() -
 307           young_gen->to_space()->capacity_in_bytes();
 308 
 309         // Used for diagnostics
 310         size_policy->clear_generation_free_space_flags();
 311 
 312         size_policy->compute_generations_free_space(young_live,
 313                                                     eden_live,
 314                                                     old_live,
 315                                                     cur_eden,
 316                                                     max_old_gen_size,
 317                                                     max_eden_size,
 318                                                     true /* full gc*/);
 319 
 320         size_policy->check_gc_overhead_limit(young_live,
 321                                              eden_live,
 322                                              max_old_gen_size,
 323                                              max_eden_size,
 324                                              true /* full gc*/,
 325                                              gc_cause,
 326                                              heap->soft_ref_policy());
 327 
 328         size_policy->decay_supplemental_growth(true /* full gc*/);
 329 
 330         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 331 
 332         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 333                                size_policy->calculated_survivor_size_in_bytes());
 334       }
 335       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
 336     }
 337 
 338     if (UsePerfData) {
 339       heap->gc_policy_counters()->update_counters();
 340       heap->gc_policy_counters()->update_old_capacity(
 341         old_gen->capacity_in_bytes());
 342       heap->gc_policy_counters()->update_young_capacity(
 343         young_gen->capacity_in_bytes());
 344     }
 345 
 346     heap->resize_all_tlabs();
 347 
 348     // We collected the heap, recalculate the metaspace capacity
 349     MetaspaceGC::compute_new_size();
 350 
 351     if (log_is_enabled(Debug, gc, heap, exit)) {
 352       accumulated_time()->stop();
 353     }
 354 
 355     young_gen->print_used_change(young_gen_prev_used);
 356     old_gen->print_used_change(old_gen_prev_used);
 357     MetaspaceUtils::print_metaspace_change(metadata_prev_used);
 358 
 359     // Track memory usage and detect low memory
 360     MemoryService::track_memory_usage();
 361     heap->update_counters();
 362 
 363     heap->post_full_gc_dump(_gc_timer);
 364   }
 365 
 366   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 367     HandleMark hm;  // Discard invalid handles created during verification
 368     Universe::verify("After GC");
 369   }
 370 
 371   // Re-verify object start arrays
 372   if (VerifyObjectStartArray &&
 373       VerifyAfterGC) {
 374     old_gen->verify_object_start_array();
 375   }
 376 
 377   if (ZapUnusedHeapArea) {
 378     old_gen->object_space()->check_mangled_unused_area_complete();
 379   }
 380 
 381   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 382 
 383   heap->print_heap_after_gc();
 384   heap->trace_heap_after_gc(_gc_tracer);
 385 
 386 #ifdef TRACESPINNING
 387   ParallelTaskTerminator::print_termination_counts();
 388 #endif
 389 
 390   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
 391 
 392   _gc_timer->register_gc_end();
 393 
 394   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 395 
 396   return true;
 397 }
 398 
 399 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 400                                              PSYoungGen* young_gen,
 401                                              PSOldGen* old_gen) {
 402   MutableSpace* const eden_space = young_gen->eden_space();
 403   assert(!eden_space->is_empty(), "eden must be non-empty");
 404   assert(young_gen->virtual_space()->alignment() ==
 405          old_gen->virtual_space()->alignment(), "alignments do not match");
 406 
 407   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 408     return false;
 409   }
 410 
 411   // Both generations must be completely committed.
 412   if (young_gen->virtual_space()->uncommitted_size() != 0) {
 413     return false;
 414   }
 415   if (old_gen->virtual_space()->uncommitted_size() != 0) {
 416     return false;
 417   }
 418 
 419   // Figure out how much to take from eden.  Include the average amount promoted
 420   // in the total; otherwise the next young gen GC will simply bail out to a
 421   // full GC.
 422   const size_t alignment = old_gen->virtual_space()->alignment();
 423   const size_t eden_used = eden_space->used_in_bytes();
 424   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 425   const size_t absorb_size = align_up(eden_used + promoted, alignment);
 426   const size_t eden_capacity = eden_space->capacity_in_bytes();
 427 
 428   if (absorb_size >= eden_capacity) {
 429     return false; // Must leave some space in eden.
 430   }
 431 
 432   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 433   if (new_young_size < young_gen->min_gen_size()) {
 434     return false; // Respect young gen minimum size.
 435   }
 436 
 437   log_trace(gc, ergo, heap)(" absorbing " SIZE_FORMAT "K:  "
 438                             "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 439                             "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 440                             "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 441                             absorb_size / K,
 442                             eden_capacity / K, (eden_capacity - absorb_size) / K,
 443                             young_gen->from_space()->used_in_bytes() / K,
 444                             young_gen->to_space()->used_in_bytes() / K,
 445                             young_gen->capacity_in_bytes() / K, new_young_size / K);
 446 
 447   // Fill the unused part of the old gen.
 448   MutableSpace* const old_space = old_gen->object_space();
 449   HeapWord* const unused_start = old_space->top();
 450   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 451 
 452   if (unused_words > 0) {
 453     if (unused_words < Fill::min_size()) {
 454       return false;  // If the old gen cannot be filled, must give up.
 455     }
 456     Fill::range(unused_start, unused_words);
 457   }
 458 
 459   // Take the live data from eden and set both top and end in the old gen to
 460   // eden top.  (Need to set end because reset_after_change() mangles the region
 461   // from end to virtual_space->high() in debug builds).
 462   HeapWord* const new_top = eden_space->top();
 463   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 464                                         absorb_size);
 465   young_gen->reset_after_change();
 466   old_space->set_top(new_top);
 467   old_space->set_end(new_top);
 468   old_gen->reset_after_change();
 469 
 470   // Update the object start array for the filler object and the data from eden.
 471   ObjectStartArray* const start_array = old_gen->start_array();
 472   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
 473     start_array->allocate_block(p);
 474   }
 475 
 476   // Could update the promoted average here, but it is not typically updated at
 477   // full GCs and the value to use is unclear.  Something like
 478   //
 479   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
 480 
 481   size_policy->set_bytes_absorbed_from_eden(absorb_size);
 482   return true;
 483 }
 484 
 485 void PSMarkSweep::allocate_stacks() {
 486   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 487   PSYoungGen* young_gen = heap->young_gen();
 488 
 489   MutableSpace* to_space = young_gen->to_space();
 490   _preserved_marks = (PreservedMark*)to_space->top();
 491   _preserved_count = 0;
 492 
 493   // We want to calculate the size in bytes first.
 494   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 495   // Now divide by the size of a PreservedMark
 496   _preserved_count_max /= sizeof(PreservedMark);
 497 }
 498 
 499 
 500 void PSMarkSweep::deallocate_stacks() {
 501   _preserved_mark_stack.clear(true);
 502   _preserved_oop_stack.clear(true);
 503   _marking_stack.clear();
 504   _objarray_stack.clear(true);
 505 }
 506 
 507 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 508   // Recursively traverse all live objects and mark them
 509   GCTraceTime(Info, gc, phases) tm("Phase 1: Mark live objects", _gc_timer);
 510 
 511   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 512 
 513   // Need to clear claim bits before the tracing starts.
 514   ClassLoaderDataGraph::clear_claimed_marks();
 515 
 516   // General strong roots.
 517   {
 518     ParallelScavengeHeap::ParStrongRootsScope psrs;
 519     Universe::oops_do(mark_and_push_closure());
 520     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 521     MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
 522     Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
 523     ObjectSynchronizer::oops_do(mark_and_push_closure());
 524     Management::oops_do(mark_and_push_closure());
 525     JvmtiExport::oops_do(mark_and_push_closure());
 526     SystemDictionary::oops_do(mark_and_push_closure());
 527     ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
 528     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
 529     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
 530     AOTLoader::oops_do(mark_and_push_closure());
 531   }
 532 
 533   // Flush marking stack.
 534   follow_stack();
 535 
 536   // Process reference objects found during marking
 537   {
 538     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer);
 539 
 540     ref_processor()->setup_policy(clear_all_softrefs);
 541     ReferenceProcessorPhaseTimes pt(_gc_timer, ref_processor()->max_num_queues());
 542     const ReferenceProcessorStats& stats =
 543       ref_processor()->process_discovered_references(
 544         is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, &pt);
 545     gc_tracer()->report_gc_reference_stats(stats);
 546     pt.print_all_references();
 547   }
 548 
 549   // This is the point where the entire marking should have completed.
 550   assert(_marking_stack.is_empty(), "Marking should have completed");
 551 
 552   {
 553     GCTraceTime(Debug, gc, phases) t("Weak Processing", _gc_timer);
 554     WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl);
 555   }
 556 
 557   {
 558     GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer);
 559 
 560     // Unload classes and purge the SystemDictionary.
 561     bool purged_class = SystemDictionary::do_unloading(_gc_timer);
 562 
 563     // Unload nmethods.
 564     CodeCache::do_unloading(is_alive_closure(), purged_class);
 565 
 566     // Prune dead klasses from subklass/sibling/implementor lists.
 567     Klass::clean_weak_klass_links(purged_class);
 568   }
 569 
 570   {
 571     GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer);
 572     // Delete entries for dead interned strings.
 573     StringTable::unlink(is_alive_closure());
 574   }
 575 
 576   {
 577     GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer);
 578     // Clean up unreferenced symbols in symbol table.
 579     SymbolTable::unlink();
 580   }
 581 
 582   _gc_tracer->report_object_count_after_gc(is_alive_closure());
 583 }
 584 
 585 
 586 void PSMarkSweep::mark_sweep_phase2() {
 587   GCTraceTime(Info, gc, phases) tm("Phase 2: Compute new object addresses", _gc_timer);
 588 
 589   // Now all live objects are marked, compute the new object addresses.
 590 
 591   // It is not required that we traverse spaces in the same order in
 592   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 593   // tracking expects us to do so. See comment under phase4.
 594 
 595   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 596   PSOldGen* old_gen = heap->old_gen();
 597 
 598   // Begin compacting into the old gen
 599   PSMarkSweepDecorator::set_destination_decorator_tenured();
 600 
 601   // This will also compact the young gen spaces.
 602   old_gen->precompact();
 603 }
 604 
 605 void PSMarkSweep::mark_sweep_phase3() {
 606   // Adjust the pointers to reflect the new locations
 607   GCTraceTime(Info, gc, phases) tm("Phase 3: Adjust pointers", _gc_timer);
 608 
 609   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 610   PSYoungGen* young_gen = heap->young_gen();
 611   PSOldGen* old_gen = heap->old_gen();
 612 
 613   // Need to clear claim bits before the tracing starts.
 614   ClassLoaderDataGraph::clear_claimed_marks();
 615 
 616   // General strong roots.
 617   Universe::oops_do(adjust_pointer_closure());
 618   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
 619   Threads::oops_do(adjust_pointer_closure(), NULL);
 620   ObjectSynchronizer::oops_do(adjust_pointer_closure());
 621   Management::oops_do(adjust_pointer_closure());
 622   JvmtiExport::oops_do(adjust_pointer_closure());
 623   SystemDictionary::oops_do(adjust_pointer_closure());
 624   ClassLoaderDataGraph::cld_do(adjust_cld_closure());
 625 
 626   // Now adjust pointers in remaining weak roots.  (All of which should
 627   // have been cleared if they pointed to non-surviving objects.)
 628   // Global (weak) JNI handles
 629   WeakProcessor::oops_do(adjust_pointer_closure());
 630 
 631   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
 632   CodeCache::blobs_do(&adjust_from_blobs);
 633   AOTLoader::oops_do(adjust_pointer_closure());
 634   StringTable::oops_do(adjust_pointer_closure());
 635   ref_processor()->weak_oops_do(adjust_pointer_closure());
 636   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
 637 
 638   adjust_marks();
 639 
 640   young_gen->adjust_pointers();
 641   old_gen->adjust_pointers();
 642 }
 643 
 644 void PSMarkSweep::mark_sweep_phase4() {
 645   EventMark m("4 compact heap");
 646   GCTraceTime(Info, gc, phases) tm("Phase 4: Move objects", _gc_timer);
 647 
 648   // All pointers are now adjusted, move objects accordingly
 649 
 650   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 651   PSYoungGen* young_gen = heap->young_gen();
 652   PSOldGen* old_gen = heap->old_gen();
 653 
 654   old_gen->compact();
 655   young_gen->compact();
 656 }
 657 
 658 jlong PSMarkSweep::millis_since_last_gc() {
 659   // We need a monotonically non-decreasing time in ms but
 660   // os::javaTimeMillis() does not guarantee monotonicity.
 661   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 662   jlong ret_val = now - _time_of_last_gc;
 663   // XXX See note in genCollectedHeap::millis_since_last_gc().
 664   if (ret_val < 0) {
 665     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
 666     return 0;
 667   }
 668   return ret_val;
 669 }
 670 
 671 void PSMarkSweep::reset_millis_since_last_gc() {
 672   // We need a monotonically non-decreasing time in ms but
 673   // os::javaTimeMillis() does not guarantee monotonicity.
 674   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 675 }