1 /*
   2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_SHARED_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_GC_SHARED_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/generation.hpp"
  30 #include "gc/shared/oopStorageParState.hpp"
  31 #include "gc/shared/preGCValues.hpp"
  32 #include "gc/shared/softRefGenPolicy.hpp"
  33 
  34 class AdaptiveSizePolicy;
  35 class CardTableRS;
  36 class GCPolicyCounters;
  37 class GenerationSpec;
  38 class StrongRootsScope;
  39 class SubTasksDone;
  40 class WorkGang;
  41 
  42 // A "GenCollectedHeap" is a CollectedHeap that uses generational
  43 // collection.  It has two generations, young and old.
  44 class GenCollectedHeap : public CollectedHeap {
  45   friend class Generation;
  46   friend class DefNewGeneration;
  47   friend class TenuredGeneration;
  48   friend class GenMarkSweep;
  49   friend class VM_GenCollectForAllocation;
  50   friend class VM_GenCollectFull;
  51   friend class VM_GenCollectFullConcurrent;
  52   friend class VM_GC_HeapInspection;
  53   friend class VM_HeapDumper;
  54   friend class HeapInspection;
  55   friend class GCCauseSetter;
  56   friend class VMStructs;
  57 public:
  58   friend class VM_PopulateDumpSharedSpace;
  59 
  60   enum GenerationType {
  61     YoungGen,
  62     OldGen
  63   };
  64 
  65 protected:
  66   Generation* _young_gen;
  67   Generation* _old_gen;
  68 
  69 private:
  70   GenerationSpec* _young_gen_spec;
  71   GenerationSpec* _old_gen_spec;
  72 
  73   // The singleton CardTable Remembered Set.
  74   CardTableRS* _rem_set;
  75 
  76   SoftRefGenPolicy _soft_ref_gen_policy;
  77 
  78   // The sizing of the heap is controlled by a sizing policy.
  79   AdaptiveSizePolicy* _size_policy;
  80 
  81   GCPolicyCounters* _gc_policy_counters;
  82 
  83   // Indicates that the most recent previous incremental collection failed.
  84   // The flag is cleared when an action is taken that might clear the
  85   // condition that caused that incremental collection to fail.
  86   bool _incremental_collection_failed;
  87 
  88   // In support of ExplicitGCInvokesConcurrent functionality
  89   unsigned int _full_collections_completed;
  90 
  91   // Collects the given generation.
  92   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  93                           bool run_verification, bool clear_soft_refs,
  94                           bool restore_marks_for_biased_locking);
  95 
  96   // Reserve aligned space for the heap as needed by the contained generations.
  97   ReservedHeapSpace allocate(size_t alignment);
  98 
  99   // Initialize ("weak") refs processing support
 100   void ref_processing_init();
 101 
 102   PreGenGCValues get_pre_gc_values() const;
 103 
 104 protected:
 105 
 106   // The set of potentially parallel tasks in root scanning.
 107   enum GCH_strong_roots_tasks {
 108     GCH_PS_Universe_oops_do,
 109     GCH_PS_JNIHandles_oops_do,
 110     GCH_PS_ObjectSynchronizer_oops_do,
 111     GCH_PS_FlatProfiler_oops_do,
 112     GCH_PS_Management_oops_do,
 113     GCH_PS_SystemDictionary_oops_do,
 114     GCH_PS_ClassLoaderDataGraph_oops_do,
 115     GCH_PS_jvmti_oops_do,
 116     GCH_PS_CodeCache_oops_do,
 117     AOT_ONLY(GCH_PS_aot_oops_do COMMA)
 118     GCH_PS_younger_gens,
 119     // Leave this one last.
 120     GCH_PS_NumElements
 121   };
 122 
 123   // Data structure for claiming the (potentially) parallel tasks in
 124   // (gen-specific) roots processing.
 125   SubTasksDone* _process_strong_tasks;
 126 
 127   GCMemoryManager* _young_manager;
 128   GCMemoryManager* _old_manager;
 129 
 130   // Helper functions for allocation
 131   HeapWord* attempt_allocation(size_t size,
 132                                bool   is_tlab,
 133                                bool   first_only);
 134 
 135   // Helper function for two callbacks below.
 136   // Considers collection of the first max_level+1 generations.
 137   void do_collection(bool           full,
 138                      bool           clear_all_soft_refs,
 139                      size_t         size,
 140                      bool           is_tlab,
 141                      GenerationType max_generation);
 142 
 143   // Callback from VM_GenCollectForAllocation operation.
 144   // This function does everything necessary/possible to satisfy an
 145   // allocation request that failed in the youngest generation that should
 146   // have handled it (including collection, expansion, etc.)
 147   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 148 
 149   // Callback from VM_GenCollectFull operation.
 150   // Perform a full collection of the first max_level+1 generations.
 151   virtual void do_full_collection(bool clear_all_soft_refs);
 152   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
 153 
 154   // Does the "cause" of GC indicate that
 155   // we absolutely __must__ clear soft refs?
 156   bool must_clear_all_soft_refs();
 157 
 158   GenCollectedHeap(Generation::Name young,
 159                    Generation::Name old,
 160                    const char* policy_counters_name);
 161 
 162 public:
 163 
 164   // Returns JNI_OK on success
 165   virtual jint initialize();
 166   virtual CardTableRS* create_rem_set(const MemRegion& reserved_region);
 167 
 168   void initialize_size_policy(size_t init_eden_size,
 169                               size_t init_promo_size,
 170                               size_t init_survivor_size);
 171 
 172   // Does operations required after initialization has been done.
 173   void post_initialize();
 174 
 175   Generation* young_gen() const { return _young_gen; }
 176   Generation* old_gen()   const { return _old_gen; }
 177 
 178   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 179   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 180 
 181   MemRegion reserved_region() const { return _reserved; }
 182   bool is_in_reserved(const void* addr) const { return _reserved.contains(addr); }
 183 
 184   GenerationSpec* young_gen_spec() const;
 185   GenerationSpec* old_gen_spec() const;
 186 
 187   virtual SoftRefPolicy* soft_ref_policy() { return &_soft_ref_gen_policy; }
 188 
 189   // Adaptive size policy
 190   virtual AdaptiveSizePolicy* size_policy() {
 191     return _size_policy;
 192   }
 193 
 194   // Performance Counter support
 195   GCPolicyCounters* counters()     { return _gc_policy_counters; }
 196 
 197   size_t capacity() const;
 198   size_t used() const;
 199 
 200   // Save the "used_region" for both generations.
 201   void save_used_regions();
 202 
 203   size_t max_capacity() const;
 204 
 205   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 206 
 207   // We may support a shared contiguous allocation area, if the youngest
 208   // generation does.
 209   bool supports_inline_contig_alloc() const;
 210   HeapWord* volatile* top_addr() const;
 211   HeapWord** end_addr() const;
 212 
 213   // Perform a full collection of the heap; intended for use in implementing
 214   // "System.gc". This implies as full a collection as the CollectedHeap
 215   // supports. Caller does not hold the Heap_lock on entry.
 216   virtual void collect(GCCause::Cause cause);
 217 
 218   // The same as above but assume that the caller holds the Heap_lock.
 219   void collect_locked(GCCause::Cause cause);
 220 
 221   // Perform a full collection of generations up to and including max_generation.
 222   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 223   void collect(GCCause::Cause cause, GenerationType max_generation);
 224 
 225   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 226   // The methods is_in() and is_in_youngest() may be expensive to compute
 227   // in general, so, to prevent their inadvertent use in product jvm's, we
 228   // restrict their use to assertion checking or verification only.
 229   bool is_in(const void* p) const;
 230 
 231   // Returns true if the reference is to an object in the reserved space
 232   // for the young generation.
 233   // Assumes the the young gen address range is less than that of the old gen.
 234   bool is_in_young(oop p);
 235 
 236 #ifdef ASSERT
 237   bool is_in_partial_collection(const void* p);
 238 #endif
 239 
 240   // Optimized nmethod scanning support routines
 241   virtual void register_nmethod(nmethod* nm);
 242   virtual void unregister_nmethod(nmethod* nm);
 243   virtual void verify_nmethod(nmethod* nm);
 244   virtual void flush_nmethod(nmethod* nm);
 245 
 246   void prune_scavengable_nmethods();
 247 
 248   // Iteration functions.
 249   void oop_iterate(OopIterateClosure* cl);
 250   void object_iterate(ObjectClosure* cl);
 251   void safe_object_iterate(ObjectClosure* cl);
 252   Space* space_containing(const void* addr) const;
 253 
 254   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 255   // each address in the (reserved) heap is a member of exactly
 256   // one block.  The defining characteristic of a block is that it is
 257   // possible to find its size, and thus to progress forward to the next
 258   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 259   // represent Java objects, or they might be free blocks in a
 260   // free-list-based heap (or subheap), as long as the two kinds are
 261   // distinguishable and the size of each is determinable.
 262 
 263   // Returns the address of the start of the "block" that contains the
 264   // address "addr".  We say "blocks" instead of "object" since some heaps
 265   // may not pack objects densely; a chunk may either be an object or a
 266   // non-object.
 267   HeapWord* block_start(const void* addr) const;
 268 
 269   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 270   // the block is an object. Assumes (and verifies in non-product
 271   // builds) that addr is in the allocated part of the heap and is
 272   // the start of a chunk.
 273   bool block_is_obj(const HeapWord* addr) const;
 274 
 275   // Section on TLAB's.
 276   virtual bool supports_tlab_allocation() const;
 277   virtual size_t tlab_capacity(Thread* thr) const;
 278   virtual size_t tlab_used(Thread* thr) const;
 279   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 280   virtual HeapWord* allocate_new_tlab(size_t min_size,
 281                                       size_t requested_size,
 282                                       size_t* actual_size);
 283 
 284   // The "requestor" generation is performing some garbage collection
 285   // action for which it would be useful to have scratch space.  The
 286   // requestor promises to allocate no more than "max_alloc_words" in any
 287   // older generation (via promotion say.)   Any blocks of space that can
 288   // be provided are returned as a list of ScratchBlocks, sorted by
 289   // decreasing size.
 290   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 291   // Allow each generation to reset any scratch space that it has
 292   // contributed as it needs.
 293   void release_scratch();
 294 
 295   // Ensure parsability: override
 296   virtual void ensure_parsability(bool retire_tlabs);
 297 
 298   // Time in ms since the longest time a collector ran in
 299   // in any generation.
 300   virtual jlong millis_since_last_gc();
 301 
 302   // Total number of full collections completed.
 303   unsigned int total_full_collections_completed() {
 304     assert(_full_collections_completed <= _total_full_collections,
 305            "Can't complete more collections than were started");
 306     return _full_collections_completed;
 307   }
 308 
 309   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 310   unsigned int update_full_collections_completed();
 311   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 312   unsigned int update_full_collections_completed(unsigned int count);
 313 
 314   // Update "time of last gc" for all generations to "now".
 315   void update_time_of_last_gc(jlong now) {
 316     _young_gen->update_time_of_last_gc(now);
 317     _old_gen->update_time_of_last_gc(now);
 318   }
 319 
 320   // Update the gc statistics for each generation.
 321   void update_gc_stats(Generation* current_generation, bool full) {
 322     _old_gen->update_gc_stats(current_generation, full);
 323   }
 324 
 325   bool no_gc_in_progress() { return !is_gc_active(); }
 326 
 327   // Override.
 328   void prepare_for_verify();
 329 
 330   // Override.
 331   void verify(VerifyOption option);
 332 
 333   // Override.
 334   virtual void print_on(outputStream* st) const;
 335   virtual void print_gc_threads_on(outputStream* st) const;
 336   virtual void gc_threads_do(ThreadClosure* tc) const;
 337   virtual void print_tracing_info() const;
 338 
 339   // Used to print information about locations in the hs_err file.
 340   virtual bool print_location(outputStream* st, void* addr) const;
 341 
 342   void print_heap_change(const PreGenGCValues& pre_gc_values) const;
 343 
 344   // The functions below are helper functions that a subclass of
 345   // "CollectedHeap" can use in the implementation of its virtual
 346   // functions.
 347 
 348   class GenClosure : public StackObj {
 349    public:
 350     virtual void do_generation(Generation* gen) = 0;
 351   };
 352 
 353   // Apply "cl.do_generation" to all generations in the heap
 354   // If "old_to_young" determines the order.
 355   void generation_iterate(GenClosure* cl, bool old_to_young);
 356 
 357   // Return "true" if all generations have reached the
 358   // maximal committed limit that they can reach, without a garbage
 359   // collection.
 360   virtual bool is_maximal_no_gc() const;
 361 
 362   // This function returns the CardTableRS object that allows us to scan
 363   // generations in a fully generational heap.
 364   CardTableRS* rem_set() { return _rem_set; }
 365 
 366   // Convenience function to be used in situations where the heap type can be
 367   // asserted to be this type.
 368   static GenCollectedHeap* heap();
 369 
 370   // The ScanningOption determines which of the roots
 371   // the closure is applied to:
 372   // "SO_None" does none;
 373   enum ScanningOption {
 374     SO_None                =  0x0,
 375     SO_AllCodeCache        =  0x8,
 376     SO_ScavengeCodeCache   = 0x10
 377   };
 378 
 379  protected:
 380   void process_roots(StrongRootsScope* scope,
 381                      ScanningOption so,
 382                      OopClosure* strong_roots,
 383                      CLDClosure* strong_cld_closure,
 384                      CLDClosure* weak_cld_closure,
 385                      CodeBlobToOopClosure* code_roots);
 386 
 387   virtual void gc_prologue(bool full);
 388   virtual void gc_epilogue(bool full);
 389 
 390  public:
 391   void young_process_roots(StrongRootsScope* scope,
 392                            OopsInGenClosure* root_closure,
 393                            OopsInGenClosure* old_gen_closure,
 394                            CLDClosure* cld_closure);
 395 
 396   void full_process_roots(StrongRootsScope* scope,
 397                           bool is_adjust_phase,
 398                           ScanningOption so,
 399                           bool only_strong_roots,
 400                           OopsInGenClosure* root_closure,
 401                           CLDClosure* cld_closure);
 402 
 403   // Apply "root_closure" to all the weak roots of the system.
 404   // These include JNI weak roots, string table,
 405   // and referents of reachable weak refs.
 406   void gen_process_weak_roots(OopClosure* root_closure);
 407 
 408   // Set the saved marks of generations, if that makes sense.
 409   // In particular, if any generation might iterate over the oops
 410   // in other generations, it should call this method.
 411   void save_marks();
 412 
 413   // Returns "true" iff no allocations have occurred since the last
 414   // call to "save_marks".
 415   bool no_allocs_since_save_marks();
 416 
 417   // Returns true if an incremental collection is likely to fail.
 418   // We optionally consult the young gen, if asked to do so;
 419   // otherwise we base our answer on whether the previous incremental
 420   // collection attempt failed with no corrective action as of yet.
 421   bool incremental_collection_will_fail(bool consult_young) {
 422     // The first disjunct remembers if an incremental collection failed, even
 423     // when we thought (second disjunct) that it would not.
 424     return incremental_collection_failed() ||
 425            (consult_young && !_young_gen->collection_attempt_is_safe());
 426   }
 427 
 428   // If a generation bails out of an incremental collection,
 429   // it sets this flag.
 430   bool incremental_collection_failed() const {
 431     return _incremental_collection_failed;
 432   }
 433   void set_incremental_collection_failed() {
 434     _incremental_collection_failed = true;
 435   }
 436   void clear_incremental_collection_failed() {
 437     _incremental_collection_failed = false;
 438   }
 439 
 440   // Promotion of obj into gen failed.  Try to promote obj to higher
 441   // gens in ascending order; return the new location of obj if successful.
 442   // Otherwise, try expand-and-allocate for obj in both the young and old
 443   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 444   oop handle_failed_promotion(Generation* old_gen,
 445                               oop obj,
 446                               size_t obj_size);
 447 
 448 
 449 private:
 450   // Return true if an allocation should be attempted in the older generation
 451   // if it fails in the younger generation.  Return false, otherwise.
 452   bool should_try_older_generation_allocation(size_t word_size) const;
 453 
 454   // Try to allocate space by expanding the heap.
 455   HeapWord* expand_heap_and_allocate(size_t size, bool is_tlab);
 456 
 457   HeapWord* mem_allocate_work(size_t size,
 458                               bool is_tlab,
 459                               bool* gc_overhead_limit_was_exceeded);
 460 
 461 #if INCLUDE_SERIALGC
 462   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 463   // in an essential way: compaction is performed across generations, by
 464   // iterating over spaces.
 465   void prepare_for_compaction();
 466 #endif
 467 
 468   // Perform a full collection of the generations up to and including max_generation.
 469   // This is the low level interface used by the public versions of
 470   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 471   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
 472 
 473   // Save the tops of the spaces in all generations
 474   void record_gen_tops_before_GC() PRODUCT_RETURN;
 475 
 476   // Return true if we need to perform full collection.
 477   bool should_do_full_collection(size_t size, bool full,
 478                                  bool is_tlab, GenerationType max_gen) const;
 479 };
 480 
 481 #endif // SHARE_GC_SHARED_GENCOLLECTEDHEAP_HPP