/* * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "gc/shared/suspendibleThreadSet.hpp" #include "gc/z/zAddress.inline.hpp" #include "gc/z/zCollectedHeap.hpp" #include "gc/z/zFuture.inline.hpp" #include "gc/z/zGlobals.hpp" #include "gc/z/zLock.inline.hpp" #include "gc/z/zPage.inline.hpp" #include "gc/z/zPageAllocator.hpp" #include "gc/z/zPageCache.inline.hpp" #include "gc/z/zSafeDelete.inline.hpp" #include "gc/z/zStat.hpp" #include "gc/z/zTracer.inline.hpp" #include "runtime/globals.hpp" #include "runtime/init.hpp" #include "runtime/java.hpp" #include "utilities/debug.hpp" static const ZStatCounter ZCounterAllocationRate("Memory", "Allocation Rate", ZStatUnitBytesPerSecond); static const ZStatCounter ZCounterPageCacheFlush("Memory", "Page Cache Flush", ZStatUnitBytesPerSecond); static const ZStatCounter ZCounterUncommit("Memory", "Uncommit", ZStatUnitBytesPerSecond); static const ZStatCriticalPhase ZCriticalPhaseAllocationStall("Allocation Stall"); class ZPageAllocRequest : public StackObj { friend class ZList; private: const uint8_t _type; const size_t _size; const ZAllocationFlags _flags; const unsigned int _total_collections; ZListNode _node; ZFuture _result; public: ZPageAllocRequest(uint8_t type, size_t size, ZAllocationFlags flags, unsigned int total_collections) : _type(type), _size(size), _flags(flags), _total_collections(total_collections) {} uint8_t type() const { return _type; } size_t size() const { return _size; } ZAllocationFlags flags() const { return _flags; } unsigned int total_collections() const { return _total_collections; } ZPage* wait() { return _result.get(); } void satisfy(ZPage* page) { _result.set(page); } }; ZPage* const ZPageAllocator::gc_marker = (ZPage*)-1; ZPageAllocator::ZPageAllocator(size_t min_capacity, size_t initial_capacity, size_t max_capacity, size_t max_reserve) : _lock(), _virtual(), _physical(), _cache(), _min_capacity(min_capacity), _max_capacity(max_capacity), _max_reserve(max_reserve), _current_max_capacity(max_capacity), _capacity(0), _used_high(0), _used_low(0), _used(0), _allocated(0), _reclaimed(0), _queue(), _safe_delete(), _uncommit(false), _initialized(false) { if (!_virtual.is_initialized() || !_physical.is_initialized()) { return; } log_info(gc, init)("Min Capacity: " SIZE_FORMAT "M", min_capacity / M); log_info(gc, init)("Initial Capacity: " SIZE_FORMAT "M", initial_capacity / M); log_info(gc, init)("Max Capacity: " SIZE_FORMAT "M", max_capacity / M); log_info(gc, init)("Max Reserve: " SIZE_FORMAT "M", max_reserve / M); log_info(gc, init)("Pre-touch: %s", AlwaysPreTouch ? "Enabled" : "Disabled"); // Warn if system limits could stop us from reaching max capacity _physical.warn_commit_limits(max_capacity); // Commit initial capacity _capacity = _physical.commit(initial_capacity); if (_capacity != initial_capacity) { log_error(gc)("Failed to allocate initial Java heap (" SIZE_FORMAT "M)", initial_capacity / M); return; } // If uncommit is not explicitly disabled, max capacity is greater than // min capacity, and uncommit is supported by the platform, then we will // try to uncommit unused memory. _uncommit = ZUncommit && (max_capacity > min_capacity) && _physical.supports_uncommit(); if (_uncommit) { log_info(gc, init)("Uncommit: Enabled, Delay: " UINTX_FORMAT "s", ZUncommitDelay); } else { log_info(gc, init)("Uncommit: Disabled"); } // Pre-map initial capacity prime_cache(initial_capacity); // Successfully initialized _initialized = true; } void ZPageAllocator::prime_cache(size_t size) { // Allocate physical memory const ZPhysicalMemory pmem = _physical.alloc(size); guarantee(!pmem.is_null(), "Invalid size"); // Allocate virtual memory const ZVirtualMemory vmem = _virtual.alloc(size, true /* alloc_from_front */); guarantee(!vmem.is_null(), "Invalid size"); // Allocate page ZPage* const page = new ZPage(vmem, pmem); // Map page map_page(page); page->set_pre_mapped(); // Add page to cache page->set_last_used(); _cache.free_page(page); } bool ZPageAllocator::is_initialized() const { return _initialized; } size_t ZPageAllocator::min_capacity() const { return _min_capacity; } size_t ZPageAllocator::max_capacity() const { return _max_capacity; } size_t ZPageAllocator::soft_max_capacity() const { // Note that SoftMaxHeapSize is a manageable flag return MIN2(SoftMaxHeapSize, _current_max_capacity); } size_t ZPageAllocator::capacity() const { return _capacity; } size_t ZPageAllocator::max_reserve() const { return _max_reserve; } size_t ZPageAllocator::used_high() const { return _used_high; } size_t ZPageAllocator::used_low() const { return _used_low; } size_t ZPageAllocator::used() const { return _used; } size_t ZPageAllocator::unused() const { const ssize_t unused = (ssize_t)_capacity - (ssize_t)_used - (ssize_t)_max_reserve; return unused > 0 ? (size_t)unused : 0; } size_t ZPageAllocator::allocated() const { return _allocated; } size_t ZPageAllocator::reclaimed() const { return _reclaimed > 0 ? (size_t)_reclaimed : 0; } void ZPageAllocator::reset_statistics() { assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint"); _allocated = 0; _reclaimed = 0; _used_high = _used_low = _used; } void ZPageAllocator::increase_used(size_t size, bool relocation) { if (relocation) { // Allocating a page for the purpose of relocation has a // negative contribution to the number of reclaimed bytes. _reclaimed -= size; } _allocated += size; _used += size; if (_used > _used_high) { _used_high = _used; } } void ZPageAllocator::decrease_used(size_t size, bool reclaimed) { if (reclaimed) { // Only pages explicitly released with the reclaimed flag set // counts as reclaimed bytes. This flag is typically true when // a worker releases a page after relocation, and is typically // false when we release a page to undo an allocation. _reclaimed += size; } _used -= size; if (_used < _used_low) { _used_low = _used; } } ZPage* ZPageAllocator::create_page(uint8_t type, size_t size) { // Allocate virtual memory const ZVirtualMemory vmem = _virtual.alloc(size); if (vmem.is_null()) { // Out of address space return NULL; } // Allocate physical memory const ZPhysicalMemory pmem = _physical.alloc(size); assert(!pmem.is_null(), "Invalid size"); // Allocate page return new ZPage(type, vmem, pmem); } void ZPageAllocator::destroy_page(ZPage* page) { const ZVirtualMemory& vmem = page->virtual_memory(); const ZPhysicalMemory& pmem = page->physical_memory(); // Unmap memory _physical.unmap(pmem, vmem.start()); // Free physical memory _physical.free(pmem); // Free virtual memory _virtual.free(vmem); // Delete page safely _safe_delete(page); } void ZPageAllocator::map_page(const ZPage* page) const { // Map physical memory if (!page->is_mapped()) { _physical.map(page->physical_memory(), page->start()); } else if (ZVerifyViews) { _physical.debug_map(page->physical_memory(), page->start()); } } size_t ZPageAllocator::max_available(bool no_reserve) const { size_t available = _current_max_capacity - _used; if (no_reserve) { // The reserve should not be considered available available -= MIN2(available, _max_reserve); } return available; } bool ZPageAllocator::ensure_available(size_t size, bool no_reserve) { if (max_available(no_reserve) < size) { // Not enough free memory return false; } // We add the max_reserve to the requested size to avoid losing // the reserve because of failure to increase capacity before // reaching max capacity. size += _max_reserve; // Don't try to increase capacity if enough unused capacity // is available or if current max capacity has been reached. const size_t available = _capacity - _used; if (available < size && _capacity < _current_max_capacity) { // Try to increase capacity const size_t commit = MIN2(size - available, _current_max_capacity - _capacity); const size_t committed = _physical.commit(commit); _capacity += committed; log_trace(gc, heap)("Make Available: Size: " SIZE_FORMAT "M, NoReserve: %s, " "Available: " SIZE_FORMAT "M, Commit: " SIZE_FORMAT "M, " "Committed: " SIZE_FORMAT "M, Capacity: " SIZE_FORMAT "M", size / M, no_reserve ? "True" : "False", available / M, commit / M, committed / M, _capacity / M); if (committed != commit) { // Failed, or partly failed, to increase capacity. Adjust current // max capacity to avoid further attempts to increase capacity. log_error(gc)("Forced to lower max Java heap size from " SIZE_FORMAT "M(%.0f%%) to " SIZE_FORMAT "M(%.0f%%)", _current_max_capacity / M, percent_of(_current_max_capacity, _max_capacity), _capacity / M, percent_of(_capacity, _max_capacity)); _current_max_capacity = _capacity; } } if (!no_reserve) { size -= _max_reserve; } const size_t new_available = _capacity - _used; return new_available >= size; } void ZPageAllocator::ensure_uncached_available(size_t size) { assert(_capacity - _used >= size, "Invalid size"); const size_t uncached_available = _capacity - _used - _cache.available(); if (size > uncached_available) { flush_cache_for_allocation(size - uncached_available); } } ZPage* ZPageAllocator::alloc_page_common_inner(uint8_t type, size_t size, bool no_reserve) { if (!ensure_available(size, no_reserve)) { // Not enough free memory return NULL; } // Try allocate page from the cache ZPage* const page = _cache.alloc_page(type, size); if (page != NULL) { return page; } // Try flush pages from the cache ensure_uncached_available(size); // Create new page return create_page(type, size); } ZPage* ZPageAllocator::alloc_page_common(uint8_t type, size_t size, ZAllocationFlags flags) { ZPage* const page = alloc_page_common_inner(type, size, flags.no_reserve()); if (page == NULL) { // Out of memory return NULL; } // Update used statistics increase_used(size, flags.relocation()); // Send trace event ZTracer::tracer()->report_page_alloc(size, _used, max_available(flags.no_reserve()), _cache.available(), flags); return page; } void ZPageAllocator::check_out_of_memory_during_initialization() { if (!is_init_completed()) { vm_exit_during_initialization("java.lang.OutOfMemoryError", "Java heap too small"); } } ZPage* ZPageAllocator::alloc_page_blocking(uint8_t type, size_t size, ZAllocationFlags flags) { // Prepare to block ZPageAllocRequest request(type, size, flags, ZCollectedHeap::heap()->total_collections()); _lock.lock(); // Try non-blocking allocation ZPage* page = alloc_page_common(type, size, flags); if (page == NULL) { // Allocation failed, enqueue request _queue.insert_last(&request); } _lock.unlock(); if (page == NULL) { // Allocation failed ZStatTimer timer(ZCriticalPhaseAllocationStall); // We can only block if VM is fully initialized check_out_of_memory_during_initialization(); do { // Start asynchronous GC ZCollectedHeap::heap()->collect(GCCause::_z_allocation_stall); // Wait for allocation to complete or fail page = request.wait(); } while (page == gc_marker); { // Guard deletion of underlying semaphore. This is a workaround for a // bug in sem_post() in glibc < 2.21, where it's not safe to destroy // the semaphore immediately after returning from sem_wait(). The // reason is that sem_post() can touch the semaphore after a waiting // thread have returned from sem_wait(). To avoid this race we are // forcing the waiting thread to acquire/release the lock held by the // posting thread. https://sourceware.org/bugzilla/show_bug.cgi?id=12674 ZLocker locker(&_lock); } } return page; } ZPage* ZPageAllocator::alloc_page_nonblocking(uint8_t type, size_t size, ZAllocationFlags flags) { ZLocker locker(&_lock); return alloc_page_common(type, size, flags); } ZPage* ZPageAllocator::alloc_page(uint8_t type, size_t size, ZAllocationFlags flags) { ZPage* const page = flags.non_blocking() ? alloc_page_nonblocking(type, size, flags) : alloc_page_blocking(type, size, flags); if (page == NULL) { // Out of memory return NULL; } // Map page if needed map_page(page); // Reset page. This updates the page's sequence number and must // be done after page allocation, which potentially blocked in // a safepoint where the global sequence number was updated. page->reset(); // Update allocation statistics. Exclude worker threads to avoid // artificial inflation of the allocation rate due to relocation. if (!flags.worker_thread()) { // Note that there are two allocation rate counters, which have // different purposes and are sampled at different frequencies. const size_t bytes = page->size(); ZStatInc(ZCounterAllocationRate, bytes); ZStatInc(ZStatAllocRate::counter(), bytes); } return page; } void ZPageAllocator::satisfy_alloc_queue() { for (;;) { ZPageAllocRequest* const request = _queue.first(); if (request == NULL) { // Allocation queue is empty return; } ZPage* const page = alloc_page_common(request->type(), request->size(), request->flags()); if (page == NULL) { // Allocation could not be satisfied, give up return; } // Allocation succeeded, dequeue and satisfy request. Note that // the dequeue operation must happen first, since the request // will immediately be deallocated once it has been satisfied. _queue.remove(request); request->satisfy(page); } } void ZPageAllocator::free_page(ZPage* page, bool reclaimed) { ZLocker locker(&_lock); // Update used statistics decrease_used(page->size(), reclaimed); // Set time when last used page->set_last_used(); // Cache page _cache.free_page(page); // Try satisfy blocked allocations satisfy_alloc_queue(); } size_t ZPageAllocator::flush_cache(ZPageCacheFlushClosure* cl) { ZList list; // Flush pages _cache.flush(cl, &list); const size_t overflushed = cl->overflushed(); if (overflushed > 0) { // Overflushed, keep part of last page ZPage* const page = list.last()->split(overflushed); _cache.free_page(page); } // Destroy pages size_t flushed = 0; for (ZPage* page = list.remove_first(); page != NULL; page = list.remove_first()) { flushed += page->size(); destroy_page(page); } return flushed; } class ZPageCacheFlushForAllocationClosure : public ZPageCacheFlushClosure { public: ZPageCacheFlushForAllocationClosure(size_t requested) : ZPageCacheFlushClosure(requested) {} virtual bool do_page(const ZPage* page) { if (_flushed < _requested) { // Flush page _flushed += page->size(); return true; } // Don't flush page return false; } }; void ZPageAllocator::flush_cache_for_allocation(size_t requested) { assert(requested <= _cache.available(), "Invalid request"); // Flush pages ZPageCacheFlushForAllocationClosure cl(requested); const size_t flushed = flush_cache(&cl); assert(requested == flushed, "Failed to flush"); const size_t cached_after = _cache.available(); const size_t cached_before = cached_after + flushed; log_info(gc, heap)("Page Cache: " SIZE_FORMAT "M(%.0f%%)->" SIZE_FORMAT "M(%.0f%%), " "Flushed: " SIZE_FORMAT "M", cached_before / M, percent_of(cached_before, max_capacity()), cached_after / M, percent_of(cached_after, max_capacity()), flushed / M); // Update statistics ZStatInc(ZCounterPageCacheFlush, flushed); } class ZPageCacheFlushForUncommitClosure : public ZPageCacheFlushClosure { private: const uint64_t _now; const uint64_t _delay; uint64_t _timeout; public: ZPageCacheFlushForUncommitClosure(size_t requested, uint64_t delay) : ZPageCacheFlushClosure(requested), _now(os::elapsedTime()), _delay(delay), _timeout(_delay) {} virtual bool do_page(const ZPage* page) { const uint64_t expires = page->last_used() + _delay; const uint64_t timeout = expires - MIN2(expires, _now); if (_flushed < _requested && timeout == 0) { // Flush page _flushed += page->size(); return true; } // Record shortest non-expired timeout _timeout = MIN2(_timeout, timeout); // Don't flush page return false; } uint64_t timeout() const { return _timeout; } }; uint64_t ZPageAllocator::uncommit(uint64_t delay) { // Set the default timeout, when no pages are found in the // cache or when uncommit is disabled, equal to the delay. uint64_t timeout = delay; if (!_uncommit) { // Disabled return timeout; } size_t capacity_before; size_t capacity_after; size_t uncommitted; { SuspendibleThreadSetJoiner joiner; ZLocker locker(&_lock); // Don't flush more than we will uncommit. Never uncommit // the reserve, and never uncommit below min capacity. const size_t needed = MIN2(_used + _max_reserve, _current_max_capacity); const size_t guarded = MAX2(needed, _min_capacity); const size_t uncommittable = _capacity - guarded; const size_t uncached_available = _capacity - _used - _cache.available(); size_t uncommit = MIN2(uncommittable, uncached_available); const size_t flush = uncommittable - uncommit; if (flush > 0) { // Flush pages to uncommit ZPageCacheFlushForUncommitClosure cl(flush, delay); uncommit += flush_cache(&cl); timeout = cl.timeout(); } // Uncommit uncommitted = _physical.uncommit(uncommit); _capacity -= uncommitted; capacity_after = _capacity; capacity_before = capacity_after + uncommitted; } if (uncommitted > 0) { log_info(gc, heap)("Capacity: " SIZE_FORMAT "M(%.0f%%)->" SIZE_FORMAT "M(%.0f%%), " "Uncommitted: " SIZE_FORMAT "M", capacity_before / M, percent_of(capacity_before, max_capacity()), capacity_after / M, percent_of(capacity_after, max_capacity()), uncommitted / M); // Update statistics ZStatInc(ZCounterUncommit, uncommitted); } return timeout; } void ZPageAllocator::enable_deferred_delete() const { _safe_delete.enable_deferred_delete(); } void ZPageAllocator::disable_deferred_delete() const { _safe_delete.disable_deferred_delete(); } void ZPageAllocator::debug_map_page(const ZPage* page) const { assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint"); _physical.debug_map(page->physical_memory(), page->start()); } class ZPageCacheDebugMapClosure : public StackObj { private: const ZPageAllocator* const _allocator; public: ZPageCacheDebugMapClosure(const ZPageAllocator* allocator) : _allocator(allocator) {} virtual void do_page(const ZPage* page) { _allocator->debug_map_page(page); } }; void ZPageAllocator::debug_map_cached_pages() const { assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint"); ZPageCacheDebugMapClosure cl(this); _cache.pages_do(&cl); } void ZPageAllocator::debug_unmap_all_pages() const { assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint"); _physical.debug_unmap(ZPhysicalMemorySegment(0 /* start */, ZAddressOffsetMax), 0 /* offset */); } bool ZPageAllocator::is_alloc_stalled() const { assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint"); return !_queue.is_empty(); } void ZPageAllocator::check_out_of_memory() { ZLocker locker(&_lock); // Fail allocation requests that were enqueued before the // last GC cycle started, otherwise start a new GC cycle. for (ZPageAllocRequest* request = _queue.first(); request != NULL; request = _queue.first()) { if (request->total_collections() == ZCollectedHeap::heap()->total_collections()) { // Start a new GC cycle, keep allocation requests enqueued request->satisfy(gc_marker); return; } // Out of memory, fail allocation request _queue.remove_first(); request->satisfy(NULL); } }