1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/adaptiveSizePolicy.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/collectorPolicy.hpp"
  31 #include "gc/shared/generation.hpp"
  32 
  33 class StrongRootsScope;
  34 class SubTasksDone;
  35 class WorkGang;
  36 
  37 // A "GenCollectedHeap" is a CollectedHeap that uses generational
  38 // collection.  It has two generations, young and old.
  39 class GenCollectedHeap : public CollectedHeap {
  40   friend class GenCollectorPolicy;
  41   friend class Generation;
  42   friend class DefNewGeneration;
  43   friend class TenuredGeneration;
  44   friend class ConcurrentMarkSweepGeneration;
  45   friend class CMSCollector;
  46   friend class GenMarkSweep;
  47   friend class VM_GenCollectForAllocation;
  48   friend class VM_GenCollectFull;
  49   friend class VM_GenCollectFullConcurrent;
  50   friend class VM_GC_HeapInspection;
  51   friend class VM_HeapDumper;
  52   friend class HeapInspection;
  53   friend class GCCauseSetter;
  54   friend class VMStructs;
  55 public:
  56   friend class VM_PopulateDumpSharedSpace;
  57 
  58   enum GenerationType {
  59     YoungGen,
  60     OldGen
  61   };
  62 
  63 private:
  64   Generation* _young_gen;
  65   Generation* _old_gen;
  66 
  67   // The singleton CardTable Remembered Set.
  68   CardTableRS* _rem_set;
  69 
  70   // The generational collector policy.
  71   GenCollectorPolicy* _gen_policy;
  72 
  73   // Indicates that the most recent previous incremental collection failed.
  74   // The flag is cleared when an action is taken that might clear the
  75   // condition that caused that incremental collection to fail.
  76   bool _incremental_collection_failed;
  77 
  78   // In support of ExplicitGCInvokesConcurrent functionality
  79   unsigned int _full_collections_completed;
  80 
  81   // Data structure for claiming the (potentially) parallel tasks in
  82   // (gen-specific) roots processing.
  83   SubTasksDone* _process_strong_tasks;
  84 
  85   // Collects the given generation.
  86   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  87                           bool run_verification, bool clear_soft_refs,
  88                           bool restore_marks_for_biased_locking);
  89 
  90   // In block contents verification, the number of header words to skip
  91   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  92 
  93   WorkGang* _workers;
  94 
  95 protected:
  96   // Helper functions for allocation
  97   HeapWord* attempt_allocation(size_t size,
  98                                bool   is_tlab,
  99                                bool   first_only);
 100 
 101   // Helper function for two callbacks below.
 102   // Considers collection of the first max_level+1 generations.
 103   void do_collection(bool           full,
 104                      bool           clear_all_soft_refs,
 105                      size_t         size,
 106                      bool           is_tlab,
 107                      GenerationType max_generation);
 108 
 109   // Callback from VM_GenCollectForAllocation operation.
 110   // This function does everything necessary/possible to satisfy an
 111   // allocation request that failed in the youngest generation that should
 112   // have handled it (including collection, expansion, etc.)
 113   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 114 
 115   // Callback from VM_GenCollectFull operation.
 116   // Perform a full collection of the first max_level+1 generations.
 117   virtual void do_full_collection(bool clear_all_soft_refs);
 118   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
 119 
 120   // Does the "cause" of GC indicate that
 121   // we absolutely __must__ clear soft refs?
 122   bool must_clear_all_soft_refs();
 123 
 124 public:
 125   GenCollectedHeap(GenCollectorPolicy *policy);
 126 
 127   WorkGang* workers() const { return _workers; }
 128 
 129   // Returns JNI_OK on success
 130   virtual jint initialize();
 131 
 132   // Reserve aligned space for the heap as needed by the contained generations.
 133   char* allocate(size_t alignment, ReservedSpace* heap_rs);
 134 
 135   // Does operations required after initialization has been done.
 136   void post_initialize();
 137 
 138   // Initialize ("weak") refs processing support
 139   virtual void ref_processing_init();
 140 
 141   virtual Name kind() const {
 142     return CollectedHeap::GenCollectedHeap;
 143   }
 144 
 145   virtual const char* name() const {
 146     if (UseConcMarkSweepGC) {
 147       return "Concurrent Mark Sweep";
 148     } else {
 149       return "Serial";
 150     }
 151   }
 152 
 153   Generation* young_gen() const { return _young_gen; }
 154   Generation* old_gen()   const { return _old_gen; }
 155 
 156   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 157   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 158 
 159   // The generational collector policy.
 160   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 161 
 162   virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
 163 
 164   // Adaptive size policy
 165   virtual AdaptiveSizePolicy* size_policy() {
 166     return gen_policy()->size_policy();
 167   }
 168 
 169   // Return the (conservative) maximum heap alignment
 170   static size_t conservative_max_heap_alignment() {
 171     return Generation::GenGrain;
 172   }
 173 
 174   size_t capacity() const;
 175   size_t used() const;
 176 
 177   // Save the "used_region" for both generations.
 178   void save_used_regions();
 179 
 180   size_t max_capacity() const;
 181 
 182   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 183 
 184   // We may support a shared contiguous allocation area, if the youngest
 185   // generation does.
 186   bool supports_inline_contig_alloc() const;
 187   HeapWord** top_addr() const;
 188   HeapWord** end_addr() const;
 189 
 190   // Perform a full collection of the heap; intended for use in implementing
 191   // "System.gc". This implies as full a collection as the CollectedHeap
 192   // supports. Caller does not hold the Heap_lock on entry.
 193   void collect(GCCause::Cause cause);
 194 
 195   // The same as above but assume that the caller holds the Heap_lock.
 196   void collect_locked(GCCause::Cause cause);
 197 
 198   // Perform a full collection of generations up to and including max_generation.
 199   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 200   void collect(GCCause::Cause cause, GenerationType max_generation);
 201 
 202   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 203   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 204   // be expensive to compute in general, so, to prevent
 205   // their inadvertent use in product jvm's, we restrict their use to
 206   // assertion checking or verification only.
 207   bool is_in(const void* p) const;
 208 
 209   // override
 210   bool is_in_closed_subset(const void* p) const {
 211     if (UseConcMarkSweepGC) {
 212       return is_in_reserved(p);
 213     } else {
 214       return is_in(p);
 215     }
 216   }
 217 
 218   // Returns true if the reference is to an object in the reserved space
 219   // for the young generation.
 220   // Assumes the the young gen address range is less than that of the old gen.
 221   bool is_in_young(oop p);
 222 
 223 #ifdef ASSERT
 224   bool is_in_partial_collection(const void* p);
 225 #endif
 226 
 227   virtual bool is_scavengable(const void* addr) {
 228     return is_in_young((oop)addr);
 229   }
 230 
 231   // Iteration functions.
 232   void oop_iterate_no_header(OopClosure* cl);
 233   void oop_iterate(ExtendedOopClosure* cl);
 234   void object_iterate(ObjectClosure* cl);
 235   void safe_object_iterate(ObjectClosure* cl);
 236   Space* space_containing(const void* addr) const;
 237 
 238   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 239   // each address in the (reserved) heap is a member of exactly
 240   // one block.  The defining characteristic of a block is that it is
 241   // possible to find its size, and thus to progress forward to the next
 242   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 243   // represent Java objects, or they might be free blocks in a
 244   // free-list-based heap (or subheap), as long as the two kinds are
 245   // distinguishable and the size of each is determinable.
 246 
 247   // Returns the address of the start of the "block" that contains the
 248   // address "addr".  We say "blocks" instead of "object" since some heaps
 249   // may not pack objects densely; a chunk may either be an object or a
 250   // non-object.
 251   virtual HeapWord* block_start(const void* addr) const;
 252 
 253   // Requires "addr" to be the start of a chunk, and returns its size.
 254   // "addr + size" is required to be the start of a new chunk, or the end
 255   // of the active area of the heap. Assumes (and verifies in non-product
 256   // builds) that addr is in the allocated part of the heap and is
 257   // the start of a chunk.
 258   virtual size_t block_size(const HeapWord* addr) const;
 259 
 260   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 261   // the block is an object. Assumes (and verifies in non-product
 262   // builds) that addr is in the allocated part of the heap and is
 263   // the start of a chunk.
 264   virtual bool block_is_obj(const HeapWord* addr) const;
 265 
 266   // Section on TLAB's.
 267   virtual bool supports_tlab_allocation() const;
 268   virtual size_t tlab_capacity(Thread* thr) const;
 269   virtual size_t tlab_used(Thread* thr) const;
 270   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 271   virtual HeapWord* allocate_new_tlab(size_t size);
 272 
 273   // Can a compiler initialize a new object without store barriers?
 274   // This permission only extends from the creation of a new object
 275   // via a TLAB up to the first subsequent safepoint.
 276   virtual bool can_elide_tlab_store_barriers() const {
 277     return true;
 278   }
 279 
 280   virtual bool card_mark_must_follow_store() const {
 281     return UseConcMarkSweepGC;
 282   }
 283 
 284   virtual bool needs_reference_pending_list_locker_thread() const {
 285     return UseConcMarkSweepGC;
 286   }
 287 
 288   // We don't need barriers for stores to objects in the
 289   // young gen and, a fortiori, for initializing stores to
 290   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 291   // only and may need to be re-examined in case other
 292   // kinds of collectors are implemented in the future.
 293   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 294     return is_in_young(new_obj);
 295   }
 296 
 297   // The "requestor" generation is performing some garbage collection
 298   // action for which it would be useful to have scratch space.  The
 299   // requestor promises to allocate no more than "max_alloc_words" in any
 300   // older generation (via promotion say.)   Any blocks of space that can
 301   // be provided are returned as a list of ScratchBlocks, sorted by
 302   // decreasing size.
 303   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 304   // Allow each generation to reset any scratch space that it has
 305   // contributed as it needs.
 306   void release_scratch();
 307 
 308   // Ensure parsability: override
 309   virtual void ensure_parsability(bool retire_tlabs);
 310 
 311   // Time in ms since the longest time a collector ran in
 312   // in any generation.
 313   virtual jlong millis_since_last_gc();
 314 
 315   // Total number of full collections completed.
 316   unsigned int total_full_collections_completed() {
 317     assert(_full_collections_completed <= _total_full_collections,
 318            "Can't complete more collections than were started");
 319     return _full_collections_completed;
 320   }
 321 
 322   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 323   unsigned int update_full_collections_completed();
 324   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 325   unsigned int update_full_collections_completed(unsigned int count);
 326 
 327   // Update "time of last gc" for all generations to "now".
 328   void update_time_of_last_gc(jlong now) {
 329     _young_gen->update_time_of_last_gc(now);
 330     _old_gen->update_time_of_last_gc(now);
 331   }
 332 
 333   // Update the gc statistics for each generation.
 334   void update_gc_stats(Generation* current_generation, bool full) {
 335     _old_gen->update_gc_stats(current_generation, full);
 336   }
 337 
 338   bool no_gc_in_progress() { return !is_gc_active(); }
 339 
 340   // Override.
 341   void prepare_for_verify();
 342 
 343   // Override.
 344   void verify(VerifyOption option);
 345 
 346   // Override.
 347   virtual void print_on(outputStream* st) const;
 348   virtual void print_gc_threads_on(outputStream* st) const;
 349   virtual void gc_threads_do(ThreadClosure* tc) const;
 350   virtual void print_tracing_info() const;
 351   virtual void print_on_error(outputStream* st) const;
 352 
 353   void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
 354 
 355   // The functions below are helper functions that a subclass of
 356   // "CollectedHeap" can use in the implementation of its virtual
 357   // functions.
 358 
 359   class GenClosure : public StackObj {
 360    public:
 361     virtual void do_generation(Generation* gen) = 0;
 362   };
 363 
 364   // Apply "cl.do_generation" to all generations in the heap
 365   // If "old_to_young" determines the order.
 366   void generation_iterate(GenClosure* cl, bool old_to_young);
 367 
 368   // Return "true" if all generations have reached the
 369   // maximal committed limit that they can reach, without a garbage
 370   // collection.
 371   virtual bool is_maximal_no_gc() const;
 372 
 373   // This function returns the CardTableRS object that allows us to scan
 374   // generations in a fully generational heap.
 375   CardTableRS* rem_set() { return _rem_set; }
 376 
 377   // Convenience function to be used in situations where the heap type can be
 378   // asserted to be this type.
 379   static GenCollectedHeap* heap();
 380 
 381   // Invoke the "do_oop" method of one of the closures "not_older_gens"
 382   // or "older_gens" on root locations for the generations depending on
 383   // the type.  (The "older_gens" closure is used for scanning references
 384   // from older generations; "not_older_gens" is used everywhere else.)
 385   // If "younger_gens_as_roots" is false, younger generations are
 386   // not scanned as roots; in this case, the caller must be arranging to
 387   // scan the younger generations itself.  (For example, a generation might
 388   // explicitly mark reachable objects in younger generations, to avoid
 389   // excess storage retention.)
 390   // The "so" argument determines which of the roots
 391   // the closure is applied to:
 392   // "SO_None" does none;
 393   enum ScanningOption {
 394     SO_None                =  0x0,
 395     SO_AllCodeCache        =  0x8,
 396     SO_ScavengeCodeCache   = 0x10
 397   };
 398 
 399  private:
 400   void process_roots(StrongRootsScope* scope,
 401                      ScanningOption so,
 402                      OopClosure* strong_roots,
 403                      OopClosure* weak_roots,
 404                      CLDClosure* strong_cld_closure,
 405                      CLDClosure* weak_cld_closure,
 406                      CodeBlobToOopClosure* code_roots);
 407 
 408  public:
 409   static const bool StrongAndWeakRoots = false;
 410   static const bool StrongRootsOnly    = true;
 411 
 412   void gen_process_roots(StrongRootsScope* scope,
 413                          GenerationType type,
 414                          bool young_gen_as_roots,
 415                          ScanningOption so,
 416                          bool only_strong_roots,
 417                          OopsInGenClosure* not_older_gens,
 418                          OopsInGenClosure* older_gens,
 419                          CLDClosure* cld_closure);
 420 
 421   // Apply "root_closure" to all the weak roots of the system.
 422   // These include JNI weak roots, string table,
 423   // and referents of reachable weak refs.
 424   void gen_process_weak_roots(OopClosure* root_closure);
 425 
 426   // Set the saved marks of generations, if that makes sense.
 427   // In particular, if any generation might iterate over the oops
 428   // in other generations, it should call this method.
 429   void save_marks();
 430 
 431   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 432   // allocated since the last call to save_marks in generations at or above
 433   // "level".  The "cur" closure is
 434   // applied to references in the generation at "level", and the "older"
 435   // closure to older generations.
 436 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 437   void oop_since_save_marks_iterate(GenerationType start_gen,           \
 438                                     OopClosureType* cur,                \
 439                                     OopClosureType* older);
 440 
 441   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 442 
 443 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 444 
 445   // Returns "true" iff no allocations have occurred since the last
 446   // call to "save_marks".
 447   bool no_allocs_since_save_marks();
 448 
 449   // Returns true if an incremental collection is likely to fail.
 450   // We optionally consult the young gen, if asked to do so;
 451   // otherwise we base our answer on whether the previous incremental
 452   // collection attempt failed with no corrective action as of yet.
 453   bool incremental_collection_will_fail(bool consult_young) {
 454     // The first disjunct remembers if an incremental collection failed, even
 455     // when we thought (second disjunct) that it would not.
 456     return incremental_collection_failed() ||
 457            (consult_young && !_young_gen->collection_attempt_is_safe());
 458   }
 459 
 460   // If a generation bails out of an incremental collection,
 461   // it sets this flag.
 462   bool incremental_collection_failed() const {
 463     return _incremental_collection_failed;
 464   }
 465   void set_incremental_collection_failed() {
 466     _incremental_collection_failed = true;
 467   }
 468   void clear_incremental_collection_failed() {
 469     _incremental_collection_failed = false;
 470   }
 471 
 472   // Promotion of obj into gen failed.  Try to promote obj to higher
 473   // gens in ascending order; return the new location of obj if successful.
 474   // Otherwise, try expand-and-allocate for obj in both the young and old
 475   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 476   oop handle_failed_promotion(Generation* old_gen,
 477                               oop obj,
 478                               size_t obj_size);
 479 
 480 private:
 481   // Accessor for memory state verification support
 482   NOT_PRODUCT(
 483     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 484   )
 485 
 486   // Override
 487   void check_for_non_bad_heap_word_value(HeapWord* addr,
 488     size_t size) PRODUCT_RETURN;
 489 
 490   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 491   // in an essential way: compaction is performed across generations, by
 492   // iterating over spaces.
 493   void prepare_for_compaction();
 494 
 495   // Perform a full collection of the generations up to and including max_generation.
 496   // This is the low level interface used by the public versions of
 497   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 498   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
 499 
 500   // Returns success or failure.
 501   bool create_cms_collector();
 502 
 503   // In support of ExplicitGCInvokesConcurrent functionality
 504   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 505   void collect_mostly_concurrent(GCCause::Cause cause);
 506 
 507   // Save the tops of the spaces in all generations
 508   void record_gen_tops_before_GC() PRODUCT_RETURN;
 509 
 510 protected:
 511   void gc_prologue(bool full);
 512   void gc_epilogue(bool full);
 513 
 514 public:
 515   void stop();
 516 };
 517 
 518 #endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP