1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1BiasedArray.hpp"
  30 #include "gc/g1/g1CardTable.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1EdenRegions.hpp"
  35 #include "gc/g1/g1EvacFailure.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1EvacuationInfo.hpp"
  38 #include "gc/g1/g1GCPhaseTimes.hpp"
  39 #include "gc/g1/g1HeapTransition.hpp"
  40 #include "gc/g1/g1HeapVerifier.hpp"
  41 #include "gc/g1/g1HRPrinter.hpp"
  42 #include "gc/g1/g1HeapRegionAttr.hpp"
  43 #include "gc/g1/g1MonitoringSupport.hpp"
  44 #include "gc/g1/g1NUMA.hpp"
  45 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  46 #include "gc/g1/g1SurvivorRegions.hpp"
  47 #include "gc/g1/g1YCTypes.hpp"
  48 #include "gc/g1/heapRegionManager.hpp"
  49 #include "gc/g1/heapRegionSet.hpp"
  50 #include "gc/g1/heterogeneousHeapRegionManager.hpp"
  51 #include "gc/shared/barrierSet.hpp"
  52 #include "gc/shared/collectedHeap.hpp"
  53 #include "gc/shared/gcHeapSummary.hpp"
  54 #include "gc/shared/plab.hpp"
  55 #include "gc/shared/preservedMarks.hpp"
  56 #include "gc/shared/softRefPolicy.hpp"
  57 #include "memory/memRegion.hpp"
  58 #include "utilities/stack.hpp"
  59 
  60 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  61 // It uses the "Garbage First" heap organization and algorithm, which
  62 // may combine concurrent marking with parallel, incremental compaction of
  63 // heap subsets that will yield large amounts of garbage.
  64 
  65 // Forward declarations
  66 class HeapRegion;
  67 class GenerationSpec;
  68 class G1ParScanThreadState;
  69 class G1ParScanThreadStateSet;
  70 class G1ParScanThreadState;
  71 class MemoryPool;
  72 class MemoryManager;
  73 class ObjectClosure;
  74 class SpaceClosure;
  75 class CompactibleSpaceClosure;
  76 class Space;
  77 class G1CardTableEntryClosure;
  78 class G1CollectionSet;
  79 class G1Policy;
  80 class G1HotCardCache;
  81 class G1RemSet;
  82 class G1YoungRemSetSamplingThread;
  83 class G1ConcurrentMark;
  84 class G1ConcurrentMarkThread;
  85 class G1ConcurrentRefine;
  86 class GenerationCounters;
  87 class STWGCTimer;
  88 class G1NewTracer;
  89 class EvacuationFailedInfo;
  90 class nmethod;
  91 class WorkGang;
  92 class G1Allocator;
  93 class G1ArchiveAllocator;
  94 class G1FullGCScope;
  95 class G1HeapVerifier;
  96 class G1HeapSizingPolicy;
  97 class G1HeapSummary;
  98 class G1EvacSummary;
  99 
 100 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
 101 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
 102 
 103 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 104 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 105 
 106 // The G1 STW is alive closure.
 107 // An instance is embedded into the G1CH and used as the
 108 // (optional) _is_alive_non_header closure in the STW
 109 // reference processor. It is also extensively used during
 110 // reference processing during STW evacuation pauses.
 111 class G1STWIsAliveClosure : public BoolObjectClosure {
 112   G1CollectedHeap* _g1h;
 113 public:
 114   G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 115   bool do_object_b(oop p);
 116 };
 117 
 118 class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure {
 119   G1CollectedHeap* _g1h;
 120 public:
 121   G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 122   bool do_object_b(oop p);
 123 };
 124 
 125 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 126  private:
 127   void reset_from_card_cache(uint start_idx, size_t num_regions);
 128  public:
 129   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 130 };
 131 
 132 class G1CollectedHeap : public CollectedHeap {
 133   friend class VM_CollectForMetadataAllocation;
 134   friend class VM_G1CollectForAllocation;
 135   friend class VM_G1CollectFull;
 136   friend class VM_G1TryInitiateConcMark;
 137   friend class VMStructs;
 138   friend class MutatorAllocRegion;
 139   friend class G1FullCollector;
 140   friend class G1GCAllocRegion;
 141   friend class G1HeapVerifier;
 142 
 143   // Closures used in implementation.
 144   friend class G1ParScanThreadState;
 145   friend class G1ParScanThreadStateSet;
 146   friend class G1EvacuateRegionsTask;
 147   friend class G1PLABAllocator;
 148 
 149   // Other related classes.
 150   friend class HeapRegionClaimer;
 151 
 152   // Testing classes.
 153   friend class G1CheckRegionAttrTableClosure;
 154 
 155 private:
 156   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 157 
 158   WorkGang* _workers;
 159   G1CardTable* _card_table;
 160 
 161   SoftRefPolicy      _soft_ref_policy;
 162 
 163   static size_t _humongous_object_threshold_in_words;
 164 
 165   // These sets keep track of old, archive and humongous regions respectively.
 166   HeapRegionSet _old_set;
 167   HeapRegionSet _archive_set;
 168   HeapRegionSet _humongous_set;
 169 
 170   void eagerly_reclaim_humongous_regions();
 171   // Start a new incremental collection set for the next pause.
 172   void start_new_collection_set();
 173 
 174   // The block offset table for the G1 heap.
 175   G1BlockOffsetTable* _bot;
 176 
 177   // Tears down the region sets / lists so that they are empty and the
 178   // regions on the heap do not belong to a region set / list. The
 179   // only exception is the humongous set which we leave unaltered. If
 180   // free_list_only is true, it will only tear down the master free
 181   // list. It is called before a Full GC (free_list_only == false) or
 182   // before heap shrinking (free_list_only == true).
 183   void tear_down_region_sets(bool free_list_only);
 184 
 185   // Rebuilds the region sets / lists so that they are repopulated to
 186   // reflect the contents of the heap. The only exception is the
 187   // humongous set which was not torn down in the first place. If
 188   // free_list_only is true, it will only rebuild the master free
 189   // list. It is called after a Full GC (free_list_only == false) or
 190   // after heap shrinking (free_list_only == true).
 191   void rebuild_region_sets(bool free_list_only);
 192 
 193   // Callback for region mapping changed events.
 194   G1RegionMappingChangedListener _listener;
 195 
 196   // Handle G1 NUMA support.
 197   G1NUMA* _numa;
 198 
 199   // The sequence of all heap regions in the heap.
 200   HeapRegionManager* _hrm;
 201 
 202   // Manages all allocations with regions except humongous object allocations.
 203   G1Allocator* _allocator;
 204 
 205   // Manages all heap verification.
 206   G1HeapVerifier* _verifier;
 207 
 208   // Outside of GC pauses, the number of bytes used in all regions other
 209   // than the current allocation region(s).
 210   volatile size_t _summary_bytes_used;
 211 
 212   void increase_used(size_t bytes);
 213   void decrease_used(size_t bytes);
 214 
 215   void set_used(size_t bytes);
 216 
 217   // Class that handles archive allocation ranges.
 218   G1ArchiveAllocator* _archive_allocator;
 219 
 220   // GC allocation statistics policy for survivors.
 221   G1EvacStats _survivor_evac_stats;
 222 
 223   // GC allocation statistics policy for tenured objects.
 224   G1EvacStats _old_evac_stats;
 225 
 226   // It specifies whether we should attempt to expand the heap after a
 227   // region allocation failure. If heap expansion fails we set this to
 228   // false so that we don't re-attempt the heap expansion (it's likely
 229   // that subsequent expansion attempts will also fail if one fails).
 230   // Currently, it is only consulted during GC and it's reset at the
 231   // start of each GC.
 232   bool _expand_heap_after_alloc_failure;
 233 
 234   // Helper for monitoring and management support.
 235   G1MonitoringSupport* _g1mm;
 236 
 237   // Records whether the region at the given index is (still) a
 238   // candidate for eager reclaim.  Only valid for humongous start
 239   // regions; other regions have unspecified values.  Humongous start
 240   // regions are initialized at start of collection pause, with
 241   // candidates removed from the set as they are found reachable from
 242   // roots or the young generation.
 243   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 244    protected:
 245     bool default_value() const { return false; }
 246    public:
 247     void clear() { G1BiasedMappedArray<bool>::clear(); }
 248     void set_candidate(uint region, bool value) {
 249       set_by_index(region, value);
 250     }
 251     bool is_candidate(uint region) {
 252       return get_by_index(region);
 253     }
 254   };
 255 
 256   HumongousReclaimCandidates _humongous_reclaim_candidates;
 257   // Stores whether during humongous object registration we found candidate regions.
 258   // If not, we can skip a few steps.
 259   bool _has_humongous_reclaim_candidates;
 260 
 261   G1HRPrinter _hr_printer;
 262 
 263   // Return true if an explicit GC should start a concurrent cycle instead
 264   // of doing a STW full GC. A concurrent cycle should be started if:
 265   // (a) cause == _g1_humongous_allocation,
 266   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent,
 267   // (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent,
 268   // (d) cause == _wb_conc_mark,
 269   // (e) cause == _g1_periodic_collection and +G1PeriodicGCInvokesConcurrent.
 270   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 271 
 272   // Attempt to start a concurrent cycle with the indicated cause.
 273   // precondition: should_do_concurrent_full_gc(cause)
 274   bool try_collect_concurrently(GCCause::Cause cause,
 275                                 uint gc_counter,
 276                                 uint old_marking_started_before);
 277 
 278   // Return true if should upgrade to full gc after an incremental one.
 279   bool should_upgrade_to_full_gc(GCCause::Cause cause);
 280 
 281   // indicates whether we are in young or mixed GC mode
 282   G1CollectorState _collector_state;
 283 
 284   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 285   // concurrent cycles) we have started.
 286   volatile uint _old_marking_cycles_started;
 287 
 288   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 289   // concurrent cycles) we have completed.
 290   volatile uint _old_marking_cycles_completed;
 291 
 292   // This is a non-product method that is helpful for testing. It is
 293   // called at the end of a GC and artificially expands the heap by
 294   // allocating a number of dead regions. This way we can induce very
 295   // frequent marking cycles and stress the cleanup / concurrent
 296   // cleanup code more (as all the regions that will be allocated by
 297   // this method will be found dead by the marking cycle).
 298   void allocate_dummy_regions() PRODUCT_RETURN;
 299 
 300   // If the HR printer is active, dump the state of the regions in the
 301   // heap after a compaction.
 302   void print_hrm_post_compaction();
 303 
 304   // Create a memory mapper for auxiliary data structures of the given size and
 305   // translation factor.
 306   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 307                                                          size_t size,
 308                                                          size_t translation_factor);
 309 
 310   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 311 
 312   // These are macros so that, if the assert fires, we get the correct
 313   // line number, file, etc.
 314 
 315 #define heap_locking_asserts_params(_extra_message_)                          \
 316   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 317   (_extra_message_),                                                          \
 318   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 319   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 320   BOOL_TO_STR(Thread::current()->is_VM_thread())
 321 
 322 #define assert_heap_locked()                                                  \
 323   do {                                                                        \
 324     assert(Heap_lock->owned_by_self(),                                        \
 325            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 326   } while (0)
 327 
 328 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 329   do {                                                                        \
 330     assert(Heap_lock->owned_by_self() ||                                      \
 331            (SafepointSynchronize::is_at_safepoint() &&                        \
 332              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 333            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 334                                         "should be at a safepoint"));         \
 335   } while (0)
 336 
 337 #define assert_heap_locked_and_not_at_safepoint()                             \
 338   do {                                                                        \
 339     assert(Heap_lock->owned_by_self() &&                                      \
 340                                     !SafepointSynchronize::is_at_safepoint(), \
 341           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 342                                        "should not be at a safepoint"));      \
 343   } while (0)
 344 
 345 #define assert_heap_not_locked()                                              \
 346   do {                                                                        \
 347     assert(!Heap_lock->owned_by_self(),                                       \
 348         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 349   } while (0)
 350 
 351 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 352   do {                                                                        \
 353     assert(!Heap_lock->owned_by_self() &&                                     \
 354                                     !SafepointSynchronize::is_at_safepoint(), \
 355       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 356                                    "should not be at a safepoint"));          \
 357   } while (0)
 358 
 359 #define assert_at_safepoint_on_vm_thread()                                    \
 360   do {                                                                        \
 361     assert_at_safepoint();                                                    \
 362     assert(Thread::current_or_null() != NULL, "no current thread");           \
 363     assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \
 364   } while (0)
 365 
 366 #ifdef ASSERT
 367 #define assert_used_and_recalculate_used_equal(g1h)                           \
 368   do {                                                                        \
 369     size_t cur_used_bytes = g1h->used();                                      \
 370     size_t recal_used_bytes = g1h->recalculate_used();                        \
 371     assert(cur_used_bytes == recal_used_bytes, "Used(" SIZE_FORMAT ") is not" \
 372            " same as recalculated used(" SIZE_FORMAT ").",                    \
 373            cur_used_bytes, recal_used_bytes);                                 \
 374   } while (0)
 375 #else
 376 #define assert_used_and_recalculate_used_equal(g1h) do {} while(0)
 377 #endif
 378 
 379   const char* young_gc_name() const;
 380 
 381   // The young region list.
 382   G1EdenRegions _eden;
 383   G1SurvivorRegions _survivor;
 384 
 385   STWGCTimer* _gc_timer_stw;
 386 
 387   G1NewTracer* _gc_tracer_stw;
 388 
 389   // The current policy object for the collector.
 390   G1Policy* _policy;
 391   G1HeapSizingPolicy* _heap_sizing_policy;
 392 
 393   G1CollectionSet _collection_set;
 394 
 395   // Try to allocate a single non-humongous HeapRegion sufficient for
 396   // an allocation of the given word_size. If do_expand is true,
 397   // attempt to expand the heap if necessary to satisfy the allocation
 398   // request. 'type' takes the type of region to be allocated. (Use constants
 399   // Old, Eden, Humongous, Survivor defined in HeapRegionType.)
 400   HeapRegion* new_region(size_t word_size,
 401                          HeapRegionType type,
 402                          bool do_expand,
 403                          uint node_index = G1NUMA::AnyNodeIndex);
 404 
 405   // Initialize a contiguous set of free regions of length num_regions
 406   // and starting at index first so that they appear as a single
 407   // humongous region.
 408   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 409                                                       uint num_regions,
 410                                                       size_t word_size);
 411 
 412   // Attempt to allocate a humongous object of the given size. Return
 413   // NULL if unsuccessful.
 414   HeapWord* humongous_obj_allocate(size_t word_size);
 415 
 416   // The following two methods, allocate_new_tlab() and
 417   // mem_allocate(), are the two main entry points from the runtime
 418   // into the G1's allocation routines. They have the following
 419   // assumptions:
 420   //
 421   // * They should both be called outside safepoints.
 422   //
 423   // * They should both be called without holding the Heap_lock.
 424   //
 425   // * All allocation requests for new TLABs should go to
 426   //   allocate_new_tlab().
 427   //
 428   // * All non-TLAB allocation requests should go to mem_allocate().
 429   //
 430   // * If either call cannot satisfy the allocation request using the
 431   //   current allocating region, they will try to get a new one. If
 432   //   this fails, they will attempt to do an evacuation pause and
 433   //   retry the allocation.
 434   //
 435   // * If all allocation attempts fail, even after trying to schedule
 436   //   an evacuation pause, allocate_new_tlab() will return NULL,
 437   //   whereas mem_allocate() will attempt a heap expansion and/or
 438   //   schedule a Full GC.
 439   //
 440   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 441   //   should never be called with word_size being humongous. All
 442   //   humongous allocation requests should go to mem_allocate() which
 443   //   will satisfy them with a special path.
 444 
 445   virtual HeapWord* allocate_new_tlab(size_t min_size,
 446                                       size_t requested_size,
 447                                       size_t* actual_size);
 448 
 449   virtual HeapWord* mem_allocate(size_t word_size,
 450                                  bool*  gc_overhead_limit_was_exceeded);
 451 
 452   // First-level mutator allocation attempt: try to allocate out of
 453   // the mutator alloc region without taking the Heap_lock. This
 454   // should only be used for non-humongous allocations.
 455   inline HeapWord* attempt_allocation(size_t min_word_size,
 456                                       size_t desired_word_size,
 457                                       size_t* actual_word_size);
 458 
 459   // Second-level mutator allocation attempt: take the Heap_lock and
 460   // retry the allocation attempt, potentially scheduling a GC
 461   // pause. This should only be used for non-humongous allocations.
 462   HeapWord* attempt_allocation_slow(size_t word_size);
 463 
 464   // Takes the Heap_lock and attempts a humongous allocation. It can
 465   // potentially schedule a GC pause.
 466   HeapWord* attempt_allocation_humongous(size_t word_size);
 467 
 468   // Allocation attempt that should be called during safepoints (e.g.,
 469   // at the end of a successful GC). expect_null_mutator_alloc_region
 470   // specifies whether the mutator alloc region is expected to be NULL
 471   // or not.
 472   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 473                                             bool expect_null_mutator_alloc_region);
 474 
 475   // These methods are the "callbacks" from the G1AllocRegion class.
 476 
 477   // For mutator alloc regions.
 478   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force, uint node_index);
 479   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 480                                    size_t allocated_bytes);
 481 
 482   // For GC alloc regions.
 483   bool has_more_regions(G1HeapRegionAttr dest);
 484   HeapRegion* new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index);
 485   void retire_gc_alloc_region(HeapRegion* alloc_region,
 486                               size_t allocated_bytes, G1HeapRegionAttr dest);
 487 
 488   // - if explicit_gc is true, the GC is for a System.gc() etc,
 489   //   otherwise it's for a failed allocation.
 490   // - if clear_all_soft_refs is true, all soft references should be
 491   //   cleared during the GC.
 492   // - it returns false if it is unable to do the collection due to the
 493   //   GC locker being active, true otherwise.
 494   bool do_full_collection(bool explicit_gc,
 495                           bool clear_all_soft_refs);
 496 
 497   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 498   virtual void do_full_collection(bool clear_all_soft_refs);
 499 
 500   // Callback from VM_G1CollectForAllocation operation.
 501   // This function does everything necessary/possible to satisfy a
 502   // failed allocation request (including collection, expansion, etc.)
 503   HeapWord* satisfy_failed_allocation(size_t word_size,
 504                                       bool* succeeded);
 505   // Internal helpers used during full GC to split it up to
 506   // increase readability.
 507   void abort_concurrent_cycle();
 508   void verify_before_full_collection(bool explicit_gc);
 509   void prepare_heap_for_full_collection();
 510   void prepare_heap_for_mutators();
 511   void abort_refinement();
 512   void verify_after_full_collection();
 513   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 514 
 515   // Helper method for satisfy_failed_allocation()
 516   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 517                                              bool do_gc,
 518                                              bool clear_all_soft_refs,
 519                                              bool expect_null_mutator_alloc_region,
 520                                              bool* gc_succeeded);
 521 
 522   // Attempting to expand the heap sufficiently
 523   // to support an allocation of the given "word_size".  If
 524   // successful, perform the allocation and return the address of the
 525   // allocated block, or else "NULL".
 526   HeapWord* expand_and_allocate(size_t word_size);
 527 
 528   // Process any reference objects discovered.
 529   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 530 
 531   // If during an initial mark pause we may install a pending list head which is not
 532   // otherwise reachable ensure that it is marked in the bitmap for concurrent marking
 533   // to discover.
 534   void make_pending_list_reachable();
 535 
 536   // Merges the information gathered on a per-thread basis for all worker threads
 537   // during GC into global variables.
 538   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 539 
 540   void verify_numa_regions(const char* desc);
 541 
 542 public:
 543   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 544 
 545   WorkGang* workers() const { return _workers; }
 546 
 547   // Runs the given AbstractGangTask with the current active workers, returning the
 548   // total time taken.
 549   Tickspan run_task(AbstractGangTask* task);
 550 
 551   G1Allocator* allocator() {
 552     return _allocator;
 553   }
 554 
 555   G1HeapVerifier* verifier() {
 556     return _verifier;
 557   }
 558 
 559   G1MonitoringSupport* g1mm() {
 560     assert(_g1mm != NULL, "should have been initialized");
 561     return _g1mm;
 562   }
 563 
 564   void resize_heap_if_necessary();
 565 
 566   G1NUMA* numa() const { return _numa; }
 567 
 568   // Expand the garbage-first heap by at least the given size (in bytes!).
 569   // Returns true if the heap was expanded by the requested amount;
 570   // false otherwise.
 571   // (Rounds up to a HeapRegion boundary.)
 572   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 573   bool expand_single_region(uint node_index);
 574 
 575   // Returns the PLAB statistics for a given destination.
 576   inline G1EvacStats* alloc_buffer_stats(G1HeapRegionAttr dest);
 577 
 578   // Determines PLAB size for a given destination.
 579   inline size_t desired_plab_sz(G1HeapRegionAttr dest);
 580 
 581   // Do anything common to GC's.
 582   void gc_prologue(bool full);
 583   void gc_epilogue(bool full);
 584 
 585   // Does the given region fulfill remembered set based eager reclaim candidate requirements?
 586   bool is_potential_eager_reclaim_candidate(HeapRegion* r) const;
 587 
 588   // Modify the reclaim candidate set and test for presence.
 589   // These are only valid for starts_humongous regions.
 590   inline void set_humongous_reclaim_candidate(uint region, bool value);
 591   inline bool is_humongous_reclaim_candidate(uint region);
 592 
 593   // Remove from the reclaim candidate set.  Also remove from the
 594   // collection set so that later encounters avoid the slow path.
 595   inline void set_humongous_is_live(oop obj);
 596 
 597   // Register the given region to be part of the collection set.
 598   inline void register_humongous_region_with_region_attr(uint index);
 599   // Update region attributes table with information about all regions.
 600   void register_regions_with_region_attr();
 601   // We register a region with the fast "in collection set" test. We
 602   // simply set to true the array slot corresponding to this region.
 603   void register_young_region_with_region_attr(HeapRegion* r) {
 604     _region_attr.set_in_young(r->hrm_index());
 605   }
 606   inline void register_region_with_region_attr(HeapRegion* r);
 607   inline void register_old_region_with_region_attr(HeapRegion* r);
 608   inline void register_optional_region_with_region_attr(HeapRegion* r);
 609 
 610   void clear_region_attr(const HeapRegion* hr) {
 611     _region_attr.clear(hr);
 612   }
 613 
 614   void clear_region_attr() {
 615     _region_attr.clear();
 616   }
 617 
 618   // Verify that the G1RegionAttr remset tracking corresponds to actual remset tracking
 619   // for all regions.
 620   void verify_region_attr_remset_update() PRODUCT_RETURN;
 621 
 622   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 623 
 624   // This is called at the start of either a concurrent cycle or a Full
 625   // GC to update the number of old marking cycles started.
 626   void increment_old_marking_cycles_started();
 627 
 628   // This is called at the end of either a concurrent cycle or a Full
 629   // GC to update the number of old marking cycles completed. Those two
 630   // can happen in a nested fashion, i.e., we start a concurrent
 631   // cycle, a Full GC happens half-way through it which ends first,
 632   // and then the cycle notices that a Full GC happened and ends
 633   // too. The concurrent parameter is a boolean to help us do a bit
 634   // tighter consistency checking in the method. If concurrent is
 635   // false, the caller is the inner caller in the nesting (i.e., the
 636   // Full GC). If concurrent is true, the caller is the outer caller
 637   // in this nesting (i.e., the concurrent cycle). Further nesting is
 638   // not currently supported. The end of this call also notifies
 639   // the G1OldGCCount_lock in case a Java thread is waiting for a full
 640   // GC to happen (e.g., it called System.gc() with
 641   // +ExplicitGCInvokesConcurrent).
 642   void increment_old_marking_cycles_completed(bool concurrent);
 643 
 644   uint old_marking_cycles_completed() {
 645     return _old_marking_cycles_completed;
 646   }
 647 
 648   G1HRPrinter* hr_printer() { return &_hr_printer; }
 649 
 650   // Allocates a new heap region instance.
 651   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 652 
 653   // Allocate the highest free region in the reserved heap. This will commit
 654   // regions as necessary.
 655   HeapRegion* alloc_highest_free_region();
 656 
 657   // Frees a non-humongous region by initializing its contents and
 658   // adding it to the free list that's passed as a parameter (this is
 659   // usually a local list which will be appended to the master free
 660   // list later). The used bytes of freed regions are accumulated in
 661   // pre_used. If skip_remset is true, the region's RSet will not be freed
 662   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 663   // be freed up. The assumption is that this will be done later.
 664   // The locked parameter indicates if the caller has already taken
 665   // care of proper synchronization. This may allow some optimizations.
 666   void free_region(HeapRegion* hr,
 667                    FreeRegionList* free_list,
 668                    bool skip_remset,
 669                    bool skip_hot_card_cache = false,
 670                    bool locked = false);
 671 
 672   // It dirties the cards that cover the block so that the post
 673   // write barrier never queues anything when updating objects on this
 674   // block. It is assumed (and in fact we assert) that the block
 675   // belongs to a young region.
 676   inline void dirty_young_block(HeapWord* start, size_t word_size);
 677 
 678   // Frees a humongous region by collapsing it into individual regions
 679   // and calling free_region() for each of them. The freed regions
 680   // will be added to the free list that's passed as a parameter (this
 681   // is usually a local list which will be appended to the master free
 682   // list later).
 683   // The method assumes that only a single thread is ever calling
 684   // this for a particular region at once.
 685   void free_humongous_region(HeapRegion* hr,
 686                              FreeRegionList* free_list);
 687 
 688   // Facility for allocating in 'archive' regions in high heap memory and
 689   // recording the allocated ranges. These should all be called from the
 690   // VM thread at safepoints, without the heap lock held. They can be used
 691   // to create and archive a set of heap regions which can be mapped at the
 692   // same fixed addresses in a subsequent JVM invocation.
 693   void begin_archive_alloc_range(bool open = false);
 694 
 695   // Check if the requested size would be too large for an archive allocation.
 696   bool is_archive_alloc_too_large(size_t word_size);
 697 
 698   // Allocate memory of the requested size from the archive region. This will
 699   // return NULL if the size is too large or if no memory is available. It
 700   // does not trigger a garbage collection.
 701   HeapWord* archive_mem_allocate(size_t word_size);
 702 
 703   // Optionally aligns the end address and returns the allocated ranges in
 704   // an array of MemRegions in order of ascending addresses.
 705   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 706                                size_t end_alignment_in_bytes = 0);
 707 
 708   // Facility for allocating a fixed range within the heap and marking
 709   // the containing regions as 'archive'. For use at JVM init time, when the
 710   // caller may mmap archived heap data at the specified range(s).
 711   // Verify that the MemRegions specified in the argument array are within the
 712   // reserved heap.
 713   bool check_archive_addresses(MemRegion* range, size_t count);
 714 
 715   // Commit the appropriate G1 regions containing the specified MemRegions
 716   // and mark them as 'archive' regions. The regions in the array must be
 717   // non-overlapping and in order of ascending address.
 718   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 719 
 720   // Insert any required filler objects in the G1 regions around the specified
 721   // ranges to make the regions parseable. This must be called after
 722   // alloc_archive_regions, and after class loading has occurred.
 723   void fill_archive_regions(MemRegion* range, size_t count);
 724 
 725   // For each of the specified MemRegions, uncommit the containing G1 regions
 726   // which had been allocated by alloc_archive_regions. This should be called
 727   // rather than fill_archive_regions at JVM init time if the archive file
 728   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 729   void dealloc_archive_regions(MemRegion* range, size_t count, bool is_open);
 730 
 731   oop materialize_archived_object(oop obj);
 732 
 733 private:
 734 
 735   // Shrink the garbage-first heap by at most the given size (in bytes!).
 736   // (Rounds down to a HeapRegion boundary.)
 737   void shrink(size_t expand_bytes);
 738   void shrink_helper(size_t expand_bytes);
 739 
 740   #if TASKQUEUE_STATS
 741   static void print_taskqueue_stats_hdr(outputStream* const st);
 742   void print_taskqueue_stats() const;
 743   void reset_taskqueue_stats();
 744   #endif // TASKQUEUE_STATS
 745 
 746   // Schedule the VM operation that will do an evacuation pause to
 747   // satisfy an allocation request of word_size. *succeeded will
 748   // return whether the VM operation was successful (it did do an
 749   // evacuation pause) or not (another thread beat us to it or the GC
 750   // locker was active). Given that we should not be holding the
 751   // Heap_lock when we enter this method, we will pass the
 752   // gc_count_before (i.e., total_collections()) as a parameter since
 753   // it has to be read while holding the Heap_lock. Currently, both
 754   // methods that call do_collection_pause() release the Heap_lock
 755   // before the call, so it's easy to read gc_count_before just before.
 756   HeapWord* do_collection_pause(size_t         word_size,
 757                                 uint           gc_count_before,
 758                                 bool*          succeeded,
 759                                 GCCause::Cause gc_cause);
 760 
 761   void wait_for_root_region_scanning();
 762 
 763   // The guts of the incremental collection pause, executed by the vm
 764   // thread. It returns false if it is unable to do the collection due
 765   // to the GC locker being active, true otherwise
 766   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 767 
 768   G1HeapVerifier::G1VerifyType young_collection_verify_type() const;
 769   void verify_before_young_collection(G1HeapVerifier::G1VerifyType type);
 770   void verify_after_young_collection(G1HeapVerifier::G1VerifyType type);
 771 
 772   void calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms);
 773 
 774   // Actually do the work of evacuating the parts of the collection set.
 775   void evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states);
 776   void evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states);
 777 private:
 778   // Evacuate the next set of optional regions.
 779   void evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states);
 780 
 781 public:
 782   void pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 783   void post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
 784                                     G1RedirtyCardsQueueSet* rdcqs,
 785                                     G1ParScanThreadStateSet* pss);
 786 
 787   void expand_heap_after_young_collection();
 788   // Update object copying statistics.
 789   void record_obj_copy_mem_stats();
 790 
 791   // The hot card cache for remembered set insertion optimization.
 792   G1HotCardCache* _hot_card_cache;
 793 
 794   // The g1 remembered set of the heap.
 795   G1RemSet* _rem_set;
 796 
 797   // After a collection pause, convert the regions in the collection set into free
 798   // regions.
 799   void free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 800 
 801   // Abandon the current collection set without recording policy
 802   // statistics or updating free lists.
 803   void abandon_collection_set(G1CollectionSet* collection_set);
 804 
 805   // The concurrent marker (and the thread it runs in.)
 806   G1ConcurrentMark* _cm;
 807   G1ConcurrentMarkThread* _cm_thread;
 808 
 809   // The concurrent refiner.
 810   G1ConcurrentRefine* _cr;
 811 
 812   // The parallel task queues
 813   RefToScanQueueSet *_task_queues;
 814 
 815   // True iff a evacuation has failed in the current collection.
 816   bool _evacuation_failed;
 817 
 818   EvacuationFailedInfo* _evacuation_failed_info_array;
 819 
 820   // Failed evacuations cause some logical from-space objects to have
 821   // forwarding pointers to themselves.  Reset them.
 822   void remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs);
 823 
 824   // Restore the objects in the regions in the collection set after an
 825   // evacuation failure.
 826   void restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs);
 827 
 828   PreservedMarksSet _preserved_marks_set;
 829 
 830   // Preserve the mark of "obj", if necessary, in preparation for its mark
 831   // word being overwritten with a self-forwarding-pointer.
 832   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m);
 833 
 834 #ifndef PRODUCT
 835   // Support for forcing evacuation failures. Analogous to
 836   // PromotionFailureALot for the other collectors.
 837 
 838   // Records whether G1EvacuationFailureALot should be in effect
 839   // for the current GC
 840   bool _evacuation_failure_alot_for_current_gc;
 841 
 842   // Used to record the GC number for interval checking when
 843   // determining whether G1EvaucationFailureALot is in effect
 844   // for the current GC.
 845   size_t _evacuation_failure_alot_gc_number;
 846 
 847   // Count of the number of evacuations between failures.
 848   volatile size_t _evacuation_failure_alot_count;
 849 
 850   // Set whether G1EvacuationFailureALot should be in effect
 851   // for the current GC (based upon the type of GC and which
 852   // command line flags are set);
 853   inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc,
 854                                                   bool during_initial_mark,
 855                                                   bool mark_or_rebuild_in_progress);
 856 
 857   inline void set_evacuation_failure_alot_for_current_gc();
 858 
 859   // Return true if it's time to cause an evacuation failure.
 860   inline bool evacuation_should_fail();
 861 
 862   // Reset the G1EvacuationFailureALot counters.  Should be called at
 863   // the end of an evacuation pause in which an evacuation failure occurred.
 864   inline void reset_evacuation_should_fail();
 865 #endif // !PRODUCT
 866 
 867   // ("Weak") Reference processing support.
 868   //
 869   // G1 has 2 instances of the reference processor class. One
 870   // (_ref_processor_cm) handles reference object discovery
 871   // and subsequent processing during concurrent marking cycles.
 872   //
 873   // The other (_ref_processor_stw) handles reference object
 874   // discovery and processing during full GCs and incremental
 875   // evacuation pauses.
 876   //
 877   // During an incremental pause, reference discovery will be
 878   // temporarily disabled for _ref_processor_cm and will be
 879   // enabled for _ref_processor_stw. At the end of the evacuation
 880   // pause references discovered by _ref_processor_stw will be
 881   // processed and discovery will be disabled. The previous
 882   // setting for reference object discovery for _ref_processor_cm
 883   // will be re-instated.
 884   //
 885   // At the start of marking:
 886   //  * Discovery by the CM ref processor is verified to be inactive
 887   //    and it's discovered lists are empty.
 888   //  * Discovery by the CM ref processor is then enabled.
 889   //
 890   // At the end of marking:
 891   //  * Any references on the CM ref processor's discovered
 892   //    lists are processed (possibly MT).
 893   //
 894   // At the start of full GC we:
 895   //  * Disable discovery by the CM ref processor and
 896   //    empty CM ref processor's discovered lists
 897   //    (without processing any entries).
 898   //  * Verify that the STW ref processor is inactive and it's
 899   //    discovered lists are empty.
 900   //  * Temporarily set STW ref processor discovery as single threaded.
 901   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 902   //    field.
 903   //  * Finally enable discovery by the STW ref processor.
 904   //
 905   // The STW ref processor is used to record any discovered
 906   // references during the full GC.
 907   //
 908   // At the end of a full GC we:
 909   //  * Enqueue any reference objects discovered by the STW ref processor
 910   //    that have non-live referents. This has the side-effect of
 911   //    making the STW ref processor inactive by disabling discovery.
 912   //  * Verify that the CM ref processor is still inactive
 913   //    and no references have been placed on it's discovered
 914   //    lists (also checked as a precondition during initial marking).
 915 
 916   // The (stw) reference processor...
 917   ReferenceProcessor* _ref_processor_stw;
 918 
 919   // During reference object discovery, the _is_alive_non_header
 920   // closure (if non-null) is applied to the referent object to
 921   // determine whether the referent is live. If so then the
 922   // reference object does not need to be 'discovered' and can
 923   // be treated as a regular oop. This has the benefit of reducing
 924   // the number of 'discovered' reference objects that need to
 925   // be processed.
 926   //
 927   // Instance of the is_alive closure for embedding into the
 928   // STW reference processor as the _is_alive_non_header field.
 929   // Supplying a value for the _is_alive_non_header field is
 930   // optional but doing so prevents unnecessary additions to
 931   // the discovered lists during reference discovery.
 932   G1STWIsAliveClosure _is_alive_closure_stw;
 933 
 934   G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw;
 935 
 936   // The (concurrent marking) reference processor...
 937   ReferenceProcessor* _ref_processor_cm;
 938 
 939   // Instance of the concurrent mark is_alive closure for embedding
 940   // into the Concurrent Marking reference processor as the
 941   // _is_alive_non_header field. Supplying a value for the
 942   // _is_alive_non_header field is optional but doing so prevents
 943   // unnecessary additions to the discovered lists during reference
 944   // discovery.
 945   G1CMIsAliveClosure _is_alive_closure_cm;
 946 
 947   G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm;
 948 public:
 949 
 950   RefToScanQueue *task_queue(uint i) const;
 951 
 952   uint num_task_queues() const;
 953 
 954   // Create a G1CollectedHeap.
 955   // Must call the initialize method afterwards.
 956   // May not return if something goes wrong.
 957   G1CollectedHeap();
 958 
 959 private:
 960   jint initialize_concurrent_refinement();
 961   jint initialize_young_gen_sampling_thread();
 962 public:
 963   // Initialize the G1CollectedHeap to have the initial and
 964   // maximum sizes and remembered and barrier sets
 965   // specified by the policy object.
 966   jint initialize();
 967 
 968   virtual void stop();
 969   virtual void safepoint_synchronize_begin();
 970   virtual void safepoint_synchronize_end();
 971 
 972   // Does operations required after initialization has been done.
 973   void post_initialize();
 974 
 975   // Initialize weak reference processing.
 976   void ref_processing_init();
 977 
 978   virtual Name kind() const {
 979     return CollectedHeap::G1;
 980   }
 981 
 982   virtual const char* name() const {
 983     return "G1";
 984   }
 985 
 986   const G1CollectorState* collector_state() const { return &_collector_state; }
 987   G1CollectorState* collector_state() { return &_collector_state; }
 988 
 989   // The current policy object for the collector.
 990   G1Policy* policy() const { return _policy; }
 991   // The remembered set.
 992   G1RemSet* rem_set() const { return _rem_set; }
 993 
 994   inline G1GCPhaseTimes* phase_times() const;
 995 
 996   HeapRegionManager* hrm() const { return _hrm; }
 997 
 998   const G1CollectionSet* collection_set() const { return &_collection_set; }
 999   G1CollectionSet* collection_set() { return &_collection_set; }
1000 
1001   virtual SoftRefPolicy* soft_ref_policy();
1002 
1003   virtual void initialize_serviceability();
1004   virtual MemoryUsage memory_usage();
1005   virtual GrowableArray<GCMemoryManager*> memory_managers();
1006   virtual GrowableArray<MemoryPool*> memory_pools();
1007 
1008   // Try to minimize the remembered set.
1009   void scrub_rem_set();
1010 
1011   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
1012   void iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id);
1013 
1014   // The shared block offset table array.
1015   G1BlockOffsetTable* bot() const { return _bot; }
1016 
1017   // Reference Processing accessors
1018 
1019   // The STW reference processor....
1020   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1021 
1022   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1023 
1024   // The Concurrent Marking reference processor...
1025   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1026 
1027   size_t unused_committed_regions_in_bytes() const;
1028 
1029   virtual size_t capacity() const;
1030   virtual size_t used() const;
1031   // This should be called when we're not holding the heap lock. The
1032   // result might be a bit inaccurate.
1033   size_t used_unlocked() const;
1034   size_t recalculate_used() const;
1035 
1036   // These virtual functions do the actual allocation.
1037   // Some heaps may offer a contiguous region for shared non-blocking
1038   // allocation, via inlined code (by exporting the address of the top and
1039   // end fields defining the extent of the contiguous allocation region.)
1040   // But G1CollectedHeap doesn't yet support this.
1041 
1042   virtual bool is_maximal_no_gc() const {
1043     return _hrm->available() == 0;
1044   }
1045 
1046   // Returns whether there are any regions left in the heap for allocation.
1047   bool has_regions_left_for_allocation() const {
1048     return !is_maximal_no_gc() || num_free_regions() != 0;
1049   }
1050 
1051   // The current number of regions in the heap.
1052   uint num_regions() const { return _hrm->length(); }
1053 
1054   // The max number of regions in the heap.
1055   uint max_regions() const { return _hrm->max_length(); }
1056 
1057   // Max number of regions that can be comitted.
1058   uint max_expandable_regions() const { return _hrm->max_expandable_length(); }
1059 
1060   // The number of regions that are completely free.
1061   uint num_free_regions() const { return _hrm->num_free_regions(); }
1062 
1063   // The number of regions that can be allocated into.
1064   uint num_free_or_available_regions() const { return num_free_regions() + _hrm->available(); }
1065 
1066   MemoryUsage get_auxiliary_data_memory_usage() const {
1067     return _hrm->get_auxiliary_data_memory_usage();
1068   }
1069 
1070   // The number of regions that are not completely free.
1071   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1072 
1073 #ifdef ASSERT
1074   bool is_on_master_free_list(HeapRegion* hr) {
1075     return _hrm->is_free(hr);
1076   }
1077 #endif // ASSERT
1078 
1079   inline void old_set_add(HeapRegion* hr);
1080   inline void old_set_remove(HeapRegion* hr);
1081 
1082   inline void archive_set_add(HeapRegion* hr);
1083 
1084   size_t non_young_capacity_bytes() {
1085     return (old_regions_count() + _archive_set.length() + humongous_regions_count()) * HeapRegion::GrainBytes;
1086   }
1087 
1088   // Determine whether the given region is one that we are using as an
1089   // old GC alloc region.
1090   bool is_old_gc_alloc_region(HeapRegion* hr);
1091 
1092   // Perform a collection of the heap; intended for use in implementing
1093   // "System.gc".  This probably implies as full a collection as the
1094   // "CollectedHeap" supports.
1095   virtual void collect(GCCause::Cause cause);
1096 
1097   // Perform a collection of the heap with the given cause.
1098   // Returns whether this collection actually executed.
1099   bool try_collect(GCCause::Cause cause);
1100 
1101   // True iff an evacuation has failed in the most-recent collection.
1102   bool evacuation_failed() { return _evacuation_failed; }
1103 
1104   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1105   void prepend_to_freelist(FreeRegionList* list);
1106   void decrement_summary_bytes(size_t bytes);
1107 
1108   virtual bool is_in(const void* p) const;
1109 #ifdef ASSERT
1110   // Returns whether p is in one of the available areas of the heap. Slow but
1111   // extensive version.
1112   bool is_in_exact(const void* p) const;
1113 #endif
1114 
1115   // Return "TRUE" iff the given object address is within the collection
1116   // set. Assumes that the reference points into the heap.
1117   inline bool is_in_cset(const HeapRegion *hr);
1118   inline bool is_in_cset(oop obj);
1119   inline bool is_in_cset(HeapWord* addr);
1120 
1121   inline bool is_in_cset_or_humongous(const oop obj);
1122 
1123  private:
1124   // This array is used for a quick test on whether a reference points into
1125   // the collection set or not. Each of the array's elements denotes whether the
1126   // corresponding region is in the collection set or not.
1127   G1HeapRegionAttrBiasedMappedArray _region_attr;
1128 
1129  public:
1130 
1131   inline G1HeapRegionAttr region_attr(const void* obj) const;
1132   inline G1HeapRegionAttr region_attr(uint idx) const;
1133 
1134   // Return "TRUE" iff the given object address is in the reserved
1135   // region of g1.
1136   bool is_in_g1_reserved(const void* p) const {
1137     return _hrm->reserved().contains(p);
1138   }
1139 
1140   // Returns a MemRegion that corresponds to the space that has been
1141   // reserved for the heap
1142   MemRegion g1_reserved() const {
1143     return _hrm->reserved();
1144   }
1145 
1146   MemRegion reserved_region() const {
1147     return _reserved;
1148   }
1149 
1150   HeapWord* base() const {
1151     return _reserved.start();
1152   }
1153 
1154   bool is_in_reserved(const void* addr) const {
1155     return _reserved.contains(addr);
1156   }
1157 
1158   G1HotCardCache* hot_card_cache() const { return _hot_card_cache; }
1159 
1160   G1CardTable* card_table() const {
1161     return _card_table;
1162   }
1163 
1164   // Iteration functions.
1165 
1166   // Iterate over all objects, calling "cl.do_object" on each.
1167   virtual void object_iterate(ObjectClosure* cl);
1168 
1169   // Iterate over heap regions, in address order, terminating the
1170   // iteration early if the "do_heap_region" method returns "true".
1171   void heap_region_iterate(HeapRegionClosure* blk) const;
1172 
1173   // Return the region with the given index. It assumes the index is valid.
1174   inline HeapRegion* region_at(uint index) const;
1175   inline HeapRegion* region_at_or_null(uint index) const;
1176 
1177   // Return the next region (by index) that is part of the same
1178   // humongous object that hr is part of.
1179   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1180 
1181   // Calculate the region index of the given address. Given address must be
1182   // within the heap.
1183   inline uint addr_to_region(HeapWord* addr) const;
1184 
1185   inline HeapWord* bottom_addr_for_region(uint index) const;
1186 
1187   // Two functions to iterate over the heap regions in parallel. Threads
1188   // compete using the HeapRegionClaimer to claim the regions before
1189   // applying the closure on them.
1190   // The _from_worker_offset version uses the HeapRegionClaimer and
1191   // the worker id to calculate a start offset to prevent all workers to
1192   // start from the point.
1193   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1194                                                   HeapRegionClaimer* hrclaimer,
1195                                                   uint worker_id) const;
1196 
1197   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1198                                           HeapRegionClaimer* hrclaimer) const;
1199 
1200   // Iterate over all regions currently in the current collection set.
1201   void collection_set_iterate_all(HeapRegionClosure* blk);
1202 
1203   // Iterate over the regions in the current increment of the collection set.
1204   // Starts the iteration so that the start regions of a given worker id over the
1205   // set active_workers are evenly spread across the set of collection set regions
1206   // to be iterated.
1207   // The variant with the HeapRegionClaimer guarantees that the closure will be
1208   // applied to a particular region exactly once.
1209   void collection_set_iterate_increment_from(HeapRegionClosure *blk, uint worker_id) {
1210     collection_set_iterate_increment_from(blk, NULL, worker_id);
1211   }
1212   void collection_set_iterate_increment_from(HeapRegionClosure *blk, HeapRegionClaimer* hr_claimer, uint worker_id);
1213 
1214   // Returns the HeapRegion that contains addr. addr must not be NULL.
1215   template <class T>
1216   inline HeapRegion* heap_region_containing(const T addr) const;
1217 
1218   // Returns the HeapRegion that contains addr, or NULL if that is an uncommitted
1219   // region. addr must not be NULL.
1220   template <class T>
1221   inline HeapRegion* heap_region_containing_or_null(const T addr) const;
1222 
1223   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1224   // each address in the (reserved) heap is a member of exactly
1225   // one block.  The defining characteristic of a block is that it is
1226   // possible to find its size, and thus to progress forward to the next
1227   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1228   // represent Java objects, or they might be free blocks in a
1229   // free-list-based heap (or subheap), as long as the two kinds are
1230   // distinguishable and the size of each is determinable.
1231 
1232   // Returns the address of the start of the "block" that contains the
1233   // address "addr".  We say "blocks" instead of "object" since some heaps
1234   // may not pack objects densely; a chunk may either be an object or a
1235   // non-object.
1236   HeapWord* block_start(const void* addr) const;
1237 
1238   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1239   // the block is an object.
1240   bool block_is_obj(const HeapWord* addr) const;
1241 
1242   // Section on thread-local allocation buffers (TLABs)
1243   // See CollectedHeap for semantics.
1244 
1245   bool supports_tlab_allocation() const;
1246   size_t tlab_capacity(Thread* ignored) const;
1247   size_t tlab_used(Thread* ignored) const;
1248   size_t max_tlab_size() const;
1249   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1250 
1251   inline bool is_in_young(const oop obj);
1252 
1253   // Returns "true" iff the given word_size is "very large".
1254   static bool is_humongous(size_t word_size) {
1255     // Note this has to be strictly greater-than as the TLABs
1256     // are capped at the humongous threshold and we want to
1257     // ensure that we don't try to allocate a TLAB as
1258     // humongous and that we don't allocate a humongous
1259     // object in a TLAB.
1260     return word_size > _humongous_object_threshold_in_words;
1261   }
1262 
1263   // Returns the humongous threshold for a specific region size
1264   static size_t humongous_threshold_for(size_t region_size) {
1265     return (region_size / 2);
1266   }
1267 
1268   // Returns the number of regions the humongous object of the given word size
1269   // requires.
1270   static size_t humongous_obj_size_in_regions(size_t word_size);
1271 
1272   // Print the maximum heap capacity.
1273   virtual size_t max_capacity() const;
1274 
1275   // Return the size of reserved memory. Returns different value than max_capacity() when AllocateOldGenAt is used.
1276   virtual size_t max_reserved_capacity() const;
1277 
1278   virtual jlong millis_since_last_gc();
1279 
1280 
1281   // Convenience function to be used in situations where the heap type can be
1282   // asserted to be this type.
1283   static G1CollectedHeap* heap();
1284 
1285   void set_region_short_lived_locked(HeapRegion* hr);
1286   // add appropriate methods for any other surv rate groups
1287 
1288   const G1SurvivorRegions* survivor() const { return &_survivor; }
1289 
1290   uint eden_regions_count() const { return _eden.length(); }
1291   uint eden_regions_count(uint node_index) const { return _eden.regions_on_node(node_index); }
1292   uint survivor_regions_count() const { return _survivor.length(); }
1293   uint survivor_regions_count(uint node_index) const { return _survivor.regions_on_node(node_index); }
1294   size_t eden_regions_used_bytes() const { return _eden.used_bytes(); }
1295   size_t survivor_regions_used_bytes() const { return _survivor.used_bytes(); }
1296   uint young_regions_count() const { return _eden.length() + _survivor.length(); }
1297   uint old_regions_count() const { return _old_set.length(); }
1298   uint archive_regions_count() const { return _archive_set.length(); }
1299   uint humongous_regions_count() const { return _humongous_set.length(); }
1300 
1301 #ifdef ASSERT
1302   bool check_young_list_empty();
1303 #endif
1304 
1305   // *** Stuff related to concurrent marking.  It's not clear to me that so
1306   // many of these need to be public.
1307 
1308   // The functions below are helper functions that a subclass of
1309   // "CollectedHeap" can use in the implementation of its virtual
1310   // functions.
1311   // This performs a concurrent marking of the live objects in a
1312   // bitmap off to the side.
1313   void do_concurrent_mark();
1314 
1315   bool is_marked_next(oop obj) const;
1316 
1317   // Determine if an object is dead, given the object and also
1318   // the region to which the object belongs. An object is dead
1319   // iff a) it was not allocated since the last mark, b) it
1320   // is not marked, and c) it is not in an archive region.
1321   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1322     return
1323       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1324       !hr->is_archive();
1325   }
1326 
1327   // This function returns true when an object has been
1328   // around since the previous marking and hasn't yet
1329   // been marked during this marking, and is not in an archive region.
1330   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1331     return
1332       !hr->obj_allocated_since_next_marking(obj) &&
1333       !is_marked_next(obj) &&
1334       !hr->is_archive();
1335   }
1336 
1337   // Determine if an object is dead, given only the object itself.
1338   // This will find the region to which the object belongs and
1339   // then call the region version of the same function.
1340 
1341   // Added if it is NULL it isn't dead.
1342 
1343   inline bool is_obj_dead(const oop obj) const;
1344 
1345   inline bool is_obj_ill(const oop obj) const;
1346 
1347   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1348   inline bool is_obj_dead_full(const oop obj) const;
1349 
1350   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1351 
1352   // Refinement
1353 
1354   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1355 
1356   // Optimized nmethod scanning support routines
1357 
1358   // Register the given nmethod with the G1 heap.
1359   virtual void register_nmethod(nmethod* nm);
1360 
1361   // Unregister the given nmethod from the G1 heap.
1362   virtual void unregister_nmethod(nmethod* nm);
1363 
1364   // No nmethod flushing needed.
1365   virtual void flush_nmethod(nmethod* nm) {}
1366 
1367   // No nmethod verification implemented.
1368   virtual void verify_nmethod(nmethod* nm) {}
1369 
1370   // Free up superfluous code root memory.
1371   void purge_code_root_memory();
1372 
1373   // Rebuild the strong code root lists for each region
1374   // after a full GC.
1375   void rebuild_strong_code_roots();
1376 
1377   // Partial cleaning of VM internal data structures.
1378   void string_dedup_cleaning(BoolObjectClosure* is_alive,
1379                              OopClosure* keep_alive,
1380                              G1GCPhaseTimes* phase_times = NULL);
1381 
1382   // Performs cleaning of data structures after class unloading.
1383   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1384 
1385   // Redirty logged cards in the refinement queue.
1386   void redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs);
1387 
1388   // Verification
1389 
1390   // Deduplicate the string
1391   virtual void deduplicate_string(oop str);
1392 
1393   // Perform any cleanup actions necessary before allowing a verification.
1394   virtual void prepare_for_verify();
1395 
1396   // Perform verification.
1397 
1398   // vo == UsePrevMarking -> use "prev" marking information,
1399   // vo == UseNextMarking -> use "next" marking information
1400   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1401   //
1402   // NOTE: Only the "prev" marking information is guaranteed to be
1403   // consistent most of the time, so most calls to this should use
1404   // vo == UsePrevMarking.
1405   // Currently, there is only one case where this is called with
1406   // vo == UseNextMarking, which is to verify the "next" marking
1407   // information at the end of remark.
1408   // Currently there is only one place where this is called with
1409   // vo == UseFullMarking, which is to verify the marking during a
1410   // full GC.
1411   void verify(VerifyOption vo);
1412 
1413   // WhiteBox testing support.
1414   virtual bool supports_concurrent_phase_control() const;
1415   virtual bool request_concurrent_phase(const char* phase);
1416   bool is_heterogeneous_heap() const;
1417 
1418   virtual WorkGang* get_safepoint_workers() { return _workers; }
1419 
1420   // The methods below are here for convenience and dispatch the
1421   // appropriate method depending on value of the given VerifyOption
1422   // parameter. The values for that parameter, and their meanings,
1423   // are the same as those above.
1424 
1425   bool is_obj_dead_cond(const oop obj,
1426                         const HeapRegion* hr,
1427                         const VerifyOption vo) const;
1428 
1429   bool is_obj_dead_cond(const oop obj,
1430                         const VerifyOption vo) const;
1431 
1432   G1HeapSummary create_g1_heap_summary();
1433   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1434 
1435   // Printing
1436 private:
1437   void print_heap_regions() const;
1438   void print_regions_on(outputStream* st) const;
1439 
1440 public:
1441   virtual void print_on(outputStream* st) const;
1442   virtual void print_extended_on(outputStream* st) const;
1443   virtual void print_on_error(outputStream* st) const;
1444 
1445   virtual void print_gc_threads_on(outputStream* st) const;
1446   virtual void gc_threads_do(ThreadClosure* tc) const;
1447 
1448   // Override
1449   void print_tracing_info() const;
1450 
1451   // The following two methods are helpful for debugging RSet issues.
1452   void print_cset_rsets() PRODUCT_RETURN;
1453   void print_all_rsets() PRODUCT_RETURN;
1454 
1455   // Used to print information about locations in the hs_err file.
1456   virtual bool print_location(outputStream* st, void* addr) const;
1457 
1458   size_t pending_card_num();
1459 };
1460 
1461 class G1ParEvacuateFollowersClosure : public VoidClosure {
1462 private:
1463   double _start_term;
1464   double _term_time;
1465   size_t _term_attempts;
1466 
1467   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1468   void end_term_time() { _term_time += (os::elapsedTime() - _start_term); }
1469 protected:
1470   G1CollectedHeap*              _g1h;
1471   G1ParScanThreadState*         _par_scan_state;
1472   RefToScanQueueSet*            _queues;
1473   ParallelTaskTerminator*       _terminator;
1474   G1GCPhaseTimes::GCParPhases   _phase;
1475 
1476   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1477   RefToScanQueueSet*      queues()         { return _queues; }
1478   ParallelTaskTerminator* terminator()     { return _terminator; }
1479 
1480 public:
1481   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1482                                 G1ParScanThreadState* par_scan_state,
1483                                 RefToScanQueueSet* queues,
1484                                 ParallelTaskTerminator* terminator,
1485                                 G1GCPhaseTimes::GCParPhases phase)
1486     : _start_term(0.0), _term_time(0.0), _term_attempts(0),
1487       _g1h(g1h), _par_scan_state(par_scan_state),
1488       _queues(queues), _terminator(terminator), _phase(phase) {}
1489 
1490   void do_void();
1491 
1492   double term_time() const { return _term_time; }
1493   size_t term_attempts() const { return _term_attempts; }
1494 
1495 private:
1496   inline bool offer_termination();
1497 };
1498 
1499 #endif // SHARE_GC_G1_G1COLLECTEDHEAP_HPP