1 /*
   2  * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "gc/shared/allocTracer.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/memAllocator.hpp"
  30 #include "gc/shared/threadLocalAllocBuffer.inline.hpp"
  31 #include "memory/universe.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/thread.inline.hpp"
  38 #include "services/lowMemoryDetector.hpp"
  39 #include "utilities/align.hpp"
  40 #include "utilities/copy.hpp"
  41 
  42 class MemAllocator::Allocation: StackObj {
  43   friend class MemAllocator;
  44 
  45   const MemAllocator& _allocator;
  46   Thread*             _thread;
  47   oop*                _obj_ptr;
  48   bool                _overhead_limit_exceeded;
  49   bool                _allocated_outside_tlab;
  50   size_t              _allocated_tlab_size;
  51   bool                _tlab_end_reset_for_sample;
  52 
  53   bool check_out_of_memory();
  54   void verify_before();
  55   void verify_after();
  56   void notify_allocation();
  57   void notify_allocation_jvmti_allocation_event();
  58   void notify_allocation_jvmti_sampler();
  59   void notify_allocation_low_memory_detector();
  60   void notify_allocation_jfr_sampler();
  61   void notify_allocation_dtrace_sampler();
  62   void check_for_bad_heap_word_value() const;
  63 #ifdef ASSERT
  64   void check_for_valid_allocation_state() const;
  65 #endif
  66 
  67   class PreserveObj;
  68 
  69 public:
  70   Allocation(const MemAllocator& allocator, oop* obj_ptr)
  71     : _allocator(allocator),
  72       _thread(Thread::current()),
  73       _obj_ptr(obj_ptr),
  74       _overhead_limit_exceeded(false),
  75       _allocated_outside_tlab(false),
  76       _allocated_tlab_size(0),
  77       _tlab_end_reset_for_sample(false)
  78   {
  79     verify_before();
  80   }
  81 
  82   ~Allocation() {
  83     if (!check_out_of_memory()) {
  84       verify_after();
  85       notify_allocation();
  86     }
  87   }
  88 
  89   oop obj() const { return *_obj_ptr; }
  90 };
  91 
  92 class MemAllocator::Allocation::PreserveObj: StackObj {
  93   HandleMark _handle_mark;
  94   Handle     _handle;
  95   oop* const _obj_ptr;
  96 
  97 public:
  98   PreserveObj(Thread* thread, oop* obj_ptr)
  99     : _handle_mark(thread),
 100       _handle(thread, *obj_ptr),
 101       _obj_ptr(obj_ptr)
 102   {
 103     *obj_ptr = NULL;
 104   }
 105 
 106   ~PreserveObj() {
 107     *_obj_ptr = _handle();
 108   }
 109 
 110   oop operator()() const {
 111     return _handle();
 112   }
 113 };
 114 
 115 bool MemAllocator::Allocation::check_out_of_memory() {
 116   Thread* THREAD = _thread;
 117   assert(!HAS_PENDING_EXCEPTION, "Unexpected exception, will result in uninitialized storage");
 118 
 119   if (obj() != NULL) {
 120     return false;
 121   }
 122 
 123   const char* message = _overhead_limit_exceeded ? "GC overhead limit exceeded" : "Java heap space";
 124   if (!THREAD->in_retryable_allocation()) {
 125     // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
 126     report_java_out_of_memory(message);
 127 
 128     if (JvmtiExport::should_post_resource_exhausted()) {
 129       JvmtiExport::post_resource_exhausted(
 130         JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR | JVMTI_RESOURCE_EXHAUSTED_JAVA_HEAP,
 131         message);
 132     }
 133     oop exception = _overhead_limit_exceeded ?
 134         Universe::out_of_memory_error_gc_overhead_limit() :
 135         Universe::out_of_memory_error_java_heap();
 136     THROW_OOP_(exception, true);
 137   } else {
 138     THROW_OOP_(Universe::out_of_memory_error_retry(), true);
 139   }
 140 }
 141 
 142 void MemAllocator::Allocation::verify_before() {
 143   // Clear unhandled oops for memory allocation.  Memory allocation might
 144   // not take out a lock if from tlab, so clear here.
 145   Thread* THREAD = _thread;
 146   CHECK_UNHANDLED_OOPS_ONLY(THREAD->clear_unhandled_oops();)
 147   assert(!HAS_PENDING_EXCEPTION, "Should not allocate with exception pending");
 148   debug_only(check_for_valid_allocation_state());
 149   assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed");
 150 }
 151 
 152 void MemAllocator::Allocation::verify_after() {
 153   NOT_PRODUCT(check_for_bad_heap_word_value();)
 154 }
 155 
 156 void MemAllocator::Allocation::check_for_bad_heap_word_value() const {
 157   MemRegion obj_range = _allocator.obj_memory_range(obj());
 158   HeapWord* addr = obj_range.start();
 159   size_t size = obj_range.word_size();
 160   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 161     for (size_t slot = 0; slot < size; slot += 1) {
 162       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
 163              "Found badHeapWordValue in post-allocation check");
 164     }
 165   }
 166 }
 167 
 168 #ifdef ASSERT
 169 void MemAllocator::Allocation::check_for_valid_allocation_state() const {
 170   // How to choose between a pending exception and a potential
 171   // OutOfMemoryError?  Don't allow pending exceptions.
 172   // This is a VM policy failure, so how do we exhaustively test it?
 173   assert(!_thread->has_pending_exception(),
 174          "shouldn't be allocating with pending exception");
 175   // Allocation of an oop can always invoke a safepoint,
 176   // hence, the true argument.
 177   _thread->check_for_valid_safepoint_state(true);
 178 }
 179 #endif
 180 
 181 void MemAllocator::Allocation::notify_allocation_jvmti_sampler() {
 182   // support for JVMTI VMObjectAlloc event (no-op if not enabled)
 183   JvmtiExport::vm_object_alloc_event_collector(obj());
 184 
 185   if (!JvmtiExport::should_post_sampled_object_alloc()) {
 186     // Sampling disabled
 187     return;
 188   }
 189 
 190   if (!_allocated_outside_tlab && _allocated_tlab_size == 0 && !_tlab_end_reset_for_sample) {
 191     // Sample if it's a non-TLAB allocation, or a TLAB allocation that either refills the TLAB
 192     // or expands it due to taking a sampler induced slow path.
 193     return;
 194   }
 195 
 196   // If we want to be sampling, protect the allocated object with a Handle
 197   // before doing the callback. The callback is done in the destructor of
 198   // the JvmtiSampledObjectAllocEventCollector.
 199   size_t bytes_since_last = 0;
 200 
 201   {
 202     PreserveObj obj_h(_thread, _obj_ptr);
 203     JvmtiSampledObjectAllocEventCollector collector;
 204     size_t size_in_bytes = _allocator._word_size * HeapWordSize;
 205     ThreadLocalAllocBuffer& tlab = _thread->tlab();
 206 
 207     if (!_allocated_outside_tlab) {
 208       bytes_since_last = tlab.bytes_since_last_sample_point();
 209     }
 210 
 211     _thread->heap_sampler().check_for_sampling(obj_h(), size_in_bytes, bytes_since_last);
 212   }
 213 
 214   if (_tlab_end_reset_for_sample || _allocated_tlab_size != 0) {
 215     // Tell tlab to forget bytes_since_last if we passed it to the heap sampler.
 216     _thread->tlab().set_sample_end(bytes_since_last != 0);
 217   }
 218 }
 219 
 220 void MemAllocator::Allocation::notify_allocation_low_memory_detector() {
 221   // support low memory notifications (no-op if not enabled)
 222   LowMemoryDetector::detect_low_memory_for_collected_pools();
 223 }
 224 
 225 void MemAllocator::Allocation::notify_allocation_jfr_sampler() {
 226   HeapWord* mem = (HeapWord*)obj();
 227   size_t size_in_bytes = _allocator._word_size * HeapWordSize;
 228 
 229   if (_allocated_outside_tlab) {
 230     AllocTracer::send_allocation_outside_tlab(_allocator._klass, mem, size_in_bytes, _thread);
 231   } else if (_allocated_tlab_size != 0) {
 232     // TLAB was refilled
 233     AllocTracer::send_allocation_in_new_tlab(_allocator._klass, mem, _allocated_tlab_size * HeapWordSize,
 234                                              size_in_bytes, _thread);
 235   }
 236 }
 237 
 238 void MemAllocator::Allocation::notify_allocation_dtrace_sampler() {
 239   if (DTraceAllocProbes) {
 240     // support for Dtrace object alloc event (no-op most of the time)
 241     Klass* klass = _allocator._klass;
 242     size_t word_size = _allocator._word_size;
 243     if (klass != NULL && klass->name() != NULL) {
 244       SharedRuntime::dtrace_object_alloc(obj(), (int)word_size);
 245     }
 246   }
 247 }
 248 
 249 void MemAllocator::Allocation::notify_allocation() {
 250   notify_allocation_low_memory_detector();
 251   notify_allocation_jfr_sampler();
 252   notify_allocation_dtrace_sampler();
 253   notify_allocation_jvmti_sampler();
 254 }
 255 
 256 HeapWord* MemAllocator::allocate_outside_tlab(Allocation& allocation) const {
 257   allocation._allocated_outside_tlab = true;
 258   HeapWord* mem = Universe::heap()->mem_allocate(_word_size, &allocation._overhead_limit_exceeded);
 259   if (mem == NULL) {
 260     return mem;
 261   }
 262 
 263   NOT_PRODUCT(Universe::heap()->check_for_non_bad_heap_word_value(mem, _word_size));
 264   size_t size_in_bytes = _word_size * HeapWordSize;
 265   _thread->incr_allocated_bytes(size_in_bytes);
 266 
 267   return mem;
 268 }
 269 
 270 HeapWord* MemAllocator::allocate_inside_tlab(Allocation& allocation) const {
 271   assert(UseTLAB, "should use UseTLAB");
 272 
 273   // Try allocating from an existing TLAB.
 274   HeapWord* mem = _thread->tlab().allocate(_word_size);
 275   if (mem != NULL) {
 276     return mem;
 277   }
 278 
 279   // Try refilling the TLAB and allocating the object in it.
 280   return allocate_inside_tlab_slow(allocation);
 281 }
 282 
 283 HeapWord* MemAllocator::allocate_inside_tlab_slow(Allocation& allocation) const {
 284   HeapWord* mem = NULL;
 285   ThreadLocalAllocBuffer& tlab = _thread->tlab();
 286 
 287   if (JvmtiExport::should_post_sampled_object_alloc()) {
 288     tlab.set_back_allocation_end();
 289     mem = tlab.allocate(_word_size);
 290 
 291     // We set back the allocation sample point to try to allocate this, reset it
 292     // when done.
 293     allocation._tlab_end_reset_for_sample = true;
 294 
 295     if (mem != NULL) {
 296       return mem;
 297     }
 298   }
 299 
 300   // Retain tlab and allocate object in shared space if
 301   // the amount free in the tlab is too large to discard.
 302   if (tlab.free() > tlab.refill_waste_limit()) {
 303     tlab.record_slow_allocation(_word_size);
 304     return NULL;
 305   }
 306 
 307   // Discard tlab and allocate a new one.
 308   // To minimize fragmentation, the last TLAB may be smaller than the rest.
 309   size_t new_tlab_size = tlab.compute_size(_word_size);
 310 
 311   tlab.retire_before_allocation();
 312 
 313   if (new_tlab_size == 0) {
 314     return NULL;
 315   }
 316 
 317   // Allocate a new TLAB requesting new_tlab_size. Any size
 318   // between minimal and new_tlab_size is accepted.
 319   size_t min_tlab_size = ThreadLocalAllocBuffer::compute_min_size(_word_size);
 320   mem = Universe::heap()->allocate_new_tlab(min_tlab_size, new_tlab_size, &allocation._allocated_tlab_size);
 321   if (mem == NULL) {
 322     assert(allocation._allocated_tlab_size == 0,
 323            "Allocation failed, but actual size was updated. min: " SIZE_FORMAT
 324            ", desired: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
 325            min_tlab_size, new_tlab_size, allocation._allocated_tlab_size);
 326     return NULL;
 327   }
 328   assert(allocation._allocated_tlab_size != 0, "Allocation succeeded but actual size not updated. mem at: "
 329          PTR_FORMAT " min: " SIZE_FORMAT ", desired: " SIZE_FORMAT,
 330          p2i(mem), min_tlab_size, new_tlab_size);
 331 
 332   if (ZeroTLAB) {
 333     // ..and clear it.
 334     Copy::zero_to_words(mem, allocation._allocated_tlab_size);
 335   } else {
 336     // ...and zap just allocated object.
 337 #ifdef ASSERT
 338     // Skip mangling the space corresponding to the object header to
 339     // ensure that the returned space is not considered parsable by
 340     // any concurrent GC thread.
 341     size_t hdr_size = oopDesc::header_size();
 342     Copy::fill_to_words(mem + hdr_size, allocation._allocated_tlab_size - hdr_size, badHeapWordVal);
 343 #endif // ASSERT
 344   }
 345 
 346   tlab.fill(mem, mem + _word_size, allocation._allocated_tlab_size);
 347   return mem;
 348 }
 349 
 350 HeapWord* MemAllocator::mem_allocate(Allocation& allocation) const {
 351   if (UseTLAB) {
 352     HeapWord* result = allocate_inside_tlab(allocation);
 353     if (result != NULL) {
 354       return result;
 355     }
 356   }
 357 
 358   return allocate_outside_tlab(allocation);
 359 }
 360 
 361 oop MemAllocator::allocate() const {
 362   oop obj = NULL;
 363   {
 364     Allocation allocation(*this, &obj);
 365     HeapWord* mem = mem_allocate(allocation);
 366     if (mem != NULL) {
 367       obj = initialize(mem);
 368     } else {
 369       // The unhandled oop detector will poison local variable obj,
 370       // so reset it to NULL if mem is NULL.
 371       obj = NULL;
 372     }
 373   }
 374   return obj;
 375 }
 376 
 377 void MemAllocator::mem_clear(HeapWord* mem) const {
 378   assert(mem != NULL, "cannot initialize NULL object");
 379   const size_t hs = oopDesc::header_size();
 380   assert(_word_size >= hs, "unexpected object size");
 381   oopDesc::set_klass_gap(mem, 0);
 382   Copy::fill_to_aligned_words(mem + hs, _word_size - hs);
 383 }
 384 
 385 oop MemAllocator::finish(HeapWord* mem) const {
 386   assert(mem != NULL, "NULL object pointer");
 387   if (UseBiasedLocking) {
 388     oopDesc::set_mark_raw(mem, _klass->prototype_header());
 389   } else {
 390     // May be bootstrapping
 391     oopDesc::set_mark_raw(mem, markOopDesc::prototype());
 392   }
 393   // Need a release store to ensure array/class length, mark word, and
 394   // object zeroing are visible before setting the klass non-NULL, for
 395   // concurrent collectors.
 396   oopDesc::release_set_klass(mem, _klass);
 397   return oop(mem);
 398 }
 399 
 400 oop ObjAllocator::initialize(HeapWord* mem) const {
 401   mem_clear(mem);
 402   return finish(mem);
 403 }
 404 
 405 MemRegion ObjArrayAllocator::obj_memory_range(oop obj) const {
 406   if (_do_zero) {
 407     return MemAllocator::obj_memory_range(obj);
 408   }
 409   ArrayKlass* array_klass = ArrayKlass::cast(_klass);
 410   const size_t hs = arrayOopDesc::header_size(array_klass->element_type());
 411   return MemRegion(((HeapWord*)obj) + hs, _word_size - hs);
 412 }
 413 
 414 oop ObjArrayAllocator::initialize(HeapWord* mem) const {
 415   // Set array length before setting the _klass field because a
 416   // non-NULL klass field indicates that the object is parsable by
 417   // concurrent GC.
 418   assert(_length >= 0, "length should be non-negative");
 419   if (_do_zero) {
 420     mem_clear(mem);
 421   }
 422   arrayOopDesc::set_length(mem, _length);
 423   return finish(mem);
 424 }
 425 
 426 oop ClassAllocator::initialize(HeapWord* mem) const {
 427   // Set oop_size field before setting the _klass field because a
 428   // non-NULL _klass field indicates that the object is parsable by
 429   // concurrent GC.
 430   assert(_word_size > 0, "oop_size must be positive.");
 431   mem_clear(mem);
 432   java_lang_Class::set_oop_size(mem, (int)_word_size);
 433   return finish(mem);
 434 }