1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvmtifiles/jvmtiEnv.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logConfiguration.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/metaspaceShared.hpp"
  50 #include "memory/oopFactory.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "memory/universe.hpp"
  53 #include "oops/access.inline.hpp"
  54 #include "oops/instanceKlass.hpp"
  55 #include "oops/objArrayOop.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/symbol.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvm_misc.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/biasedLocking.hpp"
  66 #include "runtime/fieldDescriptor.inline.hpp"
  67 #include "runtime/flags/jvmFlagConstraintList.hpp"
  68 #include "runtime/flags/jvmFlagRangeList.hpp"
  69 #include "runtime/flags/jvmFlagWriteableList.hpp"
  70 #include "runtime/deoptimization.hpp"
  71 #include "runtime/frame.inline.hpp"
  72 #include "runtime/handles.inline.hpp"
  73 #include "runtime/handshake.hpp"
  74 #include "runtime/init.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/java.hpp"
  77 #include "runtime/javaCalls.hpp"
  78 #include "runtime/jniHandles.inline.hpp"
  79 #include "runtime/jniPeriodicChecker.hpp"
  80 #include "runtime/memprofiler.hpp"
  81 #include "runtime/mutexLocker.hpp"
  82 #include "runtime/objectMonitor.hpp"
  83 #include "runtime/orderAccess.hpp"
  84 #include "runtime/osThread.hpp"
  85 #include "runtime/prefetch.inline.hpp"
  86 #include "runtime/safepoint.hpp"
  87 #include "runtime/safepointMechanism.inline.hpp"
  88 #include "runtime/safepointVerifiers.hpp"
  89 #include "runtime/sharedRuntime.hpp"
  90 #include "runtime/statSampler.hpp"
  91 #include "runtime/stubRoutines.hpp"
  92 #include "runtime/sweeper.hpp"
  93 #include "runtime/task.hpp"
  94 #include "runtime/thread.inline.hpp"
  95 #include "runtime/threadCritical.hpp"
  96 #include "runtime/threadSMR.inline.hpp"
  97 #include "runtime/threadStatisticalInfo.hpp"
  98 #include "runtime/timer.hpp"
  99 #include "runtime/timerTrace.hpp"
 100 #include "runtime/vframe.inline.hpp"
 101 #include "runtime/vframeArray.hpp"
 102 #include "runtime/vframe_hp.hpp"
 103 #include "runtime/vmThread.hpp"
 104 #include "runtime/vmOperations.hpp"
 105 #include "runtime/vm_version.hpp"
 106 #include "services/attachListener.hpp"
 107 #include "services/management.hpp"
 108 #include "services/memTracker.hpp"
 109 #include "services/threadService.hpp"
 110 #include "utilities/align.hpp"
 111 #include "utilities/copy.hpp"
 112 #include "utilities/defaultStream.hpp"
 113 #include "utilities/dtrace.hpp"
 114 #include "utilities/events.hpp"
 115 #include "utilities/macros.hpp"
 116 #include "utilities/preserveException.hpp"
 117 #include "utilities/singleWriterSynchronizer.hpp"
 118 #include "utilities/vmError.hpp"
 119 #if INCLUDE_JVMCI
 120 #include "jvmci/jvmciCompiler.hpp"
 121 #include "jvmci/jvmciRuntime.hpp"
 122 #include "logging/logHandle.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const int alignment = markOopDesc::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_self_raw_id(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // This initial value ==> never claimed.
 242   _oops_do_parity = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   debug_only(_allow_allocation_count = 0;)
 254   NOT_PRODUCT(_allow_safepoint_count = 0;)
 255   NOT_PRODUCT(_skip_gcalot = false;)
 256   _jvmti_env_iteration_count = 0;
 257   set_allocated_bytes(0);
 258   _vm_operation_started_count = 0;
 259   _vm_operation_completed_count = 0;
 260   _current_pending_monitor = NULL;
 261   _current_pending_monitor_is_from_java = true;
 262   _current_waiting_monitor = NULL;
 263   _num_nested_signal = 0;
 264   omFreeList = NULL;
 265   omFreeCount = 0;
 266   omFreeProvision = 32;
 267   omInUseList = NULL;
 268   omInUseCount = 0;
 269 
 270 #ifdef ASSERT
 271   _visited_for_critical_count = false;
 272 #endif
 273 
 274   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 275                          Monitor::_safepoint_check_sometimes);
 276   _suspend_flags = 0;
 277 
 278   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 279   _hashStateX = os::random();
 280   _hashStateY = 842502087;
 281   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 282   _hashStateW = 273326509;
 283 
 284   _OnTrap   = 0;
 285   _Stalled  = 0;
 286   _TypeTag  = 0x2BAD;
 287 
 288   // Many of the following fields are effectively final - immutable
 289   // Note that nascent threads can't use the Native Monitor-Mutex
 290   // construct until the _MutexEvent is initialized ...
 291   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 292   // we might instead use a stack of ParkEvents that we could provision on-demand.
 293   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 294   // and ::Release()
 295   _ParkEvent   = ParkEvent::Allocate(this);
 296   _SleepEvent  = ParkEvent::Allocate(this);
 297   _MuxEvent    = ParkEvent::Allocate(this);
 298 
 299 #ifdef CHECK_UNHANDLED_OOPS
 300   if (CheckUnhandledOops) {
 301     _unhandled_oops = new UnhandledOops(this);
 302   }
 303 #endif // CHECK_UNHANDLED_OOPS
 304 #ifdef ASSERT
 305   if (UseBiasedLocking) {
 306     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 307     assert(this == _real_malloc_address ||
 308            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 309            "bug in forced alignment of thread objects");
 310   }
 311 #endif // ASSERT
 312 
 313   // Notify the barrier set that a thread is being created. The initial
 314   // thread is created before the barrier set is available.  The call to
 315   // BarrierSet::on_thread_create() for this thread is therefore deferred
 316   // to BarrierSet::set_barrier_set().
 317   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 318   if (barrier_set != NULL) {
 319     barrier_set->on_thread_create(this);
 320   } else {
 321     // Only the main thread should be created before the barrier set
 322     // and that happens just before Thread::current is set. No other thread
 323     // can attach as the VM is not created yet, so they can't execute this code.
 324     // If the main thread creates other threads before the barrier set that is an error.
 325     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 326   }
 327 }
 328 
 329 void Thread::initialize_thread_current() {
 330 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 331   assert(_thr_current == NULL, "Thread::current already initialized");
 332   _thr_current = this;
 333 #endif
 334   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 335   ThreadLocalStorage::set_thread(this);
 336   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 337 }
 338 
 339 void Thread::clear_thread_current() {
 340   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 341 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 342   _thr_current = NULL;
 343 #endif
 344   ThreadLocalStorage::set_thread(NULL);
 345 }
 346 
 347 void Thread::record_stack_base_and_size() {
 348   // Note: at this point, Thread object is not yet initialized. Do not rely on
 349   // any members being initialized. Do not rely on Thread::current() being set.
 350   // If possible, refrain from doing anything which may crash or assert since
 351   // quite probably those crash dumps will be useless.
 352   set_stack_base(os::current_stack_base());
 353   set_stack_size(os::current_stack_size());
 354 
 355 #ifdef SOLARIS
 356   if (os::is_primordial_thread()) {
 357     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 358   }
 359 #endif
 360 
 361   // Set stack limits after thread is initialized.
 362   if (is_Java_thread()) {
 363     ((JavaThread*) this)->set_stack_overflow_limit();
 364     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 365   }
 366 }
 367 
 368 #if INCLUDE_NMT
 369 void Thread::register_thread_stack_with_NMT() {
 370   MemTracker::record_thread_stack(stack_end(), stack_size());
 371 }
 372 #endif // INCLUDE_NMT
 373 
 374 void Thread::call_run() {
 375   DEBUG_ONLY(_run_state = CALL_RUN;)
 376 
 377   // At this point, Thread object should be fully initialized and
 378   // Thread::current() should be set.
 379 
 380   assert(Thread::current_or_null() != NULL, "current thread is unset");
 381   assert(Thread::current_or_null() == this, "current thread is wrong");
 382 
 383   // Perform common initialization actions
 384 
 385   register_thread_stack_with_NMT();
 386 
 387   JFR_ONLY(Jfr::on_thread_start(this);)
 388 
 389   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 390     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 391     os::current_thread_id(), p2i(stack_base() - stack_size()),
 392     p2i(stack_base()), stack_size()/1024);
 393 
 394   // Perform <ChildClass> initialization actions
 395   DEBUG_ONLY(_run_state = PRE_RUN;)
 396   this->pre_run();
 397 
 398   // Invoke <ChildClass>::run()
 399   DEBUG_ONLY(_run_state = RUN;)
 400   this->run();
 401   // Returned from <ChildClass>::run(). Thread finished.
 402 
 403   // Perform common tear-down actions
 404 
 405   assert(Thread::current_or_null() != NULL, "current thread is unset");
 406   assert(Thread::current_or_null() == this, "current thread is wrong");
 407 
 408   // Perform <ChildClass> tear-down actions
 409   DEBUG_ONLY(_run_state = POST_RUN;)
 410   this->post_run();
 411 
 412   // Note: at this point the thread object may already have deleted itself,
 413   // so from here on do not dereference *this*. Not all thread types currently
 414   // delete themselves when they terminate. But no thread should ever be deleted
 415   // asynchronously with respect to its termination - that is what _run_state can
 416   // be used to check.
 417 
 418   assert(Thread::current_or_null() == NULL, "current thread still present");
 419 }
 420 
 421 Thread::~Thread() {
 422 
 423   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 424   // get started due to errors etc. Any active thread should at least reach post_run
 425   // before it is deleted (usually in post_run()).
 426   assert(_run_state == PRE_CALL_RUN ||
 427          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 428          "_run_state=%d", (int)_run_state);
 429 
 430   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 431   // set might not be available if we encountered errors during bootstrapping.
 432   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 433   if (barrier_set != NULL) {
 434     barrier_set->on_thread_destroy(this);
 435   }
 436 
 437   // stack_base can be NULL if the thread is never started or exited before
 438   // record_stack_base_and_size called. Although, we would like to ensure
 439   // that all started threads do call record_stack_base_and_size(), there is
 440   // not proper way to enforce that.
 441 #if INCLUDE_NMT
 442   if (_stack_base != NULL) {
 443     MemTracker::release_thread_stack(stack_end(), stack_size());
 444 #ifdef ASSERT
 445     set_stack_base(NULL);
 446 #endif
 447   }
 448 #endif // INCLUDE_NMT
 449 
 450   // deallocate data structures
 451   delete resource_area();
 452   // since the handle marks are using the handle area, we have to deallocated the root
 453   // handle mark before deallocating the thread's handle area,
 454   assert(last_handle_mark() != NULL, "check we have an element");
 455   delete last_handle_mark();
 456   assert(last_handle_mark() == NULL, "check we have reached the end");
 457 
 458   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 459   // We NULL out the fields for good hygiene.
 460   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 461   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 462   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 463 
 464   delete handle_area();
 465   delete metadata_handles();
 466 
 467   // SR_handler uses this as a termination indicator -
 468   // needs to happen before os::free_thread()
 469   delete _SR_lock;
 470   _SR_lock = NULL;
 471 
 472   // osthread() can be NULL, if creation of thread failed.
 473   if (osthread() != NULL) os::free_thread(osthread());
 474 
 475   // Clear Thread::current if thread is deleting itself and it has not
 476   // already been done. This must be done before the memory is deallocated.
 477   // Needed to ensure JNI correctly detects non-attached threads.
 478   if (this == Thread::current_or_null()) {
 479     Thread::clear_thread_current();
 480   }
 481 
 482   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 483 }
 484 
 485 #ifdef ASSERT
 486 // A JavaThread is considered "dangling" if it is not the current
 487 // thread, has been added the Threads list, the system is not at a
 488 // safepoint and the Thread is not "protected".
 489 //
 490 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 491   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 492          !((JavaThread *) thread)->on_thread_list() ||
 493          SafepointSynchronize::is_at_safepoint() ||
 494          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 495          "possibility of dangling Thread pointer");
 496 }
 497 #endif
 498 
 499 ThreadPriority Thread::get_priority(const Thread* const thread) {
 500   ThreadPriority priority;
 501   // Can return an error!
 502   (void)os::get_priority(thread, priority);
 503   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 504   return priority;
 505 }
 506 
 507 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 508   debug_only(check_for_dangling_thread_pointer(thread);)
 509   // Can return an error!
 510   (void)os::set_priority(thread, priority);
 511 }
 512 
 513 
 514 void Thread::start(Thread* thread) {
 515   // Start is different from resume in that its safety is guaranteed by context or
 516   // being called from a Java method synchronized on the Thread object.
 517   if (!DisableStartThread) {
 518     if (thread->is_Java_thread()) {
 519       // Initialize the thread state to RUNNABLE before starting this thread.
 520       // Can not set it after the thread started because we do not know the
 521       // exact thread state at that time. It could be in MONITOR_WAIT or
 522       // in SLEEPING or some other state.
 523       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 524                                           java_lang_Thread::RUNNABLE);
 525     }
 526     os::start_thread(thread);
 527   }
 528 }
 529 
 530 // Enqueue a VM_Operation to do the job for us - sometime later
 531 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 532   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 533   VMThread::execute(vm_stop);
 534 }
 535 
 536 
 537 // Check if an external suspend request has completed (or has been
 538 // cancelled). Returns true if the thread is externally suspended and
 539 // false otherwise.
 540 //
 541 // The bits parameter returns information about the code path through
 542 // the routine. Useful for debugging:
 543 //
 544 // set in is_ext_suspend_completed():
 545 // 0x00000001 - routine was entered
 546 // 0x00000010 - routine return false at end
 547 // 0x00000100 - thread exited (return false)
 548 // 0x00000200 - suspend request cancelled (return false)
 549 // 0x00000400 - thread suspended (return true)
 550 // 0x00001000 - thread is in a suspend equivalent state (return true)
 551 // 0x00002000 - thread is native and walkable (return true)
 552 // 0x00004000 - thread is native_trans and walkable (needed retry)
 553 //
 554 // set in wait_for_ext_suspend_completion():
 555 // 0x00010000 - routine was entered
 556 // 0x00020000 - suspend request cancelled before loop (return false)
 557 // 0x00040000 - thread suspended before loop (return true)
 558 // 0x00080000 - suspend request cancelled in loop (return false)
 559 // 0x00100000 - thread suspended in loop (return true)
 560 // 0x00200000 - suspend not completed during retry loop (return false)
 561 
 562 // Helper class for tracing suspend wait debug bits.
 563 //
 564 // 0x00000100 indicates that the target thread exited before it could
 565 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 566 // 0x00080000 each indicate a cancelled suspend request so they don't
 567 // count as wait failures either.
 568 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 569 
 570 class TraceSuspendDebugBits : public StackObj {
 571  private:
 572   JavaThread * jt;
 573   bool         is_wait;
 574   bool         called_by_wait;  // meaningful when !is_wait
 575   uint32_t *   bits;
 576 
 577  public:
 578   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 579                         uint32_t *_bits) {
 580     jt             = _jt;
 581     is_wait        = _is_wait;
 582     called_by_wait = _called_by_wait;
 583     bits           = _bits;
 584   }
 585 
 586   ~TraceSuspendDebugBits() {
 587     if (!is_wait) {
 588 #if 1
 589       // By default, don't trace bits for is_ext_suspend_completed() calls.
 590       // That trace is very chatty.
 591       return;
 592 #else
 593       if (!called_by_wait) {
 594         // If tracing for is_ext_suspend_completed() is enabled, then only
 595         // trace calls to it from wait_for_ext_suspend_completion()
 596         return;
 597       }
 598 #endif
 599     }
 600 
 601     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 602       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 603         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 604         ResourceMark rm;
 605 
 606         tty->print_cr(
 607                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 608                       jt->get_thread_name(), *bits);
 609 
 610         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 611       }
 612     }
 613   }
 614 };
 615 #undef DEBUG_FALSE_BITS
 616 
 617 
 618 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 619                                           uint32_t *bits) {
 620   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 621 
 622   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 623   bool do_trans_retry;           // flag to force the retry
 624 
 625   *bits |= 0x00000001;
 626 
 627   do {
 628     do_trans_retry = false;
 629 
 630     if (is_exiting()) {
 631       // Thread is in the process of exiting. This is always checked
 632       // first to reduce the risk of dereferencing a freed JavaThread.
 633       *bits |= 0x00000100;
 634       return false;
 635     }
 636 
 637     if (!is_external_suspend()) {
 638       // Suspend request is cancelled. This is always checked before
 639       // is_ext_suspended() to reduce the risk of a rogue resume
 640       // confusing the thread that made the suspend request.
 641       *bits |= 0x00000200;
 642       return false;
 643     }
 644 
 645     if (is_ext_suspended()) {
 646       // thread is suspended
 647       *bits |= 0x00000400;
 648       return true;
 649     }
 650 
 651     // Now that we no longer do hard suspends of threads running
 652     // native code, the target thread can be changing thread state
 653     // while we are in this routine:
 654     //
 655     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 656     //
 657     // We save a copy of the thread state as observed at this moment
 658     // and make our decision about suspend completeness based on the
 659     // copy. This closes the race where the thread state is seen as
 660     // _thread_in_native_trans in the if-thread_blocked check, but is
 661     // seen as _thread_blocked in if-thread_in_native_trans check.
 662     JavaThreadState save_state = thread_state();
 663 
 664     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 665       // If the thread's state is _thread_blocked and this blocking
 666       // condition is known to be equivalent to a suspend, then we can
 667       // consider the thread to be externally suspended. This means that
 668       // the code that sets _thread_blocked has been modified to do
 669       // self-suspension if the blocking condition releases. We also
 670       // used to check for CONDVAR_WAIT here, but that is now covered by
 671       // the _thread_blocked with self-suspension check.
 672       //
 673       // Return true since we wouldn't be here unless there was still an
 674       // external suspend request.
 675       *bits |= 0x00001000;
 676       return true;
 677     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 678       // Threads running native code will self-suspend on native==>VM/Java
 679       // transitions. If its stack is walkable (should always be the case
 680       // unless this function is called before the actual java_suspend()
 681       // call), then the wait is done.
 682       *bits |= 0x00002000;
 683       return true;
 684     } else if (!called_by_wait && !did_trans_retry &&
 685                save_state == _thread_in_native_trans &&
 686                frame_anchor()->walkable()) {
 687       // The thread is transitioning from thread_in_native to another
 688       // thread state. check_safepoint_and_suspend_for_native_trans()
 689       // will force the thread to self-suspend. If it hasn't gotten
 690       // there yet we may have caught the thread in-between the native
 691       // code check above and the self-suspend. Lucky us. If we were
 692       // called by wait_for_ext_suspend_completion(), then it
 693       // will be doing the retries so we don't have to.
 694       //
 695       // Since we use the saved thread state in the if-statement above,
 696       // there is a chance that the thread has already transitioned to
 697       // _thread_blocked by the time we get here. In that case, we will
 698       // make a single unnecessary pass through the logic below. This
 699       // doesn't hurt anything since we still do the trans retry.
 700 
 701       *bits |= 0x00004000;
 702 
 703       // Once the thread leaves thread_in_native_trans for another
 704       // thread state, we break out of this retry loop. We shouldn't
 705       // need this flag to prevent us from getting back here, but
 706       // sometimes paranoia is good.
 707       did_trans_retry = true;
 708 
 709       // We wait for the thread to transition to a more usable state.
 710       for (int i = 1; i <= SuspendRetryCount; i++) {
 711         // We used to do an "os::yield_all(i)" call here with the intention
 712         // that yielding would increase on each retry. However, the parameter
 713         // is ignored on Linux which means the yield didn't scale up. Waiting
 714         // on the SR_lock below provides a much more predictable scale up for
 715         // the delay. It also provides a simple/direct point to check for any
 716         // safepoint requests from the VMThread
 717 
 718         // temporarily drops SR_lock while doing wait with safepoint check
 719         // (if we're a JavaThread - the WatcherThread can also call this)
 720         // and increase delay with each retry
 721         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 722 
 723         // check the actual thread state instead of what we saved above
 724         if (thread_state() != _thread_in_native_trans) {
 725           // the thread has transitioned to another thread state so
 726           // try all the checks (except this one) one more time.
 727           do_trans_retry = true;
 728           break;
 729         }
 730       } // end retry loop
 731 
 732 
 733     }
 734   } while (do_trans_retry);
 735 
 736   *bits |= 0x00000010;
 737   return false;
 738 }
 739 
 740 // Wait for an external suspend request to complete (or be cancelled).
 741 // Returns true if the thread is externally suspended and false otherwise.
 742 //
 743 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 744                                                  uint32_t *bits) {
 745   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 746                              false /* !called_by_wait */, bits);
 747 
 748   // local flag copies to minimize SR_lock hold time
 749   bool is_suspended;
 750   bool pending;
 751   uint32_t reset_bits;
 752 
 753   // set a marker so is_ext_suspend_completed() knows we are the caller
 754   *bits |= 0x00010000;
 755 
 756   // We use reset_bits to reinitialize the bits value at the top of
 757   // each retry loop. This allows the caller to make use of any
 758   // unused bits for their own marking purposes.
 759   reset_bits = *bits;
 760 
 761   {
 762     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 763     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 764                                             delay, bits);
 765     pending = is_external_suspend();
 766   }
 767   // must release SR_lock to allow suspension to complete
 768 
 769   if (!pending) {
 770     // A cancelled suspend request is the only false return from
 771     // is_ext_suspend_completed() that keeps us from entering the
 772     // retry loop.
 773     *bits |= 0x00020000;
 774     return false;
 775   }
 776 
 777   if (is_suspended) {
 778     *bits |= 0x00040000;
 779     return true;
 780   }
 781 
 782   for (int i = 1; i <= retries; i++) {
 783     *bits = reset_bits;  // reinit to only track last retry
 784 
 785     // We used to do an "os::yield_all(i)" call here with the intention
 786     // that yielding would increase on each retry. However, the parameter
 787     // is ignored on Linux which means the yield didn't scale up. Waiting
 788     // on the SR_lock below provides a much more predictable scale up for
 789     // the delay. It also provides a simple/direct point to check for any
 790     // safepoint requests from the VMThread
 791 
 792     {
 793       MutexLocker ml(SR_lock());
 794       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 795       // can also call this)  and increase delay with each retry
 796       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 797 
 798       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 799                                               delay, bits);
 800 
 801       // It is possible for the external suspend request to be cancelled
 802       // (by a resume) before the actual suspend operation is completed.
 803       // Refresh our local copy to see if we still need to wait.
 804       pending = is_external_suspend();
 805     }
 806 
 807     if (!pending) {
 808       // A cancelled suspend request is the only false return from
 809       // is_ext_suspend_completed() that keeps us from staying in the
 810       // retry loop.
 811       *bits |= 0x00080000;
 812       return false;
 813     }
 814 
 815     if (is_suspended) {
 816       *bits |= 0x00100000;
 817       return true;
 818     }
 819   } // end retry loop
 820 
 821   // thread did not suspend after all our retries
 822   *bits |= 0x00200000;
 823   return false;
 824 }
 825 
 826 // Called from API entry points which perform stack walking. If the
 827 // associated JavaThread is the current thread, then wait_for_suspend
 828 // is not used. Otherwise, it determines if we should wait for the
 829 // "other" thread to complete external suspension. (NOTE: in future
 830 // releases the suspension mechanism should be reimplemented so this
 831 // is not necessary.)
 832 //
 833 bool
 834 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 835   if (this != JavaThread::current()) {
 836     // "other" threads require special handling.
 837     if (wait_for_suspend) {
 838       // We are allowed to wait for the external suspend to complete
 839       // so give the other thread a chance to get suspended.
 840       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 841                                            SuspendRetryDelay, bits)) {
 842         // Didn't make it so let the caller know.
 843         return false;
 844       }
 845     }
 846     // We aren't allowed to wait for the external suspend to complete
 847     // so if the other thread isn't externally suspended we need to
 848     // let the caller know.
 849     else if (!is_ext_suspend_completed_with_lock(bits)) {
 850       return false;
 851     }
 852   }
 853 
 854   return true;
 855 }
 856 
 857 #ifndef PRODUCT
 858 void JavaThread::record_jump(address target, address instr, const char* file,
 859                              int line) {
 860 
 861   // This should not need to be atomic as the only way for simultaneous
 862   // updates is via interrupts. Even then this should be rare or non-existent
 863   // and we don't care that much anyway.
 864 
 865   int index = _jmp_ring_index;
 866   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 867   _jmp_ring[index]._target = (intptr_t) target;
 868   _jmp_ring[index]._instruction = (intptr_t) instr;
 869   _jmp_ring[index]._file = file;
 870   _jmp_ring[index]._line = line;
 871 }
 872 #endif // PRODUCT
 873 
 874 void Thread::interrupt(Thread* thread) {
 875   debug_only(check_for_dangling_thread_pointer(thread);)
 876   os::interrupt(thread);
 877 }
 878 
 879 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 880   debug_only(check_for_dangling_thread_pointer(thread);)
 881   // Note:  If clear_interrupted==false, this simply fetches and
 882   // returns the value of the field osthread()->interrupted().
 883   return os::is_interrupted(thread, clear_interrupted);
 884 }
 885 
 886 
 887 // GC Support
 888 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 889   int thread_parity = _oops_do_parity;
 890   if (thread_parity != strong_roots_parity) {
 891     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 892     if (res == thread_parity) {
 893       return true;
 894     } else {
 895       guarantee(res == strong_roots_parity, "Or else what?");
 896       return false;
 897     }
 898   }
 899   return false;
 900 }
 901 
 902 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 903   active_handles()->oops_do(f);
 904   // Do oop for ThreadShadow
 905   f->do_oop((oop*)&_pending_exception);
 906   handle_area()->oops_do(f);
 907 
 908   // We scan thread local monitor lists here, and the remaining global
 909   // monitors in ObjectSynchronizer::oops_do().
 910   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 911 }
 912 
 913 void Thread::metadata_handles_do(void f(Metadata*)) {
 914   // Only walk the Handles in Thread.
 915   if (metadata_handles() != NULL) {
 916     for (int i = 0; i< metadata_handles()->length(); i++) {
 917       f(metadata_handles()->at(i));
 918     }
 919   }
 920 }
 921 
 922 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 923   // get_priority assumes osthread initialized
 924   if (osthread() != NULL) {
 925     int os_prio;
 926     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 927       st->print("os_prio=%d ", os_prio);
 928     }
 929 
 930     st->print("cpu=%.2fms ",
 931               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 932               );
 933     st->print("elapsed=%.2fs ",
 934               _statistical_info.getElapsedTime() / 1000.0
 935               );
 936     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 937       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 938       st->print("allocated=" SIZE_FORMAT "%s ",
 939                 byte_size_in_proper_unit(allocated_bytes),
 940                 proper_unit_for_byte_size(allocated_bytes)
 941                 );
 942       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 943     }
 944 
 945     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 946     osthread()->print_on(st);
 947   }
 948   ThreadsSMRSupport::print_info_on(this, st);
 949   st->print(" ");
 950   debug_only(if (WizardMode) print_owned_locks_on(st);)
 951 }
 952 
 953 // Thread::print_on_error() is called by fatal error handler. Don't use
 954 // any lock or allocate memory.
 955 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 956   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 957 
 958   if (is_VM_thread())                 { st->print("VMThread"); }
 959   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 960   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 961   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 962   else                                { st->print("Thread"); }
 963 
 964   if (is_Named_thread()) {
 965     st->print(" \"%s\"", name());
 966   }
 967 
 968   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 969             p2i(stack_end()), p2i(stack_base()));
 970 
 971   if (osthread()) {
 972     st->print(" [id=%d]", osthread()->thread_id());
 973   }
 974 
 975   ThreadsSMRSupport::print_info_on(this, st);
 976 }
 977 
 978 void Thread::print_value_on(outputStream* st) const {
 979   if (is_Named_thread()) {
 980     st->print(" \"%s\" ", name());
 981   }
 982   st->print(INTPTR_FORMAT, p2i(this));   // print address
 983 }
 984 
 985 #ifdef ASSERT
 986 void Thread::print_owned_locks_on(outputStream* st) const {
 987   Monitor *cur = _owned_locks;
 988   if (cur == NULL) {
 989     st->print(" (no locks) ");
 990   } else {
 991     st->print_cr(" Locks owned:");
 992     while (cur) {
 993       cur->print_on(st);
 994       cur = cur->next();
 995     }
 996   }
 997 }
 998 
 999 static int ref_use_count  = 0;
1000 
1001 bool Thread::owns_locks_but_compiled_lock() const {
1002   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1003     if (cur != Compile_lock) return true;
1004   }
1005   return false;
1006 }
1007 
1008 
1009 #endif
1010 
1011 #ifndef PRODUCT
1012 
1013 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1014 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1015 // no locks which allow_vm_block's are held
1016 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1017   // Check if current thread is allowed to block at a safepoint
1018   if (!(_allow_safepoint_count == 0)) {
1019     fatal("Possible safepoint reached by thread that does not allow it");
1020   }
1021   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
1022     fatal("LEAF method calling lock?");
1023   }
1024 
1025 #ifdef ASSERT
1026   if (potential_vm_operation && is_Java_thread()
1027       && !Universe::is_bootstrapping()) {
1028     // Make sure we do not hold any locks that the VM thread also uses.
1029     // This could potentially lead to deadlocks
1030     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1031       // Threads_lock is special, since the safepoint synchronization will not start before this is
1032       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1033       // since it is used to transfer control between JavaThreads and the VMThread
1034       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1035       if ((cur->allow_vm_block() &&
1036            cur != Threads_lock &&
1037            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1038            cur != VMOperationRequest_lock &&
1039            cur != VMOperationQueue_lock) ||
1040            cur->rank() == Mutex::special) {
1041         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1042       }
1043     }
1044   }
1045 
1046   if (GCALotAtAllSafepoints) {
1047     // We could enter a safepoint here and thus have a gc
1048     InterfaceSupport::check_gc_alot();
1049   }
1050 #endif
1051 }
1052 #endif
1053 
1054 bool Thread::is_in_stack(address adr) const {
1055   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1056   address end = os::current_stack_pointer();
1057   // Allow non Java threads to call this without stack_base
1058   if (_stack_base == NULL) return true;
1059   if (stack_base() >= adr && adr >= end) return true;
1060 
1061   return false;
1062 }
1063 
1064 bool Thread::is_in_usable_stack(address adr) const {
1065   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1066   size_t usable_stack_size = _stack_size - stack_guard_size;
1067 
1068   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1069 }
1070 
1071 
1072 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1073 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1074 // used for compilation in the future. If that change is made, the need for these methods
1075 // should be revisited, and they should be removed if possible.
1076 
1077 bool Thread::is_lock_owned(address adr) const {
1078   return on_local_stack(adr);
1079 }
1080 
1081 bool Thread::set_as_starting_thread() {
1082   assert(_starting_thread == NULL, "already initialized: "
1083          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1084   // NOTE: this must be called inside the main thread.
1085   DEBUG_ONLY(_starting_thread = this;)
1086   return os::create_main_thread((JavaThread*)this);
1087 }
1088 
1089 static void initialize_class(Symbol* class_name, TRAPS) {
1090   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1091   InstanceKlass::cast(klass)->initialize(CHECK);
1092 }
1093 
1094 
1095 // Creates the initial ThreadGroup
1096 static Handle create_initial_thread_group(TRAPS) {
1097   Handle system_instance = JavaCalls::construct_new_instance(
1098                             SystemDictionary::ThreadGroup_klass(),
1099                             vmSymbols::void_method_signature(),
1100                             CHECK_NH);
1101   Universe::set_system_thread_group(system_instance());
1102 
1103   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1104   Handle main_instance = JavaCalls::construct_new_instance(
1105                             SystemDictionary::ThreadGroup_klass(),
1106                             vmSymbols::threadgroup_string_void_signature(),
1107                             system_instance,
1108                             string,
1109                             CHECK_NH);
1110   return main_instance;
1111 }
1112 
1113 // Creates the initial Thread
1114 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1115                                  TRAPS) {
1116   InstanceKlass* ik = SystemDictionary::Thread_klass();
1117   assert(ik->is_initialized(), "must be");
1118   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1119 
1120   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1121   // constructor calls Thread.current(), which must be set here for the
1122   // initial thread.
1123   java_lang_Thread::set_thread(thread_oop(), thread);
1124   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1125   thread->set_threadObj(thread_oop());
1126 
1127   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1128 
1129   JavaValue result(T_VOID);
1130   JavaCalls::call_special(&result, thread_oop,
1131                           ik,
1132                           vmSymbols::object_initializer_name(),
1133                           vmSymbols::threadgroup_string_void_signature(),
1134                           thread_group,
1135                           string,
1136                           CHECK_NULL);
1137   return thread_oop();
1138 }
1139 
1140 char java_runtime_name[128] = "";
1141 char java_runtime_version[128] = "";
1142 
1143 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1144 static const char* get_java_runtime_name(TRAPS) {
1145   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1146                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1147   fieldDescriptor fd;
1148   bool found = k != NULL &&
1149                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1150                                                         vmSymbols::string_signature(), &fd);
1151   if (found) {
1152     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1153     if (name_oop == NULL) {
1154       return NULL;
1155     }
1156     const char* name = java_lang_String::as_utf8_string(name_oop,
1157                                                         java_runtime_name,
1158                                                         sizeof(java_runtime_name));
1159     return name;
1160   } else {
1161     return NULL;
1162   }
1163 }
1164 
1165 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1166 static const char* get_java_runtime_version(TRAPS) {
1167   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1168                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1169   fieldDescriptor fd;
1170   bool found = k != NULL &&
1171                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1172                                                         vmSymbols::string_signature(), &fd);
1173   if (found) {
1174     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1175     if (name_oop == NULL) {
1176       return NULL;
1177     }
1178     const char* name = java_lang_String::as_utf8_string(name_oop,
1179                                                         java_runtime_version,
1180                                                         sizeof(java_runtime_version));
1181     return name;
1182   } else {
1183     return NULL;
1184   }
1185 }
1186 
1187 // General purpose hook into Java code, run once when the VM is initialized.
1188 // The Java library method itself may be changed independently from the VM.
1189 static void call_postVMInitHook(TRAPS) {
1190   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1191   if (klass != NULL) {
1192     JavaValue result(T_VOID);
1193     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1194                            vmSymbols::void_method_signature(),
1195                            CHECK);
1196   }
1197 }
1198 
1199 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1200                                     bool daemon, TRAPS) {
1201   assert(thread_group.not_null(), "thread group should be specified");
1202   assert(threadObj() == NULL, "should only create Java thread object once");
1203 
1204   InstanceKlass* ik = SystemDictionary::Thread_klass();
1205   assert(ik->is_initialized(), "must be");
1206   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1207 
1208   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1209   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1210   // constructor calls Thread.current(), which must be set here.
1211   java_lang_Thread::set_thread(thread_oop(), this);
1212   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1213   set_threadObj(thread_oop());
1214 
1215   JavaValue result(T_VOID);
1216   if (thread_name != NULL) {
1217     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1218     // Thread gets assigned specified name and null target
1219     JavaCalls::call_special(&result,
1220                             thread_oop,
1221                             ik,
1222                             vmSymbols::object_initializer_name(),
1223                             vmSymbols::threadgroup_string_void_signature(),
1224                             thread_group,
1225                             name,
1226                             THREAD);
1227   } else {
1228     // Thread gets assigned name "Thread-nnn" and null target
1229     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1230     JavaCalls::call_special(&result,
1231                             thread_oop,
1232                             ik,
1233                             vmSymbols::object_initializer_name(),
1234                             vmSymbols::threadgroup_runnable_void_signature(),
1235                             thread_group,
1236                             Handle(),
1237                             THREAD);
1238   }
1239 
1240 
1241   if (daemon) {
1242     java_lang_Thread::set_daemon(thread_oop());
1243   }
1244 
1245   if (HAS_PENDING_EXCEPTION) {
1246     return;
1247   }
1248 
1249   Klass* group =  SystemDictionary::ThreadGroup_klass();
1250   Handle threadObj(THREAD, this->threadObj());
1251 
1252   JavaCalls::call_special(&result,
1253                           thread_group,
1254                           group,
1255                           vmSymbols::add_method_name(),
1256                           vmSymbols::thread_void_signature(),
1257                           threadObj,          // Arg 1
1258                           THREAD);
1259 }
1260 
1261 // List of all NonJavaThreads and safe iteration over that list.
1262 
1263 class NonJavaThread::List {
1264 public:
1265   NonJavaThread* volatile _head;
1266   SingleWriterSynchronizer _protect;
1267 
1268   List() : _head(NULL), _protect() {}
1269 };
1270 
1271 NonJavaThread::List NonJavaThread::_the_list;
1272 
1273 NonJavaThread::Iterator::Iterator() :
1274   _protect_enter(_the_list._protect.enter()),
1275   _current(OrderAccess::load_acquire(&_the_list._head))
1276 {}
1277 
1278 NonJavaThread::Iterator::~Iterator() {
1279   _the_list._protect.exit(_protect_enter);
1280 }
1281 
1282 void NonJavaThread::Iterator::step() {
1283   assert(!end(), "precondition");
1284   _current = OrderAccess::load_acquire(&_current->_next);
1285 }
1286 
1287 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1288   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1289 }
1290 
1291 NonJavaThread::~NonJavaThread() { }
1292 
1293 void NonJavaThread::add_to_the_list() {
1294   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1295   _next = _the_list._head;
1296   OrderAccess::release_store(&_the_list._head, this);
1297 }
1298 
1299 void NonJavaThread::remove_from_the_list() {
1300   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1301   NonJavaThread* volatile* p = &_the_list._head;
1302   for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1303     if (t == this) {
1304       *p = this->_next;
1305       // Wait for any in-progress iterators.  Concurrent synchronize is
1306       // not allowed, so do it while holding the list lock.
1307       _the_list._protect.synchronize();
1308       break;
1309     }
1310   }
1311 }
1312 
1313 void NonJavaThread::pre_run() {
1314   // Initialize BarrierSet-related data before adding to list.
1315   assert(BarrierSet::barrier_set() != NULL, "invariant");
1316   BarrierSet::barrier_set()->on_thread_attach(this);
1317   add_to_the_list();
1318 
1319   // This is slightly odd in that NamedThread is a subclass, but
1320   // in fact name() is defined in Thread
1321   assert(this->name() != NULL, "thread name was not set before it was started");
1322   this->set_native_thread_name(this->name());
1323 }
1324 
1325 void NonJavaThread::post_run() {
1326   JFR_ONLY(Jfr::on_thread_exit(this);)
1327   // Clean up BarrierSet data before removing from list.
1328   BarrierSet::barrier_set()->on_thread_detach(this);
1329   remove_from_the_list();
1330   // Ensure thread-local-storage is cleared before termination.
1331   Thread::clear_thread_current();
1332 }
1333 
1334 // NamedThread --  non-JavaThread subclasses with multiple
1335 // uniquely named instances should derive from this.
1336 NamedThread::NamedThread() :
1337   NonJavaThread(),
1338   _name(NULL),
1339   _processed_thread(NULL),
1340   _gc_id(GCId::undefined())
1341 {}
1342 
1343 NamedThread::~NamedThread() {
1344   if (_name != NULL) {
1345     FREE_C_HEAP_ARRAY(char, _name);
1346     _name = NULL;
1347   }
1348 }
1349 
1350 void NamedThread::set_name(const char* format, ...) {
1351   guarantee(_name == NULL, "Only get to set name once.");
1352   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1353   guarantee(_name != NULL, "alloc failure");
1354   va_list ap;
1355   va_start(ap, format);
1356   jio_vsnprintf(_name, max_name_len, format, ap);
1357   va_end(ap);
1358 }
1359 
1360 void NamedThread::print_on(outputStream* st) const {
1361   st->print("\"%s\" ", name());
1362   Thread::print_on(st);
1363   st->cr();
1364 }
1365 
1366 
1367 // ======= WatcherThread ========
1368 
1369 // The watcher thread exists to simulate timer interrupts.  It should
1370 // be replaced by an abstraction over whatever native support for
1371 // timer interrupts exists on the platform.
1372 
1373 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1374 bool WatcherThread::_startable = false;
1375 volatile bool  WatcherThread::_should_terminate = false;
1376 
1377 WatcherThread::WatcherThread() : NonJavaThread() {
1378   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1379   if (os::create_thread(this, os::watcher_thread)) {
1380     _watcher_thread = this;
1381 
1382     // Set the watcher thread to the highest OS priority which should not be
1383     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1384     // is created. The only normal thread using this priority is the reference
1385     // handler thread, which runs for very short intervals only.
1386     // If the VMThread's priority is not lower than the WatcherThread profiling
1387     // will be inaccurate.
1388     os::set_priority(this, MaxPriority);
1389     if (!DisableStartThread) {
1390       os::start_thread(this);
1391     }
1392   }
1393 }
1394 
1395 int WatcherThread::sleep() const {
1396   // The WatcherThread does not participate in the safepoint protocol
1397   // for the PeriodicTask_lock because it is not a JavaThread.
1398   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1399 
1400   if (_should_terminate) {
1401     // check for termination before we do any housekeeping or wait
1402     return 0;  // we did not sleep.
1403   }
1404 
1405   // remaining will be zero if there are no tasks,
1406   // causing the WatcherThread to sleep until a task is
1407   // enrolled
1408   int remaining = PeriodicTask::time_to_wait();
1409   int time_slept = 0;
1410 
1411   // we expect this to timeout - we only ever get unparked when
1412   // we should terminate or when a new task has been enrolled
1413   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1414 
1415   jlong time_before_loop = os::javaTimeNanos();
1416 
1417   while (true) {
1418     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1419                                             remaining);
1420     jlong now = os::javaTimeNanos();
1421 
1422     if (remaining == 0) {
1423       // if we didn't have any tasks we could have waited for a long time
1424       // consider the time_slept zero and reset time_before_loop
1425       time_slept = 0;
1426       time_before_loop = now;
1427     } else {
1428       // need to recalculate since we might have new tasks in _tasks
1429       time_slept = (int) ((now - time_before_loop) / 1000000);
1430     }
1431 
1432     // Change to task list or spurious wakeup of some kind
1433     if (timedout || _should_terminate) {
1434       break;
1435     }
1436 
1437     remaining = PeriodicTask::time_to_wait();
1438     if (remaining == 0) {
1439       // Last task was just disenrolled so loop around and wait until
1440       // another task gets enrolled
1441       continue;
1442     }
1443 
1444     remaining -= time_slept;
1445     if (remaining <= 0) {
1446       break;
1447     }
1448   }
1449 
1450   return time_slept;
1451 }
1452 
1453 void WatcherThread::run() {
1454   assert(this == watcher_thread(), "just checking");
1455 
1456   this->set_active_handles(JNIHandleBlock::allocate_block());
1457   while (true) {
1458     assert(watcher_thread() == Thread::current(), "thread consistency check");
1459     assert(watcher_thread() == this, "thread consistency check");
1460 
1461     // Calculate how long it'll be until the next PeriodicTask work
1462     // should be done, and sleep that amount of time.
1463     int time_waited = sleep();
1464 
1465     if (VMError::is_error_reported()) {
1466       // A fatal error has happened, the error handler(VMError::report_and_die)
1467       // should abort JVM after creating an error log file. However in some
1468       // rare cases, the error handler itself might deadlock. Here periodically
1469       // check for error reporting timeouts, and if it happens, just proceed to
1470       // abort the VM.
1471 
1472       // This code is in WatcherThread because WatcherThread wakes up
1473       // periodically so the fatal error handler doesn't need to do anything;
1474       // also because the WatcherThread is less likely to crash than other
1475       // threads.
1476 
1477       for (;;) {
1478         // Note: we use naked sleep in this loop because we want to avoid using
1479         // any kind of VM infrastructure which may be broken at this point.
1480         if (VMError::check_timeout()) {
1481           // We hit error reporting timeout. Error reporting was interrupted and
1482           // will be wrapping things up now (closing files etc). Give it some more
1483           // time, then quit the VM.
1484           os::naked_short_sleep(200);
1485           // Print a message to stderr.
1486           fdStream err(defaultStream::output_fd());
1487           err.print_raw_cr("# [ timer expired, abort... ]");
1488           // skip atexit/vm_exit/vm_abort hooks
1489           os::die();
1490         }
1491 
1492         // Wait a second, then recheck for timeout.
1493         os::naked_short_sleep(999);
1494       }
1495     }
1496 
1497     if (_should_terminate) {
1498       // check for termination before posting the next tick
1499       break;
1500     }
1501 
1502     PeriodicTask::real_time_tick(time_waited);
1503   }
1504 
1505   // Signal that it is terminated
1506   {
1507     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1508     _watcher_thread = NULL;
1509     Terminator_lock->notify_all();
1510   }
1511 }
1512 
1513 void WatcherThread::start() {
1514   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1515 
1516   if (watcher_thread() == NULL && _startable) {
1517     _should_terminate = false;
1518     // Create the single instance of WatcherThread
1519     new WatcherThread();
1520   }
1521 }
1522 
1523 void WatcherThread::make_startable() {
1524   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1525   _startable = true;
1526 }
1527 
1528 void WatcherThread::stop() {
1529   {
1530     // Follow normal safepoint aware lock enter protocol since the
1531     // WatcherThread is stopped by another JavaThread.
1532     MutexLocker ml(PeriodicTask_lock);
1533     _should_terminate = true;
1534 
1535     WatcherThread* watcher = watcher_thread();
1536     if (watcher != NULL) {
1537       // unpark the WatcherThread so it can see that it should terminate
1538       watcher->unpark();
1539     }
1540   }
1541 
1542   MutexLocker mu(Terminator_lock);
1543 
1544   while (watcher_thread() != NULL) {
1545     // This wait should make safepoint checks, wait without a timeout,
1546     // and wait as a suspend-equivalent condition.
1547     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1548                           Mutex::_as_suspend_equivalent_flag);
1549   }
1550 }
1551 
1552 void WatcherThread::unpark() {
1553   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1554   PeriodicTask_lock->notify();
1555 }
1556 
1557 void WatcherThread::print_on(outputStream* st) const {
1558   st->print("\"%s\" ", name());
1559   Thread::print_on(st);
1560   st->cr();
1561 }
1562 
1563 // ======= JavaThread ========
1564 
1565 #if INCLUDE_JVMCI
1566 
1567 jlong* JavaThread::_jvmci_old_thread_counters;
1568 
1569 bool jvmci_counters_include(JavaThread* thread) {
1570   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1571 }
1572 
1573 void JavaThread::collect_counters(typeArrayOop array) {
1574   if (JVMCICounterSize > 0) {
1575     JavaThreadIteratorWithHandle jtiwh;
1576     for (int i = 0; i < array->length(); i++) {
1577       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1578     }
1579     for (; JavaThread *tp = jtiwh.next(); ) {
1580       if (jvmci_counters_include(tp)) {
1581         for (int i = 0; i < array->length(); i++) {
1582           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1583         }
1584       }
1585     }
1586   }
1587 }
1588 
1589 #endif // INCLUDE_JVMCI
1590 
1591 // A JavaThread is a normal Java thread
1592 
1593 void JavaThread::initialize() {
1594   // Initialize fields
1595 
1596   set_saved_exception_pc(NULL);
1597   set_threadObj(NULL);
1598   _anchor.clear();
1599   set_entry_point(NULL);
1600   set_jni_functions(jni_functions());
1601   set_callee_target(NULL);
1602   set_vm_result(NULL);
1603   set_vm_result_2(NULL);
1604   set_vframe_array_head(NULL);
1605   set_vframe_array_last(NULL);
1606   set_deferred_locals(NULL);
1607   set_deopt_mark(NULL);
1608   set_deopt_compiled_method(NULL);
1609   clear_must_deopt_id();
1610   set_monitor_chunks(NULL);
1611   set_next(NULL);
1612   _on_thread_list = false;
1613   set_thread_state(_thread_new);
1614   _terminated = _not_terminated;
1615   _array_for_gc = NULL;
1616   _suspend_equivalent = false;
1617   _in_deopt_handler = 0;
1618   _doing_unsafe_access = false;
1619   _stack_guard_state = stack_guard_unused;
1620 #if INCLUDE_JVMCI
1621   _pending_monitorenter = false;
1622   _pending_deoptimization = -1;
1623   _pending_failed_speculation = 0;
1624   _pending_transfer_to_interpreter = false;
1625   _adjusting_comp_level = false;
1626   _in_retryable_allocation = false;
1627   _jvmci._alternate_call_target = NULL;
1628   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1629   if (JVMCICounterSize > 0) {
1630     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1631     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1632   } else {
1633     _jvmci_counters = NULL;
1634   }
1635 #endif // INCLUDE_JVMCI
1636   _reserved_stack_activation = NULL;  // stack base not known yet
1637   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1638   _exception_pc  = 0;
1639   _exception_handler_pc = 0;
1640   _is_method_handle_return = 0;
1641   _jvmti_thread_state= NULL;
1642   _should_post_on_exceptions_flag = JNI_FALSE;
1643   _interp_only_mode    = 0;
1644   _special_runtime_exit_condition = _no_async_condition;
1645   _pending_async_exception = NULL;
1646   _thread_stat = NULL;
1647   _thread_stat = new ThreadStatistics();
1648   _blocked_on_compilation = false;
1649   _jni_active_critical = 0;
1650   _pending_jni_exception_check_fn = NULL;
1651   _do_not_unlock_if_synchronized = false;
1652   _cached_monitor_info = NULL;
1653   _parker = Parker::Allocate(this);
1654 
1655 #ifndef PRODUCT
1656   _jmp_ring_index = 0;
1657   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1658     record_jump(NULL, NULL, NULL, 0);
1659   }
1660 #endif // PRODUCT
1661 
1662   // Setup safepoint state info for this thread
1663   ThreadSafepointState::create(this);
1664 
1665   debug_only(_java_call_counter = 0);
1666 
1667   // JVMTI PopFrame support
1668   _popframe_condition = popframe_inactive;
1669   _popframe_preserved_args = NULL;
1670   _popframe_preserved_args_size = 0;
1671   _frames_to_pop_failed_realloc = 0;
1672 
1673   if (SafepointMechanism::uses_thread_local_poll()) {
1674     SafepointMechanism::initialize_header(this);
1675   }
1676 
1677   _class_to_be_initialized = NULL;
1678 
1679   pd_initialize();
1680 }
1681 
1682 JavaThread::JavaThread(bool is_attaching_via_jni) :
1683                        Thread() {
1684   initialize();
1685   if (is_attaching_via_jni) {
1686     _jni_attach_state = _attaching_via_jni;
1687   } else {
1688     _jni_attach_state = _not_attaching_via_jni;
1689   }
1690   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1691 }
1692 
1693 bool JavaThread::reguard_stack(address cur_sp) {
1694   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1695       && _stack_guard_state != stack_guard_reserved_disabled) {
1696     return true; // Stack already guarded or guard pages not needed.
1697   }
1698 
1699   if (register_stack_overflow()) {
1700     // For those architectures which have separate register and
1701     // memory stacks, we must check the register stack to see if
1702     // it has overflowed.
1703     return false;
1704   }
1705 
1706   // Java code never executes within the yellow zone: the latter is only
1707   // there to provoke an exception during stack banging.  If java code
1708   // is executing there, either StackShadowPages should be larger, or
1709   // some exception code in c1, c2 or the interpreter isn't unwinding
1710   // when it should.
1711   guarantee(cur_sp > stack_reserved_zone_base(),
1712             "not enough space to reguard - increase StackShadowPages");
1713   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1714     enable_stack_yellow_reserved_zone();
1715     if (reserved_stack_activation() != stack_base()) {
1716       set_reserved_stack_activation(stack_base());
1717     }
1718   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1719     set_reserved_stack_activation(stack_base());
1720     enable_stack_reserved_zone();
1721   }
1722   return true;
1723 }
1724 
1725 bool JavaThread::reguard_stack(void) {
1726   return reguard_stack(os::current_stack_pointer());
1727 }
1728 
1729 
1730 void JavaThread::block_if_vm_exited() {
1731   if (_terminated == _vm_exited) {
1732     // _vm_exited is set at safepoint, and Threads_lock is never released
1733     // we will block here forever
1734     Threads_lock->lock_without_safepoint_check();
1735     ShouldNotReachHere();
1736   }
1737 }
1738 
1739 
1740 // Remove this ifdef when C1 is ported to the compiler interface.
1741 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1742 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1743 
1744 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1745                        Thread() {
1746   initialize();
1747   _jni_attach_state = _not_attaching_via_jni;
1748   set_entry_point(entry_point);
1749   // Create the native thread itself.
1750   // %note runtime_23
1751   os::ThreadType thr_type = os::java_thread;
1752   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1753                                                      os::java_thread;
1754   os::create_thread(this, thr_type, stack_sz);
1755   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1756   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1757   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1758   // the exception consists of creating the exception object & initializing it, initialization
1759   // will leave the VM via a JavaCall and then all locks must be unlocked).
1760   //
1761   // The thread is still suspended when we reach here. Thread must be explicit started
1762   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1763   // by calling Threads:add. The reason why this is not done here, is because the thread
1764   // object must be fully initialized (take a look at JVM_Start)
1765 }
1766 
1767 JavaThread::~JavaThread() {
1768 
1769   // JSR166 -- return the parker to the free list
1770   Parker::Release(_parker);
1771   _parker = NULL;
1772 
1773   // Free any remaining  previous UnrollBlock
1774   vframeArray* old_array = vframe_array_last();
1775 
1776   if (old_array != NULL) {
1777     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1778     old_array->set_unroll_block(NULL);
1779     delete old_info;
1780     delete old_array;
1781   }
1782 
1783   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1784   if (deferred != NULL) {
1785     // This can only happen if thread is destroyed before deoptimization occurs.
1786     assert(deferred->length() != 0, "empty array!");
1787     do {
1788       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1789       deferred->remove_at(0);
1790       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1791       delete dlv;
1792     } while (deferred->length() != 0);
1793     delete deferred;
1794   }
1795 
1796   // All Java related clean up happens in exit
1797   ThreadSafepointState::destroy(this);
1798   if (_thread_stat != NULL) delete _thread_stat;
1799 
1800 #if INCLUDE_JVMCI
1801   if (JVMCICounterSize > 0) {
1802     if (jvmci_counters_include(this)) {
1803       for (int i = 0; i < JVMCICounterSize; i++) {
1804         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1805       }
1806     }
1807     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1808   }
1809 #endif // INCLUDE_JVMCI
1810 }
1811 
1812 
1813 // First JavaThread specific code executed by a new Java thread.
1814 void JavaThread::pre_run() {
1815   // empty - see comments in run()
1816 }
1817 
1818 // The main routine called by a new Java thread. This isn't overridden
1819 // by subclasses, instead different subclasses define a different "entry_point"
1820 // which defines the actual logic for that kind of thread.
1821 void JavaThread::run() {
1822   // initialize thread-local alloc buffer related fields
1823   this->initialize_tlab();
1824 
1825   // Used to test validity of stack trace backs.
1826   // This can't be moved into pre_run() else we invalidate
1827   // the requirement that thread_main_inner is lower on
1828   // the stack. Consequently all the initialization logic
1829   // stays here in run() rather than pre_run().
1830   this->record_base_of_stack_pointer();
1831 
1832   this->create_stack_guard_pages();
1833 
1834   this->cache_global_variables();
1835 
1836   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1837   // in the VM. Change thread state from _thread_new to _thread_in_vm
1838   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1839 
1840   assert(JavaThread::current() == this, "sanity check");
1841   assert(!Thread::current()->owns_locks(), "sanity check");
1842 
1843   DTRACE_THREAD_PROBE(start, this);
1844 
1845   // This operation might block. We call that after all safepoint checks for a new thread has
1846   // been completed.
1847   this->set_active_handles(JNIHandleBlock::allocate_block());
1848 
1849   if (JvmtiExport::should_post_thread_life()) {
1850     JvmtiExport::post_thread_start(this);
1851 
1852   }
1853 
1854   // We call another function to do the rest so we are sure that the stack addresses used
1855   // from there will be lower than the stack base just computed.
1856   thread_main_inner();
1857 }
1858 
1859 void JavaThread::thread_main_inner() {
1860   assert(JavaThread::current() == this, "sanity check");
1861   assert(this->threadObj() != NULL, "just checking");
1862 
1863   // Execute thread entry point unless this thread has a pending exception
1864   // or has been stopped before starting.
1865   // Note: Due to JVM_StopThread we can have pending exceptions already!
1866   if (!this->has_pending_exception() &&
1867       !java_lang_Thread::is_stillborn(this->threadObj())) {
1868     {
1869       ResourceMark rm(this);
1870       this->set_native_thread_name(this->get_thread_name());
1871     }
1872     HandleMark hm(this);
1873     this->entry_point()(this, this);
1874   }
1875 
1876   DTRACE_THREAD_PROBE(stop, this);
1877 
1878   // Cleanup is handled in post_run()
1879 }
1880 
1881 // Shared teardown for all JavaThreads
1882 void JavaThread::post_run() {
1883   this->exit(false);
1884   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1885   // for any shared tear-down.
1886   this->smr_delete();
1887 }
1888 
1889 static void ensure_join(JavaThread* thread) {
1890   // We do not need to grab the Threads_lock, since we are operating on ourself.
1891   Handle threadObj(thread, thread->threadObj());
1892   assert(threadObj.not_null(), "java thread object must exist");
1893   ObjectLocker lock(threadObj, thread);
1894   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1895   thread->clear_pending_exception();
1896   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1897   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1898   // Clear the native thread instance - this makes isAlive return false and allows the join()
1899   // to complete once we've done the notify_all below
1900   java_lang_Thread::set_thread(threadObj(), NULL);
1901   lock.notify_all(thread);
1902   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1903   thread->clear_pending_exception();
1904 }
1905 
1906 static bool is_daemon(oop threadObj) {
1907   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1908 }
1909 
1910 // For any new cleanup additions, please check to see if they need to be applied to
1911 // cleanup_failed_attach_current_thread as well.
1912 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1913   assert(this == JavaThread::current(), "thread consistency check");
1914 
1915   elapsedTimer _timer_exit_phase1;
1916   elapsedTimer _timer_exit_phase2;
1917   elapsedTimer _timer_exit_phase3;
1918   elapsedTimer _timer_exit_phase4;
1919 
1920   if (log_is_enabled(Debug, os, thread, timer)) {
1921     _timer_exit_phase1.start();
1922   }
1923 
1924   HandleMark hm(this);
1925   Handle uncaught_exception(this, this->pending_exception());
1926   this->clear_pending_exception();
1927   Handle threadObj(this, this->threadObj());
1928   assert(threadObj.not_null(), "Java thread object should be created");
1929 
1930   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1931   {
1932     EXCEPTION_MARK;
1933 
1934     CLEAR_PENDING_EXCEPTION;
1935   }
1936   if (!destroy_vm) {
1937     if (uncaught_exception.not_null()) {
1938       EXCEPTION_MARK;
1939       // Call method Thread.dispatchUncaughtException().
1940       Klass* thread_klass = SystemDictionary::Thread_klass();
1941       JavaValue result(T_VOID);
1942       JavaCalls::call_virtual(&result,
1943                               threadObj, thread_klass,
1944                               vmSymbols::dispatchUncaughtException_name(),
1945                               vmSymbols::throwable_void_signature(),
1946                               uncaught_exception,
1947                               THREAD);
1948       if (HAS_PENDING_EXCEPTION) {
1949         ResourceMark rm(this);
1950         jio_fprintf(defaultStream::error_stream(),
1951                     "\nException: %s thrown from the UncaughtExceptionHandler"
1952                     " in thread \"%s\"\n",
1953                     pending_exception()->klass()->external_name(),
1954                     get_thread_name());
1955         CLEAR_PENDING_EXCEPTION;
1956       }
1957     }
1958     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
1959 
1960     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1961     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1962     // is deprecated anyhow.
1963     if (!is_Compiler_thread()) {
1964       int count = 3;
1965       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1966         EXCEPTION_MARK;
1967         JavaValue result(T_VOID);
1968         Klass* thread_klass = SystemDictionary::Thread_klass();
1969         JavaCalls::call_virtual(&result,
1970                                 threadObj, thread_klass,
1971                                 vmSymbols::exit_method_name(),
1972                                 vmSymbols::void_method_signature(),
1973                                 THREAD);
1974         CLEAR_PENDING_EXCEPTION;
1975       }
1976     }
1977     // notify JVMTI
1978     if (JvmtiExport::should_post_thread_life()) {
1979       JvmtiExport::post_thread_end(this);
1980     }
1981 
1982     // We have notified the agents that we are exiting, before we go on,
1983     // we must check for a pending external suspend request and honor it
1984     // in order to not surprise the thread that made the suspend request.
1985     while (true) {
1986       {
1987         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1988         if (!is_external_suspend()) {
1989           set_terminated(_thread_exiting);
1990           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
1991           break;
1992         }
1993         // Implied else:
1994         // Things get a little tricky here. We have a pending external
1995         // suspend request, but we are holding the SR_lock so we
1996         // can't just self-suspend. So we temporarily drop the lock
1997         // and then self-suspend.
1998       }
1999 
2000       ThreadBlockInVM tbivm(this);
2001       java_suspend_self();
2002 
2003       // We're done with this suspend request, but we have to loop around
2004       // and check again. Eventually we will get SR_lock without a pending
2005       // external suspend request and will be able to mark ourselves as
2006       // exiting.
2007     }
2008     // no more external suspends are allowed at this point
2009   } else {
2010     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2011     // before_exit() has already posted JVMTI THREAD_END events
2012   }
2013 
2014   if (log_is_enabled(Debug, os, thread, timer)) {
2015     _timer_exit_phase1.stop();
2016     _timer_exit_phase2.start();
2017   }
2018   // Notify waiters on thread object. This has to be done after exit() is called
2019   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2020   // group should have the destroyed bit set before waiters are notified).
2021   ensure_join(this);
2022   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2023 
2024   if (log_is_enabled(Debug, os, thread, timer)) {
2025     _timer_exit_phase2.stop();
2026     _timer_exit_phase3.start();
2027   }
2028   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2029   // held by this thread must be released. The spec does not distinguish
2030   // between JNI-acquired and regular Java monitors. We can only see
2031   // regular Java monitors here if monitor enter-exit matching is broken.
2032   //
2033   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2034   // ObjectSynchronizer::release_monitors_owned_by_thread().
2035   if (exit_type == jni_detach) {
2036     // Sanity check even though JNI DetachCurrentThread() would have
2037     // returned JNI_ERR if there was a Java frame. JavaThread exit
2038     // should be done executing Java code by the time we get here.
2039     assert(!this->has_last_Java_frame(),
2040            "should not have a Java frame when detaching or exiting");
2041     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2042     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2043   }
2044 
2045   // These things needs to be done while we are still a Java Thread. Make sure that thread
2046   // is in a consistent state, in case GC happens
2047   JFR_ONLY(Jfr::on_thread_exit(this);)
2048 
2049   if (active_handles() != NULL) {
2050     JNIHandleBlock* block = active_handles();
2051     set_active_handles(NULL);
2052     JNIHandleBlock::release_block(block);
2053   }
2054 
2055   if (free_handle_block() != NULL) {
2056     JNIHandleBlock* block = free_handle_block();
2057     set_free_handle_block(NULL);
2058     JNIHandleBlock::release_block(block);
2059   }
2060 
2061   // These have to be removed while this is still a valid thread.
2062   remove_stack_guard_pages();
2063 
2064   if (UseTLAB) {
2065     tlab().retire();
2066   }
2067 
2068   if (JvmtiEnv::environments_might_exist()) {
2069     JvmtiExport::cleanup_thread(this);
2070   }
2071 
2072   // We must flush any deferred card marks and other various GC barrier
2073   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2074   // before removing a thread from the list of active threads.
2075   BarrierSet::barrier_set()->on_thread_detach(this);
2076 
2077   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2078     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2079     os::current_thread_id());
2080 
2081   if (log_is_enabled(Debug, os, thread, timer)) {
2082     _timer_exit_phase3.stop();
2083     _timer_exit_phase4.start();
2084   }
2085   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2086   Threads::remove(this);
2087 
2088   if (log_is_enabled(Debug, os, thread, timer)) {
2089     _timer_exit_phase4.stop();
2090     ResourceMark rm(this);
2091     log_debug(os, thread, timer)("name='%s'"
2092                                  ", exit-phase1=" JLONG_FORMAT
2093                                  ", exit-phase2=" JLONG_FORMAT
2094                                  ", exit-phase3=" JLONG_FORMAT
2095                                  ", exit-phase4=" JLONG_FORMAT,
2096                                  get_thread_name(),
2097                                  _timer_exit_phase1.milliseconds(),
2098                                  _timer_exit_phase2.milliseconds(),
2099                                  _timer_exit_phase3.milliseconds(),
2100                                  _timer_exit_phase4.milliseconds());
2101   }
2102 }
2103 
2104 void JavaThread::cleanup_failed_attach_current_thread() {
2105   if (active_handles() != NULL) {
2106     JNIHandleBlock* block = active_handles();
2107     set_active_handles(NULL);
2108     JNIHandleBlock::release_block(block);
2109   }
2110 
2111   if (free_handle_block() != NULL) {
2112     JNIHandleBlock* block = free_handle_block();
2113     set_free_handle_block(NULL);
2114     JNIHandleBlock::release_block(block);
2115   }
2116 
2117   // These have to be removed while this is still a valid thread.
2118   remove_stack_guard_pages();
2119 
2120   if (UseTLAB) {
2121     tlab().retire();
2122   }
2123 
2124   BarrierSet::barrier_set()->on_thread_detach(this);
2125 
2126   Threads::remove(this);
2127   this->smr_delete();
2128 }
2129 
2130 JavaThread* JavaThread::active() {
2131   Thread* thread = Thread::current();
2132   if (thread->is_Java_thread()) {
2133     return (JavaThread*) thread;
2134   } else {
2135     assert(thread->is_VM_thread(), "this must be a vm thread");
2136     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2137     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2138     assert(ret->is_Java_thread(), "must be a Java thread");
2139     return ret;
2140   }
2141 }
2142 
2143 bool JavaThread::is_lock_owned(address adr) const {
2144   if (Thread::is_lock_owned(adr)) return true;
2145 
2146   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2147     if (chunk->contains(adr)) return true;
2148   }
2149 
2150   return false;
2151 }
2152 
2153 
2154 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2155   chunk->set_next(monitor_chunks());
2156   set_monitor_chunks(chunk);
2157 }
2158 
2159 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2160   guarantee(monitor_chunks() != NULL, "must be non empty");
2161   if (monitor_chunks() == chunk) {
2162     set_monitor_chunks(chunk->next());
2163   } else {
2164     MonitorChunk* prev = monitor_chunks();
2165     while (prev->next() != chunk) prev = prev->next();
2166     prev->set_next(chunk->next());
2167   }
2168 }
2169 
2170 // JVM support.
2171 
2172 // Note: this function shouldn't block if it's called in
2173 // _thread_in_native_trans state (such as from
2174 // check_special_condition_for_native_trans()).
2175 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2176 
2177   if (has_last_Java_frame() && has_async_condition()) {
2178     // If we are at a polling page safepoint (not a poll return)
2179     // then we must defer async exception because live registers
2180     // will be clobbered by the exception path. Poll return is
2181     // ok because the call we a returning from already collides
2182     // with exception handling registers and so there is no issue.
2183     // (The exception handling path kills call result registers but
2184     //  this is ok since the exception kills the result anyway).
2185 
2186     if (is_at_poll_safepoint()) {
2187       // if the code we are returning to has deoptimized we must defer
2188       // the exception otherwise live registers get clobbered on the
2189       // exception path before deoptimization is able to retrieve them.
2190       //
2191       RegisterMap map(this, false);
2192       frame caller_fr = last_frame().sender(&map);
2193       assert(caller_fr.is_compiled_frame(), "what?");
2194       if (caller_fr.is_deoptimized_frame()) {
2195         log_info(exceptions)("deferred async exception at compiled safepoint");
2196         return;
2197       }
2198     }
2199   }
2200 
2201   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2202   if (condition == _no_async_condition) {
2203     // Conditions have changed since has_special_runtime_exit_condition()
2204     // was called:
2205     // - if we were here only because of an external suspend request,
2206     //   then that was taken care of above (or cancelled) so we are done
2207     // - if we were here because of another async request, then it has
2208     //   been cleared between the has_special_runtime_exit_condition()
2209     //   and now so again we are done
2210     return;
2211   }
2212 
2213   // Check for pending async. exception
2214   if (_pending_async_exception != NULL) {
2215     // Only overwrite an already pending exception, if it is not a threadDeath.
2216     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2217 
2218       // We cannot call Exceptions::_throw(...) here because we cannot block
2219       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2220 
2221       LogTarget(Info, exceptions) lt;
2222       if (lt.is_enabled()) {
2223         ResourceMark rm;
2224         LogStream ls(lt);
2225         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2226           if (has_last_Java_frame()) {
2227             frame f = last_frame();
2228            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2229           }
2230         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2231       }
2232       _pending_async_exception = NULL;
2233       clear_has_async_exception();
2234     }
2235   }
2236 
2237   if (check_unsafe_error &&
2238       condition == _async_unsafe_access_error && !has_pending_exception()) {
2239     condition = _no_async_condition;  // done
2240     switch (thread_state()) {
2241     case _thread_in_vm: {
2242       JavaThread* THREAD = this;
2243       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2244     }
2245     case _thread_in_native: {
2246       ThreadInVMfromNative tiv(this);
2247       JavaThread* THREAD = this;
2248       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2249     }
2250     case _thread_in_Java: {
2251       ThreadInVMfromJava tiv(this);
2252       JavaThread* THREAD = this;
2253       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2254     }
2255     default:
2256       ShouldNotReachHere();
2257     }
2258   }
2259 
2260   assert(condition == _no_async_condition || has_pending_exception() ||
2261          (!check_unsafe_error && condition == _async_unsafe_access_error),
2262          "must have handled the async condition, if no exception");
2263 }
2264 
2265 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2266   //
2267   // Check for pending external suspend.
2268   // If JNIEnv proxies are allowed, don't self-suspend if the target
2269   // thread is not the current thread. In older versions of jdbx, jdbx
2270   // threads could call into the VM with another thread's JNIEnv so we
2271   // can be here operating on behalf of a suspended thread (4432884).
2272   bool do_self_suspend = is_external_suspend_with_lock();
2273   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2274     frame_anchor()->make_walkable(this);
2275     java_suspend_self_with_safepoint_check();
2276   }
2277 
2278   // We might be here for reasons in addition to the self-suspend request
2279   // so check for other async requests.
2280   if (check_asyncs) {
2281     check_and_handle_async_exceptions();
2282   }
2283 
2284   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2285 }
2286 
2287 void JavaThread::send_thread_stop(oop java_throwable)  {
2288   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2289   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2290   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2291 
2292   // Do not throw asynchronous exceptions against the compiler thread
2293   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2294   if (!can_call_java()) return;
2295 
2296   {
2297     // Actually throw the Throwable against the target Thread - however
2298     // only if there is no thread death exception installed already.
2299     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2300       // If the topmost frame is a runtime stub, then we are calling into
2301       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2302       // must deoptimize the caller before continuing, as the compiled  exception handler table
2303       // may not be valid
2304       if (has_last_Java_frame()) {
2305         frame f = last_frame();
2306         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2307           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2308           RegisterMap reg_map(this, UseBiasedLocking);
2309           frame compiled_frame = f.sender(&reg_map);
2310           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2311             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2312           }
2313         }
2314       }
2315 
2316       // Set async. pending exception in thread.
2317       set_pending_async_exception(java_throwable);
2318 
2319       if (log_is_enabled(Info, exceptions)) {
2320          ResourceMark rm;
2321         log_info(exceptions)("Pending Async. exception installed of type: %s",
2322                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2323       }
2324       // for AbortVMOnException flag
2325       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2326     }
2327   }
2328 
2329 
2330   // Interrupt thread so it will wake up from a potential wait()
2331   Thread::interrupt(this);
2332 }
2333 
2334 // External suspension mechanism.
2335 //
2336 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2337 // to any VM_locks and it is at a transition
2338 // Self-suspension will happen on the transition out of the vm.
2339 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2340 //
2341 // Guarantees on return:
2342 //   + Target thread will not execute any new bytecode (that's why we need to
2343 //     force a safepoint)
2344 //   + Target thread will not enter any new monitors
2345 //
2346 void JavaThread::java_suspend() {
2347   ThreadsListHandle tlh;
2348   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2349     return;
2350   }
2351 
2352   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2353     if (!is_external_suspend()) {
2354       // a racing resume has cancelled us; bail out now
2355       return;
2356     }
2357 
2358     // suspend is done
2359     uint32_t debug_bits = 0;
2360     // Warning: is_ext_suspend_completed() may temporarily drop the
2361     // SR_lock to allow the thread to reach a stable thread state if
2362     // it is currently in a transient thread state.
2363     if (is_ext_suspend_completed(false /* !called_by_wait */,
2364                                  SuspendRetryDelay, &debug_bits)) {
2365       return;
2366     }
2367   }
2368 
2369   if (Thread::current() == this) {
2370     // Safely self-suspend.
2371     // If we don't do this explicitly it will implicitly happen
2372     // before we transition back to Java, and on some other thread-state
2373     // transition paths, but not as we exit a JVM TI SuspendThread call.
2374     // As SuspendThread(current) must not return (until resumed) we must
2375     // self-suspend here.
2376     ThreadBlockInVM tbivm(this);
2377     java_suspend_self();
2378   } else {
2379     VM_ThreadSuspend vm_suspend;
2380     VMThread::execute(&vm_suspend);
2381   }
2382 }
2383 
2384 // Part II of external suspension.
2385 // A JavaThread self suspends when it detects a pending external suspend
2386 // request. This is usually on transitions. It is also done in places
2387 // where continuing to the next transition would surprise the caller,
2388 // e.g., monitor entry.
2389 //
2390 // Returns the number of times that the thread self-suspended.
2391 //
2392 // Note: DO NOT call java_suspend_self() when you just want to block current
2393 //       thread. java_suspend_self() is the second stage of cooperative
2394 //       suspension for external suspend requests and should only be used
2395 //       to complete an external suspend request.
2396 //
2397 int JavaThread::java_suspend_self() {
2398   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2399   int ret = 0;
2400 
2401   // we are in the process of exiting so don't suspend
2402   if (is_exiting()) {
2403     clear_external_suspend();
2404     return ret;
2405   }
2406 
2407   assert(_anchor.walkable() ||
2408          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2409          "must have walkable stack");
2410 
2411   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2412 
2413   assert(!this->is_ext_suspended(),
2414          "a thread trying to self-suspend should not already be suspended");
2415 
2416   if (this->is_suspend_equivalent()) {
2417     // If we are self-suspending as a result of the lifting of a
2418     // suspend equivalent condition, then the suspend_equivalent
2419     // flag is not cleared until we set the ext_suspended flag so
2420     // that wait_for_ext_suspend_completion() returns consistent
2421     // results.
2422     this->clear_suspend_equivalent();
2423   }
2424 
2425   // A racing resume may have cancelled us before we grabbed SR_lock
2426   // above. Or another external suspend request could be waiting for us
2427   // by the time we return from SR_lock()->wait(). The thread
2428   // that requested the suspension may already be trying to walk our
2429   // stack and if we return now, we can change the stack out from under
2430   // it. This would be a "bad thing (TM)" and cause the stack walker
2431   // to crash. We stay self-suspended until there are no more pending
2432   // external suspend requests.
2433   while (is_external_suspend()) {
2434     ret++;
2435     this->set_ext_suspended();
2436 
2437     // _ext_suspended flag is cleared by java_resume()
2438     while (is_ext_suspended()) {
2439       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2440     }
2441   }
2442 
2443   return ret;
2444 }
2445 
2446 // Helper routine to set up the correct thread state before calling java_suspend_self.
2447 // This is called when regular thread-state transition helpers can't be used because
2448 // we can be in various states, in particular _thread_in_native_trans.
2449 // Because this thread is external suspended the safepoint code will count it as at
2450 // a safepoint, regardless of what its actual current thread-state is. But
2451 // is_ext_suspend_completed() may be waiting to see a thread transition from
2452 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2453 // to _thread_blocked. The problem with setting thread state directly is that a
2454 // safepoint could happen just after java_suspend_self() returns after being resumed,
2455 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2456 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2457 // However, not all initial-states are allowed when performing a safepoint check, as we
2458 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2459 // only _thread_in_native is possible when executing this code (based on our two callers).
2460 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2461 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2462 // and so we don't need the explicit safepoint check.
2463 
2464 void JavaThread::java_suspend_self_with_safepoint_check() {
2465   assert(this == Thread::current(), "invariant");
2466   JavaThreadState state = thread_state();
2467   set_thread_state(_thread_blocked);
2468   java_suspend_self();
2469   set_thread_state(state);
2470   InterfaceSupport::serialize_thread_state_with_handler(this);
2471   if (state != _thread_in_native) {
2472     SafepointMechanism::block_if_requested(this);
2473   }
2474 }
2475 
2476 #ifdef ASSERT
2477 // Verify the JavaThread has not yet been published in the Threads::list, and
2478 // hence doesn't need protection from concurrent access at this stage.
2479 void JavaThread::verify_not_published() {
2480   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2481   // since an unpublished JavaThread doesn't participate in the
2482   // Thread-SMR protocol for keeping a ThreadsList alive.
2483   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2484 }
2485 #endif
2486 
2487 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2488 // progress or when _suspend_flags is non-zero.
2489 // Current thread needs to self-suspend if there is a suspend request and/or
2490 // block if a safepoint is in progress.
2491 // Async exception ISN'T checked.
2492 // Note only the ThreadInVMfromNative transition can call this function
2493 // directly and when thread state is _thread_in_native_trans
2494 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2495   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2496 
2497   JavaThread *curJT = JavaThread::current();
2498   bool do_self_suspend = thread->is_external_suspend();
2499 
2500   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2501 
2502   // If JNIEnv proxies are allowed, don't self-suspend if the target
2503   // thread is not the current thread. In older versions of jdbx, jdbx
2504   // threads could call into the VM with another thread's JNIEnv so we
2505   // can be here operating on behalf of a suspended thread (4432884).
2506   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2507     thread->java_suspend_self_with_safepoint_check();
2508   } else {
2509     SafepointMechanism::block_if_requested(curJT);
2510   }
2511 
2512   if (thread->is_deopt_suspend()) {
2513     thread->clear_deopt_suspend();
2514     RegisterMap map(thread, false);
2515     frame f = thread->last_frame();
2516     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2517       f = f.sender(&map);
2518     }
2519     if (f.id() == thread->must_deopt_id()) {
2520       thread->clear_must_deopt_id();
2521       f.deoptimize(thread);
2522     } else {
2523       fatal("missed deoptimization!");
2524     }
2525   }
2526 
2527   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2528 }
2529 
2530 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2531 // progress or when _suspend_flags is non-zero.
2532 // Current thread needs to self-suspend if there is a suspend request and/or
2533 // block if a safepoint is in progress.
2534 // Also check for pending async exception (not including unsafe access error).
2535 // Note only the native==>VM/Java barriers can call this function and when
2536 // thread state is _thread_in_native_trans.
2537 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2538   check_safepoint_and_suspend_for_native_trans(thread);
2539 
2540   if (thread->has_async_exception()) {
2541     // We are in _thread_in_native_trans state, don't handle unsafe
2542     // access error since that may block.
2543     thread->check_and_handle_async_exceptions(false);
2544   }
2545 }
2546 
2547 // This is a variant of the normal
2548 // check_special_condition_for_native_trans with slightly different
2549 // semantics for use by critical native wrappers.  It does all the
2550 // normal checks but also performs the transition back into
2551 // thread_in_Java state.  This is required so that critical natives
2552 // can potentially block and perform a GC if they are the last thread
2553 // exiting the GCLocker.
2554 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2555   check_special_condition_for_native_trans(thread);
2556 
2557   // Finish the transition
2558   thread->set_thread_state(_thread_in_Java);
2559 
2560   if (thread->do_critical_native_unlock()) {
2561     ThreadInVMfromJavaNoAsyncException tiv(thread);
2562     GCLocker::unlock_critical(thread);
2563     thread->clear_critical_native_unlock();
2564   }
2565 }
2566 
2567 // We need to guarantee the Threads_lock here, since resumes are not
2568 // allowed during safepoint synchronization
2569 // Can only resume from an external suspension
2570 void JavaThread::java_resume() {
2571   assert_locked_or_safepoint(Threads_lock);
2572 
2573   // Sanity check: thread is gone, has started exiting or the thread
2574   // was not externally suspended.
2575   ThreadsListHandle tlh;
2576   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2577     return;
2578   }
2579 
2580   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2581 
2582   clear_external_suspend();
2583 
2584   if (is_ext_suspended()) {
2585     clear_ext_suspended();
2586     SR_lock()->notify_all();
2587   }
2588 }
2589 
2590 size_t JavaThread::_stack_red_zone_size = 0;
2591 size_t JavaThread::_stack_yellow_zone_size = 0;
2592 size_t JavaThread::_stack_reserved_zone_size = 0;
2593 size_t JavaThread::_stack_shadow_zone_size = 0;
2594 
2595 void JavaThread::create_stack_guard_pages() {
2596   if (!os::uses_stack_guard_pages() ||
2597       _stack_guard_state != stack_guard_unused ||
2598       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2599       log_info(os, thread)("Stack guard page creation for thread "
2600                            UINTX_FORMAT " disabled", os::current_thread_id());
2601     return;
2602   }
2603   address low_addr = stack_end();
2604   size_t len = stack_guard_zone_size();
2605 
2606   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2607   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2608 
2609   int must_commit = os::must_commit_stack_guard_pages();
2610   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2611 
2612   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2613     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2614     return;
2615   }
2616 
2617   if (os::guard_memory((char *) low_addr, len)) {
2618     _stack_guard_state = stack_guard_enabled;
2619   } else {
2620     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2621       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2622     if (os::uncommit_memory((char *) low_addr, len)) {
2623       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2624     }
2625     return;
2626   }
2627 
2628   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2629     PTR_FORMAT "-" PTR_FORMAT ".",
2630     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2631 }
2632 
2633 void JavaThread::remove_stack_guard_pages() {
2634   assert(Thread::current() == this, "from different thread");
2635   if (_stack_guard_state == stack_guard_unused) return;
2636   address low_addr = stack_end();
2637   size_t len = stack_guard_zone_size();
2638 
2639   if (os::must_commit_stack_guard_pages()) {
2640     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2641       _stack_guard_state = stack_guard_unused;
2642     } else {
2643       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2644         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2645       return;
2646     }
2647   } else {
2648     if (_stack_guard_state == stack_guard_unused) return;
2649     if (os::unguard_memory((char *) low_addr, len)) {
2650       _stack_guard_state = stack_guard_unused;
2651     } else {
2652       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2653         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2654       return;
2655     }
2656   }
2657 
2658   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2659     PTR_FORMAT "-" PTR_FORMAT ".",
2660     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2661 }
2662 
2663 void JavaThread::enable_stack_reserved_zone() {
2664   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2665 
2666   // The base notation is from the stack's point of view, growing downward.
2667   // We need to adjust it to work correctly with guard_memory()
2668   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2669 
2670   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2671   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2672 
2673   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2674     _stack_guard_state = stack_guard_enabled;
2675   } else {
2676     warning("Attempt to guard stack reserved zone failed.");
2677   }
2678   enable_register_stack_guard();
2679 }
2680 
2681 void JavaThread::disable_stack_reserved_zone() {
2682   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2683 
2684   // Simply return if called for a thread that does not use guard pages.
2685   if (_stack_guard_state != stack_guard_enabled) return;
2686 
2687   // The base notation is from the stack's point of view, growing downward.
2688   // We need to adjust it to work correctly with guard_memory()
2689   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2690 
2691   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2692     _stack_guard_state = stack_guard_reserved_disabled;
2693   } else {
2694     warning("Attempt to unguard stack reserved zone failed.");
2695   }
2696   disable_register_stack_guard();
2697 }
2698 
2699 void JavaThread::enable_stack_yellow_reserved_zone() {
2700   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2701   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2702 
2703   // The base notation is from the stacks point of view, growing downward.
2704   // We need to adjust it to work correctly with guard_memory()
2705   address base = stack_red_zone_base();
2706 
2707   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2708   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2709 
2710   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2711     _stack_guard_state = stack_guard_enabled;
2712   } else {
2713     warning("Attempt to guard stack yellow zone failed.");
2714   }
2715   enable_register_stack_guard();
2716 }
2717 
2718 void JavaThread::disable_stack_yellow_reserved_zone() {
2719   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2720   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2721 
2722   // Simply return if called for a thread that does not use guard pages.
2723   if (_stack_guard_state == stack_guard_unused) return;
2724 
2725   // The base notation is from the stacks point of view, growing downward.
2726   // We need to adjust it to work correctly with guard_memory()
2727   address base = stack_red_zone_base();
2728 
2729   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2730     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2731   } else {
2732     warning("Attempt to unguard stack yellow zone failed.");
2733   }
2734   disable_register_stack_guard();
2735 }
2736 
2737 void JavaThread::enable_stack_red_zone() {
2738   // The base notation is from the stacks point of view, growing downward.
2739   // We need to adjust it to work correctly with guard_memory()
2740   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2741   address base = stack_red_zone_base() - stack_red_zone_size();
2742 
2743   guarantee(base < stack_base(), "Error calculating stack red zone");
2744   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2745 
2746   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2747     warning("Attempt to guard stack red zone failed.");
2748   }
2749 }
2750 
2751 void JavaThread::disable_stack_red_zone() {
2752   // The base notation is from the stacks point of view, growing downward.
2753   // We need to adjust it to work correctly with guard_memory()
2754   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2755   address base = stack_red_zone_base() - stack_red_zone_size();
2756   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2757     warning("Attempt to unguard stack red zone failed.");
2758   }
2759 }
2760 
2761 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2762   // ignore is there is no stack
2763   if (!has_last_Java_frame()) return;
2764   // traverse the stack frames. Starts from top frame.
2765   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2766     frame* fr = fst.current();
2767     f(fr, fst.register_map());
2768   }
2769 }
2770 
2771 
2772 #ifndef PRODUCT
2773 // Deoptimization
2774 // Function for testing deoptimization
2775 void JavaThread::deoptimize() {
2776   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2777   StackFrameStream fst(this, UseBiasedLocking);
2778   bool deopt = false;           // Dump stack only if a deopt actually happens.
2779   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2780   // Iterate over all frames in the thread and deoptimize
2781   for (; !fst.is_done(); fst.next()) {
2782     if (fst.current()->can_be_deoptimized()) {
2783 
2784       if (only_at) {
2785         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2786         // consists of comma or carriage return separated numbers so
2787         // search for the current bci in that string.
2788         address pc = fst.current()->pc();
2789         nmethod* nm =  (nmethod*) fst.current()->cb();
2790         ScopeDesc* sd = nm->scope_desc_at(pc);
2791         char buffer[8];
2792         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2793         size_t len = strlen(buffer);
2794         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2795         while (found != NULL) {
2796           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2797               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2798             // Check that the bci found is bracketed by terminators.
2799             break;
2800           }
2801           found = strstr(found + 1, buffer);
2802         }
2803         if (!found) {
2804           continue;
2805         }
2806       }
2807 
2808       if (DebugDeoptimization && !deopt) {
2809         deopt = true; // One-time only print before deopt
2810         tty->print_cr("[BEFORE Deoptimization]");
2811         trace_frames();
2812         trace_stack();
2813       }
2814       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2815     }
2816   }
2817 
2818   if (DebugDeoptimization && deopt) {
2819     tty->print_cr("[AFTER Deoptimization]");
2820     trace_frames();
2821   }
2822 }
2823 
2824 
2825 // Make zombies
2826 void JavaThread::make_zombies() {
2827   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2828     if (fst.current()->can_be_deoptimized()) {
2829       // it is a Java nmethod
2830       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2831       nm->make_not_entrant();
2832     }
2833   }
2834 }
2835 #endif // PRODUCT
2836 
2837 
2838 void JavaThread::deoptimized_wrt_marked_nmethods() {
2839   if (!has_last_Java_frame()) return;
2840   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2841   StackFrameStream fst(this, UseBiasedLocking);
2842   for (; !fst.is_done(); fst.next()) {
2843     if (fst.current()->should_be_deoptimized()) {
2844       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2845     }
2846   }
2847 }
2848 
2849 
2850 // If the caller is a NamedThread, then remember, in the current scope,
2851 // the given JavaThread in its _processed_thread field.
2852 class RememberProcessedThread: public StackObj {
2853   NamedThread* _cur_thr;
2854  public:
2855   RememberProcessedThread(JavaThread* jthr) {
2856     Thread* thread = Thread::current();
2857     if (thread->is_Named_thread()) {
2858       _cur_thr = (NamedThread *)thread;
2859       _cur_thr->set_processed_thread(jthr);
2860     } else {
2861       _cur_thr = NULL;
2862     }
2863   }
2864 
2865   ~RememberProcessedThread() {
2866     if (_cur_thr) {
2867       _cur_thr->set_processed_thread(NULL);
2868     }
2869   }
2870 };
2871 
2872 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2873   // Verify that the deferred card marks have been flushed.
2874   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2875 
2876   // Traverse the GCHandles
2877   Thread::oops_do(f, cf);
2878 
2879   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2880          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2881 
2882   if (has_last_Java_frame()) {
2883     // Record JavaThread to GC thread
2884     RememberProcessedThread rpt(this);
2885 
2886     // traverse the registered growable array
2887     if (_array_for_gc != NULL) {
2888       for (int index = 0; index < _array_for_gc->length(); index++) {
2889         f->do_oop(_array_for_gc->adr_at(index));
2890       }
2891     }
2892 
2893     // Traverse the monitor chunks
2894     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2895       chunk->oops_do(f);
2896     }
2897 
2898     // Traverse the execution stack
2899     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2900       fst.current()->oops_do(f, cf, fst.register_map());
2901     }
2902   }
2903 
2904   // callee_target is never live across a gc point so NULL it here should
2905   // it still contain a methdOop.
2906 
2907   set_callee_target(NULL);
2908 
2909   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2910   // If we have deferred set_locals there might be oops waiting to be
2911   // written
2912   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2913   if (list != NULL) {
2914     for (int i = 0; i < list->length(); i++) {
2915       list->at(i)->oops_do(f);
2916     }
2917   }
2918 
2919   // Traverse instance variables at the end since the GC may be moving things
2920   // around using this function
2921   f->do_oop((oop*) &_threadObj);
2922   f->do_oop((oop*) &_vm_result);
2923   f->do_oop((oop*) &_exception_oop);
2924   f->do_oop((oop*) &_pending_async_exception);
2925 
2926   if (jvmti_thread_state() != NULL) {
2927     jvmti_thread_state()->oops_do(f);
2928   }
2929 }
2930 
2931 #ifdef ASSERT
2932 void JavaThread::verify_states_for_handshake() {
2933   // This checks that the thread has a correct frame state during a handshake.
2934   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2935          (has_last_Java_frame() && java_call_counter() > 0),
2936          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2937          has_last_Java_frame(), java_call_counter());
2938 }
2939 #endif
2940 
2941 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2942   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2943          (has_last_Java_frame() && java_call_counter() > 0),
2944          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2945          has_last_Java_frame(), java_call_counter());
2946 
2947   if (has_last_Java_frame()) {
2948     // Traverse the execution stack
2949     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2950       fst.current()->nmethods_do(cf);
2951     }
2952   }
2953 }
2954 
2955 void JavaThread::metadata_do(MetadataClosure* f) {
2956   if (has_last_Java_frame()) {
2957     // Traverse the execution stack to call f() on the methods in the stack
2958     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2959       fst.current()->metadata_do(f);
2960     }
2961   } else if (is_Compiler_thread()) {
2962     // need to walk ciMetadata in current compile tasks to keep alive.
2963     CompilerThread* ct = (CompilerThread*)this;
2964     if (ct->env() != NULL) {
2965       ct->env()->metadata_do(f);
2966     }
2967     CompileTask* task = ct->task();
2968     if (task != NULL) {
2969       task->metadata_do(f);
2970     }
2971   }
2972 }
2973 
2974 // Printing
2975 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2976   switch (_thread_state) {
2977   case _thread_uninitialized:     return "_thread_uninitialized";
2978   case _thread_new:               return "_thread_new";
2979   case _thread_new_trans:         return "_thread_new_trans";
2980   case _thread_in_native:         return "_thread_in_native";
2981   case _thread_in_native_trans:   return "_thread_in_native_trans";
2982   case _thread_in_vm:             return "_thread_in_vm";
2983   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2984   case _thread_in_Java:           return "_thread_in_Java";
2985   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2986   case _thread_blocked:           return "_thread_blocked";
2987   case _thread_blocked_trans:     return "_thread_blocked_trans";
2988   default:                        return "unknown thread state";
2989   }
2990 }
2991 
2992 #ifndef PRODUCT
2993 void JavaThread::print_thread_state_on(outputStream *st) const {
2994   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2995 };
2996 void JavaThread::print_thread_state() const {
2997   print_thread_state_on(tty);
2998 }
2999 #endif // PRODUCT
3000 
3001 // Called by Threads::print() for VM_PrintThreads operation
3002 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3003   st->print_raw("\"");
3004   st->print_raw(get_thread_name());
3005   st->print_raw("\" ");
3006   oop thread_oop = threadObj();
3007   if (thread_oop != NULL) {
3008     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3009     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3010     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3011   }
3012   Thread::print_on(st, print_extended_info);
3013   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3014   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3015   if (thread_oop != NULL) {
3016     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3017   }
3018 #ifndef PRODUCT
3019   _safepoint_state->print_on(st);
3020 #endif // PRODUCT
3021   if (is_Compiler_thread()) {
3022     CompileTask *task = ((CompilerThread*)this)->task();
3023     if (task != NULL) {
3024       st->print("   Compiling: ");
3025       task->print(st, NULL, true, false);
3026     } else {
3027       st->print("   No compile task");
3028     }
3029     st->cr();
3030   }
3031 }
3032 
3033 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3034   st->print("%s", get_thread_name_string(buf, buflen));
3035 }
3036 
3037 // Called by fatal error handler. The difference between this and
3038 // JavaThread::print() is that we can't grab lock or allocate memory.
3039 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3040   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3041   oop thread_obj = threadObj();
3042   if (thread_obj != NULL) {
3043     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3044   }
3045   st->print(" [");
3046   st->print("%s", _get_thread_state_name(_thread_state));
3047   if (osthread()) {
3048     st->print(", id=%d", osthread()->thread_id());
3049   }
3050   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3051             p2i(stack_end()), p2i(stack_base()));
3052   st->print("]");
3053 
3054   ThreadsSMRSupport::print_info_on(this, st);
3055   return;
3056 }
3057 
3058 // Verification
3059 
3060 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3061 
3062 void JavaThread::verify() {
3063   // Verify oops in the thread.
3064   oops_do(&VerifyOopClosure::verify_oop, NULL);
3065 
3066   // Verify the stack frames.
3067   frames_do(frame_verify);
3068 }
3069 
3070 // CR 6300358 (sub-CR 2137150)
3071 // Most callers of this method assume that it can't return NULL but a
3072 // thread may not have a name whilst it is in the process of attaching to
3073 // the VM - see CR 6412693, and there are places where a JavaThread can be
3074 // seen prior to having it's threadObj set (eg JNI attaching threads and
3075 // if vm exit occurs during initialization). These cases can all be accounted
3076 // for such that this method never returns NULL.
3077 const char* JavaThread::get_thread_name() const {
3078 #ifdef ASSERT
3079   // early safepoints can hit while current thread does not yet have TLS
3080   if (!SafepointSynchronize::is_at_safepoint()) {
3081     Thread *cur = Thread::current();
3082     if (!(cur->is_Java_thread() && cur == this)) {
3083       // Current JavaThreads are allowed to get their own name without
3084       // the Threads_lock.
3085       assert_locked_or_safepoint(Threads_lock);
3086     }
3087   }
3088 #endif // ASSERT
3089   return get_thread_name_string();
3090 }
3091 
3092 // Returns a non-NULL representation of this thread's name, or a suitable
3093 // descriptive string if there is no set name
3094 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3095   const char* name_str;
3096   oop thread_obj = threadObj();
3097   if (thread_obj != NULL) {
3098     oop name = java_lang_Thread::name(thread_obj);
3099     if (name != NULL) {
3100       if (buf == NULL) {
3101         name_str = java_lang_String::as_utf8_string(name);
3102       } else {
3103         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3104       }
3105     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3106       name_str = "<no-name - thread is attaching>";
3107     } else {
3108       name_str = Thread::name();
3109     }
3110   } else {
3111     name_str = Thread::name();
3112   }
3113   assert(name_str != NULL, "unexpected NULL thread name");
3114   return name_str;
3115 }
3116 
3117 
3118 const char* JavaThread::get_threadgroup_name() const {
3119   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3120   oop thread_obj = threadObj();
3121   if (thread_obj != NULL) {
3122     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3123     if (thread_group != NULL) {
3124       // ThreadGroup.name can be null
3125       return java_lang_ThreadGroup::name(thread_group);
3126     }
3127   }
3128   return NULL;
3129 }
3130 
3131 const char* JavaThread::get_parent_name() const {
3132   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3133   oop thread_obj = threadObj();
3134   if (thread_obj != NULL) {
3135     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3136     if (thread_group != NULL) {
3137       oop parent = java_lang_ThreadGroup::parent(thread_group);
3138       if (parent != NULL) {
3139         // ThreadGroup.name can be null
3140         return java_lang_ThreadGroup::name(parent);
3141       }
3142     }
3143   }
3144   return NULL;
3145 }
3146 
3147 ThreadPriority JavaThread::java_priority() const {
3148   oop thr_oop = threadObj();
3149   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3150   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3151   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3152   return priority;
3153 }
3154 
3155 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3156 
3157   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3158   // Link Java Thread object <-> C++ Thread
3159 
3160   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3161   // and put it into a new Handle.  The Handle "thread_oop" can then
3162   // be used to pass the C++ thread object to other methods.
3163 
3164   // Set the Java level thread object (jthread) field of the
3165   // new thread (a JavaThread *) to C++ thread object using the
3166   // "thread_oop" handle.
3167 
3168   // Set the thread field (a JavaThread *) of the
3169   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3170 
3171   Handle thread_oop(Thread::current(),
3172                     JNIHandles::resolve_non_null(jni_thread));
3173   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3174          "must be initialized");
3175   set_threadObj(thread_oop());
3176   java_lang_Thread::set_thread(thread_oop(), this);
3177 
3178   if (prio == NoPriority) {
3179     prio = java_lang_Thread::priority(thread_oop());
3180     assert(prio != NoPriority, "A valid priority should be present");
3181   }
3182 
3183   // Push the Java priority down to the native thread; needs Threads_lock
3184   Thread::set_priority(this, prio);
3185 
3186   // Add the new thread to the Threads list and set it in motion.
3187   // We must have threads lock in order to call Threads::add.
3188   // It is crucial that we do not block before the thread is
3189   // added to the Threads list for if a GC happens, then the java_thread oop
3190   // will not be visited by GC.
3191   Threads::add(this);
3192 }
3193 
3194 oop JavaThread::current_park_blocker() {
3195   // Support for JSR-166 locks
3196   oop thread_oop = threadObj();
3197   if (thread_oop != NULL &&
3198       JDK_Version::current().supports_thread_park_blocker()) {
3199     return java_lang_Thread::park_blocker(thread_oop);
3200   }
3201   return NULL;
3202 }
3203 
3204 
3205 void JavaThread::print_stack_on(outputStream* st) {
3206   if (!has_last_Java_frame()) return;
3207   ResourceMark rm;
3208   HandleMark   hm;
3209 
3210   RegisterMap reg_map(this);
3211   vframe* start_vf = last_java_vframe(&reg_map);
3212   int count = 0;
3213   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3214     if (f->is_java_frame()) {
3215       javaVFrame* jvf = javaVFrame::cast(f);
3216       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3217 
3218       // Print out lock information
3219       if (JavaMonitorsInStackTrace) {
3220         jvf->print_lock_info_on(st, count);
3221       }
3222     } else {
3223       // Ignore non-Java frames
3224     }
3225 
3226     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3227     count++;
3228     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3229   }
3230 }
3231 
3232 
3233 // JVMTI PopFrame support
3234 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3235   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3236   if (in_bytes(size_in_bytes) != 0) {
3237     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3238     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3239     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3240   }
3241 }
3242 
3243 void* JavaThread::popframe_preserved_args() {
3244   return _popframe_preserved_args;
3245 }
3246 
3247 ByteSize JavaThread::popframe_preserved_args_size() {
3248   return in_ByteSize(_popframe_preserved_args_size);
3249 }
3250 
3251 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3252   int sz = in_bytes(popframe_preserved_args_size());
3253   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3254   return in_WordSize(sz / wordSize);
3255 }
3256 
3257 void JavaThread::popframe_free_preserved_args() {
3258   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3259   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3260   _popframe_preserved_args = NULL;
3261   _popframe_preserved_args_size = 0;
3262 }
3263 
3264 #ifndef PRODUCT
3265 
3266 void JavaThread::trace_frames() {
3267   tty->print_cr("[Describe stack]");
3268   int frame_no = 1;
3269   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3270     tty->print("  %d. ", frame_no++);
3271     fst.current()->print_value_on(tty, this);
3272     tty->cr();
3273   }
3274 }
3275 
3276 class PrintAndVerifyOopClosure: public OopClosure {
3277  protected:
3278   template <class T> inline void do_oop_work(T* p) {
3279     oop obj = RawAccess<>::oop_load(p);
3280     if (obj == NULL) return;
3281     tty->print(INTPTR_FORMAT ": ", p2i(p));
3282     if (oopDesc::is_oop_or_null(obj)) {
3283       if (obj->is_objArray()) {
3284         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3285       } else {
3286         obj->print();
3287       }
3288     } else {
3289       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3290     }
3291     tty->cr();
3292   }
3293  public:
3294   virtual void do_oop(oop* p) { do_oop_work(p); }
3295   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3296 };
3297 
3298 
3299 static void oops_print(frame* f, const RegisterMap *map) {
3300   PrintAndVerifyOopClosure print;
3301   f->print_value();
3302   f->oops_do(&print, NULL, (RegisterMap*)map);
3303 }
3304 
3305 // Print our all the locations that contain oops and whether they are
3306 // valid or not.  This useful when trying to find the oldest frame
3307 // where an oop has gone bad since the frame walk is from youngest to
3308 // oldest.
3309 void JavaThread::trace_oops() {
3310   tty->print_cr("[Trace oops]");
3311   frames_do(oops_print);
3312 }
3313 
3314 
3315 #ifdef ASSERT
3316 // Print or validate the layout of stack frames
3317 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3318   ResourceMark rm;
3319   PRESERVE_EXCEPTION_MARK;
3320   FrameValues values;
3321   int frame_no = 0;
3322   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3323     fst.current()->describe(values, ++frame_no);
3324     if (depth == frame_no) break;
3325   }
3326   if (validate_only) {
3327     values.validate();
3328   } else {
3329     tty->print_cr("[Describe stack layout]");
3330     values.print(this);
3331   }
3332 }
3333 #endif
3334 
3335 void JavaThread::trace_stack_from(vframe* start_vf) {
3336   ResourceMark rm;
3337   int vframe_no = 1;
3338   for (vframe* f = start_vf; f; f = f->sender()) {
3339     if (f->is_java_frame()) {
3340       javaVFrame::cast(f)->print_activation(vframe_no++);
3341     } else {
3342       f->print();
3343     }
3344     if (vframe_no > StackPrintLimit) {
3345       tty->print_cr("...<more frames>...");
3346       return;
3347     }
3348   }
3349 }
3350 
3351 
3352 void JavaThread::trace_stack() {
3353   if (!has_last_Java_frame()) return;
3354   ResourceMark rm;
3355   HandleMark   hm;
3356   RegisterMap reg_map(this);
3357   trace_stack_from(last_java_vframe(&reg_map));
3358 }
3359 
3360 
3361 #endif // PRODUCT
3362 
3363 
3364 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3365   assert(reg_map != NULL, "a map must be given");
3366   frame f = last_frame();
3367   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3368     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3369   }
3370   return NULL;
3371 }
3372 
3373 
3374 Klass* JavaThread::security_get_caller_class(int depth) {
3375   vframeStream vfst(this);
3376   vfst.security_get_caller_frame(depth);
3377   if (!vfst.at_end()) {
3378     return vfst.method()->method_holder();
3379   }
3380   return NULL;
3381 }
3382 
3383 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3384   assert(thread->is_Compiler_thread(), "must be compiler thread");
3385   CompileBroker::compiler_thread_loop();
3386 }
3387 
3388 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3389   NMethodSweeper::sweeper_loop();
3390 }
3391 
3392 // Create a CompilerThread
3393 CompilerThread::CompilerThread(CompileQueue* queue,
3394                                CompilerCounters* counters)
3395                                : JavaThread(&compiler_thread_entry) {
3396   _env   = NULL;
3397   _log   = NULL;
3398   _task  = NULL;
3399   _queue = queue;
3400   _counters = counters;
3401   _buffer_blob = NULL;
3402   _compiler = NULL;
3403 
3404   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3405   resource_area()->bias_to(mtCompiler);
3406 
3407 #ifndef PRODUCT
3408   _ideal_graph_printer = NULL;
3409 #endif
3410 }
3411 
3412 CompilerThread::~CompilerThread() {
3413   // Delete objects which were allocated on heap.
3414   delete _counters;
3415 }
3416 
3417 bool CompilerThread::can_call_java() const {
3418   return _compiler != NULL && _compiler->is_jvmci();
3419 }
3420 
3421 // Create sweeper thread
3422 CodeCacheSweeperThread::CodeCacheSweeperThread()
3423 : JavaThread(&sweeper_thread_entry) {
3424   _scanned_compiled_method = NULL;
3425 }
3426 
3427 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3428   JavaThread::oops_do(f, cf);
3429   if (_scanned_compiled_method != NULL && cf != NULL) {
3430     // Safepoints can occur when the sweeper is scanning an nmethod so
3431     // process it here to make sure it isn't unloaded in the middle of
3432     // a scan.
3433     cf->do_code_blob(_scanned_compiled_method);
3434   }
3435 }
3436 
3437 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3438   JavaThread::nmethods_do(cf);
3439   if (_scanned_compiled_method != NULL && cf != NULL) {
3440     // Safepoints can occur when the sweeper is scanning an nmethod so
3441     // process it here to make sure it isn't unloaded in the middle of
3442     // a scan.
3443     cf->do_code_blob(_scanned_compiled_method);
3444   }
3445 }
3446 
3447 
3448 // ======= Threads ========
3449 
3450 // The Threads class links together all active threads, and provides
3451 // operations over all threads. It is protected by the Threads_lock,
3452 // which is also used in other global contexts like safepointing.
3453 // ThreadsListHandles are used to safely perform operations on one
3454 // or more threads without the risk of the thread exiting during the
3455 // operation.
3456 //
3457 // Note: The Threads_lock is currently more widely used than we
3458 // would like. We are actively migrating Threads_lock uses to other
3459 // mechanisms in order to reduce Threads_lock contention.
3460 
3461 JavaThread* Threads::_thread_list = NULL;
3462 int         Threads::_number_of_threads = 0;
3463 int         Threads::_number_of_non_daemon_threads = 0;
3464 int         Threads::_return_code = 0;
3465 int         Threads::_thread_claim_parity = 0;
3466 size_t      JavaThread::_stack_size_at_create = 0;
3467 
3468 #ifdef ASSERT
3469 bool        Threads::_vm_complete = false;
3470 #endif
3471 
3472 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3473   Prefetch::read((void*)addr, prefetch_interval);
3474   return *addr;
3475 }
3476 
3477 // Possibly the ugliest for loop the world has seen. C++ does not allow
3478 // multiple types in the declaration section of the for loop. In this case
3479 // we are only dealing with pointers and hence can cast them. It looks ugly
3480 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3481 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3482     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3483              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3484              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3485              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3486              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3487          MACRO_current_p != MACRO_end;                                                                                    \
3488          MACRO_current_p++,                                                                                               \
3489              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3490 
3491 // All JavaThreads
3492 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3493 
3494 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3495 void Threads::non_java_threads_do(ThreadClosure* tc) {
3496   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3497   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3498     tc->do_thread(njti.current());
3499   }
3500 }
3501 
3502 // All JavaThreads
3503 void Threads::java_threads_do(ThreadClosure* tc) {
3504   assert_locked_or_safepoint(Threads_lock);
3505   // ALL_JAVA_THREADS iterates through all JavaThreads.
3506   ALL_JAVA_THREADS(p) {
3507     tc->do_thread(p);
3508   }
3509 }
3510 
3511 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3512   assert_locked_or_safepoint(Threads_lock);
3513   java_threads_do(tc);
3514   tc->do_thread(VMThread::vm_thread());
3515 }
3516 
3517 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3518 void Threads::threads_do(ThreadClosure* tc) {
3519   assert_locked_or_safepoint(Threads_lock);
3520   java_threads_do(tc);
3521   non_java_threads_do(tc);
3522 }
3523 
3524 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3525   int cp = Threads::thread_claim_parity();
3526   ALL_JAVA_THREADS(p) {
3527     if (p->claim_oops_do(is_par, cp)) {
3528       tc->do_thread(p);
3529     }
3530   }
3531   VMThread* vmt = VMThread::vm_thread();
3532   if (vmt->claim_oops_do(is_par, cp)) {
3533     tc->do_thread(vmt);
3534   }
3535 }
3536 
3537 // The system initialization in the library has three phases.
3538 //
3539 // Phase 1: java.lang.System class initialization
3540 //     java.lang.System is a primordial class loaded and initialized
3541 //     by the VM early during startup.  java.lang.System.<clinit>
3542 //     only does registerNatives and keeps the rest of the class
3543 //     initialization work later until thread initialization completes.
3544 //
3545 //     System.initPhase1 initializes the system properties, the static
3546 //     fields in, out, and err. Set up java signal handlers, OS-specific
3547 //     system settings, and thread group of the main thread.
3548 static void call_initPhase1(TRAPS) {
3549   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3550   JavaValue result(T_VOID);
3551   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3552                                          vmSymbols::void_method_signature(), CHECK);
3553 }
3554 
3555 // Phase 2. Module system initialization
3556 //     This will initialize the module system.  Only java.base classes
3557 //     can be loaded until phase 2 completes.
3558 //
3559 //     Call System.initPhase2 after the compiler initialization and jsr292
3560 //     classes get initialized because module initialization runs a lot of java
3561 //     code, that for performance reasons, should be compiled.  Also, this will
3562 //     enable the startup code to use lambda and other language features in this
3563 //     phase and onward.
3564 //
3565 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3566 static void call_initPhase2(TRAPS) {
3567   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3568 
3569   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3570 
3571   JavaValue result(T_INT);
3572   JavaCallArguments args;
3573   args.push_int(DisplayVMOutputToStderr);
3574   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3575   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3576                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3577   if (result.get_jint() != JNI_OK) {
3578     vm_exit_during_initialization(); // no message or exception
3579   }
3580 
3581   universe_post_module_init();
3582 }
3583 
3584 // Phase 3. final setup - set security manager, system class loader and TCCL
3585 //
3586 //     This will instantiate and set the security manager, set the system class
3587 //     loader as well as the thread context class loader.  The security manager
3588 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3589 //     other modules or the application's classpath.
3590 static void call_initPhase3(TRAPS) {
3591   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3592   JavaValue result(T_VOID);
3593   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3594                                          vmSymbols::void_method_signature(), CHECK);
3595 }
3596 
3597 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3598   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3599 
3600   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3601     create_vm_init_libraries();
3602   }
3603 
3604   initialize_class(vmSymbols::java_lang_String(), CHECK);
3605 
3606   // Inject CompactStrings value after the static initializers for String ran.
3607   java_lang_String::set_compact_strings(CompactStrings);
3608 
3609   // Initialize java_lang.System (needed before creating the thread)
3610   initialize_class(vmSymbols::java_lang_System(), CHECK);
3611   // The VM creates & returns objects of this class. Make sure it's initialized.
3612   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3613   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3614   Handle thread_group = create_initial_thread_group(CHECK);
3615   Universe::set_main_thread_group(thread_group());
3616   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3617   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3618   main_thread->set_threadObj(thread_object);
3619   // Set thread status to running since main thread has
3620   // been started and running.
3621   java_lang_Thread::set_thread_status(thread_object,
3622                                       java_lang_Thread::RUNNABLE);
3623 
3624   // The VM creates objects of this class.
3625   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3626 
3627   // The VM preresolves methods to these classes. Make sure that they get initialized
3628   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3629   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3630 
3631   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3632   call_initPhase1(CHECK);
3633 
3634   // get the Java runtime name after java.lang.System is initialized
3635   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3636   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3637 
3638   // an instance of OutOfMemory exception has been allocated earlier
3639   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3640   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3641   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3642   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3643   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3644   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3645   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3646   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3647 }
3648 
3649 void Threads::initialize_jsr292_core_classes(TRAPS) {
3650   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3651 
3652   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3653   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3654   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3655   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3656 }
3657 
3658 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3659   extern void JDK_Version_init();
3660 
3661   // Preinitialize version info.
3662   VM_Version::early_initialize();
3663 
3664   // Check version
3665   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3666 
3667   // Initialize library-based TLS
3668   ThreadLocalStorage::init();
3669 
3670   // Initialize the output stream module
3671   ostream_init();
3672 
3673   // Process java launcher properties.
3674   Arguments::process_sun_java_launcher_properties(args);
3675 
3676   // Initialize the os module
3677   os::init();
3678 
3679   // Record VM creation timing statistics
3680   TraceVmCreationTime create_vm_timer;
3681   create_vm_timer.start();
3682 
3683   // Initialize system properties.
3684   Arguments::init_system_properties();
3685 
3686   // So that JDK version can be used as a discriminator when parsing arguments
3687   JDK_Version_init();
3688 
3689   // Update/Initialize System properties after JDK version number is known
3690   Arguments::init_version_specific_system_properties();
3691 
3692   // Make sure to initialize log configuration *before* parsing arguments
3693   LogConfiguration::initialize(create_vm_timer.begin_time());
3694 
3695   // Parse arguments
3696   // Note: this internally calls os::init_container_support()
3697   jint parse_result = Arguments::parse(args);
3698   if (parse_result != JNI_OK) return parse_result;
3699 
3700   os::init_before_ergo();
3701 
3702   jint ergo_result = Arguments::apply_ergo();
3703   if (ergo_result != JNI_OK) return ergo_result;
3704 
3705   // Final check of all ranges after ergonomics which may change values.
3706   if (!JVMFlagRangeList::check_ranges()) {
3707     return JNI_EINVAL;
3708   }
3709 
3710   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3711   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3712   if (!constraint_result) {
3713     return JNI_EINVAL;
3714   }
3715 
3716   JVMFlagWriteableList::mark_startup();
3717 
3718   if (PauseAtStartup) {
3719     os::pause();
3720   }
3721 
3722   HOTSPOT_VM_INIT_BEGIN();
3723 
3724   // Timing (must come after argument parsing)
3725   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3726 
3727   // Initialize the os module after parsing the args
3728   jint os_init_2_result = os::init_2();
3729   if (os_init_2_result != JNI_OK) return os_init_2_result;
3730 
3731 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3732   // Initialize assert poison page mechanism.
3733   if (ShowRegistersOnAssert) {
3734     initialize_assert_poison();
3735   }
3736 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3737 
3738   SafepointMechanism::initialize();
3739 
3740   jint adjust_after_os_result = Arguments::adjust_after_os();
3741   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3742 
3743   // Initialize output stream logging
3744   ostream_init_log();
3745 
3746   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3747   // Must be before create_vm_init_agents()
3748   if (Arguments::init_libraries_at_startup()) {
3749     convert_vm_init_libraries_to_agents();
3750   }
3751 
3752   // Launch -agentlib/-agentpath and converted -Xrun agents
3753   if (Arguments::init_agents_at_startup()) {
3754     create_vm_init_agents();
3755   }
3756 
3757   // Initialize Threads state
3758   _thread_list = NULL;
3759   _number_of_threads = 0;
3760   _number_of_non_daemon_threads = 0;
3761 
3762   // Initialize global data structures and create system classes in heap
3763   vm_init_globals();
3764 
3765 #if INCLUDE_JVMCI
3766   if (JVMCICounterSize > 0) {
3767     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3768     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3769   } else {
3770     JavaThread::_jvmci_old_thread_counters = NULL;
3771   }
3772 #endif // INCLUDE_JVMCI
3773 
3774   // Attach the main thread to this os thread
3775   JavaThread* main_thread = new JavaThread();
3776   main_thread->set_thread_state(_thread_in_vm);
3777   main_thread->initialize_thread_current();
3778   // must do this before set_active_handles
3779   main_thread->record_stack_base_and_size();
3780   main_thread->register_thread_stack_with_NMT();
3781   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3782 
3783   if (!main_thread->set_as_starting_thread()) {
3784     vm_shutdown_during_initialization(
3785                                       "Failed necessary internal allocation. Out of swap space");
3786     main_thread->smr_delete();
3787     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3788     return JNI_ENOMEM;
3789   }
3790 
3791   // Enable guard page *after* os::create_main_thread(), otherwise it would
3792   // crash Linux VM, see notes in os_linux.cpp.
3793   main_thread->create_stack_guard_pages();
3794 
3795   // Initialize Java-Level synchronization subsystem
3796   ObjectMonitor::Initialize();
3797 
3798   // Initialize global modules
3799   jint status = init_globals();
3800   if (status != JNI_OK) {
3801     main_thread->smr_delete();
3802     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3803     return status;
3804   }
3805 
3806   JFR_ONLY(Jfr::on_vm_init();)
3807 
3808   // Should be done after the heap is fully created
3809   main_thread->cache_global_variables();
3810 
3811   HandleMark hm;
3812 
3813   { MutexLocker mu(Threads_lock);
3814     Threads::add(main_thread);
3815   }
3816 
3817   // Any JVMTI raw monitors entered in onload will transition into
3818   // real raw monitor. VM is setup enough here for raw monitor enter.
3819   JvmtiExport::transition_pending_onload_raw_monitors();
3820 
3821   // Create the VMThread
3822   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3823 
3824   VMThread::create();
3825     Thread* vmthread = VMThread::vm_thread();
3826 
3827     if (!os::create_thread(vmthread, os::vm_thread)) {
3828       vm_exit_during_initialization("Cannot create VM thread. "
3829                                     "Out of system resources.");
3830     }
3831 
3832     // Wait for the VM thread to become ready, and VMThread::run to initialize
3833     // Monitors can have spurious returns, must always check another state flag
3834     {
3835       MutexLocker ml(Notify_lock);
3836       os::start_thread(vmthread);
3837       while (vmthread->active_handles() == NULL) {
3838         Notify_lock->wait();
3839       }
3840     }
3841   }
3842 
3843   assert(Universe::is_fully_initialized(), "not initialized");
3844   if (VerifyDuringStartup) {
3845     // Make sure we're starting with a clean slate.
3846     VM_Verify verify_op;
3847     VMThread::execute(&verify_op);
3848   }
3849 
3850   // We need this to update the java.vm.info property in case any flags used
3851   // to initially define it have been changed. This is needed for both CDS and
3852   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3853   // is initially computed. See Abstract_VM_Version::vm_info_string().
3854   // This update must happen before we initialize the java classes, but
3855   // after any initialization logic that might modify the flags.
3856   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3857 
3858   Thread* THREAD = Thread::current();
3859 
3860   // Always call even when there are not JVMTI environments yet, since environments
3861   // may be attached late and JVMTI must track phases of VM execution
3862   JvmtiExport::enter_early_start_phase();
3863 
3864   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3865   JvmtiExport::post_early_vm_start();
3866 
3867   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3868 
3869   quicken_jni_functions();
3870 
3871   // No more stub generation allowed after that point.
3872   StubCodeDesc::freeze();
3873 
3874   // Set flag that basic initialization has completed. Used by exceptions and various
3875   // debug stuff, that does not work until all basic classes have been initialized.
3876   set_init_completed();
3877 
3878   LogConfiguration::post_initialize();
3879   Metaspace::post_initialize();
3880 
3881   HOTSPOT_VM_INIT_END();
3882 
3883   // record VM initialization completion time
3884 #if INCLUDE_MANAGEMENT
3885   Management::record_vm_init_completed();
3886 #endif // INCLUDE_MANAGEMENT
3887 
3888   // Signal Dispatcher needs to be started before VMInit event is posted
3889   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3890 
3891   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3892   if (!DisableAttachMechanism) {
3893     AttachListener::vm_start();
3894     if (StartAttachListener || AttachListener::init_at_startup()) {
3895       AttachListener::init();
3896     }
3897   }
3898 
3899   // Launch -Xrun agents
3900   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3901   // back-end can launch with -Xdebug -Xrunjdwp.
3902   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3903     create_vm_init_libraries();
3904   }
3905 
3906   if (CleanChunkPoolAsync) {
3907     Chunk::start_chunk_pool_cleaner_task();
3908   }
3909 
3910   // initialize compiler(s)
3911 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3912 #if INCLUDE_JVMCI
3913   bool force_JVMCI_intialization = false;
3914   if (EnableJVMCI) {
3915     // Initialize JVMCI eagerly when it is explicitly requested.
3916     // Or when JVMCIPrintProperties is enabled.
3917     // The JVMCI Java initialization code will read this flag and
3918     // do the printing if it's set.
3919     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3920 
3921     if (!force_JVMCI_intialization) {
3922       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3923       // compilations via JVMCI will not actually block until JVMCI is initialized.
3924       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3925     }
3926   }
3927 #endif
3928   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3929   // Postpone completion of compiler initialization to after JVMCI
3930   // is initialized to avoid timeouts of blocking compilations.
3931   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3932     CompileBroker::compilation_init_phase2();
3933   }
3934 #endif
3935 
3936   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3937   // It is done after compilers are initialized, because otherwise compilations of
3938   // signature polymorphic MH intrinsics can be missed
3939   // (see SystemDictionary::find_method_handle_intrinsic).
3940   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3941 
3942   // This will initialize the module system.  Only java.base classes can be
3943   // loaded until phase 2 completes
3944   call_initPhase2(CHECK_JNI_ERR);
3945 
3946   // Always call even when there are not JVMTI environments yet, since environments
3947   // may be attached late and JVMTI must track phases of VM execution
3948   JvmtiExport::enter_start_phase();
3949 
3950   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3951   JvmtiExport::post_vm_start();
3952 
3953   // Final system initialization including security manager and system class loader
3954   call_initPhase3(CHECK_JNI_ERR);
3955 
3956   // cache the system and platform class loaders
3957   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3958 
3959 #if INCLUDE_CDS
3960   if (DumpSharedSpaces) {
3961     // capture the module path info from the ModuleEntryTable
3962     ClassLoader::initialize_module_path(THREAD);
3963   }
3964 #endif
3965 
3966 #if INCLUDE_JVMCI
3967   if (force_JVMCI_intialization) {
3968     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3969     CompileBroker::compilation_init_phase2();
3970   }
3971 #endif
3972 
3973   // Always call even when there are not JVMTI environments yet, since environments
3974   // may be attached late and JVMTI must track phases of VM execution
3975   JvmtiExport::enter_live_phase();
3976 
3977   // Make perfmemory accessible
3978   PerfMemory::set_accessible(true);
3979 
3980   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3981   JvmtiExport::post_vm_initialized();
3982 
3983   JFR_ONLY(Jfr::on_vm_start();)
3984 
3985 #if INCLUDE_MANAGEMENT
3986   Management::initialize(THREAD);
3987 
3988   if (HAS_PENDING_EXCEPTION) {
3989     // management agent fails to start possibly due to
3990     // configuration problem and is responsible for printing
3991     // stack trace if appropriate. Simply exit VM.
3992     vm_exit(1);
3993   }
3994 #endif // INCLUDE_MANAGEMENT
3995 
3996   if (MemProfiling)                   MemProfiler::engage();
3997   StatSampler::engage();
3998   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3999 
4000   BiasedLocking::init();
4001 
4002 #if INCLUDE_RTM_OPT
4003   RTMLockingCounters::init();
4004 #endif
4005 
4006   if (JDK_Version::current().post_vm_init_hook_enabled()) {
4007     call_postVMInitHook(THREAD);
4008     // The Java side of PostVMInitHook.run must deal with all
4009     // exceptions and provide means of diagnosis.
4010     if (HAS_PENDING_EXCEPTION) {
4011       CLEAR_PENDING_EXCEPTION;
4012     }
4013   }
4014 
4015   {
4016     MutexLocker ml(PeriodicTask_lock);
4017     // Make sure the WatcherThread can be started by WatcherThread::start()
4018     // or by dynamic enrollment.
4019     WatcherThread::make_startable();
4020     // Start up the WatcherThread if there are any periodic tasks
4021     // NOTE:  All PeriodicTasks should be registered by now. If they
4022     //   aren't, late joiners might appear to start slowly (we might
4023     //   take a while to process their first tick).
4024     if (PeriodicTask::num_tasks() > 0) {
4025       WatcherThread::start();
4026     }
4027   }
4028 
4029   create_vm_timer.end();
4030 #ifdef ASSERT
4031   _vm_complete = true;
4032 #endif
4033 
4034   if (DumpSharedSpaces) {
4035     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4036     ShouldNotReachHere();
4037   }
4038 
4039   return JNI_OK;
4040 }
4041 
4042 // type for the Agent_OnLoad and JVM_OnLoad entry points
4043 extern "C" {
4044   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4045 }
4046 // Find a command line agent library and return its entry point for
4047 //         -agentlib:  -agentpath:   -Xrun
4048 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4049 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4050                                     const char *on_load_symbols[],
4051                                     size_t num_symbol_entries) {
4052   OnLoadEntry_t on_load_entry = NULL;
4053   void *library = NULL;
4054 
4055   if (!agent->valid()) {
4056     char buffer[JVM_MAXPATHLEN];
4057     char ebuf[1024] = "";
4058     const char *name = agent->name();
4059     const char *msg = "Could not find agent library ";
4060 
4061     // First check to see if agent is statically linked into executable
4062     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4063       library = agent->os_lib();
4064     } else if (agent->is_absolute_path()) {
4065       library = os::dll_load(name, ebuf, sizeof ebuf);
4066       if (library == NULL) {
4067         const char *sub_msg = " in absolute path, with error: ";
4068         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4069         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4070         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4071         // If we can't find the agent, exit.
4072         vm_exit_during_initialization(buf, NULL);
4073         FREE_C_HEAP_ARRAY(char, buf);
4074       }
4075     } else {
4076       // Try to load the agent from the standard dll directory
4077       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4078                              name)) {
4079         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4080       }
4081       if (library == NULL) { // Try the library path directory.
4082         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4083           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4084         }
4085         if (library == NULL) {
4086           const char *sub_msg = " on the library path, with error: ";
4087           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4088 
4089           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4090                        strlen(ebuf) + strlen(sub_msg2) + 1;
4091           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4092           if (!agent->is_instrument_lib()) {
4093             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4094           } else {
4095             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4096           }
4097           // If we can't find the agent, exit.
4098           vm_exit_during_initialization(buf, NULL);
4099           FREE_C_HEAP_ARRAY(char, buf);
4100         }
4101       }
4102     }
4103     agent->set_os_lib(library);
4104     agent->set_valid();
4105   }
4106 
4107   // Find the OnLoad function.
4108   on_load_entry =
4109     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4110                                                           false,
4111                                                           on_load_symbols,
4112                                                           num_symbol_entries));
4113   return on_load_entry;
4114 }
4115 
4116 // Find the JVM_OnLoad entry point
4117 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4118   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4119   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4120 }
4121 
4122 // Find the Agent_OnLoad entry point
4123 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4124   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4125   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4126 }
4127 
4128 // For backwards compatibility with -Xrun
4129 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4130 // treated like -agentpath:
4131 // Must be called before agent libraries are created
4132 void Threads::convert_vm_init_libraries_to_agents() {
4133   AgentLibrary* agent;
4134   AgentLibrary* next;
4135 
4136   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4137     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4138     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4139 
4140     // If there is an JVM_OnLoad function it will get called later,
4141     // otherwise see if there is an Agent_OnLoad
4142     if (on_load_entry == NULL) {
4143       on_load_entry = lookup_agent_on_load(agent);
4144       if (on_load_entry != NULL) {
4145         // switch it to the agent list -- so that Agent_OnLoad will be called,
4146         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4147         Arguments::convert_library_to_agent(agent);
4148       } else {
4149         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4150       }
4151     }
4152   }
4153 }
4154 
4155 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4156 // Invokes Agent_OnLoad
4157 // Called very early -- before JavaThreads exist
4158 void Threads::create_vm_init_agents() {
4159   extern struct JavaVM_ main_vm;
4160   AgentLibrary* agent;
4161 
4162   JvmtiExport::enter_onload_phase();
4163 
4164   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4165     // CDS dumping does not support native JVMTI agent.
4166     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4167     if (DumpSharedSpaces) {
4168       if(!agent->is_instrument_lib()) {
4169         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4170       } else if (!AllowArchivingWithJavaAgent) {
4171         vm_exit_during_cds_dumping(
4172           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4173       }
4174     }
4175 
4176     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4177 
4178     if (on_load_entry != NULL) {
4179       // Invoke the Agent_OnLoad function
4180       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4181       if (err != JNI_OK) {
4182         vm_exit_during_initialization("agent library failed to init", agent->name());
4183       }
4184     } else {
4185       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4186     }
4187   }
4188 
4189   JvmtiExport::enter_primordial_phase();
4190 }
4191 
4192 extern "C" {
4193   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4194 }
4195 
4196 void Threads::shutdown_vm_agents() {
4197   // Send any Agent_OnUnload notifications
4198   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4199   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4200   extern struct JavaVM_ main_vm;
4201   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4202 
4203     // Find the Agent_OnUnload function.
4204     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4205                                                    os::find_agent_function(agent,
4206                                                    false,
4207                                                    on_unload_symbols,
4208                                                    num_symbol_entries));
4209 
4210     // Invoke the Agent_OnUnload function
4211     if (unload_entry != NULL) {
4212       JavaThread* thread = JavaThread::current();
4213       ThreadToNativeFromVM ttn(thread);
4214       HandleMark hm(thread);
4215       (*unload_entry)(&main_vm);
4216     }
4217   }
4218 }
4219 
4220 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4221 // Invokes JVM_OnLoad
4222 void Threads::create_vm_init_libraries() {
4223   extern struct JavaVM_ main_vm;
4224   AgentLibrary* agent;
4225 
4226   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4227     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4228 
4229     if (on_load_entry != NULL) {
4230       // Invoke the JVM_OnLoad function
4231       JavaThread* thread = JavaThread::current();
4232       ThreadToNativeFromVM ttn(thread);
4233       HandleMark hm(thread);
4234       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4235       if (err != JNI_OK) {
4236         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4237       }
4238     } else {
4239       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4240     }
4241   }
4242 }
4243 
4244 
4245 // Last thread running calls java.lang.Shutdown.shutdown()
4246 void JavaThread::invoke_shutdown_hooks() {
4247   HandleMark hm(this);
4248 
4249   // We could get here with a pending exception, if so clear it now.
4250   if (this->has_pending_exception()) {
4251     this->clear_pending_exception();
4252   }
4253 
4254   EXCEPTION_MARK;
4255   Klass* shutdown_klass =
4256     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4257                                       THREAD);
4258   if (shutdown_klass != NULL) {
4259     // SystemDictionary::resolve_or_null will return null if there was
4260     // an exception.  If we cannot load the Shutdown class, just don't
4261     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4262     // won't be run.  Note that if a shutdown hook was registered,
4263     // the Shutdown class would have already been loaded
4264     // (Runtime.addShutdownHook will load it).
4265     JavaValue result(T_VOID);
4266     JavaCalls::call_static(&result,
4267                            shutdown_klass,
4268                            vmSymbols::shutdown_method_name(),
4269                            vmSymbols::void_method_signature(),
4270                            THREAD);
4271   }
4272   CLEAR_PENDING_EXCEPTION;
4273 }
4274 
4275 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4276 // the program falls off the end of main(). Another VM exit path is through
4277 // vm_exit() when the program calls System.exit() to return a value or when
4278 // there is a serious error in VM. The two shutdown paths are not exactly
4279 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4280 // and VM_Exit op at VM level.
4281 //
4282 // Shutdown sequence:
4283 //   + Shutdown native memory tracking if it is on
4284 //   + Wait until we are the last non-daemon thread to execute
4285 //     <-- every thing is still working at this moment -->
4286 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4287 //        shutdown hooks
4288 //   + Call before_exit(), prepare for VM exit
4289 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4290 //        currently the only user of this mechanism is File.deleteOnExit())
4291 //      > stop StatSampler, watcher thread, CMS threads,
4292 //        post thread end and vm death events to JVMTI,
4293 //        stop signal thread
4294 //   + Call JavaThread::exit(), it will:
4295 //      > release JNI handle blocks, remove stack guard pages
4296 //      > remove this thread from Threads list
4297 //     <-- no more Java code from this thread after this point -->
4298 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4299 //     the compiler threads at safepoint
4300 //     <-- do not use anything that could get blocked by Safepoint -->
4301 //   + Disable tracing at JNI/JVM barriers
4302 //   + Set _vm_exited flag for threads that are still running native code
4303 //   + Call exit_globals()
4304 //      > deletes tty
4305 //      > deletes PerfMemory resources
4306 //   + Delete this thread
4307 //   + Return to caller
4308 
4309 bool Threads::destroy_vm() {
4310   JavaThread* thread = JavaThread::current();
4311 
4312 #ifdef ASSERT
4313   _vm_complete = false;
4314 #endif
4315   // Wait until we are the last non-daemon thread to execute
4316   { MutexLocker nu(Threads_lock);
4317     while (Threads::number_of_non_daemon_threads() > 1)
4318       // This wait should make safepoint checks, wait without a timeout,
4319       // and wait as a suspend-equivalent condition.
4320       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4321                          Mutex::_as_suspend_equivalent_flag);
4322   }
4323 
4324   EventShutdown e;
4325   if (e.should_commit()) {
4326     e.set_reason("No remaining non-daemon Java threads");
4327     e.commit();
4328   }
4329 
4330   // Hang forever on exit if we are reporting an error.
4331   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4332     os::infinite_sleep();
4333   }
4334   os::wait_for_keypress_at_exit();
4335 
4336   // run Java level shutdown hooks
4337   thread->invoke_shutdown_hooks();
4338 
4339   before_exit(thread);
4340 
4341   thread->exit(true);
4342 
4343   // Stop VM thread.
4344   {
4345     // 4945125 The vm thread comes to a safepoint during exit.
4346     // GC vm_operations can get caught at the safepoint, and the
4347     // heap is unparseable if they are caught. Grab the Heap_lock
4348     // to prevent this. The GC vm_operations will not be able to
4349     // queue until after the vm thread is dead. After this point,
4350     // we'll never emerge out of the safepoint before the VM exits.
4351 
4352     MutexLockerEx ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4353 
4354     VMThread::wait_for_vm_thread_exit();
4355     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4356     VMThread::destroy();
4357   }
4358 
4359   // Now, all Java threads are gone except daemon threads. Daemon threads
4360   // running Java code or in VM are stopped by the Safepoint. However,
4361   // daemon threads executing native code are still running.  But they
4362   // will be stopped at native=>Java/VM barriers. Note that we can't
4363   // simply kill or suspend them, as it is inherently deadlock-prone.
4364 
4365   VM_Exit::set_vm_exited();
4366 
4367   // Clean up ideal graph printers after the VMThread has started
4368   // the final safepoint which will block all the Compiler threads.
4369   // Note that this Thread has already logically exited so the
4370   // clean_up() function's use of a JavaThreadIteratorWithHandle
4371   // would be a problem except set_vm_exited() has remembered the
4372   // shutdown thread which is granted a policy exception.
4373 #if defined(COMPILER2) && !defined(PRODUCT)
4374   IdealGraphPrinter::clean_up();
4375 #endif
4376 
4377   notify_vm_shutdown();
4378 
4379   // exit_globals() will delete tty
4380   exit_globals();
4381 
4382   // We are after VM_Exit::set_vm_exited() so we can't call
4383   // thread->smr_delete() or we will block on the Threads_lock.
4384   // Deleting the shutdown thread here is safe because another
4385   // JavaThread cannot have an active ThreadsListHandle for
4386   // this JavaThread.
4387   delete thread;
4388 
4389 #if INCLUDE_JVMCI
4390   if (JVMCICounterSize > 0) {
4391     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4392   }
4393 #endif
4394 
4395   LogConfiguration::finalize();
4396 
4397   return true;
4398 }
4399 
4400 
4401 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4402   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4403   return is_supported_jni_version(version);
4404 }
4405 
4406 
4407 jboolean Threads::is_supported_jni_version(jint version) {
4408   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4409   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4410   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4411   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4412   if (version == JNI_VERSION_9) return JNI_TRUE;
4413   if (version == JNI_VERSION_10) return JNI_TRUE;
4414   return JNI_FALSE;
4415 }
4416 
4417 
4418 void Threads::add(JavaThread* p, bool force_daemon) {
4419   // The threads lock must be owned at this point
4420   assert(Threads_lock->owned_by_self(), "must have threads lock");
4421 
4422   BarrierSet::barrier_set()->on_thread_attach(p);
4423 
4424   p->set_next(_thread_list);
4425   _thread_list = p;
4426 
4427   // Once a JavaThread is added to the Threads list, smr_delete() has
4428   // to be used to delete it. Otherwise we can just delete it directly.
4429   p->set_on_thread_list();
4430 
4431   _number_of_threads++;
4432   oop threadObj = p->threadObj();
4433   bool daemon = true;
4434   // Bootstrapping problem: threadObj can be null for initial
4435   // JavaThread (or for threads attached via JNI)
4436   if ((!force_daemon) && !is_daemon((threadObj))) {
4437     _number_of_non_daemon_threads++;
4438     daemon = false;
4439   }
4440 
4441   ThreadService::add_thread(p, daemon);
4442 
4443   // Maintain fast thread list
4444   ThreadsSMRSupport::add_thread(p);
4445 
4446   // Possible GC point.
4447   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4448 }
4449 
4450 void Threads::remove(JavaThread* p) {
4451 
4452   // Reclaim the ObjectMonitors from the omInUseList and omFreeList of the moribund thread.
4453   ObjectSynchronizer::omFlush(p);
4454 
4455   // Extra scope needed for Thread_lock, so we can check
4456   // that we do not remove thread without safepoint code notice
4457   { MutexLocker ml(Threads_lock);
4458 
4459     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4460 
4461     // Maintain fast thread list
4462     ThreadsSMRSupport::remove_thread(p);
4463 
4464     JavaThread* current = _thread_list;
4465     JavaThread* prev    = NULL;
4466 
4467     while (current != p) {
4468       prev    = current;
4469       current = current->next();
4470     }
4471 
4472     if (prev) {
4473       prev->set_next(current->next());
4474     } else {
4475       _thread_list = p->next();
4476     }
4477 
4478     _number_of_threads--;
4479     oop threadObj = p->threadObj();
4480     bool daemon = true;
4481     if (!is_daemon(threadObj)) {
4482       _number_of_non_daemon_threads--;
4483       daemon = false;
4484 
4485       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4486       // on destroy_vm will wake up.
4487       if (number_of_non_daemon_threads() == 1) {
4488         Threads_lock->notify_all();
4489       }
4490     }
4491     ThreadService::remove_thread(p, daemon);
4492 
4493     // Make sure that safepoint code disregard this thread. This is needed since
4494     // the thread might mess around with locks after this point. This can cause it
4495     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4496     // of this thread since it is removed from the queue.
4497     p->set_terminated_value();
4498   } // unlock Threads_lock
4499 
4500   // Since Events::log uses a lock, we grab it outside the Threads_lock
4501   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4502 }
4503 
4504 // Operations on the Threads list for GC.  These are not explicitly locked,
4505 // but the garbage collector must provide a safe context for them to run.
4506 // In particular, these things should never be called when the Threads_lock
4507 // is held by some other thread. (Note: the Safepoint abstraction also
4508 // uses the Threads_lock to guarantee this property. It also makes sure that
4509 // all threads gets blocked when exiting or starting).
4510 
4511 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4512   ALL_JAVA_THREADS(p) {
4513     p->oops_do(f, cf);
4514   }
4515   VMThread::vm_thread()->oops_do(f, cf);
4516 }
4517 
4518 void Threads::change_thread_claim_parity() {
4519   // Set the new claim parity.
4520   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4521          "Not in range.");
4522   _thread_claim_parity++;
4523   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4524   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4525          "Not in range.");
4526 }
4527 
4528 #ifdef ASSERT
4529 void Threads::assert_all_threads_claimed() {
4530   ALL_JAVA_THREADS(p) {
4531     const int thread_parity = p->oops_do_parity();
4532     assert((thread_parity == _thread_claim_parity),
4533            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4534   }
4535   VMThread* vmt = VMThread::vm_thread();
4536   const int thread_parity = vmt->oops_do_parity();
4537   assert((thread_parity == _thread_claim_parity),
4538          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4539 }
4540 #endif // ASSERT
4541 
4542 class ParallelOopsDoThreadClosure : public ThreadClosure {
4543 private:
4544   OopClosure* _f;
4545   CodeBlobClosure* _cf;
4546 public:
4547   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4548   void do_thread(Thread* t) {
4549     t->oops_do(_f, _cf);
4550   }
4551 };
4552 
4553 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4554   ParallelOopsDoThreadClosure tc(f, cf);
4555   possibly_parallel_threads_do(is_par, &tc);
4556 }
4557 
4558 void Threads::nmethods_do(CodeBlobClosure* cf) {
4559   ALL_JAVA_THREADS(p) {
4560     // This is used by the code cache sweeper to mark nmethods that are active
4561     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4562     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4563     if(!p->is_Code_cache_sweeper_thread()) {
4564       p->nmethods_do(cf);
4565     }
4566   }
4567 }
4568 
4569 void Threads::metadata_do(MetadataClosure* f) {
4570   ALL_JAVA_THREADS(p) {
4571     p->metadata_do(f);
4572   }
4573 }
4574 
4575 class ThreadHandlesClosure : public ThreadClosure {
4576   void (*_f)(Metadata*);
4577  public:
4578   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4579   virtual void do_thread(Thread* thread) {
4580     thread->metadata_handles_do(_f);
4581   }
4582 };
4583 
4584 void Threads::metadata_handles_do(void f(Metadata*)) {
4585   // Only walk the Handles in Thread.
4586   ThreadHandlesClosure handles_closure(f);
4587   threads_do(&handles_closure);
4588 }
4589 
4590 void Threads::deoptimized_wrt_marked_nmethods() {
4591   ALL_JAVA_THREADS(p) {
4592     p->deoptimized_wrt_marked_nmethods();
4593   }
4594 }
4595 
4596 
4597 // Get count Java threads that are waiting to enter the specified monitor.
4598 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4599                                                          int count,
4600                                                          address monitor) {
4601   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4602 
4603   int i = 0;
4604   DO_JAVA_THREADS(t_list, p) {
4605     if (!p->can_call_java()) continue;
4606 
4607     address pending = (address)p->current_pending_monitor();
4608     if (pending == monitor) {             // found a match
4609       if (i < count) result->append(p);   // save the first count matches
4610       i++;
4611     }
4612   }
4613 
4614   return result;
4615 }
4616 
4617 
4618 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4619                                                       address owner) {
4620   // NULL owner means not locked so we can skip the search
4621   if (owner == NULL) return NULL;
4622 
4623   DO_JAVA_THREADS(t_list, p) {
4624     // first, see if owner is the address of a Java thread
4625     if (owner == (address)p) return p;
4626   }
4627 
4628   // Cannot assert on lack of success here since this function may be
4629   // used by code that is trying to report useful problem information
4630   // like deadlock detection.
4631   if (UseHeavyMonitors) return NULL;
4632 
4633   // If we didn't find a matching Java thread and we didn't force use of
4634   // heavyweight monitors, then the owner is the stack address of the
4635   // Lock Word in the owning Java thread's stack.
4636   //
4637   JavaThread* the_owner = NULL;
4638   DO_JAVA_THREADS(t_list, q) {
4639     if (q->is_lock_owned(owner)) {
4640       the_owner = q;
4641       break;
4642     }
4643   }
4644 
4645   // cannot assert on lack of success here; see above comment
4646   return the_owner;
4647 }
4648 
4649 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4650 void Threads::print_on(outputStream* st, bool print_stacks,
4651                        bool internal_format, bool print_concurrent_locks,
4652                        bool print_extended_info) {
4653   char buf[32];
4654   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4655 
4656   st->print_cr("Full thread dump %s (%s %s):",
4657                VM_Version::vm_name(),
4658                VM_Version::vm_release(),
4659                VM_Version::vm_info_string());
4660   st->cr();
4661 
4662 #if INCLUDE_SERVICES
4663   // Dump concurrent locks
4664   ConcurrentLocksDump concurrent_locks;
4665   if (print_concurrent_locks) {
4666     concurrent_locks.dump_at_safepoint();
4667   }
4668 #endif // INCLUDE_SERVICES
4669 
4670   ThreadsSMRSupport::print_info_on(st);
4671   st->cr();
4672 
4673   ALL_JAVA_THREADS(p) {
4674     ResourceMark rm;
4675     p->print_on(st, print_extended_info);
4676     if (print_stacks) {
4677       if (internal_format) {
4678         p->trace_stack();
4679       } else {
4680         p->print_stack_on(st);
4681       }
4682     }
4683     st->cr();
4684 #if INCLUDE_SERVICES
4685     if (print_concurrent_locks) {
4686       concurrent_locks.print_locks_on(p, st);
4687     }
4688 #endif // INCLUDE_SERVICES
4689   }
4690 
4691   VMThread::vm_thread()->print_on(st);
4692   st->cr();
4693   Universe::heap()->print_gc_threads_on(st);
4694   WatcherThread* wt = WatcherThread::watcher_thread();
4695   if (wt != NULL) {
4696     wt->print_on(st);
4697     st->cr();
4698   }
4699 
4700   st->flush();
4701 }
4702 
4703 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4704                              int buflen, bool* found_current) {
4705   if (this_thread != NULL) {
4706     bool is_current = (current == this_thread);
4707     *found_current = *found_current || is_current;
4708     st->print("%s", is_current ? "=>" : "  ");
4709 
4710     st->print(PTR_FORMAT, p2i(this_thread));
4711     st->print(" ");
4712     this_thread->print_on_error(st, buf, buflen);
4713     st->cr();
4714   }
4715 }
4716 
4717 class PrintOnErrorClosure : public ThreadClosure {
4718   outputStream* _st;
4719   Thread* _current;
4720   char* _buf;
4721   int _buflen;
4722   bool* _found_current;
4723  public:
4724   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4725                       int buflen, bool* found_current) :
4726    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4727 
4728   virtual void do_thread(Thread* thread) {
4729     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4730   }
4731 };
4732 
4733 // Threads::print_on_error() is called by fatal error handler. It's possible
4734 // that VM is not at safepoint and/or current thread is inside signal handler.
4735 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4736 // memory (even in resource area), it might deadlock the error handler.
4737 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4738                              int buflen) {
4739   ThreadsSMRSupport::print_info_on(st);
4740   st->cr();
4741 
4742   bool found_current = false;
4743   st->print_cr("Java Threads: ( => current thread )");
4744   ALL_JAVA_THREADS(thread) {
4745     print_on_error(thread, st, current, buf, buflen, &found_current);
4746   }
4747   st->cr();
4748 
4749   st->print_cr("Other Threads:");
4750   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4751   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4752 
4753   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4754   Universe::heap()->gc_threads_do(&print_closure);
4755 
4756   if (!found_current) {
4757     st->cr();
4758     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4759     current->print_on_error(st, buf, buflen);
4760     st->cr();
4761   }
4762   st->cr();
4763 
4764   st->print_cr("Threads with active compile tasks:");
4765   print_threads_compiling(st, buf, buflen);
4766 }
4767 
4768 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4769   ALL_JAVA_THREADS(thread) {
4770     if (thread->is_Compiler_thread()) {
4771       CompilerThread* ct = (CompilerThread*) thread;
4772 
4773       // Keep task in local variable for NULL check.
4774       // ct->_task might be set to NULL by concurring compiler thread
4775       // because it completed the compilation. The task is never freed,
4776       // though, just returned to a free list.
4777       CompileTask* task = ct->task();
4778       if (task != NULL) {
4779         thread->print_name_on_error(st, buf, buflen);
4780         st->print("  ");
4781         task->print(st, NULL, short_form, true);
4782       }
4783     }
4784   }
4785 }
4786 
4787 
4788 // Internal SpinLock and Mutex
4789 // Based on ParkEvent
4790 
4791 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4792 //
4793 // We employ SpinLocks _only for low-contention, fixed-length
4794 // short-duration critical sections where we're concerned
4795 // about native mutex_t or HotSpot Mutex:: latency.
4796 // The mux construct provides a spin-then-block mutual exclusion
4797 // mechanism.
4798 //
4799 // Testing has shown that contention on the ListLock guarding gFreeList
4800 // is common.  If we implement ListLock as a simple SpinLock it's common
4801 // for the JVM to devolve to yielding with little progress.  This is true
4802 // despite the fact that the critical sections protected by ListLock are
4803 // extremely short.
4804 //
4805 // TODO-FIXME: ListLock should be of type SpinLock.
4806 // We should make this a 1st-class type, integrated into the lock
4807 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4808 // should have sufficient padding to avoid false-sharing and excessive
4809 // cache-coherency traffic.
4810 
4811 
4812 typedef volatile int SpinLockT;
4813 
4814 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4815   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4816     return;   // normal fast-path return
4817   }
4818 
4819   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4820   int ctr = 0;
4821   int Yields = 0;
4822   for (;;) {
4823     while (*adr != 0) {
4824       ++ctr;
4825       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4826         if (Yields > 5) {
4827           os::naked_short_sleep(1);
4828         } else {
4829           os::naked_yield();
4830           ++Yields;
4831         }
4832       } else {
4833         SpinPause();
4834       }
4835     }
4836     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4837   }
4838 }
4839 
4840 void Thread::SpinRelease(volatile int * adr) {
4841   assert(*adr != 0, "invariant");
4842   OrderAccess::fence();      // guarantee at least release consistency.
4843   // Roach-motel semantics.
4844   // It's safe if subsequent LDs and STs float "up" into the critical section,
4845   // but prior LDs and STs within the critical section can't be allowed
4846   // to reorder or float past the ST that releases the lock.
4847   // Loads and stores in the critical section - which appear in program
4848   // order before the store that releases the lock - must also appear
4849   // before the store that releases the lock in memory visibility order.
4850   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4851   // the ST of 0 into the lock-word which releases the lock, so fence
4852   // more than covers this on all platforms.
4853   *adr = 0;
4854 }
4855 
4856 // muxAcquire and muxRelease:
4857 //
4858 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4859 //    The LSB of the word is set IFF the lock is held.
4860 //    The remainder of the word points to the head of a singly-linked list
4861 //    of threads blocked on the lock.
4862 //
4863 // *  The current implementation of muxAcquire-muxRelease uses its own
4864 //    dedicated Thread._MuxEvent instance.  If we're interested in
4865 //    minimizing the peak number of extant ParkEvent instances then
4866 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4867 //    as certain invariants were satisfied.  Specifically, care would need
4868 //    to be taken with regards to consuming unpark() "permits".
4869 //    A safe rule of thumb is that a thread would never call muxAcquire()
4870 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4871 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4872 //    consume an unpark() permit intended for monitorenter, for instance.
4873 //    One way around this would be to widen the restricted-range semaphore
4874 //    implemented in park().  Another alternative would be to provide
4875 //    multiple instances of the PlatformEvent() for each thread.  One
4876 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4877 //
4878 // *  Usage:
4879 //    -- Only as leaf locks
4880 //    -- for short-term locking only as muxAcquire does not perform
4881 //       thread state transitions.
4882 //
4883 // Alternatives:
4884 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4885 //    but with parking or spin-then-park instead of pure spinning.
4886 // *  Use Taura-Oyama-Yonenzawa locks.
4887 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4888 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4889 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4890 //    acquiring threads use timers (ParkTimed) to detect and recover from
4891 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4892 //    boundaries by using placement-new.
4893 // *  Augment MCS with advisory back-link fields maintained with CAS().
4894 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4895 //    The validity of the backlinks must be ratified before we trust the value.
4896 //    If the backlinks are invalid the exiting thread must back-track through the
4897 //    the forward links, which are always trustworthy.
4898 // *  Add a successor indication.  The LockWord is currently encoded as
4899 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4900 //    to provide the usual futile-wakeup optimization.
4901 //    See RTStt for details.
4902 //
4903 
4904 
4905 const intptr_t LOCKBIT = 1;
4906 
4907 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4908   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4909   if (w == 0) return;
4910   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4911     return;
4912   }
4913 
4914   ParkEvent * const Self = Thread::current()->_MuxEvent;
4915   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4916   for (;;) {
4917     int its = (os::is_MP() ? 100 : 0) + 1;
4918 
4919     // Optional spin phase: spin-then-park strategy
4920     while (--its >= 0) {
4921       w = *Lock;
4922       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4923         return;
4924       }
4925     }
4926 
4927     Self->reset();
4928     Self->OnList = intptr_t(Lock);
4929     // The following fence() isn't _strictly necessary as the subsequent
4930     // CAS() both serializes execution and ratifies the fetched *Lock value.
4931     OrderAccess::fence();
4932     for (;;) {
4933       w = *Lock;
4934       if ((w & LOCKBIT) == 0) {
4935         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4936           Self->OnList = 0;   // hygiene - allows stronger asserts
4937           return;
4938         }
4939         continue;      // Interference -- *Lock changed -- Just retry
4940       }
4941       assert(w & LOCKBIT, "invariant");
4942       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4943       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4944     }
4945 
4946     while (Self->OnList != 0) {
4947       Self->park();
4948     }
4949   }
4950 }
4951 
4952 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4953   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4954   if (w == 0) return;
4955   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4956     return;
4957   }
4958 
4959   ParkEvent * ReleaseAfter = NULL;
4960   if (ev == NULL) {
4961     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4962   }
4963   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4964   for (;;) {
4965     guarantee(ev->OnList == 0, "invariant");
4966     int its = (os::is_MP() ? 100 : 0) + 1;
4967 
4968     // Optional spin phase: spin-then-park strategy
4969     while (--its >= 0) {
4970       w = *Lock;
4971       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4972         if (ReleaseAfter != NULL) {
4973           ParkEvent::Release(ReleaseAfter);
4974         }
4975         return;
4976       }
4977     }
4978 
4979     ev->reset();
4980     ev->OnList = intptr_t(Lock);
4981     // The following fence() isn't _strictly necessary as the subsequent
4982     // CAS() both serializes execution and ratifies the fetched *Lock value.
4983     OrderAccess::fence();
4984     for (;;) {
4985       w = *Lock;
4986       if ((w & LOCKBIT) == 0) {
4987         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4988           ev->OnList = 0;
4989           // We call ::Release while holding the outer lock, thus
4990           // artificially lengthening the critical section.
4991           // Consider deferring the ::Release() until the subsequent unlock(),
4992           // after we've dropped the outer lock.
4993           if (ReleaseAfter != NULL) {
4994             ParkEvent::Release(ReleaseAfter);
4995           }
4996           return;
4997         }
4998         continue;      // Interference -- *Lock changed -- Just retry
4999       }
5000       assert(w & LOCKBIT, "invariant");
5001       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5002       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
5003     }
5004 
5005     while (ev->OnList != 0) {
5006       ev->park();
5007     }
5008   }
5009 }
5010 
5011 // Release() must extract a successor from the list and then wake that thread.
5012 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5013 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5014 // Release() would :
5015 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5016 // (B) Extract a successor from the private list "in-hand"
5017 // (C) attempt to CAS() the residual back into *Lock over null.
5018 //     If there were any newly arrived threads and the CAS() would fail.
5019 //     In that case Release() would detach the RATs, re-merge the list in-hand
5020 //     with the RATs and repeat as needed.  Alternately, Release() might
5021 //     detach and extract a successor, but then pass the residual list to the wakee.
5022 //     The wakee would be responsible for reattaching and remerging before it
5023 //     competed for the lock.
5024 //
5025 // Both "pop" and DMR are immune from ABA corruption -- there can be
5026 // multiple concurrent pushers, but only one popper or detacher.
5027 // This implementation pops from the head of the list.  This is unfair,
5028 // but tends to provide excellent throughput as hot threads remain hot.
5029 // (We wake recently run threads first).
5030 //
5031 // All paths through muxRelease() will execute a CAS.
5032 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5033 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5034 // executed within the critical section are complete and globally visible before the
5035 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5036 void Thread::muxRelease(volatile intptr_t * Lock)  {
5037   for (;;) {
5038     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5039     assert(w & LOCKBIT, "invariant");
5040     if (w == LOCKBIT) return;
5041     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5042     assert(List != NULL, "invariant");
5043     assert(List->OnList == intptr_t(Lock), "invariant");
5044     ParkEvent * const nxt = List->ListNext;
5045     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5046 
5047     // The following CAS() releases the lock and pops the head element.
5048     // The CAS() also ratifies the previously fetched lock-word value.
5049     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5050       continue;
5051     }
5052     List->OnList = 0;
5053     OrderAccess::fence();
5054     List->unpark();
5055     return;
5056   }
5057 }
5058 
5059 
5060 void Threads::verify() {
5061   ALL_JAVA_THREADS(p) {
5062     p->verify();
5063   }
5064   VMThread* thread = VMThread::vm_thread();
5065   if (thread != NULL) thread->verify();
5066 }