1 /*
   2  * Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "gc/z/zAddress.inline.hpp"
  26 #include "gc/z/zCollectedHeap.hpp"
  27 #include "gc/z/zFuture.inline.hpp"
  28 #include "gc/z/zGlobals.hpp"
  29 #include "gc/z/zLock.inline.hpp"
  30 #include "gc/z/zPage.inline.hpp"
  31 #include "gc/z/zPageAllocator.hpp"
  32 #include "gc/z/zPageCache.inline.hpp"
  33 #include "gc/z/zPreMappedMemory.inline.hpp"
  34 #include "gc/z/zStat.hpp"
  35 #include "gc/z/zTracer.inline.hpp"
  36 #include "runtime/init.hpp"
  37 
  38 static const ZStatCounter       ZCounterAllocationRate("Memory", "Allocation Rate", ZStatUnitBytesPerSecond);
  39 static const ZStatCriticalPhase ZCriticalPhaseAllocationStall("Allocation Stall");
  40 
  41 class ZPageAllocRequest : public StackObj {
  42   friend class ZList<ZPageAllocRequest>;
  43 
  44 private:
  45   const uint8_t                _type;
  46   const size_t                 _size;
  47   const ZAllocationFlags       _flags;
  48   const unsigned int           _total_collections;
  49   ZListNode<ZPageAllocRequest> _node;
  50   ZFuture<ZPage*>              _result;
  51 
  52 public:
  53   ZPageAllocRequest(uint8_t type, size_t size, ZAllocationFlags flags, unsigned int total_collections) :
  54       _type(type),
  55       _size(size),
  56       _flags(flags),
  57       _total_collections(total_collections) {}
  58 
  59   uint8_t type() const {
  60     return _type;
  61   }
  62 
  63   size_t size() const {
  64     return _size;
  65   }
  66 
  67   ZAllocationFlags flags() const {
  68     return _flags;
  69   }
  70 
  71   unsigned int total_collections() const {
  72     return _total_collections;
  73   }
  74 
  75   ZPage* wait() {
  76     return _result.get();
  77   }
  78 
  79   void satisfy(ZPage* page) {
  80     _result.set(page);
  81   }
  82 };
  83 
  84 ZPage* const ZPageAllocator::gc_marker = (ZPage*)-1;
  85 
  86 ZPageAllocator::ZPageAllocator(size_t min_capacity, size_t max_capacity, size_t max_reserve) :
  87     _lock(),
  88     _virtual(),
  89     _physical(max_capacity, ZPageSizeMin),
  90     _cache(),
  91     _max_reserve(max_reserve),
  92     _pre_mapped(_virtual, _physical, try_ensure_unused_for_pre_mapped(min_capacity)),
  93     _used_high(0),
  94     _used_low(0),
  95     _used(0),
  96     _allocated(0),
  97     _reclaimed(0),
  98     _queue(),
  99     _detached() {}
 100 
 101 bool ZPageAllocator::is_initialized() const {
 102   return _physical.is_initialized() &&
 103          _virtual.is_initialized() &&
 104          _pre_mapped.is_initialized();
 105 }
 106 
 107 size_t ZPageAllocator::max_capacity() const {
 108   return _physical.max_capacity();
 109 }
 110 
 111 size_t ZPageAllocator::current_max_capacity() const {
 112   return _physical.current_max_capacity();
 113 }
 114 
 115 size_t ZPageAllocator::capacity() const {
 116   return _physical.capacity();
 117 }
 118 
 119 size_t ZPageAllocator::max_reserve() const {
 120   return _max_reserve;
 121 }
 122 
 123 size_t ZPageAllocator::used_high() const {
 124   return _used_high;
 125 }
 126 
 127 size_t ZPageAllocator::used_low() const {
 128   return _used_low;
 129 }
 130 
 131 size_t ZPageAllocator::used() const {
 132   return _used;
 133 }
 134 
 135 size_t ZPageAllocator::allocated() const {
 136   return _allocated;
 137 }
 138 
 139 size_t ZPageAllocator::reclaimed() const {
 140   return _reclaimed > 0 ? (size_t)_reclaimed : 0;
 141 }
 142 
 143 void ZPageAllocator::reset_statistics() {
 144   assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint");
 145   _allocated = 0;
 146   _reclaimed = 0;
 147   _used_high = _used_low = _used;
 148 }
 149 
 150 void ZPageAllocator::increase_used(size_t size, bool relocation) {
 151   if (relocation) {
 152     // Allocating a page for the purpose of relocation has a
 153     // negative contribution to the number of reclaimed bytes.
 154     _reclaimed -= size;
 155   }
 156   _allocated += size;
 157   _used += size;
 158   if (_used > _used_high) {
 159     _used_high = _used;
 160   }
 161 }
 162 
 163 void ZPageAllocator::decrease_used(size_t size, bool reclaimed) {
 164   if (reclaimed) {
 165     // Only pages explicitly released with the reclaimed flag set
 166     // counts as reclaimed bytes. This flag is typically true when
 167     // a worker releases a page after relocation, and is typically
 168     // false when we release a page to undo an allocation.
 169     _reclaimed += size;
 170   }
 171   _used -= size;
 172   if (_used < _used_low) {
 173     _used_low = _used;
 174   }
 175 }
 176 
 177 size_t ZPageAllocator::max_available(bool no_reserve) const {
 178   size_t available = current_max_capacity() - used();
 179 
 180   if (no_reserve) {
 181     // The reserve should not be considered available
 182     available -= MIN2(available, max_reserve());
 183   }
 184 
 185   return available;
 186 }
 187 
 188 size_t ZPageAllocator::try_ensure_unused(size_t size, bool no_reserve) {
 189   // Ensure that we always have space available for the reserve. This
 190   // is needed to avoid losing the reserve because of failure to map
 191   // more memory before reaching max capacity.
 192   _physical.try_ensure_unused_capacity(size + max_reserve());
 193 
 194   size_t unused = _physical.unused_capacity();
 195 
 196   if (no_reserve) {
 197     // The reserve should not be considered unused
 198     unused -= MIN2(unused, max_reserve());
 199   }
 200 
 201   return MIN2(size, unused);
 202 }
 203 
 204 size_t ZPageAllocator::try_ensure_unused_for_pre_mapped(size_t size) {
 205   // This function is called during construction, where the
 206   // physical memory manager might have failed to initialied.
 207   if (!_physical.is_initialized()) {
 208     return 0;
 209   }
 210 
 211   return try_ensure_unused(size, true /* no_reserve */);
 212 }
 213 
 214 ZPage* ZPageAllocator::create_page(uint8_t type, size_t size) {
 215   // Allocate physical memory
 216   const ZPhysicalMemory pmem = _physical.alloc(size);
 217   if (pmem.is_null()) {
 218     // Out of memory
 219     return NULL;
 220   }
 221 
 222   // Allocate virtual memory
 223   const ZVirtualMemory vmem = _virtual.alloc(size);
 224   if (vmem.is_null()) {
 225     // Out of address space
 226     _physical.free(pmem);
 227     return NULL;
 228   }
 229 
 230   // Allocate page
 231   return new ZPage(type, vmem, pmem);
 232 }
 233 
 234 void ZPageAllocator::flush_pre_mapped() {
 235   if (_pre_mapped.available() == 0) {
 236     return;
 237   }
 238 
 239   // Detach the memory mapping.
 240   detach_memory(_pre_mapped.virtual_memory(), _pre_mapped.physical_memory());
 241 
 242   _pre_mapped.clear();
 243 }
 244 
 245 void ZPageAllocator::map_page(ZPage* page) {
 246   // Map physical memory
 247   _physical.map(page->physical_memory(), page->start());
 248 }
 249 
 250 void ZPageAllocator::detach_page(ZPage* page) {
 251   // Detach the memory mapping.
 252   detach_memory(page->virtual_memory(), page->physical_memory());
 253 
 254   // Add to list of detached pages
 255   _detached.insert_last(page);
 256 }
 257 
 258 void ZPageAllocator::destroy_page(ZPage* page) {
 259   assert(page->is_detached(), "Invalid page state");
 260 
 261   // Free virtual memory
 262   {
 263     ZLocker<ZLock> locker(&_lock);
 264     _virtual.free(page->virtual_memory());
 265   }
 266 
 267   delete page;
 268 }
 269 
 270 void ZPageAllocator::flush_detached_pages(ZList<ZPage>* list) {
 271   ZLocker<ZLock> locker(&_lock);
 272   list->transfer(&_detached);
 273 }
 274 
 275 void ZPageAllocator::flush_cache(size_t size) {
 276   ZList<ZPage> list;
 277 
 278   _cache.flush(&list, size);
 279 
 280   for (ZPage* page = list.remove_first(); page != NULL; page = list.remove_first()) {
 281     detach_page(page);
 282   }
 283 }
 284 
 285 void ZPageAllocator::check_out_of_memory_during_initialization() {
 286   if (!is_init_completed()) {
 287     vm_exit_during_initialization("java.lang.OutOfMemoryError", "Java heap too small");
 288   }
 289 }
 290 
 291 ZPage* ZPageAllocator::alloc_page_common_inner(uint8_t type, size_t size, ZAllocationFlags flags) {
 292   const size_t max = max_available(flags.no_reserve());
 293   if (max < size) {
 294     // Not enough free memory
 295     return NULL;
 296   }
 297 
 298   // Try allocating from the page cache
 299   ZPage* const cached_page = _cache.alloc_page(type, size);
 300   if (cached_page != NULL) {
 301     return cached_page;
 302   }
 303 
 304   // Try allocate from the pre-mapped memory
 305   ZPage* const pre_mapped_page = _pre_mapped.alloc_page(type, size);
 306   if (pre_mapped_page != NULL) {
 307     return pre_mapped_page;
 308   }
 309 
 310   // Flush any remaining pre-mapped memory so that
 311   // subsequent allocations can use the physical memory.
 312   flush_pre_mapped();
 313 
 314   // Try ensure that physical memory is available
 315   const size_t unused = try_ensure_unused(size, flags.no_reserve());
 316   if (unused < size) {
 317     // Flush cache to free up more physical memory
 318     flush_cache(size - unused);
 319   }
 320 
 321   // Create new page and allocate physical memory
 322   return create_page(type, size);
 323 }
 324 
 325 ZPage* ZPageAllocator::alloc_page_common(uint8_t type, size_t size, ZAllocationFlags flags) {
 326   ZPage* const page = alloc_page_common_inner(type, size, flags);
 327   if (page == NULL) {
 328     // Out of memory
 329     return NULL;
 330   }
 331 
 332   // Update used statistics
 333   increase_used(size, flags.relocation());
 334 
 335   // Send trace event
 336   ZTracer::tracer()->report_page_alloc(size, used(), max_available(flags.no_reserve()), _cache.available(), flags);
 337 
 338   return page;
 339 }
 340 
 341 ZPage* ZPageAllocator::alloc_page_blocking(uint8_t type, size_t size, ZAllocationFlags flags) {
 342   // Prepare to block
 343   ZPageAllocRequest request(type, size, flags, ZCollectedHeap::heap()->total_collections());
 344 
 345   _lock.lock();
 346 
 347   // Try non-blocking allocation
 348   ZPage* page = alloc_page_common(type, size, flags);
 349   if (page == NULL) {
 350     // Allocation failed, enqueue request
 351     _queue.insert_last(&request);
 352   }
 353 
 354   _lock.unlock();
 355 
 356   if (page == NULL) {
 357     // Allocation failed
 358     ZStatTimer timer(ZCriticalPhaseAllocationStall);
 359 
 360     // We can only block if VM is fully initialized
 361     check_out_of_memory_during_initialization();
 362 
 363     do {
 364       // Start asynchronous GC
 365       ZCollectedHeap::heap()->collect(GCCause::_z_allocation_stall);
 366 
 367       // Wait for allocation to complete or fail
 368       page = request.wait();
 369     } while (page == gc_marker);
 370 
 371     {
 372       // Guard deletion of underlying semaphore. This is a workaround for a
 373       // bug in sem_post() in glibc < 2.21, where it's not safe to destroy
 374       // the semaphore immediately after returning from sem_wait(). The
 375       // reason is that sem_post() can touch the semaphore after a waiting
 376       // thread have returned from sem_wait(). To avoid this race we are
 377       // forcing the waiting thread to acquire/release the lock held by the
 378       // posting thread. https://sourceware.org/bugzilla/show_bug.cgi?id=12674
 379       ZLocker<ZLock> locker(&_lock);
 380     }
 381   }
 382 
 383   return page;
 384 }
 385 
 386 ZPage* ZPageAllocator::alloc_page_nonblocking(uint8_t type, size_t size, ZAllocationFlags flags) {
 387   ZLocker<ZLock> locker(&_lock);
 388   return alloc_page_common(type, size, flags);
 389 }
 390 
 391 ZPage* ZPageAllocator::alloc_page(uint8_t type, size_t size, ZAllocationFlags flags) {
 392   ZPage* const page = flags.non_blocking()
 393                       ? alloc_page_nonblocking(type, size, flags)
 394                       : alloc_page_blocking(type, size, flags);
 395   if (page == NULL) {
 396     // Out of memory
 397     return NULL;
 398   }
 399 
 400   // Map page if needed
 401   if (!page->is_mapped()) {
 402     map_page(page);
 403   }
 404 
 405   // Reset page. This updates the page's sequence number and must
 406   // be done after page allocation, which potentially blocked in
 407   // a safepoint where the global sequence number was updated.
 408   page->reset();
 409 
 410   // Update allocation statistics. Exclude worker threads to avoid
 411   // artificial inflation of the allocation rate due to relocation.
 412   if (!flags.worker_thread()) {
 413     // Note that there are two allocation rate counters, which have
 414     // different purposes and are sampled at different frequencies.
 415     const size_t bytes = page->size();
 416     ZStatInc(ZCounterAllocationRate, bytes);
 417     ZStatInc(ZStatAllocRate::counter(), bytes);
 418   }
 419 
 420   return page;
 421 }
 422 
 423 void ZPageAllocator::satisfy_alloc_queue() {
 424   for (;;) {
 425     ZPageAllocRequest* const request = _queue.first();
 426     if (request == NULL) {
 427       // Allocation queue is empty
 428       return;
 429     }
 430 
 431     ZPage* const page = alloc_page_common(request->type(), request->size(), request->flags());
 432     if (page == NULL) {
 433       // Allocation could not be satisfied, give up
 434       return;
 435     }
 436 
 437     // Allocation succeeded, dequeue and satisfy request. Note that
 438     // the dequeue operation must happen first, since the request
 439     // will immediately be deallocated once it has been satisfied.
 440     _queue.remove(request);
 441     request->satisfy(page);
 442   }
 443 }
 444 
 445 void ZPageAllocator::detach_memory(const ZVirtualMemory& vmem, ZPhysicalMemory& pmem) {
 446   const uintptr_t addr = vmem.start();
 447 
 448   // Unmap physical memory
 449   _physical.unmap(pmem, addr);
 450 
 451   // Free physical memory
 452   _physical.free(pmem);
 453 
 454   // Clear physical mapping
 455   pmem.clear();
 456 }
 457 
 458 void ZPageAllocator::flip_page(ZPage* page) {
 459   const ZPhysicalMemory& pmem = page->physical_memory();
 460   const uintptr_t addr = page->start();
 461 
 462   // Flip physical mapping
 463   _physical.flip(pmem, addr);
 464 }
 465 
 466 void ZPageAllocator::flip_pre_mapped() {
 467   if (_pre_mapped.available() == 0) {
 468     // Nothing to flip
 469     return;
 470   }
 471 
 472   const ZPhysicalMemory& pmem = _pre_mapped.physical_memory();
 473   const ZVirtualMemory& vmem = _pre_mapped.virtual_memory();
 474 
 475   // Flip physical mapping
 476   _physical.flip(pmem, vmem.start());
 477 }
 478 
 479 void ZPageAllocator::free_page(ZPage* page, bool reclaimed) {
 480   ZLocker<ZLock> locker(&_lock);
 481 
 482   // Update used statistics
 483   decrease_used(page->size(), reclaimed);
 484 
 485   // Cache page
 486   _cache.free_page(page);
 487 
 488   // Try satisfy blocked allocations
 489   satisfy_alloc_queue();
 490 }
 491 
 492 bool ZPageAllocator::is_alloc_stalled() const {
 493   assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint");
 494   return !_queue.is_empty();
 495 }
 496 
 497 void ZPageAllocator::check_out_of_memory() {
 498   ZLocker<ZLock> locker(&_lock);
 499 
 500   // Fail allocation requests that were enqueued before the
 501   // last GC cycle started, otherwise start a new GC cycle.
 502   for (ZPageAllocRequest* request = _queue.first(); request != NULL; request = _queue.first()) {
 503     if (request->total_collections() == ZCollectedHeap::heap()->total_collections()) {
 504       // Start a new GC cycle, keep allocation requests enqueued
 505       request->satisfy(gc_marker);
 506       return;
 507     }
 508 
 509     // Out of memory, fail allocation request
 510     _queue.remove_first();
 511     request->satisfy(NULL);
 512   }
 513 }