1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_SHARED_SPACE_HPP
  26 #define SHARE_GC_SHARED_SPACE_HPP
  27 
  28 #include "gc/shared/blockOffsetTable.hpp"
  29 #include "gc/shared/cardTable.hpp"
  30 #include "gc/shared/workgroup.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/iterator.hpp"
  33 #include "memory/memRegion.hpp"
  34 #include "oops/markWord.hpp"
  35 #include "runtime/mutexLocker.hpp"
  36 #include "utilities/align.hpp"
  37 #include "utilities/macros.hpp"
  38 
  39 // A space is an abstraction for the "storage units" backing
  40 // up the generation abstraction. It includes specific
  41 // implementations for keeping track of free and used space,
  42 // for iterating over objects and free blocks, etc.
  43 
  44 // Forward decls.
  45 class Space;
  46 class BlockOffsetArray;
  47 class BlockOffsetArrayContigSpace;
  48 class Generation;
  49 class CompactibleSpace;
  50 class BlockOffsetTable;
  51 class CardTableRS;
  52 class DirtyCardToOopClosure;
  53 
  54 // A Space describes a heap area. Class Space is an abstract
  55 // base class.
  56 //
  57 // Space supports allocation, size computation and GC support is provided.
  58 //
  59 // Invariant: bottom() and end() are on page_size boundaries and
  60 // bottom() <= top() <= end()
  61 // top() is inclusive and end() is exclusive.
  62 
  63 class Space: public CHeapObj<mtGC> {
  64   friend class VMStructs;
  65  protected:
  66   HeapWord* _bottom;
  67   HeapWord* _end;
  68 
  69   // Used in support of save_marks()
  70   HeapWord* _saved_mark_word;
  71 
  72   // A sequential tasks done structure. This supports
  73   // parallel GC, where we have threads dynamically
  74   // claiming sub-tasks from a larger parallel task.
  75   SequentialSubTasksDone _par_seq_tasks;
  76 
  77   Space():
  78     _bottom(NULL), _end(NULL) { }
  79 
  80  public:
  81   // Accessors
  82   HeapWord* bottom() const         { return _bottom; }
  83   HeapWord* end() const            { return _end;    }
  84   virtual void set_bottom(HeapWord* value) { _bottom = value; }
  85   virtual void set_end(HeapWord* value)    { _end = value; }
  86 
  87   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
  88 
  89   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
  90 
  91   // Returns true if this object has been allocated since a
  92   // generation's "save_marks" call.
  93   virtual bool obj_allocated_since_save_marks(const oop obj) const {
  94     return (HeapWord*)obj >= saved_mark_word();
  95   }
  96 
  97   virtual MemRegionClosure* preconsumptionDirtyCardClosure() const {
  98     return NULL;
  99   }
 100 
 101   // Returns a subregion of the space containing only the allocated objects in
 102   // the space.
 103   virtual MemRegion used_region() const = 0;
 104 
 105   // Returns a region that is guaranteed to contain (at least) all objects
 106   // allocated at the time of the last call to "save_marks".  If the space
 107   // initializes its DirtyCardToOopClosure's specifying the "contig" option
 108   // (that is, if the space is contiguous), then this region must contain only
 109   // such objects: the memregion will be from the bottom of the region to the
 110   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
 111   // the space must distinguish between objects in the region allocated before
 112   // and after the call to save marks.
 113   MemRegion used_region_at_save_marks() const {
 114     return MemRegion(bottom(), saved_mark_word());
 115   }
 116 
 117   // Initialization.
 118   // "initialize" should be called once on a space, before it is used for
 119   // any purpose.  The "mr" arguments gives the bounds of the space, and
 120   // the "clear_space" argument should be true unless the memory in "mr" is
 121   // known to be zeroed.
 122   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 123 
 124   // The "clear" method must be called on a region that may have
 125   // had allocation performed in it, but is now to be considered empty.
 126   virtual void clear(bool mangle_space);
 127 
 128   // For detecting GC bugs.  Should only be called at GC boundaries, since
 129   // some unused space may be used as scratch space during GC's.
 130   // We also call this when expanding a space to satisfy an allocation
 131   // request. See bug #4668531
 132   virtual void mangle_unused_area() = 0;
 133   virtual void mangle_unused_area_complete() = 0;
 134 
 135   // Testers
 136   bool is_empty() const              { return used() == 0; }
 137   bool not_empty() const             { return used() > 0; }
 138 
 139   // Returns true iff the given the space contains the
 140   // given address as part of an allocated object. For
 141   // certain kinds of spaces, this might be a potentially
 142   // expensive operation. To prevent performance problems
 143   // on account of its inadvertent use in product jvm's,
 144   // we restrict its use to assertion checks only.
 145   bool is_in(const void* p) const {
 146     return used_region().contains(p);
 147   }
 148   bool is_in(oop obj) const {
 149     return is_in((void*)obj);
 150   }
 151 
 152   // Returns true iff the given reserved memory of the space contains the
 153   // given address.
 154   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
 155 
 156   // Returns true iff the given block is not allocated.
 157   virtual bool is_free_block(const HeapWord* p) const = 0;
 158 
 159   // Test whether p is double-aligned
 160   static bool is_aligned(void* p) {
 161     return ::is_aligned(p, sizeof(double));
 162   }
 163 
 164   // Size computations.  Sizes are in bytes.
 165   size_t capacity()     const { return byte_size(bottom(), end()); }
 166   virtual size_t used() const = 0;
 167   virtual size_t free() const = 0;
 168 
 169   // Iterate over all the ref-containing fields of all objects in the
 170   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
 171   // applications of the closure are not included in the iteration.
 172   virtual void oop_iterate(OopIterateClosure* cl);
 173 
 174   // Iterate over all objects in the space, calling "cl.do_object" on
 175   // each.  Objects allocated by applications of the closure are not
 176   // included in the iteration.
 177   virtual void object_iterate(ObjectClosure* blk) = 0;
 178 
 179   // Create and return a new dirty card to oop closure. Can be
 180   // overridden to return the appropriate type of closure
 181   // depending on the type of space in which the closure will
 182   // operate. ResourceArea allocated.
 183   virtual DirtyCardToOopClosure* new_dcto_cl(OopIterateClosure* cl,
 184                                              CardTable::PrecisionStyle precision,
 185                                              HeapWord* boundary,
 186                                              bool parallel);
 187 
 188   // If "p" is in the space, returns the address of the start of the
 189   // "block" that contains "p".  We say "block" instead of "object" since
 190   // some heaps may not pack objects densely; a chunk may either be an
 191   // object or a non-object.  If "p" is not in the space, return NULL.
 192   virtual HeapWord* block_start_const(const void* p) const = 0;
 193 
 194   // The non-const version may have benevolent side effects on the data
 195   // structure supporting these calls, possibly speeding up future calls.
 196   // The default implementation, however, is simply to call the const
 197   // version.
 198   virtual HeapWord* block_start(const void* p);
 199 
 200   // Requires "addr" to be the start of a chunk, and returns its size.
 201   // "addr + size" is required to be the start of a new chunk, or the end
 202   // of the active area of the heap.
 203   virtual size_t block_size(const HeapWord* addr) const = 0;
 204 
 205   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 206   // the block is an object.
 207   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 208 
 209   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 210   // the block is an object and the object is alive.
 211   virtual bool obj_is_alive(const HeapWord* addr) const;
 212 
 213   // Allocation (return NULL if full).  Assumes the caller has established
 214   // mutually exclusive access to the space.
 215   virtual HeapWord* allocate(size_t word_size) = 0;
 216 
 217   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 218   virtual HeapWord* par_allocate(size_t word_size) = 0;
 219 
 220 #if INCLUDE_SERIALGC
 221   // Mark-sweep-compact support: all spaces can update pointers to objects
 222   // moving as a part of compaction.
 223   virtual void adjust_pointers() = 0;
 224 #endif
 225 
 226   virtual void print() const;
 227   virtual void print_on(outputStream* st) const;
 228   virtual void print_short() const;
 229   virtual void print_short_on(outputStream* st) const;
 230 
 231 
 232   // Accessor for parallel sequential tasks.
 233   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
 234 
 235   // IF "this" is a ContiguousSpace, return it, else return NULL.
 236   virtual ContiguousSpace* toContiguousSpace() {
 237     return NULL;
 238   }
 239 
 240   // Debugging
 241   virtual void verify() const = 0;
 242 };
 243 
 244 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
 245 // OopClosure to (the addresses of) all the ref-containing fields that could
 246 // be modified by virtue of the given MemRegion being dirty. (Note that
 247 // because of the imprecise nature of the write barrier, this may iterate
 248 // over oops beyond the region.)
 249 // This base type for dirty card to oop closures handles memory regions
 250 // in non-contiguous spaces with no boundaries, and should be sub-classed
 251 // to support other space types. See ContiguousDCTOC for a sub-class
 252 // that works with ContiguousSpaces.
 253 
 254 class DirtyCardToOopClosure: public MemRegionClosureRO {
 255 protected:
 256   OopIterateClosure* _cl;
 257   Space* _sp;
 258   CardTable::PrecisionStyle _precision;
 259   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
 260                                 // pointing below boundary.
 261   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
 262                                 // a downwards traversal; this is the
 263                                 // lowest location already done (or,
 264                                 // alternatively, the lowest address that
 265                                 // shouldn't be done again.  NULL means infinity.)
 266   NOT_PRODUCT(HeapWord* _last_bottom;)
 267   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
 268 
 269   // Get the actual top of the area on which the closure will
 270   // operate, given where the top is assumed to be (the end of the
 271   // memory region passed to do_MemRegion) and where the object
 272   // at the top is assumed to start. For example, an object may
 273   // start at the top but actually extend past the assumed top,
 274   // in which case the top becomes the end of the object.
 275   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
 276 
 277   // Walk the given memory region from bottom to (actual) top
 278   // looking for objects and applying the oop closure (_cl) to
 279   // them. The base implementation of this treats the area as
 280   // blocks, where a block may or may not be an object. Sub-
 281   // classes should override this to provide more accurate
 282   // or possibly more efficient walking.
 283   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
 284 
 285 public:
 286   DirtyCardToOopClosure(Space* sp, OopIterateClosure* cl,
 287                         CardTable::PrecisionStyle precision,
 288                         HeapWord* boundary) :
 289     _cl(cl), _sp(sp), _precision(precision), _boundary(boundary),
 290     _min_done(NULL) {
 291     NOT_PRODUCT(_last_bottom = NULL);
 292     NOT_PRODUCT(_last_explicit_min_done = NULL);
 293   }
 294 
 295   void do_MemRegion(MemRegion mr);
 296 
 297   void set_min_done(HeapWord* min_done) {
 298     _min_done = min_done;
 299     NOT_PRODUCT(_last_explicit_min_done = _min_done);
 300   }
 301 #ifndef PRODUCT
 302   void set_last_bottom(HeapWord* last_bottom) {
 303     _last_bottom = last_bottom;
 304   }
 305 #endif
 306 };
 307 
 308 // A structure to represent a point at which objects are being copied
 309 // during compaction.
 310 class CompactPoint : public StackObj {
 311 public:
 312   Generation* gen;
 313   CompactibleSpace* space;
 314   HeapWord* threshold;
 315 
 316   CompactPoint(Generation* g = NULL) :
 317     gen(g), space(NULL), threshold(0) {}
 318 };
 319 
 320 // A space that supports compaction operations.  This is usually, but not
 321 // necessarily, a space that is normally contiguous.  But, for example, a
 322 // free-list-based space whose normal collection is a mark-sweep without
 323 // compaction could still support compaction in full GC's.
 324 //
 325 // The compaction operations are implemented by the
 326 // scan_and_{adjust_pointers,compact,forward} function templates.
 327 // The following are, non-virtual, auxiliary functions used by these function templates:
 328 // - scan_limit()
 329 // - scanned_block_is_obj()
 330 // - scanned_block_size()
 331 // - adjust_obj_size()
 332 // - obj_size()
 333 // These functions are to be used exclusively by the scan_and_* function templates,
 334 // and must be defined for all (non-abstract) subclasses of CompactibleSpace.
 335 //
 336 // NOTE: Any subclasses to CompactibleSpace wanting to change/define the behavior
 337 // in any of the auxiliary functions must also override the corresponding
 338 // prepare_for_compaction/adjust_pointers/compact functions using them.
 339 // If not, such changes will not be used or have no effect on the compaction operations.
 340 //
 341 // This translates to the following dependencies:
 342 // Overrides/definitions of
 343 //  - scan_limit
 344 //  - scanned_block_is_obj
 345 //  - scanned_block_size
 346 // require override/definition of prepare_for_compaction().
 347 // Similar dependencies exist between
 348 //  - adjust_obj_size  and adjust_pointers()
 349 //  - obj_size         and compact().
 350 //
 351 // Additionally, this also means that changes to block_size() or block_is_obj() that
 352 // should be effective during the compaction operations must provide a corresponding
 353 // definition of scanned_block_size/scanned_block_is_obj respectively.
 354 class CompactibleSpace: public Space {
 355   friend class VMStructs;
 356   friend class CompactibleFreeListSpace;
 357 private:
 358   HeapWord* _compaction_top;
 359   CompactibleSpace* _next_compaction_space;
 360 
 361   // Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
 362   inline size_t adjust_obj_size(size_t size) const {
 363     return size;
 364   }
 365 
 366   inline size_t obj_size(const HeapWord* addr) const;
 367 
 368   template <class SpaceType>
 369   static inline void verify_up_to_first_dead(SpaceType* space) NOT_DEBUG_RETURN;
 370 
 371   template <class SpaceType>
 372   static inline void clear_empty_region(SpaceType* space);
 373 
 374 public:
 375   CompactibleSpace() :
 376    _compaction_top(NULL), _next_compaction_space(NULL) {}
 377 
 378   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 379   virtual void clear(bool mangle_space);
 380 
 381   // Used temporarily during a compaction phase to hold the value
 382   // top should have when compaction is complete.
 383   HeapWord* compaction_top() const { return _compaction_top;    }
 384 
 385   void set_compaction_top(HeapWord* value) {
 386     assert(value == NULL || (value >= bottom() && value <= end()),
 387       "should point inside space");
 388     _compaction_top = value;
 389   }
 390 
 391   // Perform operations on the space needed after a compaction
 392   // has been performed.
 393   virtual void reset_after_compaction() = 0;
 394 
 395   // Returns the next space (in the current generation) to be compacted in
 396   // the global compaction order.  Also is used to select the next
 397   // space into which to compact.
 398 
 399   virtual CompactibleSpace* next_compaction_space() const {
 400     return _next_compaction_space;
 401   }
 402 
 403   void set_next_compaction_space(CompactibleSpace* csp) {
 404     _next_compaction_space = csp;
 405   }
 406 
 407 #if INCLUDE_SERIALGC
 408   // MarkSweep support phase2
 409 
 410   // Start the process of compaction of the current space: compute
 411   // post-compaction addresses, and insert forwarding pointers.  The fields
 412   // "cp->gen" and "cp->compaction_space" are the generation and space into
 413   // which we are currently compacting.  This call updates "cp" as necessary,
 414   // and leaves the "compaction_top" of the final value of
 415   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
 416   // this phase as if the final copy had occurred; if so, "cp->threshold"
 417   // indicates when the next such action should be taken.
 418   virtual void prepare_for_compaction(CompactPoint* cp) = 0;
 419   // MarkSweep support phase3
 420   virtual void adjust_pointers();
 421   // MarkSweep support phase4
 422   virtual void compact();
 423 #endif // INCLUDE_SERIALGC
 424 
 425   // The maximum percentage of objects that can be dead in the compacted
 426   // live part of a compacted space ("deadwood" support.)
 427   virtual size_t allowed_dead_ratio() const { return 0; };
 428 
 429   // Some contiguous spaces may maintain some data structures that should
 430   // be updated whenever an allocation crosses a boundary.  This function
 431   // returns the first such boundary.
 432   // (The default implementation returns the end of the space, so the
 433   // boundary is never crossed.)
 434   virtual HeapWord* initialize_threshold() { return end(); }
 435 
 436   // "q" is an object of the given "size" that should be forwarded;
 437   // "cp" names the generation ("gen") and containing "this" (which must
 438   // also equal "cp->space").  "compact_top" is where in "this" the
 439   // next object should be forwarded to.  If there is room in "this" for
 440   // the object, insert an appropriate forwarding pointer in "q".
 441   // If not, go to the next compaction space (there must
 442   // be one, since compaction must succeed -- we go to the first space of
 443   // the previous generation if necessary, updating "cp"), reset compact_top
 444   // and then forward.  In either case, returns the new value of "compact_top".
 445   // If the forwarding crosses "cp->threshold", invokes the "cross_threshold"
 446   // function of the then-current compaction space, and updates "cp->threshold
 447   // accordingly".
 448   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
 449                     HeapWord* compact_top);
 450 
 451   // Return a size with adjustments as required of the space.
 452   virtual size_t adjust_object_size_v(size_t size) const { return size; }
 453 
 454   void set_first_dead(HeapWord* value) { _first_dead = value; }
 455   void set_end_of_live(HeapWord* value) { _end_of_live = value; }
 456 
 457 protected:
 458   // Used during compaction.
 459   HeapWord* _first_dead;
 460   HeapWord* _end_of_live;
 461 
 462   // Minimum size of a free block.
 463   virtual size_t minimum_free_block_size() const { return 0; }
 464 
 465   // This the function is invoked when an allocation of an object covering
 466   // "start" to "end occurs crosses the threshold; returns the next
 467   // threshold.  (The default implementation does nothing.)
 468   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
 469     return end();
 470   }
 471 
 472   // Below are template functions for scan_and_* algorithms (avoiding virtual calls).
 473   // The space argument should be a subclass of CompactibleSpace, implementing
 474   // scan_limit(), scanned_block_is_obj(), and scanned_block_size(),
 475   // and possibly also overriding obj_size(), and adjust_obj_size().
 476   // These functions should avoid virtual calls whenever possible.
 477 
 478 #if INCLUDE_SERIALGC
 479   // Frequently calls adjust_obj_size().
 480   template <class SpaceType>
 481   static inline void scan_and_adjust_pointers(SpaceType* space);
 482 #endif
 483 
 484   // Frequently calls obj_size().
 485   template <class SpaceType>
 486   static inline void scan_and_compact(SpaceType* space);
 487 
 488   // Frequently calls scanned_block_is_obj() and scanned_block_size().
 489   // Requires the scan_limit() function.
 490   template <class SpaceType>
 491   static inline void scan_and_forward(SpaceType* space, CompactPoint* cp);
 492 };
 493 
 494 class GenSpaceMangler;
 495 
 496 // A space in which the free area is contiguous.  It therefore supports
 497 // faster allocation, and compaction.
 498 class ContiguousSpace: public CompactibleSpace {
 499   friend class VMStructs;
 500   // Allow scan_and_forward function to call (private) overrides for auxiliary functions on this class
 501   template <typename SpaceType>
 502   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
 503 
 504  private:
 505   // Auxiliary functions for scan_and_forward support.
 506   // See comments for CompactibleSpace for more information.
 507   inline HeapWord* scan_limit() const {
 508     return top();
 509   }
 510 
 511   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 512     return true; // Always true, since scan_limit is top
 513   }
 514 
 515   inline size_t scanned_block_size(const HeapWord* addr) const;
 516 
 517  protected:
 518   HeapWord* _top;
 519   HeapWord* _concurrent_iteration_safe_limit;
 520   // A helper for mangling the unused area of the space in debug builds.
 521   GenSpaceMangler* _mangler;
 522 
 523   GenSpaceMangler* mangler() { return _mangler; }
 524 
 525   // Allocation helpers (return NULL if full).
 526   inline HeapWord* allocate_impl(size_t word_size);
 527   inline HeapWord* par_allocate_impl(size_t word_size);
 528 
 529  public:
 530   ContiguousSpace();
 531   ~ContiguousSpace();
 532 
 533   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 534   virtual void clear(bool mangle_space);
 535 
 536   // Accessors
 537   HeapWord* top() const            { return _top;    }
 538   void set_top(HeapWord* value)    { _top = value; }
 539 
 540   void set_saved_mark()            { _saved_mark_word = top();    }
 541   void reset_saved_mark()          { _saved_mark_word = bottom(); }
 542 
 543   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
 544 
 545   // In debug mode mangle (write it with a particular bit
 546   // pattern) the unused part of a space.
 547 
 548   // Used to save the an address in a space for later use during mangling.
 549   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
 550   // Used to save the space's current top for later use during mangling.
 551   void set_top_for_allocations() PRODUCT_RETURN;
 552 
 553   // Mangle regions in the space from the current top up to the
 554   // previously mangled part of the space.
 555   void mangle_unused_area() PRODUCT_RETURN;
 556   // Mangle [top, end)
 557   void mangle_unused_area_complete() PRODUCT_RETURN;
 558 
 559   // Do some sparse checking on the area that should have been mangled.
 560   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
 561   // Check the complete area that should have been mangled.
 562   // This code may be NULL depending on the macro DEBUG_MANGLING.
 563   void check_mangled_unused_area_complete() PRODUCT_RETURN;
 564 
 565   // Size computations: sizes in bytes.
 566   size_t capacity() const        { return byte_size(bottom(), end()); }
 567   size_t used() const            { return byte_size(bottom(), top()); }
 568   size_t free() const            { return byte_size(top(),    end()); }
 569 
 570   virtual bool is_free_block(const HeapWord* p) const;
 571 
 572   // In a contiguous space we have a more obvious bound on what parts
 573   // contain objects.
 574   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 575 
 576   // Allocation (return NULL if full)
 577   virtual HeapWord* allocate(size_t word_size);
 578   virtual HeapWord* par_allocate(size_t word_size);
 579   HeapWord* allocate_aligned(size_t word_size);
 580 
 581   // Iteration
 582   void oop_iterate(OopIterateClosure* cl);
 583   void object_iterate(ObjectClosure* blk);
 584 
 585   // Iterate over as many initialized objects in the space as possible,
 586   // calling "cl.do_object_careful" on each. Return NULL if all objects
 587   // in the space (at the start of the iteration) were iterated over.
 588   // Return an address indicating the extent of the iteration in the
 589   // event that the iteration had to return because of finding an
 590   // uninitialized object in the space, or if the closure "cl"
 591   // signaled early termination.
 592   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
 593   HeapWord* concurrent_iteration_safe_limit() {
 594     assert(_concurrent_iteration_safe_limit <= top(),
 595            "_concurrent_iteration_safe_limit update missed");
 596     return _concurrent_iteration_safe_limit;
 597   }
 598   // changes the safe limit, all objects from bottom() to the new
 599   // limit should be properly initialized
 600   void set_concurrent_iteration_safe_limit(HeapWord* new_limit) {
 601     assert(new_limit <= top(), "uninitialized objects in the safe range");
 602     _concurrent_iteration_safe_limit = new_limit;
 603   }
 604 
 605   // In support of parallel oop_iterate.
 606   template <typename OopClosureType>
 607   void par_oop_iterate(MemRegion mr, OopClosureType* blk);
 608 
 609   // Compaction support
 610   virtual void reset_after_compaction() {
 611     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
 612     set_top(compaction_top());
 613     // set new iteration safe limit
 614     set_concurrent_iteration_safe_limit(compaction_top());
 615   }
 616 
 617   // Override.
 618   DirtyCardToOopClosure* new_dcto_cl(OopIterateClosure* cl,
 619                                      CardTable::PrecisionStyle precision,
 620                                      HeapWord* boundary,
 621                                      bool parallel);
 622 
 623   // Apply "blk->do_oop" to the addresses of all reference fields in objects
 624   // starting with the _saved_mark_word, which was noted during a generation's
 625   // save_marks and is required to denote the head of an object.
 626   // Fields in objects allocated by applications of the closure
 627   // *are* included in the iteration.
 628   // Updates _saved_mark_word to point to just after the last object
 629   // iterated over.
 630   template <typename OopClosureType>
 631   void oop_since_save_marks_iterate(OopClosureType* blk);
 632 
 633   // Same as object_iterate, but starting from "mark", which is required
 634   // to denote the start of an object.  Objects allocated by
 635   // applications of the closure *are* included in the iteration.
 636   virtual void object_iterate_from(HeapWord* mark, ObjectClosure* blk);
 637 
 638   // Very inefficient implementation.
 639   virtual HeapWord* block_start_const(const void* p) const;
 640   size_t block_size(const HeapWord* p) const;
 641   // If a block is in the allocated area, it is an object.
 642   bool block_is_obj(const HeapWord* p) const { return p < top(); }
 643 
 644   // Addresses for inlined allocation
 645   HeapWord** top_addr() { return &_top; }
 646   HeapWord** end_addr() { return &_end; }
 647 
 648 #if INCLUDE_SERIALGC
 649   // Overrides for more efficient compaction support.
 650   void prepare_for_compaction(CompactPoint* cp);
 651 #endif
 652 
 653   virtual void print_on(outputStream* st) const;
 654 
 655   // Checked dynamic downcasts.
 656   virtual ContiguousSpace* toContiguousSpace() {
 657     return this;
 658   }
 659 
 660   // Debugging
 661   virtual void verify() const;
 662 
 663   // Used to increase collection frequency.  "factor" of 0 means entire
 664   // space.
 665   void allocate_temporary_filler(int factor);
 666 };
 667 
 668 
 669 // A dirty card to oop closure that does filtering.
 670 // It knows how to filter out objects that are outside of the _boundary.
 671 class FilteringDCTOC : public DirtyCardToOopClosure {
 672 protected:
 673   // Override.
 674   void walk_mem_region(MemRegion mr,
 675                        HeapWord* bottom, HeapWord* top);
 676 
 677   // Walk the given memory region, from bottom to top, applying
 678   // the given oop closure to (possibly) all objects found. The
 679   // given oop closure may or may not be the same as the oop
 680   // closure with which this closure was created, as it may
 681   // be a filtering closure which makes use of the _boundary.
 682   // We offer two signatures, so the FilteringClosure static type is
 683   // apparent.
 684   virtual void walk_mem_region_with_cl(MemRegion mr,
 685                                        HeapWord* bottom, HeapWord* top,
 686                                        OopIterateClosure* cl) = 0;
 687   virtual void walk_mem_region_with_cl(MemRegion mr,
 688                                        HeapWord* bottom, HeapWord* top,
 689                                        FilteringClosure* cl) = 0;
 690 
 691 public:
 692   FilteringDCTOC(Space* sp, OopIterateClosure* cl,
 693                   CardTable::PrecisionStyle precision,
 694                   HeapWord* boundary) :
 695     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
 696 };
 697 
 698 // A dirty card to oop closure for contiguous spaces
 699 // (ContiguousSpace and sub-classes).
 700 // It is a FilteringClosure, as defined above, and it knows:
 701 //
 702 // 1. That the actual top of any area in a memory region
 703 //    contained by the space is bounded by the end of the contiguous
 704 //    region of the space.
 705 // 2. That the space is really made up of objects and not just
 706 //    blocks.
 707 
 708 class ContiguousSpaceDCTOC : public FilteringDCTOC {
 709 protected:
 710   // Overrides.
 711   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
 712 
 713   virtual void walk_mem_region_with_cl(MemRegion mr,
 714                                        HeapWord* bottom, HeapWord* top,
 715                                        OopIterateClosure* cl);
 716   virtual void walk_mem_region_with_cl(MemRegion mr,
 717                                        HeapWord* bottom, HeapWord* top,
 718                                        FilteringClosure* cl);
 719 
 720 public:
 721   ContiguousSpaceDCTOC(ContiguousSpace* sp, OopIterateClosure* cl,
 722                        CardTable::PrecisionStyle precision,
 723                        HeapWord* boundary) :
 724     FilteringDCTOC(sp, cl, precision, boundary)
 725   {}
 726 };
 727 
 728 // A ContigSpace that Supports an efficient "block_start" operation via
 729 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
 730 // other spaces.)  This is the abstract base class for old generation
 731 // (tenured) spaces.
 732 
 733 class OffsetTableContigSpace: public ContiguousSpace {
 734   friend class VMStructs;
 735  protected:
 736   BlockOffsetArrayContigSpace _offsets;
 737   Mutex _par_alloc_lock;
 738 
 739  public:
 740   // Constructor
 741   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
 742                          MemRegion mr);
 743 
 744   void set_bottom(HeapWord* value);
 745   void set_end(HeapWord* value);
 746 
 747   void clear(bool mangle_space);
 748 
 749   inline HeapWord* block_start_const(const void* p) const;
 750 
 751   // Add offset table update.
 752   virtual inline HeapWord* allocate(size_t word_size);
 753   inline HeapWord* par_allocate(size_t word_size);
 754 
 755   // MarkSweep support phase3
 756   virtual HeapWord* initialize_threshold();
 757   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 758 
 759   virtual void print_on(outputStream* st) const;
 760 
 761   // Debugging
 762   void verify() const;
 763 };
 764 
 765 
 766 // Class TenuredSpace is used by TenuredGeneration
 767 
 768 class TenuredSpace: public OffsetTableContigSpace {
 769   friend class VMStructs;
 770  protected:
 771   // Mark sweep support
 772   size_t allowed_dead_ratio() const;
 773  public:
 774   // Constructor
 775   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
 776                MemRegion mr) :
 777     OffsetTableContigSpace(sharedOffsetArray, mr) {}
 778 };
 779 #endif // SHARE_GC_SHARED_SPACE_HPP