1 /* 2 * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "gc/shared/allocTracer.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/collectedHeap.hpp" 30 #include "gc/shared/collectedHeap.inline.hpp" 31 #include "gc/shared/gcLocker.inline.hpp" 32 #include "gc/shared/gcHeapSummary.hpp" 33 #include "gc/shared/gcTrace.hpp" 34 #include "gc/shared/gcTraceTime.inline.hpp" 35 #include "gc/shared/gcVMOperations.hpp" 36 #include "gc/shared/gcWhen.hpp" 37 #include "gc/shared/memAllocator.hpp" 38 #include "logging/log.hpp" 39 #include "memory/metaspace.hpp" 40 #include "memory/resourceArea.hpp" 41 #include "memory/universe.hpp" 42 #include "oops/instanceMirrorKlass.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "runtime/handles.inline.hpp" 45 #include "runtime/init.hpp" 46 #include "runtime/thread.inline.hpp" 47 #include "runtime/threadSMR.hpp" 48 #include "runtime/vmThread.hpp" 49 #include "services/heapDumper.hpp" 50 #include "utilities/align.hpp" 51 #include "utilities/copy.hpp" 52 53 class ClassLoaderData; 54 55 size_t CollectedHeap::_filler_array_max_size = 0; 56 57 template <> 58 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) { 59 st->print_cr("GC heap %s", m.is_before ? "before" : "after"); 60 st->print_raw(m); 61 } 62 63 void GCHeapLog::log_heap(CollectedHeap* heap, bool before) { 64 if (!should_log()) { 65 return; 66 } 67 68 double timestamp = fetch_timestamp(); 69 MutexLocker ml(&_mutex, Mutex::_no_safepoint_check_flag); 70 int index = compute_log_index(); 71 _records[index].thread = NULL; // Its the GC thread so it's not that interesting. 72 _records[index].timestamp = timestamp; 73 _records[index].data.is_before = before; 74 stringStream st(_records[index].data.buffer(), _records[index].data.size()); 75 76 st.print_cr("{Heap %s GC invocations=%u (full %u):", 77 before ? "before" : "after", 78 heap->total_collections(), 79 heap->total_full_collections()); 80 81 heap->print_on(&st); 82 st.print_cr("}"); 83 } 84 85 size_t CollectedHeap::unused() const { 86 MutexLocker ml(Heap_lock); 87 return capacity() - used(); 88 } 89 90 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() { 91 size_t capacity_in_words = capacity() / HeapWordSize; 92 93 return VirtualSpaceSummary( 94 _reserved.start(), _reserved.start() + capacity_in_words, _reserved.end()); 95 } 96 97 GCHeapSummary CollectedHeap::create_heap_summary() { 98 VirtualSpaceSummary heap_space = create_heap_space_summary(); 99 return GCHeapSummary(heap_space, used()); 100 } 101 102 MetaspaceSummary CollectedHeap::create_metaspace_summary() { 103 const MetaspaceSizes meta_space( 104 MetaspaceUtils::committed_bytes(), 105 MetaspaceUtils::used_bytes(), 106 MetaspaceUtils::reserved_bytes()); 107 const MetaspaceSizes data_space( 108 MetaspaceUtils::committed_bytes(Metaspace::NonClassType), 109 MetaspaceUtils::used_bytes(Metaspace::NonClassType), 110 MetaspaceUtils::reserved_bytes(Metaspace::NonClassType)); 111 const MetaspaceSizes class_space( 112 MetaspaceUtils::committed_bytes(Metaspace::ClassType), 113 MetaspaceUtils::used_bytes(Metaspace::ClassType), 114 MetaspaceUtils::reserved_bytes(Metaspace::ClassType)); 115 116 const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary = 117 MetaspaceUtils::chunk_free_list_summary(Metaspace::NonClassType); 118 const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary = 119 MetaspaceUtils::chunk_free_list_summary(Metaspace::ClassType); 120 121 return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space, 122 ms_chunk_free_list_summary, class_chunk_free_list_summary); 123 } 124 125 void CollectedHeap::print_heap_before_gc() { 126 Universe::print_heap_before_gc(); 127 if (_gc_heap_log != NULL) { 128 _gc_heap_log->log_heap_before(this); 129 } 130 } 131 132 void CollectedHeap::print_heap_after_gc() { 133 Universe::print_heap_after_gc(); 134 if (_gc_heap_log != NULL) { 135 _gc_heap_log->log_heap_after(this); 136 } 137 } 138 139 void CollectedHeap::print() const { print_on(tty); } 140 141 void CollectedHeap::print_on_error(outputStream* st) const { 142 st->print_cr("Heap:"); 143 print_extended_on(st); 144 st->cr(); 145 146 BarrierSet::barrier_set()->print_on(st); 147 } 148 149 void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { 150 const GCHeapSummary& heap_summary = create_heap_summary(); 151 gc_tracer->report_gc_heap_summary(when, heap_summary); 152 153 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 154 gc_tracer->report_metaspace_summary(when, metaspace_summary); 155 } 156 157 void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) { 158 trace_heap(GCWhen::BeforeGC, gc_tracer); 159 } 160 161 void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) { 162 trace_heap(GCWhen::AfterGC, gc_tracer); 163 } 164 165 // WhiteBox API support for concurrent collectors. These are the 166 // default implementations, for collectors which don't support this 167 // feature. 168 bool CollectedHeap::supports_concurrent_phase_control() const { 169 return false; 170 } 171 172 bool CollectedHeap::request_concurrent_phase(const char* phase) { 173 return false; 174 } 175 176 bool CollectedHeap::is_oop_location(void* addr) const { 177 if (!is_object_aligned(addr)) { 178 return false; 179 } 180 181 if (!_reserved.contains(addr)) { 182 return false; 183 } 184 185 return true; 186 } 187 188 bool CollectedHeap::is_oop(oop object) const { 189 if (!is_object_aligned(object)) { 190 return false; 191 } 192 193 if (!is_in(object)) { 194 return false; 195 } 196 197 if (is_in(object->klass_or_null())) { 198 return false; 199 } 200 201 return true; 202 } 203 204 // Memory state functions. 205 206 207 CollectedHeap::CollectedHeap() : 208 _is_gc_active(false), 209 _total_collections(0), 210 _total_full_collections(0), 211 _gc_cause(GCCause::_no_gc), 212 _gc_lastcause(GCCause::_no_gc) 213 { 214 const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT)); 215 const size_t elements_per_word = HeapWordSize / sizeof(jint); 216 _filler_array_max_size = align_object_size(filler_array_hdr_size() + 217 max_len / elements_per_word); 218 219 NOT_PRODUCT(_promotion_failure_alot_count = 0;) 220 NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;) 221 222 if (UsePerfData) { 223 EXCEPTION_MARK; 224 225 // create the gc cause jvmstat counters 226 _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause", 227 80, GCCause::to_string(_gc_cause), CHECK); 228 229 _perf_gc_lastcause = 230 PerfDataManager::create_string_variable(SUN_GC, "lastCause", 231 80, GCCause::to_string(_gc_lastcause), CHECK); 232 } 233 234 // Create the ring log 235 if (LogEvents) { 236 _gc_heap_log = new GCHeapLog(); 237 } else { 238 _gc_heap_log = NULL; 239 } 240 } 241 242 // This interface assumes that it's being called by the 243 // vm thread. It collects the heap assuming that the 244 // heap lock is already held and that we are executing in 245 // the context of the vm thread. 246 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) { 247 assert(Thread::current()->is_VM_thread(), "Precondition#1"); 248 assert(Heap_lock->is_locked(), "Precondition#2"); 249 GCCauseSetter gcs(this, cause); 250 switch (cause) { 251 case GCCause::_heap_inspection: 252 case GCCause::_heap_dump: 253 case GCCause::_metadata_GC_threshold : { 254 HandleMark hm; 255 do_full_collection(false); // don't clear all soft refs 256 break; 257 } 258 case GCCause::_metadata_GC_clear_soft_refs: { 259 HandleMark hm; 260 do_full_collection(true); // do clear all soft refs 261 break; 262 } 263 default: 264 ShouldNotReachHere(); // Unexpected use of this function 265 } 266 } 267 268 MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 269 size_t word_size, 270 Metaspace::MetadataType mdtype) { 271 uint loop_count = 0; 272 uint gc_count = 0; 273 uint full_gc_count = 0; 274 275 assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock"); 276 277 do { 278 MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype); 279 if (result != NULL) { 280 return result; 281 } 282 283 if (GCLocker::is_active_and_needs_gc()) { 284 // If the GCLocker is active, just expand and allocate. 285 // If that does not succeed, wait if this thread is not 286 // in a critical section itself. 287 result = loader_data->metaspace_non_null()->expand_and_allocate(word_size, mdtype); 288 if (result != NULL) { 289 return result; 290 } 291 JavaThread* jthr = JavaThread::current(); 292 if (!jthr->in_critical()) { 293 // Wait for JNI critical section to be exited 294 GCLocker::stall_until_clear(); 295 // The GC invoked by the last thread leaving the critical 296 // section will be a young collection and a full collection 297 // is (currently) needed for unloading classes so continue 298 // to the next iteration to get a full GC. 299 continue; 300 } else { 301 if (CheckJNICalls) { 302 fatal("Possible deadlock due to allocating while" 303 " in jni critical section"); 304 } 305 return NULL; 306 } 307 } 308 309 { // Need lock to get self consistent gc_count's 310 MutexLocker ml(Heap_lock); 311 gc_count = Universe::heap()->total_collections(); 312 full_gc_count = Universe::heap()->total_full_collections(); 313 } 314 315 // Generate a VM operation 316 VM_CollectForMetadataAllocation op(loader_data, 317 word_size, 318 mdtype, 319 gc_count, 320 full_gc_count, 321 GCCause::_metadata_GC_threshold); 322 VMThread::execute(&op); 323 324 // If GC was locked out, try again. Check before checking success because the 325 // prologue could have succeeded and the GC still have been locked out. 326 if (op.gc_locked()) { 327 continue; 328 } 329 330 if (op.prologue_succeeded()) { 331 return op.result(); 332 } 333 loop_count++; 334 if ((QueuedAllocationWarningCount > 0) && 335 (loop_count % QueuedAllocationWarningCount == 0)) { 336 log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times," 337 " size=" SIZE_FORMAT, loop_count, word_size); 338 } 339 } while (true); // Until a GC is done 340 } 341 342 MemoryUsage CollectedHeap::memory_usage() { 343 return MemoryUsage(InitialHeapSize, used(), capacity(), max_capacity()); 344 } 345 346 347 #ifndef PRODUCT 348 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) { 349 if (CheckMemoryInitialization && ZapUnusedHeapArea) { 350 for (size_t slot = 0; slot < size; slot += 1) { 351 assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal), 352 "Found non badHeapWordValue in pre-allocation check"); 353 } 354 } 355 } 356 #endif // PRODUCT 357 358 size_t CollectedHeap::max_tlab_size() const { 359 // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE]. 360 // This restriction could be removed by enabling filling with multiple arrays. 361 // If we compute that the reasonable way as 362 // header_size + ((sizeof(jint) * max_jint) / HeapWordSize) 363 // we'll overflow on the multiply, so we do the divide first. 364 // We actually lose a little by dividing first, 365 // but that just makes the TLAB somewhat smaller than the biggest array, 366 // which is fine, since we'll be able to fill that. 367 size_t max_int_size = typeArrayOopDesc::header_size(T_INT) + 368 sizeof(jint) * 369 ((juint) max_jint / (size_t) HeapWordSize); 370 return align_down(max_int_size, MinObjAlignment); 371 } 372 373 size_t CollectedHeap::filler_array_hdr_size() { 374 return align_object_offset(arrayOopDesc::header_size(T_INT)); // align to Long 375 } 376 377 size_t CollectedHeap::filler_array_min_size() { 378 return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment 379 } 380 381 #ifdef ASSERT 382 void CollectedHeap::fill_args_check(HeapWord* start, size_t words) 383 { 384 assert(words >= min_fill_size(), "too small to fill"); 385 assert(is_object_aligned(words), "unaligned size"); 386 assert(Universe::heap()->is_oop_location(start), "invalid address"); 387 assert(Universe::heap()->is_oop_location(start + words - MinObjAlignment), "invalid address"); 388 } 389 390 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap) 391 { 392 if (ZapFillerObjects && zap) { 393 Copy::fill_to_words(start + filler_array_hdr_size(), 394 words - filler_array_hdr_size(), 0XDEAFBABE); 395 } 396 } 397 #endif // ASSERT 398 399 void 400 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap) 401 { 402 assert(words >= filler_array_min_size(), "too small for an array"); 403 assert(words <= filler_array_max_size(), "too big for a single object"); 404 405 const size_t payload_size = words - filler_array_hdr_size(); 406 const size_t len = payload_size * HeapWordSize / sizeof(jint); 407 assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d", words, (int)len); 408 409 ObjArrayAllocator allocator(Universe::intArrayKlassObj(), words, (int)len, /* do_zero */ false); 410 allocator.initialize(start); 411 DEBUG_ONLY(zap_filler_array(start, words, zap);) 412 } 413 414 void 415 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap) 416 { 417 assert(words <= filler_array_max_size(), "too big for a single object"); 418 419 if (words >= filler_array_min_size()) { 420 fill_with_array(start, words, zap); 421 } else if (words > 0) { 422 assert(words == min_fill_size(), "unaligned size"); 423 ObjAllocator allocator(SystemDictionary::Object_klass(), words); 424 allocator.initialize(start); 425 } 426 } 427 428 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap) 429 { 430 DEBUG_ONLY(fill_args_check(start, words);) 431 HandleMark hm; // Free handles before leaving. 432 fill_with_object_impl(start, words, zap); 433 } 434 435 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap) 436 { 437 DEBUG_ONLY(fill_args_check(start, words);) 438 HandleMark hm; // Free handles before leaving. 439 440 // Multiple objects may be required depending on the filler array maximum size. Fill 441 // the range up to that with objects that are filler_array_max_size sized. The 442 // remainder is filled with a single object. 443 const size_t min = min_fill_size(); 444 const size_t max = filler_array_max_size(); 445 while (words > max) { 446 const size_t cur = (words - max) >= min ? max : max - min; 447 fill_with_array(start, cur, zap); 448 start += cur; 449 words -= cur; 450 } 451 452 fill_with_object_impl(start, words, zap); 453 } 454 455 void CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) { 456 CollectedHeap::fill_with_object(start, end, zap); 457 } 458 459 size_t CollectedHeap::min_dummy_object_size() const { 460 return oopDesc::header_size(); 461 } 462 463 size_t CollectedHeap::tlab_alloc_reserve() const { 464 size_t min_size = min_dummy_object_size(); 465 return min_size > (size_t)MinObjAlignment ? align_object_size(min_size) : 0; 466 } 467 468 HeapWord* CollectedHeap::allocate_new_tlab(size_t min_size, 469 size_t requested_size, 470 size_t* actual_size) { 471 guarantee(false, "thread-local allocation buffers not supported"); 472 return NULL; 473 } 474 475 void CollectedHeap::ensure_parsability(bool retire_tlabs) { 476 assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(), 477 "Should only be called at a safepoint or at start-up"); 478 479 ThreadLocalAllocStats stats; 480 481 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next();) { 482 BarrierSet::barrier_set()->make_parsable(thread); 483 if (UseTLAB) { 484 if (retire_tlabs) { 485 thread->tlab().retire(&stats); 486 } else { 487 thread->tlab().make_parsable(); 488 } 489 } 490 } 491 492 stats.publish(); 493 } 494 495 void CollectedHeap::resize_all_tlabs() { 496 assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(), 497 "Should only resize tlabs at safepoint"); 498 499 if (UseTLAB && ResizeTLAB) { 500 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) { 501 thread->tlab().resize(); 502 } 503 } 504 } 505 506 void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) { 507 assert(timer != NULL, "timer is null"); 508 if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) { 509 GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer); 510 HeapDumper::dump_heap(); 511 } 512 513 LogTarget(Trace, gc, classhisto) lt; 514 if (lt.is_enabled()) { 515 GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer); 516 ResourceMark rm; 517 LogStream ls(lt); 518 VM_GC_HeapInspection inspector(&ls, false /* ! full gc */); 519 inspector.doit(); 520 } 521 } 522 523 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) { 524 full_gc_dump(timer, true); 525 } 526 527 void CollectedHeap::post_full_gc_dump(GCTimer* timer) { 528 full_gc_dump(timer, false); 529 } 530 531 void CollectedHeap::initialize_reserved_region(const ReservedHeapSpace& rs) { 532 // It is important to do this in a way such that concurrent readers can't 533 // temporarily think something is in the heap. (Seen this happen in asserts.) 534 _reserved.set_word_size(0); 535 _reserved.set_start((HeapWord*)rs.base()); 536 _reserved.set_end((HeapWord*)rs.end()); 537 } 538 539 void CollectedHeap::post_initialize() { 540 initialize_serviceability(); 541 } 542 543 #ifndef PRODUCT 544 545 bool CollectedHeap::promotion_should_fail(volatile size_t* count) { 546 // Access to count is not atomic; the value does not have to be exact. 547 if (PromotionFailureALot) { 548 const size_t gc_num = total_collections(); 549 const size_t elapsed_gcs = gc_num - _promotion_failure_alot_gc_number; 550 if (elapsed_gcs >= PromotionFailureALotInterval) { 551 // Test for unsigned arithmetic wrap-around. 552 if (++*count >= PromotionFailureALotCount) { 553 *count = 0; 554 return true; 555 } 556 } 557 } 558 return false; 559 } 560 561 bool CollectedHeap::promotion_should_fail() { 562 return promotion_should_fail(&_promotion_failure_alot_count); 563 } 564 565 void CollectedHeap::reset_promotion_should_fail(volatile size_t* count) { 566 if (PromotionFailureALot) { 567 _promotion_failure_alot_gc_number = total_collections(); 568 *count = 0; 569 } 570 } 571 572 void CollectedHeap::reset_promotion_should_fail() { 573 reset_promotion_should_fail(&_promotion_failure_alot_count); 574 } 575 576 #endif // #ifndef PRODUCT 577 578 bool CollectedHeap::supports_object_pinning() const { 579 return false; 580 } 581 582 oop CollectedHeap::pin_object(JavaThread* thread, oop obj) { 583 ShouldNotReachHere(); 584 return NULL; 585 } 586 587 void CollectedHeap::unpin_object(JavaThread* thread, oop obj) { 588 ShouldNotReachHere(); 589 } 590 591 void CollectedHeap::deduplicate_string(oop str) { 592 // Do nothing, unless overridden in subclass. 593 } 594 595 size_t CollectedHeap::obj_size(oop obj) const { 596 return obj->size(); 597 } 598 599 uint32_t CollectedHeap::hash_oop(oop obj) const { 600 const uintptr_t addr = cast_from_oop<uintptr_t>(obj); 601 return static_cast<uint32_t>(addr >> LogMinObjAlignment); 602 }