/* * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "gc/z/zCollectedHeap.hpp" #include "gc/z/zDirector.hpp" #include "gc/z/zHeap.inline.hpp" #include "gc/z/zStat.hpp" #include "gc/z/zUtils.hpp" #include "logging/log.hpp" const double ZDirector::one_in_1000 = 3.290527; ZDirector::ZDirector() : _metronome(ZStatAllocRate::sample_hz) { set_name("ZDirector"); create_and_start(); } void ZDirector::sample_allocation_rate() const { // Sample allocation rate. This is needed by rule_allocation_rate() // below to estimate the time we have until we run out of memory. const double bytes_per_second = ZStatAllocRate::sample_and_reset(); log_debug(gc, alloc)("Allocation Rate: %.3fMB/s, Avg: %.3f(+/-%.3f)MB/s", bytes_per_second / M, ZStatAllocRate::avg() / M, ZStatAllocRate::avg_sd() / M); } bool ZDirector::rule_timer() const { if (ZCollectionInterval == 0) { // Rule disabled return false; } // Perform GC if timer has expired. const double time_since_last_gc = ZStatCycle::time_since_last(); const double time_until_gc = ZCollectionInterval - time_since_last_gc; log_debug(gc, director)("Rule: Timer, Interval: %us, TimeUntilGC: %.3fs", ZCollectionInterval, time_until_gc); return time_until_gc <= 0; } bool ZDirector::rule_warmup() const { if (ZStatCycle::is_warm()) { // Rule disabled return false; } // Perform GC if heap usage passes 10/20/30% and no other GC has been // performed yet. This allows us to get some early samples of the GC // duration, which is needed by the other rules. const size_t soft_max_capacity = ZHeap::heap()->soft_max_capacity(); const size_t used = ZHeap::heap()->used(); const double used_threshold_percent = (ZStatCycle::nwarmup_cycles() + 1) * 0.1; const size_t used_threshold = soft_max_capacity * used_threshold_percent; log_debug(gc, director)("Rule: Warmup %.0f%%, Used: " SIZE_FORMAT "MB, UsedThreshold: " SIZE_FORMAT "MB", used_threshold_percent * 100, used / M, used_threshold / M); return used >= used_threshold; } bool ZDirector::rule_allocation_rate() const { if (!ZStatCycle::is_normalized_duration_trustable()) { // Rule disabled return false; } // Perform GC if the estimated max allocation rate indicates that we // will run out of memory. The estimated max allocation rate is based // on the moving average of the sampled allocation rate plus a safety // margin based on variations in the allocation rate and unforeseen // allocation spikes. // Calculate amount of free memory available to Java threads. Note that // the heap reserve is not available to Java threads and is therefore not // considered part of the free memory. const size_t soft_max_capacity = ZHeap::heap()->soft_max_capacity(); const size_t max_reserve = ZHeap::heap()->max_reserve(); const size_t used = ZHeap::heap()->used(); const size_t free_with_reserve = soft_max_capacity - MIN2(soft_max_capacity, used); const size_t free = free_with_reserve - MIN2(free_with_reserve, max_reserve); // Calculate time until OOM given the max allocation rate and the amount // of free memory. The allocation rate is a moving average and we multiply // that with an allocation spike tolerance factor to guard against unforeseen // phase changes in the allocate rate. We then add ~3.3 sigma to account for // the allocation rate variance, which means the probability is 1 in 1000 // that a sample is outside of the confidence interval. const double max_alloc_rate = (ZStatAllocRate::avg() * ZAllocationSpikeTolerance) + (ZStatAllocRate::avg_sd() * one_in_1000); const double time_until_oom = free / (max_alloc_rate + 1.0); // Plus 1.0B/s to avoid division by zero // Calculate max duration of a GC cycle. The duration of GC is a moving // average, we add ~3.3 sigma to account for the GC duration variance. const AbsSeq& duration_of_gc = ZStatCycle::normalized_duration(); const double max_duration_of_gc = duration_of_gc.davg() + (duration_of_gc.dsd() * one_in_1000); // Calculate time until GC given the time until OOM and max duration of GC. // We also deduct the sample interval, so that we don't overshoot the target // time and end up starting the GC too late in the next interval. const double sample_interval = 1.0 / ZStatAllocRate::sample_hz; const double time_until_gc = time_until_oom - max_duration_of_gc - sample_interval; log_debug(gc, director)("Rule: Allocation Rate, MaxAllocRate: %.3fMB/s, Free: " SIZE_FORMAT "MB, MaxDurationOfGC: %.3fs, TimeUntilGC: %.3fs", max_alloc_rate / M, free / M, max_duration_of_gc, time_until_gc); return time_until_gc <= 0; } bool ZDirector::rule_proactive() const { if (!ZProactive || !ZStatCycle::is_warm()) { // Rule disabled return false; } // Perform GC if the impact of doing so, in terms of application throughput // reduction, is considered acceptable. This rule allows us to keep the heap // size down and allow reference processing to happen even when we have a lot // of free space on the heap. // Only consider doing a proactive GC if the heap usage has grown by at least // 10% of the max capacity since the previous GC, or more than 5 minutes has // passed since the previous GC. This helps avoid superfluous GCs when running // applications with very low allocation rate. const size_t used_after_last_gc = ZStatHeap::used_at_relocate_end(); const size_t used_increase_threshold = ZHeap::heap()->soft_max_capacity() * 0.10; // 10% const size_t used_threshold = used_after_last_gc + used_increase_threshold; const size_t used = ZHeap::heap()->used(); const double time_since_last_gc = ZStatCycle::time_since_last(); const double time_since_last_gc_threshold = 5 * 60; // 5 minutes if (used < used_threshold && time_since_last_gc < time_since_last_gc_threshold) { // Don't even consider doing a proactive GC log_debug(gc, director)("Rule: Proactive, UsedUntilEnabled: " SIZE_FORMAT "MB, TimeUntilEnabled: %.3fs", (used_threshold - used) / M, time_since_last_gc_threshold - time_since_last_gc); return false; } const double assumed_throughput_drop_during_gc = 0.50; // 50% const double acceptable_throughput_drop = 0.01; // 1% const AbsSeq& duration_of_gc = ZStatCycle::normalized_duration(); const double max_duration_of_gc = duration_of_gc.davg() + (duration_of_gc.dsd() * one_in_1000); const double acceptable_gc_interval = max_duration_of_gc * ((assumed_throughput_drop_during_gc / acceptable_throughput_drop) - 1.0); const double time_until_gc = acceptable_gc_interval - time_since_last_gc; log_debug(gc, director)("Rule: Proactive, AcceptableGCInterval: %.3fs, TimeSinceLastGC: %.3fs, TimeUntilGC: %.3fs", acceptable_gc_interval, time_since_last_gc, time_until_gc); return time_until_gc <= 0; } bool ZDirector::rule_high_usage() const { // Perform GC if the amount of free memory is 5% or less. This is a preventive // meassure in the case where the application has a very low allocation rate, // such that the allocation rate rule doesn't trigger, but the amount of free // memory is still slowly but surely heading towards zero. In this situation, // we start a GC cycle to avoid a potential allocation stall later. // Calculate amount of free memory available to Java threads. Note that // the heap reserve is not available to Java threads and is therefore not // considered part of the free memory. const size_t soft_max_capacity = ZHeap::heap()->soft_max_capacity(); const size_t max_reserve = ZHeap::heap()->max_reserve(); const size_t used = ZHeap::heap()->used(); const size_t free_with_reserve = soft_max_capacity - used; const size_t free = free_with_reserve - MIN2(free_with_reserve, max_reserve); const double free_percent = percent_of(free, soft_max_capacity); log_debug(gc, director)("Rule: High Usage, Free: " SIZE_FORMAT "MB(%.1f%%)", free / M, free_percent); return free_percent <= 5.0; } GCCause::Cause ZDirector::make_gc_decision() const { // Rule 0: Timer if (rule_timer()) { return GCCause::_z_timer; } // Rule 1: Warmup if (rule_warmup()) { return GCCause::_z_warmup; } // Rule 2: Allocation rate if (rule_allocation_rate()) { return GCCause::_z_allocation_rate; } // Rule 3: Proactive if (rule_proactive()) { return GCCause::_z_proactive; } // Rule 4: High usage if (rule_high_usage()) { return GCCause::_z_high_usage; } // No GC return GCCause::_no_gc; } void ZDirector::run_service() { // Main loop while (_metronome.wait_for_tick()) { sample_allocation_rate(); const GCCause::Cause cause = make_gc_decision(); if (cause != GCCause::_no_gc) { ZCollectedHeap::heap()->collect(cause); } } } void ZDirector::stop_service() { _metronome.stop(); }