1 /*
   2  * Copyright (c) 2002, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP
  26 #define SHARE_VM_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP
  27 
  28 #include "gc/parallel/parallelScavengeHeap.hpp"
  29 #include "gc/parallel/parMarkBitMap.inline.hpp"
  30 #include "gc/parallel/psOldGen.hpp"
  31 #include "gc/parallel/psPromotionLAB.inline.hpp"
  32 #include "gc/parallel/psPromotionManager.hpp"
  33 #include "gc/parallel/psScavenge.inline.hpp"
  34 #include "gc/shared/taskqueue.inline.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/iterator.inline.hpp"
  37 #include "oops/access.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 
  40 inline PSPromotionManager* PSPromotionManager::manager_array(uint index) {
  41   assert(_manager_array != NULL, "access of NULL manager_array");
  42   assert(index <= ParallelGCThreads, "out of range manager_array access");
  43   return &_manager_array[index];
  44 }
  45 
  46 template <class T>
  47 inline void PSPromotionManager::push_depth(T* p) {
  48   claimed_stack_depth()->push(p);
  49 }
  50 
  51 template <class T>
  52 inline void PSPromotionManager::claim_or_forward_internal_depth(T* p) {
  53   if (p != NULL) { // XXX: error if p != NULL here
  54     oop o = RawAccess<IS_NOT_NULL>::oop_load(p);
  55     if (o->is_forwarded()) {
  56       o = o->forwardee();
  57       // Card mark
  58       if (PSScavenge::is_obj_in_young(o)) {
  59         PSScavenge::card_table()->inline_write_ref_field_gc(p, o);
  60       }
  61       RawAccess<IS_NOT_NULL>::oop_store(p, o);
  62     } else {
  63       push_depth(p);
  64     }
  65   }
  66 }
  67 
  68 template <class T>
  69 inline void PSPromotionManager::claim_or_forward_depth(T* p) {
  70   assert(should_scavenge(p, true), "revisiting object?");
  71   assert(ParallelScavengeHeap::heap()->is_in(p), "pointer outside heap");
  72 
  73   claim_or_forward_internal_depth(p);
  74 }
  75 
  76 inline void PSPromotionManager::promotion_trace_event(oop new_obj, oop old_obj,
  77                                                       size_t obj_size,
  78                                                       uint age, bool tenured,
  79                                                       const PSPromotionLAB* lab) {
  80   // Skip if memory allocation failed
  81   if (new_obj != NULL) {
  82     const ParallelScavengeTracer* gc_tracer = PSScavenge::gc_tracer();
  83 
  84     if (lab != NULL) {
  85       // Promotion of object through newly allocated PLAB
  86       if (gc_tracer->should_report_promotion_in_new_plab_event()) {
  87         size_t obj_bytes = obj_size * HeapWordSize;
  88         size_t lab_size = lab->capacity();
  89         gc_tracer->report_promotion_in_new_plab_event(old_obj->klass(), obj_bytes,
  90                                                       age, tenured, lab_size);
  91       }
  92     } else {
  93       // Promotion of object directly to heap
  94       if (gc_tracer->should_report_promotion_outside_plab_event()) {
  95         size_t obj_bytes = obj_size * HeapWordSize;
  96         gc_tracer->report_promotion_outside_plab_event(old_obj->klass(), obj_bytes,
  97                                                        age, tenured);
  98       }
  99     }
 100   }
 101 }
 102 
 103 class PSPushContentsClosure: public BasicOopIterateClosure {
 104   PSPromotionManager* _pm;
 105  public:
 106   PSPushContentsClosure(PSPromotionManager* pm) : BasicOopIterateClosure(PSScavenge::reference_processor()), _pm(pm) {}
 107 
 108   template <typename T> void do_oop_nv(T* p) {
 109     if (PSScavenge::should_scavenge(p)) {
 110       _pm->claim_or_forward_depth(p);
 111     }
 112   }
 113 
 114   virtual void do_oop(oop* p)       { do_oop_nv(p); }
 115   virtual void do_oop(narrowOop* p) { do_oop_nv(p); }
 116 
 117   // Don't use the oop verification code in the oop_oop_iterate framework.
 118   debug_only(virtual bool should_verify_oops() { return false; })
 119 };
 120 
 121 //
 122 // This closure specialization will override the one that is defined in
 123 // instanceRefKlass.inline.cpp. It swaps the order of oop_oop_iterate and
 124 // oop_oop_iterate_ref_processing. Unfortunately G1 and Parallel behaves
 125 // significantly better (especially in the Derby benchmark) using opposite
 126 // order of these function calls.
 127 //
 128 template <>
 129 inline void InstanceRefKlass::oop_oop_iterate_reverse<oop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) {
 130   oop_oop_iterate_ref_processing<oop>(obj, closure);
 131   InstanceKlass::oop_oop_iterate_reverse<oop>(obj, closure);
 132 }
 133 
 134 template <>
 135 inline void InstanceRefKlass::oop_oop_iterate_reverse<narrowOop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) {
 136   oop_oop_iterate_ref_processing<narrowOop>(obj, closure);
 137   InstanceKlass::oop_oop_iterate_reverse<narrowOop>(obj, closure);
 138 }
 139 
 140 inline void PSPromotionManager::push_contents(oop obj) {
 141   if (!obj->klass()->is_typeArray_klass()) {
 142     PSPushContentsClosure pcc(this);
 143     obj->oop_iterate_backwards(&pcc);
 144   }
 145 }
 146 //
 147 // This method is pretty bulky. It would be nice to split it up
 148 // into smaller submethods, but we need to be careful not to hurt
 149 // performance.
 150 //
 151 template<bool promote_immediately>
 152 inline oop PSPromotionManager::copy_to_survivor_space(oop o) {
 153   assert(should_scavenge(&o), "Sanity");
 154 
 155   oop new_obj = NULL;
 156 
 157   // NOTE! We must be very careful with any methods that access the mark
 158   // in o. There may be multiple threads racing on it, and it may be forwarded
 159   // at any time. Do not use oop methods for accessing the mark!
 160   markOop test_mark = o->mark_raw();
 161 
 162   // The same test as "o->is_forwarded()"
 163   if (!test_mark->is_marked()) {
 164     bool new_obj_is_tenured = false;
 165     size_t new_obj_size = o->size();
 166 
 167     // Find the objects age, MT safe.
 168     uint age = (test_mark->has_displaced_mark_helper() /* o->has_displaced_mark() */) ?
 169       test_mark->displaced_mark_helper()->age() : test_mark->age();
 170 
 171     if (!promote_immediately) {
 172       // Try allocating obj in to-space (unless too old)
 173       if (age < PSScavenge::tenuring_threshold()) {
 174         new_obj = (oop) _young_lab.allocate(new_obj_size);
 175         if (new_obj == NULL && !_young_gen_is_full) {
 176           // Do we allocate directly, or flush and refill?
 177           if (new_obj_size > (YoungPLABSize / 2)) {
 178             // Allocate this object directly
 179             new_obj = (oop)young_space()->cas_allocate(new_obj_size);
 180             promotion_trace_event(new_obj, o, new_obj_size, age, false, NULL);
 181           } else {
 182             // Flush and fill
 183             _young_lab.flush();
 184 
 185             HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize);
 186             if (lab_base != NULL) {
 187               _young_lab.initialize(MemRegion(lab_base, YoungPLABSize));
 188               // Try the young lab allocation again.
 189               new_obj = (oop) _young_lab.allocate(new_obj_size);
 190               promotion_trace_event(new_obj, o, new_obj_size, age, false, &_young_lab);
 191             } else {
 192               _young_gen_is_full = true;
 193             }
 194           }
 195         }
 196       }
 197     }
 198 
 199     // Otherwise try allocating obj tenured
 200     if (new_obj == NULL) {
 201 #ifndef PRODUCT
 202       if (ParallelScavengeHeap::heap()->promotion_should_fail()) {
 203         return oop_promotion_failed(o, test_mark);
 204       }
 205 #endif  // #ifndef PRODUCT
 206 
 207       new_obj = (oop) _old_lab.allocate(new_obj_size);
 208       new_obj_is_tenured = true;
 209 
 210       if (new_obj == NULL) {
 211         if (!_old_gen_is_full) {
 212           // Do we allocate directly, or flush and refill?
 213           if (new_obj_size > (OldPLABSize / 2)) {
 214             // Allocate this object directly
 215             new_obj = (oop)old_gen()->cas_allocate(new_obj_size);
 216             promotion_trace_event(new_obj, o, new_obj_size, age, true, NULL);
 217           } else {
 218             // Flush and fill
 219             _old_lab.flush();
 220 
 221             HeapWord* lab_base = old_gen()->cas_allocate(OldPLABSize);
 222             if(lab_base != NULL) {
 223 #ifdef ASSERT
 224               // Delay the initialization of the promotion lab (plab).
 225               // This exposes uninitialized plabs to card table processing.
 226               if (GCWorkerDelayMillis > 0) {
 227                 os::sleep(Thread::current(), GCWorkerDelayMillis, false);
 228               }
 229 #endif
 230               _old_lab.initialize(MemRegion(lab_base, OldPLABSize));
 231               // Try the old lab allocation again.
 232               new_obj = (oop) _old_lab.allocate(new_obj_size);
 233               promotion_trace_event(new_obj, o, new_obj_size, age, true, &_old_lab);
 234             }
 235           }
 236         }
 237 
 238         // This is the promotion failed test, and code handling.
 239         // The code belongs here for two reasons. It is slightly
 240         // different than the code below, and cannot share the
 241         // CAS testing code. Keeping the code here also minimizes
 242         // the impact on the common case fast path code.
 243 
 244         if (new_obj == NULL) {
 245           _old_gen_is_full = true;
 246           return oop_promotion_failed(o, test_mark);
 247         }
 248       }
 249     }
 250 
 251     assert(new_obj != NULL, "allocation should have succeeded");
 252 
 253     // Copy obj
 254     Copy::aligned_disjoint_words((HeapWord*)o, (HeapWord*)new_obj, new_obj_size);
 255 
 256     // Now we have to CAS in the header.
 257     // Make copy visible to threads reading the forwardee.
 258     if (o->cas_forward_to(new_obj, test_mark, memory_order_release)) {
 259       // We won any races, we "own" this object.
 260       assert(new_obj == o->forwardee(), "Sanity");
 261 
 262       // Increment age if obj still in new generation. Now that
 263       // we're dealing with a markOop that cannot change, it is
 264       // okay to use the non mt safe oop methods.
 265       if (!new_obj_is_tenured) {
 266         new_obj->incr_age();
 267         assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj");
 268       }
 269 
 270       // Do the size comparison first with new_obj_size, which we
 271       // already have. Hopefully, only a few objects are larger than
 272       // _min_array_size_for_chunking, and most of them will be arrays.
 273       // So, the is->objArray() test would be very infrequent.
 274       if (new_obj_size > _min_array_size_for_chunking &&
 275           new_obj->is_objArray() &&
 276           PSChunkLargeArrays) {
 277         // we'll chunk it
 278         oop* const masked_o = mask_chunked_array_oop(o);
 279         push_depth(masked_o);
 280         TASKQUEUE_STATS_ONLY(++_arrays_chunked; ++_masked_pushes);
 281       } else {
 282         // we'll just push its contents
 283         push_contents(new_obj);
 284       }
 285     }  else {
 286       // We lost, someone else "owns" this object
 287       guarantee(o->is_forwarded(), "Object must be forwarded if the cas failed.");
 288 
 289       // Try to deallocate the space.  If it was directly allocated we cannot
 290       // deallocate it, so we have to test.  If the deallocation fails,
 291       // overwrite with a filler object.
 292       if (new_obj_is_tenured) {
 293         if (!_old_lab.unallocate_object((HeapWord*) new_obj, new_obj_size)) {
 294           CollectedHeap::fill_with_object((HeapWord*) new_obj, new_obj_size);
 295         }
 296       } else if (!_young_lab.unallocate_object((HeapWord*) new_obj, new_obj_size)) {
 297         CollectedHeap::fill_with_object((HeapWord*) new_obj, new_obj_size);
 298       }
 299 
 300       // don't update this before the unallocation!
 301       // Using acquire though consume would be accurate for accessing new_obj.
 302       new_obj = o->forwardee_acquire();
 303     }
 304   } else {
 305     assert(o->is_forwarded(), "Sanity");
 306     new_obj = o->forwardee_acquire();
 307   }
 308 
 309   // This code must come after the CAS test, or it will print incorrect
 310   // information.
 311   log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
 312                                   should_scavenge(&new_obj) ? "copying" : "tenuring",
 313                                   new_obj->klass()->internal_name(), p2i((void *)o), p2i((void *)new_obj), new_obj->size());
 314 
 315   return new_obj;
 316 }
 317 
 318 // Attempt to "claim" oop at p via CAS, push the new obj if successful
 319 // This version tests the oop* to make sure it is within the heap before
 320 // attempting marking.
 321 template <class T, bool promote_immediately>
 322 inline void PSPromotionManager::copy_and_push_safe_barrier(T* p) {
 323   assert(should_scavenge(p, true), "revisiting object?");
 324 
 325   oop o = RawAccess<IS_NOT_NULL>::oop_load(p);
 326   oop new_obj = o->is_forwarded()
 327         ? o->forwardee()
 328         : copy_to_survivor_space<promote_immediately>(o);
 329 
 330   // This code must come after the CAS test, or it will print incorrect
 331   // information.
 332   if (log_develop_is_enabled(Trace, gc, scavenge) && o->is_forwarded()) {
 333     log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
 334                       "forwarding",
 335                       new_obj->klass()->internal_name(), p2i((void *)o), p2i((void *)new_obj), new_obj->size());
 336   }
 337 
 338   RawAccess<IS_NOT_NULL>::oop_store(p, new_obj);
 339 
 340   // We cannot mark without test, as some code passes us pointers
 341   // that are outside the heap. These pointers are either from roots
 342   // or from metadata.
 343   if ((!PSScavenge::is_obj_in_young((HeapWord*)p)) &&
 344       ParallelScavengeHeap::heap()->is_in_reserved(p)) {
 345     if (PSScavenge::is_obj_in_young(new_obj)) {
 346       PSScavenge::card_table()->inline_write_ref_field_gc(p, new_obj);
 347     }
 348   }
 349 }
 350 
 351 inline void PSPromotionManager::process_popped_location_depth(StarTask p) {
 352   if (is_oop_masked(p)) {
 353     assert(PSChunkLargeArrays, "invariant");
 354     oop const old = unmask_chunked_array_oop(p);
 355     process_array_chunk(old);
 356   } else {
 357     if (p.is_narrow()) {
 358       assert(UseCompressedOops, "Error");
 359       copy_and_push_safe_barrier<narrowOop, /*promote_immediately=*/false>(p);
 360     } else {
 361       copy_and_push_safe_barrier<oop, /*promote_immediately=*/false>(p);
 362     }
 363   }
 364 }
 365 
 366 inline bool PSPromotionManager::steal_depth(int queue_num, StarTask& t) {
 367   return stack_array_depth()->steal(queue_num, t);
 368 }
 369 
 370 #if TASKQUEUE_STATS
 371 void PSPromotionManager::record_steal(StarTask& p) {
 372   if (is_oop_masked(p)) {
 373     ++_masked_steals;
 374   }
 375 }
 376 #endif // TASKQUEUE_STATS
 377 
 378 #endif // SHARE_VM_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP