1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/z/zGlobals.hpp"
  28 #include "gc/z/zHeap.inline.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/arraycopynode.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/compile.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/graphKit.hpp"
  38 #include "opto/locknode.hpp"
  39 #include "opto/loopnode.hpp"
  40 #include "opto/macro.hpp"
  41 #include "opto/memnode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/node.hpp"
  44 #include "opto/opaquenode.hpp"
  45 #include "opto/phaseX.hpp"
  46 #include "opto/rootnode.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/subnode.hpp"
  49 #include "opto/type.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 
  52 
  53 //
  54 // Replace any references to "oldref" in inputs to "use" with "newref".
  55 // Returns the number of replacements made.
  56 //
  57 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  58   int nreplacements = 0;
  59   uint req = use->req();
  60   for (uint j = 0; j < use->len(); j++) {
  61     Node *uin = use->in(j);
  62     if (uin == oldref) {
  63       if (j < req)
  64         use->set_req(j, newref);
  65       else
  66         use->set_prec(j, newref);
  67       nreplacements++;
  68     } else if (j >= req && uin == NULL) {
  69       break;
  70     }
  71   }
  72   return nreplacements;
  73 }
  74 
  75 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  76   // Copy debug information and adjust JVMState information
  77   uint old_dbg_start = oldcall->tf()->domain()->cnt();
  78   uint new_dbg_start = newcall->tf()->domain()->cnt();
  79   int jvms_adj  = new_dbg_start - old_dbg_start;
  80   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  81 
  82   // SafePointScalarObject node could be referenced several times in debug info.
  83   // Use Dict to record cloned nodes.
  84   Dict* sosn_map = new Dict(cmpkey,hashkey);
  85   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  86     Node* old_in = oldcall->in(i);
  87     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  88     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  89       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  90       uint old_unique = C->unique();
  91       Node* new_in = old_sosn->clone(sosn_map);
  92       if (old_unique != C->unique()) { // New node?
  93         new_in->set_req(0, C->root()); // reset control edge
  94         new_in = transform_later(new_in); // Register new node.
  95       }
  96       old_in = new_in;
  97     }
  98     newcall->add_req(old_in);
  99   }
 100 
 101   // JVMS may be shared so clone it before we modify it
 102   newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL);
 103   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
 104     jvms->set_map(newcall);
 105     jvms->set_locoff(jvms->locoff()+jvms_adj);
 106     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
 107     jvms->set_monoff(jvms->monoff()+jvms_adj);
 108     jvms->set_scloff(jvms->scloff()+jvms_adj);
 109     jvms->set_endoff(jvms->endoff()+jvms_adj);
 110   }
 111 }
 112 
 113 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
 114   Node* cmp;
 115   if (mask != 0) {
 116     Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
 117     cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
 118   } else {
 119     cmp = word;
 120   }
 121   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
 122   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 123   transform_later(iff);
 124 
 125   // Fast path taken.
 126   Node *fast_taken = transform_later(new IfFalseNode(iff));
 127 
 128   // Fast path not-taken, i.e. slow path
 129   Node *slow_taken = transform_later(new IfTrueNode(iff));
 130 
 131   if (return_fast_path) {
 132     region->init_req(edge, slow_taken); // Capture slow-control
 133     return fast_taken;
 134   } else {
 135     region->init_req(edge, fast_taken); // Capture fast-control
 136     return slow_taken;
 137   }
 138 }
 139 
 140 //--------------------copy_predefined_input_for_runtime_call--------------------
 141 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 142   // Set fixed predefined input arguments
 143   call->init_req( TypeFunc::Control, ctrl );
 144   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 145   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 146   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 147   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 148 }
 149 
 150 //------------------------------make_slow_call---------------------------------
 151 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 152                                            address slow_call, const char* leaf_name, Node* slow_path,
 153                                            Node* parm0, Node* parm1, Node* parm2) {
 154 
 155   // Slow-path call
 156  CallNode *call = leaf_name
 157    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 158    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 159 
 160   // Slow path call has no side-effects, uses few values
 161   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 162   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 163   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 164   if (parm2 != NULL)  call->init_req(TypeFunc::Parms+2, parm2);
 165   copy_call_debug_info(oldcall, call);
 166   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 167   _igvn.replace_node(oldcall, call);
 168   transform_later(call);
 169 
 170   return call;
 171 }
 172 
 173 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 174   _fallthroughproj = NULL;
 175   _fallthroughcatchproj = NULL;
 176   _ioproj_fallthrough = NULL;
 177   _ioproj_catchall = NULL;
 178   _catchallcatchproj = NULL;
 179   _memproj_fallthrough = NULL;
 180   _memproj_catchall = NULL;
 181   _resproj = NULL;
 182   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 183     ProjNode *pn = call->fast_out(i)->as_Proj();
 184     switch (pn->_con) {
 185       case TypeFunc::Control:
 186       {
 187         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 188         _fallthroughproj = pn;
 189         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 190         const Node *cn = pn->fast_out(j);
 191         if (cn->is_Catch()) {
 192           ProjNode *cpn = NULL;
 193           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 194             cpn = cn->fast_out(k)->as_Proj();
 195             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 196             if (cpn->_con == CatchProjNode::fall_through_index)
 197               _fallthroughcatchproj = cpn;
 198             else {
 199               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 200               _catchallcatchproj = cpn;
 201             }
 202           }
 203         }
 204         break;
 205       }
 206       case TypeFunc::I_O:
 207         if (pn->_is_io_use)
 208           _ioproj_catchall = pn;
 209         else
 210           _ioproj_fallthrough = pn;
 211         break;
 212       case TypeFunc::Memory:
 213         if (pn->_is_io_use)
 214           _memproj_catchall = pn;
 215         else
 216           _memproj_fallthrough = pn;
 217         break;
 218       case TypeFunc::Parms:
 219         _resproj = pn;
 220         break;
 221       default:
 222         assert(false, "unexpected projection from allocation node.");
 223     }
 224   }
 225 
 226 }
 227 
 228 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 229 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
 230   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 231   if (!UseG1GC) {
 232     // vanilla/CMS post barrier
 233     Node *shift = p2x->unique_out();
 234     Node *addp = shift->unique_out();
 235     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 236       Node *mem = addp->last_out(j);
 237       if (UseCondCardMark && mem->is_Load()) {
 238         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 239         // The load is checking if the card has been written so
 240         // replace it with zero to fold the test.
 241         _igvn.replace_node(mem, intcon(0));
 242         continue;
 243       }
 244       assert(mem->is_Store(), "store required");
 245       _igvn.replace_node(mem, mem->in(MemNode::Memory));
 246     }
 247   } else {
 248     // G1 pre/post barriers
 249     assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
 250     // It could be only one user, URShift node, in Object.clone() intrinsic
 251     // but the new allocation is passed to arraycopy stub and it could not
 252     // be scalar replaced. So we don't check the case.
 253 
 254     // An other case of only one user (Xor) is when the value check for NULL
 255     // in G1 post barrier is folded after CCP so the code which used URShift
 256     // is removed.
 257 
 258     // Take Region node before eliminating post barrier since it also
 259     // eliminates CastP2X node when it has only one user.
 260     Node* this_region = p2x->in(0);
 261     assert(this_region != NULL, "");
 262 
 263     // Remove G1 post barrier.
 264 
 265     // Search for CastP2X->Xor->URShift->Cmp path which
 266     // checks if the store done to a different from the value's region.
 267     // And replace Cmp with #0 (false) to collapse G1 post barrier.
 268     Node* xorx = p2x->find_out_with(Op_XorX);
 269     if (xorx != NULL) {
 270       Node* shift = xorx->unique_out();
 271       Node* cmpx = shift->unique_out();
 272       assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 273       cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 274       "missing region check in G1 post barrier");
 275       _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 276 
 277       // Remove G1 pre barrier.
 278 
 279       // Search "if (marking != 0)" check and set it to "false".
 280       // There is no G1 pre barrier if previous stored value is NULL
 281       // (for example, after initialization).
 282       if (this_region->is_Region() && this_region->req() == 3) {
 283         int ind = 1;
 284         if (!this_region->in(ind)->is_IfFalse()) {
 285           ind = 2;
 286         }
 287         if (this_region->in(ind)->is_IfFalse() &&
 288             this_region->in(ind)->in(0)->Opcode() == Op_If) {
 289           Node* bol = this_region->in(ind)->in(0)->in(1);
 290           assert(bol->is_Bool(), "");
 291           cmpx = bol->in(1);
 292           if (bol->as_Bool()->_test._test == BoolTest::ne &&
 293               cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
 294               cmpx->in(1)->is_Load()) {
 295             Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
 296             const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
 297                                                 SATBMarkQueue::byte_offset_of_active());
 298             if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
 299                 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 300                 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
 301               _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 302             }
 303           }
 304         }
 305       }
 306     } else {
 307       assert(!GraphKit::use_ReduceInitialCardMarks(), "can only happen with card marking");
 308       // This is a G1 post barrier emitted by the Object.clone() intrinsic.
 309       // Search for the CastP2X->URShiftX->AddP->LoadB->Cmp path which checks if the card
 310       // is marked as young_gen and replace the Cmp with 0 (false) to collapse the barrier.
 311       Node* shift = p2x->find_out_with(Op_URShiftX);
 312       assert(shift != NULL, "missing G1 post barrier");
 313       Node* addp = shift->unique_out();
 314       Node* load = addp->find_out_with(Op_LoadB);
 315       assert(load != NULL, "missing G1 post barrier");
 316       Node* cmpx = load->unique_out();
 317       assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 318              cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 319              "missing card value check in G1 post barrier");
 320       _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 321       // There is no G1 pre barrier in this case
 322     }
 323     // Now CastP2X can be removed since it is used only on dead path
 324     // which currently still alive until igvn optimize it.
 325     assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
 326     _igvn.replace_node(p2x, top());
 327   }
 328 }
 329 
 330 // Search for a memory operation for the specified memory slice.
 331 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 332   Node *orig_mem = mem;
 333   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 334   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 335   while (true) {
 336     if (mem == alloc_mem || mem == start_mem ) {
 337       return mem;  // hit one of our sentinels
 338     } else if (mem->is_MergeMem()) {
 339       mem = mem->as_MergeMem()->memory_at(alias_idx);
 340     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 341       Node *in = mem->in(0);
 342       // we can safely skip over safepoints, calls, locks and membars because we
 343       // already know that the object is safe to eliminate.
 344       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 345         return in;
 346       } else if (in->is_Call()) {
 347         CallNode *call = in->as_Call();
 348         if (call->may_modify(tinst, phase)) {
 349           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
 350           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
 351             return in;
 352           }
 353         }
 354         mem = in->in(TypeFunc::Memory);
 355       } else if (in->is_MemBar()) {
 356         ArrayCopyNode* ac = NULL;
 357         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
 358           assert(ac != NULL && ac->is_clonebasic(), "Only basic clone is a non escaping clone");
 359           return ac;
 360         }
 361         mem = in->in(TypeFunc::Memory);
 362       } else {
 363         assert(false, "unexpected projection");
 364       }
 365     } else if (mem->is_Store()) {
 366       const TypePtr* atype = mem->as_Store()->adr_type();
 367       int adr_idx = phase->C->get_alias_index(atype);
 368       if (adr_idx == alias_idx) {
 369         assert(atype->isa_oopptr(), "address type must be oopptr");
 370         int adr_offset = atype->offset();
 371         uint adr_iid = atype->is_oopptr()->instance_id();
 372         // Array elements references have the same alias_idx
 373         // but different offset and different instance_id.
 374         if (adr_offset == offset && adr_iid == alloc->_idx)
 375           return mem;
 376       } else {
 377         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 378       }
 379       mem = mem->in(MemNode::Memory);
 380     } else if (mem->is_ClearArray()) {
 381       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 382         // Can not bypass initialization of the instance
 383         // we are looking.
 384         debug_only(intptr_t offset;)
 385         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 386         InitializeNode* init = alloc->as_Allocate()->initialization();
 387         // We are looking for stored value, return Initialize node
 388         // or memory edge from Allocate node.
 389         if (init != NULL)
 390           return init;
 391         else
 392           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 393       }
 394       // Otherwise skip it (the call updated 'mem' value).
 395     } else if (mem->Opcode() == Op_SCMemProj) {
 396       mem = mem->in(0);
 397       Node* adr = NULL;
 398       if (mem->is_LoadStore()) {
 399         adr = mem->in(MemNode::Address);
 400       } else {
 401         assert(mem->Opcode() == Op_EncodeISOArray ||
 402                mem->Opcode() == Op_StrCompressedCopy, "sanity");
 403         adr = mem->in(3); // Destination array
 404       }
 405       const TypePtr* atype = adr->bottom_type()->is_ptr();
 406       int adr_idx = phase->C->get_alias_index(atype);
 407       if (adr_idx == alias_idx) {
 408         DEBUG_ONLY(mem->dump();)
 409         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 410         return NULL;
 411       }
 412       mem = mem->in(MemNode::Memory);
 413    } else if (mem->Opcode() == Op_StrInflatedCopy) {
 414       Node* adr = mem->in(3); // Destination array
 415       const TypePtr* atype = adr->bottom_type()->is_ptr();
 416       int adr_idx = phase->C->get_alias_index(atype);
 417       if (adr_idx == alias_idx) {
 418         DEBUG_ONLY(mem->dump();)
 419         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
 420         return NULL;
 421       }
 422       mem = mem->in(MemNode::Memory);
 423     } else {
 424       return mem;
 425     }
 426     assert(mem != orig_mem, "dead memory loop");
 427   }
 428 }
 429 
 430 // Generate loads from source of the arraycopy for fields of
 431 // destination needed at a deoptimization point
 432 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
 433   BasicType bt = ft;
 434   const Type *type = ftype;
 435   if (ft == T_NARROWOOP) {
 436     bt = T_OBJECT;
 437     type = ftype->make_oopptr();
 438   }
 439   Node* res = NULL;
 440   if (ac->is_clonebasic()) {
 441     Node* base = ac->in(ArrayCopyNode::Src)->in(AddPNode::Base);
 442     Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset)));
 443     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 444     res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
 445   } else {
 446     if (ac->modifies(offset, offset, &_igvn, true)) {
 447       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
 448       uint shift  = exact_log2(type2aelembytes(bt));
 449       Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 450 #ifdef _LP64
 451       diff = _igvn.transform(new ConvI2LNode(diff));
 452 #endif
 453       diff = _igvn.transform(new LShiftXNode(diff, intcon(shift)));
 454 
 455       Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff));
 456       Node* base = ac->in(ArrayCopyNode::Src);
 457       Node* adr = _igvn.transform(new AddPNode(base, base, off));
 458       const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 459       res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
 460     }
 461   }
 462   if (res != NULL) {
 463     res = _igvn.transform(res);
 464     if (ftype->isa_narrowoop()) {
 465       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
 466       res = _igvn.transform(new EncodePNode(res, ftype));
 467     }
 468     return res;
 469   }
 470   return NULL;
 471 }
 472 
 473 //
 474 // Given a Memory Phi, compute a value Phi containing the values from stores
 475 // on the input paths.
 476 // Note: this function is recursive, its depth is limited by the "level" argument
 477 // Returns the computed Phi, or NULL if it cannot compute it.
 478 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
 479   assert(mem->is_Phi(), "sanity");
 480   int alias_idx = C->get_alias_index(adr_t);
 481   int offset = adr_t->offset();
 482   int instance_id = adr_t->instance_id();
 483 
 484   // Check if an appropriate value phi already exists.
 485   Node* region = mem->in(0);
 486   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 487     Node* phi = region->fast_out(k);
 488     if (phi->is_Phi() && phi != mem &&
 489         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
 490       return phi;
 491     }
 492   }
 493   // Check if an appropriate new value phi already exists.
 494   Node* new_phi = value_phis->find(mem->_idx);
 495   if (new_phi != NULL)
 496     return new_phi;
 497 
 498   if (level <= 0) {
 499     return NULL; // Give up: phi tree too deep
 500   }
 501   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 502   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 503 
 504   uint length = mem->req();
 505   GrowableArray <Node *> values(length, length, NULL, false);
 506 
 507   // create a new Phi for the value
 508   PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset);
 509   transform_later(phi);
 510   value_phis->push(phi, mem->_idx);
 511 
 512   for (uint j = 1; j < length; j++) {
 513     Node *in = mem->in(j);
 514     if (in == NULL || in->is_top()) {
 515       values.at_put(j, in);
 516     } else  {
 517       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 518       if (val == start_mem || val == alloc_mem) {
 519         // hit a sentinel, return appropriate 0 value
 520         values.at_put(j, _igvn.zerocon(ft));
 521         continue;
 522       }
 523       if (val->is_Initialize()) {
 524         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 525       }
 526       if (val == NULL) {
 527         return NULL;  // can't find a value on this path
 528       }
 529       if (val == mem) {
 530         values.at_put(j, mem);
 531       } else if (val->is_Store()) {
 532         values.at_put(j, val->in(MemNode::ValueIn));
 533       } else if(val->is_Proj() && val->in(0) == alloc) {
 534         values.at_put(j, _igvn.zerocon(ft));
 535       } else if (val->is_Phi()) {
 536         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 537         if (val == NULL) {
 538           return NULL;
 539         }
 540         values.at_put(j, val);
 541       } else if (val->Opcode() == Op_SCMemProj) {
 542         assert(val->in(0)->is_LoadStore() ||
 543                val->in(0)->Opcode() == Op_EncodeISOArray ||
 544                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
 545         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 546         return NULL;
 547       } else if (val->is_ArrayCopy()) {
 548         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
 549         if (res == NULL) {
 550           return NULL;
 551         }
 552         values.at_put(j, res);
 553       } else {
 554 #ifdef ASSERT
 555         val->dump();
 556         assert(false, "unknown node on this path");
 557 #endif
 558         return NULL;  // unknown node on this path
 559       }
 560     }
 561   }
 562   // Set Phi's inputs
 563   for (uint j = 1; j < length; j++) {
 564     if (values.at(j) == mem) {
 565       phi->init_req(j, phi);
 566     } else {
 567       phi->init_req(j, values.at(j));
 568     }
 569   }
 570   return phi;
 571 }
 572 
 573 // Search the last value stored into the object's field.
 574 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
 575   assert(adr_t->is_known_instance_field(), "instance required");
 576   int instance_id = adr_t->instance_id();
 577   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 578 
 579   int alias_idx = C->get_alias_index(adr_t);
 580   int offset = adr_t->offset();
 581   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 582   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 583   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 584   Arena *a = Thread::current()->resource_area();
 585   VectorSet visited(a);
 586 
 587 
 588   bool done = sfpt_mem == alloc_mem;
 589   Node *mem = sfpt_mem;
 590   while (!done) {
 591     if (visited.test_set(mem->_idx)) {
 592       return NULL;  // found a loop, give up
 593     }
 594     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 595     if (mem == start_mem || mem == alloc_mem) {
 596       done = true;  // hit a sentinel, return appropriate 0 value
 597     } else if (mem->is_Initialize()) {
 598       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 599       if (mem == NULL) {
 600         done = true; // Something go wrong.
 601       } else if (mem->is_Store()) {
 602         const TypePtr* atype = mem->as_Store()->adr_type();
 603         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 604         done = true;
 605       }
 606     } else if (mem->is_Store()) {
 607       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 608       assert(atype != NULL, "address type must be oopptr");
 609       assert(C->get_alias_index(atype) == alias_idx &&
 610              atype->is_known_instance_field() && atype->offset() == offset &&
 611              atype->instance_id() == instance_id, "store is correct memory slice");
 612       done = true;
 613     } else if (mem->is_Phi()) {
 614       // try to find a phi's unique input
 615       Node *unique_input = NULL;
 616       Node *top = C->top();
 617       for (uint i = 1; i < mem->req(); i++) {
 618         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 619         if (n == NULL || n == top || n == mem) {
 620           continue;
 621         } else if (unique_input == NULL) {
 622           unique_input = n;
 623         } else if (unique_input != n) {
 624           unique_input = top;
 625           break;
 626         }
 627       }
 628       if (unique_input != NULL && unique_input != top) {
 629         mem = unique_input;
 630       } else {
 631         done = true;
 632       }
 633     } else if (mem->is_ArrayCopy()) {
 634       done = true;
 635     } else {
 636       assert(false, "unexpected node");
 637     }
 638   }
 639   if (mem != NULL) {
 640     if (mem == start_mem || mem == alloc_mem) {
 641       // hit a sentinel, return appropriate 0 value
 642       return _igvn.zerocon(ft);
 643     } else if (mem->is_Store()) {
 644       return mem->in(MemNode::ValueIn);
 645     } else if (mem->is_Phi()) {
 646       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 647       Node_Stack value_phis(a, 8);
 648       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 649       if (phi != NULL) {
 650         return phi;
 651       } else {
 652         // Kill all new Phis
 653         while(value_phis.is_nonempty()) {
 654           Node* n = value_phis.node();
 655           _igvn.replace_node(n, C->top());
 656           value_phis.pop();
 657         }
 658       }
 659     } else if (mem->is_ArrayCopy()) {
 660       Node* ctl = mem->in(0);
 661       Node* m = mem->in(TypeFunc::Memory);
 662       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) {
 663         // pin the loads in the uncommon trap path
 664         ctl = sfpt_ctl;
 665         m = sfpt_mem;
 666       }
 667       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
 668     }
 669   }
 670   // Something go wrong.
 671   return NULL;
 672 }
 673 
 674 // Check the possibility of scalar replacement.
 675 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 676   //  Scan the uses of the allocation to check for anything that would
 677   //  prevent us from eliminating it.
 678   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 679   DEBUG_ONLY( Node* disq_node = NULL; )
 680   bool  can_eliminate = true;
 681 
 682   Node* res = alloc->result_cast();
 683   const TypeOopPtr* res_type = NULL;
 684   if (res == NULL) {
 685     // All users were eliminated.
 686   } else if (!res->is_CheckCastPP()) {
 687     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 688     can_eliminate = false;
 689   } else {
 690     res_type = _igvn.type(res)->isa_oopptr();
 691     if (res_type == NULL) {
 692       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 693       can_eliminate = false;
 694     } else if (res_type->isa_aryptr()) {
 695       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 696       if (length < 0) {
 697         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 698         can_eliminate = false;
 699       }
 700     }
 701   }
 702 
 703   if (can_eliminate && res != NULL) {
 704     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 705                                j < jmax && can_eliminate; j++) {
 706       Node* use = res->fast_out(j);
 707 
 708       if (use->is_AddP()) {
 709         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 710         int offset = addp_type->offset();
 711 
 712         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 713           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 714           can_eliminate = false;
 715           break;
 716         }
 717         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 718                                    k < kmax && can_eliminate; k++) {
 719           Node* n = use->fast_out(k);
 720           if (!n->is_Store() && n->Opcode() != Op_CastP2X &&
 721               !(n->is_ArrayCopy() &&
 722                 n->as_ArrayCopy()->is_clonebasic() &&
 723                 n->in(ArrayCopyNode::Dest) == use)) {
 724             DEBUG_ONLY(disq_node = n;)
 725             if (n->is_Load() || n->is_LoadStore()) {
 726               NOT_PRODUCT(fail_eliminate = "Field load";)
 727             } else {
 728               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
 729             }
 730             can_eliminate = false;
 731           }
 732         }
 733       } else if (use->is_ArrayCopy() &&
 734                  (use->as_ArrayCopy()->is_arraycopy_validated() ||
 735                   use->as_ArrayCopy()->is_copyof_validated() ||
 736                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
 737                  use->in(ArrayCopyNode::Dest) == res) {
 738         // ok to eliminate
 739       } else if (use->is_SafePoint()) {
 740         SafePointNode* sfpt = use->as_SafePoint();
 741         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 742           // Object is passed as argument.
 743           DEBUG_ONLY(disq_node = use;)
 744           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 745           can_eliminate = false;
 746         }
 747         Node* sfptMem = sfpt->memory();
 748         if (sfptMem == NULL || sfptMem->is_top()) {
 749           DEBUG_ONLY(disq_node = use;)
 750           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 751           can_eliminate = false;
 752         } else {
 753           safepoints.append_if_missing(sfpt);
 754         }
 755       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 756         if (use->is_Phi()) {
 757           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 758             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 759           } else {
 760             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 761           }
 762           DEBUG_ONLY(disq_node = use;)
 763         } else {
 764           if (use->Opcode() == Op_Return) {
 765             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 766           }else {
 767             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 768           }
 769           DEBUG_ONLY(disq_node = use;)
 770         }
 771         can_eliminate = false;
 772       }
 773     }
 774   }
 775 
 776 #ifndef PRODUCT
 777   if (PrintEliminateAllocations) {
 778     if (can_eliminate) {
 779       tty->print("Scalar ");
 780       if (res == NULL)
 781         alloc->dump();
 782       else
 783         res->dump();
 784     } else if (alloc->_is_scalar_replaceable) {
 785       tty->print("NotScalar (%s)", fail_eliminate);
 786       if (res == NULL)
 787         alloc->dump();
 788       else
 789         res->dump();
 790 #ifdef ASSERT
 791       if (disq_node != NULL) {
 792           tty->print("  >>>> ");
 793           disq_node->dump();
 794       }
 795 #endif /*ASSERT*/
 796     }
 797   }
 798 #endif
 799   return can_eliminate;
 800 }
 801 
 802 // Do scalar replacement.
 803 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 804   GrowableArray <SafePointNode *> safepoints_done;
 805 
 806   ciKlass* klass = NULL;
 807   ciInstanceKlass* iklass = NULL;
 808   int nfields = 0;
 809   int array_base = 0;
 810   int element_size = 0;
 811   BasicType basic_elem_type = T_ILLEGAL;
 812   ciType* elem_type = NULL;
 813 
 814   Node* res = alloc->result_cast();
 815   assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
 816   const TypeOopPtr* res_type = NULL;
 817   if (res != NULL) { // Could be NULL when there are no users
 818     res_type = _igvn.type(res)->isa_oopptr();
 819   }
 820 
 821   if (res != NULL) {
 822     klass = res_type->klass();
 823     if (res_type->isa_instptr()) {
 824       // find the fields of the class which will be needed for safepoint debug information
 825       assert(klass->is_instance_klass(), "must be an instance klass.");
 826       iklass = klass->as_instance_klass();
 827       nfields = iklass->nof_nonstatic_fields();
 828     } else {
 829       // find the array's elements which will be needed for safepoint debug information
 830       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 831       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 832       elem_type = klass->as_array_klass()->element_type();
 833       basic_elem_type = elem_type->basic_type();
 834       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 835       element_size = type2aelembytes(basic_elem_type);
 836     }
 837   }
 838   //
 839   // Process the safepoint uses
 840   //
 841   while (safepoints.length() > 0) {
 842     SafePointNode* sfpt = safepoints.pop();
 843     Node* mem = sfpt->memory();
 844     Node* ctl = sfpt->control();
 845     assert(sfpt->jvms() != NULL, "missed JVMS");
 846     // Fields of scalar objs are referenced only at the end
 847     // of regular debuginfo at the last (youngest) JVMS.
 848     // Record relative start index.
 849     uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
 850     SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 851 #ifdef ASSERT
 852                                                  alloc,
 853 #endif
 854                                                  first_ind, nfields);
 855     sobj->init_req(0, C->root());
 856     transform_later(sobj);
 857 
 858     // Scan object's fields adding an input to the safepoint for each field.
 859     for (int j = 0; j < nfields; j++) {
 860       intptr_t offset;
 861       ciField* field = NULL;
 862       if (iklass != NULL) {
 863         field = iklass->nonstatic_field_at(j);
 864         offset = field->offset();
 865         elem_type = field->type();
 866         basic_elem_type = field->layout_type();
 867       } else {
 868         offset = array_base + j * (intptr_t)element_size;
 869       }
 870 
 871       const Type *field_type;
 872       // The next code is taken from Parse::do_get_xxx().
 873       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 874         if (!elem_type->is_loaded()) {
 875           field_type = TypeInstPtr::BOTTOM;
 876         } else if (field != NULL && field->is_static_constant()) {
 877           // This can happen if the constant oop is non-perm.
 878           ciObject* con = field->constant_value().as_object();
 879           // Do not "join" in the previous type; it doesn't add value,
 880           // and may yield a vacuous result if the field is of interface type.
 881           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 882           assert(field_type != NULL, "field singleton type must be consistent");
 883         } else {
 884           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 885         }
 886         if (UseCompressedOops) {
 887           field_type = field_type->make_narrowoop();
 888           basic_elem_type = T_NARROWOOP;
 889         }
 890       } else {
 891         field_type = Type::get_const_basic_type(basic_elem_type);
 892       }
 893 
 894       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 895 
 896       Node *field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc);
 897       if (field_val == NULL) {
 898         // We weren't able to find a value for this field,
 899         // give up on eliminating this allocation.
 900 
 901         // Remove any extra entries we added to the safepoint.
 902         uint last = sfpt->req() - 1;
 903         for (int k = 0;  k < j; k++) {
 904           sfpt->del_req(last--);
 905         }
 906         _igvn._worklist.push(sfpt);
 907         // rollback processed safepoints
 908         while (safepoints_done.length() > 0) {
 909           SafePointNode* sfpt_done = safepoints_done.pop();
 910           // remove any extra entries we added to the safepoint
 911           last = sfpt_done->req() - 1;
 912           for (int k = 0;  k < nfields; k++) {
 913             sfpt_done->del_req(last--);
 914           }
 915           JVMState *jvms = sfpt_done->jvms();
 916           jvms->set_endoff(sfpt_done->req());
 917           // Now make a pass over the debug information replacing any references
 918           // to SafePointScalarObjectNode with the allocated object.
 919           int start = jvms->debug_start();
 920           int end   = jvms->debug_end();
 921           for (int i = start; i < end; i++) {
 922             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 923               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 924               if (scobj->first_index(jvms) == sfpt_done->req() &&
 925                   scobj->n_fields() == (uint)nfields) {
 926                 assert(scobj->alloc() == alloc, "sanity");
 927                 sfpt_done->set_req(i, res);
 928               }
 929             }
 930           }
 931           _igvn._worklist.push(sfpt_done);
 932         }
 933 #ifndef PRODUCT
 934         if (PrintEliminateAllocations) {
 935           if (field != NULL) {
 936             tty->print("=== At SafePoint node %d can't find value of Field: ",
 937                        sfpt->_idx);
 938             field->print();
 939             int field_idx = C->get_alias_index(field_addr_type);
 940             tty->print(" (alias_idx=%d)", field_idx);
 941           } else { // Array's element
 942             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 943                        sfpt->_idx, j);
 944           }
 945           tty->print(", which prevents elimination of: ");
 946           if (res == NULL)
 947             alloc->dump();
 948           else
 949             res->dump();
 950         }
 951 #endif
 952         return false;
 953       }
 954       if (UseCompressedOops && field_type->isa_narrowoop()) {
 955         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 956         // to be able scalar replace the allocation.
 957         if (field_val->is_EncodeP()) {
 958           field_val = field_val->in(1);
 959         } else {
 960           field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
 961         }
 962       }
 963       sfpt->add_req(field_val);
 964     }
 965     JVMState *jvms = sfpt->jvms();
 966     jvms->set_endoff(sfpt->req());
 967     // Now make a pass over the debug information replacing any references
 968     // to the allocated object with "sobj"
 969     int start = jvms->debug_start();
 970     int end   = jvms->debug_end();
 971     sfpt->replace_edges_in_range(res, sobj, start, end);
 972     _igvn._worklist.push(sfpt);
 973     safepoints_done.append_if_missing(sfpt); // keep it for rollback
 974   }
 975   return true;
 976 }
 977 
 978 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
 979   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
 980   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
 981   if (ctl_proj != NULL) {
 982     igvn.replace_node(ctl_proj, n->in(0));
 983   }
 984   if (mem_proj != NULL) {
 985     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
 986   }
 987 }
 988 
 989 // Process users of eliminated allocation.
 990 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
 991   Node* res = alloc->result_cast();
 992   if (res != NULL) {
 993     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 994       Node *use = res->last_out(j);
 995       uint oc1 = res->outcnt();
 996 
 997       if (use->is_AddP()) {
 998         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 999           Node *n = use->last_out(k);
1000           uint oc2 = use->outcnt();
1001           if (n->is_Store()) {
1002 #ifdef ASSERT
1003             // Verify that there is no dependent MemBarVolatile nodes,
1004             // they should be removed during IGVN, see MemBarNode::Ideal().
1005             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
1006                                        p < pmax; p++) {
1007               Node* mb = n->fast_out(p);
1008               assert(mb->is_Initialize() || !mb->is_MemBar() ||
1009                      mb->req() <= MemBarNode::Precedent ||
1010                      mb->in(MemBarNode::Precedent) != n,
1011                      "MemBarVolatile should be eliminated for non-escaping object");
1012             }
1013 #endif
1014             _igvn.replace_node(n, n->in(MemNode::Memory));
1015           } else if (n->is_ArrayCopy()) {
1016             // Disconnect ArrayCopy node
1017             ArrayCopyNode* ac = n->as_ArrayCopy();
1018             assert(ac->is_clonebasic(), "unexpected array copy kind");
1019             Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
1020             disconnect_projections(ac, _igvn);
1021             assert(alloc->in(0)->is_Proj() && alloc->in(0)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
1022             Node* membar_before = alloc->in(0)->in(0);
1023             disconnect_projections(membar_before->as_MemBar(), _igvn);
1024             if (membar_after->is_MemBar()) {
1025               disconnect_projections(membar_after->as_MemBar(), _igvn);
1026             }
1027           } else {
1028             eliminate_card_mark(n);
1029           }
1030           k -= (oc2 - use->outcnt());
1031         }
1032       } else if (use->is_ArrayCopy()) {
1033         // Disconnect ArrayCopy node
1034         ArrayCopyNode* ac = use->as_ArrayCopy();
1035         assert(ac->is_arraycopy_validated() ||
1036                ac->is_copyof_validated() ||
1037                ac->is_copyofrange_validated(), "unsupported");
1038         CallProjections callprojs;
1039         ac->extract_projections(&callprojs, true);
1040 
1041         _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O));
1042         _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory));
1043         _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control));
1044 
1045         // Set control to top. IGVN will remove the remaining projections
1046         ac->set_req(0, top());
1047         ac->replace_edge(res, top());
1048 
1049         // Disconnect src right away: it can help find new
1050         // opportunities for allocation elimination
1051         Node* src = ac->in(ArrayCopyNode::Src);
1052         ac->replace_edge(src, top());
1053         // src can be top at this point if src and dest of the
1054         // arraycopy were the same
1055         if (src->outcnt() == 0 && !src->is_top()) {
1056           _igvn.remove_dead_node(src);
1057         }
1058 
1059         _igvn._worklist.push(ac);
1060       } else {
1061         eliminate_card_mark(use);
1062       }
1063       j -= (oc1 - res->outcnt());
1064     }
1065     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
1066     _igvn.remove_dead_node(res);
1067   }
1068 
1069   //
1070   // Process other users of allocation's projections
1071   //
1072   if (_resproj != NULL && _resproj->outcnt() != 0) {
1073     // First disconnect stores captured by Initialize node.
1074     // If Initialize node is eliminated first in the following code,
1075     // it will kill such stores and DUIterator_Last will assert.
1076     for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
1077       Node *use = _resproj->fast_out(j);
1078       if (use->is_AddP()) {
1079         // raw memory addresses used only by the initialization
1080         _igvn.replace_node(use, C->top());
1081         --j; --jmax;
1082       }
1083     }
1084     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
1085       Node *use = _resproj->last_out(j);
1086       uint oc1 = _resproj->outcnt();
1087       if (use->is_Initialize()) {
1088         // Eliminate Initialize node.
1089         InitializeNode *init = use->as_Initialize();
1090         assert(init->outcnt() <= 2, "only a control and memory projection expected");
1091         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
1092         if (ctrl_proj != NULL) {
1093            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
1094           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
1095         }
1096         Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
1097         if (mem_proj != NULL) {
1098           Node *mem = init->in(TypeFunc::Memory);
1099 #ifdef ASSERT
1100           if (mem->is_MergeMem()) {
1101             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
1102           } else {
1103             assert(mem == _memproj_fallthrough, "allocation memory projection");
1104           }
1105 #endif
1106           _igvn.replace_node(mem_proj, mem);
1107         }
1108       } else  {
1109         assert(false, "only Initialize or AddP expected");
1110       }
1111       j -= (oc1 - _resproj->outcnt());
1112     }
1113   }
1114   if (_fallthroughcatchproj != NULL) {
1115     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
1116   }
1117   if (_memproj_fallthrough != NULL) {
1118     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
1119   }
1120   if (_memproj_catchall != NULL) {
1121     _igvn.replace_node(_memproj_catchall, C->top());
1122   }
1123   if (_ioproj_fallthrough != NULL) {
1124     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
1125   }
1126   if (_ioproj_catchall != NULL) {
1127     _igvn.replace_node(_ioproj_catchall, C->top());
1128   }
1129   if (_catchallcatchproj != NULL) {
1130     _igvn.replace_node(_catchallcatchproj, C->top());
1131   }
1132 }
1133 
1134 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1135   // Don't do scalar replacement if the frame can be popped by JVMTI:
1136   // if reallocation fails during deoptimization we'll pop all
1137   // interpreter frames for this compiled frame and that won't play
1138   // nice with JVMTI popframe.
1139   if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) {
1140     return false;
1141   }
1142   Node* klass = alloc->in(AllocateNode::KlassNode);
1143   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1144   Node* res = alloc->result_cast();
1145   // Eliminate boxing allocations which are not used
1146   // regardless scalar replacable status.
1147   bool boxing_alloc = C->eliminate_boxing() &&
1148                       tklass->klass()->is_instance_klass()  &&
1149                       tklass->klass()->as_instance_klass()->is_box_klass();
1150   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
1151     return false;
1152   }
1153 
1154   extract_call_projections(alloc);
1155 
1156   GrowableArray <SafePointNode *> safepoints;
1157   if (!can_eliminate_allocation(alloc, safepoints)) {
1158     return false;
1159   }
1160 
1161   if (!alloc->_is_scalar_replaceable) {
1162     assert(res == NULL, "sanity");
1163     // We can only eliminate allocation if all debug info references
1164     // are already replaced with SafePointScalarObject because
1165     // we can't search for a fields value without instance_id.
1166     if (safepoints.length() > 0) {
1167       return false;
1168     }
1169   }
1170 
1171   if (!scalar_replacement(alloc, safepoints)) {
1172     return false;
1173   }
1174 
1175   CompileLog* log = C->log();
1176   if (log != NULL) {
1177     log->head("eliminate_allocation type='%d'",
1178               log->identify(tklass->klass()));
1179     JVMState* p = alloc->jvms();
1180     while (p != NULL) {
1181       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1182       p = p->caller();
1183     }
1184     log->tail("eliminate_allocation");
1185   }
1186 
1187   process_users_of_allocation(alloc);
1188 
1189 #ifndef PRODUCT
1190   if (PrintEliminateAllocations) {
1191     if (alloc->is_AllocateArray())
1192       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1193     else
1194       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1195   }
1196 #endif
1197 
1198   return true;
1199 }
1200 
1201 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1202   // EA should remove all uses of non-escaping boxing node.
1203   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != NULL) {
1204     return false;
1205   }
1206 
1207   assert(boxing->result_cast() == NULL, "unexpected boxing node result");
1208 
1209   extract_call_projections(boxing);
1210 
1211   const TypeTuple* r = boxing->tf()->range();
1212   assert(r->cnt() > TypeFunc::Parms, "sanity");
1213   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1214   assert(t != NULL, "sanity");
1215 
1216   CompileLog* log = C->log();
1217   if (log != NULL) {
1218     log->head("eliminate_boxing type='%d'",
1219               log->identify(t->klass()));
1220     JVMState* p = boxing->jvms();
1221     while (p != NULL) {
1222       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1223       p = p->caller();
1224     }
1225     log->tail("eliminate_boxing");
1226   }
1227 
1228   process_users_of_allocation(boxing);
1229 
1230 #ifndef PRODUCT
1231   if (PrintEliminateAllocations) {
1232     tty->print("++++ Eliminated: %d ", boxing->_idx);
1233     boxing->method()->print_short_name(tty);
1234     tty->cr();
1235   }
1236 #endif
1237 
1238   return true;
1239 }
1240 
1241 //---------------------------set_eden_pointers-------------------------
1242 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
1243   if (UseTLAB) {                // Private allocation: load from TLS
1244     Node* thread = transform_later(new ThreadLocalNode());
1245     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
1246     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
1247     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1248     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1249   } else {                      // Shared allocation: load from globals
1250     CollectedHeap* ch = Universe::heap();
1251     address top_adr = (address)ch->top_addr();
1252     address end_adr = (address)ch->end_addr();
1253     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1254     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1255   }
1256 }
1257 
1258 
1259 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1260   Node* adr = basic_plus_adr(base, offset);
1261   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1262   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1263   transform_later(value);
1264   return value;
1265 }
1266 
1267 
1268 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1269   Node* adr = basic_plus_adr(base, offset);
1270   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
1271   transform_later(mem);
1272   return mem;
1273 }
1274 
1275 //=============================================================================
1276 //
1277 //                              A L L O C A T I O N
1278 //
1279 // Allocation attempts to be fast in the case of frequent small objects.
1280 // It breaks down like this:
1281 //
1282 // 1) Size in doublewords is computed.  This is a constant for objects and
1283 // variable for most arrays.  Doubleword units are used to avoid size
1284 // overflow of huge doubleword arrays.  We need doublewords in the end for
1285 // rounding.
1286 //
1287 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1288 // the slow path into the VM.  The slow path can throw any required
1289 // exceptions, and does all the special checks for very large arrays.  The
1290 // size test can constant-fold away for objects.  For objects with
1291 // finalizers it constant-folds the otherway: you always go slow with
1292 // finalizers.
1293 //
1294 // 3) If NOT using TLABs, this is the contended loop-back point.
1295 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1296 //
1297 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1298 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1299 // "size*8" we always enter the VM, where "largish" is a constant picked small
1300 // enough that there's always space between the eden max and 4Gig (old space is
1301 // there so it's quite large) and large enough that the cost of entering the VM
1302 // is dwarfed by the cost to initialize the space.
1303 //
1304 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1305 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1306 // adjusted heap top back down; there is no contention.
1307 //
1308 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1309 // fields.
1310 //
1311 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1312 // oop flavor.
1313 //
1314 //=============================================================================
1315 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1316 // Allocations bigger than this always go the slow route.
1317 // This value must be small enough that allocation attempts that need to
1318 // trigger exceptions go the slow route.  Also, it must be small enough so
1319 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1320 //=============================================================================j//
1321 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1322 // The allocator will coalesce int->oop copies away.  See comment in
1323 // coalesce.cpp about how this works.  It depends critically on the exact
1324 // code shape produced here, so if you are changing this code shape
1325 // make sure the GC info for the heap-top is correct in and around the
1326 // slow-path call.
1327 //
1328 
1329 void PhaseMacroExpand::expand_allocate_common(
1330             AllocateNode* alloc, // allocation node to be expanded
1331             Node* length,  // array length for an array allocation
1332             const TypeFunc* slow_call_type, // Type of slow call
1333             address slow_call_address  // Address of slow call
1334     )
1335 {
1336 
1337   Node* ctrl = alloc->in(TypeFunc::Control);
1338   Node* mem  = alloc->in(TypeFunc::Memory);
1339   Node* i_o  = alloc->in(TypeFunc::I_O);
1340   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1341   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1342   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1343 
1344   assert(ctrl != NULL, "must have control");
1345   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1346   // they will not be used if "always_slow" is set
1347   enum { slow_result_path = 1, fast_result_path = 2 };
1348   Node *result_region = NULL;
1349   Node *result_phi_rawmem = NULL;
1350   Node *result_phi_rawoop = NULL;
1351   Node *result_phi_i_o = NULL;
1352 
1353   // The initial slow comparison is a size check, the comparison
1354   // we want to do is a BoolTest::gt
1355   bool always_slow = false;
1356   int tv = _igvn.find_int_con(initial_slow_test, -1);
1357   if (tv >= 0) {
1358     always_slow = (tv == 1);
1359     initial_slow_test = NULL;
1360   } else {
1361     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1362   }
1363 
1364   if (C->env()->dtrace_alloc_probes() ||
1365       (!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) {
1366     // Force slow-path allocation
1367     always_slow = true;
1368     initial_slow_test = NULL;
1369   }
1370 
1371 
1372   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1373   Node *slow_region = NULL;
1374   Node *toobig_false = ctrl;
1375 
1376   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1377   // generate the initial test if necessary
1378   if (initial_slow_test != NULL ) {
1379     slow_region = new RegionNode(3);
1380 
1381     // Now make the initial failure test.  Usually a too-big test but
1382     // might be a TRUE for finalizers or a fancy class check for
1383     // newInstance0.
1384     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1385     transform_later(toobig_iff);
1386     // Plug the failing-too-big test into the slow-path region
1387     Node *toobig_true = new IfTrueNode( toobig_iff );
1388     transform_later(toobig_true);
1389     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1390     toobig_false = new IfFalseNode( toobig_iff );
1391     transform_later(toobig_false);
1392   } else {         // No initial test, just fall into next case
1393     toobig_false = ctrl;
1394     debug_only(slow_region = NodeSentinel);
1395   }
1396 
1397   Node *slow_mem = mem;  // save the current memory state for slow path
1398   // generate the fast allocation code unless we know that the initial test will always go slow
1399   if (!always_slow) {
1400     // Fast path modifies only raw memory.
1401     if (mem->is_MergeMem()) {
1402       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1403     }
1404 
1405     Node* eden_top_adr;
1406     Node* eden_end_adr;
1407 
1408     set_eden_pointers(eden_top_adr, eden_end_adr);
1409 
1410     // Load Eden::end.  Loop invariant and hoisted.
1411     //
1412     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1413     //       a TLAB to work around a bug where these values were being moved across
1414     //       a safepoint.  These are not oops, so they cannot be include in the oop
1415     //       map, but they can be changed by a GC.   The proper way to fix this would
1416     //       be to set the raw memory state when generating a  SafepointNode.  However
1417     //       this will require extensive changes to the loop optimization in order to
1418     //       prevent a degradation of the optimization.
1419     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1420     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1421 
1422     // allocate the Region and Phi nodes for the result
1423     result_region = new RegionNode(3);
1424     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1425     result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1426     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1427 
1428     // We need a Region for the loop-back contended case.
1429     enum { fall_in_path = 1, contended_loopback_path = 2 };
1430     Node *contended_region;
1431     Node *contended_phi_rawmem;
1432     if (UseTLAB) {
1433       contended_region = toobig_false;
1434       contended_phi_rawmem = mem;
1435     } else {
1436       contended_region = new RegionNode(3);
1437       contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1438       // Now handle the passing-too-big test.  We fall into the contended
1439       // loop-back merge point.
1440       contended_region    ->init_req(fall_in_path, toobig_false);
1441       contended_phi_rawmem->init_req(fall_in_path, mem);
1442       transform_later(contended_region);
1443       transform_later(contended_phi_rawmem);
1444     }
1445 
1446     // Load(-locked) the heap top.
1447     // See note above concerning the control input when using a TLAB
1448     Node *old_eden_top = UseTLAB
1449       ? new LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
1450       : new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
1451 
1452     transform_later(old_eden_top);
1453     // Add to heap top to get a new heap top
1454     Node *new_eden_top = new AddPNode(top(), old_eden_top, size_in_bytes);
1455     transform_later(new_eden_top);
1456     // Check for needing a GC; compare against heap end
1457     Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end);
1458     transform_later(needgc_cmp);
1459     Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge);
1460     transform_later(needgc_bol);
1461     IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
1462     transform_later(needgc_iff);
1463 
1464     // Plug the failing-heap-space-need-gc test into the slow-path region
1465     Node *needgc_true = new IfTrueNode(needgc_iff);
1466     transform_later(needgc_true);
1467     if (initial_slow_test) {
1468       slow_region->init_req(need_gc_path, needgc_true);
1469       // This completes all paths into the slow merge point
1470       transform_later(slow_region);
1471     } else {                      // No initial slow path needed!
1472       // Just fall from the need-GC path straight into the VM call.
1473       slow_region = needgc_true;
1474     }
1475     // No need for a GC.  Setup for the Store-Conditional
1476     Node *needgc_false = new IfFalseNode(needgc_iff);
1477     transform_later(needgc_false);
1478 
1479     // Grab regular I/O before optional prefetch may change it.
1480     // Slow-path does no I/O so just set it to the original I/O.
1481     result_phi_i_o->init_req(slow_result_path, i_o);
1482 
1483     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1484                               old_eden_top, new_eden_top, length);
1485 
1486     // Name successful fast-path variables
1487     Node* fast_oop = old_eden_top;
1488     Node* fast_oop_ctrl;
1489     Node* fast_oop_rawmem;
1490 
1491     // Store (-conditional) the modified eden top back down.
1492     // StorePConditional produces flags for a test PLUS a modified raw
1493     // memory state.
1494     if (UseTLAB) {
1495       Node* store_eden_top =
1496         new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1497                               TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
1498       transform_later(store_eden_top);
1499       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1500       fast_oop_rawmem = store_eden_top;
1501     } else {
1502       Node* store_eden_top =
1503         new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1504                                          new_eden_top, fast_oop/*old_eden_top*/);
1505       transform_later(store_eden_top);
1506       Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne);
1507       transform_later(contention_check);
1508       store_eden_top = new SCMemProjNode(store_eden_top);
1509       transform_later(store_eden_top);
1510 
1511       // If not using TLABs, check to see if there was contention.
1512       IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
1513       transform_later(contention_iff);
1514       Node *contention_true = new IfTrueNode(contention_iff);
1515       transform_later(contention_true);
1516       // If contention, loopback and try again.
1517       contended_region->init_req(contended_loopback_path, contention_true);
1518       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
1519 
1520       // Fast-path succeeded with no contention!
1521       Node *contention_false = new IfFalseNode(contention_iff);
1522       transform_later(contention_false);
1523       fast_oop_ctrl = contention_false;
1524 
1525       // Bump total allocated bytes for this thread
1526       Node* thread = new ThreadLocalNode();
1527       transform_later(thread);
1528       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
1529                                              in_bytes(JavaThread::allocated_bytes_offset()));
1530       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1531                                     0, TypeLong::LONG, T_LONG);
1532 #ifdef _LP64
1533       Node* alloc_size = size_in_bytes;
1534 #else
1535       Node* alloc_size = new ConvI2LNode(size_in_bytes);
1536       transform_later(alloc_size);
1537 #endif
1538       Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size);
1539       transform_later(new_alloc_bytes);
1540       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1541                                    0, new_alloc_bytes, T_LONG);
1542     }
1543 
1544     InitializeNode* init = alloc->initialization();
1545     fast_oop_rawmem = initialize_object(alloc,
1546                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1547                                         klass_node, length, size_in_bytes);
1548 
1549     // If initialization is performed by an array copy, any required
1550     // MemBarStoreStore was already added. If the object does not
1551     // escape no need for a MemBarStoreStore. If the object does not
1552     // escape in its initializer and memory barrier (MemBarStoreStore or
1553     // stronger) is already added at exit of initializer, also no need
1554     // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1555     // so that stores that initialize this object can't be reordered
1556     // with a subsequent store that makes this object accessible by
1557     // other threads.
1558     // Other threads include java threads and JVM internal threads
1559     // (for example concurrent GC threads). Current concurrent GC
1560     // implementation: CMS and G1 will not scan newly created object,
1561     // so it's safe to skip storestore barrier when allocation does
1562     // not escape.
1563     if (!alloc->does_not_escape_thread() &&
1564         !alloc->is_allocation_MemBar_redundant() &&
1565         (init == NULL || !init->is_complete_with_arraycopy())) {
1566       if (init == NULL || init->req() < InitializeNode::RawStores) {
1567         // No InitializeNode or no stores captured by zeroing
1568         // elimination. Simply add the MemBarStoreStore after object
1569         // initialization.
1570         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1571         transform_later(mb);
1572 
1573         mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1574         mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1575         fast_oop_ctrl = new ProjNode(mb,TypeFunc::Control);
1576         transform_later(fast_oop_ctrl);
1577         fast_oop_rawmem = new ProjNode(mb,TypeFunc::Memory);
1578         transform_later(fast_oop_rawmem);
1579       } else {
1580         // Add the MemBarStoreStore after the InitializeNode so that
1581         // all stores performing the initialization that were moved
1582         // before the InitializeNode happen before the storestore
1583         // barrier.
1584 
1585         Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1586         Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
1587 
1588         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1589         transform_later(mb);
1590 
1591         Node* ctrl = new ProjNode(init,TypeFunc::Control);
1592         transform_later(ctrl);
1593         Node* mem = new ProjNode(init,TypeFunc::Memory);
1594         transform_later(mem);
1595 
1596         // The MemBarStoreStore depends on control and memory coming
1597         // from the InitializeNode
1598         mb->init_req(TypeFunc::Memory, mem);
1599         mb->init_req(TypeFunc::Control, ctrl);
1600 
1601         ctrl = new ProjNode(mb,TypeFunc::Control);
1602         transform_later(ctrl);
1603         mem = new ProjNode(mb,TypeFunc::Memory);
1604         transform_later(mem);
1605 
1606         // All nodes that depended on the InitializeNode for control
1607         // and memory must now depend on the MemBarNode that itself
1608         // depends on the InitializeNode
1609         if (init_ctrl != NULL) {
1610           _igvn.replace_node(init_ctrl, ctrl);
1611         }
1612         if (init_mem != NULL) {
1613           _igvn.replace_node(init_mem, mem);
1614         }
1615       }
1616     }
1617 
1618     if (C->env()->dtrace_extended_probes()) {
1619       // Slow-path call
1620       int size = TypeFunc::Parms + 2;
1621       CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1622                                             CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1623                                             "dtrace_object_alloc",
1624                                             TypeRawPtr::BOTTOM);
1625 
1626       // Get base of thread-local storage area
1627       Node* thread = new ThreadLocalNode();
1628       transform_later(thread);
1629 
1630       call->init_req(TypeFunc::Parms+0, thread);
1631       call->init_req(TypeFunc::Parms+1, fast_oop);
1632       call->init_req(TypeFunc::Control, fast_oop_ctrl);
1633       call->init_req(TypeFunc::I_O    , top()); // does no i/o
1634       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1635       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1636       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1637       transform_later(call);
1638       fast_oop_ctrl = new ProjNode(call,TypeFunc::Control);
1639       transform_later(fast_oop_ctrl);
1640       fast_oop_rawmem = new ProjNode(call,TypeFunc::Memory);
1641       transform_later(fast_oop_rawmem);
1642     }
1643 
1644     // Plug in the successful fast-path into the result merge point
1645     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1646     result_phi_rawoop->init_req(fast_result_path, fast_oop);
1647     result_phi_i_o   ->init_req(fast_result_path, i_o);
1648     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1649   } else {
1650     slow_region = ctrl;
1651     result_phi_i_o = i_o; // Rename it to use in the following code.
1652   }
1653 
1654   // Generate slow-path call
1655   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1656                                OptoRuntime::stub_name(slow_call_address),
1657                                alloc->jvms()->bci(),
1658                                TypePtr::BOTTOM);
1659   call->init_req( TypeFunc::Control, slow_region );
1660   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1661   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1662   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1663   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1664 
1665   call->init_req(TypeFunc::Parms+0, klass_node);
1666   if (length != NULL) {
1667     call->init_req(TypeFunc::Parms+1, length);
1668   }
1669 
1670   // Copy debug information and adjust JVMState information, then replace
1671   // allocate node with the call
1672   copy_call_debug_info((CallNode *) alloc,  call);
1673   if (!always_slow) {
1674     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1675   } else {
1676     // Hook i_o projection to avoid its elimination during allocation
1677     // replacement (when only a slow call is generated).
1678     call->set_req(TypeFunc::I_O, result_phi_i_o);
1679   }
1680   _igvn.replace_node(alloc, call);
1681   transform_later(call);
1682 
1683   // Identify the output projections from the allocate node and
1684   // adjust any references to them.
1685   // The control and io projections look like:
1686   //
1687   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1688   //  Allocate                   Catch
1689   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1690   //
1691   //  We are interested in the CatchProj nodes.
1692   //
1693   extract_call_projections(call);
1694 
1695   // An allocate node has separate memory projections for the uses on
1696   // the control and i_o paths. Replace the control memory projection with
1697   // result_phi_rawmem (unless we are only generating a slow call when
1698   // both memory projections are combined)
1699   if (!always_slow && _memproj_fallthrough != NULL) {
1700     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1701       Node *use = _memproj_fallthrough->fast_out(i);
1702       _igvn.rehash_node_delayed(use);
1703       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1704       // back up iterator
1705       --i;
1706     }
1707   }
1708   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1709   // _memproj_catchall so we end up with a call that has only 1 memory projection.
1710   if (_memproj_catchall != NULL ) {
1711     if (_memproj_fallthrough == NULL) {
1712       _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory);
1713       transform_later(_memproj_fallthrough);
1714     }
1715     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1716       Node *use = _memproj_catchall->fast_out(i);
1717       _igvn.rehash_node_delayed(use);
1718       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1719       // back up iterator
1720       --i;
1721     }
1722     assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
1723     _igvn.remove_dead_node(_memproj_catchall);
1724   }
1725 
1726   // An allocate node has separate i_o projections for the uses on the control
1727   // and i_o paths. Always replace the control i_o projection with result i_o
1728   // otherwise incoming i_o become dead when only a slow call is generated
1729   // (it is different from memory projections where both projections are
1730   // combined in such case).
1731   if (_ioproj_fallthrough != NULL) {
1732     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1733       Node *use = _ioproj_fallthrough->fast_out(i);
1734       _igvn.rehash_node_delayed(use);
1735       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1736       // back up iterator
1737       --i;
1738     }
1739   }
1740   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1741   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1742   if (_ioproj_catchall != NULL ) {
1743     if (_ioproj_fallthrough == NULL) {
1744       _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O);
1745       transform_later(_ioproj_fallthrough);
1746     }
1747     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1748       Node *use = _ioproj_catchall->fast_out(i);
1749       _igvn.rehash_node_delayed(use);
1750       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1751       // back up iterator
1752       --i;
1753     }
1754     assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
1755     _igvn.remove_dead_node(_ioproj_catchall);
1756   }
1757 
1758   // if we generated only a slow call, we are done
1759   if (always_slow) {
1760     // Now we can unhook i_o.
1761     if (result_phi_i_o->outcnt() > 1) {
1762       call->set_req(TypeFunc::I_O, top());
1763     } else {
1764       assert(result_phi_i_o->unique_ctrl_out() == call, "");
1765       // Case of new array with negative size known during compilation.
1766       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1767       // following code since call to runtime will throw exception.
1768       // As result there will be no users of i_o after the call.
1769       // Leave i_o attached to this call to avoid problems in preceding graph.
1770     }
1771     return;
1772   }
1773 
1774 
1775   if (_fallthroughcatchproj != NULL) {
1776     ctrl = _fallthroughcatchproj->clone();
1777     transform_later(ctrl);
1778     _igvn.replace_node(_fallthroughcatchproj, result_region);
1779   } else {
1780     ctrl = top();
1781   }
1782   Node *slow_result;
1783   if (_resproj == NULL) {
1784     // no uses of the allocation result
1785     slow_result = top();
1786   } else {
1787     slow_result = _resproj->clone();
1788     transform_later(slow_result);
1789     _igvn.replace_node(_resproj, result_phi_rawoop);
1790   }
1791 
1792   // Plug slow-path into result merge point
1793   result_region    ->init_req( slow_result_path, ctrl );
1794   result_phi_rawoop->init_req( slow_result_path, slow_result);
1795   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1796   transform_later(result_region);
1797   transform_later(result_phi_rawoop);
1798   transform_later(result_phi_rawmem);
1799   transform_later(result_phi_i_o);
1800   // This completes all paths into the result merge point
1801 }
1802 
1803 
1804 // Helper for PhaseMacroExpand::expand_allocate_common.
1805 // Initializes the newly-allocated storage.
1806 Node*
1807 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1808                                     Node* control, Node* rawmem, Node* object,
1809                                     Node* klass_node, Node* length,
1810                                     Node* size_in_bytes) {
1811   InitializeNode* init = alloc->initialization();
1812   // Store the klass & mark bits
1813   Node* mark_node = NULL;
1814   // For now only enable fast locking for non-array types
1815   if (UseBiasedLocking && (length == NULL)) {
1816     mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
1817   } else {
1818     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1819   }
1820   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1821 
1822   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1823   int header_size = alloc->minimum_header_size();  // conservatively small
1824 
1825   // Array length
1826   if (length != NULL) {         // Arrays need length field
1827     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1828     // conservatively small header size:
1829     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1830     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1831     if (k->is_array_klass())    // we know the exact header size in most cases:
1832       header_size = Klass::layout_helper_header_size(k->layout_helper());
1833   }
1834 
1835   // Clear the object body, if necessary.
1836   if (init == NULL) {
1837     // The init has somehow disappeared; be cautious and clear everything.
1838     //
1839     // This can happen if a node is allocated but an uncommon trap occurs
1840     // immediately.  In this case, the Initialize gets associated with the
1841     // trap, and may be placed in a different (outer) loop, if the Allocate
1842     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1843     // there can be two Allocates to one Initialize.  The answer in all these
1844     // edge cases is safety first.  It is always safe to clear immediately
1845     // within an Allocate, and then (maybe or maybe not) clear some more later.
1846     if (!(UseTLAB && ZeroTLAB)) {
1847       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1848                                             header_size, size_in_bytes,
1849                                             &_igvn);
1850     }
1851   } else {
1852     if (!init->is_complete()) {
1853       // Try to win by zeroing only what the init does not store.
1854       // We can also try to do some peephole optimizations,
1855       // such as combining some adjacent subword stores.
1856       rawmem = init->complete_stores(control, rawmem, object,
1857                                      header_size, size_in_bytes, &_igvn);
1858     }
1859     // We have no more use for this link, since the AllocateNode goes away:
1860     init->set_req(InitializeNode::RawAddress, top());
1861     // (If we keep the link, it just confuses the register allocator,
1862     // who thinks he sees a real use of the address by the membar.)
1863   }
1864 
1865   return rawmem;
1866 }
1867 
1868 // Generate prefetch instructions for next allocations.
1869 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1870                                         Node*& contended_phi_rawmem,
1871                                         Node* old_eden_top, Node* new_eden_top,
1872                                         Node* length) {
1873    enum { fall_in_path = 1, pf_path = 2 };
1874    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1875       // Generate prefetch allocation with watermark check.
1876       // As an allocation hits the watermark, we will prefetch starting
1877       // at a "distance" away from watermark.
1878 
1879       Node *pf_region = new RegionNode(3);
1880       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1881                                                 TypeRawPtr::BOTTOM );
1882       // I/O is used for Prefetch
1883       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1884 
1885       Node *thread = new ThreadLocalNode();
1886       transform_later(thread);
1887 
1888       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1889                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1890       transform_later(eden_pf_adr);
1891 
1892       Node *old_pf_wm = new LoadPNode(needgc_false,
1893                                    contended_phi_rawmem, eden_pf_adr,
1894                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1895                                    MemNode::unordered);
1896       transform_later(old_pf_wm);
1897 
1898       // check against new_eden_top
1899       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1900       transform_later(need_pf_cmp);
1901       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1902       transform_later(need_pf_bol);
1903       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1904                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1905       transform_later(need_pf_iff);
1906 
1907       // true node, add prefetchdistance
1908       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1909       transform_later(need_pf_true);
1910 
1911       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1912       transform_later(need_pf_false);
1913 
1914       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1915                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1916       transform_later(new_pf_wmt );
1917       new_pf_wmt->set_req(0, need_pf_true);
1918 
1919       Node *store_new_wmt = new StorePNode(need_pf_true,
1920                                        contended_phi_rawmem, eden_pf_adr,
1921                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1922                                        MemNode::unordered);
1923       transform_later(store_new_wmt);
1924 
1925       // adding prefetches
1926       pf_phi_abio->init_req( fall_in_path, i_o );
1927 
1928       Node *prefetch_adr;
1929       Node *prefetch;
1930       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1931       uint step_size = AllocatePrefetchStepSize;
1932       uint distance = 0;
1933 
1934       for ( uint i = 0; i < lines; i++ ) {
1935         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1936                                             _igvn.MakeConX(distance) );
1937         transform_later(prefetch_adr);
1938         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1939         transform_later(prefetch);
1940         distance += step_size;
1941         i_o = prefetch;
1942       }
1943       pf_phi_abio->set_req( pf_path, i_o );
1944 
1945       pf_region->init_req( fall_in_path, need_pf_false );
1946       pf_region->init_req( pf_path, need_pf_true );
1947 
1948       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1949       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1950 
1951       transform_later(pf_region);
1952       transform_later(pf_phi_rawmem);
1953       transform_later(pf_phi_abio);
1954 
1955       needgc_false = pf_region;
1956       contended_phi_rawmem = pf_phi_rawmem;
1957       i_o = pf_phi_abio;
1958    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1959       // Insert a prefetch instruction for each allocation.
1960       // This code is used to generate 1 prefetch instruction per cache line.
1961 
1962       // Generate several prefetch instructions.
1963       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1964       uint step_size = AllocatePrefetchStepSize;
1965       uint distance = AllocatePrefetchDistance;
1966 
1967       // Next cache address.
1968       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
1969                                      _igvn.MakeConX(step_size + distance));
1970       transform_later(cache_adr);
1971       cache_adr = new CastP2XNode(needgc_false, cache_adr);
1972       transform_later(cache_adr);
1973       // Address is aligned to execute prefetch to the beginning of cache line size
1974       // (it is important when BIS instruction is used on SPARC as prefetch).
1975       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1976       cache_adr = new AndXNode(cache_adr, mask);
1977       transform_later(cache_adr);
1978       cache_adr = new CastX2PNode(cache_adr);
1979       transform_later(cache_adr);
1980 
1981       // Prefetch
1982       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1983       prefetch->set_req(0, needgc_false);
1984       transform_later(prefetch);
1985       contended_phi_rawmem = prefetch;
1986       Node *prefetch_adr;
1987       distance = step_size;
1988       for ( uint i = 1; i < lines; i++ ) {
1989         prefetch_adr = new AddPNode( cache_adr, cache_adr,
1990                                             _igvn.MakeConX(distance) );
1991         transform_later(prefetch_adr);
1992         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1993         transform_later(prefetch);
1994         distance += step_size;
1995         contended_phi_rawmem = prefetch;
1996       }
1997    } else if( AllocatePrefetchStyle > 0 ) {
1998       // Insert a prefetch for each allocation only on the fast-path
1999       Node *prefetch_adr;
2000       Node *prefetch;
2001       // Generate several prefetch instructions.
2002       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
2003       uint step_size = AllocatePrefetchStepSize;
2004       uint distance = AllocatePrefetchDistance;
2005       for ( uint i = 0; i < lines; i++ ) {
2006         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
2007                                             _igvn.MakeConX(distance) );
2008         transform_later(prefetch_adr);
2009         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
2010         // Do not let it float too high, since if eden_top == eden_end,
2011         // both might be null.
2012         if( i == 0 ) { // Set control for first prefetch, next follows it
2013           prefetch->init_req(0, needgc_false);
2014         }
2015         transform_later(prefetch);
2016         distance += step_size;
2017         i_o = prefetch;
2018       }
2019    }
2020    return i_o;
2021 }
2022 
2023 
2024 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
2025   expand_allocate_common(alloc, NULL,
2026                          OptoRuntime::new_instance_Type(),
2027                          OptoRuntime::new_instance_Java());
2028 }
2029 
2030 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
2031   Node* length = alloc->in(AllocateNode::ALength);
2032   InitializeNode* init = alloc->initialization();
2033   Node* klass_node = alloc->in(AllocateNode::KlassNode);
2034   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
2035   address slow_call_address;  // Address of slow call
2036   if (init != NULL && init->is_complete_with_arraycopy() &&
2037       k->is_type_array_klass()) {
2038     // Don't zero type array during slow allocation in VM since
2039     // it will be initialized later by arraycopy in compiled code.
2040     slow_call_address = OptoRuntime::new_array_nozero_Java();
2041   } else {
2042     slow_call_address = OptoRuntime::new_array_Java();
2043   }
2044   expand_allocate_common(alloc, length,
2045                          OptoRuntime::new_array_Type(),
2046                          slow_call_address);
2047 }
2048 
2049 //-------------------mark_eliminated_box----------------------------------
2050 //
2051 // During EA obj may point to several objects but after few ideal graph
2052 // transformations (CCP) it may point to only one non escaping object
2053 // (but still using phi), corresponding locks and unlocks will be marked
2054 // for elimination. Later obj could be replaced with a new node (new phi)
2055 // and which does not have escape information. And later after some graph
2056 // reshape other locks and unlocks (which were not marked for elimination
2057 // before) are connected to this new obj (phi) but they still will not be
2058 // marked for elimination since new obj has no escape information.
2059 // Mark all associated (same box and obj) lock and unlock nodes for
2060 // elimination if some of them marked already.
2061 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
2062   if (oldbox->as_BoxLock()->is_eliminated())
2063     return; // This BoxLock node was processed already.
2064 
2065   // New implementation (EliminateNestedLocks) has separate BoxLock
2066   // node for each locked region so mark all associated locks/unlocks as
2067   // eliminated even if different objects are referenced in one locked region
2068   // (for example, OSR compilation of nested loop inside locked scope).
2069   if (EliminateNestedLocks ||
2070       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
2071     // Box is used only in one lock region. Mark this box as eliminated.
2072     _igvn.hash_delete(oldbox);
2073     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
2074      _igvn.hash_insert(oldbox);
2075 
2076     for (uint i = 0; i < oldbox->outcnt(); i++) {
2077       Node* u = oldbox->raw_out(i);
2078       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
2079         AbstractLockNode* alock = u->as_AbstractLock();
2080         // Check lock's box since box could be referenced by Lock's debug info.
2081         if (alock->box_node() == oldbox) {
2082           // Mark eliminated all related locks and unlocks.
2083 #ifdef ASSERT
2084           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
2085 #endif
2086           alock->set_non_esc_obj();
2087         }
2088       }
2089     }
2090     return;
2091   }
2092 
2093   // Create new "eliminated" BoxLock node and use it in monitor debug info
2094   // instead of oldbox for the same object.
2095   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
2096 
2097   // Note: BoxLock node is marked eliminated only here and it is used
2098   // to indicate that all associated lock and unlock nodes are marked
2099   // for elimination.
2100   newbox->set_eliminated();
2101   transform_later(newbox);
2102 
2103   // Replace old box node with new box for all users of the same object.
2104   for (uint i = 0; i < oldbox->outcnt();) {
2105     bool next_edge = true;
2106 
2107     Node* u = oldbox->raw_out(i);
2108     if (u->is_AbstractLock()) {
2109       AbstractLockNode* alock = u->as_AbstractLock();
2110       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
2111         // Replace Box and mark eliminated all related locks and unlocks.
2112 #ifdef ASSERT
2113         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
2114 #endif
2115         alock->set_non_esc_obj();
2116         _igvn.rehash_node_delayed(alock);
2117         alock->set_box_node(newbox);
2118         next_edge = false;
2119       }
2120     }
2121     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2122       FastLockNode* flock = u->as_FastLock();
2123       assert(flock->box_node() == oldbox, "sanity");
2124       _igvn.rehash_node_delayed(flock);
2125       flock->set_box_node(newbox);
2126       next_edge = false;
2127     }
2128 
2129     // Replace old box in monitor debug info.
2130     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2131       SafePointNode* sfn = u->as_SafePoint();
2132       JVMState* youngest_jvms = sfn->jvms();
2133       int max_depth = youngest_jvms->depth();
2134       for (int depth = 1; depth <= max_depth; depth++) {
2135         JVMState* jvms = youngest_jvms->of_depth(depth);
2136         int num_mon  = jvms->nof_monitors();
2137         // Loop over monitors
2138         for (int idx = 0; idx < num_mon; idx++) {
2139           Node* obj_node = sfn->monitor_obj(jvms, idx);
2140           Node* box_node = sfn->monitor_box(jvms, idx);
2141           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2142             int j = jvms->monitor_box_offset(idx);
2143             _igvn.replace_input_of(u, j, newbox);
2144             next_edge = false;
2145           }
2146         }
2147       }
2148     }
2149     if (next_edge) i++;
2150   }
2151 }
2152 
2153 //-----------------------mark_eliminated_locking_nodes-----------------------
2154 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2155   if (EliminateNestedLocks) {
2156     if (alock->is_nested()) {
2157        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2158        return;
2159     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2160       // Only Lock node has JVMState needed here.
2161       // Not that preceding claim is documented anywhere else.
2162       if (alock->jvms() != NULL) {
2163         if (alock->as_Lock()->is_nested_lock_region()) {
2164           // Mark eliminated related nested locks and unlocks.
2165           Node* obj = alock->obj_node();
2166           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2167           assert(!box_node->is_eliminated(), "should not be marked yet");
2168           // Note: BoxLock node is marked eliminated only here
2169           // and it is used to indicate that all associated lock
2170           // and unlock nodes are marked for elimination.
2171           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2172           for (uint i = 0; i < box_node->outcnt(); i++) {
2173             Node* u = box_node->raw_out(i);
2174             if (u->is_AbstractLock()) {
2175               alock = u->as_AbstractLock();
2176               if (alock->box_node() == box_node) {
2177                 // Verify that this Box is referenced only by related locks.
2178                 assert(alock->obj_node()->eqv_uncast(obj), "");
2179                 // Mark all related locks and unlocks.
2180 #ifdef ASSERT
2181                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2182 #endif
2183                 alock->set_nested();
2184               }
2185             }
2186           }
2187         } else {
2188 #ifdef ASSERT
2189           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2190           if (C->log() != NULL)
2191             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2192 #endif
2193         }
2194       }
2195       return;
2196     }
2197     // Process locks for non escaping object
2198     assert(alock->is_non_esc_obj(), "");
2199   } // EliminateNestedLocks
2200 
2201   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2202     // Look for all locks of this object and mark them and
2203     // corresponding BoxLock nodes as eliminated.
2204     Node* obj = alock->obj_node();
2205     for (uint j = 0; j < obj->outcnt(); j++) {
2206       Node* o = obj->raw_out(j);
2207       if (o->is_AbstractLock() &&
2208           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2209         alock = o->as_AbstractLock();
2210         Node* box = alock->box_node();
2211         // Replace old box node with new eliminated box for all users
2212         // of the same object and mark related locks as eliminated.
2213         mark_eliminated_box(box, obj);
2214       }
2215     }
2216   }
2217 }
2218 
2219 // we have determined that this lock/unlock can be eliminated, we simply
2220 // eliminate the node without expanding it.
2221 //
2222 // Note:  The membar's associated with the lock/unlock are currently not
2223 //        eliminated.  This should be investigated as a future enhancement.
2224 //
2225 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2226 
2227   if (!alock->is_eliminated()) {
2228     return false;
2229   }
2230 #ifdef ASSERT
2231   if (!alock->is_coarsened()) {
2232     // Check that new "eliminated" BoxLock node is created.
2233     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2234     assert(oldbox->is_eliminated(), "should be done already");
2235   }
2236 #endif
2237 
2238   alock->log_lock_optimization(C, "eliminate_lock");
2239 
2240 #ifndef PRODUCT
2241   if (PrintEliminateLocks) {
2242     if (alock->is_Lock()) {
2243       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
2244     } else {
2245       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
2246     }
2247   }
2248 #endif
2249 
2250   Node* mem  = alock->in(TypeFunc::Memory);
2251   Node* ctrl = alock->in(TypeFunc::Control);
2252 
2253   extract_call_projections(alock);
2254   // There are 2 projections from the lock.  The lock node will
2255   // be deleted when its last use is subsumed below.
2256   assert(alock->outcnt() == 2 &&
2257          _fallthroughproj != NULL &&
2258          _memproj_fallthrough != NULL,
2259          "Unexpected projections from Lock/Unlock");
2260 
2261   Node* fallthroughproj = _fallthroughproj;
2262   Node* memproj_fallthrough = _memproj_fallthrough;
2263 
2264   // The memory projection from a lock/unlock is RawMem
2265   // The input to a Lock is merged memory, so extract its RawMem input
2266   // (unless the MergeMem has been optimized away.)
2267   if (alock->is_Lock()) {
2268     // Seach for MemBarAcquireLock node and delete it also.
2269     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2270     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2271     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2272     Node* memproj = membar->proj_out(TypeFunc::Memory);
2273     _igvn.replace_node(ctrlproj, fallthroughproj);
2274     _igvn.replace_node(memproj, memproj_fallthrough);
2275 
2276     // Delete FastLock node also if this Lock node is unique user
2277     // (a loop peeling may clone a Lock node).
2278     Node* flock = alock->as_Lock()->fastlock_node();
2279     if (flock->outcnt() == 1) {
2280       assert(flock->unique_out() == alock, "sanity");
2281       _igvn.replace_node(flock, top());
2282     }
2283   }
2284 
2285   // Seach for MemBarReleaseLock node and delete it also.
2286   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
2287       ctrl->in(0)->is_MemBar()) {
2288     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2289     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2290            mem->is_Proj() && membar == mem->in(0), "");
2291     _igvn.replace_node(fallthroughproj, ctrl);
2292     _igvn.replace_node(memproj_fallthrough, mem);
2293     fallthroughproj = ctrl;
2294     memproj_fallthrough = mem;
2295     ctrl = membar->in(TypeFunc::Control);
2296     mem  = membar->in(TypeFunc::Memory);
2297   }
2298 
2299   _igvn.replace_node(fallthroughproj, ctrl);
2300   _igvn.replace_node(memproj_fallthrough, mem);
2301   return true;
2302 }
2303 
2304 
2305 //------------------------------expand_lock_node----------------------
2306 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2307 
2308   Node* ctrl = lock->in(TypeFunc::Control);
2309   Node* mem = lock->in(TypeFunc::Memory);
2310   Node* obj = lock->obj_node();
2311   Node* box = lock->box_node();
2312   Node* flock = lock->fastlock_node();
2313 
2314   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2315 
2316   // Make the merge point
2317   Node *region;
2318   Node *mem_phi;
2319   Node *slow_path;
2320 
2321   if (UseOptoBiasInlining) {
2322     /*
2323      *  See the full description in MacroAssembler::biased_locking_enter().
2324      *
2325      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
2326      *    // The object is biased.
2327      *    proto_node = klass->prototype_header;
2328      *    o_node = thread | proto_node;
2329      *    x_node = o_node ^ mark_word;
2330      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
2331      *      // Done.
2332      *    } else {
2333      *      if( (x_node & biased_lock_mask) != 0 ) {
2334      *        // The klass's prototype header is no longer biased.
2335      *        cas(&mark_word, mark_word, proto_node)
2336      *        goto cas_lock;
2337      *      } else {
2338      *        // The klass's prototype header is still biased.
2339      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
2340      *          old = mark_word;
2341      *          new = o_node;
2342      *        } else {
2343      *          // Different thread or anonymous biased.
2344      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
2345      *          new = thread | old;
2346      *        }
2347      *        // Try to rebias.
2348      *        if( cas(&mark_word, old, new) == 0 ) {
2349      *          // Done.
2350      *        } else {
2351      *          goto slow_path; // Failed.
2352      *        }
2353      *      }
2354      *    }
2355      *  } else {
2356      *    // The object is not biased.
2357      *    cas_lock:
2358      *    if( FastLock(obj) == 0 ) {
2359      *      // Done.
2360      *    } else {
2361      *      slow_path:
2362      *      OptoRuntime::complete_monitor_locking_Java(obj);
2363      *    }
2364      *  }
2365      */
2366 
2367     region  = new RegionNode(5);
2368     // create a Phi for the memory state
2369     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2370 
2371     Node* fast_lock_region  = new RegionNode(3);
2372     Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2373 
2374     // First, check mark word for the biased lock pattern.
2375     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2376 
2377     // Get fast path - mark word has the biased lock pattern.
2378     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2379                          markOopDesc::biased_lock_mask_in_place,
2380                          markOopDesc::biased_lock_pattern, true);
2381     // fast_lock_region->in(1) is set to slow path.
2382     fast_lock_mem_phi->init_req(1, mem);
2383 
2384     // Now check that the lock is biased to the current thread and has
2385     // the same epoch and bias as Klass::_prototype_header.
2386 
2387     // Special-case a fresh allocation to avoid building nodes:
2388     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2389     if (klass_node == NULL) {
2390       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2391       klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
2392 #ifdef _LP64
2393       if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
2394         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2395         klass_node->in(1)->init_req(0, ctrl);
2396       } else
2397 #endif
2398       klass_node->init_req(0, ctrl);
2399     }
2400     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2401 
2402     Node* thread = transform_later(new ThreadLocalNode());
2403     Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2404     Node* o_node = transform_later(new OrXNode(cast_thread, proto_node));
2405     Node* x_node = transform_later(new XorXNode(o_node, mark_node));
2406 
2407     // Get slow path - mark word does NOT match the value.
2408     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2409                                       (~markOopDesc::age_mask_in_place), 0);
2410     // region->in(3) is set to fast path - the object is biased to the current thread.
2411     mem_phi->init_req(3, mem);
2412 
2413 
2414     // Mark word does NOT match the value (thread | Klass::_prototype_header).
2415 
2416 
2417     // First, check biased pattern.
2418     // Get fast path - _prototype_header has the same biased lock pattern.
2419     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2420                           markOopDesc::biased_lock_mask_in_place, 0, true);
2421 
2422     not_biased_ctrl = fast_lock_region->in(2); // Slow path
2423     // fast_lock_region->in(2) - the prototype header is no longer biased
2424     // and we have to revoke the bias on this object.
2425     // We are going to try to reset the mark of this object to the prototype
2426     // value and fall through to the CAS-based locking scheme.
2427     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2428     Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr,
2429                                           proto_node, mark_node);
2430     transform_later(cas);
2431     Node* proj = transform_later(new SCMemProjNode(cas));
2432     fast_lock_mem_phi->init_req(2, proj);
2433 
2434 
2435     // Second, check epoch bits.
2436     Node* rebiased_region  = new RegionNode(3);
2437     Node* old_phi = new PhiNode( rebiased_region, TypeX_X);
2438     Node* new_phi = new PhiNode( rebiased_region, TypeX_X);
2439 
2440     // Get slow path - mark word does NOT match epoch bits.
2441     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2442                                       markOopDesc::epoch_mask_in_place, 0);
2443     // The epoch of the current bias is not valid, attempt to rebias the object
2444     // toward the current thread.
2445     rebiased_region->init_req(2, epoch_ctrl);
2446     old_phi->init_req(2, mark_node);
2447     new_phi->init_req(2, o_node);
2448 
2449     // rebiased_region->in(1) is set to fast path.
2450     // The epoch of the current bias is still valid but we know
2451     // nothing about the owner; it might be set or it might be clear.
2452     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
2453                              markOopDesc::age_mask_in_place |
2454                              markOopDesc::epoch_mask_in_place);
2455     Node* old = transform_later(new AndXNode(mark_node, cmask));
2456     cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2457     Node* new_mark = transform_later(new OrXNode(cast_thread, old));
2458     old_phi->init_req(1, old);
2459     new_phi->init_req(1, new_mark);
2460 
2461     transform_later(rebiased_region);
2462     transform_later(old_phi);
2463     transform_later(new_phi);
2464 
2465     // Try to acquire the bias of the object using an atomic operation.
2466     // If this fails we will go in to the runtime to revoke the object's bias.
2467     cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi);
2468     transform_later(cas);
2469     proj = transform_later(new SCMemProjNode(cas));
2470 
2471     // Get slow path - Failed to CAS.
2472     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2473     mem_phi->init_req(4, proj);
2474     // region->in(4) is set to fast path - the object is rebiased to the current thread.
2475 
2476     // Failed to CAS.
2477     slow_path  = new RegionNode(3);
2478     Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2479 
2480     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2481     slow_mem->init_req(1, proj);
2482 
2483     // Call CAS-based locking scheme (FastLock node).
2484 
2485     transform_later(fast_lock_region);
2486     transform_later(fast_lock_mem_phi);
2487 
2488     // Get slow path - FastLock failed to lock the object.
2489     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2490     mem_phi->init_req(2, fast_lock_mem_phi);
2491     // region->in(2) is set to fast path - the object is locked to the current thread.
2492 
2493     slow_path->init_req(2, ctrl); // Capture slow-control
2494     slow_mem->init_req(2, fast_lock_mem_phi);
2495 
2496     transform_later(slow_path);
2497     transform_later(slow_mem);
2498     // Reset lock's memory edge.
2499     lock->set_req(TypeFunc::Memory, slow_mem);
2500 
2501   } else {
2502     region  = new RegionNode(3);
2503     // create a Phi for the memory state
2504     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2505 
2506     // Optimize test; set region slot 2
2507     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2508     mem_phi->init_req(2, mem);
2509   }
2510 
2511   // Make slow path call
2512   CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
2513                                   OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path,
2514                                   obj, box, NULL);
2515 
2516   extract_call_projections(call);
2517 
2518   // Slow path can only throw asynchronous exceptions, which are always
2519   // de-opted.  So the compiler thinks the slow-call can never throw an
2520   // exception.  If it DOES throw an exception we would need the debug
2521   // info removed first (since if it throws there is no monitor).
2522   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2523            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2524 
2525   // Capture slow path
2526   // disconnect fall-through projection from call and create a new one
2527   // hook up users of fall-through projection to region
2528   Node *slow_ctrl = _fallthroughproj->clone();
2529   transform_later(slow_ctrl);
2530   _igvn.hash_delete(_fallthroughproj);
2531   _fallthroughproj->disconnect_inputs(NULL, C);
2532   region->init_req(1, slow_ctrl);
2533   // region inputs are now complete
2534   transform_later(region);
2535   _igvn.replace_node(_fallthroughproj, region);
2536 
2537   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2538   mem_phi->init_req(1, memproj );
2539   transform_later(mem_phi);
2540   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2541 }
2542 
2543 //------------------------------expand_unlock_node----------------------
2544 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2545 
2546   Node* ctrl = unlock->in(TypeFunc::Control);
2547   Node* mem = unlock->in(TypeFunc::Memory);
2548   Node* obj = unlock->obj_node();
2549   Node* box = unlock->box_node();
2550 
2551   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2552 
2553   // No need for a null check on unlock
2554 
2555   // Make the merge point
2556   Node *region;
2557   Node *mem_phi;
2558 
2559   if (UseOptoBiasInlining) {
2560     // Check for biased locking unlock case, which is a no-op.
2561     // See the full description in MacroAssembler::biased_locking_exit().
2562     region  = new RegionNode(4);
2563     // create a Phi for the memory state
2564     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2565     mem_phi->init_req(3, mem);
2566 
2567     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2568     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2569                          markOopDesc::biased_lock_mask_in_place,
2570                          markOopDesc::biased_lock_pattern);
2571   } else {
2572     region  = new RegionNode(3);
2573     // create a Phi for the memory state
2574     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2575   }
2576 
2577   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2578   funlock = transform_later( funlock )->as_FastUnlock();
2579   // Optimize test; set region slot 2
2580   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2581   Node *thread = transform_later(new ThreadLocalNode());
2582 
2583   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2584                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2585                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2586 
2587   extract_call_projections(call);
2588 
2589   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2590            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2591 
2592   // No exceptions for unlocking
2593   // Capture slow path
2594   // disconnect fall-through projection from call and create a new one
2595   // hook up users of fall-through projection to region
2596   Node *slow_ctrl = _fallthroughproj->clone();
2597   transform_later(slow_ctrl);
2598   _igvn.hash_delete(_fallthroughproj);
2599   _fallthroughproj->disconnect_inputs(NULL, C);
2600   region->init_req(1, slow_ctrl);
2601   // region inputs are now complete
2602   transform_later(region);
2603   _igvn.replace_node(_fallthroughproj, region);
2604 
2605   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2606   mem_phi->init_req(1, memproj );
2607   mem_phi->init_req(2, mem);
2608   transform_later(mem_phi);
2609   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2610 }
2611 
2612 void PhaseMacroExpand::expand_loadbarrier_node(LoadBarrierNode *barrier) {
2613   Node* in_ctrl = barrier->in(LoadBarrierNode::Control);
2614   Node* in_mem  = barrier->in(LoadBarrierNode::Memory);
2615   Node* in_val  = barrier->in(LoadBarrierNode::Oop);
2616   Node* in_adr  = barrier->in(LoadBarrierNode::Address);
2617 
2618   Node* out_ctrl = barrier->proj_out(LoadBarrierNode::Control);
2619   Node* out_res  = barrier->proj_out(LoadBarrierNode::Oop);
2620 
2621   if (VerifyLoadBarriers) {
2622     _igvn.replace_node(out_res, in_val);
2623     _igvn.replace_node(out_ctrl, in_ctrl);
2624     return;
2625   }
2626 
2627   if (barrier->can_be_eliminated()) {
2628     // Clone and pin the load for this barrier below the dominating
2629     // barrier: the load cannot be allowed to float above the
2630     // dominating barrier
2631     Node* load = in_val;
2632     Node* decode = NULL;
2633     if (load->is_DecodeN()) {
2634       decode = load;
2635       load = load->in(1);
2636     }
2637     if (load->is_Load()) {
2638       Node* new_load = load->clone();
2639       Node* addp = new_load->in(MemNode::Address);
2640       assert(addp->is_AddP() || addp->is_Phi(), "bad address");
2641       Node* cast = new CastPPNode(addp, _igvn.type(addp), true);
2642       Node* ctrl = NULL;
2643       Node* similar = barrier->in(LoadBarrierNode::Similar);
2644       if (similar->is_Phi()) {
2645         // already expanded
2646         ctrl = similar->in(0);
2647       } else {
2648         assert(similar->is_Proj() && similar->in(0)->is_LoadBarrier(), "unexpected graph shape");
2649         ctrl = similar->in(0)->as_LoadBarrier()->proj_out(LoadBarrierNode::Control);
2650       }
2651       assert(ctrl != NULL, "bad control");
2652       cast->set_req(0, ctrl);
2653       _igvn.transform(cast);
2654       new_load->set_req(MemNode::Address, cast);
2655       _igvn.transform(new_load);
2656 
2657       Node* new_in_val = new_load;
2658       if (decode != NULL) {
2659         new_in_val = decode->clone();
2660         new_in_val->set_req(1, new_load);
2661         _igvn.transform(new_in_val);
2662       }
2663 
2664       _igvn.replace_node(out_res, new_in_val);
2665       _igvn.replace_node(out_ctrl, in_ctrl);
2666       return;
2667     }
2668     // cannot eliminate
2669   }
2670 
2671   // There are two cases that require the basic loadbarrier
2672   // 1) When the writeback of a healed oop must be avoided (swap)
2673   // 2) When we must guarantee that no reload of is done (swap, cas, cmpx)
2674   if (!barrier->is_writeback()) {
2675     assert(!barrier->oop_reload_allowed(), "writeback barriers should be marked as requires oop");
2676   }
2677 
2678   if (!barrier->oop_reload_allowed() || C->directive()->UseBasicLoadBarrierOption) {
2679     expand_loadbarrier_basic(barrier);
2680   } else {
2681     expand_loadbarrier_optimized(barrier);
2682   }
2683 }
2684 
2685 // CMH - Recfactor out overlap between barrier variants
2686 
2687 // Original basic loadbarrier using conventional arg passing
2688 void PhaseMacroExpand::expand_loadbarrier_basic(LoadBarrierNode *barrier)
2689 {
2690   Node* in_ctrl = barrier->in(LoadBarrierNode::Control);
2691   Node* in_mem  = barrier->in(LoadBarrierNode::Memory);
2692   Node* in_val  = barrier->in(LoadBarrierNode::Oop);
2693   Node* in_adr  = barrier->in(LoadBarrierNode::Address);
2694 
2695   Node* out_ctrl = barrier->proj_out(LoadBarrierNode::Control);
2696   Node* out_res  = barrier->proj_out(LoadBarrierNode::Oop);
2697 
2698   const uintptr_t      in_cset_bit   = 0x1;
2699   const unsigned char* in_cset_map   = (unsigned char*)ZHeap::heap()->pagetable_addr();
2700   const int            in_cset_shift = ZPageSizeMinShift;
2701 
2702   const uintptr_t* addr_good_bit = &ZAddressGoodMask;
2703   const uintptr_t* addr_bad_bit  = &ZAddressBadMask;
2704 
2705   const uintptr_t  remapped_bit = ZAddressMetadataRemapped;
2706   const uintptr_t  offset_mask  = ZAddressOffsetMask;
2707 
2708   float unlikely  = PROB_UNLIKELY(0.999);
2709   float likely  = PROB_LIKELY(0.999);
2710   const Type* in_val_maybe_null_t = _igvn.type(in_val);
2711 
2712 #ifdef SPARC
2713   Node* bad_mask = _igvn.transform(new AddrBadBitNode());
2714 #else
2715   Node* jthread = _igvn.transform(new ThreadLocalNode());
2716   Node* adr = basic_plus_adr(jthread, in_bytes(JavaThread::zaddress_bad_mask_offset()));
2717   Node* bad_mask = _igvn.transform(LoadNode::make(_igvn, in_ctrl, in_mem, adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
2718 #endif
2719   Node* cast = _igvn.transform(new CastP2XNode(in_ctrl, in_val));
2720   Node* obj_masked = _igvn.transform(new AndXNode(cast, bad_mask));
2721   Node* cmp = _igvn.transform(new CmpXNode(obj_masked, _igvn.zerocon(TypeX_X->basic_type())));
2722   Node *bol = _igvn.transform(new BoolNode(cmp, BoolTest::ne))->as_Bool();
2723   IfNode* iff = _igvn.transform(new IfNode(in_ctrl, bol, unlikely, COUNT_UNKNOWN))->as_If();
2724   Node* then = _igvn.transform(new IfTrueNode(iff));
2725   Node* elsen = _igvn.transform(new IfFalseNode(iff));
2726 
2727   Node* result_region;
2728   Node* result_val;
2729 
2730   result_region = new RegionNode(3);
2731   result_val = new PhiNode(result_region, TypeInstPtr::BOTTOM);
2732 
2733   result_region->set_req(1, elsen);
2734   Node* res = _igvn.transform(new CastPPNode(in_val, in_val_maybe_null_t));
2735   res->init_req(0, elsen);
2736   result_val->set_req(1, res);
2737 
2738   const TypeFunc *tf = OptoRuntime::load_barrier_Type();
2739   Node* call;
2740   if (barrier->is_weak()) {
2741     call = new CallLeafNode(tf, CAST_FROM_FN_PTR(address, SharedRuntime::z_load_barrier_on_weak_oop_field_preloaded), "load_barrier", TypeRawPtr::BOTTOM);
2742   } else {
2743     call = new CallLeafNode(tf, CAST_FROM_FN_PTR(address, SharedRuntime::z_load_barrier_on_oop_field_preloaded), "load_barrier", TypeRawPtr::BOTTOM);
2744   }
2745 
2746   call->init_req(TypeFunc::Control, then);
2747   call->init_req(TypeFunc::I_O    , top());
2748   call->init_req(TypeFunc::Memory , in_mem);
2749   call->init_req(TypeFunc::FramePtr, top());
2750   call->init_req(TypeFunc::ReturnAdr, top());
2751   call->init_req(TypeFunc::Parms+0, in_val);
2752   if (barrier->is_writeback()) {
2753     call->init_req(TypeFunc::Parms+1, in_adr);
2754   } else {
2755     // when slow path is called with a null adr, the healed oop will not be written back
2756     call->init_req(TypeFunc::Parms+1, _igvn.zerocon(T_OBJECT));
2757   }
2758   call = _igvn.transform(call);
2759 
2760   Node* ctrl = _igvn.transform(new ProjNode(call, TypeFunc::Control));
2761   res = _igvn.transform(new ProjNode(call, TypeFunc::Parms));
2762   res = _igvn.transform(new CheckCastPPNode(ctrl, res, in_val_maybe_null_t));
2763 
2764   result_region->set_req(2, ctrl);
2765   result_val->set_req(2, res);
2766 
2767   result_region = _igvn.transform(result_region);
2768   result_val = _igvn.transform(result_val);
2769 
2770   if ( out_ctrl != NULL ) { // added if cond
2771     _igvn.replace_node(out_ctrl, result_region);
2772   }
2773   _igvn.replace_node(out_res, result_val);
2774 }
2775 
2776 // Low spill loadbarrier variant using stub specialized on register used
2777 void PhaseMacroExpand::expand_loadbarrier_optimized(LoadBarrierNode *barrier)
2778 {
2779 #ifdef PRINT_NODE_TRAVERSALS
2780     Node* preceding_barrier_node = barrier->in(LoadBarrierNode::Oop);
2781 #endif
2782 
2783     Node* in_ctrl = barrier->in(LoadBarrierNode::Control);
2784     Node* in_mem = barrier->in(LoadBarrierNode::Memory);
2785     Node* in_val = barrier->in(LoadBarrierNode::Oop);
2786     Node* in_adr = barrier->in(LoadBarrierNode::Address);
2787 
2788     Node* out_ctrl = barrier->proj_out(LoadBarrierNode::Control);
2789     Node* out_res = barrier->proj_out(LoadBarrierNode::Oop);
2790 
2791     assert( barrier->in(LoadBarrierNode::Oop) != NULL, "oop to loadbarrier node cannot be null" );
2792 
2793 #ifdef PRINT_NODE_TRAVERSALS
2794     tty->print( "\n\n\nBefore barrier optimization:\n" );
2795     traverse( barrier, out_ctrl, out_res, -1 );
2796 
2797     tty->print( "\nBefore barrier optimization:  preceding_barrier_node\n" );
2798     traverse( preceding_barrier_node, out_ctrl, out_res, -1 );
2799 #endif
2800 
2801     const uintptr_t      in_cset_bit   = 0x1;
2802     const unsigned char* in_cset_map   = (unsigned char*)ZHeap::heap()->pagetable_addr();
2803     const int            in_cset_shift = ZPageSizeMinShift;
2804 
2805     const uintptr_t* addr_good_bit = &ZAddressGoodMask;
2806     const uintptr_t* addr_bad_bit  = &ZAddressBadMask;
2807 
2808     const uintptr_t  remapped_bit  = ZAddressMetadataRemapped;
2809     const uintptr_t  offset_mask   = ZAddressOffsetMask;
2810 
2811     float unlikely  = PROB_UNLIKELY(0.999);
2812     float likely    = PROB_LIKELY(0.999);
2813     const Type* in_val_not_null_t = _igvn.type(in_val);
2814 
2815     Node* jthread = _igvn.transform(new ThreadLocalNode());
2816     Node* adr = basic_plus_adr(jthread, in_bytes(JavaThread::zaddress_bad_mask_offset()));
2817     Node* bad_mask = _igvn.transform(LoadNode::make(_igvn, in_ctrl, in_mem, adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
2818     Node* cast = _igvn.transform(new CastP2XNode(in_ctrl, in_val));
2819     Node* obj_masked = _igvn.transform(new AndXNode(cast, bad_mask));
2820     Node* cmp = _igvn.transform(new CmpXNode(obj_masked, _igvn.zerocon(TypeX_X->basic_type())));
2821     Node *bol = _igvn.transform(new BoolNode(cmp, BoolTest::ne))->as_Bool();
2822     IfNode* iff = _igvn.transform(new IfNode(in_ctrl, bol, unlikely, COUNT_UNKNOWN))->as_If();
2823     Node* then = _igvn.transform(new IfTrueNode(iff));
2824     Node* elsen = _igvn.transform(new IfFalseNode(iff));
2825 
2826     Node* slow_path_surrogate;
2827     if (!barrier->is_weak()) {
2828       slow_path_surrogate = _igvn.transform( new LoadBarrierSlowRegNode(then, in_mem, in_adr, in_val->adr_type(), (const TypePtr*) in_val->bottom_type(), MemNode::unordered) );
2829     } else {
2830       slow_path_surrogate = _igvn.transform( new LoadBarrierWeakSlowRegNode(then, in_mem, in_adr, in_val->adr_type(), (const TypePtr*) in_val->bottom_type(), MemNode::unordered) );
2831     }
2832 
2833     Node *new_loadp;
2834     new_loadp = slow_path_surrogate;
2835     // create the final region/phi pair to converge cntl/data paths to downstream code
2836     Node* result_region = _igvn.transform(new RegionNode(3));
2837     result_region->set_req(1, then);
2838     result_region->set_req(2, elsen);
2839 
2840     Node* result_phi = _igvn.transform(new PhiNode(result_region, TypeInstPtr::BOTTOM));
2841     result_phi->set_req(1, new_loadp);
2842     result_phi->set_req(2, barrier->in(LoadBarrierNode::Oop));
2843 
2844     // finally, connect the original outputs to the barrier region and phi to complete the expansion/substitution
2845     // _igvn.replace_node(out_ctrl, result_region);
2846     if ( out_ctrl != NULL ) { // added if cond
2847       _igvn.replace_node(out_ctrl, result_region);
2848     }
2849     _igvn.replace_node(out_res, result_phi);
2850 
2851     assert(barrier->outcnt() == 0,"LoadBarrier macro node has non-null outputs after expansion!");
2852 
2853 #ifdef PRINT_NODE_TRAVERSALS
2854     tty->print( "\nAfter barrier optimization:  old out_ctrl\n" );
2855     traverse( out_ctrl, out_ctrl, out_res, -1 );
2856     tty->print( "\nAfter barrier optimization:  old out_res\n" );
2857     traverse( out_res, out_ctrl, out_res, -1 );
2858     tty->print( "\nAfter barrier optimization:  old barrier\n" );
2859     traverse( barrier, out_ctrl, out_res, -1 );
2860     tty->print( "\nAfter barrier optimization:  preceding_barrier_node\n" );
2861     traverse( preceding_barrier_node, result_region, result_phi, -1 );
2862 #endif
2863 
2864     return;
2865 }
2866 
2867 //---------------------------eliminate_macro_nodes----------------------
2868 // Eliminate scalar replaced allocations and associated locks.
2869 void PhaseMacroExpand::eliminate_macro_nodes() {
2870   if (C->macro_count() == 0)
2871     return;
2872 
2873   // First, attempt to eliminate locks
2874   int cnt = C->macro_count();
2875   for (int i=0; i < cnt; i++) {
2876     Node *n = C->macro_node(i);
2877     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2878       // Before elimination mark all associated (same box and obj)
2879       // lock and unlock nodes.
2880       mark_eliminated_locking_nodes(n->as_AbstractLock());
2881     }
2882   }
2883   bool progress = true;
2884   while (progress) {
2885     progress = false;
2886     for (int i = C->macro_count(); i > 0; i--) {
2887       Node * n = C->macro_node(i-1);
2888       bool success = false;
2889       debug_only(int old_macro_count = C->macro_count(););
2890       if (n->is_AbstractLock()) {
2891         success = eliminate_locking_node(n->as_AbstractLock());
2892       }
2893       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2894       progress = progress || success;
2895     }
2896   }
2897   // Next, attempt to eliminate allocations
2898   _has_locks = false;
2899   progress = true;
2900   while (progress) {
2901     progress = false;
2902     for (int i = C->macro_count(); i > 0; i--) {
2903       Node * n = C->macro_node(i-1);
2904       bool success = false;
2905       debug_only(int old_macro_count = C->macro_count(););
2906       switch (n->class_id()) {
2907       case Node::Class_Allocate:
2908       case Node::Class_AllocateArray:
2909         success = eliminate_allocate_node(n->as_Allocate());
2910         break;
2911       case Node::Class_CallStaticJava:
2912         success = eliminate_boxing_node(n->as_CallStaticJava());
2913         break;
2914       case Node::Class_Lock:
2915       case Node::Class_Unlock:
2916         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2917         _has_locks = true;
2918         break;
2919       case Node::Class_ArrayCopy:
2920         break;
2921       case Node::Class_OuterStripMinedLoop:
2922         break;
2923       default:
2924         assert(n->Opcode() == Op_LoopLimit   ||
2925                n->Opcode() == Op_Opaque1     ||
2926                n->Opcode() == Op_Opaque2     ||
2927                n->Opcode() == Op_Opaque3     ||
2928                n->Opcode() == Op_LoadBarrier ||
2929                n->Opcode() == Op_Opaque4, "unknown node type in macro list");
2930       }
2931       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2932       progress = progress || success;
2933     }
2934   }
2935 }
2936 
2937 //------------------------------expand_macro_nodes----------------------
2938 //  Returns true if a failure occurred.
2939 bool PhaseMacroExpand::expand_macro_nodes() {
2940   // Last attempt to eliminate macro nodes.
2941   eliminate_macro_nodes();
2942 
2943   // Make sure expansion will not cause node limit to be exceeded.
2944   // Worst case is a macro node gets expanded into about 200 nodes.
2945   // Allow 50% more for optimization.
2946   if (C->check_node_count(C->macro_count() * 300, "out of nodes before macro expansion" ) )
2947     return true;
2948 
2949   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2950   bool progress = true;
2951   while (progress) {
2952     progress = false;
2953     for (int i = C->macro_count(); i > 0; i--) {
2954       Node * n = C->macro_node(i-1);
2955       bool success = false;
2956       debug_only(int old_macro_count = C->macro_count(););
2957       if (n->Opcode() == Op_LoopLimit) {
2958         // Remove it from macro list and put on IGVN worklist to optimize.
2959         C->remove_macro_node(n);
2960         _igvn._worklist.push(n);
2961         success = true;
2962       } else if (n->Opcode() == Op_CallStaticJava) {
2963         // Remove it from macro list and put on IGVN worklist to optimize.
2964         C->remove_macro_node(n);
2965         _igvn._worklist.push(n);
2966         success = true;
2967       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2968         _igvn.replace_node(n, n->in(1));
2969         success = true;
2970 #if INCLUDE_RTM_OPT
2971       } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
2972         assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
2973         assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
2974         Node* cmp = n->unique_out();
2975 #ifdef ASSERT
2976         // Validate graph.
2977         assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
2978         BoolNode* bol = cmp->unique_out()->as_Bool();
2979         assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
2980                (bol->_test._test == BoolTest::ne), "");
2981         IfNode* ifn = bol->unique_out()->as_If();
2982         assert((ifn->outcnt() == 2) &&
2983                ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, "");
2984 #endif
2985         Node* repl = n->in(1);
2986         if (!_has_locks) {
2987           // Remove RTM state check if there are no locks in the code.
2988           // Replace input to compare the same value.
2989           repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
2990         }
2991         _igvn.replace_node(n, repl);
2992         success = true;
2993 #endif
2994       } else if (n->Opcode() == Op_Opaque4) {
2995         _igvn.replace_node(n, n->in(2));
2996         success = true;
2997       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
2998         n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
2999         C->remove_macro_node(n);
3000         success = true;
3001       }
3002       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
3003       progress = progress || success;
3004     }
3005   }
3006 
3007   // expand arraycopy "macro" nodes first
3008   // For ReduceBulkZeroing, we must first process all arraycopy nodes
3009   // before the allocate nodes are expanded.
3010   int macro_idx = C->macro_count() - 1;
3011   while (macro_idx >= 0) {
3012     Node * n = C->macro_node(macro_idx);
3013     assert(n->is_macro(), "only macro nodes expected here");
3014     if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) {
3015       // node is unreachable, so don't try to expand it
3016       C->remove_macro_node(n);
3017     } else if (n->is_ArrayCopy()){
3018       int macro_count = C->macro_count();
3019       expand_arraycopy_node(n->as_ArrayCopy());
3020       assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
3021     }
3022     if (C->failing())  return true;
3023     macro_idx --;
3024   }
3025 
3026   // expand "macro" nodes
3027   // nodes are removed from the macro list as they are processed
3028   while (C->macro_count() > 0) {
3029     int macro_count = C->macro_count();
3030     Node * n = C->macro_node(macro_count-1);
3031     assert(n->is_macro(), "only macro nodes expected here");
3032     if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) {
3033       // node is unreachable, so don't try to expand it
3034       C->remove_macro_node(n);
3035       continue;
3036     }
3037     switch (n->class_id()) {
3038     case Node::Class_Allocate:
3039       expand_allocate(n->as_Allocate());
3040       break;
3041     case Node::Class_AllocateArray:
3042       expand_allocate_array(n->as_AllocateArray());
3043       break;
3044     case Node::Class_Lock:
3045       expand_lock_node(n->as_Lock());
3046       break;
3047     case Node::Class_Unlock:
3048       expand_unlock_node(n->as_Unlock());
3049       break;
3050     default:
3051       assert(false, "unknown node type in macro list");
3052     }
3053     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
3054     if (C->failing())  return true;
3055   }
3056 
3057   _igvn.set_delay_transform(false);
3058   _igvn.optimize();
3059   if (C->failing())  return true;
3060   if (C->load_barrier_count() > 0) {
3061 #ifdef ASSERT
3062     C->verify_load_barriers(false);
3063     {
3064       ResourceMark rm;
3065       stringStream ss;
3066       C->method()->print_short_name(&ss);
3067       if (!strcmp(ss.as_string(), " EDU.purdue.cs.bloat.editor.Type::simple")) {
3068         C->root()->dump(9999);
3069       }
3070     }
3071 #endif
3072     _igvn.set_delay_transform(true);
3073     int skipped = 0;
3074     while (C->load_barrier_count() > skipped) {
3075       int load_barrier_count = C->load_barrier_count();
3076       LoadBarrierNode * n = C->load_barrier_node(load_barrier_count-1-skipped);
3077       if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) {
3078         // node is unreachable, so don't try to expand it
3079         C->remove_load_barrier_node(n);
3080         continue;
3081       }
3082       if (!n->can_be_eliminated()) {
3083         skipped++;
3084         continue;
3085       }
3086       expand_loadbarrier_node(n);
3087       assert(C->load_barrier_count() < load_barrier_count, "must have deleted a node from load barrier list");
3088       if (C->failing())  return true;
3089     }
3090     while (C->load_barrier_count() > 0) {
3091       int load_barrier_count = C->load_barrier_count();
3092       LoadBarrierNode * n = C->load_barrier_node(load_barrier_count-1);
3093       assert(!(_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())), "should have been processed already");
3094       assert(!n->can_be_eliminated(), "should have been processed already");
3095       expand_loadbarrier_node(n);
3096       assert(C->load_barrier_count() < load_barrier_count, "must have deleted a node from load barrier list");
3097       if (C->failing())  return true;
3098     }
3099     _igvn.set_delay_transform(false);
3100     _igvn.optimize();
3101     if (C->failing())  return true;
3102   }
3103   return false;
3104 }