/* * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "gc/z/zAddress.inline.hpp" #include "gc/z/zCollectedHeap.hpp" #include "gc/z/zFuture.inline.hpp" #include "gc/z/zGlobals.hpp" #include "gc/z/zLock.inline.hpp" #include "gc/z/zPage.inline.hpp" #include "gc/z/zPageAllocator.hpp" #include "gc/z/zPageCache.inline.hpp" #include "gc/z/zPreMappedMemory.inline.hpp" #include "gc/z/zStat.hpp" #include "gc/z/zTracer.inline.hpp" #include "runtime/init.hpp" static const ZStatCounter ZCounterAllocationRate("Memory", "Allocation Rate", ZStatUnitBytesPerSecond); static const ZStatCriticalPhase ZCriticalPhaseAllocationStall("Allocation Stall"); class ZPageAllocRequest : public StackObj { friend class ZList; private: const uint8_t _type; const size_t _size; const ZAllocationFlags _flags; const unsigned int _total_collections; ZListNode _node; ZFuture _result; public: ZPageAllocRequest(uint8_t type, size_t size, ZAllocationFlags flags, unsigned int total_collections) : _type(type), _size(size), _flags(flags), _total_collections(total_collections) {} uint8_t type() const { return _type; } size_t size() const { return _size; } ZAllocationFlags flags() const { return _flags; } unsigned int total_collections() const { return _total_collections; } ZPage* wait() { return _result.get(); } void satisfy(ZPage* page) { _result.set(page); } }; ZPage* const ZPageAllocator::gc_marker = (ZPage*)-1; ZPageAllocator::ZPageAllocator(size_t min_capacity, size_t max_capacity, size_t max_reserve) : _lock(), _virtual(), _physical(max_capacity), _cache(), _max_reserve(max_reserve), _pre_mapped(_virtual, _physical, try_ensure_unused_for_pre_mapped(min_capacity)), _used_high(0), _used_low(0), _used(0), _allocated(0), _reclaimed(0), _queue(), _detached() {} bool ZPageAllocator::is_initialized() const { return _physical.is_initialized() && _virtual.is_initialized() && _pre_mapped.is_initialized(); } size_t ZPageAllocator::max_capacity() const { return _physical.max_capacity(); } size_t ZPageAllocator::current_max_capacity() const { return _physical.current_max_capacity(); } size_t ZPageAllocator::capacity() const { return _physical.capacity(); } size_t ZPageAllocator::max_reserve() const { return _max_reserve; } size_t ZPageAllocator::used_high() const { return _used_high; } size_t ZPageAllocator::used_low() const { return _used_low; } size_t ZPageAllocator::used() const { return _used; } size_t ZPageAllocator::allocated() const { return _allocated; } size_t ZPageAllocator::reclaimed() const { return _reclaimed > 0 ? (size_t)_reclaimed : 0; } void ZPageAllocator::reset_statistics() { assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint"); _allocated = 0; _reclaimed = 0; _used_high = _used_low = _used; } void ZPageAllocator::increase_used(size_t size, bool relocation) { if (relocation) { // Allocating a page for the purpose of relocation has a // negative contribution to the number of reclaimed bytes. _reclaimed -= size; } _allocated += size; _used += size; if (_used > _used_high) { _used_high = _used; } } void ZPageAllocator::decrease_used(size_t size, bool reclaimed) { if (reclaimed) { // Only pages explicitly released with the reclaimed flag set // counts as reclaimed bytes. This flag is typically true when // a worker releases a page after relocation, and is typically // false when we release a page to undo an allocation. _reclaimed += size; } _used -= size; if (_used < _used_low) { _used_low = _used; } } size_t ZPageAllocator::max_available(bool no_reserve) const { size_t available = current_max_capacity() - used(); if (no_reserve) { // The reserve should not be considered available available -= MIN2(available, max_reserve()); } return available; } size_t ZPageAllocator::try_ensure_unused(size_t size, bool no_reserve) { // Ensure that we always have space available for the reserve. This // is needed to avoid losing the reserve because of failure to map // more memory before reaching max capacity. _physical.try_ensure_unused_capacity(size + max_reserve()); size_t unused = _physical.unused_capacity(); if (no_reserve) { // The reserve should not be considered unused unused -= MIN2(unused, max_reserve()); } return MIN2(size, unused); } size_t ZPageAllocator::try_ensure_unused_for_pre_mapped(size_t size) { // This function is called during construction, where the // physical memory manager might have failed to initialied. if (!_physical.is_initialized()) { return 0; } return try_ensure_unused(size, true /* no_reserve */); } ZPage* ZPageAllocator::create_page(uint8_t type, size_t size) { // Allocate physical memory const ZPhysicalMemory pmem = _physical.alloc(size); if (pmem.is_null()) { // Out of memory return NULL; } // Allocate virtual memory const ZVirtualMemory vmem = _virtual.alloc(size); if (vmem.is_null()) { // Out of address space _physical.free(pmem); return NULL; } // Allocate page return new ZPage(type, vmem, pmem); } void ZPageAllocator::flush_pre_mapped() { if (_pre_mapped.available() == 0) { return; } // Detach the memory mapping. detach_memory(_pre_mapped.virtual_memory(), _pre_mapped.physical_memory()); _pre_mapped.clear(); } void ZPageAllocator::map_page(ZPage* page) { // Map physical memory _physical.map(page->physical_memory(), page->start()); } void ZPageAllocator::detach_page(ZPage* page) { // Detach the memory mapping. detach_memory(page->virtual_memory(), page->physical_memory()); // Add to list of detached pages _detached.insert_last(page); } void ZPageAllocator::destroy_page(ZPage* page) { assert(page->is_detached(), "Invalid page state"); // Free virtual memory { ZLocker locker(&_lock); _virtual.free(page->virtual_memory()); } delete page; } void ZPageAllocator::flush_detached_pages(ZList* list) { ZLocker locker(&_lock); list->transfer(&_detached); } void ZPageAllocator::flush_cache(size_t size) { ZList list; _cache.flush(&list, size); for (ZPage* page = list.remove_first(); page != NULL; page = list.remove_first()) { detach_page(page); } } void ZPageAllocator::check_out_of_memory_during_initialization() { if (!is_init_completed()) { vm_exit_during_initialization("java.lang.OutOfMemoryError", "Java heap too small"); } } ZPage* ZPageAllocator::alloc_page_common_inner(uint8_t type, size_t size, ZAllocationFlags flags) { const size_t max = max_available(flags.no_reserve()); if (max < size) { // Not enough free memory return NULL; } // Try allocating from the page cache ZPage* const cached_page = _cache.alloc_page(type, size); if (cached_page != NULL) { return cached_page; } // Try allocate from the pre-mapped memory ZPage* const pre_mapped_page = _pre_mapped.alloc_page(type, size); if (pre_mapped_page != NULL) { return pre_mapped_page; } // Flush any remaining pre-mapped memory so that // subsequent allocations can use the physical memory. flush_pre_mapped(); // Try ensure that physical memory is available const size_t unused = try_ensure_unused(size, flags.no_reserve()); if (unused < size) { // Flush cache to free up more physical memory flush_cache(size - unused); } // Create new page and allocate physical memory return create_page(type, size); } ZPage* ZPageAllocator::alloc_page_common(uint8_t type, size_t size, ZAllocationFlags flags) { ZPage* const page = alloc_page_common_inner(type, size, flags); if (page == NULL) { // Out of memory return NULL; } // Update used statistics increase_used(size, flags.relocation()); // Send trace event ZTracer::tracer()->report_page_alloc(size, used(), max_available(flags.no_reserve()), _cache.available(), flags); return page; } ZPage* ZPageAllocator::alloc_page_blocking(uint8_t type, size_t size, ZAllocationFlags flags) { // Prepare to block ZPageAllocRequest request(type, size, flags, ZCollectedHeap::heap()->total_collections()); _lock.lock(); // Try non-blocking allocation ZPage* page = alloc_page_common(type, size, flags); if (page == NULL) { // Allocation failed, enqueue request _queue.insert_last(&request); } _lock.unlock(); if (page == NULL) { // Allocation failed ZStatTimer timer(ZCriticalPhaseAllocationStall); // We can only block if VM is fully initialized check_out_of_memory_during_initialization(); do { // Start asynchronous GC ZCollectedHeap::heap()->collect(GCCause::_z_allocation_stall); // Wait for allocation to complete or fail page = request.wait(); } while (page == gc_marker); { // Guard deletion of underlying semaphore. This is a workaround for a // bug in sem_post() in glibc < 2.21, where it's not safe to destroy // the semaphore immediately after returning from sem_wait(). The // reason is that sem_post() can touch the semaphore after a waiting // thread have returned from sem_wait(). To avoid this race we are // forcing the waiting thread to acquire/release the lock held by the // posting thread. https://sourceware.org/bugzilla/show_bug.cgi?id=12674 ZLocker locker(&_lock); } } return page; } ZPage* ZPageAllocator::alloc_page_nonblocking(uint8_t type, size_t size, ZAllocationFlags flags) { ZLocker locker(&_lock); return alloc_page_common(type, size, flags); } ZPage* ZPageAllocator::alloc_page(uint8_t type, size_t size, ZAllocationFlags flags) { ZPage* const page = flags.non_blocking() ? alloc_page_nonblocking(type, size, flags) : alloc_page_blocking(type, size, flags); if (page == NULL) { // Out of memory return NULL; } // Map page if needed if (!page->is_mapped()) { map_page(page); } // Reset page. This updates the page's sequence number and must // be done after page allocation, which potentially blocked in // a safepoint where the global sequence number was updated. page->reset(); // Update allocation statistics. Exclude worker threads to avoid // artificial inflation of the allocation rate due to relocation. if (!flags.worker_thread()) { // Note that there are two allocation rate counters, which have // different purposes and are sampled at different frequencies. const size_t bytes = page->size(); ZStatInc(ZCounterAllocationRate, bytes); ZStatInc(ZStatAllocRate::counter(), bytes); } return page; } void ZPageAllocator::satisfy_alloc_queue() { for (;;) { ZPageAllocRequest* const request = _queue.first(); if (request == NULL) { // Allocation queue is empty return; } ZPage* const page = alloc_page_common(request->type(), request->size(), request->flags()); if (page == NULL) { // Allocation could not be satisfied, give up return; } // Allocation succeeded, dequeue and satisfy request. Note that // the dequeue operation must happen first, since the request // will immediately be deallocated once it has been satisfied. _queue.remove(request); request->satisfy(page); } } void ZPageAllocator::detach_memory(const ZVirtualMemory& vmem, ZPhysicalMemory& pmem) { const uintptr_t addr = vmem.start(); // Unmap physical memory _physical.unmap(pmem, addr); // Free physical memory _physical.free(pmem); // Clear physical mapping pmem.clear(); } void ZPageAllocator::flip_page(ZPage* page) { const ZPhysicalMemory& pmem = page->physical_memory(); const uintptr_t addr = page->start(); // Flip physical mapping _physical.flip(pmem, addr); } void ZPageAllocator::flip_pre_mapped() { if (_pre_mapped.available() == 0) { // Nothing to flip return; } const ZPhysicalMemory& pmem = _pre_mapped.physical_memory(); const ZVirtualMemory& vmem = _pre_mapped.virtual_memory(); // Flip physical mapping _physical.flip(pmem, vmem.start()); } void ZPageAllocator::free_page(ZPage* page, bool reclaimed) { ZLocker locker(&_lock); // Update used statistics decrease_used(page->size(), reclaimed); // Cache page _cache.free_page(page); // Try satisfy blocked allocations satisfy_alloc_queue(); } bool ZPageAllocator::is_alloc_stalled() const { assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint"); return !_queue.is_empty(); } void ZPageAllocator::check_out_of_memory() { ZLocker locker(&_lock); // Fail allocation requests that were enqueued before the // last GC cycle started, otherwise start a new GC cycle. for (ZPageAllocRequest* request = _queue.first(); request != NULL; request = _queue.first()) { if (request->total_collections() == ZCollectedHeap::heap()->total_collections()) { // Start a new GC cycle, keep allocation requests enqueued request->satisfy(gc_marker); return; } // Out of memory, fail allocation request _queue.remove_first(); request->satisfy(NULL); } }