1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/cardTable.hpp"
  31 #include "gc/shared/cardTableModRefBS.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/klass.inline.hpp"
  37 #include "prims/methodHandles.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/interfaceSupport.hpp"
  40 #include "runtime/objectMonitor.hpp"
  41 #include "runtime/os.hpp"
  42 #include "runtime/safepoint.hpp"
  43 #include "runtime/safepointMechanism.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/thread.hpp"
  47 #include "utilities/macros.hpp"
  48 #if INCLUDE_ALL_GCS
  49 #include "gc/g1/g1BarrierSet.hpp"
  50 #include "gc/g1/g1CardTable.hpp"
  51 #include "gc/g1/g1CollectedHeap.inline.hpp"
  52 #include "gc/g1/heapRegion.hpp"
  53 #endif // INCLUDE_ALL_GCS
  54 #include "crc32c.h"
  55 #ifdef COMPILER2
  56 #include "opto/intrinsicnode.hpp"
  57 #endif
  58 
  59 #ifdef PRODUCT
  60 #define BLOCK_COMMENT(str) /* nothing */
  61 #define STOP(error) stop(error)
  62 #else
  63 #define BLOCK_COMMENT(str) block_comment(str)
  64 #define STOP(error) block_comment(error); stop(error)
  65 #endif
  66 
  67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  68 
  69 #ifdef ASSERT
  70 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  71 #endif
  72 
  73 static Assembler::Condition reverse[] = {
  74     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  75     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  76     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  77     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  78     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  79     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  80     Assembler::above          /* belowEqual    = 0x6 */ ,
  81     Assembler::belowEqual     /* above         = 0x7 */ ,
  82     Assembler::positive       /* negative      = 0x8 */ ,
  83     Assembler::negative       /* positive      = 0x9 */ ,
  84     Assembler::noParity       /* parity        = 0xa */ ,
  85     Assembler::parity         /* noParity      = 0xb */ ,
  86     Assembler::greaterEqual   /* less          = 0xc */ ,
  87     Assembler::less           /* greaterEqual  = 0xd */ ,
  88     Assembler::greater        /* lessEqual     = 0xe */ ,
  89     Assembler::lessEqual      /* greater       = 0xf, */
  90 
  91 };
  92 
  93 
  94 // Implementation of MacroAssembler
  95 
  96 // First all the versions that have distinct versions depending on 32/64 bit
  97 // Unless the difference is trivial (1 line or so).
  98 
  99 #ifndef _LP64
 100 
 101 // 32bit versions
 102 
 103 Address MacroAssembler::as_Address(AddressLiteral adr) {
 104   return Address(adr.target(), adr.rspec());
 105 }
 106 
 107 Address MacroAssembler::as_Address(ArrayAddress adr) {
 108   return Address::make_array(adr);
 109 }
 110 
 111 void MacroAssembler::call_VM_leaf_base(address entry_point,
 112                                        int number_of_arguments) {
 113   call(RuntimeAddress(entry_point));
 114   increment(rsp, number_of_arguments * wordSize);
 115 }
 116 
 117 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 118   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 119 }
 120 
 121 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 122   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 123 }
 124 
 125 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 126   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 127 }
 128 
 129 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 130   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 131 }
 132 
 133 void MacroAssembler::extend_sign(Register hi, Register lo) {
 134   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 135   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 136     cdql();
 137   } else {
 138     movl(hi, lo);
 139     sarl(hi, 31);
 140   }
 141 }
 142 
 143 void MacroAssembler::jC2(Register tmp, Label& L) {
 144   // set parity bit if FPU flag C2 is set (via rax)
 145   save_rax(tmp);
 146   fwait(); fnstsw_ax();
 147   sahf();
 148   restore_rax(tmp);
 149   // branch
 150   jcc(Assembler::parity, L);
 151 }
 152 
 153 void MacroAssembler::jnC2(Register tmp, Label& L) {
 154   // set parity bit if FPU flag C2 is set (via rax)
 155   save_rax(tmp);
 156   fwait(); fnstsw_ax();
 157   sahf();
 158   restore_rax(tmp);
 159   // branch
 160   jcc(Assembler::noParity, L);
 161 }
 162 
 163 // 32bit can do a case table jump in one instruction but we no longer allow the base
 164 // to be installed in the Address class
 165 void MacroAssembler::jump(ArrayAddress entry) {
 166   jmp(as_Address(entry));
 167 }
 168 
 169 // Note: y_lo will be destroyed
 170 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 171   // Long compare for Java (semantics as described in JVM spec.)
 172   Label high, low, done;
 173 
 174   cmpl(x_hi, y_hi);
 175   jcc(Assembler::less, low);
 176   jcc(Assembler::greater, high);
 177   // x_hi is the return register
 178   xorl(x_hi, x_hi);
 179   cmpl(x_lo, y_lo);
 180   jcc(Assembler::below, low);
 181   jcc(Assembler::equal, done);
 182 
 183   bind(high);
 184   xorl(x_hi, x_hi);
 185   increment(x_hi);
 186   jmp(done);
 187 
 188   bind(low);
 189   xorl(x_hi, x_hi);
 190   decrementl(x_hi);
 191 
 192   bind(done);
 193 }
 194 
 195 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 196     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 197 }
 198 
 199 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 200   // leal(dst, as_Address(adr));
 201   // see note in movl as to why we must use a move
 202   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 203 }
 204 
 205 void MacroAssembler::leave() {
 206   mov(rsp, rbp);
 207   pop(rbp);
 208 }
 209 
 210 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 211   // Multiplication of two Java long values stored on the stack
 212   // as illustrated below. Result is in rdx:rax.
 213   //
 214   // rsp ---> [  ??  ] \               \
 215   //            ....    | y_rsp_offset  |
 216   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 217   //          [ y_hi ]                  | (in bytes)
 218   //            ....                    |
 219   //          [ x_lo ]                 /
 220   //          [ x_hi ]
 221   //            ....
 222   //
 223   // Basic idea: lo(result) = lo(x_lo * y_lo)
 224   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 225   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 226   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 227   Label quick;
 228   // load x_hi, y_hi and check if quick
 229   // multiplication is possible
 230   movl(rbx, x_hi);
 231   movl(rcx, y_hi);
 232   movl(rax, rbx);
 233   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 234   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 235   // do full multiplication
 236   // 1st step
 237   mull(y_lo);                                    // x_hi * y_lo
 238   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 239   // 2nd step
 240   movl(rax, x_lo);
 241   mull(rcx);                                     // x_lo * y_hi
 242   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 243   // 3rd step
 244   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 245   movl(rax, x_lo);
 246   mull(y_lo);                                    // x_lo * y_lo
 247   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 248 }
 249 
 250 void MacroAssembler::lneg(Register hi, Register lo) {
 251   negl(lo);
 252   adcl(hi, 0);
 253   negl(hi);
 254 }
 255 
 256 void MacroAssembler::lshl(Register hi, Register lo) {
 257   // Java shift left long support (semantics as described in JVM spec., p.305)
 258   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 259   // shift value is in rcx !
 260   assert(hi != rcx, "must not use rcx");
 261   assert(lo != rcx, "must not use rcx");
 262   const Register s = rcx;                        // shift count
 263   const int      n = BitsPerWord;
 264   Label L;
 265   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 266   cmpl(s, n);                                    // if (s < n)
 267   jcc(Assembler::less, L);                       // else (s >= n)
 268   movl(hi, lo);                                  // x := x << n
 269   xorl(lo, lo);
 270   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 271   bind(L);                                       // s (mod n) < n
 272   shldl(hi, lo);                                 // x := x << s
 273   shll(lo);
 274 }
 275 
 276 
 277 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 278   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 279   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 280   assert(hi != rcx, "must not use rcx");
 281   assert(lo != rcx, "must not use rcx");
 282   const Register s = rcx;                        // shift count
 283   const int      n = BitsPerWord;
 284   Label L;
 285   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 286   cmpl(s, n);                                    // if (s < n)
 287   jcc(Assembler::less, L);                       // else (s >= n)
 288   movl(lo, hi);                                  // x := x >> n
 289   if (sign_extension) sarl(hi, 31);
 290   else                xorl(hi, hi);
 291   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 292   bind(L);                                       // s (mod n) < n
 293   shrdl(lo, hi);                                 // x := x >> s
 294   if (sign_extension) sarl(hi);
 295   else                shrl(hi);
 296 }
 297 
 298 void MacroAssembler::movoop(Register dst, jobject obj) {
 299   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 300 }
 301 
 302 void MacroAssembler::movoop(Address dst, jobject obj) {
 303   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 304 }
 305 
 306 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 307   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 308 }
 309 
 310 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 311   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 312 }
 313 
 314 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 315   // scratch register is not used,
 316   // it is defined to match parameters of 64-bit version of this method.
 317   if (src.is_lval()) {
 318     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 319   } else {
 320     movl(dst, as_Address(src));
 321   }
 322 }
 323 
 324 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 325   movl(as_Address(dst), src);
 326 }
 327 
 328 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 329   movl(dst, as_Address(src));
 330 }
 331 
 332 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 333 void MacroAssembler::movptr(Address dst, intptr_t src) {
 334   movl(dst, src);
 335 }
 336 
 337 
 338 void MacroAssembler::pop_callee_saved_registers() {
 339   pop(rcx);
 340   pop(rdx);
 341   pop(rdi);
 342   pop(rsi);
 343 }
 344 
 345 void MacroAssembler::pop_fTOS() {
 346   fld_d(Address(rsp, 0));
 347   addl(rsp, 2 * wordSize);
 348 }
 349 
 350 void MacroAssembler::push_callee_saved_registers() {
 351   push(rsi);
 352   push(rdi);
 353   push(rdx);
 354   push(rcx);
 355 }
 356 
 357 void MacroAssembler::push_fTOS() {
 358   subl(rsp, 2 * wordSize);
 359   fstp_d(Address(rsp, 0));
 360 }
 361 
 362 
 363 void MacroAssembler::pushoop(jobject obj) {
 364   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 365 }
 366 
 367 void MacroAssembler::pushklass(Metadata* obj) {
 368   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 369 }
 370 
 371 void MacroAssembler::pushptr(AddressLiteral src) {
 372   if (src.is_lval()) {
 373     push_literal32((int32_t)src.target(), src.rspec());
 374   } else {
 375     pushl(as_Address(src));
 376   }
 377 }
 378 
 379 void MacroAssembler::set_word_if_not_zero(Register dst) {
 380   xorl(dst, dst);
 381   set_byte_if_not_zero(dst);
 382 }
 383 
 384 static void pass_arg0(MacroAssembler* masm, Register arg) {
 385   masm->push(arg);
 386 }
 387 
 388 static void pass_arg1(MacroAssembler* masm, Register arg) {
 389   masm->push(arg);
 390 }
 391 
 392 static void pass_arg2(MacroAssembler* masm, Register arg) {
 393   masm->push(arg);
 394 }
 395 
 396 static void pass_arg3(MacroAssembler* masm, Register arg) {
 397   masm->push(arg);
 398 }
 399 
 400 #ifndef PRODUCT
 401 extern "C" void findpc(intptr_t x);
 402 #endif
 403 
 404 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 405   // In order to get locks to work, we need to fake a in_VM state
 406   JavaThread* thread = JavaThread::current();
 407   JavaThreadState saved_state = thread->thread_state();
 408   thread->set_thread_state(_thread_in_vm);
 409   if (ShowMessageBoxOnError) {
 410     JavaThread* thread = JavaThread::current();
 411     JavaThreadState saved_state = thread->thread_state();
 412     thread->set_thread_state(_thread_in_vm);
 413     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 414       ttyLocker ttyl;
 415       BytecodeCounter::print();
 416     }
 417     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 418     // This is the value of eip which points to where verify_oop will return.
 419     if (os::message_box(msg, "Execution stopped, print registers?")) {
 420       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 421       BREAKPOINT;
 422     }
 423   } else {
 424     ttyLocker ttyl;
 425     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 426   }
 427   // Don't assert holding the ttyLock
 428     assert(false, "DEBUG MESSAGE: %s", msg);
 429   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 430 }
 431 
 432 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 433   ttyLocker ttyl;
 434   FlagSetting fs(Debugging, true);
 435   tty->print_cr("eip = 0x%08x", eip);
 436 #ifndef PRODUCT
 437   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 438     tty->cr();
 439     findpc(eip);
 440     tty->cr();
 441   }
 442 #endif
 443 #define PRINT_REG(rax) \
 444   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 445   PRINT_REG(rax);
 446   PRINT_REG(rbx);
 447   PRINT_REG(rcx);
 448   PRINT_REG(rdx);
 449   PRINT_REG(rdi);
 450   PRINT_REG(rsi);
 451   PRINT_REG(rbp);
 452   PRINT_REG(rsp);
 453 #undef PRINT_REG
 454   // Print some words near top of staack.
 455   int* dump_sp = (int*) rsp;
 456   for (int col1 = 0; col1 < 8; col1++) {
 457     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 458     os::print_location(tty, *dump_sp++);
 459   }
 460   for (int row = 0; row < 16; row++) {
 461     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 462     for (int col = 0; col < 8; col++) {
 463       tty->print(" 0x%08x", *dump_sp++);
 464     }
 465     tty->cr();
 466   }
 467   // Print some instructions around pc:
 468   Disassembler::decode((address)eip-64, (address)eip);
 469   tty->print_cr("--------");
 470   Disassembler::decode((address)eip, (address)eip+32);
 471 }
 472 
 473 void MacroAssembler::stop(const char* msg) {
 474   ExternalAddress message((address)msg);
 475   // push address of message
 476   pushptr(message.addr());
 477   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 478   pusha();                                            // push registers
 479   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 480   hlt();
 481 }
 482 
 483 void MacroAssembler::warn(const char* msg) {
 484   push_CPU_state();
 485 
 486   ExternalAddress message((address) msg);
 487   // push address of message
 488   pushptr(message.addr());
 489 
 490   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 491   addl(rsp, wordSize);       // discard argument
 492   pop_CPU_state();
 493 }
 494 
 495 void MacroAssembler::print_state() {
 496   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 497   pusha();                                            // push registers
 498 
 499   push_CPU_state();
 500   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 501   pop_CPU_state();
 502 
 503   popa();
 504   addl(rsp, wordSize);
 505 }
 506 
 507 #else // _LP64
 508 
 509 // 64 bit versions
 510 
 511 Address MacroAssembler::as_Address(AddressLiteral adr) {
 512   // amd64 always does this as a pc-rel
 513   // we can be absolute or disp based on the instruction type
 514   // jmp/call are displacements others are absolute
 515   assert(!adr.is_lval(), "must be rval");
 516   assert(reachable(adr), "must be");
 517   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 518 
 519 }
 520 
 521 Address MacroAssembler::as_Address(ArrayAddress adr) {
 522   AddressLiteral base = adr.base();
 523   lea(rscratch1, base);
 524   Address index = adr.index();
 525   assert(index._disp == 0, "must not have disp"); // maybe it can?
 526   Address array(rscratch1, index._index, index._scale, index._disp);
 527   return array;
 528 }
 529 
 530 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 531   Label L, E;
 532 
 533 #ifdef _WIN64
 534   // Windows always allocates space for it's register args
 535   assert(num_args <= 4, "only register arguments supported");
 536   subq(rsp,  frame::arg_reg_save_area_bytes);
 537 #endif
 538 
 539   // Align stack if necessary
 540   testl(rsp, 15);
 541   jcc(Assembler::zero, L);
 542 
 543   subq(rsp, 8);
 544   {
 545     call(RuntimeAddress(entry_point));
 546   }
 547   addq(rsp, 8);
 548   jmp(E);
 549 
 550   bind(L);
 551   {
 552     call(RuntimeAddress(entry_point));
 553   }
 554 
 555   bind(E);
 556 
 557 #ifdef _WIN64
 558   // restore stack pointer
 559   addq(rsp, frame::arg_reg_save_area_bytes);
 560 #endif
 561 
 562 }
 563 
 564 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 565   assert(!src2.is_lval(), "should use cmpptr");
 566 
 567   if (reachable(src2)) {
 568     cmpq(src1, as_Address(src2));
 569   } else {
 570     lea(rscratch1, src2);
 571     Assembler::cmpq(src1, Address(rscratch1, 0));
 572   }
 573 }
 574 
 575 int MacroAssembler::corrected_idivq(Register reg) {
 576   // Full implementation of Java ldiv and lrem; checks for special
 577   // case as described in JVM spec., p.243 & p.271.  The function
 578   // returns the (pc) offset of the idivl instruction - may be needed
 579   // for implicit exceptions.
 580   //
 581   //         normal case                           special case
 582   //
 583   // input : rax: dividend                         min_long
 584   //         reg: divisor   (may not be eax/edx)   -1
 585   //
 586   // output: rax: quotient  (= rax idiv reg)       min_long
 587   //         rdx: remainder (= rax irem reg)       0
 588   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 589   static const int64_t min_long = 0x8000000000000000;
 590   Label normal_case, special_case;
 591 
 592   // check for special case
 593   cmp64(rax, ExternalAddress((address) &min_long));
 594   jcc(Assembler::notEqual, normal_case);
 595   xorl(rdx, rdx); // prepare rdx for possible special case (where
 596                   // remainder = 0)
 597   cmpq(reg, -1);
 598   jcc(Assembler::equal, special_case);
 599 
 600   // handle normal case
 601   bind(normal_case);
 602   cdqq();
 603   int idivq_offset = offset();
 604   idivq(reg);
 605 
 606   // normal and special case exit
 607   bind(special_case);
 608 
 609   return idivq_offset;
 610 }
 611 
 612 void MacroAssembler::decrementq(Register reg, int value) {
 613   if (value == min_jint) { subq(reg, value); return; }
 614   if (value <  0) { incrementq(reg, -value); return; }
 615   if (value == 0) {                        ; return; }
 616   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 617   /* else */      { subq(reg, value)       ; return; }
 618 }
 619 
 620 void MacroAssembler::decrementq(Address dst, int value) {
 621   if (value == min_jint) { subq(dst, value); return; }
 622   if (value <  0) { incrementq(dst, -value); return; }
 623   if (value == 0) {                        ; return; }
 624   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 625   /* else */      { subq(dst, value)       ; return; }
 626 }
 627 
 628 void MacroAssembler::incrementq(AddressLiteral dst) {
 629   if (reachable(dst)) {
 630     incrementq(as_Address(dst));
 631   } else {
 632     lea(rscratch1, dst);
 633     incrementq(Address(rscratch1, 0));
 634   }
 635 }
 636 
 637 void MacroAssembler::incrementq(Register reg, int value) {
 638   if (value == min_jint) { addq(reg, value); return; }
 639   if (value <  0) { decrementq(reg, -value); return; }
 640   if (value == 0) {                        ; return; }
 641   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 642   /* else */      { addq(reg, value)       ; return; }
 643 }
 644 
 645 void MacroAssembler::incrementq(Address dst, int value) {
 646   if (value == min_jint) { addq(dst, value); return; }
 647   if (value <  0) { decrementq(dst, -value); return; }
 648   if (value == 0) {                        ; return; }
 649   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 650   /* else */      { addq(dst, value)       ; return; }
 651 }
 652 
 653 // 32bit can do a case table jump in one instruction but we no longer allow the base
 654 // to be installed in the Address class
 655 void MacroAssembler::jump(ArrayAddress entry) {
 656   lea(rscratch1, entry.base());
 657   Address dispatch = entry.index();
 658   assert(dispatch._base == noreg, "must be");
 659   dispatch._base = rscratch1;
 660   jmp(dispatch);
 661 }
 662 
 663 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 664   ShouldNotReachHere(); // 64bit doesn't use two regs
 665   cmpq(x_lo, y_lo);
 666 }
 667 
 668 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 669     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 670 }
 671 
 672 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 673   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 674   movptr(dst, rscratch1);
 675 }
 676 
 677 void MacroAssembler::leave() {
 678   // %%% is this really better? Why not on 32bit too?
 679   emit_int8((unsigned char)0xC9); // LEAVE
 680 }
 681 
 682 void MacroAssembler::lneg(Register hi, Register lo) {
 683   ShouldNotReachHere(); // 64bit doesn't use two regs
 684   negq(lo);
 685 }
 686 
 687 void MacroAssembler::movoop(Register dst, jobject obj) {
 688   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 689 }
 690 
 691 void MacroAssembler::movoop(Address dst, jobject obj) {
 692   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 693   movq(dst, rscratch1);
 694 }
 695 
 696 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 697   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 698 }
 699 
 700 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 701   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 702   movq(dst, rscratch1);
 703 }
 704 
 705 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 706   if (src.is_lval()) {
 707     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 708   } else {
 709     if (reachable(src)) {
 710       movq(dst, as_Address(src));
 711     } else {
 712       lea(scratch, src);
 713       movq(dst, Address(scratch, 0));
 714     }
 715   }
 716 }
 717 
 718 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 719   movq(as_Address(dst), src);
 720 }
 721 
 722 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 723   movq(dst, as_Address(src));
 724 }
 725 
 726 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 727 void MacroAssembler::movptr(Address dst, intptr_t src) {
 728   mov64(rscratch1, src);
 729   movq(dst, rscratch1);
 730 }
 731 
 732 // These are mostly for initializing NULL
 733 void MacroAssembler::movptr(Address dst, int32_t src) {
 734   movslq(dst, src);
 735 }
 736 
 737 void MacroAssembler::movptr(Register dst, int32_t src) {
 738   mov64(dst, (intptr_t)src);
 739 }
 740 
 741 void MacroAssembler::pushoop(jobject obj) {
 742   movoop(rscratch1, obj);
 743   push(rscratch1);
 744 }
 745 
 746 void MacroAssembler::pushklass(Metadata* obj) {
 747   mov_metadata(rscratch1, obj);
 748   push(rscratch1);
 749 }
 750 
 751 void MacroAssembler::pushptr(AddressLiteral src) {
 752   lea(rscratch1, src);
 753   if (src.is_lval()) {
 754     push(rscratch1);
 755   } else {
 756     pushq(Address(rscratch1, 0));
 757   }
 758 }
 759 
 760 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 761   // we must set sp to zero to clear frame
 762   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 763   // must clear fp, so that compiled frames are not confused; it is
 764   // possible that we need it only for debugging
 765   if (clear_fp) {
 766     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 767   }
 768 
 769   // Always clear the pc because it could have been set by make_walkable()
 770   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 771   vzeroupper();
 772 }
 773 
 774 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 775                                          Register last_java_fp,
 776                                          address  last_java_pc) {
 777   vzeroupper();
 778   // determine last_java_sp register
 779   if (!last_java_sp->is_valid()) {
 780     last_java_sp = rsp;
 781   }
 782 
 783   // last_java_fp is optional
 784   if (last_java_fp->is_valid()) {
 785     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 786            last_java_fp);
 787   }
 788 
 789   // last_java_pc is optional
 790   if (last_java_pc != NULL) {
 791     Address java_pc(r15_thread,
 792                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 793     lea(rscratch1, InternalAddress(last_java_pc));
 794     movptr(java_pc, rscratch1);
 795   }
 796 
 797   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 798 }
 799 
 800 static void pass_arg0(MacroAssembler* masm, Register arg) {
 801   if (c_rarg0 != arg ) {
 802     masm->mov(c_rarg0, arg);
 803   }
 804 }
 805 
 806 static void pass_arg1(MacroAssembler* masm, Register arg) {
 807   if (c_rarg1 != arg ) {
 808     masm->mov(c_rarg1, arg);
 809   }
 810 }
 811 
 812 static void pass_arg2(MacroAssembler* masm, Register arg) {
 813   if (c_rarg2 != arg ) {
 814     masm->mov(c_rarg2, arg);
 815   }
 816 }
 817 
 818 static void pass_arg3(MacroAssembler* masm, Register arg) {
 819   if (c_rarg3 != arg ) {
 820     masm->mov(c_rarg3, arg);
 821   }
 822 }
 823 
 824 void MacroAssembler::stop(const char* msg) {
 825   address rip = pc();
 826   pusha(); // get regs on stack
 827   lea(c_rarg0, ExternalAddress((address) msg));
 828   lea(c_rarg1, InternalAddress(rip));
 829   movq(c_rarg2, rsp); // pass pointer to regs array
 830   andq(rsp, -16); // align stack as required by ABI
 831   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 832   hlt();
 833 }
 834 
 835 void MacroAssembler::warn(const char* msg) {
 836   push(rbp);
 837   movq(rbp, rsp);
 838   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 839   push_CPU_state();   // keeps alignment at 16 bytes
 840   lea(c_rarg0, ExternalAddress((address) msg));
 841   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 842   call(rax);
 843   pop_CPU_state();
 844   mov(rsp, rbp);
 845   pop(rbp);
 846 }
 847 
 848 void MacroAssembler::print_state() {
 849   address rip = pc();
 850   pusha();            // get regs on stack
 851   push(rbp);
 852   movq(rbp, rsp);
 853   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 854   push_CPU_state();   // keeps alignment at 16 bytes
 855 
 856   lea(c_rarg0, InternalAddress(rip));
 857   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 858   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 859 
 860   pop_CPU_state();
 861   mov(rsp, rbp);
 862   pop(rbp);
 863   popa();
 864 }
 865 
 866 #ifndef PRODUCT
 867 extern "C" void findpc(intptr_t x);
 868 #endif
 869 
 870 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 871   // In order to get locks to work, we need to fake a in_VM state
 872   if (ShowMessageBoxOnError) {
 873     JavaThread* thread = JavaThread::current();
 874     JavaThreadState saved_state = thread->thread_state();
 875     thread->set_thread_state(_thread_in_vm);
 876 #ifndef PRODUCT
 877     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 878       ttyLocker ttyl;
 879       BytecodeCounter::print();
 880     }
 881 #endif
 882     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 883     // XXX correct this offset for amd64
 884     // This is the value of eip which points to where verify_oop will return.
 885     if (os::message_box(msg, "Execution stopped, print registers?")) {
 886       print_state64(pc, regs);
 887       BREAKPOINT;
 888       assert(false, "start up GDB");
 889     }
 890     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 891   } else {
 892     ttyLocker ttyl;
 893     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 894                     msg);
 895     assert(false, "DEBUG MESSAGE: %s", msg);
 896   }
 897 }
 898 
 899 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 900   ttyLocker ttyl;
 901   FlagSetting fs(Debugging, true);
 902   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 903 #ifndef PRODUCT
 904   tty->cr();
 905   findpc(pc);
 906   tty->cr();
 907 #endif
 908 #define PRINT_REG(rax, value) \
 909   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 910   PRINT_REG(rax, regs[15]);
 911   PRINT_REG(rbx, regs[12]);
 912   PRINT_REG(rcx, regs[14]);
 913   PRINT_REG(rdx, regs[13]);
 914   PRINT_REG(rdi, regs[8]);
 915   PRINT_REG(rsi, regs[9]);
 916   PRINT_REG(rbp, regs[10]);
 917   PRINT_REG(rsp, regs[11]);
 918   PRINT_REG(r8 , regs[7]);
 919   PRINT_REG(r9 , regs[6]);
 920   PRINT_REG(r10, regs[5]);
 921   PRINT_REG(r11, regs[4]);
 922   PRINT_REG(r12, regs[3]);
 923   PRINT_REG(r13, regs[2]);
 924   PRINT_REG(r14, regs[1]);
 925   PRINT_REG(r15, regs[0]);
 926 #undef PRINT_REG
 927   // Print some words near top of staack.
 928   int64_t* rsp = (int64_t*) regs[11];
 929   int64_t* dump_sp = rsp;
 930   for (int col1 = 0; col1 < 8; col1++) {
 931     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 932     os::print_location(tty, *dump_sp++);
 933   }
 934   for (int row = 0; row < 25; row++) {
 935     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 936     for (int col = 0; col < 4; col++) {
 937       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 938     }
 939     tty->cr();
 940   }
 941   // Print some instructions around pc:
 942   Disassembler::decode((address)pc-64, (address)pc);
 943   tty->print_cr("--------");
 944   Disassembler::decode((address)pc, (address)pc+32);
 945 }
 946 
 947 #endif // _LP64
 948 
 949 // Now versions that are common to 32/64 bit
 950 
 951 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 952   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 953 }
 954 
 955 void MacroAssembler::addptr(Register dst, Register src) {
 956   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 957 }
 958 
 959 void MacroAssembler::addptr(Address dst, Register src) {
 960   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 961 }
 962 
 963 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 964   if (reachable(src)) {
 965     Assembler::addsd(dst, as_Address(src));
 966   } else {
 967     lea(rscratch1, src);
 968     Assembler::addsd(dst, Address(rscratch1, 0));
 969   }
 970 }
 971 
 972 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 973   if (reachable(src)) {
 974     addss(dst, as_Address(src));
 975   } else {
 976     lea(rscratch1, src);
 977     addss(dst, Address(rscratch1, 0));
 978   }
 979 }
 980 
 981 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 982   if (reachable(src)) {
 983     Assembler::addpd(dst, as_Address(src));
 984   } else {
 985     lea(rscratch1, src);
 986     Assembler::addpd(dst, Address(rscratch1, 0));
 987   }
 988 }
 989 
 990 void MacroAssembler::align(int modulus) {
 991   align(modulus, offset());
 992 }
 993 
 994 void MacroAssembler::align(int modulus, int target) {
 995   if (target % modulus != 0) {
 996     nop(modulus - (target % modulus));
 997   }
 998 }
 999 
1000 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
1001   // Used in sign-masking with aligned address.
1002   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1003   if (reachable(src)) {
1004     Assembler::andpd(dst, as_Address(src));
1005   } else {
1006     lea(rscratch1, src);
1007     Assembler::andpd(dst, Address(rscratch1, 0));
1008   }
1009 }
1010 
1011 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1012   // Used in sign-masking with aligned address.
1013   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1014   if (reachable(src)) {
1015     Assembler::andps(dst, as_Address(src));
1016   } else {
1017     lea(rscratch1, src);
1018     Assembler::andps(dst, Address(rscratch1, 0));
1019   }
1020 }
1021 
1022 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1023   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1024 }
1025 
1026 void MacroAssembler::atomic_incl(Address counter_addr) {
1027   if (os::is_MP())
1028     lock();
1029   incrementl(counter_addr);
1030 }
1031 
1032 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1033   if (reachable(counter_addr)) {
1034     atomic_incl(as_Address(counter_addr));
1035   } else {
1036     lea(scr, counter_addr);
1037     atomic_incl(Address(scr, 0));
1038   }
1039 }
1040 
1041 #ifdef _LP64
1042 void MacroAssembler::atomic_incq(Address counter_addr) {
1043   if (os::is_MP())
1044     lock();
1045   incrementq(counter_addr);
1046 }
1047 
1048 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1049   if (reachable(counter_addr)) {
1050     atomic_incq(as_Address(counter_addr));
1051   } else {
1052     lea(scr, counter_addr);
1053     atomic_incq(Address(scr, 0));
1054   }
1055 }
1056 #endif
1057 
1058 // Writes to stack successive pages until offset reached to check for
1059 // stack overflow + shadow pages.  This clobbers tmp.
1060 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1061   movptr(tmp, rsp);
1062   // Bang stack for total size given plus shadow page size.
1063   // Bang one page at a time because large size can bang beyond yellow and
1064   // red zones.
1065   Label loop;
1066   bind(loop);
1067   movl(Address(tmp, (-os::vm_page_size())), size );
1068   subptr(tmp, os::vm_page_size());
1069   subl(size, os::vm_page_size());
1070   jcc(Assembler::greater, loop);
1071 
1072   // Bang down shadow pages too.
1073   // At this point, (tmp-0) is the last address touched, so don't
1074   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1075   // was post-decremented.)  Skip this address by starting at i=1, and
1076   // touch a few more pages below.  N.B.  It is important to touch all
1077   // the way down including all pages in the shadow zone.
1078   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1079     // this could be any sized move but this is can be a debugging crumb
1080     // so the bigger the better.
1081     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1082   }
1083 }
1084 
1085 void MacroAssembler::reserved_stack_check() {
1086     // testing if reserved zone needs to be enabled
1087     Label no_reserved_zone_enabling;
1088     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1089     NOT_LP64(get_thread(rsi);)
1090 
1091     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1092     jcc(Assembler::below, no_reserved_zone_enabling);
1093 
1094     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1095     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1096     should_not_reach_here();
1097 
1098     bind(no_reserved_zone_enabling);
1099 }
1100 
1101 int MacroAssembler::biased_locking_enter(Register lock_reg,
1102                                          Register obj_reg,
1103                                          Register swap_reg,
1104                                          Register tmp_reg,
1105                                          bool swap_reg_contains_mark,
1106                                          Label& done,
1107                                          Label* slow_case,
1108                                          BiasedLockingCounters* counters) {
1109   assert(UseBiasedLocking, "why call this otherwise?");
1110   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1111   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1112   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1113   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1114   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1115   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1116 
1117   if (PrintBiasedLockingStatistics && counters == NULL) {
1118     counters = BiasedLocking::counters();
1119   }
1120   // Biased locking
1121   // See whether the lock is currently biased toward our thread and
1122   // whether the epoch is still valid
1123   // Note that the runtime guarantees sufficient alignment of JavaThread
1124   // pointers to allow age to be placed into low bits
1125   // First check to see whether biasing is even enabled for this object
1126   Label cas_label;
1127   int null_check_offset = -1;
1128   if (!swap_reg_contains_mark) {
1129     null_check_offset = offset();
1130     movptr(swap_reg, mark_addr);
1131   }
1132   movptr(tmp_reg, swap_reg);
1133   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1134   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1135   jcc(Assembler::notEqual, cas_label);
1136   // The bias pattern is present in the object's header. Need to check
1137   // whether the bias owner and the epoch are both still current.
1138 #ifndef _LP64
1139   // Note that because there is no current thread register on x86_32 we
1140   // need to store off the mark word we read out of the object to
1141   // avoid reloading it and needing to recheck invariants below. This
1142   // store is unfortunate but it makes the overall code shorter and
1143   // simpler.
1144   movptr(saved_mark_addr, swap_reg);
1145 #endif
1146   if (swap_reg_contains_mark) {
1147     null_check_offset = offset();
1148   }
1149   load_prototype_header(tmp_reg, obj_reg);
1150 #ifdef _LP64
1151   orptr(tmp_reg, r15_thread);
1152   xorptr(tmp_reg, swap_reg);
1153   Register header_reg = tmp_reg;
1154 #else
1155   xorptr(tmp_reg, swap_reg);
1156   get_thread(swap_reg);
1157   xorptr(swap_reg, tmp_reg);
1158   Register header_reg = swap_reg;
1159 #endif
1160   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1161   if (counters != NULL) {
1162     cond_inc32(Assembler::zero,
1163                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1164   }
1165   jcc(Assembler::equal, done);
1166 
1167   Label try_revoke_bias;
1168   Label try_rebias;
1169 
1170   // At this point we know that the header has the bias pattern and
1171   // that we are not the bias owner in the current epoch. We need to
1172   // figure out more details about the state of the header in order to
1173   // know what operations can be legally performed on the object's
1174   // header.
1175 
1176   // If the low three bits in the xor result aren't clear, that means
1177   // the prototype header is no longer biased and we have to revoke
1178   // the bias on this object.
1179   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1180   jccb(Assembler::notZero, try_revoke_bias);
1181 
1182   // Biasing is still enabled for this data type. See whether the
1183   // epoch of the current bias is still valid, meaning that the epoch
1184   // bits of the mark word are equal to the epoch bits of the
1185   // prototype header. (Note that the prototype header's epoch bits
1186   // only change at a safepoint.) If not, attempt to rebias the object
1187   // toward the current thread. Note that we must be absolutely sure
1188   // that the current epoch is invalid in order to do this because
1189   // otherwise the manipulations it performs on the mark word are
1190   // illegal.
1191   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1192   jccb(Assembler::notZero, try_rebias);
1193 
1194   // The epoch of the current bias is still valid but we know nothing
1195   // about the owner; it might be set or it might be clear. Try to
1196   // acquire the bias of the object using an atomic operation. If this
1197   // fails we will go in to the runtime to revoke the object's bias.
1198   // Note that we first construct the presumed unbiased header so we
1199   // don't accidentally blow away another thread's valid bias.
1200   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1201   andptr(swap_reg,
1202          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1203 #ifdef _LP64
1204   movptr(tmp_reg, swap_reg);
1205   orptr(tmp_reg, r15_thread);
1206 #else
1207   get_thread(tmp_reg);
1208   orptr(tmp_reg, swap_reg);
1209 #endif
1210   if (os::is_MP()) {
1211     lock();
1212   }
1213   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1214   // If the biasing toward our thread failed, this means that
1215   // another thread succeeded in biasing it toward itself and we
1216   // need to revoke that bias. The revocation will occur in the
1217   // interpreter runtime in the slow case.
1218   if (counters != NULL) {
1219     cond_inc32(Assembler::zero,
1220                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1221   }
1222   if (slow_case != NULL) {
1223     jcc(Assembler::notZero, *slow_case);
1224   }
1225   jmp(done);
1226 
1227   bind(try_rebias);
1228   // At this point we know the epoch has expired, meaning that the
1229   // current "bias owner", if any, is actually invalid. Under these
1230   // circumstances _only_, we are allowed to use the current header's
1231   // value as the comparison value when doing the cas to acquire the
1232   // bias in the current epoch. In other words, we allow transfer of
1233   // the bias from one thread to another directly in this situation.
1234   //
1235   // FIXME: due to a lack of registers we currently blow away the age
1236   // bits in this situation. Should attempt to preserve them.
1237   load_prototype_header(tmp_reg, obj_reg);
1238 #ifdef _LP64
1239   orptr(tmp_reg, r15_thread);
1240 #else
1241   get_thread(swap_reg);
1242   orptr(tmp_reg, swap_reg);
1243   movptr(swap_reg, saved_mark_addr);
1244 #endif
1245   if (os::is_MP()) {
1246     lock();
1247   }
1248   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1249   // If the biasing toward our thread failed, then another thread
1250   // succeeded in biasing it toward itself and we need to revoke that
1251   // bias. The revocation will occur in the runtime in the slow case.
1252   if (counters != NULL) {
1253     cond_inc32(Assembler::zero,
1254                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1255   }
1256   if (slow_case != NULL) {
1257     jcc(Assembler::notZero, *slow_case);
1258   }
1259   jmp(done);
1260 
1261   bind(try_revoke_bias);
1262   // The prototype mark in the klass doesn't have the bias bit set any
1263   // more, indicating that objects of this data type are not supposed
1264   // to be biased any more. We are going to try to reset the mark of
1265   // this object to the prototype value and fall through to the
1266   // CAS-based locking scheme. Note that if our CAS fails, it means
1267   // that another thread raced us for the privilege of revoking the
1268   // bias of this particular object, so it's okay to continue in the
1269   // normal locking code.
1270   //
1271   // FIXME: due to a lack of registers we currently blow away the age
1272   // bits in this situation. Should attempt to preserve them.
1273   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1274   load_prototype_header(tmp_reg, obj_reg);
1275   if (os::is_MP()) {
1276     lock();
1277   }
1278   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1279   // Fall through to the normal CAS-based lock, because no matter what
1280   // the result of the above CAS, some thread must have succeeded in
1281   // removing the bias bit from the object's header.
1282   if (counters != NULL) {
1283     cond_inc32(Assembler::zero,
1284                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1285   }
1286 
1287   bind(cas_label);
1288 
1289   return null_check_offset;
1290 }
1291 
1292 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1293   assert(UseBiasedLocking, "why call this otherwise?");
1294 
1295   // Check for biased locking unlock case, which is a no-op
1296   // Note: we do not have to check the thread ID for two reasons.
1297   // First, the interpreter checks for IllegalMonitorStateException at
1298   // a higher level. Second, if the bias was revoked while we held the
1299   // lock, the object could not be rebiased toward another thread, so
1300   // the bias bit would be clear.
1301   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1302   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1303   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1304   jcc(Assembler::equal, done);
1305 }
1306 
1307 #ifdef COMPILER2
1308 
1309 #if INCLUDE_RTM_OPT
1310 
1311 // Update rtm_counters based on abort status
1312 // input: abort_status
1313 //        rtm_counters (RTMLockingCounters*)
1314 // flags are killed
1315 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1316 
1317   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1318   if (PrintPreciseRTMLockingStatistics) {
1319     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1320       Label check_abort;
1321       testl(abort_status, (1<<i));
1322       jccb(Assembler::equal, check_abort);
1323       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1324       bind(check_abort);
1325     }
1326   }
1327 }
1328 
1329 // Branch if (random & (count-1) != 0), count is 2^n
1330 // tmp, scr and flags are killed
1331 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1332   assert(tmp == rax, "");
1333   assert(scr == rdx, "");
1334   rdtsc(); // modifies EDX:EAX
1335   andptr(tmp, count-1);
1336   jccb(Assembler::notZero, brLabel);
1337 }
1338 
1339 // Perform abort ratio calculation, set no_rtm bit if high ratio
1340 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1341 // tmpReg, rtm_counters_Reg and flags are killed
1342 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1343                                                  Register rtm_counters_Reg,
1344                                                  RTMLockingCounters* rtm_counters,
1345                                                  Metadata* method_data) {
1346   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1347 
1348   if (RTMLockingCalculationDelay > 0) {
1349     // Delay calculation
1350     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1351     testptr(tmpReg, tmpReg);
1352     jccb(Assembler::equal, L_done);
1353   }
1354   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1355   //   Aborted transactions = abort_count * 100
1356   //   All transactions = total_count *  RTMTotalCountIncrRate
1357   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1358 
1359   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1360   cmpptr(tmpReg, RTMAbortThreshold);
1361   jccb(Assembler::below, L_check_always_rtm2);
1362   imulptr(tmpReg, tmpReg, 100);
1363 
1364   Register scrReg = rtm_counters_Reg;
1365   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1366   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1367   imulptr(scrReg, scrReg, RTMAbortRatio);
1368   cmpptr(tmpReg, scrReg);
1369   jccb(Assembler::below, L_check_always_rtm1);
1370   if (method_data != NULL) {
1371     // set rtm_state to "no rtm" in MDO
1372     mov_metadata(tmpReg, method_data);
1373     if (os::is_MP()) {
1374       lock();
1375     }
1376     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1377   }
1378   jmpb(L_done);
1379   bind(L_check_always_rtm1);
1380   // Reload RTMLockingCounters* address
1381   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1382   bind(L_check_always_rtm2);
1383   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1384   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1385   jccb(Assembler::below, L_done);
1386   if (method_data != NULL) {
1387     // set rtm_state to "always rtm" in MDO
1388     mov_metadata(tmpReg, method_data);
1389     if (os::is_MP()) {
1390       lock();
1391     }
1392     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1393   }
1394   bind(L_done);
1395 }
1396 
1397 // Update counters and perform abort ratio calculation
1398 // input:  abort_status_Reg
1399 // rtm_counters_Reg, flags are killed
1400 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1401                                    Register rtm_counters_Reg,
1402                                    RTMLockingCounters* rtm_counters,
1403                                    Metadata* method_data,
1404                                    bool profile_rtm) {
1405 
1406   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1407   // update rtm counters based on rax value at abort
1408   // reads abort_status_Reg, updates flags
1409   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1410   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1411   if (profile_rtm) {
1412     // Save abort status because abort_status_Reg is used by following code.
1413     if (RTMRetryCount > 0) {
1414       push(abort_status_Reg);
1415     }
1416     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1417     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1418     // restore abort status
1419     if (RTMRetryCount > 0) {
1420       pop(abort_status_Reg);
1421     }
1422   }
1423 }
1424 
1425 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1426 // inputs: retry_count_Reg
1427 //       : abort_status_Reg
1428 // output: retry_count_Reg decremented by 1
1429 // flags are killed
1430 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1431   Label doneRetry;
1432   assert(abort_status_Reg == rax, "");
1433   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1434   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1435   // if reason is in 0x6 and retry count != 0 then retry
1436   andptr(abort_status_Reg, 0x6);
1437   jccb(Assembler::zero, doneRetry);
1438   testl(retry_count_Reg, retry_count_Reg);
1439   jccb(Assembler::zero, doneRetry);
1440   pause();
1441   decrementl(retry_count_Reg);
1442   jmp(retryLabel);
1443   bind(doneRetry);
1444 }
1445 
1446 // Spin and retry if lock is busy,
1447 // inputs: box_Reg (monitor address)
1448 //       : retry_count_Reg
1449 // output: retry_count_Reg decremented by 1
1450 //       : clear z flag if retry count exceeded
1451 // tmp_Reg, scr_Reg, flags are killed
1452 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1453                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1454   Label SpinLoop, SpinExit, doneRetry;
1455   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1456 
1457   testl(retry_count_Reg, retry_count_Reg);
1458   jccb(Assembler::zero, doneRetry);
1459   decrementl(retry_count_Reg);
1460   movptr(scr_Reg, RTMSpinLoopCount);
1461 
1462   bind(SpinLoop);
1463   pause();
1464   decrementl(scr_Reg);
1465   jccb(Assembler::lessEqual, SpinExit);
1466   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1467   testptr(tmp_Reg, tmp_Reg);
1468   jccb(Assembler::notZero, SpinLoop);
1469 
1470   bind(SpinExit);
1471   jmp(retryLabel);
1472   bind(doneRetry);
1473   incrementl(retry_count_Reg); // clear z flag
1474 }
1475 
1476 // Use RTM for normal stack locks
1477 // Input: objReg (object to lock)
1478 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1479                                        Register retry_on_abort_count_Reg,
1480                                        RTMLockingCounters* stack_rtm_counters,
1481                                        Metadata* method_data, bool profile_rtm,
1482                                        Label& DONE_LABEL, Label& IsInflated) {
1483   assert(UseRTMForStackLocks, "why call this otherwise?");
1484   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1485   assert(tmpReg == rax, "");
1486   assert(scrReg == rdx, "");
1487   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1488 
1489   if (RTMRetryCount > 0) {
1490     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1491     bind(L_rtm_retry);
1492   }
1493   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1494   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1495   jcc(Assembler::notZero, IsInflated);
1496 
1497   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1498     Label L_noincrement;
1499     if (RTMTotalCountIncrRate > 1) {
1500       // tmpReg, scrReg and flags are killed
1501       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1502     }
1503     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1504     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1505     bind(L_noincrement);
1506   }
1507   xbegin(L_on_abort);
1508   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1509   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1510   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1511   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1512 
1513   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1514   if (UseRTMXendForLockBusy) {
1515     xend();
1516     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1517     jmp(L_decrement_retry);
1518   }
1519   else {
1520     xabort(0);
1521   }
1522   bind(L_on_abort);
1523   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1524     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1525   }
1526   bind(L_decrement_retry);
1527   if (RTMRetryCount > 0) {
1528     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1529     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1530   }
1531 }
1532 
1533 // Use RTM for inflating locks
1534 // inputs: objReg (object to lock)
1535 //         boxReg (on-stack box address (displaced header location) - KILLED)
1536 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1537 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1538                                           Register scrReg, Register retry_on_busy_count_Reg,
1539                                           Register retry_on_abort_count_Reg,
1540                                           RTMLockingCounters* rtm_counters,
1541                                           Metadata* method_data, bool profile_rtm,
1542                                           Label& DONE_LABEL) {
1543   assert(UseRTMLocking, "why call this otherwise?");
1544   assert(tmpReg == rax, "");
1545   assert(scrReg == rdx, "");
1546   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1547   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1548 
1549   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1550   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1551   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1552 
1553   if (RTMRetryCount > 0) {
1554     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1555     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1556     bind(L_rtm_retry);
1557   }
1558   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1559     Label L_noincrement;
1560     if (RTMTotalCountIncrRate > 1) {
1561       // tmpReg, scrReg and flags are killed
1562       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1563     }
1564     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1565     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1566     bind(L_noincrement);
1567   }
1568   xbegin(L_on_abort);
1569   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1570   movptr(tmpReg, Address(tmpReg, owner_offset));
1571   testptr(tmpReg, tmpReg);
1572   jcc(Assembler::zero, DONE_LABEL);
1573   if (UseRTMXendForLockBusy) {
1574     xend();
1575     jmp(L_decrement_retry);
1576   }
1577   else {
1578     xabort(0);
1579   }
1580   bind(L_on_abort);
1581   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1582   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1583     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1584   }
1585   if (RTMRetryCount > 0) {
1586     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1587     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1588   }
1589 
1590   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1591   testptr(tmpReg, tmpReg) ;
1592   jccb(Assembler::notZero, L_decrement_retry) ;
1593 
1594   // Appears unlocked - try to swing _owner from null to non-null.
1595   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1596 #ifdef _LP64
1597   Register threadReg = r15_thread;
1598 #else
1599   get_thread(scrReg);
1600   Register threadReg = scrReg;
1601 #endif
1602   if (os::is_MP()) {
1603     lock();
1604   }
1605   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1606 
1607   if (RTMRetryCount > 0) {
1608     // success done else retry
1609     jccb(Assembler::equal, DONE_LABEL) ;
1610     bind(L_decrement_retry);
1611     // Spin and retry if lock is busy.
1612     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1613   }
1614   else {
1615     bind(L_decrement_retry);
1616   }
1617 }
1618 
1619 #endif //  INCLUDE_RTM_OPT
1620 
1621 // Fast_Lock and Fast_Unlock used by C2
1622 
1623 // Because the transitions from emitted code to the runtime
1624 // monitorenter/exit helper stubs are so slow it's critical that
1625 // we inline both the stack-locking fast-path and the inflated fast path.
1626 //
1627 // See also: cmpFastLock and cmpFastUnlock.
1628 //
1629 // What follows is a specialized inline transliteration of the code
1630 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1631 // another option would be to emit TrySlowEnter and TrySlowExit methods
1632 // at startup-time.  These methods would accept arguments as
1633 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1634 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1635 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1636 // In practice, however, the # of lock sites is bounded and is usually small.
1637 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1638 // if the processor uses simple bimodal branch predictors keyed by EIP
1639 // Since the helper routines would be called from multiple synchronization
1640 // sites.
1641 //
1642 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1643 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1644 // to those specialized methods.  That'd give us a mostly platform-independent
1645 // implementation that the JITs could optimize and inline at their pleasure.
1646 // Done correctly, the only time we'd need to cross to native could would be
1647 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1648 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1649 // (b) explicit barriers or fence operations.
1650 //
1651 // TODO:
1652 //
1653 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1654 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1655 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1656 //    the lock operators would typically be faster than reifying Self.
1657 //
1658 // *  Ideally I'd define the primitives as:
1659 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1660 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1661 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1662 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1663 //    Furthermore the register assignments are overconstrained, possibly resulting in
1664 //    sub-optimal code near the synchronization site.
1665 //
1666 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1667 //    Alternately, use a better sp-proximity test.
1668 //
1669 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1670 //    Either one is sufficient to uniquely identify a thread.
1671 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1672 //
1673 // *  Intrinsify notify() and notifyAll() for the common cases where the
1674 //    object is locked by the calling thread but the waitlist is empty.
1675 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1676 //
1677 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1678 //    But beware of excessive branch density on AMD Opterons.
1679 //
1680 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1681 //    or failure of the fast-path.  If the fast-path fails then we pass
1682 //    control to the slow-path, typically in C.  In Fast_Lock and
1683 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1684 //    will emit a conditional branch immediately after the node.
1685 //    So we have branches to branches and lots of ICC.ZF games.
1686 //    Instead, it might be better to have C2 pass a "FailureLabel"
1687 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1688 //    will drop through the node.  ICC.ZF is undefined at exit.
1689 //    In the case of failure, the node will branch directly to the
1690 //    FailureLabel
1691 
1692 
1693 // obj: object to lock
1694 // box: on-stack box address (displaced header location) - KILLED
1695 // rax,: tmp -- KILLED
1696 // scr: tmp -- KILLED
1697 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1698                                Register scrReg, Register cx1Reg, Register cx2Reg,
1699                                BiasedLockingCounters* counters,
1700                                RTMLockingCounters* rtm_counters,
1701                                RTMLockingCounters* stack_rtm_counters,
1702                                Metadata* method_data,
1703                                bool use_rtm, bool profile_rtm) {
1704   // Ensure the register assignments are disjoint
1705   assert(tmpReg == rax, "");
1706 
1707   if (use_rtm) {
1708     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1709   } else {
1710     assert(cx1Reg == noreg, "");
1711     assert(cx2Reg == noreg, "");
1712     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1713   }
1714 
1715   if (counters != NULL) {
1716     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1717   }
1718   if (EmitSync & 1) {
1719       // set box->dhw = markOopDesc::unused_mark()
1720       // Force all sync thru slow-path: slow_enter() and slow_exit()
1721       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1722       cmpptr (rsp, (int32_t)NULL_WORD);
1723   } else {
1724     // Possible cases that we'll encounter in fast_lock
1725     // ------------------------------------------------
1726     // * Inflated
1727     //    -- unlocked
1728     //    -- Locked
1729     //       = by self
1730     //       = by other
1731     // * biased
1732     //    -- by Self
1733     //    -- by other
1734     // * neutral
1735     // * stack-locked
1736     //    -- by self
1737     //       = sp-proximity test hits
1738     //       = sp-proximity test generates false-negative
1739     //    -- by other
1740     //
1741 
1742     Label IsInflated, DONE_LABEL;
1743 
1744     // it's stack-locked, biased or neutral
1745     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1746     // order to reduce the number of conditional branches in the most common cases.
1747     // Beware -- there's a subtle invariant that fetch of the markword
1748     // at [FETCH], below, will never observe a biased encoding (*101b).
1749     // If this invariant is not held we risk exclusion (safety) failure.
1750     if (UseBiasedLocking && !UseOptoBiasInlining) {
1751       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1752     }
1753 
1754 #if INCLUDE_RTM_OPT
1755     if (UseRTMForStackLocks && use_rtm) {
1756       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1757                         stack_rtm_counters, method_data, profile_rtm,
1758                         DONE_LABEL, IsInflated);
1759     }
1760 #endif // INCLUDE_RTM_OPT
1761 
1762     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1763     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1764     jccb(Assembler::notZero, IsInflated);
1765 
1766     // Attempt stack-locking ...
1767     orptr (tmpReg, markOopDesc::unlocked_value);
1768     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1769     if (os::is_MP()) {
1770       lock();
1771     }
1772     cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1773     if (counters != NULL) {
1774       cond_inc32(Assembler::equal,
1775                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1776     }
1777     jcc(Assembler::equal, DONE_LABEL);           // Success
1778 
1779     // Recursive locking.
1780     // The object is stack-locked: markword contains stack pointer to BasicLock.
1781     // Locked by current thread if difference with current SP is less than one page.
1782     subptr(tmpReg, rsp);
1783     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1784     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1785     movptr(Address(boxReg, 0), tmpReg);
1786     if (counters != NULL) {
1787       cond_inc32(Assembler::equal,
1788                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1789     }
1790     jmp(DONE_LABEL);
1791 
1792     bind(IsInflated);
1793     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1794 
1795 #if INCLUDE_RTM_OPT
1796     // Use the same RTM locking code in 32- and 64-bit VM.
1797     if (use_rtm) {
1798       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1799                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1800     } else {
1801 #endif // INCLUDE_RTM_OPT
1802 
1803 #ifndef _LP64
1804     // The object is inflated.
1805 
1806     // boxReg refers to the on-stack BasicLock in the current frame.
1807     // We'd like to write:
1808     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1809     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1810     // additional latency as we have another ST in the store buffer that must drain.
1811 
1812     if (EmitSync & 8192) {
1813        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1814        get_thread (scrReg);
1815        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1816        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1817        if (os::is_MP()) {
1818          lock();
1819        }
1820        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1821     } else
1822     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1823        // register juggle because we need tmpReg for cmpxchgptr below
1824        movptr(scrReg, boxReg);
1825        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1826 
1827        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1828        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1829           // prefetchw [eax + Offset(_owner)-2]
1830           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1831        }
1832 
1833        if ((EmitSync & 64) == 0) {
1834          // Optimistic form: consider XORL tmpReg,tmpReg
1835          movptr(tmpReg, NULL_WORD);
1836        } else {
1837          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1838          // Test-And-CAS instead of CAS
1839          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1840          testptr(tmpReg, tmpReg);                   // Locked ?
1841          jccb  (Assembler::notZero, DONE_LABEL);
1842        }
1843 
1844        // Appears unlocked - try to swing _owner from null to non-null.
1845        // Ideally, I'd manifest "Self" with get_thread and then attempt
1846        // to CAS the register containing Self into m->Owner.
1847        // But we don't have enough registers, so instead we can either try to CAS
1848        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1849        // we later store "Self" into m->Owner.  Transiently storing a stack address
1850        // (rsp or the address of the box) into  m->owner is harmless.
1851        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1852        if (os::is_MP()) {
1853          lock();
1854        }
1855        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1856        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1857        // If we weren't able to swing _owner from NULL to the BasicLock
1858        // then take the slow path.
1859        jccb  (Assembler::notZero, DONE_LABEL);
1860        // update _owner from BasicLock to thread
1861        get_thread (scrReg);                    // beware: clobbers ICCs
1862        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1863        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1864 
1865        // If the CAS fails we can either retry or pass control to the slow-path.
1866        // We use the latter tactic.
1867        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1868        // If the CAS was successful ...
1869        //   Self has acquired the lock
1870        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1871        // Intentional fall-through into DONE_LABEL ...
1872     } else {
1873        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1874        movptr(boxReg, tmpReg);
1875 
1876        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1877        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1878           // prefetchw [eax + Offset(_owner)-2]
1879           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1880        }
1881 
1882        if ((EmitSync & 64) == 0) {
1883          // Optimistic form
1884          xorptr  (tmpReg, tmpReg);
1885        } else {
1886          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1887          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1888          testptr(tmpReg, tmpReg);                   // Locked ?
1889          jccb  (Assembler::notZero, DONE_LABEL);
1890        }
1891 
1892        // Appears unlocked - try to swing _owner from null to non-null.
1893        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1894        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1895        get_thread (scrReg);
1896        if (os::is_MP()) {
1897          lock();
1898        }
1899        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1900 
1901        // If the CAS fails we can either retry or pass control to the slow-path.
1902        // We use the latter tactic.
1903        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1904        // If the CAS was successful ...
1905        //   Self has acquired the lock
1906        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1907        // Intentional fall-through into DONE_LABEL ...
1908     }
1909 #else // _LP64
1910     // It's inflated
1911     movq(scrReg, tmpReg);
1912     xorq(tmpReg, tmpReg);
1913 
1914     if (os::is_MP()) {
1915       lock();
1916     }
1917     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1918     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1919     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1920     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1921     // Intentional fall-through into DONE_LABEL ...
1922     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1923 #endif // _LP64
1924 #if INCLUDE_RTM_OPT
1925     } // use_rtm()
1926 #endif
1927     // DONE_LABEL is a hot target - we'd really like to place it at the
1928     // start of cache line by padding with NOPs.
1929     // See the AMD and Intel software optimization manuals for the
1930     // most efficient "long" NOP encodings.
1931     // Unfortunately none of our alignment mechanisms suffice.
1932     bind(DONE_LABEL);
1933 
1934     // At DONE_LABEL the icc ZFlag is set as follows ...
1935     // Fast_Unlock uses the same protocol.
1936     // ZFlag == 1 -> Success
1937     // ZFlag == 0 -> Failure - force control through the slow-path
1938   }
1939 }
1940 
1941 // obj: object to unlock
1942 // box: box address (displaced header location), killed.  Must be EAX.
1943 // tmp: killed, cannot be obj nor box.
1944 //
1945 // Some commentary on balanced locking:
1946 //
1947 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1948 // Methods that don't have provably balanced locking are forced to run in the
1949 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1950 // The interpreter provides two properties:
1951 // I1:  At return-time the interpreter automatically and quietly unlocks any
1952 //      objects acquired the current activation (frame).  Recall that the
1953 //      interpreter maintains an on-stack list of locks currently held by
1954 //      a frame.
1955 // I2:  If a method attempts to unlock an object that is not held by the
1956 //      the frame the interpreter throws IMSX.
1957 //
1958 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1959 // B() doesn't have provably balanced locking so it runs in the interpreter.
1960 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1961 // is still locked by A().
1962 //
1963 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1964 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1965 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1966 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1967 // Arguably given that the spec legislates the JNI case as undefined our implementation
1968 // could reasonably *avoid* checking owner in Fast_Unlock().
1969 // In the interest of performance we elide m->Owner==Self check in unlock.
1970 // A perfectly viable alternative is to elide the owner check except when
1971 // Xcheck:jni is enabled.
1972 
1973 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1974   assert(boxReg == rax, "");
1975   assert_different_registers(objReg, boxReg, tmpReg);
1976 
1977   if (EmitSync & 4) {
1978     // Disable - inhibit all inlining.  Force control through the slow-path
1979     cmpptr (rsp, 0);
1980   } else {
1981     Label DONE_LABEL, Stacked, CheckSucc;
1982 
1983     // Critically, the biased locking test must have precedence over
1984     // and appear before the (box->dhw == 0) recursive stack-lock test.
1985     if (UseBiasedLocking && !UseOptoBiasInlining) {
1986        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1987     }
1988 
1989 #if INCLUDE_RTM_OPT
1990     if (UseRTMForStackLocks && use_rtm) {
1991       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1992       Label L_regular_unlock;
1993       movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
1994       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1995       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1996       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1997       xend();                                       // otherwise end...
1998       jmp(DONE_LABEL);                              // ... and we're done
1999       bind(L_regular_unlock);
2000     }
2001 #endif
2002 
2003     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
2004     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2005     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
2006     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2007     jccb  (Assembler::zero, Stacked);
2008 
2009     // It's inflated.
2010 #if INCLUDE_RTM_OPT
2011     if (use_rtm) {
2012       Label L_regular_inflated_unlock;
2013       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2014       movptr(boxReg, Address(tmpReg, owner_offset));
2015       testptr(boxReg, boxReg);
2016       jccb(Assembler::notZero, L_regular_inflated_unlock);
2017       xend();
2018       jmpb(DONE_LABEL);
2019       bind(L_regular_inflated_unlock);
2020     }
2021 #endif
2022 
2023     // Despite our balanced locking property we still check that m->_owner == Self
2024     // as java routines or native JNI code called by this thread might
2025     // have released the lock.
2026     // Refer to the comments in synchronizer.cpp for how we might encode extra
2027     // state in _succ so we can avoid fetching EntryList|cxq.
2028     //
2029     // I'd like to add more cases in fast_lock() and fast_unlock() --
2030     // such as recursive enter and exit -- but we have to be wary of
2031     // I$ bloat, T$ effects and BP$ effects.
2032     //
2033     // If there's no contention try a 1-0 exit.  That is, exit without
2034     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2035     // we detect and recover from the race that the 1-0 exit admits.
2036     //
2037     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2038     // before it STs null into _owner, releasing the lock.  Updates
2039     // to data protected by the critical section must be visible before
2040     // we drop the lock (and thus before any other thread could acquire
2041     // the lock and observe the fields protected by the lock).
2042     // IA32's memory-model is SPO, so STs are ordered with respect to
2043     // each other and there's no need for an explicit barrier (fence).
2044     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2045 #ifndef _LP64
2046     get_thread (boxReg);
2047     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2048       // prefetchw [ebx + Offset(_owner)-2]
2049       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2050     }
2051 
2052     // Note that we could employ various encoding schemes to reduce
2053     // the number of loads below (currently 4) to just 2 or 3.
2054     // Refer to the comments in synchronizer.cpp.
2055     // In practice the chain of fetches doesn't seem to impact performance, however.
2056     xorptr(boxReg, boxReg);
2057     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2058        // Attempt to reduce branch density - AMD's branch predictor.
2059        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2060        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2061        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2062        jccb  (Assembler::notZero, DONE_LABEL);
2063        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2064        jmpb  (DONE_LABEL);
2065     } else {
2066        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2067        jccb  (Assembler::notZero, DONE_LABEL);
2068        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2069        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2070        jccb  (Assembler::notZero, CheckSucc);
2071        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2072        jmpb  (DONE_LABEL);
2073     }
2074 
2075     // The Following code fragment (EmitSync & 65536) improves the performance of
2076     // contended applications and contended synchronization microbenchmarks.
2077     // Unfortunately the emission of the code - even though not executed - causes regressions
2078     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2079     // with an equal number of never-executed NOPs results in the same regression.
2080     // We leave it off by default.
2081 
2082     if ((EmitSync & 65536) != 0) {
2083        Label LSuccess, LGoSlowPath ;
2084 
2085        bind  (CheckSucc);
2086 
2087        // Optional pre-test ... it's safe to elide this
2088        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2089        jccb(Assembler::zero, LGoSlowPath);
2090 
2091        // We have a classic Dekker-style idiom:
2092        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2093        // There are a number of ways to implement the barrier:
2094        // (1) lock:andl &m->_owner, 0
2095        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2096        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2097        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2098        // (2) If supported, an explicit MFENCE is appealing.
2099        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2100        //     particularly if the write-buffer is full as might be the case if
2101        //     if stores closely precede the fence or fence-equivalent instruction.
2102        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2103        //     as the situation has changed with Nehalem and Shanghai.
2104        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2105        //     The $lines underlying the top-of-stack should be in M-state.
2106        //     The locked add instruction is serializing, of course.
2107        // (4) Use xchg, which is serializing
2108        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2109        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2110        //     The integer condition codes will tell us if succ was 0.
2111        //     Since _succ and _owner should reside in the same $line and
2112        //     we just stored into _owner, it's likely that the $line
2113        //     remains in M-state for the lock:orl.
2114        //
2115        // We currently use (3), although it's likely that switching to (2)
2116        // is correct for the future.
2117 
2118        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2119        if (os::is_MP()) {
2120          lock(); addptr(Address(rsp, 0), 0);
2121        }
2122        // Ratify _succ remains non-null
2123        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2124        jccb  (Assembler::notZero, LSuccess);
2125 
2126        xorptr(boxReg, boxReg);                  // box is really EAX
2127        if (os::is_MP()) { lock(); }
2128        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2129        // There's no successor so we tried to regrab the lock with the
2130        // placeholder value. If that didn't work, then another thread
2131        // grabbed the lock so we're done (and exit was a success).
2132        jccb  (Assembler::notEqual, LSuccess);
2133        // Since we're low on registers we installed rsp as a placeholding in _owner.
2134        // Now install Self over rsp.  This is safe as we're transitioning from
2135        // non-null to non=null
2136        get_thread (boxReg);
2137        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2138        // Intentional fall-through into LGoSlowPath ...
2139 
2140        bind  (LGoSlowPath);
2141        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2142        jmpb  (DONE_LABEL);
2143 
2144        bind  (LSuccess);
2145        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2146        jmpb  (DONE_LABEL);
2147     }
2148 
2149     bind (Stacked);
2150     // It's not inflated and it's not recursively stack-locked and it's not biased.
2151     // It must be stack-locked.
2152     // Try to reset the header to displaced header.
2153     // The "box" value on the stack is stable, so we can reload
2154     // and be assured we observe the same value as above.
2155     movptr(tmpReg, Address(boxReg, 0));
2156     if (os::is_MP()) {
2157       lock();
2158     }
2159     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2160     // Intention fall-thru into DONE_LABEL
2161 
2162     // DONE_LABEL is a hot target - we'd really like to place it at the
2163     // start of cache line by padding with NOPs.
2164     // See the AMD and Intel software optimization manuals for the
2165     // most efficient "long" NOP encodings.
2166     // Unfortunately none of our alignment mechanisms suffice.
2167     if ((EmitSync & 65536) == 0) {
2168        bind (CheckSucc);
2169     }
2170 #else // _LP64
2171     // It's inflated
2172     if (EmitSync & 1024) {
2173       // Emit code to check that _owner == Self
2174       // We could fold the _owner test into subsequent code more efficiently
2175       // than using a stand-alone check, but since _owner checking is off by
2176       // default we don't bother. We also might consider predicating the
2177       // _owner==Self check on Xcheck:jni or running on a debug build.
2178       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2179       xorptr(boxReg, r15_thread);
2180     } else {
2181       xorptr(boxReg, boxReg);
2182     }
2183     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2184     jccb  (Assembler::notZero, DONE_LABEL);
2185     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2186     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2187     jccb  (Assembler::notZero, CheckSucc);
2188     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2189     jmpb  (DONE_LABEL);
2190 
2191     if ((EmitSync & 65536) == 0) {
2192       // Try to avoid passing control into the slow_path ...
2193       Label LSuccess, LGoSlowPath ;
2194       bind  (CheckSucc);
2195 
2196       // The following optional optimization can be elided if necessary
2197       // Effectively: if (succ == null) goto SlowPath
2198       // The code reduces the window for a race, however,
2199       // and thus benefits performance.
2200       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2201       jccb  (Assembler::zero, LGoSlowPath);
2202 
2203       xorptr(boxReg, boxReg);
2204       if ((EmitSync & 16) && os::is_MP()) {
2205         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2206       } else {
2207         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2208         if (os::is_MP()) {
2209           // Memory barrier/fence
2210           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2211           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2212           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2213           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2214           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2215           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2216           lock(); addl(Address(rsp, 0), 0);
2217         }
2218       }
2219       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2220       jccb  (Assembler::notZero, LSuccess);
2221 
2222       // Rare inopportune interleaving - race.
2223       // The successor vanished in the small window above.
2224       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2225       // We need to ensure progress and succession.
2226       // Try to reacquire the lock.
2227       // If that fails then the new owner is responsible for succession and this
2228       // thread needs to take no further action and can exit via the fast path (success).
2229       // If the re-acquire succeeds then pass control into the slow path.
2230       // As implemented, this latter mode is horrible because we generated more
2231       // coherence traffic on the lock *and* artifically extended the critical section
2232       // length while by virtue of passing control into the slow path.
2233 
2234       // box is really RAX -- the following CMPXCHG depends on that binding
2235       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2236       if (os::is_MP()) { lock(); }
2237       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2238       // There's no successor so we tried to regrab the lock.
2239       // If that didn't work, then another thread grabbed the
2240       // lock so we're done (and exit was a success).
2241       jccb  (Assembler::notEqual, LSuccess);
2242       // Intentional fall-through into slow-path
2243 
2244       bind  (LGoSlowPath);
2245       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2246       jmpb  (DONE_LABEL);
2247 
2248       bind  (LSuccess);
2249       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2250       jmpb  (DONE_LABEL);
2251     }
2252 
2253     bind  (Stacked);
2254     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2255     if (os::is_MP()) { lock(); }
2256     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2257 
2258     if (EmitSync & 65536) {
2259        bind (CheckSucc);
2260     }
2261 #endif
2262     bind(DONE_LABEL);
2263   }
2264 }
2265 #endif // COMPILER2
2266 
2267 void MacroAssembler::c2bool(Register x) {
2268   // implements x == 0 ? 0 : 1
2269   // note: must only look at least-significant byte of x
2270   //       since C-style booleans are stored in one byte
2271   //       only! (was bug)
2272   andl(x, 0xFF);
2273   setb(Assembler::notZero, x);
2274 }
2275 
2276 // Wouldn't need if AddressLiteral version had new name
2277 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2278   Assembler::call(L, rtype);
2279 }
2280 
2281 void MacroAssembler::call(Register entry) {
2282   Assembler::call(entry);
2283 }
2284 
2285 void MacroAssembler::call(AddressLiteral entry) {
2286   if (reachable(entry)) {
2287     Assembler::call_literal(entry.target(), entry.rspec());
2288   } else {
2289     lea(rscratch1, entry);
2290     Assembler::call(rscratch1);
2291   }
2292 }
2293 
2294 void MacroAssembler::ic_call(address entry, jint method_index) {
2295   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2296   movptr(rax, (intptr_t)Universe::non_oop_word());
2297   call(AddressLiteral(entry, rh));
2298 }
2299 
2300 // Implementation of call_VM versions
2301 
2302 void MacroAssembler::call_VM(Register oop_result,
2303                              address entry_point,
2304                              bool check_exceptions) {
2305   Label C, E;
2306   call(C, relocInfo::none);
2307   jmp(E);
2308 
2309   bind(C);
2310   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2311   ret(0);
2312 
2313   bind(E);
2314 }
2315 
2316 void MacroAssembler::call_VM(Register oop_result,
2317                              address entry_point,
2318                              Register arg_1,
2319                              bool check_exceptions) {
2320   Label C, E;
2321   call(C, relocInfo::none);
2322   jmp(E);
2323 
2324   bind(C);
2325   pass_arg1(this, arg_1);
2326   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2327   ret(0);
2328 
2329   bind(E);
2330 }
2331 
2332 void MacroAssembler::call_VM(Register oop_result,
2333                              address entry_point,
2334                              Register arg_1,
2335                              Register arg_2,
2336                              bool check_exceptions) {
2337   Label C, E;
2338   call(C, relocInfo::none);
2339   jmp(E);
2340 
2341   bind(C);
2342 
2343   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2344 
2345   pass_arg2(this, arg_2);
2346   pass_arg1(this, arg_1);
2347   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2348   ret(0);
2349 
2350   bind(E);
2351 }
2352 
2353 void MacroAssembler::call_VM(Register oop_result,
2354                              address entry_point,
2355                              Register arg_1,
2356                              Register arg_2,
2357                              Register arg_3,
2358                              bool check_exceptions) {
2359   Label C, E;
2360   call(C, relocInfo::none);
2361   jmp(E);
2362 
2363   bind(C);
2364 
2365   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2366   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2367   pass_arg3(this, arg_3);
2368 
2369   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2370   pass_arg2(this, arg_2);
2371 
2372   pass_arg1(this, arg_1);
2373   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2374   ret(0);
2375 
2376   bind(E);
2377 }
2378 
2379 void MacroAssembler::call_VM(Register oop_result,
2380                              Register last_java_sp,
2381                              address entry_point,
2382                              int number_of_arguments,
2383                              bool check_exceptions) {
2384   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2385   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2386 }
2387 
2388 void MacroAssembler::call_VM(Register oop_result,
2389                              Register last_java_sp,
2390                              address entry_point,
2391                              Register arg_1,
2392                              bool check_exceptions) {
2393   pass_arg1(this, arg_1);
2394   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2395 }
2396 
2397 void MacroAssembler::call_VM(Register oop_result,
2398                              Register last_java_sp,
2399                              address entry_point,
2400                              Register arg_1,
2401                              Register arg_2,
2402                              bool check_exceptions) {
2403 
2404   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2405   pass_arg2(this, arg_2);
2406   pass_arg1(this, arg_1);
2407   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2408 }
2409 
2410 void MacroAssembler::call_VM(Register oop_result,
2411                              Register last_java_sp,
2412                              address entry_point,
2413                              Register arg_1,
2414                              Register arg_2,
2415                              Register arg_3,
2416                              bool check_exceptions) {
2417   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2418   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2419   pass_arg3(this, arg_3);
2420   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2421   pass_arg2(this, arg_2);
2422   pass_arg1(this, arg_1);
2423   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2424 }
2425 
2426 void MacroAssembler::super_call_VM(Register oop_result,
2427                                    Register last_java_sp,
2428                                    address entry_point,
2429                                    int number_of_arguments,
2430                                    bool check_exceptions) {
2431   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2432   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2433 }
2434 
2435 void MacroAssembler::super_call_VM(Register oop_result,
2436                                    Register last_java_sp,
2437                                    address entry_point,
2438                                    Register arg_1,
2439                                    bool check_exceptions) {
2440   pass_arg1(this, arg_1);
2441   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2442 }
2443 
2444 void MacroAssembler::super_call_VM(Register oop_result,
2445                                    Register last_java_sp,
2446                                    address entry_point,
2447                                    Register arg_1,
2448                                    Register arg_2,
2449                                    bool check_exceptions) {
2450 
2451   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2452   pass_arg2(this, arg_2);
2453   pass_arg1(this, arg_1);
2454   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2455 }
2456 
2457 void MacroAssembler::super_call_VM(Register oop_result,
2458                                    Register last_java_sp,
2459                                    address entry_point,
2460                                    Register arg_1,
2461                                    Register arg_2,
2462                                    Register arg_3,
2463                                    bool check_exceptions) {
2464   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2465   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2466   pass_arg3(this, arg_3);
2467   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2468   pass_arg2(this, arg_2);
2469   pass_arg1(this, arg_1);
2470   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2471 }
2472 
2473 void MacroAssembler::call_VM_base(Register oop_result,
2474                                   Register java_thread,
2475                                   Register last_java_sp,
2476                                   address  entry_point,
2477                                   int      number_of_arguments,
2478                                   bool     check_exceptions) {
2479   // determine java_thread register
2480   if (!java_thread->is_valid()) {
2481 #ifdef _LP64
2482     java_thread = r15_thread;
2483 #else
2484     java_thread = rdi;
2485     get_thread(java_thread);
2486 #endif // LP64
2487   }
2488   // determine last_java_sp register
2489   if (!last_java_sp->is_valid()) {
2490     last_java_sp = rsp;
2491   }
2492   // debugging support
2493   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2494   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2495 #ifdef ASSERT
2496   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2497   // r12 is the heapbase.
2498   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2499 #endif // ASSERT
2500 
2501   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2502   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2503 
2504   // push java thread (becomes first argument of C function)
2505 
2506   NOT_LP64(push(java_thread); number_of_arguments++);
2507   LP64_ONLY(mov(c_rarg0, r15_thread));
2508 
2509   // set last Java frame before call
2510   assert(last_java_sp != rbp, "can't use ebp/rbp");
2511 
2512   // Only interpreter should have to set fp
2513   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2514 
2515   // do the call, remove parameters
2516   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2517 
2518   // restore the thread (cannot use the pushed argument since arguments
2519   // may be overwritten by C code generated by an optimizing compiler);
2520   // however can use the register value directly if it is callee saved.
2521   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2522     // rdi & rsi (also r15) are callee saved -> nothing to do
2523 #ifdef ASSERT
2524     guarantee(java_thread != rax, "change this code");
2525     push(rax);
2526     { Label L;
2527       get_thread(rax);
2528       cmpptr(java_thread, rax);
2529       jcc(Assembler::equal, L);
2530       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2531       bind(L);
2532     }
2533     pop(rax);
2534 #endif
2535   } else {
2536     get_thread(java_thread);
2537   }
2538   // reset last Java frame
2539   // Only interpreter should have to clear fp
2540   reset_last_Java_frame(java_thread, true);
2541 
2542    // C++ interp handles this in the interpreter
2543   check_and_handle_popframe(java_thread);
2544   check_and_handle_earlyret(java_thread);
2545 
2546   if (check_exceptions) {
2547     // check for pending exceptions (java_thread is set upon return)
2548     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2549 #ifndef _LP64
2550     jump_cc(Assembler::notEqual,
2551             RuntimeAddress(StubRoutines::forward_exception_entry()));
2552 #else
2553     // This used to conditionally jump to forward_exception however it is
2554     // possible if we relocate that the branch will not reach. So we must jump
2555     // around so we can always reach
2556 
2557     Label ok;
2558     jcc(Assembler::equal, ok);
2559     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2560     bind(ok);
2561 #endif // LP64
2562   }
2563 
2564   // get oop result if there is one and reset the value in the thread
2565   if (oop_result->is_valid()) {
2566     get_vm_result(oop_result, java_thread);
2567   }
2568 }
2569 
2570 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2571 
2572   // Calculate the value for last_Java_sp
2573   // somewhat subtle. call_VM does an intermediate call
2574   // which places a return address on the stack just under the
2575   // stack pointer as the user finsihed with it. This allows
2576   // use to retrieve last_Java_pc from last_Java_sp[-1].
2577   // On 32bit we then have to push additional args on the stack to accomplish
2578   // the actual requested call. On 64bit call_VM only can use register args
2579   // so the only extra space is the return address that call_VM created.
2580   // This hopefully explains the calculations here.
2581 
2582 #ifdef _LP64
2583   // We've pushed one address, correct last_Java_sp
2584   lea(rax, Address(rsp, wordSize));
2585 #else
2586   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2587 #endif // LP64
2588 
2589   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2590 
2591 }
2592 
2593 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2594 void MacroAssembler::call_VM_leaf0(address entry_point) {
2595   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2596 }
2597 
2598 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2599   call_VM_leaf_base(entry_point, number_of_arguments);
2600 }
2601 
2602 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2603   pass_arg0(this, arg_0);
2604   call_VM_leaf(entry_point, 1);
2605 }
2606 
2607 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2608 
2609   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2610   pass_arg1(this, arg_1);
2611   pass_arg0(this, arg_0);
2612   call_VM_leaf(entry_point, 2);
2613 }
2614 
2615 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2616   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2617   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2618   pass_arg2(this, arg_2);
2619   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2620   pass_arg1(this, arg_1);
2621   pass_arg0(this, arg_0);
2622   call_VM_leaf(entry_point, 3);
2623 }
2624 
2625 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2626   pass_arg0(this, arg_0);
2627   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2628 }
2629 
2630 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2631 
2632   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2633   pass_arg1(this, arg_1);
2634   pass_arg0(this, arg_0);
2635   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2636 }
2637 
2638 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2639   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2640   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2641   pass_arg2(this, arg_2);
2642   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2643   pass_arg1(this, arg_1);
2644   pass_arg0(this, arg_0);
2645   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2646 }
2647 
2648 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2649   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2650   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2651   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2652   pass_arg3(this, arg_3);
2653   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2654   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2655   pass_arg2(this, arg_2);
2656   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2657   pass_arg1(this, arg_1);
2658   pass_arg0(this, arg_0);
2659   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2660 }
2661 
2662 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2663   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2664   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2665   verify_oop(oop_result, "broken oop in call_VM_base");
2666 }
2667 
2668 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2669   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2670   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2671 }
2672 
2673 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2674 }
2675 
2676 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2677 }
2678 
2679 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2680   if (reachable(src1)) {
2681     cmpl(as_Address(src1), imm);
2682   } else {
2683     lea(rscratch1, src1);
2684     cmpl(Address(rscratch1, 0), imm);
2685   }
2686 }
2687 
2688 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2689   assert(!src2.is_lval(), "use cmpptr");
2690   if (reachable(src2)) {
2691     cmpl(src1, as_Address(src2));
2692   } else {
2693     lea(rscratch1, src2);
2694     cmpl(src1, Address(rscratch1, 0));
2695   }
2696 }
2697 
2698 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2699   Assembler::cmpl(src1, imm);
2700 }
2701 
2702 void MacroAssembler::cmp32(Register src1, Address src2) {
2703   Assembler::cmpl(src1, src2);
2704 }
2705 
2706 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2707   ucomisd(opr1, opr2);
2708 
2709   Label L;
2710   if (unordered_is_less) {
2711     movl(dst, -1);
2712     jcc(Assembler::parity, L);
2713     jcc(Assembler::below , L);
2714     movl(dst, 0);
2715     jcc(Assembler::equal , L);
2716     increment(dst);
2717   } else { // unordered is greater
2718     movl(dst, 1);
2719     jcc(Assembler::parity, L);
2720     jcc(Assembler::above , L);
2721     movl(dst, 0);
2722     jcc(Assembler::equal , L);
2723     decrementl(dst);
2724   }
2725   bind(L);
2726 }
2727 
2728 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2729   ucomiss(opr1, opr2);
2730 
2731   Label L;
2732   if (unordered_is_less) {
2733     movl(dst, -1);
2734     jcc(Assembler::parity, L);
2735     jcc(Assembler::below , L);
2736     movl(dst, 0);
2737     jcc(Assembler::equal , L);
2738     increment(dst);
2739   } else { // unordered is greater
2740     movl(dst, 1);
2741     jcc(Assembler::parity, L);
2742     jcc(Assembler::above , L);
2743     movl(dst, 0);
2744     jcc(Assembler::equal , L);
2745     decrementl(dst);
2746   }
2747   bind(L);
2748 }
2749 
2750 
2751 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2752   if (reachable(src1)) {
2753     cmpb(as_Address(src1), imm);
2754   } else {
2755     lea(rscratch1, src1);
2756     cmpb(Address(rscratch1, 0), imm);
2757   }
2758 }
2759 
2760 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2761 #ifdef _LP64
2762   if (src2.is_lval()) {
2763     movptr(rscratch1, src2);
2764     Assembler::cmpq(src1, rscratch1);
2765   } else if (reachable(src2)) {
2766     cmpq(src1, as_Address(src2));
2767   } else {
2768     lea(rscratch1, src2);
2769     Assembler::cmpq(src1, Address(rscratch1, 0));
2770   }
2771 #else
2772   if (src2.is_lval()) {
2773     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2774   } else {
2775     cmpl(src1, as_Address(src2));
2776   }
2777 #endif // _LP64
2778 }
2779 
2780 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2781   assert(src2.is_lval(), "not a mem-mem compare");
2782 #ifdef _LP64
2783   // moves src2's literal address
2784   movptr(rscratch1, src2);
2785   Assembler::cmpq(src1, rscratch1);
2786 #else
2787   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2788 #endif // _LP64
2789 }
2790 
2791 void MacroAssembler::cmpoop(Register src1, Register src2) {
2792   cmpptr(src1, src2);
2793 }
2794 
2795 void MacroAssembler::cmpoop(Register src1, Address src2) {
2796   cmpptr(src1, src2);
2797 }
2798 
2799 #ifdef _LP64
2800 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2801   movoop(rscratch1, src2);
2802   cmpptr(src1, rscratch1);
2803 }
2804 #endif
2805 
2806 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2807   if (reachable(adr)) {
2808     if (os::is_MP())
2809       lock();
2810     cmpxchgptr(reg, as_Address(adr));
2811   } else {
2812     lea(rscratch1, adr);
2813     if (os::is_MP())
2814       lock();
2815     cmpxchgptr(reg, Address(rscratch1, 0));
2816   }
2817 }
2818 
2819 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2820   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2821 }
2822 
2823 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2824   if (reachable(src)) {
2825     Assembler::comisd(dst, as_Address(src));
2826   } else {
2827     lea(rscratch1, src);
2828     Assembler::comisd(dst, Address(rscratch1, 0));
2829   }
2830 }
2831 
2832 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2833   if (reachable(src)) {
2834     Assembler::comiss(dst, as_Address(src));
2835   } else {
2836     lea(rscratch1, src);
2837     Assembler::comiss(dst, Address(rscratch1, 0));
2838   }
2839 }
2840 
2841 
2842 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2843   Condition negated_cond = negate_condition(cond);
2844   Label L;
2845   jcc(negated_cond, L);
2846   pushf(); // Preserve flags
2847   atomic_incl(counter_addr);
2848   popf();
2849   bind(L);
2850 }
2851 
2852 int MacroAssembler::corrected_idivl(Register reg) {
2853   // Full implementation of Java idiv and irem; checks for
2854   // special case as described in JVM spec., p.243 & p.271.
2855   // The function returns the (pc) offset of the idivl
2856   // instruction - may be needed for implicit exceptions.
2857   //
2858   //         normal case                           special case
2859   //
2860   // input : rax,: dividend                         min_int
2861   //         reg: divisor   (may not be rax,/rdx)   -1
2862   //
2863   // output: rax,: quotient  (= rax, idiv reg)       min_int
2864   //         rdx: remainder (= rax, irem reg)       0
2865   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2866   const int min_int = 0x80000000;
2867   Label normal_case, special_case;
2868 
2869   // check for special case
2870   cmpl(rax, min_int);
2871   jcc(Assembler::notEqual, normal_case);
2872   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2873   cmpl(reg, -1);
2874   jcc(Assembler::equal, special_case);
2875 
2876   // handle normal case
2877   bind(normal_case);
2878   cdql();
2879   int idivl_offset = offset();
2880   idivl(reg);
2881 
2882   // normal and special case exit
2883   bind(special_case);
2884 
2885   return idivl_offset;
2886 }
2887 
2888 
2889 
2890 void MacroAssembler::decrementl(Register reg, int value) {
2891   if (value == min_jint) {subl(reg, value) ; return; }
2892   if (value <  0) { incrementl(reg, -value); return; }
2893   if (value == 0) {                        ; return; }
2894   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2895   /* else */      { subl(reg, value)       ; return; }
2896 }
2897 
2898 void MacroAssembler::decrementl(Address dst, int value) {
2899   if (value == min_jint) {subl(dst, value) ; return; }
2900   if (value <  0) { incrementl(dst, -value); return; }
2901   if (value == 0) {                        ; return; }
2902   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2903   /* else */      { subl(dst, value)       ; return; }
2904 }
2905 
2906 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2907   assert (shift_value > 0, "illegal shift value");
2908   Label _is_positive;
2909   testl (reg, reg);
2910   jcc (Assembler::positive, _is_positive);
2911   int offset = (1 << shift_value) - 1 ;
2912 
2913   if (offset == 1) {
2914     incrementl(reg);
2915   } else {
2916     addl(reg, offset);
2917   }
2918 
2919   bind (_is_positive);
2920   sarl(reg, shift_value);
2921 }
2922 
2923 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2924   if (reachable(src)) {
2925     Assembler::divsd(dst, as_Address(src));
2926   } else {
2927     lea(rscratch1, src);
2928     Assembler::divsd(dst, Address(rscratch1, 0));
2929   }
2930 }
2931 
2932 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2933   if (reachable(src)) {
2934     Assembler::divss(dst, as_Address(src));
2935   } else {
2936     lea(rscratch1, src);
2937     Assembler::divss(dst, Address(rscratch1, 0));
2938   }
2939 }
2940 
2941 // !defined(COMPILER2) is because of stupid core builds
2942 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2943 void MacroAssembler::empty_FPU_stack() {
2944   if (VM_Version::supports_mmx()) {
2945     emms();
2946   } else {
2947     for (int i = 8; i-- > 0; ) ffree(i);
2948   }
2949 }
2950 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2951 
2952 
2953 // Defines obj, preserves var_size_in_bytes
2954 void MacroAssembler::eden_allocate(Register obj,
2955                                    Register var_size_in_bytes,
2956                                    int con_size_in_bytes,
2957                                    Register t1,
2958                                    Label& slow_case) {
2959   assert(obj == rax, "obj must be in rax, for cmpxchg");
2960   assert_different_registers(obj, var_size_in_bytes, t1);
2961   if (!Universe::heap()->supports_inline_contig_alloc()) {
2962     jmp(slow_case);
2963   } else {
2964     Register end = t1;
2965     Label retry;
2966     bind(retry);
2967     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2968     movptr(obj, heap_top);
2969     if (var_size_in_bytes == noreg) {
2970       lea(end, Address(obj, con_size_in_bytes));
2971     } else {
2972       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2973     }
2974     // if end < obj then we wrapped around => object too long => slow case
2975     cmpptr(end, obj);
2976     jcc(Assembler::below, slow_case);
2977     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2978     jcc(Assembler::above, slow_case);
2979     // Compare obj with the top addr, and if still equal, store the new top addr in
2980     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2981     // it otherwise. Use lock prefix for atomicity on MPs.
2982     locked_cmpxchgptr(end, heap_top);
2983     jcc(Assembler::notEqual, retry);
2984   }
2985 }
2986 
2987 void MacroAssembler::enter() {
2988   push(rbp);
2989   mov(rbp, rsp);
2990 }
2991 
2992 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2993 void MacroAssembler::fat_nop() {
2994   if (UseAddressNop) {
2995     addr_nop_5();
2996   } else {
2997     emit_int8(0x26); // es:
2998     emit_int8(0x2e); // cs:
2999     emit_int8(0x64); // fs:
3000     emit_int8(0x65); // gs:
3001     emit_int8((unsigned char)0x90);
3002   }
3003 }
3004 
3005 void MacroAssembler::fcmp(Register tmp) {
3006   fcmp(tmp, 1, true, true);
3007 }
3008 
3009 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
3010   assert(!pop_right || pop_left, "usage error");
3011   if (VM_Version::supports_cmov()) {
3012     assert(tmp == noreg, "unneeded temp");
3013     if (pop_left) {
3014       fucomip(index);
3015     } else {
3016       fucomi(index);
3017     }
3018     if (pop_right) {
3019       fpop();
3020     }
3021   } else {
3022     assert(tmp != noreg, "need temp");
3023     if (pop_left) {
3024       if (pop_right) {
3025         fcompp();
3026       } else {
3027         fcomp(index);
3028       }
3029     } else {
3030       fcom(index);
3031     }
3032     // convert FPU condition into eflags condition via rax,
3033     save_rax(tmp);
3034     fwait(); fnstsw_ax();
3035     sahf();
3036     restore_rax(tmp);
3037   }
3038   // condition codes set as follows:
3039   //
3040   // CF (corresponds to C0) if x < y
3041   // PF (corresponds to C2) if unordered
3042   // ZF (corresponds to C3) if x = y
3043 }
3044 
3045 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3046   fcmp2int(dst, unordered_is_less, 1, true, true);
3047 }
3048 
3049 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3050   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3051   Label L;
3052   if (unordered_is_less) {
3053     movl(dst, -1);
3054     jcc(Assembler::parity, L);
3055     jcc(Assembler::below , L);
3056     movl(dst, 0);
3057     jcc(Assembler::equal , L);
3058     increment(dst);
3059   } else { // unordered is greater
3060     movl(dst, 1);
3061     jcc(Assembler::parity, L);
3062     jcc(Assembler::above , L);
3063     movl(dst, 0);
3064     jcc(Assembler::equal , L);
3065     decrementl(dst);
3066   }
3067   bind(L);
3068 }
3069 
3070 void MacroAssembler::fld_d(AddressLiteral src) {
3071   fld_d(as_Address(src));
3072 }
3073 
3074 void MacroAssembler::fld_s(AddressLiteral src) {
3075   fld_s(as_Address(src));
3076 }
3077 
3078 void MacroAssembler::fld_x(AddressLiteral src) {
3079   Assembler::fld_x(as_Address(src));
3080 }
3081 
3082 void MacroAssembler::fldcw(AddressLiteral src) {
3083   Assembler::fldcw(as_Address(src));
3084 }
3085 
3086 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3087   if (reachable(src)) {
3088     Assembler::mulpd(dst, as_Address(src));
3089   } else {
3090     lea(rscratch1, src);
3091     Assembler::mulpd(dst, Address(rscratch1, 0));
3092   }
3093 }
3094 
3095 void MacroAssembler::increase_precision() {
3096   subptr(rsp, BytesPerWord);
3097   fnstcw(Address(rsp, 0));
3098   movl(rax, Address(rsp, 0));
3099   orl(rax, 0x300);
3100   push(rax);
3101   fldcw(Address(rsp, 0));
3102   pop(rax);
3103 }
3104 
3105 void MacroAssembler::restore_precision() {
3106   fldcw(Address(rsp, 0));
3107   addptr(rsp, BytesPerWord);
3108 }
3109 
3110 void MacroAssembler::fpop() {
3111   ffree();
3112   fincstp();
3113 }
3114 
3115 void MacroAssembler::load_float(Address src) {
3116   if (UseSSE >= 1) {
3117     movflt(xmm0, src);
3118   } else {
3119     LP64_ONLY(ShouldNotReachHere());
3120     NOT_LP64(fld_s(src));
3121   }
3122 }
3123 
3124 void MacroAssembler::store_float(Address dst) {
3125   if (UseSSE >= 1) {
3126     movflt(dst, xmm0);
3127   } else {
3128     LP64_ONLY(ShouldNotReachHere());
3129     NOT_LP64(fstp_s(dst));
3130   }
3131 }
3132 
3133 void MacroAssembler::load_double(Address src) {
3134   if (UseSSE >= 2) {
3135     movdbl(xmm0, src);
3136   } else {
3137     LP64_ONLY(ShouldNotReachHere());
3138     NOT_LP64(fld_d(src));
3139   }
3140 }
3141 
3142 void MacroAssembler::store_double(Address dst) {
3143   if (UseSSE >= 2) {
3144     movdbl(dst, xmm0);
3145   } else {
3146     LP64_ONLY(ShouldNotReachHere());
3147     NOT_LP64(fstp_d(dst));
3148   }
3149 }
3150 
3151 void MacroAssembler::fremr(Register tmp) {
3152   save_rax(tmp);
3153   { Label L;
3154     bind(L);
3155     fprem();
3156     fwait(); fnstsw_ax();
3157 #ifdef _LP64
3158     testl(rax, 0x400);
3159     jcc(Assembler::notEqual, L);
3160 #else
3161     sahf();
3162     jcc(Assembler::parity, L);
3163 #endif // _LP64
3164   }
3165   restore_rax(tmp);
3166   // Result is in ST0.
3167   // Note: fxch & fpop to get rid of ST1
3168   // (otherwise FPU stack could overflow eventually)
3169   fxch(1);
3170   fpop();
3171 }
3172 
3173 // dst = c = a * b + c
3174 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3175   Assembler::vfmadd231sd(c, a, b);
3176   if (dst != c) {
3177     movdbl(dst, c);
3178   }
3179 }
3180 
3181 // dst = c = a * b + c
3182 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3183   Assembler::vfmadd231ss(c, a, b);
3184   if (dst != c) {
3185     movflt(dst, c);
3186   }
3187 }
3188 
3189 // dst = c = a * b + c
3190 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3191   Assembler::vfmadd231pd(c, a, b, vector_len);
3192   if (dst != c) {
3193     vmovdqu(dst, c);
3194   }
3195 }
3196 
3197 // dst = c = a * b + c
3198 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3199   Assembler::vfmadd231ps(c, a, b, vector_len);
3200   if (dst != c) {
3201     vmovdqu(dst, c);
3202   }
3203 }
3204 
3205 // dst = c = a * b + c
3206 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3207   Assembler::vfmadd231pd(c, a, b, vector_len);
3208   if (dst != c) {
3209     vmovdqu(dst, c);
3210   }
3211 }
3212 
3213 // dst = c = a * b + c
3214 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3215   Assembler::vfmadd231ps(c, a, b, vector_len);
3216   if (dst != c) {
3217     vmovdqu(dst, c);
3218   }
3219 }
3220 
3221 void MacroAssembler::incrementl(AddressLiteral dst) {
3222   if (reachable(dst)) {
3223     incrementl(as_Address(dst));
3224   } else {
3225     lea(rscratch1, dst);
3226     incrementl(Address(rscratch1, 0));
3227   }
3228 }
3229 
3230 void MacroAssembler::incrementl(ArrayAddress dst) {
3231   incrementl(as_Address(dst));
3232 }
3233 
3234 void MacroAssembler::incrementl(Register reg, int value) {
3235   if (value == min_jint) {addl(reg, value) ; return; }
3236   if (value <  0) { decrementl(reg, -value); return; }
3237   if (value == 0) {                        ; return; }
3238   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3239   /* else */      { addl(reg, value)       ; return; }
3240 }
3241 
3242 void MacroAssembler::incrementl(Address dst, int value) {
3243   if (value == min_jint) {addl(dst, value) ; return; }
3244   if (value <  0) { decrementl(dst, -value); return; }
3245   if (value == 0) {                        ; return; }
3246   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3247   /* else */      { addl(dst, value)       ; return; }
3248 }
3249 
3250 void MacroAssembler::jump(AddressLiteral dst) {
3251   if (reachable(dst)) {
3252     jmp_literal(dst.target(), dst.rspec());
3253   } else {
3254     lea(rscratch1, dst);
3255     jmp(rscratch1);
3256   }
3257 }
3258 
3259 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3260   if (reachable(dst)) {
3261     InstructionMark im(this);
3262     relocate(dst.reloc());
3263     const int short_size = 2;
3264     const int long_size = 6;
3265     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3266     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3267       // 0111 tttn #8-bit disp
3268       emit_int8(0x70 | cc);
3269       emit_int8((offs - short_size) & 0xFF);
3270     } else {
3271       // 0000 1111 1000 tttn #32-bit disp
3272       emit_int8(0x0F);
3273       emit_int8((unsigned char)(0x80 | cc));
3274       emit_int32(offs - long_size);
3275     }
3276   } else {
3277 #ifdef ASSERT
3278     warning("reversing conditional branch");
3279 #endif /* ASSERT */
3280     Label skip;
3281     jccb(reverse[cc], skip);
3282     lea(rscratch1, dst);
3283     Assembler::jmp(rscratch1);
3284     bind(skip);
3285   }
3286 }
3287 
3288 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3289   if (reachable(src)) {
3290     Assembler::ldmxcsr(as_Address(src));
3291   } else {
3292     lea(rscratch1, src);
3293     Assembler::ldmxcsr(Address(rscratch1, 0));
3294   }
3295 }
3296 
3297 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3298   int off;
3299   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3300     off = offset();
3301     movsbl(dst, src); // movsxb
3302   } else {
3303     off = load_unsigned_byte(dst, src);
3304     shll(dst, 24);
3305     sarl(dst, 24);
3306   }
3307   return off;
3308 }
3309 
3310 // Note: load_signed_short used to be called load_signed_word.
3311 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3312 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3313 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3314 int MacroAssembler::load_signed_short(Register dst, Address src) {
3315   int off;
3316   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3317     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3318     // version but this is what 64bit has always done. This seems to imply
3319     // that users are only using 32bits worth.
3320     off = offset();
3321     movswl(dst, src); // movsxw
3322   } else {
3323     off = load_unsigned_short(dst, src);
3324     shll(dst, 16);
3325     sarl(dst, 16);
3326   }
3327   return off;
3328 }
3329 
3330 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3331   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3332   // and "3.9 Partial Register Penalties", p. 22).
3333   int off;
3334   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3335     off = offset();
3336     movzbl(dst, src); // movzxb
3337   } else {
3338     xorl(dst, dst);
3339     off = offset();
3340     movb(dst, src);
3341   }
3342   return off;
3343 }
3344 
3345 // Note: load_unsigned_short used to be called load_unsigned_word.
3346 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3347   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3348   // and "3.9 Partial Register Penalties", p. 22).
3349   int off;
3350   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3351     off = offset();
3352     movzwl(dst, src); // movzxw
3353   } else {
3354     xorl(dst, dst);
3355     off = offset();
3356     movw(dst, src);
3357   }
3358   return off;
3359 }
3360 
3361 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3362   switch (size_in_bytes) {
3363 #ifndef _LP64
3364   case  8:
3365     assert(dst2 != noreg, "second dest register required");
3366     movl(dst,  src);
3367     movl(dst2, src.plus_disp(BytesPerInt));
3368     break;
3369 #else
3370   case  8:  movq(dst, src); break;
3371 #endif
3372   case  4:  movl(dst, src); break;
3373   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3374   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3375   default:  ShouldNotReachHere();
3376   }
3377 }
3378 
3379 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3380   switch (size_in_bytes) {
3381 #ifndef _LP64
3382   case  8:
3383     assert(src2 != noreg, "second source register required");
3384     movl(dst,                        src);
3385     movl(dst.plus_disp(BytesPerInt), src2);
3386     break;
3387 #else
3388   case  8:  movq(dst, src); break;
3389 #endif
3390   case  4:  movl(dst, src); break;
3391   case  2:  movw(dst, src); break;
3392   case  1:  movb(dst, src); break;
3393   default:  ShouldNotReachHere();
3394   }
3395 }
3396 
3397 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3398   if (reachable(dst)) {
3399     movl(as_Address(dst), src);
3400   } else {
3401     lea(rscratch1, dst);
3402     movl(Address(rscratch1, 0), src);
3403   }
3404 }
3405 
3406 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3407   if (reachable(src)) {
3408     movl(dst, as_Address(src));
3409   } else {
3410     lea(rscratch1, src);
3411     movl(dst, Address(rscratch1, 0));
3412   }
3413 }
3414 
3415 // C++ bool manipulation
3416 
3417 void MacroAssembler::movbool(Register dst, Address src) {
3418   if(sizeof(bool) == 1)
3419     movb(dst, src);
3420   else if(sizeof(bool) == 2)
3421     movw(dst, src);
3422   else if(sizeof(bool) == 4)
3423     movl(dst, src);
3424   else
3425     // unsupported
3426     ShouldNotReachHere();
3427 }
3428 
3429 void MacroAssembler::movbool(Address dst, bool boolconst) {
3430   if(sizeof(bool) == 1)
3431     movb(dst, (int) boolconst);
3432   else if(sizeof(bool) == 2)
3433     movw(dst, (int) boolconst);
3434   else if(sizeof(bool) == 4)
3435     movl(dst, (int) boolconst);
3436   else
3437     // unsupported
3438     ShouldNotReachHere();
3439 }
3440 
3441 void MacroAssembler::movbool(Address dst, Register src) {
3442   if(sizeof(bool) == 1)
3443     movb(dst, src);
3444   else if(sizeof(bool) == 2)
3445     movw(dst, src);
3446   else if(sizeof(bool) == 4)
3447     movl(dst, src);
3448   else
3449     // unsupported
3450     ShouldNotReachHere();
3451 }
3452 
3453 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3454   movb(as_Address(dst), src);
3455 }
3456 
3457 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3458   if (reachable(src)) {
3459     movdl(dst, as_Address(src));
3460   } else {
3461     lea(rscratch1, src);
3462     movdl(dst, Address(rscratch1, 0));
3463   }
3464 }
3465 
3466 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3467   if (reachable(src)) {
3468     movq(dst, as_Address(src));
3469   } else {
3470     lea(rscratch1, src);
3471     movq(dst, Address(rscratch1, 0));
3472   }
3473 }
3474 
3475 void MacroAssembler::setvectmask(Register dst, Register src) {
3476   Assembler::movl(dst, 1);
3477   Assembler::shlxl(dst, dst, src);
3478   Assembler::decl(dst);
3479   Assembler::kmovdl(k1, dst);
3480   Assembler::movl(dst, src);
3481 }
3482 
3483 void MacroAssembler::restorevectmask() {
3484   Assembler::knotwl(k1, k0);
3485 }
3486 
3487 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3488   if (reachable(src)) {
3489     if (UseXmmLoadAndClearUpper) {
3490       movsd (dst, as_Address(src));
3491     } else {
3492       movlpd(dst, as_Address(src));
3493     }
3494   } else {
3495     lea(rscratch1, src);
3496     if (UseXmmLoadAndClearUpper) {
3497       movsd (dst, Address(rscratch1, 0));
3498     } else {
3499       movlpd(dst, Address(rscratch1, 0));
3500     }
3501   }
3502 }
3503 
3504 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3505   if (reachable(src)) {
3506     movss(dst, as_Address(src));
3507   } else {
3508     lea(rscratch1, src);
3509     movss(dst, Address(rscratch1, 0));
3510   }
3511 }
3512 
3513 void MacroAssembler::movptr(Register dst, Register src) {
3514   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3515 }
3516 
3517 void MacroAssembler::movptr(Register dst, Address src) {
3518   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3519 }
3520 
3521 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3522 void MacroAssembler::movptr(Register dst, intptr_t src) {
3523   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3524 }
3525 
3526 void MacroAssembler::movptr(Address dst, Register src) {
3527   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3528 }
3529 
3530 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3531   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3532     Assembler::vextractf32x4(dst, src, 0);
3533   } else {
3534     Assembler::movdqu(dst, src);
3535   }
3536 }
3537 
3538 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3539   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3540     Assembler::vinsertf32x4(dst, dst, src, 0);
3541   } else {
3542     Assembler::movdqu(dst, src);
3543   }
3544 }
3545 
3546 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3547   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3548     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3549   } else {
3550     Assembler::movdqu(dst, src);
3551   }
3552 }
3553 
3554 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3555   if (reachable(src)) {
3556     movdqu(dst, as_Address(src));
3557   } else {
3558     lea(scratchReg, src);
3559     movdqu(dst, Address(scratchReg, 0));
3560   }
3561 }
3562 
3563 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3564   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3565     vextractf64x4_low(dst, src);
3566   } else {
3567     Assembler::vmovdqu(dst, src);
3568   }
3569 }
3570 
3571 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3572   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3573     vinsertf64x4_low(dst, src);
3574   } else {
3575     Assembler::vmovdqu(dst, src);
3576   }
3577 }
3578 
3579 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3580   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3581     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3582   }
3583   else {
3584     Assembler::vmovdqu(dst, src);
3585   }
3586 }
3587 
3588 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3589   if (reachable(src)) {
3590     vmovdqu(dst, as_Address(src));
3591   }
3592   else {
3593     lea(rscratch1, src);
3594     vmovdqu(dst, Address(rscratch1, 0));
3595   }
3596 }
3597 
3598 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3599   if (reachable(src)) {
3600     Assembler::movdqa(dst, as_Address(src));
3601   } else {
3602     lea(rscratch1, src);
3603     Assembler::movdqa(dst, Address(rscratch1, 0));
3604   }
3605 }
3606 
3607 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3608   if (reachable(src)) {
3609     Assembler::movsd(dst, as_Address(src));
3610   } else {
3611     lea(rscratch1, src);
3612     Assembler::movsd(dst, Address(rscratch1, 0));
3613   }
3614 }
3615 
3616 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3617   if (reachable(src)) {
3618     Assembler::movss(dst, as_Address(src));
3619   } else {
3620     lea(rscratch1, src);
3621     Assembler::movss(dst, Address(rscratch1, 0));
3622   }
3623 }
3624 
3625 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3626   if (reachable(src)) {
3627     Assembler::mulsd(dst, as_Address(src));
3628   } else {
3629     lea(rscratch1, src);
3630     Assembler::mulsd(dst, Address(rscratch1, 0));
3631   }
3632 }
3633 
3634 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3635   if (reachable(src)) {
3636     Assembler::mulss(dst, as_Address(src));
3637   } else {
3638     lea(rscratch1, src);
3639     Assembler::mulss(dst, Address(rscratch1, 0));
3640   }
3641 }
3642 
3643 void MacroAssembler::null_check(Register reg, int offset) {
3644   if (needs_explicit_null_check(offset)) {
3645     // provoke OS NULL exception if reg = NULL by
3646     // accessing M[reg] w/o changing any (non-CC) registers
3647     // NOTE: cmpl is plenty here to provoke a segv
3648     cmpptr(rax, Address(reg, 0));
3649     // Note: should probably use testl(rax, Address(reg, 0));
3650     //       may be shorter code (however, this version of
3651     //       testl needs to be implemented first)
3652   } else {
3653     // nothing to do, (later) access of M[reg + offset]
3654     // will provoke OS NULL exception if reg = NULL
3655   }
3656 }
3657 
3658 void MacroAssembler::os_breakpoint() {
3659   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3660   // (e.g., MSVC can't call ps() otherwise)
3661   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3662 }
3663 
3664 void MacroAssembler::unimplemented(const char* what) {
3665   const char* buf = NULL;
3666   {
3667     ResourceMark rm;
3668     stringStream ss;
3669     ss.print("unimplemented: %s", what);
3670     buf = code_string(ss.as_string());
3671   }
3672   stop(buf);
3673 }
3674 
3675 #ifdef _LP64
3676 #define XSTATE_BV 0x200
3677 #endif
3678 
3679 void MacroAssembler::pop_CPU_state() {
3680   pop_FPU_state();
3681   pop_IU_state();
3682 }
3683 
3684 void MacroAssembler::pop_FPU_state() {
3685 #ifndef _LP64
3686   frstor(Address(rsp, 0));
3687 #else
3688   fxrstor(Address(rsp, 0));
3689 #endif
3690   addptr(rsp, FPUStateSizeInWords * wordSize);
3691 }
3692 
3693 void MacroAssembler::pop_IU_state() {
3694   popa();
3695   LP64_ONLY(addq(rsp, 8));
3696   popf();
3697 }
3698 
3699 // Save Integer and Float state
3700 // Warning: Stack must be 16 byte aligned (64bit)
3701 void MacroAssembler::push_CPU_state() {
3702   push_IU_state();
3703   push_FPU_state();
3704 }
3705 
3706 void MacroAssembler::push_FPU_state() {
3707   subptr(rsp, FPUStateSizeInWords * wordSize);
3708 #ifndef _LP64
3709   fnsave(Address(rsp, 0));
3710   fwait();
3711 #else
3712   fxsave(Address(rsp, 0));
3713 #endif // LP64
3714 }
3715 
3716 void MacroAssembler::push_IU_state() {
3717   // Push flags first because pusha kills them
3718   pushf();
3719   // Make sure rsp stays 16-byte aligned
3720   LP64_ONLY(subq(rsp, 8));
3721   pusha();
3722 }
3723 
3724 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3725   if (!java_thread->is_valid()) {
3726     java_thread = rdi;
3727     get_thread(java_thread);
3728   }
3729   // we must set sp to zero to clear frame
3730   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3731   if (clear_fp) {
3732     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3733   }
3734 
3735   // Always clear the pc because it could have been set by make_walkable()
3736   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3737 
3738   vzeroupper();
3739 }
3740 
3741 void MacroAssembler::restore_rax(Register tmp) {
3742   if (tmp == noreg) pop(rax);
3743   else if (tmp != rax) mov(rax, tmp);
3744 }
3745 
3746 void MacroAssembler::round_to(Register reg, int modulus) {
3747   addptr(reg, modulus - 1);
3748   andptr(reg, -modulus);
3749 }
3750 
3751 void MacroAssembler::save_rax(Register tmp) {
3752   if (tmp == noreg) push(rax);
3753   else if (tmp != rax) mov(tmp, rax);
3754 }
3755 
3756 // Write serialization page so VM thread can do a pseudo remote membar.
3757 // We use the current thread pointer to calculate a thread specific
3758 // offset to write to within the page. This minimizes bus traffic
3759 // due to cache line collision.
3760 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3761   movl(tmp, thread);
3762   shrl(tmp, os::get_serialize_page_shift_count());
3763   andl(tmp, (os::vm_page_size() - sizeof(int)));
3764 
3765   Address index(noreg, tmp, Address::times_1);
3766   ExternalAddress page(os::get_memory_serialize_page());
3767 
3768   // Size of store must match masking code above
3769   movl(as_Address(ArrayAddress(page, index)), tmp);
3770 }
3771 
3772 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3773   if (SafepointMechanism::uses_thread_local_poll()) {
3774 #ifdef _LP64
3775     assert(thread_reg == r15_thread, "should be");
3776 #else
3777     if (thread_reg == noreg) {
3778       thread_reg = temp_reg;
3779       get_thread(thread_reg);
3780     }
3781 #endif
3782     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3783     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3784   } else {
3785     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3786         SafepointSynchronize::_not_synchronized);
3787     jcc(Assembler::notEqual, slow_path);
3788   }
3789 }
3790 
3791 // Calls to C land
3792 //
3793 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3794 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3795 // has to be reset to 0. This is required to allow proper stack traversal.
3796 void MacroAssembler::set_last_Java_frame(Register java_thread,
3797                                          Register last_java_sp,
3798                                          Register last_java_fp,
3799                                          address  last_java_pc) {
3800   vzeroupper();
3801   // determine java_thread register
3802   if (!java_thread->is_valid()) {
3803     java_thread = rdi;
3804     get_thread(java_thread);
3805   }
3806   // determine last_java_sp register
3807   if (!last_java_sp->is_valid()) {
3808     last_java_sp = rsp;
3809   }
3810 
3811   // last_java_fp is optional
3812 
3813   if (last_java_fp->is_valid()) {
3814     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3815   }
3816 
3817   // last_java_pc is optional
3818 
3819   if (last_java_pc != NULL) {
3820     lea(Address(java_thread,
3821                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3822         InternalAddress(last_java_pc));
3823 
3824   }
3825   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3826 }
3827 
3828 void MacroAssembler::shlptr(Register dst, int imm8) {
3829   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3830 }
3831 
3832 void MacroAssembler::shrptr(Register dst, int imm8) {
3833   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3834 }
3835 
3836 void MacroAssembler::sign_extend_byte(Register reg) {
3837   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3838     movsbl(reg, reg); // movsxb
3839   } else {
3840     shll(reg, 24);
3841     sarl(reg, 24);
3842   }
3843 }
3844 
3845 void MacroAssembler::sign_extend_short(Register reg) {
3846   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3847     movswl(reg, reg); // movsxw
3848   } else {
3849     shll(reg, 16);
3850     sarl(reg, 16);
3851   }
3852 }
3853 
3854 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3855   assert(reachable(src), "Address should be reachable");
3856   testl(dst, as_Address(src));
3857 }
3858 
3859 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3860   int dst_enc = dst->encoding();
3861   int src_enc = src->encoding();
3862   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3863     Assembler::pcmpeqb(dst, src);
3864   } else if ((dst_enc < 16) && (src_enc < 16)) {
3865     Assembler::pcmpeqb(dst, src);
3866   } else if (src_enc < 16) {
3867     subptr(rsp, 64);
3868     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3869     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3870     Assembler::pcmpeqb(xmm0, src);
3871     movdqu(dst, xmm0);
3872     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3873     addptr(rsp, 64);
3874   } else if (dst_enc < 16) {
3875     subptr(rsp, 64);
3876     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3877     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3878     Assembler::pcmpeqb(dst, xmm0);
3879     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3880     addptr(rsp, 64);
3881   } else {
3882     subptr(rsp, 64);
3883     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3884     subptr(rsp, 64);
3885     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3886     movdqu(xmm0, src);
3887     movdqu(xmm1, dst);
3888     Assembler::pcmpeqb(xmm1, xmm0);
3889     movdqu(dst, xmm1);
3890     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3891     addptr(rsp, 64);
3892     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3893     addptr(rsp, 64);
3894   }
3895 }
3896 
3897 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3898   int dst_enc = dst->encoding();
3899   int src_enc = src->encoding();
3900   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3901     Assembler::pcmpeqw(dst, src);
3902   } else if ((dst_enc < 16) && (src_enc < 16)) {
3903     Assembler::pcmpeqw(dst, src);
3904   } else if (src_enc < 16) {
3905     subptr(rsp, 64);
3906     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3907     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3908     Assembler::pcmpeqw(xmm0, src);
3909     movdqu(dst, xmm0);
3910     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3911     addptr(rsp, 64);
3912   } else if (dst_enc < 16) {
3913     subptr(rsp, 64);
3914     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3915     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3916     Assembler::pcmpeqw(dst, xmm0);
3917     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3918     addptr(rsp, 64);
3919   } else {
3920     subptr(rsp, 64);
3921     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3922     subptr(rsp, 64);
3923     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3924     movdqu(xmm0, src);
3925     movdqu(xmm1, dst);
3926     Assembler::pcmpeqw(xmm1, xmm0);
3927     movdqu(dst, xmm1);
3928     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3929     addptr(rsp, 64);
3930     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3931     addptr(rsp, 64);
3932   }
3933 }
3934 
3935 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3936   int dst_enc = dst->encoding();
3937   if (dst_enc < 16) {
3938     Assembler::pcmpestri(dst, src, imm8);
3939   } else {
3940     subptr(rsp, 64);
3941     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3942     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3943     Assembler::pcmpestri(xmm0, src, imm8);
3944     movdqu(dst, xmm0);
3945     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3946     addptr(rsp, 64);
3947   }
3948 }
3949 
3950 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3951   int dst_enc = dst->encoding();
3952   int src_enc = src->encoding();
3953   if ((dst_enc < 16) && (src_enc < 16)) {
3954     Assembler::pcmpestri(dst, src, imm8);
3955   } else if (src_enc < 16) {
3956     subptr(rsp, 64);
3957     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3958     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3959     Assembler::pcmpestri(xmm0, src, imm8);
3960     movdqu(dst, xmm0);
3961     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3962     addptr(rsp, 64);
3963   } else if (dst_enc < 16) {
3964     subptr(rsp, 64);
3965     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3966     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3967     Assembler::pcmpestri(dst, xmm0, imm8);
3968     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3969     addptr(rsp, 64);
3970   } else {
3971     subptr(rsp, 64);
3972     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3973     subptr(rsp, 64);
3974     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3975     movdqu(xmm0, src);
3976     movdqu(xmm1, dst);
3977     Assembler::pcmpestri(xmm1, xmm0, imm8);
3978     movdqu(dst, xmm1);
3979     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3980     addptr(rsp, 64);
3981     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3982     addptr(rsp, 64);
3983   }
3984 }
3985 
3986 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3987   int dst_enc = dst->encoding();
3988   int src_enc = src->encoding();
3989   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3990     Assembler::pmovzxbw(dst, src);
3991   } else if ((dst_enc < 16) && (src_enc < 16)) {
3992     Assembler::pmovzxbw(dst, src);
3993   } else if (src_enc < 16) {
3994     subptr(rsp, 64);
3995     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3996     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3997     Assembler::pmovzxbw(xmm0, src);
3998     movdqu(dst, xmm0);
3999     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4000     addptr(rsp, 64);
4001   } else if (dst_enc < 16) {
4002     subptr(rsp, 64);
4003     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4004     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4005     Assembler::pmovzxbw(dst, xmm0);
4006     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4007     addptr(rsp, 64);
4008   } else {
4009     subptr(rsp, 64);
4010     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4011     subptr(rsp, 64);
4012     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4013     movdqu(xmm0, src);
4014     movdqu(xmm1, dst);
4015     Assembler::pmovzxbw(xmm1, xmm0);
4016     movdqu(dst, xmm1);
4017     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4018     addptr(rsp, 64);
4019     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4020     addptr(rsp, 64);
4021   }
4022 }
4023 
4024 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
4025   int dst_enc = dst->encoding();
4026   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4027     Assembler::pmovzxbw(dst, src);
4028   } else if (dst_enc < 16) {
4029     Assembler::pmovzxbw(dst, src);
4030   } else {
4031     subptr(rsp, 64);
4032     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4033     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4034     Assembler::pmovzxbw(xmm0, src);
4035     movdqu(dst, xmm0);
4036     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4037     addptr(rsp, 64);
4038   }
4039 }
4040 
4041 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
4042   int src_enc = src->encoding();
4043   if (src_enc < 16) {
4044     Assembler::pmovmskb(dst, src);
4045   } else {
4046     subptr(rsp, 64);
4047     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4048     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4049     Assembler::pmovmskb(dst, xmm0);
4050     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4051     addptr(rsp, 64);
4052   }
4053 }
4054 
4055 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
4056   int dst_enc = dst->encoding();
4057   int src_enc = src->encoding();
4058   if ((dst_enc < 16) && (src_enc < 16)) {
4059     Assembler::ptest(dst, src);
4060   } else if (src_enc < 16) {
4061     subptr(rsp, 64);
4062     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4063     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4064     Assembler::ptest(xmm0, src);
4065     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4066     addptr(rsp, 64);
4067   } else if (dst_enc < 16) {
4068     subptr(rsp, 64);
4069     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4070     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4071     Assembler::ptest(dst, xmm0);
4072     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4073     addptr(rsp, 64);
4074   } else {
4075     subptr(rsp, 64);
4076     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4077     subptr(rsp, 64);
4078     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4079     movdqu(xmm0, src);
4080     movdqu(xmm1, dst);
4081     Assembler::ptest(xmm1, xmm0);
4082     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4083     addptr(rsp, 64);
4084     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4085     addptr(rsp, 64);
4086   }
4087 }
4088 
4089 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4090   if (reachable(src)) {
4091     Assembler::sqrtsd(dst, as_Address(src));
4092   } else {
4093     lea(rscratch1, src);
4094     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4095   }
4096 }
4097 
4098 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4099   if (reachable(src)) {
4100     Assembler::sqrtss(dst, as_Address(src));
4101   } else {
4102     lea(rscratch1, src);
4103     Assembler::sqrtss(dst, Address(rscratch1, 0));
4104   }
4105 }
4106 
4107 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4108   if (reachable(src)) {
4109     Assembler::subsd(dst, as_Address(src));
4110   } else {
4111     lea(rscratch1, src);
4112     Assembler::subsd(dst, Address(rscratch1, 0));
4113   }
4114 }
4115 
4116 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4117   if (reachable(src)) {
4118     Assembler::subss(dst, as_Address(src));
4119   } else {
4120     lea(rscratch1, src);
4121     Assembler::subss(dst, Address(rscratch1, 0));
4122   }
4123 }
4124 
4125 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4126   if (reachable(src)) {
4127     Assembler::ucomisd(dst, as_Address(src));
4128   } else {
4129     lea(rscratch1, src);
4130     Assembler::ucomisd(dst, Address(rscratch1, 0));
4131   }
4132 }
4133 
4134 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4135   if (reachable(src)) {
4136     Assembler::ucomiss(dst, as_Address(src));
4137   } else {
4138     lea(rscratch1, src);
4139     Assembler::ucomiss(dst, Address(rscratch1, 0));
4140   }
4141 }
4142 
4143 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4144   // Used in sign-bit flipping with aligned address.
4145   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4146   if (reachable(src)) {
4147     Assembler::xorpd(dst, as_Address(src));
4148   } else {
4149     lea(rscratch1, src);
4150     Assembler::xorpd(dst, Address(rscratch1, 0));
4151   }
4152 }
4153 
4154 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4155   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4156     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4157   }
4158   else {
4159     Assembler::xorpd(dst, src);
4160   }
4161 }
4162 
4163 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4164   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4165     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4166   } else {
4167     Assembler::xorps(dst, src);
4168   }
4169 }
4170 
4171 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4172   // Used in sign-bit flipping with aligned address.
4173   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4174   if (reachable(src)) {
4175     Assembler::xorps(dst, as_Address(src));
4176   } else {
4177     lea(rscratch1, src);
4178     Assembler::xorps(dst, Address(rscratch1, 0));
4179   }
4180 }
4181 
4182 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4183   // Used in sign-bit flipping with aligned address.
4184   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4185   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4186   if (reachable(src)) {
4187     Assembler::pshufb(dst, as_Address(src));
4188   } else {
4189     lea(rscratch1, src);
4190     Assembler::pshufb(dst, Address(rscratch1, 0));
4191   }
4192 }
4193 
4194 // AVX 3-operands instructions
4195 
4196 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4197   if (reachable(src)) {
4198     vaddsd(dst, nds, as_Address(src));
4199   } else {
4200     lea(rscratch1, src);
4201     vaddsd(dst, nds, Address(rscratch1, 0));
4202   }
4203 }
4204 
4205 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4206   if (reachable(src)) {
4207     vaddss(dst, nds, as_Address(src));
4208   } else {
4209     lea(rscratch1, src);
4210     vaddss(dst, nds, Address(rscratch1, 0));
4211   }
4212 }
4213 
4214 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4215   int dst_enc = dst->encoding();
4216   int nds_enc = nds->encoding();
4217   int src_enc = src->encoding();
4218   if ((dst_enc < 16) && (nds_enc < 16)) {
4219     vandps(dst, nds, negate_field, vector_len);
4220   } else if ((src_enc < 16) && (dst_enc < 16)) {
4221     evmovdqul(src, nds, Assembler::AVX_512bit);
4222     vandps(dst, src, negate_field, vector_len);
4223   } else if (src_enc < 16) {
4224     evmovdqul(src, nds, Assembler::AVX_512bit);
4225     vandps(src, src, negate_field, vector_len);
4226     evmovdqul(dst, src, Assembler::AVX_512bit);
4227   } else if (dst_enc < 16) {
4228     evmovdqul(src, xmm0, Assembler::AVX_512bit);
4229     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4230     vandps(dst, xmm0, negate_field, vector_len);
4231     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4232   } else {
4233     if (src_enc != dst_enc) {
4234       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4235       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4236       vandps(xmm0, xmm0, negate_field, vector_len);
4237       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4238       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4239     } else {
4240       subptr(rsp, 64);
4241       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4242       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4243       vandps(xmm0, xmm0, negate_field, vector_len);
4244       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4245       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4246       addptr(rsp, 64);
4247     }
4248   }
4249 }
4250 
4251 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4252   int dst_enc = dst->encoding();
4253   int nds_enc = nds->encoding();
4254   int src_enc = src->encoding();
4255   if ((dst_enc < 16) && (nds_enc < 16)) {
4256     vandpd(dst, nds, negate_field, vector_len);
4257   } else if ((src_enc < 16) && (dst_enc < 16)) {
4258     evmovdqul(src, nds, Assembler::AVX_512bit);
4259     vandpd(dst, src, negate_field, vector_len);
4260   } else if (src_enc < 16) {
4261     evmovdqul(src, nds, Assembler::AVX_512bit);
4262     vandpd(src, src, negate_field, vector_len);
4263     evmovdqul(dst, src, Assembler::AVX_512bit);
4264   } else if (dst_enc < 16) {
4265     evmovdqul(src, xmm0, Assembler::AVX_512bit);
4266     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4267     vandpd(dst, xmm0, negate_field, vector_len);
4268     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4269   } else {
4270     if (src_enc != dst_enc) {
4271       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4272       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4273       vandpd(xmm0, xmm0, negate_field, vector_len);
4274       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4275       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4276     } else {
4277       subptr(rsp, 64);
4278       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4279       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4280       vandpd(xmm0, xmm0, negate_field, vector_len);
4281       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4282       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4283       addptr(rsp, 64);
4284     }
4285   }
4286 }
4287 
4288 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4289   int dst_enc = dst->encoding();
4290   int nds_enc = nds->encoding();
4291   int src_enc = src->encoding();
4292   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4293     Assembler::vpaddb(dst, nds, src, vector_len);
4294   } else if ((dst_enc < 16) && (src_enc < 16)) {
4295     Assembler::vpaddb(dst, dst, src, vector_len);
4296   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4297     // use nds as scratch for src
4298     evmovdqul(nds, src, Assembler::AVX_512bit);
4299     Assembler::vpaddb(dst, dst, nds, vector_len);
4300   } else if ((src_enc < 16) && (nds_enc < 16)) {
4301     // use nds as scratch for dst
4302     evmovdqul(nds, dst, Assembler::AVX_512bit);
4303     Assembler::vpaddb(nds, nds, src, vector_len);
4304     evmovdqul(dst, nds, Assembler::AVX_512bit);
4305   } else if (dst_enc < 16) {
4306     // use nds as scatch for xmm0 to hold src
4307     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4308     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4309     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4310     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4311   } else {
4312     // worse case scenario, all regs are in the upper bank
4313     subptr(rsp, 64);
4314     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4315     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4316     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4317     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4318     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4319     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4320     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4321     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4322     addptr(rsp, 64);
4323   }
4324 }
4325 
4326 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4327   int dst_enc = dst->encoding();
4328   int nds_enc = nds->encoding();
4329   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4330     Assembler::vpaddb(dst, nds, src, vector_len);
4331   } else if (dst_enc < 16) {
4332     Assembler::vpaddb(dst, dst, src, vector_len);
4333   } else if (nds_enc < 16) {
4334     // implies dst_enc in upper bank with src as scratch
4335     evmovdqul(nds, dst, Assembler::AVX_512bit);
4336     Assembler::vpaddb(nds, nds, src, vector_len);
4337     evmovdqul(dst, nds, Assembler::AVX_512bit);
4338   } else {
4339     // worse case scenario, all regs in upper bank
4340     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4341     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4342     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4343     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4344   }
4345 }
4346 
4347 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4348   int dst_enc = dst->encoding();
4349   int nds_enc = nds->encoding();
4350   int src_enc = src->encoding();
4351   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4352     Assembler::vpaddw(dst, nds, src, vector_len);
4353   } else if ((dst_enc < 16) && (src_enc < 16)) {
4354     Assembler::vpaddw(dst, dst, src, vector_len);
4355   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4356     // use nds as scratch for src
4357     evmovdqul(nds, src, Assembler::AVX_512bit);
4358     Assembler::vpaddw(dst, dst, nds, vector_len);
4359   } else if ((src_enc < 16) && (nds_enc < 16)) {
4360     // use nds as scratch for dst
4361     evmovdqul(nds, dst, Assembler::AVX_512bit);
4362     Assembler::vpaddw(nds, nds, src, vector_len);
4363     evmovdqul(dst, nds, Assembler::AVX_512bit);
4364   } else if (dst_enc < 16) {
4365     // use nds as scatch for xmm0 to hold src
4366     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4367     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4368     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4369     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4370   } else {
4371     // worse case scenario, all regs are in the upper bank
4372     subptr(rsp, 64);
4373     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4374     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4375     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4376     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4377     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4378     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4379     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4380     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4381     addptr(rsp, 64);
4382   }
4383 }
4384 
4385 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4386   int dst_enc = dst->encoding();
4387   int nds_enc = nds->encoding();
4388   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4389     Assembler::vpaddw(dst, nds, src, vector_len);
4390   } else if (dst_enc < 16) {
4391     Assembler::vpaddw(dst, dst, src, vector_len);
4392   } else if (nds_enc < 16) {
4393     // implies dst_enc in upper bank with src as scratch
4394     evmovdqul(nds, dst, Assembler::AVX_512bit);
4395     Assembler::vpaddw(nds, nds, src, vector_len);
4396     evmovdqul(dst, nds, Assembler::AVX_512bit);
4397   } else {
4398     // worse case scenario, all regs in upper bank
4399     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4400     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4401     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4402     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4403   }
4404 }
4405 
4406 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4407   if (reachable(src)) {
4408     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4409   } else {
4410     lea(rscratch1, src);
4411     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4412   }
4413 }
4414 
4415 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4416   int dst_enc = dst->encoding();
4417   int src_enc = src->encoding();
4418   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4419     Assembler::vpbroadcastw(dst, src);
4420   } else if ((dst_enc < 16) && (src_enc < 16)) {
4421     Assembler::vpbroadcastw(dst, src);
4422   } else if (src_enc < 16) {
4423     subptr(rsp, 64);
4424     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4425     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4426     Assembler::vpbroadcastw(xmm0, src);
4427     movdqu(dst, xmm0);
4428     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4429     addptr(rsp, 64);
4430   } else if (dst_enc < 16) {
4431     subptr(rsp, 64);
4432     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4433     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4434     Assembler::vpbroadcastw(dst, xmm0);
4435     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4436     addptr(rsp, 64);
4437   } else {
4438     subptr(rsp, 64);
4439     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4440     subptr(rsp, 64);
4441     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4442     movdqu(xmm0, src);
4443     movdqu(xmm1, dst);
4444     Assembler::vpbroadcastw(xmm1, xmm0);
4445     movdqu(dst, xmm1);
4446     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4447     addptr(rsp, 64);
4448     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4449     addptr(rsp, 64);
4450   }
4451 }
4452 
4453 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4454   int dst_enc = dst->encoding();
4455   int nds_enc = nds->encoding();
4456   int src_enc = src->encoding();
4457   assert(dst_enc == nds_enc, "");
4458   if ((dst_enc < 16) && (src_enc < 16)) {
4459     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4460   } else if (src_enc < 16) {
4461     subptr(rsp, 64);
4462     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4463     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4464     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4465     movdqu(dst, xmm0);
4466     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4467     addptr(rsp, 64);
4468   } else if (dst_enc < 16) {
4469     subptr(rsp, 64);
4470     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4471     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4472     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4473     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4474     addptr(rsp, 64);
4475   } else {
4476     subptr(rsp, 64);
4477     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4478     subptr(rsp, 64);
4479     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4480     movdqu(xmm0, src);
4481     movdqu(xmm1, dst);
4482     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4483     movdqu(dst, xmm1);
4484     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4485     addptr(rsp, 64);
4486     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4487     addptr(rsp, 64);
4488   }
4489 }
4490 
4491 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4492   int dst_enc = dst->encoding();
4493   int nds_enc = nds->encoding();
4494   int src_enc = src->encoding();
4495   assert(dst_enc == nds_enc, "");
4496   if ((dst_enc < 16) && (src_enc < 16)) {
4497     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4498   } else if (src_enc < 16) {
4499     subptr(rsp, 64);
4500     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4501     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4502     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4503     movdqu(dst, xmm0);
4504     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4505     addptr(rsp, 64);
4506   } else if (dst_enc < 16) {
4507     subptr(rsp, 64);
4508     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4509     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4510     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4511     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4512     addptr(rsp, 64);
4513   } else {
4514     subptr(rsp, 64);
4515     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4516     subptr(rsp, 64);
4517     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4518     movdqu(xmm0, src);
4519     movdqu(xmm1, dst);
4520     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4521     movdqu(dst, xmm1);
4522     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4523     addptr(rsp, 64);
4524     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4525     addptr(rsp, 64);
4526   }
4527 }
4528 
4529 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4530   int dst_enc = dst->encoding();
4531   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4532     Assembler::vpmovzxbw(dst, src, vector_len);
4533   } else if (dst_enc < 16) {
4534     Assembler::vpmovzxbw(dst, src, vector_len);
4535   } else {
4536     subptr(rsp, 64);
4537     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4538     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4539     Assembler::vpmovzxbw(xmm0, src, vector_len);
4540     movdqu(dst, xmm0);
4541     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4542     addptr(rsp, 64);
4543   }
4544 }
4545 
4546 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4547   int src_enc = src->encoding();
4548   if (src_enc < 16) {
4549     Assembler::vpmovmskb(dst, src);
4550   } else {
4551     subptr(rsp, 64);
4552     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4553     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4554     Assembler::vpmovmskb(dst, xmm0);
4555     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4556     addptr(rsp, 64);
4557   }
4558 }
4559 
4560 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4561   int dst_enc = dst->encoding();
4562   int nds_enc = nds->encoding();
4563   int src_enc = src->encoding();
4564   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4565     Assembler::vpmullw(dst, nds, src, vector_len);
4566   } else if ((dst_enc < 16) && (src_enc < 16)) {
4567     Assembler::vpmullw(dst, dst, src, vector_len);
4568   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4569     // use nds as scratch for src
4570     evmovdqul(nds, src, Assembler::AVX_512bit);
4571     Assembler::vpmullw(dst, dst, nds, vector_len);
4572   } else if ((src_enc < 16) && (nds_enc < 16)) {
4573     // use nds as scratch for dst
4574     evmovdqul(nds, dst, Assembler::AVX_512bit);
4575     Assembler::vpmullw(nds, nds, src, vector_len);
4576     evmovdqul(dst, nds, Assembler::AVX_512bit);
4577   } else if (dst_enc < 16) {
4578     // use nds as scatch for xmm0 to hold src
4579     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4580     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4581     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4582     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4583   } else {
4584     // worse case scenario, all regs are in the upper bank
4585     subptr(rsp, 64);
4586     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4587     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4588     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4589     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4590     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4591     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4592     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4593     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4594     addptr(rsp, 64);
4595   }
4596 }
4597 
4598 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4599   int dst_enc = dst->encoding();
4600   int nds_enc = nds->encoding();
4601   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4602     Assembler::vpmullw(dst, nds, src, vector_len);
4603   } else if (dst_enc < 16) {
4604     Assembler::vpmullw(dst, dst, src, vector_len);
4605   } else if (nds_enc < 16) {
4606     // implies dst_enc in upper bank with src as scratch
4607     evmovdqul(nds, dst, Assembler::AVX_512bit);
4608     Assembler::vpmullw(nds, nds, src, vector_len);
4609     evmovdqul(dst, nds, Assembler::AVX_512bit);
4610   } else {
4611     // worse case scenario, all regs in upper bank
4612     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4613     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4614     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4615     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4616   }
4617 }
4618 
4619 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4620   int dst_enc = dst->encoding();
4621   int nds_enc = nds->encoding();
4622   int src_enc = src->encoding();
4623   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4624     Assembler::vpsubb(dst, nds, src, vector_len);
4625   } else if ((dst_enc < 16) && (src_enc < 16)) {
4626     Assembler::vpsubb(dst, dst, src, vector_len);
4627   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4628     // use nds as scratch for src
4629     evmovdqul(nds, src, Assembler::AVX_512bit);
4630     Assembler::vpsubb(dst, dst, nds, vector_len);
4631   } else if ((src_enc < 16) && (nds_enc < 16)) {
4632     // use nds as scratch for dst
4633     evmovdqul(nds, dst, Assembler::AVX_512bit);
4634     Assembler::vpsubb(nds, nds, src, vector_len);
4635     evmovdqul(dst, nds, Assembler::AVX_512bit);
4636   } else if (dst_enc < 16) {
4637     // use nds as scatch for xmm0 to hold src
4638     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4639     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4640     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4641     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4642   } else {
4643     // worse case scenario, all regs are in the upper bank
4644     subptr(rsp, 64);
4645     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4646     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4647     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4648     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4649     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4650     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4651     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4652     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4653     addptr(rsp, 64);
4654   }
4655 }
4656 
4657 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4658   int dst_enc = dst->encoding();
4659   int nds_enc = nds->encoding();
4660   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4661     Assembler::vpsubb(dst, nds, src, vector_len);
4662   } else if (dst_enc < 16) {
4663     Assembler::vpsubb(dst, dst, src, vector_len);
4664   } else if (nds_enc < 16) {
4665     // implies dst_enc in upper bank with src as scratch
4666     evmovdqul(nds, dst, Assembler::AVX_512bit);
4667     Assembler::vpsubb(nds, nds, src, vector_len);
4668     evmovdqul(dst, nds, Assembler::AVX_512bit);
4669   } else {
4670     // worse case scenario, all regs in upper bank
4671     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4672     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4673     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4674     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4675   }
4676 }
4677 
4678 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4679   int dst_enc = dst->encoding();
4680   int nds_enc = nds->encoding();
4681   int src_enc = src->encoding();
4682   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4683     Assembler::vpsubw(dst, nds, src, vector_len);
4684   } else if ((dst_enc < 16) && (src_enc < 16)) {
4685     Assembler::vpsubw(dst, dst, src, vector_len);
4686   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4687     // use nds as scratch for src
4688     evmovdqul(nds, src, Assembler::AVX_512bit);
4689     Assembler::vpsubw(dst, dst, nds, vector_len);
4690   } else if ((src_enc < 16) && (nds_enc < 16)) {
4691     // use nds as scratch for dst
4692     evmovdqul(nds, dst, Assembler::AVX_512bit);
4693     Assembler::vpsubw(nds, nds, src, vector_len);
4694     evmovdqul(dst, nds, Assembler::AVX_512bit);
4695   } else if (dst_enc < 16) {
4696     // use nds as scatch for xmm0 to hold src
4697     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4698     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4699     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4700     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4701   } else {
4702     // worse case scenario, all regs are in the upper bank
4703     subptr(rsp, 64);
4704     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4705     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4706     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4707     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4708     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4709     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4710     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4711     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4712     addptr(rsp, 64);
4713   }
4714 }
4715 
4716 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4717   int dst_enc = dst->encoding();
4718   int nds_enc = nds->encoding();
4719   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4720     Assembler::vpsubw(dst, nds, src, vector_len);
4721   } else if (dst_enc < 16) {
4722     Assembler::vpsubw(dst, dst, src, vector_len);
4723   } else if (nds_enc < 16) {
4724     // implies dst_enc in upper bank with src as scratch
4725     evmovdqul(nds, dst, Assembler::AVX_512bit);
4726     Assembler::vpsubw(nds, nds, src, vector_len);
4727     evmovdqul(dst, nds, Assembler::AVX_512bit);
4728   } else {
4729     // worse case scenario, all regs in upper bank
4730     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4731     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4732     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4733     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4734   }
4735 }
4736 
4737 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4738   int dst_enc = dst->encoding();
4739   int nds_enc = nds->encoding();
4740   int shift_enc = shift->encoding();
4741   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4742     Assembler::vpsraw(dst, nds, shift, vector_len);
4743   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4744     Assembler::vpsraw(dst, dst, shift, vector_len);
4745   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4746     // use nds_enc as scratch with shift
4747     evmovdqul(nds, shift, Assembler::AVX_512bit);
4748     Assembler::vpsraw(dst, dst, nds, vector_len);
4749   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4750     // use nds as scratch with dst
4751     evmovdqul(nds, dst, Assembler::AVX_512bit);
4752     Assembler::vpsraw(nds, nds, shift, vector_len);
4753     evmovdqul(dst, nds, Assembler::AVX_512bit);
4754   } else if (dst_enc < 16) {
4755     // use nds to save a copy of xmm0 and hold shift
4756     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4757     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4758     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4759     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4760   } else if (nds_enc < 16) {
4761     // use nds as dest as temps
4762     evmovdqul(nds, dst, Assembler::AVX_512bit);
4763     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4764     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4765     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4766     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4767     evmovdqul(dst, nds, Assembler::AVX_512bit);
4768   } else {
4769     // worse case scenario, all regs are in the upper bank
4770     subptr(rsp, 64);
4771     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4772     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4773     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4774     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4775     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4776     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4777     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4778     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4779     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4780     addptr(rsp, 64);
4781   }
4782 }
4783 
4784 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4785   int dst_enc = dst->encoding();
4786   int nds_enc = nds->encoding();
4787   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4788     Assembler::vpsraw(dst, nds, shift, vector_len);
4789   } else if (dst_enc < 16) {
4790     Assembler::vpsraw(dst, dst, shift, vector_len);
4791   } else if (nds_enc < 16) {
4792     // use nds as scratch
4793     evmovdqul(nds, dst, Assembler::AVX_512bit);
4794     Assembler::vpsraw(nds, nds, shift, vector_len);
4795     evmovdqul(dst, nds, Assembler::AVX_512bit);
4796   } else {
4797     // use nds as scratch for xmm0
4798     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4799     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4800     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4801     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4802   }
4803 }
4804 
4805 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4806   int dst_enc = dst->encoding();
4807   int nds_enc = nds->encoding();
4808   int shift_enc = shift->encoding();
4809   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4810     Assembler::vpsrlw(dst, nds, shift, vector_len);
4811   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4812     Assembler::vpsrlw(dst, dst, shift, vector_len);
4813   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4814     // use nds_enc as scratch with shift
4815     evmovdqul(nds, shift, Assembler::AVX_512bit);
4816     Assembler::vpsrlw(dst, dst, nds, vector_len);
4817   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4818     // use nds as scratch with dst
4819     evmovdqul(nds, dst, Assembler::AVX_512bit);
4820     Assembler::vpsrlw(nds, nds, shift, vector_len);
4821     evmovdqul(dst, nds, Assembler::AVX_512bit);
4822   } else if (dst_enc < 16) {
4823     // use nds to save a copy of xmm0 and hold shift
4824     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4825     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4826     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4827     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4828   } else if (nds_enc < 16) {
4829     // use nds as dest as temps
4830     evmovdqul(nds, dst, Assembler::AVX_512bit);
4831     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4832     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4833     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4834     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4835     evmovdqul(dst, nds, Assembler::AVX_512bit);
4836   } else {
4837     // worse case scenario, all regs are in the upper bank
4838     subptr(rsp, 64);
4839     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4840     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4841     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4842     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4843     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4844     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4845     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4846     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4847     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4848     addptr(rsp, 64);
4849   }
4850 }
4851 
4852 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4853   int dst_enc = dst->encoding();
4854   int nds_enc = nds->encoding();
4855   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4856     Assembler::vpsrlw(dst, nds, shift, vector_len);
4857   } else if (dst_enc < 16) {
4858     Assembler::vpsrlw(dst, dst, shift, vector_len);
4859   } else if (nds_enc < 16) {
4860     // use nds as scratch
4861     evmovdqul(nds, dst, Assembler::AVX_512bit);
4862     Assembler::vpsrlw(nds, nds, shift, vector_len);
4863     evmovdqul(dst, nds, Assembler::AVX_512bit);
4864   } else {
4865     // use nds as scratch for xmm0
4866     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4867     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4868     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4869     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4870   }
4871 }
4872 
4873 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4874   int dst_enc = dst->encoding();
4875   int nds_enc = nds->encoding();
4876   int shift_enc = shift->encoding();
4877   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4878     Assembler::vpsllw(dst, nds, shift, vector_len);
4879   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4880     Assembler::vpsllw(dst, dst, shift, vector_len);
4881   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4882     // use nds_enc as scratch with shift
4883     evmovdqul(nds, shift, Assembler::AVX_512bit);
4884     Assembler::vpsllw(dst, dst, nds, vector_len);
4885   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4886     // use nds as scratch with dst
4887     evmovdqul(nds, dst, Assembler::AVX_512bit);
4888     Assembler::vpsllw(nds, nds, shift, vector_len);
4889     evmovdqul(dst, nds, Assembler::AVX_512bit);
4890   } else if (dst_enc < 16) {
4891     // use nds to save a copy of xmm0 and hold shift
4892     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4893     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4894     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4895     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4896   } else if (nds_enc < 16) {
4897     // use nds as dest as temps
4898     evmovdqul(nds, dst, Assembler::AVX_512bit);
4899     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4900     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4901     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4902     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4903     evmovdqul(dst, nds, Assembler::AVX_512bit);
4904   } else {
4905     // worse case scenario, all regs are in the upper bank
4906     subptr(rsp, 64);
4907     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4908     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4909     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4910     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4911     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4912     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4913     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4914     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4915     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4916     addptr(rsp, 64);
4917   }
4918 }
4919 
4920 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4921   int dst_enc = dst->encoding();
4922   int nds_enc = nds->encoding();
4923   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4924     Assembler::vpsllw(dst, nds, shift, vector_len);
4925   } else if (dst_enc < 16) {
4926     Assembler::vpsllw(dst, dst, shift, vector_len);
4927   } else if (nds_enc < 16) {
4928     // use nds as scratch
4929     evmovdqul(nds, dst, Assembler::AVX_512bit);
4930     Assembler::vpsllw(nds, nds, shift, vector_len);
4931     evmovdqul(dst, nds, Assembler::AVX_512bit);
4932   } else {
4933     // use nds as scratch for xmm0
4934     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4935     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4936     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4937     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4938   }
4939 }
4940 
4941 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4942   int dst_enc = dst->encoding();
4943   int src_enc = src->encoding();
4944   if ((dst_enc < 16) && (src_enc < 16)) {
4945     Assembler::vptest(dst, src);
4946   } else if (src_enc < 16) {
4947     subptr(rsp, 64);
4948     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4949     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4950     Assembler::vptest(xmm0, src);
4951     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4952     addptr(rsp, 64);
4953   } else if (dst_enc < 16) {
4954     subptr(rsp, 64);
4955     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4956     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4957     Assembler::vptest(dst, xmm0);
4958     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4959     addptr(rsp, 64);
4960   } else {
4961     subptr(rsp, 64);
4962     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4963     subptr(rsp, 64);
4964     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4965     movdqu(xmm0, src);
4966     movdqu(xmm1, dst);
4967     Assembler::vptest(xmm1, xmm0);
4968     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4969     addptr(rsp, 64);
4970     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4971     addptr(rsp, 64);
4972   }
4973 }
4974 
4975 // This instruction exists within macros, ergo we cannot control its input
4976 // when emitted through those patterns.
4977 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4978   if (VM_Version::supports_avx512nobw()) {
4979     int dst_enc = dst->encoding();
4980     int src_enc = src->encoding();
4981     if (dst_enc == src_enc) {
4982       if (dst_enc < 16) {
4983         Assembler::punpcklbw(dst, src);
4984       } else {
4985         subptr(rsp, 64);
4986         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4987         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4988         Assembler::punpcklbw(xmm0, xmm0);
4989         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4990         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4991         addptr(rsp, 64);
4992       }
4993     } else {
4994       if ((src_enc < 16) && (dst_enc < 16)) {
4995         Assembler::punpcklbw(dst, src);
4996       } else if (src_enc < 16) {
4997         subptr(rsp, 64);
4998         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4999         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5000         Assembler::punpcklbw(xmm0, src);
5001         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5002         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5003         addptr(rsp, 64);
5004       } else if (dst_enc < 16) {
5005         subptr(rsp, 64);
5006         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5007         evmovdqul(xmm0, src, Assembler::AVX_512bit);
5008         Assembler::punpcklbw(dst, xmm0);
5009         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5010         addptr(rsp, 64);
5011       } else {
5012         subptr(rsp, 64);
5013         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5014         subptr(rsp, 64);
5015         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
5016         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5017         evmovdqul(xmm1, src, Assembler::AVX_512bit);
5018         Assembler::punpcklbw(xmm0, xmm1);
5019         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5020         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
5021         addptr(rsp, 64);
5022         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5023         addptr(rsp, 64);
5024       }
5025     }
5026   } else {
5027     Assembler::punpcklbw(dst, src);
5028   }
5029 }
5030 
5031 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
5032   if (VM_Version::supports_avx512vl()) {
5033     Assembler::pshufd(dst, src, mode);
5034   } else {
5035     int dst_enc = dst->encoding();
5036     if (dst_enc < 16) {
5037       Assembler::pshufd(dst, src, mode);
5038     } else {
5039       subptr(rsp, 64);
5040       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5041       Assembler::pshufd(xmm0, src, mode);
5042       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5043       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5044       addptr(rsp, 64);
5045     }
5046   }
5047 }
5048 
5049 // This instruction exists within macros, ergo we cannot control its input
5050 // when emitted through those patterns.
5051 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
5052   if (VM_Version::supports_avx512nobw()) {
5053     int dst_enc = dst->encoding();
5054     int src_enc = src->encoding();
5055     if (dst_enc == src_enc) {
5056       if (dst_enc < 16) {
5057         Assembler::pshuflw(dst, src, mode);
5058       } else {
5059         subptr(rsp, 64);
5060         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5061         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5062         Assembler::pshuflw(xmm0, xmm0, mode);
5063         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5064         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5065         addptr(rsp, 64);
5066       }
5067     } else {
5068       if ((src_enc < 16) && (dst_enc < 16)) {
5069         Assembler::pshuflw(dst, src, mode);
5070       } else if (src_enc < 16) {
5071         subptr(rsp, 64);
5072         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5073         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5074         Assembler::pshuflw(xmm0, src, mode);
5075         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5076         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5077         addptr(rsp, 64);
5078       } else if (dst_enc < 16) {
5079         subptr(rsp, 64);
5080         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5081         evmovdqul(xmm0, src, Assembler::AVX_512bit);
5082         Assembler::pshuflw(dst, xmm0, mode);
5083         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5084         addptr(rsp, 64);
5085       } else {
5086         subptr(rsp, 64);
5087         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5088         subptr(rsp, 64);
5089         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
5090         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5091         evmovdqul(xmm1, src, Assembler::AVX_512bit);
5092         Assembler::pshuflw(xmm0, xmm1, mode);
5093         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5094         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
5095         addptr(rsp, 64);
5096         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5097         addptr(rsp, 64);
5098       }
5099     }
5100   } else {
5101     Assembler::pshuflw(dst, src, mode);
5102   }
5103 }
5104 
5105 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5106   if (reachable(src)) {
5107     vandpd(dst, nds, as_Address(src), vector_len);
5108   } else {
5109     lea(rscratch1, src);
5110     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
5111   }
5112 }
5113 
5114 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5115   if (reachable(src)) {
5116     vandps(dst, nds, as_Address(src), vector_len);
5117   } else {
5118     lea(rscratch1, src);
5119     vandps(dst, nds, Address(rscratch1, 0), vector_len);
5120   }
5121 }
5122 
5123 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5124   if (reachable(src)) {
5125     vdivsd(dst, nds, as_Address(src));
5126   } else {
5127     lea(rscratch1, src);
5128     vdivsd(dst, nds, Address(rscratch1, 0));
5129   }
5130 }
5131 
5132 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5133   if (reachable(src)) {
5134     vdivss(dst, nds, as_Address(src));
5135   } else {
5136     lea(rscratch1, src);
5137     vdivss(dst, nds, Address(rscratch1, 0));
5138   }
5139 }
5140 
5141 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5142   if (reachable(src)) {
5143     vmulsd(dst, nds, as_Address(src));
5144   } else {
5145     lea(rscratch1, src);
5146     vmulsd(dst, nds, Address(rscratch1, 0));
5147   }
5148 }
5149 
5150 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5151   if (reachable(src)) {
5152     vmulss(dst, nds, as_Address(src));
5153   } else {
5154     lea(rscratch1, src);
5155     vmulss(dst, nds, Address(rscratch1, 0));
5156   }
5157 }
5158 
5159 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5160   if (reachable(src)) {
5161     vsubsd(dst, nds, as_Address(src));
5162   } else {
5163     lea(rscratch1, src);
5164     vsubsd(dst, nds, Address(rscratch1, 0));
5165   }
5166 }
5167 
5168 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5169   if (reachable(src)) {
5170     vsubss(dst, nds, as_Address(src));
5171   } else {
5172     lea(rscratch1, src);
5173     vsubss(dst, nds, Address(rscratch1, 0));
5174   }
5175 }
5176 
5177 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5178   int nds_enc = nds->encoding();
5179   int dst_enc = dst->encoding();
5180   bool dst_upper_bank = (dst_enc > 15);
5181   bool nds_upper_bank = (nds_enc > 15);
5182   if (VM_Version::supports_avx512novl() &&
5183       (nds_upper_bank || dst_upper_bank)) {
5184     if (dst_upper_bank) {
5185       subptr(rsp, 64);
5186       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5187       movflt(xmm0, nds);
5188       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5189       movflt(dst, xmm0);
5190       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5191       addptr(rsp, 64);
5192     } else {
5193       movflt(dst, nds);
5194       vxorps(dst, dst, src, Assembler::AVX_128bit);
5195     }
5196   } else {
5197     vxorps(dst, nds, src, Assembler::AVX_128bit);
5198   }
5199 }
5200 
5201 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5202   int nds_enc = nds->encoding();
5203   int dst_enc = dst->encoding();
5204   bool dst_upper_bank = (dst_enc > 15);
5205   bool nds_upper_bank = (nds_enc > 15);
5206   if (VM_Version::supports_avx512novl() &&
5207       (nds_upper_bank || dst_upper_bank)) {
5208     if (dst_upper_bank) {
5209       subptr(rsp, 64);
5210       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5211       movdbl(xmm0, nds);
5212       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5213       movdbl(dst, xmm0);
5214       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5215       addptr(rsp, 64);
5216     } else {
5217       movdbl(dst, nds);
5218       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5219     }
5220   } else {
5221     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5222   }
5223 }
5224 
5225 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5226   if (reachable(src)) {
5227     vxorpd(dst, nds, as_Address(src), vector_len);
5228   } else {
5229     lea(rscratch1, src);
5230     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5231   }
5232 }
5233 
5234 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5235   if (reachable(src)) {
5236     vxorps(dst, nds, as_Address(src), vector_len);
5237   } else {
5238     lea(rscratch1, src);
5239     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5240   }
5241 }
5242 
5243 
5244 void MacroAssembler::resolve_jobject(Register value,
5245                                      Register thread,
5246                                      Register tmp) {
5247   assert_different_registers(value, thread, tmp);
5248   Label done, not_weak;
5249   testptr(value, value);
5250   jcc(Assembler::zero, done);                // Use NULL as-is.
5251   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
5252   jcc(Assembler::zero, not_weak);
5253   // Resolve jweak.
5254 #if INCLUDE_ALL_GCS
5255   if (UseLoadBarrier) {
5256     load_barrier(value, Address(value, -JNIHandles::weak_tag_value), false /* expand call */, LoadBarrierOnPhantomOopRef);
5257   } else
5258 #endif
5259   {
5260     movptr(value, Address(value, -JNIHandles::weak_tag_value));
5261   }
5262   verify_oop(value);
5263 #if INCLUDE_ALL_GCS
5264   if (UseG1GC) {
5265     g1_write_barrier_pre(noreg /* obj */,
5266                          value /* pre_val */,
5267                          thread /* thread */,
5268                          tmp /* tmp */,
5269                          true /* tosca_live */,
5270                          true /* expand_call */);
5271   }
5272 #endif // INCLUDE_ALL_GCS
5273   jmp(done);
5274   bind(not_weak);
5275   // Resolve (untagged) jobject.
5276   movptr(value, Address(value, 0));
5277   verify_oop(value);
5278   bind(done);
5279 }
5280 
5281 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
5282   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
5283   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
5284   // The inverted mask is sign-extended
5285   andptr(possibly_jweak, inverted_jweak_mask);
5286 }
5287 
5288 //////////////////////////////////////////////////////////////////////////////////
5289 #if INCLUDE_ALL_GCS
5290 
5291 void MacroAssembler::g1_write_barrier_pre(Register obj,
5292                                           Register pre_val,
5293                                           Register thread,
5294                                           Register tmp,
5295                                           bool tosca_live,
5296                                           bool expand_call) {
5297 
5298   // If expand_call is true then we expand the call_VM_leaf macro
5299   // directly to skip generating the check by
5300   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
5301 
5302 #ifdef _LP64
5303   assert(thread == r15_thread, "must be");
5304 #endif // _LP64
5305 
5306   Label done;
5307   Label runtime;
5308 
5309   assert(pre_val != noreg, "check this code");
5310 
5311   if (obj != noreg) {
5312     assert_different_registers(obj, pre_val, tmp);
5313     assert(pre_val != rax, "check this code");
5314   }
5315 
5316   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5317                                        SATBMarkQueue::byte_offset_of_active()));
5318   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5319                                        SATBMarkQueue::byte_offset_of_index()));
5320   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5321                                        SATBMarkQueue::byte_offset_of_buf()));
5322 
5323 
5324   // Is marking active?
5325   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
5326     cmpl(in_progress, 0);
5327   } else {
5328     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
5329     cmpb(in_progress, 0);
5330   }
5331   jcc(Assembler::equal, done);
5332 
5333   // Do we need to load the previous value?
5334   if (obj != noreg) {
5335     load_heap_oop(pre_val, Address(obj, 0));
5336   }
5337 
5338   // Is the previous value null?
5339   cmpptr(pre_val, (int32_t) NULL_WORD);
5340   jcc(Assembler::equal, done);
5341 
5342   // Can we store original value in the thread's buffer?
5343   // Is index == 0?
5344   // (The index field is typed as size_t.)
5345 
5346   movptr(tmp, index);                   // tmp := *index_adr
5347   cmpptr(tmp, 0);                       // tmp == 0?
5348   jcc(Assembler::equal, runtime);       // If yes, goto runtime
5349 
5350   subptr(tmp, wordSize);                // tmp := tmp - wordSize
5351   movptr(index, tmp);                   // *index_adr := tmp
5352   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
5353 
5354   // Record the previous value
5355   movptr(Address(tmp, 0), pre_val);
5356   jmp(done);
5357 
5358   bind(runtime);
5359   // save the live input values
5360   if(tosca_live) push(rax);
5361 
5362   if (obj != noreg && obj != rax)
5363     push(obj);
5364 
5365   if (pre_val != rax)
5366     push(pre_val);
5367 
5368   // Calling the runtime using the regular call_VM_leaf mechanism generates
5369   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
5370   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
5371   //
5372   // If we care generating the pre-barrier without a frame (e.g. in the
5373   // intrinsified Reference.get() routine) then ebp might be pointing to
5374   // the caller frame and so this check will most likely fail at runtime.
5375   //
5376   // Expanding the call directly bypasses the generation of the check.
5377   // So when we do not have have a full interpreter frame on the stack
5378   // expand_call should be passed true.
5379 
5380   NOT_LP64( push(thread); )
5381 
5382   if (expand_call) {
5383     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
5384     pass_arg1(this, thread);
5385     pass_arg0(this, pre_val);
5386     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
5387   } else {
5388     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
5389   }
5390 
5391   NOT_LP64( pop(thread); )
5392 
5393   // save the live input values
5394   if (pre_val != rax)
5395     pop(pre_val);
5396 
5397   if (obj != noreg && obj != rax)
5398     pop(obj);
5399 
5400   if(tosca_live) pop(rax);
5401 
5402   bind(done);
5403 }
5404 
5405 void MacroAssembler::g1_write_barrier_post(Register store_addr,
5406                                            Register new_val,
5407                                            Register thread,
5408                                            Register tmp,
5409                                            Register tmp2) {
5410 #ifdef _LP64
5411   assert(thread == r15_thread, "must be");
5412 #endif // _LP64
5413 
5414   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5415                                        DirtyCardQueue::byte_offset_of_index()));
5416   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5417                                        DirtyCardQueue::byte_offset_of_buf()));
5418 
5419   CardTableModRefBS* ctbs =
5420     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
5421   CardTable* ct = ctbs->card_table();
5422   assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
5423 
5424   Label done;
5425   Label runtime;
5426 
5427   // Does store cross heap regions?
5428 
5429   movptr(tmp, store_addr);
5430   xorptr(tmp, new_val);
5431   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
5432   jcc(Assembler::equal, done);
5433 
5434   // crosses regions, storing NULL?
5435 
5436   cmpptr(new_val, (int32_t) NULL_WORD);
5437   jcc(Assembler::equal, done);
5438 
5439   // storing region crossing non-NULL, is card already dirty?
5440 
5441   const Register card_addr = tmp;
5442   const Register cardtable = tmp2;
5443 
5444   movptr(card_addr, store_addr);
5445   shrptr(card_addr, CardTable::card_shift);
5446   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
5447   // a valid address and therefore is not properly handled by the relocation code.
5448   movptr(cardtable, (intptr_t)ct->byte_map_base());
5449   addptr(card_addr, cardtable);
5450 
5451   cmpb(Address(card_addr, 0), (int)G1CardTable::g1_young_card_val());
5452   jcc(Assembler::equal, done);
5453 
5454   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
5455   cmpb(Address(card_addr, 0), (int)CardTable::dirty_card_val());
5456   jcc(Assembler::equal, done);
5457 
5458 
5459   // storing a region crossing, non-NULL oop, card is clean.
5460   // dirty card and log.
5461 
5462   movb(Address(card_addr, 0), (int)CardTable::dirty_card_val());
5463 
5464   cmpl(queue_index, 0);
5465   jcc(Assembler::equal, runtime);
5466   subl(queue_index, wordSize);
5467   movptr(tmp2, buffer);
5468 #ifdef _LP64
5469   movslq(rscratch1, queue_index);
5470   addq(tmp2, rscratch1);
5471   movq(Address(tmp2, 0), card_addr);
5472 #else
5473   addl(tmp2, queue_index);
5474   movl(Address(tmp2, 0), card_addr);
5475 #endif
5476   jmp(done);
5477 
5478   bind(runtime);
5479   // save the live input values
5480   push(store_addr);
5481   push(new_val);
5482 #ifdef _LP64
5483   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
5484 #else
5485   push(thread);
5486   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
5487   pop(thread);
5488 #endif
5489   pop(new_val);
5490   pop(store_addr);
5491 
5492   bind(done);
5493 }
5494 
5495 #endif // INCLUDE_ALL_GCS
5496 //////////////////////////////////////////////////////////////////////////////////
5497 
5498 
5499 void MacroAssembler::store_check(Register obj, Address dst) {
5500   store_check(obj);
5501 }
5502 
5503 void MacroAssembler::store_check(Register obj) {
5504   // Does a store check for the oop in register obj. The content of
5505   // register obj is destroyed afterwards.
5506   BarrierSet* bs = Universe::heap()->barrier_set();
5507   assert(bs->kind() == BarrierSet::CardTableModRef,
5508          "Wrong barrier set kind");
5509 
5510   CardTableModRefBS* ctbs = barrier_set_cast<CardTableModRefBS>(bs);
5511   CardTable* ct = ctbs->card_table();
5512   assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
5513 
5514   shrptr(obj, CardTable::card_shift);
5515 
5516   Address card_addr;
5517 
5518   // The calculation for byte_map_base is as follows:
5519   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
5520   // So this essentially converts an address to a displacement and it will
5521   // never need to be relocated. On 64bit however the value may be too
5522   // large for a 32bit displacement.
5523   intptr_t disp = (intptr_t) ct->byte_map_base();
5524   if (is_simm32(disp)) {
5525     card_addr = Address(noreg, obj, Address::times_1, disp);
5526   } else {
5527     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
5528     // displacement and done in a single instruction given favorable mapping and a
5529     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
5530     // entry and that entry is not properly handled by the relocation code.
5531     AddressLiteral cardtable((address)ct->byte_map_base(), relocInfo::none);
5532     Address index(noreg, obj, Address::times_1);
5533     card_addr = as_Address(ArrayAddress(cardtable, index));
5534   }
5535 
5536   int dirty = CardTable::dirty_card_val();
5537   if (UseCondCardMark) {
5538     Label L_already_dirty;
5539     if (UseConcMarkSweepGC) {
5540       membar(Assembler::StoreLoad);
5541     }
5542     cmpb(card_addr, dirty);
5543     jcc(Assembler::equal, L_already_dirty);
5544     movb(card_addr, dirty);
5545     bind(L_already_dirty);
5546   } else {
5547     movb(card_addr, dirty);
5548   }
5549 }
5550 
5551 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5552   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5553 }
5554 
5555 // Force generation of a 4 byte immediate value even if it fits into 8bit
5556 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5557   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5558 }
5559 
5560 void MacroAssembler::subptr(Register dst, Register src) {
5561   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5562 }
5563 
5564 // C++ bool manipulation
5565 void MacroAssembler::testbool(Register dst) {
5566   if(sizeof(bool) == 1)
5567     testb(dst, 0xff);
5568   else if(sizeof(bool) == 2) {
5569     // testw implementation needed for two byte bools
5570     ShouldNotReachHere();
5571   } else if(sizeof(bool) == 4)
5572     testl(dst, dst);
5573   else
5574     // unsupported
5575     ShouldNotReachHere();
5576 }
5577 
5578 void MacroAssembler::testptr(Register dst, Register src) {
5579   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5580 }
5581 
5582 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5583 void MacroAssembler::tlab_allocate(Register obj,
5584                                    Register var_size_in_bytes,
5585                                    int con_size_in_bytes,
5586                                    Register t1,
5587                                    Register t2,
5588                                    Label& slow_case) {
5589   assert_different_registers(obj, t1, t2);
5590   assert_different_registers(obj, var_size_in_bytes, t1);
5591   Register end = t2;
5592   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5593 
5594   verify_tlab();
5595 
5596   NOT_LP64(get_thread(thread));
5597 
5598   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5599   if (var_size_in_bytes == noreg) {
5600     lea(end, Address(obj, con_size_in_bytes));
5601   } else {
5602     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5603   }
5604   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5605   jcc(Assembler::above, slow_case);
5606 
5607   // update the tlab top pointer
5608   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5609 
5610   // recover var_size_in_bytes if necessary
5611   if (var_size_in_bytes == end) {
5612     subptr(var_size_in_bytes, obj);
5613   }
5614   verify_tlab();
5615 }
5616 
5617 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5618 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5619   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5620   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5621   Label done;
5622 
5623   testptr(length_in_bytes, length_in_bytes);
5624   jcc(Assembler::zero, done);
5625 
5626   // initialize topmost word, divide index by 2, check if odd and test if zero
5627   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5628 #ifdef ASSERT
5629   {
5630     Label L;
5631     testptr(length_in_bytes, BytesPerWord - 1);
5632     jcc(Assembler::zero, L);
5633     stop("length must be a multiple of BytesPerWord");
5634     bind(L);
5635   }
5636 #endif
5637   Register index = length_in_bytes;
5638   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5639   if (UseIncDec) {
5640     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5641   } else {
5642     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5643     shrptr(index, 1);
5644   }
5645 #ifndef _LP64
5646   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5647   {
5648     Label even;
5649     // note: if index was a multiple of 8, then it cannot
5650     //       be 0 now otherwise it must have been 0 before
5651     //       => if it is even, we don't need to check for 0 again
5652     jcc(Assembler::carryClear, even);
5653     // clear topmost word (no jump would be needed if conditional assignment worked here)
5654     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5655     // index could be 0 now, must check again
5656     jcc(Assembler::zero, done);
5657     bind(even);
5658   }
5659 #endif // !_LP64
5660   // initialize remaining object fields: index is a multiple of 2 now
5661   {
5662     Label loop;
5663     bind(loop);
5664     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5665     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5666     decrement(index);
5667     jcc(Assembler::notZero, loop);
5668   }
5669 
5670   bind(done);
5671 }
5672 
5673 void MacroAssembler::incr_allocated_bytes(Register thread,
5674                                           Register var_size_in_bytes,
5675                                           int con_size_in_bytes,
5676                                           Register t1) {
5677   if (!thread->is_valid()) {
5678 #ifdef _LP64
5679     thread = r15_thread;
5680 #else
5681     assert(t1->is_valid(), "need temp reg");
5682     thread = t1;
5683     get_thread(thread);
5684 #endif
5685   }
5686 
5687 #ifdef _LP64
5688   if (var_size_in_bytes->is_valid()) {
5689     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5690   } else {
5691     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5692   }
5693 #else
5694   if (var_size_in_bytes->is_valid()) {
5695     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5696   } else {
5697     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5698   }
5699   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5700 #endif
5701 }
5702 
5703 // Look up the method for a megamorphic invokeinterface call.
5704 // The target method is determined by <intf_klass, itable_index>.
5705 // The receiver klass is in recv_klass.
5706 // On success, the result will be in method_result, and execution falls through.
5707 // On failure, execution transfers to the given label.
5708 void MacroAssembler::lookup_interface_method(Register recv_klass,
5709                                              Register intf_klass,
5710                                              RegisterOrConstant itable_index,
5711                                              Register method_result,
5712                                              Register scan_temp,
5713                                              Label& L_no_such_interface,
5714                                              bool return_method) {
5715   assert_different_registers(recv_klass, intf_klass, scan_temp);
5716   assert_different_registers(method_result, intf_klass, scan_temp);
5717   assert(recv_klass != method_result || !return_method,
5718          "recv_klass can be destroyed when method isn't needed");
5719 
5720   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5721          "caller must use same register for non-constant itable index as for method");
5722 
5723   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5724   int vtable_base = in_bytes(Klass::vtable_start_offset());
5725   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5726   int scan_step   = itableOffsetEntry::size() * wordSize;
5727   int vte_size    = vtableEntry::size_in_bytes();
5728   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5729   assert(vte_size == wordSize, "else adjust times_vte_scale");
5730 
5731   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5732 
5733   // %%% Could store the aligned, prescaled offset in the klassoop.
5734   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5735 
5736   if (return_method) {
5737     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5738     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5739     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5740   }
5741 
5742   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5743   //   if (scan->interface() == intf) {
5744   //     result = (klass + scan->offset() + itable_index);
5745   //   }
5746   // }
5747   Label search, found_method;
5748 
5749   for (int peel = 1; peel >= 0; peel--) {
5750     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5751     cmpptr(intf_klass, method_result);
5752 
5753     if (peel) {
5754       jccb(Assembler::equal, found_method);
5755     } else {
5756       jccb(Assembler::notEqual, search);
5757       // (invert the test to fall through to found_method...)
5758     }
5759 
5760     if (!peel)  break;
5761 
5762     bind(search);
5763 
5764     // Check that the previous entry is non-null.  A null entry means that
5765     // the receiver class doesn't implement the interface, and wasn't the
5766     // same as when the caller was compiled.
5767     testptr(method_result, method_result);
5768     jcc(Assembler::zero, L_no_such_interface);
5769     addptr(scan_temp, scan_step);
5770   }
5771 
5772   bind(found_method);
5773 
5774   if (return_method) {
5775     // Got a hit.
5776     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5777     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5778   }
5779 }
5780 
5781 
5782 // virtual method calling
5783 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5784                                            RegisterOrConstant vtable_index,
5785                                            Register method_result) {
5786   const int base = in_bytes(Klass::vtable_start_offset());
5787   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5788   Address vtable_entry_addr(recv_klass,
5789                             vtable_index, Address::times_ptr,
5790                             base + vtableEntry::method_offset_in_bytes());
5791   movptr(method_result, vtable_entry_addr);
5792 }
5793 
5794 
5795 void MacroAssembler::check_klass_subtype(Register sub_klass,
5796                            Register super_klass,
5797                            Register temp_reg,
5798                            Label& L_success) {
5799   Label L_failure;
5800   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5801   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5802   bind(L_failure);
5803 }
5804 
5805 
5806 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5807                                                    Register super_klass,
5808                                                    Register temp_reg,
5809                                                    Label* L_success,
5810                                                    Label* L_failure,
5811                                                    Label* L_slow_path,
5812                                         RegisterOrConstant super_check_offset) {
5813   assert_different_registers(sub_klass, super_klass, temp_reg);
5814   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5815   if (super_check_offset.is_register()) {
5816     assert_different_registers(sub_klass, super_klass,
5817                                super_check_offset.as_register());
5818   } else if (must_load_sco) {
5819     assert(temp_reg != noreg, "supply either a temp or a register offset");
5820   }
5821 
5822   Label L_fallthrough;
5823   int label_nulls = 0;
5824   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5825   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5826   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5827   assert(label_nulls <= 1, "at most one NULL in the batch");
5828 
5829   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5830   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5831   Address super_check_offset_addr(super_klass, sco_offset);
5832 
5833   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5834   // range of a jccb.  If this routine grows larger, reconsider at
5835   // least some of these.
5836 #define local_jcc(assembler_cond, label)                                \
5837   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5838   else                             jcc( assembler_cond, label) /*omit semi*/
5839 
5840   // Hacked jmp, which may only be used just before L_fallthrough.
5841 #define final_jmp(label)                                                \
5842   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5843   else                            jmp(label)                /*omit semi*/
5844 
5845   // If the pointers are equal, we are done (e.g., String[] elements).
5846   // This self-check enables sharing of secondary supertype arrays among
5847   // non-primary types such as array-of-interface.  Otherwise, each such
5848   // type would need its own customized SSA.
5849   // We move this check to the front of the fast path because many
5850   // type checks are in fact trivially successful in this manner,
5851   // so we get a nicely predicted branch right at the start of the check.
5852   cmpptr(sub_klass, super_klass);
5853   local_jcc(Assembler::equal, *L_success);
5854 
5855   // Check the supertype display:
5856   if (must_load_sco) {
5857     // Positive movl does right thing on LP64.
5858     movl(temp_reg, super_check_offset_addr);
5859     super_check_offset = RegisterOrConstant(temp_reg);
5860   }
5861   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5862   cmpptr(super_klass, super_check_addr); // load displayed supertype
5863 
5864   // This check has worked decisively for primary supers.
5865   // Secondary supers are sought in the super_cache ('super_cache_addr').
5866   // (Secondary supers are interfaces and very deeply nested subtypes.)
5867   // This works in the same check above because of a tricky aliasing
5868   // between the super_cache and the primary super display elements.
5869   // (The 'super_check_addr' can address either, as the case requires.)
5870   // Note that the cache is updated below if it does not help us find
5871   // what we need immediately.
5872   // So if it was a primary super, we can just fail immediately.
5873   // Otherwise, it's the slow path for us (no success at this point).
5874 
5875   if (super_check_offset.is_register()) {
5876     local_jcc(Assembler::equal, *L_success);
5877     cmpl(super_check_offset.as_register(), sc_offset);
5878     if (L_failure == &L_fallthrough) {
5879       local_jcc(Assembler::equal, *L_slow_path);
5880     } else {
5881       local_jcc(Assembler::notEqual, *L_failure);
5882       final_jmp(*L_slow_path);
5883     }
5884   } else if (super_check_offset.as_constant() == sc_offset) {
5885     // Need a slow path; fast failure is impossible.
5886     if (L_slow_path == &L_fallthrough) {
5887       local_jcc(Assembler::equal, *L_success);
5888     } else {
5889       local_jcc(Assembler::notEqual, *L_slow_path);
5890       final_jmp(*L_success);
5891     }
5892   } else {
5893     // No slow path; it's a fast decision.
5894     if (L_failure == &L_fallthrough) {
5895       local_jcc(Assembler::equal, *L_success);
5896     } else {
5897       local_jcc(Assembler::notEqual, *L_failure);
5898       final_jmp(*L_success);
5899     }
5900   }
5901 
5902   bind(L_fallthrough);
5903 
5904 #undef local_jcc
5905 #undef final_jmp
5906 }
5907 
5908 
5909 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5910                                                    Register super_klass,
5911                                                    Register temp_reg,
5912                                                    Register temp2_reg,
5913                                                    Label* L_success,
5914                                                    Label* L_failure,
5915                                                    bool set_cond_codes) {
5916   assert_different_registers(sub_klass, super_klass, temp_reg);
5917   if (temp2_reg != noreg)
5918     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5919 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5920 
5921   Label L_fallthrough;
5922   int label_nulls = 0;
5923   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5924   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5925   assert(label_nulls <= 1, "at most one NULL in the batch");
5926 
5927   // a couple of useful fields in sub_klass:
5928   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5929   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5930   Address secondary_supers_addr(sub_klass, ss_offset);
5931   Address super_cache_addr(     sub_klass, sc_offset);
5932 
5933   // Do a linear scan of the secondary super-klass chain.
5934   // This code is rarely used, so simplicity is a virtue here.
5935   // The repne_scan instruction uses fixed registers, which we must spill.
5936   // Don't worry too much about pre-existing connections with the input regs.
5937 
5938   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5939   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5940 
5941   // Get super_klass value into rax (even if it was in rdi or rcx).
5942   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5943   if (super_klass != rax || UseCompressedOops) {
5944     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5945     mov(rax, super_klass);
5946   }
5947   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5948   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5949 
5950 #ifndef PRODUCT
5951   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5952   ExternalAddress pst_counter_addr((address) pst_counter);
5953   NOT_LP64(  incrementl(pst_counter_addr) );
5954   LP64_ONLY( lea(rcx, pst_counter_addr) );
5955   LP64_ONLY( incrementl(Address(rcx, 0)) );
5956 #endif //PRODUCT
5957 
5958   // We will consult the secondary-super array.
5959   movptr(rdi, secondary_supers_addr);
5960   // Load the array length.  (Positive movl does right thing on LP64.)
5961   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5962   // Skip to start of data.
5963   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5964 
5965   // Scan RCX words at [RDI] for an occurrence of RAX.
5966   // Set NZ/Z based on last compare.
5967   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5968   // not change flags (only scas instruction which is repeated sets flags).
5969   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5970 
5971     testptr(rax,rax); // Set Z = 0
5972     repne_scan();
5973 
5974   // Unspill the temp. registers:
5975   if (pushed_rdi)  pop(rdi);
5976   if (pushed_rcx)  pop(rcx);
5977   if (pushed_rax)  pop(rax);
5978 
5979   if (set_cond_codes) {
5980     // Special hack for the AD files:  rdi is guaranteed non-zero.
5981     assert(!pushed_rdi, "rdi must be left non-NULL");
5982     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5983   }
5984 
5985   if (L_failure == &L_fallthrough)
5986         jccb(Assembler::notEqual, *L_failure);
5987   else  jcc(Assembler::notEqual, *L_failure);
5988 
5989   // Success.  Cache the super we found and proceed in triumph.
5990   movptr(super_cache_addr, super_klass);
5991 
5992   if (L_success != &L_fallthrough) {
5993     jmp(*L_success);
5994   }
5995 
5996 #undef IS_A_TEMP
5997 
5998   bind(L_fallthrough);
5999 }
6000 
6001 
6002 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
6003   if (VM_Version::supports_cmov()) {
6004     cmovl(cc, dst, src);
6005   } else {
6006     Label L;
6007     jccb(negate_condition(cc), L);
6008     movl(dst, src);
6009     bind(L);
6010   }
6011 }
6012 
6013 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
6014   if (VM_Version::supports_cmov()) {
6015     cmovl(cc, dst, src);
6016   } else {
6017     Label L;
6018     jccb(negate_condition(cc), L);
6019     movl(dst, src);
6020     bind(L);
6021   }
6022 }
6023 
6024 void MacroAssembler::verify_oop(Register reg, const char* s) {
6025   if (!VerifyOops) return;
6026 
6027   // Pass register number to verify_oop_subroutine
6028   const char* b = NULL;
6029   {
6030     ResourceMark rm;
6031     stringStream ss;
6032     ss.print("verify_oop: %s: %s", reg->name(), s);
6033     b = code_string(ss.as_string());
6034   }
6035   BLOCK_COMMENT("verify_oop {");
6036 #ifdef _LP64
6037   push(rscratch1);                    // save r10, trashed by movptr()
6038 #endif
6039   push(rax);                          // save rax,
6040   push(reg);                          // pass register argument
6041   ExternalAddress buffer((address) b);
6042   // avoid using pushptr, as it modifies scratch registers
6043   // and our contract is not to modify anything
6044   movptr(rax, buffer.addr());
6045   push(rax);
6046   // call indirectly to solve generation ordering problem
6047   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6048   call(rax);
6049   // Caller pops the arguments (oop, message) and restores rax, r10
6050   BLOCK_COMMENT("} verify_oop");
6051 }
6052 
6053 
6054 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
6055                                                       Register tmp,
6056                                                       int offset) {
6057   intptr_t value = *delayed_value_addr;
6058   if (value != 0)
6059     return RegisterOrConstant(value + offset);
6060 
6061   // load indirectly to solve generation ordering problem
6062   movptr(tmp, ExternalAddress((address) delayed_value_addr));
6063 
6064 #ifdef ASSERT
6065   { Label L;
6066     testptr(tmp, tmp);
6067     if (WizardMode) {
6068       const char* buf = NULL;
6069       {
6070         ResourceMark rm;
6071         stringStream ss;
6072         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
6073         buf = code_string(ss.as_string());
6074       }
6075       jcc(Assembler::notZero, L);
6076       STOP(buf);
6077     } else {
6078       jccb(Assembler::notZero, L);
6079       hlt();
6080     }
6081     bind(L);
6082   }
6083 #endif
6084 
6085   if (offset != 0)
6086     addptr(tmp, offset);
6087 
6088   return RegisterOrConstant(tmp);
6089 }
6090 
6091 
6092 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
6093                                          int extra_slot_offset) {
6094   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
6095   int stackElementSize = Interpreter::stackElementSize;
6096   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
6097 #ifdef ASSERT
6098   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
6099   assert(offset1 - offset == stackElementSize, "correct arithmetic");
6100 #endif
6101   Register             scale_reg    = noreg;
6102   Address::ScaleFactor scale_factor = Address::no_scale;
6103   if (arg_slot.is_constant()) {
6104     offset += arg_slot.as_constant() * stackElementSize;
6105   } else {
6106     scale_reg    = arg_slot.as_register();
6107     scale_factor = Address::times(stackElementSize);
6108   }
6109   offset += wordSize;           // return PC is on stack
6110   return Address(rsp, scale_reg, scale_factor, offset);
6111 }
6112 
6113 
6114 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
6115   if (!VerifyOops) return;
6116 
6117   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
6118   // Pass register number to verify_oop_subroutine
6119   const char* b = NULL;
6120   {
6121     ResourceMark rm;
6122     stringStream ss;
6123     ss.print("verify_oop_addr: %s", s);
6124     b = code_string(ss.as_string());
6125   }
6126 #ifdef _LP64
6127   push(rscratch1);                    // save r10, trashed by movptr()
6128 #endif
6129   push(rax);                          // save rax,
6130   // addr may contain rsp so we will have to adjust it based on the push
6131   // we just did (and on 64 bit we do two pushes)
6132   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
6133   // stores rax into addr which is backwards of what was intended.
6134   if (addr.uses(rsp)) {
6135     lea(rax, addr);
6136     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
6137   } else {
6138     pushptr(addr);
6139   }
6140 
6141   ExternalAddress buffer((address) b);
6142   // pass msg argument
6143   // avoid using pushptr, as it modifies scratch registers
6144   // and our contract is not to modify anything
6145   movptr(rax, buffer.addr());
6146   push(rax);
6147 
6148   // call indirectly to solve generation ordering problem
6149   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6150   call(rax);
6151   // Caller pops the arguments (addr, message) and restores rax, r10.
6152 }
6153 
6154 void MacroAssembler::verify_tlab() {
6155 #ifdef ASSERT
6156   if (UseTLAB && VerifyOops) {
6157     Label next, ok;
6158     Register t1 = rsi;
6159     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
6160 
6161     push(t1);
6162     NOT_LP64(push(thread_reg));
6163     NOT_LP64(get_thread(thread_reg));
6164 
6165     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6166     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
6167     jcc(Assembler::aboveEqual, next);
6168     STOP("assert(top >= start)");
6169     should_not_reach_here();
6170 
6171     bind(next);
6172     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
6173     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6174     jcc(Assembler::aboveEqual, ok);
6175     STOP("assert(top <= end)");
6176     should_not_reach_here();
6177 
6178     bind(ok);
6179     NOT_LP64(pop(thread_reg));
6180     pop(t1);
6181   }
6182 #endif
6183 }
6184 
6185 class ControlWord {
6186  public:
6187   int32_t _value;
6188 
6189   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
6190   int  precision_control() const       { return  (_value >>  8) & 3      ; }
6191   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6192   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6193   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6194   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6195   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6196   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6197 
6198   void print() const {
6199     // rounding control
6200     const char* rc;
6201     switch (rounding_control()) {
6202       case 0: rc = "round near"; break;
6203       case 1: rc = "round down"; break;
6204       case 2: rc = "round up  "; break;
6205       case 3: rc = "chop      "; break;
6206     };
6207     // precision control
6208     const char* pc;
6209     switch (precision_control()) {
6210       case 0: pc = "24 bits "; break;
6211       case 1: pc = "reserved"; break;
6212       case 2: pc = "53 bits "; break;
6213       case 3: pc = "64 bits "; break;
6214     };
6215     // flags
6216     char f[9];
6217     f[0] = ' ';
6218     f[1] = ' ';
6219     f[2] = (precision   ()) ? 'P' : 'p';
6220     f[3] = (underflow   ()) ? 'U' : 'u';
6221     f[4] = (overflow    ()) ? 'O' : 'o';
6222     f[5] = (zero_divide ()) ? 'Z' : 'z';
6223     f[6] = (denormalized()) ? 'D' : 'd';
6224     f[7] = (invalid     ()) ? 'I' : 'i';
6225     f[8] = '\x0';
6226     // output
6227     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
6228   }
6229 
6230 };
6231 
6232 class StatusWord {
6233  public:
6234   int32_t _value;
6235 
6236   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
6237   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
6238   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
6239   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
6240   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
6241   int  top() const                     { return  (_value >> 11) & 7      ; }
6242   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
6243   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
6244   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6245   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6246   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6247   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6248   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6249   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6250 
6251   void print() const {
6252     // condition codes
6253     char c[5];
6254     c[0] = (C3()) ? '3' : '-';
6255     c[1] = (C2()) ? '2' : '-';
6256     c[2] = (C1()) ? '1' : '-';
6257     c[3] = (C0()) ? '0' : '-';
6258     c[4] = '\x0';
6259     // flags
6260     char f[9];
6261     f[0] = (error_status()) ? 'E' : '-';
6262     f[1] = (stack_fault ()) ? 'S' : '-';
6263     f[2] = (precision   ()) ? 'P' : '-';
6264     f[3] = (underflow   ()) ? 'U' : '-';
6265     f[4] = (overflow    ()) ? 'O' : '-';
6266     f[5] = (zero_divide ()) ? 'Z' : '-';
6267     f[6] = (denormalized()) ? 'D' : '-';
6268     f[7] = (invalid     ()) ? 'I' : '-';
6269     f[8] = '\x0';
6270     // output
6271     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
6272   }
6273 
6274 };
6275 
6276 class TagWord {
6277  public:
6278   int32_t _value;
6279 
6280   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6281 
6282   void print() const {
6283     printf("%04x", _value & 0xFFFF);
6284   }
6285 
6286 };
6287 
6288 class FPU_Register {
6289  public:
6290   int32_t _m0;
6291   int32_t _m1;
6292   int16_t _ex;
6293 
6294   bool is_indefinite() const           {
6295     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6296   }
6297 
6298   void print() const {
6299     char  sign = (_ex < 0) ? '-' : '+';
6300     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6301     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6302   };
6303 
6304 };
6305 
6306 class FPU_State {
6307  public:
6308   enum {
6309     register_size       = 10,
6310     number_of_registers =  8,
6311     register_mask       =  7
6312   };
6313 
6314   ControlWord  _control_word;
6315   StatusWord   _status_word;
6316   TagWord      _tag_word;
6317   int32_t      _error_offset;
6318   int32_t      _error_selector;
6319   int32_t      _data_offset;
6320   int32_t      _data_selector;
6321   int8_t       _register[register_size * number_of_registers];
6322 
6323   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6324   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6325 
6326   const char* tag_as_string(int tag) const {
6327     switch (tag) {
6328       case 0: return "valid";
6329       case 1: return "zero";
6330       case 2: return "special";
6331       case 3: return "empty";
6332     }
6333     ShouldNotReachHere();
6334     return NULL;
6335   }
6336 
6337   void print() const {
6338     // print computation registers
6339     { int t = _status_word.top();
6340       for (int i = 0; i < number_of_registers; i++) {
6341         int j = (i - t) & register_mask;
6342         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6343         st(j)->print();
6344         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6345       }
6346     }
6347     printf("\n");
6348     // print control registers
6349     printf("ctrl = "); _control_word.print(); printf("\n");
6350     printf("stat = "); _status_word .print(); printf("\n");
6351     printf("tags = "); _tag_word    .print(); printf("\n");
6352   }
6353 
6354 };
6355 
6356 class Flag_Register {
6357  public:
6358   int32_t _value;
6359 
6360   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6361   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6362   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6363   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6364   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6365   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6366   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6367 
6368   void print() const {
6369     // flags
6370     char f[8];
6371     f[0] = (overflow       ()) ? 'O' : '-';
6372     f[1] = (direction      ()) ? 'D' : '-';
6373     f[2] = (sign           ()) ? 'S' : '-';
6374     f[3] = (zero           ()) ? 'Z' : '-';
6375     f[4] = (auxiliary_carry()) ? 'A' : '-';
6376     f[5] = (parity         ()) ? 'P' : '-';
6377     f[6] = (carry          ()) ? 'C' : '-';
6378     f[7] = '\x0';
6379     // output
6380     printf("%08x  flags = %s", _value, f);
6381   }
6382 
6383 };
6384 
6385 class IU_Register {
6386  public:
6387   int32_t _value;
6388 
6389   void print() const {
6390     printf("%08x  %11d", _value, _value);
6391   }
6392 
6393 };
6394 
6395 class IU_State {
6396  public:
6397   Flag_Register _eflags;
6398   IU_Register   _rdi;
6399   IU_Register   _rsi;
6400   IU_Register   _rbp;
6401   IU_Register   _rsp;
6402   IU_Register   _rbx;
6403   IU_Register   _rdx;
6404   IU_Register   _rcx;
6405   IU_Register   _rax;
6406 
6407   void print() const {
6408     // computation registers
6409     printf("rax,  = "); _rax.print(); printf("\n");
6410     printf("rbx,  = "); _rbx.print(); printf("\n");
6411     printf("rcx  = "); _rcx.print(); printf("\n");
6412     printf("rdx  = "); _rdx.print(); printf("\n");
6413     printf("rdi  = "); _rdi.print(); printf("\n");
6414     printf("rsi  = "); _rsi.print(); printf("\n");
6415     printf("rbp,  = "); _rbp.print(); printf("\n");
6416     printf("rsp  = "); _rsp.print(); printf("\n");
6417     printf("\n");
6418     // control registers
6419     printf("flgs = "); _eflags.print(); printf("\n");
6420   }
6421 };
6422 
6423 
6424 class CPU_State {
6425  public:
6426   FPU_State _fpu_state;
6427   IU_State  _iu_state;
6428 
6429   void print() const {
6430     printf("--------------------------------------------------\n");
6431     _iu_state .print();
6432     printf("\n");
6433     _fpu_state.print();
6434     printf("--------------------------------------------------\n");
6435   }
6436 
6437 };
6438 
6439 
6440 static void _print_CPU_state(CPU_State* state) {
6441   state->print();
6442 };
6443 
6444 
6445 void MacroAssembler::print_CPU_state() {
6446   push_CPU_state();
6447   push(rsp);                // pass CPU state
6448   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6449   addptr(rsp, wordSize);       // discard argument
6450   pop_CPU_state();
6451 }
6452 
6453 
6454 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6455   static int counter = 0;
6456   FPU_State* fs = &state->_fpu_state;
6457   counter++;
6458   // For leaf calls, only verify that the top few elements remain empty.
6459   // We only need 1 empty at the top for C2 code.
6460   if( stack_depth < 0 ) {
6461     if( fs->tag_for_st(7) != 3 ) {
6462       printf("FPR7 not empty\n");
6463       state->print();
6464       assert(false, "error");
6465       return false;
6466     }
6467     return true;                // All other stack states do not matter
6468   }
6469 
6470   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6471          "bad FPU control word");
6472 
6473   // compute stack depth
6474   int i = 0;
6475   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6476   int d = i;
6477   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6478   // verify findings
6479   if (i != FPU_State::number_of_registers) {
6480     // stack not contiguous
6481     printf("%s: stack not contiguous at ST%d\n", s, i);
6482     state->print();
6483     assert(false, "error");
6484     return false;
6485   }
6486   // check if computed stack depth corresponds to expected stack depth
6487   if (stack_depth < 0) {
6488     // expected stack depth is -stack_depth or less
6489     if (d > -stack_depth) {
6490       // too many elements on the stack
6491       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6492       state->print();
6493       assert(false, "error");
6494       return false;
6495     }
6496   } else {
6497     // expected stack depth is stack_depth
6498     if (d != stack_depth) {
6499       // wrong stack depth
6500       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6501       state->print();
6502       assert(false, "error");
6503       return false;
6504     }
6505   }
6506   // everything is cool
6507   return true;
6508 }
6509 
6510 
6511 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6512   if (!VerifyFPU) return;
6513   push_CPU_state();
6514   push(rsp);                // pass CPU state
6515   ExternalAddress msg((address) s);
6516   // pass message string s
6517   pushptr(msg.addr());
6518   push(stack_depth);        // pass stack depth
6519   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6520   addptr(rsp, 3 * wordSize);   // discard arguments
6521   // check for error
6522   { Label L;
6523     testl(rax, rax);
6524     jcc(Assembler::notZero, L);
6525     int3();                  // break if error condition
6526     bind(L);
6527   }
6528   pop_CPU_state();
6529 }
6530 
6531 void MacroAssembler::restore_cpu_control_state_after_jni() {
6532   // Either restore the MXCSR register after returning from the JNI Call
6533   // or verify that it wasn't changed (with -Xcheck:jni flag).
6534   if (VM_Version::supports_sse()) {
6535     if (RestoreMXCSROnJNICalls) {
6536       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6537     } else if (CheckJNICalls) {
6538       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6539     }
6540   }
6541   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6542   vzeroupper();
6543   // Reset k1 to 0xffff.
6544   if (VM_Version::supports_evex()) {
6545     push(rcx);
6546     movl(rcx, 0xffff);
6547     kmovwl(k1, rcx);
6548     pop(rcx);
6549   }
6550 
6551 #ifndef _LP64
6552   // Either restore the x87 floating pointer control word after returning
6553   // from the JNI call or verify that it wasn't changed.
6554   if (CheckJNICalls) {
6555     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6556   }
6557 #endif // _LP64
6558 }
6559 
6560 // ((OopHandle)result).resolve();
6561 void MacroAssembler::resolve_oop_handle(Register result) {
6562   // OopHandle::resolve is an indirection.
6563   movptr(result, Address(result, 0));
6564 }
6565 
6566 void MacroAssembler::load_mirror(Register mirror, Register method) {
6567   // get mirror
6568   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6569   movptr(mirror, Address(method, Method::const_offset()));
6570   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6571   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6572   movptr(mirror, Address(mirror, mirror_offset));
6573   resolve_oop_handle(mirror);
6574 }
6575 
6576 void MacroAssembler::load_klass(Register dst, Register src) {
6577 #ifdef _LP64
6578   if (UseCompressedClassPointers) {
6579     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6580     decode_klass_not_null(dst);
6581   } else
6582 #endif
6583     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6584 }
6585 
6586 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6587   load_klass(dst, src);
6588   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6589 }
6590 
6591 void MacroAssembler::store_klass(Register dst, Register src) {
6592 #ifdef _LP64
6593   if (UseCompressedClassPointers) {
6594     encode_klass_not_null(src);
6595     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6596   } else
6597 #endif
6598     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6599 }
6600 
6601 #if INCLUDE_ALL_GCS && defined(_LP64)
6602 
6603 void MacroAssembler::load_barrier(Register ref, Address ref_addr, bool expand_call, LoadBarrierOn on) {
6604   Label done;
6605   const Register resolved_ref_addr = rsi;
6606   assert_different_registers(ref, resolved_ref_addr);
6607 
6608   BLOCK_COMMENT("load_barrier {");
6609 
6610   // Save temp register
6611   push(resolved_ref_addr);
6612 
6613   // Resolve reference address now, ref_addr might use the same register as ref,
6614   // which means it gets killed when we write to ref.
6615   lea(resolved_ref_addr, ref_addr);
6616 
6617   // Load reference
6618   movptr(ref, Address(resolved_ref_addr, 0));
6619 
6620   // Check if mask is not bad, which includes an implicit null check.
6621   testptr(ref, Address(r15_thread, JavaThread::zaddress_bad_mask_offset()));
6622   jcc(Assembler::zero, done);
6623 
6624   // Save live registers
6625   push(rax);
6626   push(rcx);
6627   push(rdx);
6628   push(rdi);
6629   push(r8);
6630   push(r9);
6631   push(r10);
6632   push(r11);
6633 
6634   // We may end up here from generate_native_wrapper, then the method may have
6635   // floats as arguments, and we must spill them before calling the VM runtime
6636   // leaf. From the interpreter all floats are passed on the stack.
6637   assert(Argument::n_float_register_parameters_j == 8, "Found %d float regs", Argument::n_float_register_parameters_j);
6638   int f_spill_size = Argument::n_float_register_parameters_j * wordSize * 2;
6639   subptr(rsp, f_spill_size);
6640   movdqu(Address(rsp, 14 * wordSize), xmm7);
6641   movdqu(Address(rsp, 12 * wordSize), xmm6);
6642   movdqu(Address(rsp, 10 * wordSize), xmm5);
6643   movdqu(Address(rsp, 8 * wordSize), xmm4);
6644   movdqu(Address(rsp, 6 * wordSize), xmm3);
6645   movdqu(Address(rsp, 4 * wordSize), xmm2);
6646   movdqu(Address(rsp, 2 * wordSize), xmm1);
6647   movdqu(Address(rsp, 0 * wordSize), xmm0);
6648 
6649   // Call into VM to handle the slow path
6650   if (expand_call) {
6651     assert(ref != c_rarg1, "smashed arg");
6652     pass_arg1(this, resolved_ref_addr);
6653     pass_arg0(this, ref);
6654     switch (on) {
6655     case LoadBarrierOnStrongOopRef:
6656       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::z_load_barrier_on_oop_field_preloaded), 2);
6657       break;
6658     case LoadBarrierOnWeakOopRef:
6659       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::z_load_barrier_on_weak_oop_field_preloaded), 2);
6660       break;
6661     case LoadBarrierOnPhantomOopRef:
6662       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::z_load_barrier_on_phantom_oop_field_preloaded), 2);
6663       break;
6664     default:
6665       fatal("Unknown strength: %d", on);
6666       break;
6667     }
6668   } else {
6669     switch (on) {
6670     case LoadBarrierOnStrongOopRef:
6671       call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::z_load_barrier_on_oop_field_preloaded), ref, resolved_ref_addr);
6672       break;
6673     case LoadBarrierOnWeakOopRef:
6674       call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::z_load_barrier_on_weak_oop_field_preloaded), ref, resolved_ref_addr);
6675       break;
6676     case LoadBarrierOnPhantomOopRef:
6677       call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::z_load_barrier_on_phantom_oop_field_preloaded), ref, resolved_ref_addr);
6678       break;
6679     default: fatal("Unknown strength: %d", on);
6680       break;
6681     }
6682   }
6683 
6684   // Restore live registers
6685   movdqu(xmm0, Address(rsp, 0 * wordSize));
6686   movdqu(xmm1, Address(rsp, 2 * wordSize));
6687   movdqu(xmm2, Address(rsp, 4 * wordSize));
6688   movdqu(xmm3, Address(rsp, 6 * wordSize));
6689   movdqu(xmm4, Address(rsp, 8 * wordSize));
6690   movdqu(xmm5, Address(rsp, 10 * wordSize));
6691   movdqu(xmm6, Address(rsp, 12 * wordSize));
6692   movdqu(xmm7, Address(rsp, 14 * wordSize));
6693   addptr(rsp, f_spill_size);
6694 
6695   pop(r11);
6696   pop(r10);
6697   pop(r9);
6698   pop(r8);
6699   pop(rdi);
6700   pop(rdx);
6701   pop(rcx);
6702 
6703   if (ref == rax) {
6704     addptr(rsp, wordSize);
6705   } else {
6706     movptr(ref, rax);
6707     pop(rax);
6708   }
6709 
6710   bind(done);
6711 
6712   // Restore temp register
6713   pop(resolved_ref_addr);
6714 
6715   BLOCK_COMMENT("} load_barrier");
6716 }
6717 
6718 #endif
6719 
6720 void MacroAssembler::load_heap_oop(Register dst, Address src, bool expand_call, LoadBarrierOn on) {
6721 #ifdef _LP64
6722 #if INCLUDE_ALL_GCS
6723   if (UseLoadBarrier) {
6724     load_barrier(dst, src, expand_call, on);
6725   } else
6726 #endif
6727   if (UseCompressedOops) {
6728     movl(dst, src);
6729     decode_heap_oop(dst);
6730   } else
6731 #endif
6732     movptr(dst, src);
6733 }
6734 
6735 // Doesn't do verfication, generates fixed size code
6736 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
6737 #ifdef _LP64
6738   if (UseCompressedOops) {
6739     movl(dst, src);
6740     decode_heap_oop_not_null(dst);
6741   } else
6742 #endif
6743     movptr(dst, src);
6744 }
6745 
6746 void MacroAssembler::store_heap_oop(Address dst, Register src) {
6747 #ifdef ASSERT
6748   if (VerifyOops && UseLoadBarrier) {
6749     // Check if mask is good
6750     Label done;
6751     testptr(src, Address(r15_thread, JavaThread::zaddress_bad_mask_offset()));
6752     jcc(Assembler::zero, done);
6753     STOP("Writing broken oop");
6754     should_not_reach_here();
6755     bind(done);
6756   }
6757 #endif
6758 
6759 #ifdef _LP64
6760   if (UseCompressedOops) {
6761     assert(!dst.uses(src), "not enough registers");
6762     encode_heap_oop(src);
6763     movl(dst, src);
6764   } else
6765 #endif
6766     movptr(dst, src);
6767 }
6768 
6769 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
6770   assert_different_registers(src1, tmp);
6771 #ifdef _LP64
6772   if (UseCompressedOops) {
6773     bool did_push = false;
6774     if (tmp == noreg) {
6775       tmp = rax;
6776       push(tmp);
6777       did_push = true;
6778       assert(!src2.uses(rsp), "can't push");
6779     }
6780     load_heap_oop(tmp, src2);
6781     cmpptr(src1, tmp);
6782     if (did_push)  pop(tmp);
6783   } else
6784 #endif
6785     cmpptr(src1, src2);
6786 }
6787 
6788 // Used for storing NULLs.
6789 void MacroAssembler::store_heap_oop_null(Address dst) {
6790 #ifdef _LP64
6791   if (UseCompressedOops) {
6792     movl(dst, (int32_t)NULL_WORD);
6793   } else {
6794     movslq(dst, (int32_t)NULL_WORD);
6795   }
6796 #else
6797   movl(dst, (int32_t)NULL_WORD);
6798 #endif
6799 }
6800 
6801 #ifdef _LP64
6802 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6803   if (UseCompressedClassPointers) {
6804     // Store to klass gap in destination
6805     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6806   }
6807 }
6808 
6809 #ifdef ASSERT
6810 void MacroAssembler::verify_heapbase(const char* msg) {
6811   assert (UseCompressedOops, "should be compressed");
6812   assert (Universe::heap() != NULL, "java heap should be initialized");
6813   if (CheckCompressedOops) {
6814     Label ok;
6815     push(rscratch1); // cmpptr trashes rscratch1
6816     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6817     jcc(Assembler::equal, ok);
6818     STOP(msg);
6819     bind(ok);
6820     pop(rscratch1);
6821   }
6822 }
6823 #endif
6824 
6825 // Algorithm must match oop.inline.hpp encode_heap_oop.
6826 void MacroAssembler::encode_heap_oop(Register r) {
6827 #ifdef ASSERT
6828   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6829 #endif
6830   verify_oop(r, "broken oop in encode_heap_oop");
6831   if (Universe::narrow_oop_base() == NULL) {
6832     if (Universe::narrow_oop_shift() != 0) {
6833       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6834       shrq(r, LogMinObjAlignmentInBytes);
6835     }
6836     return;
6837   }
6838   testq(r, r);
6839   cmovq(Assembler::equal, r, r12_heapbase);
6840   subq(r, r12_heapbase);
6841   shrq(r, LogMinObjAlignmentInBytes);
6842 }
6843 
6844 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6845 #ifdef ASSERT
6846   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6847   if (CheckCompressedOops) {
6848     Label ok;
6849     testq(r, r);
6850     jcc(Assembler::notEqual, ok);
6851     STOP("null oop passed to encode_heap_oop_not_null");
6852     bind(ok);
6853   }
6854 #endif
6855   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6856   if (Universe::narrow_oop_base() != NULL) {
6857     subq(r, r12_heapbase);
6858   }
6859   if (Universe::narrow_oop_shift() != 0) {
6860     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6861     shrq(r, LogMinObjAlignmentInBytes);
6862   }
6863 }
6864 
6865 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6866 #ifdef ASSERT
6867   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6868   if (CheckCompressedOops) {
6869     Label ok;
6870     testq(src, src);
6871     jcc(Assembler::notEqual, ok);
6872     STOP("null oop passed to encode_heap_oop_not_null2");
6873     bind(ok);
6874   }
6875 #endif
6876   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6877   if (dst != src) {
6878     movq(dst, src);
6879   }
6880   if (Universe::narrow_oop_base() != NULL) {
6881     subq(dst, r12_heapbase);
6882   }
6883   if (Universe::narrow_oop_shift() != 0) {
6884     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6885     shrq(dst, LogMinObjAlignmentInBytes);
6886   }
6887 }
6888 
6889 void  MacroAssembler::decode_heap_oop(Register r) {
6890 #ifdef ASSERT
6891   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6892 #endif
6893   if (Universe::narrow_oop_base() == NULL) {
6894     if (Universe::narrow_oop_shift() != 0) {
6895       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6896       shlq(r, LogMinObjAlignmentInBytes);
6897     }
6898   } else {
6899     Label done;
6900     shlq(r, LogMinObjAlignmentInBytes);
6901     jccb(Assembler::equal, done);
6902     addq(r, r12_heapbase);
6903     bind(done);
6904   }
6905   verify_oop(r, "broken oop in decode_heap_oop");
6906 }
6907 
6908 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6909   // Note: it will change flags
6910   assert (UseCompressedOops, "should only be used for compressed headers");
6911   assert (Universe::heap() != NULL, "java heap should be initialized");
6912   // Cannot assert, unverified entry point counts instructions (see .ad file)
6913   // vtableStubs also counts instructions in pd_code_size_limit.
6914   // Also do not verify_oop as this is called by verify_oop.
6915   if (Universe::narrow_oop_shift() != 0) {
6916     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6917     shlq(r, LogMinObjAlignmentInBytes);
6918     if (Universe::narrow_oop_base() != NULL) {
6919       addq(r, r12_heapbase);
6920     }
6921   } else {
6922     assert (Universe::narrow_oop_base() == NULL, "sanity");
6923   }
6924 }
6925 
6926 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6927   // Note: it will change flags
6928   assert (UseCompressedOops, "should only be used for compressed headers");
6929   assert (Universe::heap() != NULL, "java heap should be initialized");
6930   // Cannot assert, unverified entry point counts instructions (see .ad file)
6931   // vtableStubs also counts instructions in pd_code_size_limit.
6932   // Also do not verify_oop as this is called by verify_oop.
6933   if (Universe::narrow_oop_shift() != 0) {
6934     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6935     if (LogMinObjAlignmentInBytes == Address::times_8) {
6936       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6937     } else {
6938       if (dst != src) {
6939         movq(dst, src);
6940       }
6941       shlq(dst, LogMinObjAlignmentInBytes);
6942       if (Universe::narrow_oop_base() != NULL) {
6943         addq(dst, r12_heapbase);
6944       }
6945     }
6946   } else {
6947     assert (Universe::narrow_oop_base() == NULL, "sanity");
6948     if (dst != src) {
6949       movq(dst, src);
6950     }
6951   }
6952 }
6953 
6954 void MacroAssembler::encode_klass_not_null(Register r) {
6955   if (Universe::narrow_klass_base() != NULL) {
6956     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6957     assert(r != r12_heapbase, "Encoding a klass in r12");
6958     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6959     subq(r, r12_heapbase);
6960   }
6961   if (Universe::narrow_klass_shift() != 0) {
6962     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6963     shrq(r, LogKlassAlignmentInBytes);
6964   }
6965   if (Universe::narrow_klass_base() != NULL) {
6966     reinit_heapbase();
6967   }
6968 }
6969 
6970 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6971   if (dst == src) {
6972     encode_klass_not_null(src);
6973   } else {
6974     if (Universe::narrow_klass_base() != NULL) {
6975       mov64(dst, (int64_t)Universe::narrow_klass_base());
6976       negq(dst);
6977       addq(dst, src);
6978     } else {
6979       movptr(dst, src);
6980     }
6981     if (Universe::narrow_klass_shift() != 0) {
6982       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6983       shrq(dst, LogKlassAlignmentInBytes);
6984     }
6985   }
6986 }
6987 
6988 // Function instr_size_for_decode_klass_not_null() counts the instructions
6989 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6990 // when (Universe::heap() != NULL).  Hence, if the instructions they
6991 // generate change, then this method needs to be updated.
6992 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6993   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6994   if (Universe::narrow_klass_base() != NULL) {
6995     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6996     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6997   } else {
6998     // longest load decode klass function, mov64, leaq
6999     return 16;
7000   }
7001 }
7002 
7003 // !!! If the instructions that get generated here change then function
7004 // instr_size_for_decode_klass_not_null() needs to get updated.
7005 void  MacroAssembler::decode_klass_not_null(Register r) {
7006   // Note: it will change flags
7007   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7008   assert(r != r12_heapbase, "Decoding a klass in r12");
7009   // Cannot assert, unverified entry point counts instructions (see .ad file)
7010   // vtableStubs also counts instructions in pd_code_size_limit.
7011   // Also do not verify_oop as this is called by verify_oop.
7012   if (Universe::narrow_klass_shift() != 0) {
7013     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
7014     shlq(r, LogKlassAlignmentInBytes);
7015   }
7016   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
7017   if (Universe::narrow_klass_base() != NULL) {
7018     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
7019     addq(r, r12_heapbase);
7020     reinit_heapbase();
7021   }
7022 }
7023 
7024 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
7025   // Note: it will change flags
7026   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7027   if (dst == src) {
7028     decode_klass_not_null(dst);
7029   } else {
7030     // Cannot assert, unverified entry point counts instructions (see .ad file)
7031     // vtableStubs also counts instructions in pd_code_size_limit.
7032     // Also do not verify_oop as this is called by verify_oop.
7033     mov64(dst, (int64_t)Universe::narrow_klass_base());
7034     if (Universe::narrow_klass_shift() != 0) {
7035       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
7036       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
7037       leaq(dst, Address(dst, src, Address::times_8, 0));
7038     } else {
7039       addq(dst, src);
7040     }
7041   }
7042 }
7043 
7044 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
7045   assert (UseCompressedOops, "should only be used for compressed headers");
7046   assert (Universe::heap() != NULL, "java heap should be initialized");
7047   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7048   int oop_index = oop_recorder()->find_index(obj);
7049   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7050   mov_narrow_oop(dst, oop_index, rspec);
7051 }
7052 
7053 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
7054   assert (UseCompressedOops, "should only be used for compressed headers");
7055   assert (Universe::heap() != NULL, "java heap should be initialized");
7056   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7057   int oop_index = oop_recorder()->find_index(obj);
7058   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7059   mov_narrow_oop(dst, oop_index, rspec);
7060 }
7061 
7062 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
7063   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7064   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7065   int klass_index = oop_recorder()->find_index(k);
7066   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7067   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
7068 }
7069 
7070 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
7071   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7072   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7073   int klass_index = oop_recorder()->find_index(k);
7074   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7075   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
7076 }
7077 
7078 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
7079   assert (UseCompressedOops, "should only be used for compressed headers");
7080   assert (Universe::heap() != NULL, "java heap should be initialized");
7081   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7082   int oop_index = oop_recorder()->find_index(obj);
7083   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7084   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
7085 }
7086 
7087 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
7088   assert (UseCompressedOops, "should only be used for compressed headers");
7089   assert (Universe::heap() != NULL, "java heap should be initialized");
7090   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7091   int oop_index = oop_recorder()->find_index(obj);
7092   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7093   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
7094 }
7095 
7096 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
7097   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7098   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7099   int klass_index = oop_recorder()->find_index(k);
7100   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7101   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
7102 }
7103 
7104 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
7105   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7106   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7107   int klass_index = oop_recorder()->find_index(k);
7108   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7109   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
7110 }
7111 
7112 void MacroAssembler::reinit_heapbase() {
7113   if (UseCompressedOops || UseCompressedClassPointers) {
7114     if (Universe::heap() != NULL) {
7115       if (Universe::narrow_oop_base() == NULL) {
7116         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
7117       } else {
7118         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
7119       }
7120     } else {
7121       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
7122     }
7123   }
7124 }
7125 
7126 #endif // _LP64
7127 
7128 // C2 compiled method's prolog code.
7129 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
7130 
7131   // WARNING: Initial instruction MUST be 5 bytes or longer so that
7132   // NativeJump::patch_verified_entry will be able to patch out the entry
7133   // code safely. The push to verify stack depth is ok at 5 bytes,
7134   // the frame allocation can be either 3 or 6 bytes. So if we don't do
7135   // stack bang then we must use the 6 byte frame allocation even if
7136   // we have no frame. :-(
7137   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
7138 
7139   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
7140   // Remove word for return addr
7141   framesize -= wordSize;
7142   stack_bang_size -= wordSize;
7143 
7144   // Calls to C2R adapters often do not accept exceptional returns.
7145   // We require that their callers must bang for them.  But be careful, because
7146   // some VM calls (such as call site linkage) can use several kilobytes of
7147   // stack.  But the stack safety zone should account for that.
7148   // See bugs 4446381, 4468289, 4497237.
7149   if (stack_bang_size > 0) {
7150     generate_stack_overflow_check(stack_bang_size);
7151 
7152     // We always push rbp, so that on return to interpreter rbp, will be
7153     // restored correctly and we can correct the stack.
7154     push(rbp);
7155     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7156     if (PreserveFramePointer) {
7157       mov(rbp, rsp);
7158     }
7159     // Remove word for ebp
7160     framesize -= wordSize;
7161 
7162     // Create frame
7163     if (framesize) {
7164       subptr(rsp, framesize);
7165     }
7166   } else {
7167     // Create frame (force generation of a 4 byte immediate value)
7168     subptr_imm32(rsp, framesize);
7169 
7170     // Save RBP register now.
7171     framesize -= wordSize;
7172     movptr(Address(rsp, framesize), rbp);
7173     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7174     if (PreserveFramePointer) {
7175       movptr(rbp, rsp);
7176       if (framesize > 0) {
7177         addptr(rbp, framesize);
7178       }
7179     }
7180   }
7181 
7182   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
7183     framesize -= wordSize;
7184     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
7185   }
7186 
7187 #ifndef _LP64
7188   // If method sets FPU control word do it now
7189   if (fp_mode_24b) {
7190     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
7191   }
7192   if (UseSSE >= 2 && VerifyFPU) {
7193     verify_FPU(0, "FPU stack must be clean on entry");
7194   }
7195 #endif
7196 
7197 #ifdef ASSERT
7198   if (VerifyStackAtCalls) {
7199     Label L;
7200     push(rax);
7201     mov(rax, rsp);
7202     andptr(rax, StackAlignmentInBytes-1);
7203     cmpptr(rax, StackAlignmentInBytes-wordSize);
7204     pop(rax);
7205     jcc(Assembler::equal, L);
7206     STOP("Stack is not properly aligned!");
7207     bind(L);
7208   }
7209 #endif
7210 
7211 }
7212 
7213 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, bool is_large) {
7214   // cnt - number of qwords (8-byte words).
7215   // base - start address, qword aligned.
7216   // is_large - if optimizers know cnt is larger than InitArrayShortSize
7217   assert(base==rdi, "base register must be edi for rep stos");
7218   assert(tmp==rax,   "tmp register must be eax for rep stos");
7219   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
7220   assert(InitArrayShortSize % BytesPerLong == 0,
7221     "InitArrayShortSize should be the multiple of BytesPerLong");
7222 
7223   Label DONE;
7224 
7225   xorptr(tmp, tmp);
7226 
7227   if (!is_large) {
7228     Label LOOP, LONG;
7229     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
7230     jccb(Assembler::greater, LONG);
7231 
7232     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7233 
7234     decrement(cnt);
7235     jccb(Assembler::negative, DONE); // Zero length
7236 
7237     // Use individual pointer-sized stores for small counts:
7238     BIND(LOOP);
7239     movptr(Address(base, cnt, Address::times_ptr), tmp);
7240     decrement(cnt);
7241     jccb(Assembler::greaterEqual, LOOP);
7242     jmpb(DONE);
7243 
7244     BIND(LONG);
7245   }
7246 
7247   // Use longer rep-prefixed ops for non-small counts:
7248   if (UseFastStosb) {
7249     shlptr(cnt, 3); // convert to number of bytes
7250     rep_stosb();
7251   } else {
7252     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7253     rep_stos();
7254   }
7255 
7256   BIND(DONE);
7257 }
7258 
7259 #ifdef COMPILER2
7260 
7261 // IndexOf for constant substrings with size >= 8 chars
7262 // which don't need to be loaded through stack.
7263 void MacroAssembler::string_indexofC8(Register str1, Register str2,
7264                                       Register cnt1, Register cnt2,
7265                                       int int_cnt2,  Register result,
7266                                       XMMRegister vec, Register tmp,
7267                                       int ae) {
7268   ShortBranchVerifier sbv(this);
7269   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7270   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7271 
7272   // This method uses the pcmpestri instruction with bound registers
7273   //   inputs:
7274   //     xmm - substring
7275   //     rax - substring length (elements count)
7276   //     mem - scanned string
7277   //     rdx - string length (elements count)
7278   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7279   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7280   //   outputs:
7281   //     rcx - matched index in string
7282   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7283   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7284   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7285   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7286   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7287 
7288   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
7289         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
7290         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
7291 
7292   // Note, inline_string_indexOf() generates checks:
7293   // if (substr.count > string.count) return -1;
7294   // if (substr.count == 0) return 0;
7295   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
7296 
7297   // Load substring.
7298   if (ae == StrIntrinsicNode::UL) {
7299     pmovzxbw(vec, Address(str2, 0));
7300   } else {
7301     movdqu(vec, Address(str2, 0));
7302   }
7303   movl(cnt2, int_cnt2);
7304   movptr(result, str1); // string addr
7305 
7306   if (int_cnt2 > stride) {
7307     jmpb(SCAN_TO_SUBSTR);
7308 
7309     // Reload substr for rescan, this code
7310     // is executed only for large substrings (> 8 chars)
7311     bind(RELOAD_SUBSTR);
7312     if (ae == StrIntrinsicNode::UL) {
7313       pmovzxbw(vec, Address(str2, 0));
7314     } else {
7315       movdqu(vec, Address(str2, 0));
7316     }
7317     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
7318 
7319     bind(RELOAD_STR);
7320     // We came here after the beginning of the substring was
7321     // matched but the rest of it was not so we need to search
7322     // again. Start from the next element after the previous match.
7323 
7324     // cnt2 is number of substring reminding elements and
7325     // cnt1 is number of string reminding elements when cmp failed.
7326     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
7327     subl(cnt1, cnt2);
7328     addl(cnt1, int_cnt2);
7329     movl(cnt2, int_cnt2); // Now restore cnt2
7330 
7331     decrementl(cnt1);     // Shift to next element
7332     cmpl(cnt1, cnt2);
7333     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7334 
7335     addptr(result, (1<<scale1));
7336 
7337   } // (int_cnt2 > 8)
7338 
7339   // Scan string for start of substr in 16-byte vectors
7340   bind(SCAN_TO_SUBSTR);
7341   pcmpestri(vec, Address(result, 0), mode);
7342   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7343   subl(cnt1, stride);
7344   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7345   cmpl(cnt1, cnt2);
7346   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7347   addptr(result, 16);
7348   jmpb(SCAN_TO_SUBSTR);
7349 
7350   // Found a potential substr
7351   bind(FOUND_CANDIDATE);
7352   // Matched whole vector if first element matched (tmp(rcx) == 0).
7353   if (int_cnt2 == stride) {
7354     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
7355   } else { // int_cnt2 > 8
7356     jccb(Assembler::overflow, FOUND_SUBSTR);
7357   }
7358   // After pcmpestri tmp(rcx) contains matched element index
7359   // Compute start addr of substr
7360   lea(result, Address(result, tmp, scale1));
7361 
7362   // Make sure string is still long enough
7363   subl(cnt1, tmp);
7364   cmpl(cnt1, cnt2);
7365   if (int_cnt2 == stride) {
7366     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7367   } else { // int_cnt2 > 8
7368     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
7369   }
7370   // Left less then substring.
7371 
7372   bind(RET_NOT_FOUND);
7373   movl(result, -1);
7374   jmp(EXIT);
7375 
7376   if (int_cnt2 > stride) {
7377     // This code is optimized for the case when whole substring
7378     // is matched if its head is matched.
7379     bind(MATCH_SUBSTR_HEAD);
7380     pcmpestri(vec, Address(result, 0), mode);
7381     // Reload only string if does not match
7382     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
7383 
7384     Label CONT_SCAN_SUBSTR;
7385     // Compare the rest of substring (> 8 chars).
7386     bind(FOUND_SUBSTR);
7387     // First 8 chars are already matched.
7388     negptr(cnt2);
7389     addptr(cnt2, stride);
7390 
7391     bind(SCAN_SUBSTR);
7392     subl(cnt1, stride);
7393     cmpl(cnt2, -stride); // Do not read beyond substring
7394     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
7395     // Back-up strings to avoid reading beyond substring:
7396     // cnt1 = cnt1 - cnt2 + 8
7397     addl(cnt1, cnt2); // cnt2 is negative
7398     addl(cnt1, stride);
7399     movl(cnt2, stride); negptr(cnt2);
7400     bind(CONT_SCAN_SUBSTR);
7401     if (int_cnt2 < (int)G) {
7402       int tail_off1 = int_cnt2<<scale1;
7403       int tail_off2 = int_cnt2<<scale2;
7404       if (ae == StrIntrinsicNode::UL) {
7405         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
7406       } else {
7407         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
7408       }
7409       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
7410     } else {
7411       // calculate index in register to avoid integer overflow (int_cnt2*2)
7412       movl(tmp, int_cnt2);
7413       addptr(tmp, cnt2);
7414       if (ae == StrIntrinsicNode::UL) {
7415         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7416       } else {
7417         movdqu(vec, Address(str2, tmp, scale2, 0));
7418       }
7419       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7420     }
7421     // Need to reload strings pointers if not matched whole vector
7422     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7423     addptr(cnt2, stride);
7424     jcc(Assembler::negative, SCAN_SUBSTR);
7425     // Fall through if found full substring
7426 
7427   } // (int_cnt2 > 8)
7428 
7429   bind(RET_FOUND);
7430   // Found result if we matched full small substring.
7431   // Compute substr offset
7432   subptr(result, str1);
7433   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7434     shrl(result, 1); // index
7435   }
7436   bind(EXIT);
7437 
7438 } // string_indexofC8
7439 
7440 // Small strings are loaded through stack if they cross page boundary.
7441 void MacroAssembler::string_indexof(Register str1, Register str2,
7442                                     Register cnt1, Register cnt2,
7443                                     int int_cnt2,  Register result,
7444                                     XMMRegister vec, Register tmp,
7445                                     int ae) {
7446   ShortBranchVerifier sbv(this);
7447   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7448   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7449 
7450   //
7451   // int_cnt2 is length of small (< 8 chars) constant substring
7452   // or (-1) for non constant substring in which case its length
7453   // is in cnt2 register.
7454   //
7455   // Note, inline_string_indexOf() generates checks:
7456   // if (substr.count > string.count) return -1;
7457   // if (substr.count == 0) return 0;
7458   //
7459   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7460   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7461   // This method uses the pcmpestri instruction with bound registers
7462   //   inputs:
7463   //     xmm - substring
7464   //     rax - substring length (elements count)
7465   //     mem - scanned string
7466   //     rdx - string length (elements count)
7467   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7468   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7469   //   outputs:
7470   //     rcx - matched index in string
7471   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7472   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7473   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7474   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7475 
7476   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7477         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7478         FOUND_CANDIDATE;
7479 
7480   { //========================================================
7481     // We don't know where these strings are located
7482     // and we can't read beyond them. Load them through stack.
7483     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7484 
7485     movptr(tmp, rsp); // save old SP
7486 
7487     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7488       if (int_cnt2 == (1>>scale2)) { // One byte
7489         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7490         load_unsigned_byte(result, Address(str2, 0));
7491         movdl(vec, result); // move 32 bits
7492       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7493         // Not enough header space in 32-bit VM: 12+3 = 15.
7494         movl(result, Address(str2, -1));
7495         shrl(result, 8);
7496         movdl(vec, result); // move 32 bits
7497       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7498         load_unsigned_short(result, Address(str2, 0));
7499         movdl(vec, result); // move 32 bits
7500       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7501         movdl(vec, Address(str2, 0)); // move 32 bits
7502       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7503         movq(vec, Address(str2, 0));  // move 64 bits
7504       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7505         // Array header size is 12 bytes in 32-bit VM
7506         // + 6 bytes for 3 chars == 18 bytes,
7507         // enough space to load vec and shift.
7508         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7509         if (ae == StrIntrinsicNode::UL) {
7510           int tail_off = int_cnt2-8;
7511           pmovzxbw(vec, Address(str2, tail_off));
7512           psrldq(vec, -2*tail_off);
7513         }
7514         else {
7515           int tail_off = int_cnt2*(1<<scale2);
7516           movdqu(vec, Address(str2, tail_off-16));
7517           psrldq(vec, 16-tail_off);
7518         }
7519       }
7520     } else { // not constant substring
7521       cmpl(cnt2, stride);
7522       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7523 
7524       // We can read beyond string if srt+16 does not cross page boundary
7525       // since heaps are aligned and mapped by pages.
7526       assert(os::vm_page_size() < (int)G, "default page should be small");
7527       movl(result, str2); // We need only low 32 bits
7528       andl(result, (os::vm_page_size()-1));
7529       cmpl(result, (os::vm_page_size()-16));
7530       jccb(Assembler::belowEqual, CHECK_STR);
7531 
7532       // Move small strings to stack to allow load 16 bytes into vec.
7533       subptr(rsp, 16);
7534       int stk_offset = wordSize-(1<<scale2);
7535       push(cnt2);
7536 
7537       bind(COPY_SUBSTR);
7538       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7539         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7540         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7541       } else if (ae == StrIntrinsicNode::UU) {
7542         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7543         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7544       }
7545       decrement(cnt2);
7546       jccb(Assembler::notZero, COPY_SUBSTR);
7547 
7548       pop(cnt2);
7549       movptr(str2, rsp);  // New substring address
7550     } // non constant
7551 
7552     bind(CHECK_STR);
7553     cmpl(cnt1, stride);
7554     jccb(Assembler::aboveEqual, BIG_STRINGS);
7555 
7556     // Check cross page boundary.
7557     movl(result, str1); // We need only low 32 bits
7558     andl(result, (os::vm_page_size()-1));
7559     cmpl(result, (os::vm_page_size()-16));
7560     jccb(Assembler::belowEqual, BIG_STRINGS);
7561 
7562     subptr(rsp, 16);
7563     int stk_offset = -(1<<scale1);
7564     if (int_cnt2 < 0) { // not constant
7565       push(cnt2);
7566       stk_offset += wordSize;
7567     }
7568     movl(cnt2, cnt1);
7569 
7570     bind(COPY_STR);
7571     if (ae == StrIntrinsicNode::LL) {
7572       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7573       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7574     } else {
7575       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7576       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7577     }
7578     decrement(cnt2);
7579     jccb(Assembler::notZero, COPY_STR);
7580 
7581     if (int_cnt2 < 0) { // not constant
7582       pop(cnt2);
7583     }
7584     movptr(str1, rsp);  // New string address
7585 
7586     bind(BIG_STRINGS);
7587     // Load substring.
7588     if (int_cnt2 < 0) { // -1
7589       if (ae == StrIntrinsicNode::UL) {
7590         pmovzxbw(vec, Address(str2, 0));
7591       } else {
7592         movdqu(vec, Address(str2, 0));
7593       }
7594       push(cnt2);       // substr count
7595       push(str2);       // substr addr
7596       push(str1);       // string addr
7597     } else {
7598       // Small (< 8 chars) constant substrings are loaded already.
7599       movl(cnt2, int_cnt2);
7600     }
7601     push(tmp);  // original SP
7602 
7603   } // Finished loading
7604 
7605   //========================================================
7606   // Start search
7607   //
7608 
7609   movptr(result, str1); // string addr
7610 
7611   if (int_cnt2  < 0) {  // Only for non constant substring
7612     jmpb(SCAN_TO_SUBSTR);
7613 
7614     // SP saved at sp+0
7615     // String saved at sp+1*wordSize
7616     // Substr saved at sp+2*wordSize
7617     // Substr count saved at sp+3*wordSize
7618 
7619     // Reload substr for rescan, this code
7620     // is executed only for large substrings (> 8 chars)
7621     bind(RELOAD_SUBSTR);
7622     movptr(str2, Address(rsp, 2*wordSize));
7623     movl(cnt2, Address(rsp, 3*wordSize));
7624     if (ae == StrIntrinsicNode::UL) {
7625       pmovzxbw(vec, Address(str2, 0));
7626     } else {
7627       movdqu(vec, Address(str2, 0));
7628     }
7629     // We came here after the beginning of the substring was
7630     // matched but the rest of it was not so we need to search
7631     // again. Start from the next element after the previous match.
7632     subptr(str1, result); // Restore counter
7633     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7634       shrl(str1, 1);
7635     }
7636     addl(cnt1, str1);
7637     decrementl(cnt1);   // Shift to next element
7638     cmpl(cnt1, cnt2);
7639     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7640 
7641     addptr(result, (1<<scale1));
7642   } // non constant
7643 
7644   // Scan string for start of substr in 16-byte vectors
7645   bind(SCAN_TO_SUBSTR);
7646   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7647   pcmpestri(vec, Address(result, 0), mode);
7648   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7649   subl(cnt1, stride);
7650   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7651   cmpl(cnt1, cnt2);
7652   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7653   addptr(result, 16);
7654 
7655   bind(ADJUST_STR);
7656   cmpl(cnt1, stride); // Do not read beyond string
7657   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7658   // Back-up string to avoid reading beyond string.
7659   lea(result, Address(result, cnt1, scale1, -16));
7660   movl(cnt1, stride);
7661   jmpb(SCAN_TO_SUBSTR);
7662 
7663   // Found a potential substr
7664   bind(FOUND_CANDIDATE);
7665   // After pcmpestri tmp(rcx) contains matched element index
7666 
7667   // Make sure string is still long enough
7668   subl(cnt1, tmp);
7669   cmpl(cnt1, cnt2);
7670   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7671   // Left less then substring.
7672 
7673   bind(RET_NOT_FOUND);
7674   movl(result, -1);
7675   jmpb(CLEANUP);
7676 
7677   bind(FOUND_SUBSTR);
7678   // Compute start addr of substr
7679   lea(result, Address(result, tmp, scale1));
7680   if (int_cnt2 > 0) { // Constant substring
7681     // Repeat search for small substring (< 8 chars)
7682     // from new point without reloading substring.
7683     // Have to check that we don't read beyond string.
7684     cmpl(tmp, stride-int_cnt2);
7685     jccb(Assembler::greater, ADJUST_STR);
7686     // Fall through if matched whole substring.
7687   } else { // non constant
7688     assert(int_cnt2 == -1, "should be != 0");
7689 
7690     addl(tmp, cnt2);
7691     // Found result if we matched whole substring.
7692     cmpl(tmp, stride);
7693     jccb(Assembler::lessEqual, RET_FOUND);
7694 
7695     // Repeat search for small substring (<= 8 chars)
7696     // from new point 'str1' without reloading substring.
7697     cmpl(cnt2, stride);
7698     // Have to check that we don't read beyond string.
7699     jccb(Assembler::lessEqual, ADJUST_STR);
7700 
7701     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7702     // Compare the rest of substring (> 8 chars).
7703     movptr(str1, result);
7704 
7705     cmpl(tmp, cnt2);
7706     // First 8 chars are already matched.
7707     jccb(Assembler::equal, CHECK_NEXT);
7708 
7709     bind(SCAN_SUBSTR);
7710     pcmpestri(vec, Address(str1, 0), mode);
7711     // Need to reload strings pointers if not matched whole vector
7712     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7713 
7714     bind(CHECK_NEXT);
7715     subl(cnt2, stride);
7716     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7717     addptr(str1, 16);
7718     if (ae == StrIntrinsicNode::UL) {
7719       addptr(str2, 8);
7720     } else {
7721       addptr(str2, 16);
7722     }
7723     subl(cnt1, stride);
7724     cmpl(cnt2, stride); // Do not read beyond substring
7725     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7726     // Back-up strings to avoid reading beyond substring.
7727 
7728     if (ae == StrIntrinsicNode::UL) {
7729       lea(str2, Address(str2, cnt2, scale2, -8));
7730       lea(str1, Address(str1, cnt2, scale1, -16));
7731     } else {
7732       lea(str2, Address(str2, cnt2, scale2, -16));
7733       lea(str1, Address(str1, cnt2, scale1, -16));
7734     }
7735     subl(cnt1, cnt2);
7736     movl(cnt2, stride);
7737     addl(cnt1, stride);
7738     bind(CONT_SCAN_SUBSTR);
7739     if (ae == StrIntrinsicNode::UL) {
7740       pmovzxbw(vec, Address(str2, 0));
7741     } else {
7742       movdqu(vec, Address(str2, 0));
7743     }
7744     jmp(SCAN_SUBSTR);
7745 
7746     bind(RET_FOUND_LONG);
7747     movptr(str1, Address(rsp, wordSize));
7748   } // non constant
7749 
7750   bind(RET_FOUND);
7751   // Compute substr offset
7752   subptr(result, str1);
7753   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7754     shrl(result, 1); // index
7755   }
7756   bind(CLEANUP);
7757   pop(rsp); // restore SP
7758 
7759 } // string_indexof
7760 
7761 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7762                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7763   ShortBranchVerifier sbv(this);
7764   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7765 
7766   int stride = 8;
7767 
7768   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7769         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7770         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7771         FOUND_SEQ_CHAR, DONE_LABEL;
7772 
7773   movptr(result, str1);
7774   if (UseAVX >= 2) {
7775     cmpl(cnt1, stride);
7776     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7777     cmpl(cnt1, 2*stride);
7778     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7779     movdl(vec1, ch);
7780     vpbroadcastw(vec1, vec1);
7781     vpxor(vec2, vec2);
7782     movl(tmp, cnt1);
7783     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7784     andl(cnt1,0x0000000F);  //tail count (in chars)
7785 
7786     bind(SCAN_TO_16_CHAR_LOOP);
7787     vmovdqu(vec3, Address(result, 0));
7788     vpcmpeqw(vec3, vec3, vec1, 1);
7789     vptest(vec2, vec3);
7790     jcc(Assembler::carryClear, FOUND_CHAR);
7791     addptr(result, 32);
7792     subl(tmp, 2*stride);
7793     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7794     jmp(SCAN_TO_8_CHAR);
7795     bind(SCAN_TO_8_CHAR_INIT);
7796     movdl(vec1, ch);
7797     pshuflw(vec1, vec1, 0x00);
7798     pshufd(vec1, vec1, 0);
7799     pxor(vec2, vec2);
7800   }
7801   bind(SCAN_TO_8_CHAR);
7802   cmpl(cnt1, stride);
7803   if (UseAVX >= 2) {
7804     jcc(Assembler::less, SCAN_TO_CHAR);
7805   } else {
7806     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7807     movdl(vec1, ch);
7808     pshuflw(vec1, vec1, 0x00);
7809     pshufd(vec1, vec1, 0);
7810     pxor(vec2, vec2);
7811   }
7812   movl(tmp, cnt1);
7813   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7814   andl(cnt1,0x00000007);  //tail count (in chars)
7815 
7816   bind(SCAN_TO_8_CHAR_LOOP);
7817   movdqu(vec3, Address(result, 0));
7818   pcmpeqw(vec3, vec1);
7819   ptest(vec2, vec3);
7820   jcc(Assembler::carryClear, FOUND_CHAR);
7821   addptr(result, 16);
7822   subl(tmp, stride);
7823   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7824   bind(SCAN_TO_CHAR);
7825   testl(cnt1, cnt1);
7826   jcc(Assembler::zero, RET_NOT_FOUND);
7827   bind(SCAN_TO_CHAR_LOOP);
7828   load_unsigned_short(tmp, Address(result, 0));
7829   cmpl(ch, tmp);
7830   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7831   addptr(result, 2);
7832   subl(cnt1, 1);
7833   jccb(Assembler::zero, RET_NOT_FOUND);
7834   jmp(SCAN_TO_CHAR_LOOP);
7835 
7836   bind(RET_NOT_FOUND);
7837   movl(result, -1);
7838   jmpb(DONE_LABEL);
7839 
7840   bind(FOUND_CHAR);
7841   if (UseAVX >= 2) {
7842     vpmovmskb(tmp, vec3);
7843   } else {
7844     pmovmskb(tmp, vec3);
7845   }
7846   bsfl(ch, tmp);
7847   addl(result, ch);
7848 
7849   bind(FOUND_SEQ_CHAR);
7850   subptr(result, str1);
7851   shrl(result, 1);
7852 
7853   bind(DONE_LABEL);
7854 } // string_indexof_char
7855 
7856 // helper function for string_compare
7857 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7858                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7859                                         Address::ScaleFactor scale2, Register index, int ae) {
7860   if (ae == StrIntrinsicNode::LL) {
7861     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7862     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7863   } else if (ae == StrIntrinsicNode::UU) {
7864     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7865     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7866   } else {
7867     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7868     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7869   }
7870 }
7871 
7872 // Compare strings, used for char[] and byte[].
7873 void MacroAssembler::string_compare(Register str1, Register str2,
7874                                     Register cnt1, Register cnt2, Register result,
7875                                     XMMRegister vec1, int ae) {
7876   ShortBranchVerifier sbv(this);
7877   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7878   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7879   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7880   int stride2x2 = 0x40;
7881   Address::ScaleFactor scale = Address::no_scale;
7882   Address::ScaleFactor scale1 = Address::no_scale;
7883   Address::ScaleFactor scale2 = Address::no_scale;
7884 
7885   if (ae != StrIntrinsicNode::LL) {
7886     stride2x2 = 0x20;
7887   }
7888 
7889   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7890     shrl(cnt2, 1);
7891   }
7892   // Compute the minimum of the string lengths and the
7893   // difference of the string lengths (stack).
7894   // Do the conditional move stuff
7895   movl(result, cnt1);
7896   subl(cnt1, cnt2);
7897   push(cnt1);
7898   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7899 
7900   // Is the minimum length zero?
7901   testl(cnt2, cnt2);
7902   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7903   if (ae == StrIntrinsicNode::LL) {
7904     // Load first bytes
7905     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7906     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7907   } else if (ae == StrIntrinsicNode::UU) {
7908     // Load first characters
7909     load_unsigned_short(result, Address(str1, 0));
7910     load_unsigned_short(cnt1, Address(str2, 0));
7911   } else {
7912     load_unsigned_byte(result, Address(str1, 0));
7913     load_unsigned_short(cnt1, Address(str2, 0));
7914   }
7915   subl(result, cnt1);
7916   jcc(Assembler::notZero,  POP_LABEL);
7917 
7918   if (ae == StrIntrinsicNode::UU) {
7919     // Divide length by 2 to get number of chars
7920     shrl(cnt2, 1);
7921   }
7922   cmpl(cnt2, 1);
7923   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7924 
7925   // Check if the strings start at the same location and setup scale and stride
7926   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7927     cmpptr(str1, str2);
7928     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7929     if (ae == StrIntrinsicNode::LL) {
7930       scale = Address::times_1;
7931       stride = 16;
7932     } else {
7933       scale = Address::times_2;
7934       stride = 8;
7935     }
7936   } else {
7937     scale1 = Address::times_1;
7938     scale2 = Address::times_2;
7939     // scale not used
7940     stride = 8;
7941   }
7942 
7943   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7944     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7945     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7946     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7947     Label COMPARE_TAIL_LONG;
7948     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7949 
7950     int pcmpmask = 0x19;
7951     if (ae == StrIntrinsicNode::LL) {
7952       pcmpmask &= ~0x01;
7953     }
7954 
7955     // Setup to compare 16-chars (32-bytes) vectors,
7956     // start from first character again because it has aligned address.
7957     if (ae == StrIntrinsicNode::LL) {
7958       stride2 = 32;
7959     } else {
7960       stride2 = 16;
7961     }
7962     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7963       adr_stride = stride << scale;
7964     } else {
7965       adr_stride1 = 8;  //stride << scale1;
7966       adr_stride2 = 16; //stride << scale2;
7967     }
7968 
7969     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7970     // rax and rdx are used by pcmpestri as elements counters
7971     movl(result, cnt2);
7972     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7973     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7974 
7975     // fast path : compare first 2 8-char vectors.
7976     bind(COMPARE_16_CHARS);
7977     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7978       movdqu(vec1, Address(str1, 0));
7979     } else {
7980       pmovzxbw(vec1, Address(str1, 0));
7981     }
7982     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7983     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7984 
7985     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7986       movdqu(vec1, Address(str1, adr_stride));
7987       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7988     } else {
7989       pmovzxbw(vec1, Address(str1, adr_stride1));
7990       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7991     }
7992     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7993     addl(cnt1, stride);
7994 
7995     // Compare the characters at index in cnt1
7996     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7997     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7998     subl(result, cnt2);
7999     jmp(POP_LABEL);
8000 
8001     // Setup the registers to start vector comparison loop
8002     bind(COMPARE_WIDE_VECTORS);
8003     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8004       lea(str1, Address(str1, result, scale));
8005       lea(str2, Address(str2, result, scale));
8006     } else {
8007       lea(str1, Address(str1, result, scale1));
8008       lea(str2, Address(str2, result, scale2));
8009     }
8010     subl(result, stride2);
8011     subl(cnt2, stride2);
8012     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
8013     negptr(result);
8014 
8015     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
8016     bind(COMPARE_WIDE_VECTORS_LOOP);
8017 
8018 #ifdef _LP64
8019     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8020       cmpl(cnt2, stride2x2);
8021       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8022       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
8023       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
8024 
8025       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8026       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8027         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
8028         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
8029       } else {
8030         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
8031         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
8032       }
8033       kortestql(k7, k7);
8034       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
8035       addptr(result, stride2x2);  // update since we already compared at this addr
8036       subl(cnt2, stride2x2);      // and sub the size too
8037       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8038 
8039       vpxor(vec1, vec1);
8040       jmpb(COMPARE_WIDE_TAIL);
8041     }//if (VM_Version::supports_avx512vlbw())
8042 #endif // _LP64
8043 
8044 
8045     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8046     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8047       vmovdqu(vec1, Address(str1, result, scale));
8048       vpxor(vec1, Address(str2, result, scale));
8049     } else {
8050       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
8051       vpxor(vec1, Address(str2, result, scale2));
8052     }
8053     vptest(vec1, vec1);
8054     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
8055     addptr(result, stride2);
8056     subl(cnt2, stride2);
8057     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
8058     // clean upper bits of YMM registers
8059     vpxor(vec1, vec1);
8060 
8061     // compare wide vectors tail
8062     bind(COMPARE_WIDE_TAIL);
8063     testptr(result, result);
8064     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
8065 
8066     movl(result, stride2);
8067     movl(cnt2, result);
8068     negptr(result);
8069     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8070 
8071     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
8072     bind(VECTOR_NOT_EQUAL);
8073     // clean upper bits of YMM registers
8074     vpxor(vec1, vec1);
8075     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8076       lea(str1, Address(str1, result, scale));
8077       lea(str2, Address(str2, result, scale));
8078     } else {
8079       lea(str1, Address(str1, result, scale1));
8080       lea(str2, Address(str2, result, scale2));
8081     }
8082     jmp(COMPARE_16_CHARS);
8083 
8084     // Compare tail chars, length between 1 to 15 chars
8085     bind(COMPARE_TAIL_LONG);
8086     movl(cnt2, result);
8087     cmpl(cnt2, stride);
8088     jcc(Assembler::less, COMPARE_SMALL_STR);
8089 
8090     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8091       movdqu(vec1, Address(str1, 0));
8092     } else {
8093       pmovzxbw(vec1, Address(str1, 0));
8094     }
8095     pcmpestri(vec1, Address(str2, 0), pcmpmask);
8096     jcc(Assembler::below, COMPARE_INDEX_CHAR);
8097     subptr(cnt2, stride);
8098     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
8099     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8100       lea(str1, Address(str1, result, scale));
8101       lea(str2, Address(str2, result, scale));
8102     } else {
8103       lea(str1, Address(str1, result, scale1));
8104       lea(str2, Address(str2, result, scale2));
8105     }
8106     negptr(cnt2);
8107     jmpb(WHILE_HEAD_LABEL);
8108 
8109     bind(COMPARE_SMALL_STR);
8110   } else if (UseSSE42Intrinsics) {
8111     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
8112     int pcmpmask = 0x19;
8113     // Setup to compare 8-char (16-byte) vectors,
8114     // start from first character again because it has aligned address.
8115     movl(result, cnt2);
8116     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
8117     if (ae == StrIntrinsicNode::LL) {
8118       pcmpmask &= ~0x01;
8119     }
8120     jcc(Assembler::zero, COMPARE_TAIL);
8121     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8122       lea(str1, Address(str1, result, scale));
8123       lea(str2, Address(str2, result, scale));
8124     } else {
8125       lea(str1, Address(str1, result, scale1));
8126       lea(str2, Address(str2, result, scale2));
8127     }
8128     negptr(result);
8129 
8130     // pcmpestri
8131     //   inputs:
8132     //     vec1- substring
8133     //     rax - negative string length (elements count)
8134     //     mem - scanned string
8135     //     rdx - string length (elements count)
8136     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
8137     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
8138     //   outputs:
8139     //     rcx - first mismatched element index
8140     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
8141 
8142     bind(COMPARE_WIDE_VECTORS);
8143     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8144       movdqu(vec1, Address(str1, result, scale));
8145       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8146     } else {
8147       pmovzxbw(vec1, Address(str1, result, scale1));
8148       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8149     }
8150     // After pcmpestri cnt1(rcx) contains mismatched element index
8151 
8152     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
8153     addptr(result, stride);
8154     subptr(cnt2, stride);
8155     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
8156 
8157     // compare wide vectors tail
8158     testptr(result, result);
8159     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
8160 
8161     movl(cnt2, stride);
8162     movl(result, stride);
8163     negptr(result);
8164     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8165       movdqu(vec1, Address(str1, result, scale));
8166       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8167     } else {
8168       pmovzxbw(vec1, Address(str1, result, scale1));
8169       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8170     }
8171     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
8172 
8173     // Mismatched characters in the vectors
8174     bind(VECTOR_NOT_EQUAL);
8175     addptr(cnt1, result);
8176     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
8177     subl(result, cnt2);
8178     jmpb(POP_LABEL);
8179 
8180     bind(COMPARE_TAIL); // limit is zero
8181     movl(cnt2, result);
8182     // Fallthru to tail compare
8183   }
8184   // Shift str2 and str1 to the end of the arrays, negate min
8185   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8186     lea(str1, Address(str1, cnt2, scale));
8187     lea(str2, Address(str2, cnt2, scale));
8188   } else {
8189     lea(str1, Address(str1, cnt2, scale1));
8190     lea(str2, Address(str2, cnt2, scale2));
8191   }
8192   decrementl(cnt2);  // first character was compared already
8193   negptr(cnt2);
8194 
8195   // Compare the rest of the elements
8196   bind(WHILE_HEAD_LABEL);
8197   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
8198   subl(result, cnt1);
8199   jccb(Assembler::notZero, POP_LABEL);
8200   increment(cnt2);
8201   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
8202 
8203   // Strings are equal up to min length.  Return the length difference.
8204   bind(LENGTH_DIFF_LABEL);
8205   pop(result);
8206   if (ae == StrIntrinsicNode::UU) {
8207     // Divide diff by 2 to get number of chars
8208     sarl(result, 1);
8209   }
8210   jmpb(DONE_LABEL);
8211 
8212 #ifdef _LP64
8213   if (VM_Version::supports_avx512vlbw()) {
8214 
8215     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
8216 
8217     kmovql(cnt1, k7);
8218     notq(cnt1);
8219     bsfq(cnt2, cnt1);
8220     if (ae != StrIntrinsicNode::LL) {
8221       // Divide diff by 2 to get number of chars
8222       sarl(cnt2, 1);
8223     }
8224     addq(result, cnt2);
8225     if (ae == StrIntrinsicNode::LL) {
8226       load_unsigned_byte(cnt1, Address(str2, result));
8227       load_unsigned_byte(result, Address(str1, result));
8228     } else if (ae == StrIntrinsicNode::UU) {
8229       load_unsigned_short(cnt1, Address(str2, result, scale));
8230       load_unsigned_short(result, Address(str1, result, scale));
8231     } else {
8232       load_unsigned_short(cnt1, Address(str2, result, scale2));
8233       load_unsigned_byte(result, Address(str1, result, scale1));
8234     }
8235     subl(result, cnt1);
8236     jmpb(POP_LABEL);
8237   }//if (VM_Version::supports_avx512vlbw())
8238 #endif // _LP64
8239 
8240   // Discard the stored length difference
8241   bind(POP_LABEL);
8242   pop(cnt1);
8243 
8244   // That's it
8245   bind(DONE_LABEL);
8246   if(ae == StrIntrinsicNode::UL) {
8247     negl(result);
8248   }
8249 
8250 }
8251 
8252 // Search for Non-ASCII character (Negative byte value) in a byte array,
8253 // return true if it has any and false otherwise.
8254 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
8255 //   @HotSpotIntrinsicCandidate
8256 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
8257 //     for (int i = off; i < off + len; i++) {
8258 //       if (ba[i] < 0) {
8259 //         return true;
8260 //       }
8261 //     }
8262 //     return false;
8263 //   }
8264 void MacroAssembler::has_negatives(Register ary1, Register len,
8265   Register result, Register tmp1,
8266   XMMRegister vec1, XMMRegister vec2) {
8267   // rsi: byte array
8268   // rcx: len
8269   // rax: result
8270   ShortBranchVerifier sbv(this);
8271   assert_different_registers(ary1, len, result, tmp1);
8272   assert_different_registers(vec1, vec2);
8273   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
8274 
8275   // len == 0
8276   testl(len, len);
8277   jcc(Assembler::zero, FALSE_LABEL);
8278 
8279   if ((UseAVX > 2) && // AVX512
8280     VM_Version::supports_avx512vlbw() &&
8281     VM_Version::supports_bmi2()) {
8282 
8283     set_vector_masking();  // opening of the stub context for programming mask registers
8284 
8285     Label test_64_loop, test_tail;
8286     Register tmp3_aliased = len;
8287 
8288     movl(tmp1, len);
8289     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
8290 
8291     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
8292     andl(len, ~(64 - 1));    // vector count (in chars)
8293     jccb(Assembler::zero, test_tail);
8294 
8295     lea(ary1, Address(ary1, len, Address::times_1));
8296     negptr(len);
8297 
8298     bind(test_64_loop);
8299     // Check whether our 64 elements of size byte contain negatives
8300     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
8301     kortestql(k2, k2);
8302     jcc(Assembler::notZero, TRUE_LABEL);
8303 
8304     addptr(len, 64);
8305     jccb(Assembler::notZero, test_64_loop);
8306 
8307 
8308     bind(test_tail);
8309     // bail out when there is nothing to be done
8310     testl(tmp1, -1);
8311     jcc(Assembler::zero, FALSE_LABEL);
8312 
8313     // Save k1
8314     kmovql(k3, k1);
8315 
8316     // ~(~0 << len) applied up to two times (for 32-bit scenario)
8317 #ifdef _LP64
8318     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
8319     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
8320     notq(tmp3_aliased);
8321     kmovql(k1, tmp3_aliased);
8322 #else
8323     Label k_init;
8324     jmp(k_init);
8325 
8326     // We could not read 64-bits from a general purpose register thus we move
8327     // data required to compose 64 1's to the instruction stream
8328     // We emit 64 byte wide series of elements from 0..63 which later on would
8329     // be used as a compare targets with tail count contained in tmp1 register.
8330     // Result would be a k1 register having tmp1 consecutive number or 1
8331     // counting from least significant bit.
8332     address tmp = pc();
8333     emit_int64(0x0706050403020100);
8334     emit_int64(0x0F0E0D0C0B0A0908);
8335     emit_int64(0x1716151413121110);
8336     emit_int64(0x1F1E1D1C1B1A1918);
8337     emit_int64(0x2726252423222120);
8338     emit_int64(0x2F2E2D2C2B2A2928);
8339     emit_int64(0x3736353433323130);
8340     emit_int64(0x3F3E3D3C3B3A3938);
8341 
8342     bind(k_init);
8343     lea(len, InternalAddress(tmp));
8344     // create mask to test for negative byte inside a vector
8345     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
8346     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
8347 
8348 #endif
8349     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
8350     ktestq(k2, k1);
8351     // Restore k1
8352     kmovql(k1, k3);
8353     jcc(Assembler::notZero, TRUE_LABEL);
8354 
8355     jmp(FALSE_LABEL);
8356 
8357     clear_vector_masking();   // closing of the stub context for programming mask registers
8358   } else {
8359     movl(result, len); // copy
8360 
8361     if (UseAVX == 2 && UseSSE >= 2) {
8362       // With AVX2, use 32-byte vector compare
8363       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8364 
8365       // Compare 32-byte vectors
8366       andl(result, 0x0000001f);  //   tail count (in bytes)
8367       andl(len, 0xffffffe0);   // vector count (in bytes)
8368       jccb(Assembler::zero, COMPARE_TAIL);
8369 
8370       lea(ary1, Address(ary1, len, Address::times_1));
8371       negptr(len);
8372 
8373       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
8374       movdl(vec2, tmp1);
8375       vpbroadcastd(vec2, vec2);
8376 
8377       bind(COMPARE_WIDE_VECTORS);
8378       vmovdqu(vec1, Address(ary1, len, Address::times_1));
8379       vptest(vec1, vec2);
8380       jccb(Assembler::notZero, TRUE_LABEL);
8381       addptr(len, 32);
8382       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8383 
8384       testl(result, result);
8385       jccb(Assembler::zero, FALSE_LABEL);
8386 
8387       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8388       vptest(vec1, vec2);
8389       jccb(Assembler::notZero, TRUE_LABEL);
8390       jmpb(FALSE_LABEL);
8391 
8392       bind(COMPARE_TAIL); // len is zero
8393       movl(len, result);
8394       // Fallthru to tail compare
8395     } else if (UseSSE42Intrinsics) {
8396       // With SSE4.2, use double quad vector compare
8397       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8398 
8399       // Compare 16-byte vectors
8400       andl(result, 0x0000000f);  //   tail count (in bytes)
8401       andl(len, 0xfffffff0);   // vector count (in bytes)
8402       jccb(Assembler::zero, COMPARE_TAIL);
8403 
8404       lea(ary1, Address(ary1, len, Address::times_1));
8405       negptr(len);
8406 
8407       movl(tmp1, 0x80808080);
8408       movdl(vec2, tmp1);
8409       pshufd(vec2, vec2, 0);
8410 
8411       bind(COMPARE_WIDE_VECTORS);
8412       movdqu(vec1, Address(ary1, len, Address::times_1));
8413       ptest(vec1, vec2);
8414       jccb(Assembler::notZero, TRUE_LABEL);
8415       addptr(len, 16);
8416       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8417 
8418       testl(result, result);
8419       jccb(Assembler::zero, FALSE_LABEL);
8420 
8421       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8422       ptest(vec1, vec2);
8423       jccb(Assembler::notZero, TRUE_LABEL);
8424       jmpb(FALSE_LABEL);
8425 
8426       bind(COMPARE_TAIL); // len is zero
8427       movl(len, result);
8428       // Fallthru to tail compare
8429     }
8430   }
8431   // Compare 4-byte vectors
8432   andl(len, 0xfffffffc); // vector count (in bytes)
8433   jccb(Assembler::zero, COMPARE_CHAR);
8434 
8435   lea(ary1, Address(ary1, len, Address::times_1));
8436   negptr(len);
8437 
8438   bind(COMPARE_VECTORS);
8439   movl(tmp1, Address(ary1, len, Address::times_1));
8440   andl(tmp1, 0x80808080);
8441   jccb(Assembler::notZero, TRUE_LABEL);
8442   addptr(len, 4);
8443   jcc(Assembler::notZero, COMPARE_VECTORS);
8444 
8445   // Compare trailing char (final 2 bytes), if any
8446   bind(COMPARE_CHAR);
8447   testl(result, 0x2);   // tail  char
8448   jccb(Assembler::zero, COMPARE_BYTE);
8449   load_unsigned_short(tmp1, Address(ary1, 0));
8450   andl(tmp1, 0x00008080);
8451   jccb(Assembler::notZero, TRUE_LABEL);
8452   subptr(result, 2);
8453   lea(ary1, Address(ary1, 2));
8454 
8455   bind(COMPARE_BYTE);
8456   testl(result, 0x1);   // tail  byte
8457   jccb(Assembler::zero, FALSE_LABEL);
8458   load_unsigned_byte(tmp1, Address(ary1, 0));
8459   andl(tmp1, 0x00000080);
8460   jccb(Assembler::notEqual, TRUE_LABEL);
8461   jmpb(FALSE_LABEL);
8462 
8463   bind(TRUE_LABEL);
8464   movl(result, 1);   // return true
8465   jmpb(DONE);
8466 
8467   bind(FALSE_LABEL);
8468   xorl(result, result); // return false
8469 
8470   // That's it
8471   bind(DONE);
8472   if (UseAVX >= 2 && UseSSE >= 2) {
8473     // clean upper bits of YMM registers
8474     vpxor(vec1, vec1);
8475     vpxor(vec2, vec2);
8476   }
8477 }
8478 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8479 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8480                                    Register limit, Register result, Register chr,
8481                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8482   ShortBranchVerifier sbv(this);
8483   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8484 
8485   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8486   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8487 
8488   if (is_array_equ) {
8489     // Check the input args
8490     cmpoop(ary1, ary2);
8491     jcc(Assembler::equal, TRUE_LABEL);
8492 
8493     // Need additional checks for arrays_equals.
8494     testptr(ary1, ary1);
8495     jcc(Assembler::zero, FALSE_LABEL);
8496     testptr(ary2, ary2);
8497     jcc(Assembler::zero, FALSE_LABEL);
8498 
8499     // Check the lengths
8500     movl(limit, Address(ary1, length_offset));
8501     cmpl(limit, Address(ary2, length_offset));
8502     jcc(Assembler::notEqual, FALSE_LABEL);
8503   }
8504 
8505   // count == 0
8506   testl(limit, limit);
8507   jcc(Assembler::zero, TRUE_LABEL);
8508 
8509   if (is_array_equ) {
8510     // Load array address
8511     lea(ary1, Address(ary1, base_offset));
8512     lea(ary2, Address(ary2, base_offset));
8513   }
8514 
8515   if (is_array_equ && is_char) {
8516     // arrays_equals when used for char[].
8517     shll(limit, 1);      // byte count != 0
8518   }
8519   movl(result, limit); // copy
8520 
8521   if (UseAVX >= 2) {
8522     // With AVX2, use 32-byte vector compare
8523     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8524 
8525     // Compare 32-byte vectors
8526     andl(result, 0x0000001f);  //   tail count (in bytes)
8527     andl(limit, 0xffffffe0);   // vector count (in bytes)
8528     jcc(Assembler::zero, COMPARE_TAIL);
8529 
8530     lea(ary1, Address(ary1, limit, Address::times_1));
8531     lea(ary2, Address(ary2, limit, Address::times_1));
8532     negptr(limit);
8533 
8534     bind(COMPARE_WIDE_VECTORS);
8535 
8536 #ifdef _LP64
8537     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8538       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8539 
8540       cmpl(limit, -64);
8541       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8542 
8543       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8544 
8545       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8546       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8547       kortestql(k7, k7);
8548       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8549       addptr(limit, 64);  // update since we already compared at this addr
8550       cmpl(limit, -64);
8551       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8552 
8553       // At this point we may still need to compare -limit+result bytes.
8554       // We could execute the next two instruction and just continue via non-wide path:
8555       //  cmpl(limit, 0);
8556       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8557       // But since we stopped at the points ary{1,2}+limit which are
8558       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8559       // (|limit| <= 32 and result < 32),
8560       // we may just compare the last 64 bytes.
8561       //
8562       addptr(result, -64);   // it is safe, bc we just came from this area
8563       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8564       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8565       kortestql(k7, k7);
8566       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8567 
8568       jmp(TRUE_LABEL);
8569 
8570       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8571 
8572     }//if (VM_Version::supports_avx512vlbw())
8573 #endif //_LP64
8574 
8575     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8576     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8577     vpxor(vec1, vec2);
8578 
8579     vptest(vec1, vec1);
8580     jcc(Assembler::notZero, FALSE_LABEL);
8581     addptr(limit, 32);
8582     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8583 
8584     testl(result, result);
8585     jcc(Assembler::zero, TRUE_LABEL);
8586 
8587     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8588     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8589     vpxor(vec1, vec2);
8590 
8591     vptest(vec1, vec1);
8592     jccb(Assembler::notZero, FALSE_LABEL);
8593     jmpb(TRUE_LABEL);
8594 
8595     bind(COMPARE_TAIL); // limit is zero
8596     movl(limit, result);
8597     // Fallthru to tail compare
8598   } else if (UseSSE42Intrinsics) {
8599     // With SSE4.2, use double quad vector compare
8600     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8601 
8602     // Compare 16-byte vectors
8603     andl(result, 0x0000000f);  //   tail count (in bytes)
8604     andl(limit, 0xfffffff0);   // vector count (in bytes)
8605     jcc(Assembler::zero, COMPARE_TAIL);
8606 
8607     lea(ary1, Address(ary1, limit, Address::times_1));
8608     lea(ary2, Address(ary2, limit, Address::times_1));
8609     negptr(limit);
8610 
8611     bind(COMPARE_WIDE_VECTORS);
8612     movdqu(vec1, Address(ary1, limit, Address::times_1));
8613     movdqu(vec2, Address(ary2, limit, Address::times_1));
8614     pxor(vec1, vec2);
8615 
8616     ptest(vec1, vec1);
8617     jcc(Assembler::notZero, FALSE_LABEL);
8618     addptr(limit, 16);
8619     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8620 
8621     testl(result, result);
8622     jcc(Assembler::zero, TRUE_LABEL);
8623 
8624     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8625     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8626     pxor(vec1, vec2);
8627 
8628     ptest(vec1, vec1);
8629     jccb(Assembler::notZero, FALSE_LABEL);
8630     jmpb(TRUE_LABEL);
8631 
8632     bind(COMPARE_TAIL); // limit is zero
8633     movl(limit, result);
8634     // Fallthru to tail compare
8635   }
8636 
8637   // Compare 4-byte vectors
8638   andl(limit, 0xfffffffc); // vector count (in bytes)
8639   jccb(Assembler::zero, COMPARE_CHAR);
8640 
8641   lea(ary1, Address(ary1, limit, Address::times_1));
8642   lea(ary2, Address(ary2, limit, Address::times_1));
8643   negptr(limit);
8644 
8645   bind(COMPARE_VECTORS);
8646   movl(chr, Address(ary1, limit, Address::times_1));
8647   cmpl(chr, Address(ary2, limit, Address::times_1));
8648   jccb(Assembler::notEqual, FALSE_LABEL);
8649   addptr(limit, 4);
8650   jcc(Assembler::notZero, COMPARE_VECTORS);
8651 
8652   // Compare trailing char (final 2 bytes), if any
8653   bind(COMPARE_CHAR);
8654   testl(result, 0x2);   // tail  char
8655   jccb(Assembler::zero, COMPARE_BYTE);
8656   load_unsigned_short(chr, Address(ary1, 0));
8657   load_unsigned_short(limit, Address(ary2, 0));
8658   cmpl(chr, limit);
8659   jccb(Assembler::notEqual, FALSE_LABEL);
8660 
8661   if (is_array_equ && is_char) {
8662     bind(COMPARE_BYTE);
8663   } else {
8664     lea(ary1, Address(ary1, 2));
8665     lea(ary2, Address(ary2, 2));
8666 
8667     bind(COMPARE_BYTE);
8668     testl(result, 0x1);   // tail  byte
8669     jccb(Assembler::zero, TRUE_LABEL);
8670     load_unsigned_byte(chr, Address(ary1, 0));
8671     load_unsigned_byte(limit, Address(ary2, 0));
8672     cmpl(chr, limit);
8673     jccb(Assembler::notEqual, FALSE_LABEL);
8674   }
8675   bind(TRUE_LABEL);
8676   movl(result, 1);   // return true
8677   jmpb(DONE);
8678 
8679   bind(FALSE_LABEL);
8680   xorl(result, result); // return false
8681 
8682   // That's it
8683   bind(DONE);
8684   if (UseAVX >= 2) {
8685     // clean upper bits of YMM registers
8686     vpxor(vec1, vec1);
8687     vpxor(vec2, vec2);
8688   }
8689 }
8690 
8691 #endif
8692 
8693 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8694                                    Register to, Register value, Register count,
8695                                    Register rtmp, XMMRegister xtmp) {
8696   ShortBranchVerifier sbv(this);
8697   assert_different_registers(to, value, count, rtmp);
8698   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8699   Label L_fill_2_bytes, L_fill_4_bytes;
8700 
8701   int shift = -1;
8702   switch (t) {
8703     case T_BYTE:
8704       shift = 2;
8705       break;
8706     case T_SHORT:
8707       shift = 1;
8708       break;
8709     case T_INT:
8710       shift = 0;
8711       break;
8712     default: ShouldNotReachHere();
8713   }
8714 
8715   if (t == T_BYTE) {
8716     andl(value, 0xff);
8717     movl(rtmp, value);
8718     shll(rtmp, 8);
8719     orl(value, rtmp);
8720   }
8721   if (t == T_SHORT) {
8722     andl(value, 0xffff);
8723   }
8724   if (t == T_BYTE || t == T_SHORT) {
8725     movl(rtmp, value);
8726     shll(rtmp, 16);
8727     orl(value, rtmp);
8728   }
8729 
8730   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8731   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8732   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8733     // align source address at 4 bytes address boundary
8734     if (t == T_BYTE) {
8735       // One byte misalignment happens only for byte arrays
8736       testptr(to, 1);
8737       jccb(Assembler::zero, L_skip_align1);
8738       movb(Address(to, 0), value);
8739       increment(to);
8740       decrement(count);
8741       BIND(L_skip_align1);
8742     }
8743     // Two bytes misalignment happens only for byte and short (char) arrays
8744     testptr(to, 2);
8745     jccb(Assembler::zero, L_skip_align2);
8746     movw(Address(to, 0), value);
8747     addptr(to, 2);
8748     subl(count, 1<<(shift-1));
8749     BIND(L_skip_align2);
8750   }
8751   if (UseSSE < 2) {
8752     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8753     // Fill 32-byte chunks
8754     subl(count, 8 << shift);
8755     jcc(Assembler::less, L_check_fill_8_bytes);
8756     align(16);
8757 
8758     BIND(L_fill_32_bytes_loop);
8759 
8760     for (int i = 0; i < 32; i += 4) {
8761       movl(Address(to, i), value);
8762     }
8763 
8764     addptr(to, 32);
8765     subl(count, 8 << shift);
8766     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8767     BIND(L_check_fill_8_bytes);
8768     addl(count, 8 << shift);
8769     jccb(Assembler::zero, L_exit);
8770     jmpb(L_fill_8_bytes);
8771 
8772     //
8773     // length is too short, just fill qwords
8774     //
8775     BIND(L_fill_8_bytes_loop);
8776     movl(Address(to, 0), value);
8777     movl(Address(to, 4), value);
8778     addptr(to, 8);
8779     BIND(L_fill_8_bytes);
8780     subl(count, 1 << (shift + 1));
8781     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8782     // fall through to fill 4 bytes
8783   } else {
8784     Label L_fill_32_bytes;
8785     if (!UseUnalignedLoadStores) {
8786       // align to 8 bytes, we know we are 4 byte aligned to start
8787       testptr(to, 4);
8788       jccb(Assembler::zero, L_fill_32_bytes);
8789       movl(Address(to, 0), value);
8790       addptr(to, 4);
8791       subl(count, 1<<shift);
8792     }
8793     BIND(L_fill_32_bytes);
8794     {
8795       assert( UseSSE >= 2, "supported cpu only" );
8796       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8797       if (UseAVX > 2) {
8798         movl(rtmp, 0xffff);
8799         kmovwl(k1, rtmp);
8800       }
8801       movdl(xtmp, value);
8802       if (UseAVX > 2 && UseUnalignedLoadStores) {
8803         // Fill 64-byte chunks
8804         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8805         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8806 
8807         subl(count, 16 << shift);
8808         jcc(Assembler::less, L_check_fill_32_bytes);
8809         align(16);
8810 
8811         BIND(L_fill_64_bytes_loop);
8812         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8813         addptr(to, 64);
8814         subl(count, 16 << shift);
8815         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8816 
8817         BIND(L_check_fill_32_bytes);
8818         addl(count, 8 << shift);
8819         jccb(Assembler::less, L_check_fill_8_bytes);
8820         vmovdqu(Address(to, 0), xtmp);
8821         addptr(to, 32);
8822         subl(count, 8 << shift);
8823 
8824         BIND(L_check_fill_8_bytes);
8825       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8826         // Fill 64-byte chunks
8827         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8828         vpbroadcastd(xtmp, xtmp);
8829 
8830         subl(count, 16 << shift);
8831         jcc(Assembler::less, L_check_fill_32_bytes);
8832         align(16);
8833 
8834         BIND(L_fill_64_bytes_loop);
8835         vmovdqu(Address(to, 0), xtmp);
8836         vmovdqu(Address(to, 32), xtmp);
8837         addptr(to, 64);
8838         subl(count, 16 << shift);
8839         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8840 
8841         BIND(L_check_fill_32_bytes);
8842         addl(count, 8 << shift);
8843         jccb(Assembler::less, L_check_fill_8_bytes);
8844         vmovdqu(Address(to, 0), xtmp);
8845         addptr(to, 32);
8846         subl(count, 8 << shift);
8847 
8848         BIND(L_check_fill_8_bytes);
8849         // clean upper bits of YMM registers
8850         movdl(xtmp, value);
8851         pshufd(xtmp, xtmp, 0);
8852       } else {
8853         // Fill 32-byte chunks
8854         pshufd(xtmp, xtmp, 0);
8855 
8856         subl(count, 8 << shift);
8857         jcc(Assembler::less, L_check_fill_8_bytes);
8858         align(16);
8859 
8860         BIND(L_fill_32_bytes_loop);
8861 
8862         if (UseUnalignedLoadStores) {
8863           movdqu(Address(to, 0), xtmp);
8864           movdqu(Address(to, 16), xtmp);
8865         } else {
8866           movq(Address(to, 0), xtmp);
8867           movq(Address(to, 8), xtmp);
8868           movq(Address(to, 16), xtmp);
8869           movq(Address(to, 24), xtmp);
8870         }
8871 
8872         addptr(to, 32);
8873         subl(count, 8 << shift);
8874         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8875 
8876         BIND(L_check_fill_8_bytes);
8877       }
8878       addl(count, 8 << shift);
8879       jccb(Assembler::zero, L_exit);
8880       jmpb(L_fill_8_bytes);
8881 
8882       //
8883       // length is too short, just fill qwords
8884       //
8885       BIND(L_fill_8_bytes_loop);
8886       movq(Address(to, 0), xtmp);
8887       addptr(to, 8);
8888       BIND(L_fill_8_bytes);
8889       subl(count, 1 << (shift + 1));
8890       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8891     }
8892   }
8893   // fill trailing 4 bytes
8894   BIND(L_fill_4_bytes);
8895   testl(count, 1<<shift);
8896   jccb(Assembler::zero, L_fill_2_bytes);
8897   movl(Address(to, 0), value);
8898   if (t == T_BYTE || t == T_SHORT) {
8899     addptr(to, 4);
8900     BIND(L_fill_2_bytes);
8901     // fill trailing 2 bytes
8902     testl(count, 1<<(shift-1));
8903     jccb(Assembler::zero, L_fill_byte);
8904     movw(Address(to, 0), value);
8905     if (t == T_BYTE) {
8906       addptr(to, 2);
8907       BIND(L_fill_byte);
8908       // fill trailing byte
8909       testl(count, 1);
8910       jccb(Assembler::zero, L_exit);
8911       movb(Address(to, 0), value);
8912     } else {
8913       BIND(L_fill_byte);
8914     }
8915   } else {
8916     BIND(L_fill_2_bytes);
8917   }
8918   BIND(L_exit);
8919 }
8920 
8921 // encode char[] to byte[] in ISO_8859_1
8922    //@HotSpotIntrinsicCandidate
8923    //private static int implEncodeISOArray(byte[] sa, int sp,
8924    //byte[] da, int dp, int len) {
8925    //  int i = 0;
8926    //  for (; i < len; i++) {
8927    //    char c = StringUTF16.getChar(sa, sp++);
8928    //    if (c > '\u00FF')
8929    //      break;
8930    //    da[dp++] = (byte)c;
8931    //  }
8932    //  return i;
8933    //}
8934 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8935   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8936   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8937   Register tmp5, Register result) {
8938 
8939   // rsi: src
8940   // rdi: dst
8941   // rdx: len
8942   // rcx: tmp5
8943   // rax: result
8944   ShortBranchVerifier sbv(this);
8945   assert_different_registers(src, dst, len, tmp5, result);
8946   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8947 
8948   // set result
8949   xorl(result, result);
8950   // check for zero length
8951   testl(len, len);
8952   jcc(Assembler::zero, L_done);
8953 
8954   movl(result, len);
8955 
8956   // Setup pointers
8957   lea(src, Address(src, len, Address::times_2)); // char[]
8958   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8959   negptr(len);
8960 
8961   if (UseSSE42Intrinsics || UseAVX >= 2) {
8962     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8963     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8964 
8965     if (UseAVX >= 2) {
8966       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8967       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8968       movdl(tmp1Reg, tmp5);
8969       vpbroadcastd(tmp1Reg, tmp1Reg);
8970       jmp(L_chars_32_check);
8971 
8972       bind(L_copy_32_chars);
8973       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8974       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8975       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8976       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8977       jccb(Assembler::notZero, L_copy_32_chars_exit);
8978       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8979       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8980       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8981 
8982       bind(L_chars_32_check);
8983       addptr(len, 32);
8984       jcc(Assembler::lessEqual, L_copy_32_chars);
8985 
8986       bind(L_copy_32_chars_exit);
8987       subptr(len, 16);
8988       jccb(Assembler::greater, L_copy_16_chars_exit);
8989 
8990     } else if (UseSSE42Intrinsics) {
8991       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8992       movdl(tmp1Reg, tmp5);
8993       pshufd(tmp1Reg, tmp1Reg, 0);
8994       jmpb(L_chars_16_check);
8995     }
8996 
8997     bind(L_copy_16_chars);
8998     if (UseAVX >= 2) {
8999       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
9000       vptest(tmp2Reg, tmp1Reg);
9001       jcc(Assembler::notZero, L_copy_16_chars_exit);
9002       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
9003       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
9004     } else {
9005       if (UseAVX > 0) {
9006         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
9007         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
9008         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
9009       } else {
9010         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
9011         por(tmp2Reg, tmp3Reg);
9012         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
9013         por(tmp2Reg, tmp4Reg);
9014       }
9015       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
9016       jccb(Assembler::notZero, L_copy_16_chars_exit);
9017       packuswb(tmp3Reg, tmp4Reg);
9018     }
9019     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
9020 
9021     bind(L_chars_16_check);
9022     addptr(len, 16);
9023     jcc(Assembler::lessEqual, L_copy_16_chars);
9024 
9025     bind(L_copy_16_chars_exit);
9026     if (UseAVX >= 2) {
9027       // clean upper bits of YMM registers
9028       vpxor(tmp2Reg, tmp2Reg);
9029       vpxor(tmp3Reg, tmp3Reg);
9030       vpxor(tmp4Reg, tmp4Reg);
9031       movdl(tmp1Reg, tmp5);
9032       pshufd(tmp1Reg, tmp1Reg, 0);
9033     }
9034     subptr(len, 8);
9035     jccb(Assembler::greater, L_copy_8_chars_exit);
9036 
9037     bind(L_copy_8_chars);
9038     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
9039     ptest(tmp3Reg, tmp1Reg);
9040     jccb(Assembler::notZero, L_copy_8_chars_exit);
9041     packuswb(tmp3Reg, tmp1Reg);
9042     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
9043     addptr(len, 8);
9044     jccb(Assembler::lessEqual, L_copy_8_chars);
9045 
9046     bind(L_copy_8_chars_exit);
9047     subptr(len, 8);
9048     jccb(Assembler::zero, L_done);
9049   }
9050 
9051   bind(L_copy_1_char);
9052   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
9053   testl(tmp5, 0xff00);      // check if Unicode char
9054   jccb(Assembler::notZero, L_copy_1_char_exit);
9055   movb(Address(dst, len, Address::times_1, 0), tmp5);
9056   addptr(len, 1);
9057   jccb(Assembler::less, L_copy_1_char);
9058 
9059   bind(L_copy_1_char_exit);
9060   addptr(result, len); // len is negative count of not processed elements
9061 
9062   bind(L_done);
9063 }
9064 
9065 #ifdef _LP64
9066 /**
9067  * Helper for multiply_to_len().
9068  */
9069 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
9070   addq(dest_lo, src1);
9071   adcq(dest_hi, 0);
9072   addq(dest_lo, src2);
9073   adcq(dest_hi, 0);
9074 }
9075 
9076 /**
9077  * Multiply 64 bit by 64 bit first loop.
9078  */
9079 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
9080                                            Register y, Register y_idx, Register z,
9081                                            Register carry, Register product,
9082                                            Register idx, Register kdx) {
9083   //
9084   //  jlong carry, x[], y[], z[];
9085   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9086   //    huge_128 product = y[idx] * x[xstart] + carry;
9087   //    z[kdx] = (jlong)product;
9088   //    carry  = (jlong)(product >>> 64);
9089   //  }
9090   //  z[xstart] = carry;
9091   //
9092 
9093   Label L_first_loop, L_first_loop_exit;
9094   Label L_one_x, L_one_y, L_multiply;
9095 
9096   decrementl(xstart);
9097   jcc(Assembler::negative, L_one_x);
9098 
9099   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9100   rorq(x_xstart, 32); // convert big-endian to little-endian
9101 
9102   bind(L_first_loop);
9103   decrementl(idx);
9104   jcc(Assembler::negative, L_first_loop_exit);
9105   decrementl(idx);
9106   jcc(Assembler::negative, L_one_y);
9107   movq(y_idx, Address(y, idx, Address::times_4,  0));
9108   rorq(y_idx, 32); // convert big-endian to little-endian
9109   bind(L_multiply);
9110   movq(product, x_xstart);
9111   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
9112   addq(product, carry);
9113   adcq(rdx, 0);
9114   subl(kdx, 2);
9115   movl(Address(z, kdx, Address::times_4,  4), product);
9116   shrq(product, 32);
9117   movl(Address(z, kdx, Address::times_4,  0), product);
9118   movq(carry, rdx);
9119   jmp(L_first_loop);
9120 
9121   bind(L_one_y);
9122   movl(y_idx, Address(y,  0));
9123   jmp(L_multiply);
9124 
9125   bind(L_one_x);
9126   movl(x_xstart, Address(x,  0));
9127   jmp(L_first_loop);
9128 
9129   bind(L_first_loop_exit);
9130 }
9131 
9132 /**
9133  * Multiply 64 bit by 64 bit and add 128 bit.
9134  */
9135 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
9136                                             Register yz_idx, Register idx,
9137                                             Register carry, Register product, int offset) {
9138   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
9139   //     z[kdx] = (jlong)product;
9140 
9141   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
9142   rorq(yz_idx, 32); // convert big-endian to little-endian
9143   movq(product, x_xstart);
9144   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
9145   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
9146   rorq(yz_idx, 32); // convert big-endian to little-endian
9147 
9148   add2_with_carry(rdx, product, carry, yz_idx);
9149 
9150   movl(Address(z, idx, Address::times_4,  offset+4), product);
9151   shrq(product, 32);
9152   movl(Address(z, idx, Address::times_4,  offset), product);
9153 
9154 }
9155 
9156 /**
9157  * Multiply 128 bit by 128 bit. Unrolled inner loop.
9158  */
9159 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
9160                                              Register yz_idx, Register idx, Register jdx,
9161                                              Register carry, Register product,
9162                                              Register carry2) {
9163   //   jlong carry, x[], y[], z[];
9164   //   int kdx = ystart+1;
9165   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9166   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
9167   //     z[kdx+idx+1] = (jlong)product;
9168   //     jlong carry2  = (jlong)(product >>> 64);
9169   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
9170   //     z[kdx+idx] = (jlong)product;
9171   //     carry  = (jlong)(product >>> 64);
9172   //   }
9173   //   idx += 2;
9174   //   if (idx > 0) {
9175   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
9176   //     z[kdx+idx] = (jlong)product;
9177   //     carry  = (jlong)(product >>> 64);
9178   //   }
9179   //
9180 
9181   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9182 
9183   movl(jdx, idx);
9184   andl(jdx, 0xFFFFFFFC);
9185   shrl(jdx, 2);
9186 
9187   bind(L_third_loop);
9188   subl(jdx, 1);
9189   jcc(Assembler::negative, L_third_loop_exit);
9190   subl(idx, 4);
9191 
9192   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
9193   movq(carry2, rdx);
9194 
9195   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
9196   movq(carry, rdx);
9197   jmp(L_third_loop);
9198 
9199   bind (L_third_loop_exit);
9200 
9201   andl (idx, 0x3);
9202   jcc(Assembler::zero, L_post_third_loop_done);
9203 
9204   Label L_check_1;
9205   subl(idx, 2);
9206   jcc(Assembler::negative, L_check_1);
9207 
9208   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
9209   movq(carry, rdx);
9210 
9211   bind (L_check_1);
9212   addl (idx, 0x2);
9213   andl (idx, 0x1);
9214   subl(idx, 1);
9215   jcc(Assembler::negative, L_post_third_loop_done);
9216 
9217   movl(yz_idx, Address(y, idx, Address::times_4,  0));
9218   movq(product, x_xstart);
9219   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
9220   movl(yz_idx, Address(z, idx, Address::times_4,  0));
9221 
9222   add2_with_carry(rdx, product, yz_idx, carry);
9223 
9224   movl(Address(z, idx, Address::times_4,  0), product);
9225   shrq(product, 32);
9226 
9227   shlq(rdx, 32);
9228   orq(product, rdx);
9229   movq(carry, product);
9230 
9231   bind(L_post_third_loop_done);
9232 }
9233 
9234 /**
9235  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
9236  *
9237  */
9238 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
9239                                                   Register carry, Register carry2,
9240                                                   Register idx, Register jdx,
9241                                                   Register yz_idx1, Register yz_idx2,
9242                                                   Register tmp, Register tmp3, Register tmp4) {
9243   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
9244 
9245   //   jlong carry, x[], y[], z[];
9246   //   int kdx = ystart+1;
9247   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9248   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
9249   //     jlong carry2  = (jlong)(tmp3 >>> 64);
9250   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
9251   //     carry  = (jlong)(tmp4 >>> 64);
9252   //     z[kdx+idx+1] = (jlong)tmp3;
9253   //     z[kdx+idx] = (jlong)tmp4;
9254   //   }
9255   //   idx += 2;
9256   //   if (idx > 0) {
9257   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
9258   //     z[kdx+idx] = (jlong)yz_idx1;
9259   //     carry  = (jlong)(yz_idx1 >>> 64);
9260   //   }
9261   //
9262 
9263   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9264 
9265   movl(jdx, idx);
9266   andl(jdx, 0xFFFFFFFC);
9267   shrl(jdx, 2);
9268 
9269   bind(L_third_loop);
9270   subl(jdx, 1);
9271   jcc(Assembler::negative, L_third_loop_exit);
9272   subl(idx, 4);
9273 
9274   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
9275   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
9276   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
9277   rorxq(yz_idx2, yz_idx2, 32);
9278 
9279   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
9280   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
9281 
9282   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
9283   rorxq(yz_idx1, yz_idx1, 32);
9284   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9285   rorxq(yz_idx2, yz_idx2, 32);
9286 
9287   if (VM_Version::supports_adx()) {
9288     adcxq(tmp3, carry);
9289     adoxq(tmp3, yz_idx1);
9290 
9291     adcxq(tmp4, tmp);
9292     adoxq(tmp4, yz_idx2);
9293 
9294     movl(carry, 0); // does not affect flags
9295     adcxq(carry2, carry);
9296     adoxq(carry2, carry);
9297   } else {
9298     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
9299     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
9300   }
9301   movq(carry, carry2);
9302 
9303   movl(Address(z, idx, Address::times_4, 12), tmp3);
9304   shrq(tmp3, 32);
9305   movl(Address(z, idx, Address::times_4,  8), tmp3);
9306 
9307   movl(Address(z, idx, Address::times_4,  4), tmp4);
9308   shrq(tmp4, 32);
9309   movl(Address(z, idx, Address::times_4,  0), tmp4);
9310 
9311   jmp(L_third_loop);
9312 
9313   bind (L_third_loop_exit);
9314 
9315   andl (idx, 0x3);
9316   jcc(Assembler::zero, L_post_third_loop_done);
9317 
9318   Label L_check_1;
9319   subl(idx, 2);
9320   jcc(Assembler::negative, L_check_1);
9321 
9322   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
9323   rorxq(yz_idx1, yz_idx1, 32);
9324   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
9325   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9326   rorxq(yz_idx2, yz_idx2, 32);
9327 
9328   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
9329 
9330   movl(Address(z, idx, Address::times_4,  4), tmp3);
9331   shrq(tmp3, 32);
9332   movl(Address(z, idx, Address::times_4,  0), tmp3);
9333   movq(carry, tmp4);
9334 
9335   bind (L_check_1);
9336   addl (idx, 0x2);
9337   andl (idx, 0x1);
9338   subl(idx, 1);
9339   jcc(Assembler::negative, L_post_third_loop_done);
9340   movl(tmp4, Address(y, idx, Address::times_4,  0));
9341   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
9342   movl(tmp4, Address(z, idx, Address::times_4,  0));
9343 
9344   add2_with_carry(carry2, tmp3, tmp4, carry);
9345 
9346   movl(Address(z, idx, Address::times_4,  0), tmp3);
9347   shrq(tmp3, 32);
9348 
9349   shlq(carry2, 32);
9350   orq(tmp3, carry2);
9351   movq(carry, tmp3);
9352 
9353   bind(L_post_third_loop_done);
9354 }
9355 
9356 /**
9357  * Code for BigInteger::multiplyToLen() instrinsic.
9358  *
9359  * rdi: x
9360  * rax: xlen
9361  * rsi: y
9362  * rcx: ylen
9363  * r8:  z
9364  * r11: zlen
9365  * r12: tmp1
9366  * r13: tmp2
9367  * r14: tmp3
9368  * r15: tmp4
9369  * rbx: tmp5
9370  *
9371  */
9372 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
9373                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
9374   ShortBranchVerifier sbv(this);
9375   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
9376 
9377   push(tmp1);
9378   push(tmp2);
9379   push(tmp3);
9380   push(tmp4);
9381   push(tmp5);
9382 
9383   push(xlen);
9384   push(zlen);
9385 
9386   const Register idx = tmp1;
9387   const Register kdx = tmp2;
9388   const Register xstart = tmp3;
9389 
9390   const Register y_idx = tmp4;
9391   const Register carry = tmp5;
9392   const Register product  = xlen;
9393   const Register x_xstart = zlen;  // reuse register
9394 
9395   // First Loop.
9396   //
9397   //  final static long LONG_MASK = 0xffffffffL;
9398   //  int xstart = xlen - 1;
9399   //  int ystart = ylen - 1;
9400   //  long carry = 0;
9401   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9402   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
9403   //    z[kdx] = (int)product;
9404   //    carry = product >>> 32;
9405   //  }
9406   //  z[xstart] = (int)carry;
9407   //
9408 
9409   movl(idx, ylen);      // idx = ylen;
9410   movl(kdx, zlen);      // kdx = xlen+ylen;
9411   xorq(carry, carry);   // carry = 0;
9412 
9413   Label L_done;
9414 
9415   movl(xstart, xlen);
9416   decrementl(xstart);
9417   jcc(Assembler::negative, L_done);
9418 
9419   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9420 
9421   Label L_second_loop;
9422   testl(kdx, kdx);
9423   jcc(Assembler::zero, L_second_loop);
9424 
9425   Label L_carry;
9426   subl(kdx, 1);
9427   jcc(Assembler::zero, L_carry);
9428 
9429   movl(Address(z, kdx, Address::times_4,  0), carry);
9430   shrq(carry, 32);
9431   subl(kdx, 1);
9432 
9433   bind(L_carry);
9434   movl(Address(z, kdx, Address::times_4,  0), carry);
9435 
9436   // Second and third (nested) loops.
9437   //
9438   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9439   //   carry = 0;
9440   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9441   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9442   //                    (z[k] & LONG_MASK) + carry;
9443   //     z[k] = (int)product;
9444   //     carry = product >>> 32;
9445   //   }
9446   //   z[i] = (int)carry;
9447   // }
9448   //
9449   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9450 
9451   const Register jdx = tmp1;
9452 
9453   bind(L_second_loop);
9454   xorl(carry, carry);    // carry = 0;
9455   movl(jdx, ylen);       // j = ystart+1
9456 
9457   subl(xstart, 1);       // i = xstart-1;
9458   jcc(Assembler::negative, L_done);
9459 
9460   push (z);
9461 
9462   Label L_last_x;
9463   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9464   subl(xstart, 1);       // i = xstart-1;
9465   jcc(Assembler::negative, L_last_x);
9466 
9467   if (UseBMI2Instructions) {
9468     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9469     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9470   } else {
9471     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9472     rorq(x_xstart, 32);  // convert big-endian to little-endian
9473   }
9474 
9475   Label L_third_loop_prologue;
9476   bind(L_third_loop_prologue);
9477 
9478   push (x);
9479   push (xstart);
9480   push (ylen);
9481 
9482 
9483   if (UseBMI2Instructions) {
9484     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9485   } else { // !UseBMI2Instructions
9486     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9487   }
9488 
9489   pop(ylen);
9490   pop(xlen);
9491   pop(x);
9492   pop(z);
9493 
9494   movl(tmp3, xlen);
9495   addl(tmp3, 1);
9496   movl(Address(z, tmp3, Address::times_4,  0), carry);
9497   subl(tmp3, 1);
9498   jccb(Assembler::negative, L_done);
9499 
9500   shrq(carry, 32);
9501   movl(Address(z, tmp3, Address::times_4,  0), carry);
9502   jmp(L_second_loop);
9503 
9504   // Next infrequent code is moved outside loops.
9505   bind(L_last_x);
9506   if (UseBMI2Instructions) {
9507     movl(rdx, Address(x,  0));
9508   } else {
9509     movl(x_xstart, Address(x,  0));
9510   }
9511   jmp(L_third_loop_prologue);
9512 
9513   bind(L_done);
9514 
9515   pop(zlen);
9516   pop(xlen);
9517 
9518   pop(tmp5);
9519   pop(tmp4);
9520   pop(tmp3);
9521   pop(tmp2);
9522   pop(tmp1);
9523 }
9524 
9525 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9526   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9527   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9528   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
9529   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9530   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9531   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9532   Label SAME_TILL_END, DONE;
9533   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9534 
9535   //scale is in rcx in both Win64 and Unix
9536   ShortBranchVerifier sbv(this);
9537 
9538   shlq(length);
9539   xorq(result, result);
9540 
9541   if ((UseAVX > 2) &&
9542       VM_Version::supports_avx512vlbw()) {
9543     set_vector_masking();  // opening of the stub context for programming mask registers
9544     cmpq(length, 64);
9545     jcc(Assembler::less, VECTOR32_TAIL);
9546     movq(tmp1, length);
9547     andq(tmp1, 0x3F);      // tail count
9548     andq(length, ~(0x3F)); //vector count
9549 
9550     bind(VECTOR64_LOOP);
9551     // AVX512 code to compare 64 byte vectors.
9552     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9553     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9554     kortestql(k7, k7);
9555     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9556     addq(result, 64);
9557     subq(length, 64);
9558     jccb(Assembler::notZero, VECTOR64_LOOP);
9559 
9560     //bind(VECTOR64_TAIL);
9561     testq(tmp1, tmp1);
9562     jcc(Assembler::zero, SAME_TILL_END);
9563 
9564     bind(VECTOR64_TAIL);
9565     // AVX512 code to compare upto 63 byte vectors.
9566     // Save k1
9567     kmovql(k3, k1);
9568     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9569     shlxq(tmp2, tmp2, tmp1);
9570     notq(tmp2);
9571     kmovql(k1, tmp2);
9572 
9573     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9574     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9575 
9576     ktestql(k7, k1);
9577     // Restore k1
9578     kmovql(k1, k3);
9579     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9580 
9581     bind(VECTOR64_NOT_EQUAL);
9582     kmovql(tmp1, k7);
9583     notq(tmp1);
9584     tzcntq(tmp1, tmp1);
9585     addq(result, tmp1);
9586     shrq(result);
9587     jmp(DONE);
9588     bind(VECTOR32_TAIL);
9589     clear_vector_masking();   // closing of the stub context for programming mask registers
9590   }
9591 
9592   cmpq(length, 8);
9593   jcc(Assembler::equal, VECTOR8_LOOP);
9594   jcc(Assembler::less, VECTOR4_TAIL);
9595 
9596   if (UseAVX >= 2) {
9597 
9598     cmpq(length, 16);
9599     jcc(Assembler::equal, VECTOR16_LOOP);
9600     jcc(Assembler::less, VECTOR8_LOOP);
9601 
9602     cmpq(length, 32);
9603     jccb(Assembler::less, VECTOR16_TAIL);
9604 
9605     subq(length, 32);
9606     bind(VECTOR32_LOOP);
9607     vmovdqu(rymm0, Address(obja, result));
9608     vmovdqu(rymm1, Address(objb, result));
9609     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9610     vptest(rymm2, rymm2);
9611     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9612     addq(result, 32);
9613     subq(length, 32);
9614     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9615     addq(length, 32);
9616     jcc(Assembler::equal, SAME_TILL_END);
9617     //falling through if less than 32 bytes left //close the branch here.
9618 
9619     bind(VECTOR16_TAIL);
9620     cmpq(length, 16);
9621     jccb(Assembler::less, VECTOR8_TAIL);
9622     bind(VECTOR16_LOOP);
9623     movdqu(rymm0, Address(obja, result));
9624     movdqu(rymm1, Address(objb, result));
9625     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9626     ptest(rymm2, rymm2);
9627     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9628     addq(result, 16);
9629     subq(length, 16);
9630     jcc(Assembler::equal, SAME_TILL_END);
9631     //falling through if less than 16 bytes left
9632   } else {//regular intrinsics
9633 
9634     cmpq(length, 16);
9635     jccb(Assembler::less, VECTOR8_TAIL);
9636 
9637     subq(length, 16);
9638     bind(VECTOR16_LOOP);
9639     movdqu(rymm0, Address(obja, result));
9640     movdqu(rymm1, Address(objb, result));
9641     pxor(rymm0, rymm1);
9642     ptest(rymm0, rymm0);
9643     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9644     addq(result, 16);
9645     subq(length, 16);
9646     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9647     addq(length, 16);
9648     jcc(Assembler::equal, SAME_TILL_END);
9649     //falling through if less than 16 bytes left
9650   }
9651 
9652   bind(VECTOR8_TAIL);
9653   cmpq(length, 8);
9654   jccb(Assembler::less, VECTOR4_TAIL);
9655   bind(VECTOR8_LOOP);
9656   movq(tmp1, Address(obja, result));
9657   movq(tmp2, Address(objb, result));
9658   xorq(tmp1, tmp2);
9659   testq(tmp1, tmp1);
9660   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9661   addq(result, 8);
9662   subq(length, 8);
9663   jcc(Assembler::equal, SAME_TILL_END);
9664   //falling through if less than 8 bytes left
9665 
9666   bind(VECTOR4_TAIL);
9667   cmpq(length, 4);
9668   jccb(Assembler::less, BYTES_TAIL);
9669   bind(VECTOR4_LOOP);
9670   movl(tmp1, Address(obja, result));
9671   xorl(tmp1, Address(objb, result));
9672   testl(tmp1, tmp1);
9673   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9674   addq(result, 4);
9675   subq(length, 4);
9676   jcc(Assembler::equal, SAME_TILL_END);
9677   //falling through if less than 4 bytes left
9678 
9679   bind(BYTES_TAIL);
9680   bind(BYTES_LOOP);
9681   load_unsigned_byte(tmp1, Address(obja, result));
9682   load_unsigned_byte(tmp2, Address(objb, result));
9683   xorl(tmp1, tmp2);
9684   testl(tmp1, tmp1);
9685   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9686   decq(length);
9687   jccb(Assembler::zero, SAME_TILL_END);
9688   incq(result);
9689   load_unsigned_byte(tmp1, Address(obja, result));
9690   load_unsigned_byte(tmp2, Address(objb, result));
9691   xorl(tmp1, tmp2);
9692   testl(tmp1, tmp1);
9693   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9694   decq(length);
9695   jccb(Assembler::zero, SAME_TILL_END);
9696   incq(result);
9697   load_unsigned_byte(tmp1, Address(obja, result));
9698   load_unsigned_byte(tmp2, Address(objb, result));
9699   xorl(tmp1, tmp2);
9700   testl(tmp1, tmp1);
9701   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9702   jmpb(SAME_TILL_END);
9703 
9704   if (UseAVX >= 2) {
9705     bind(VECTOR32_NOT_EQUAL);
9706     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9707     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9708     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9709     vpmovmskb(tmp1, rymm0);
9710     bsfq(tmp1, tmp1);
9711     addq(result, tmp1);
9712     shrq(result);
9713     jmpb(DONE);
9714   }
9715 
9716   bind(VECTOR16_NOT_EQUAL);
9717   if (UseAVX >= 2) {
9718     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9719     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9720     pxor(rymm0, rymm2);
9721   } else {
9722     pcmpeqb(rymm2, rymm2);
9723     pxor(rymm0, rymm1);
9724     pcmpeqb(rymm0, rymm1);
9725     pxor(rymm0, rymm2);
9726   }
9727   pmovmskb(tmp1, rymm0);
9728   bsfq(tmp1, tmp1);
9729   addq(result, tmp1);
9730   shrq(result);
9731   jmpb(DONE);
9732 
9733   bind(VECTOR8_NOT_EQUAL);
9734   bind(VECTOR4_NOT_EQUAL);
9735   bsfq(tmp1, tmp1);
9736   shrq(tmp1, 3);
9737   addq(result, tmp1);
9738   bind(BYTES_NOT_EQUAL);
9739   shrq(result);
9740   jmpb(DONE);
9741 
9742   bind(SAME_TILL_END);
9743   mov64(result, -1);
9744 
9745   bind(DONE);
9746 }
9747 
9748 //Helper functions for square_to_len()
9749 
9750 /**
9751  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9752  * Preserves x and z and modifies rest of the registers.
9753  */
9754 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9755   // Perform square and right shift by 1
9756   // Handle odd xlen case first, then for even xlen do the following
9757   // jlong carry = 0;
9758   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9759   //     huge_128 product = x[j:j+1] * x[j:j+1];
9760   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9761   //     z[i+2:i+3] = (jlong)(product >>> 1);
9762   //     carry = (jlong)product;
9763   // }
9764 
9765   xorq(tmp5, tmp5);     // carry
9766   xorq(rdxReg, rdxReg);
9767   xorl(tmp1, tmp1);     // index for x
9768   xorl(tmp4, tmp4);     // index for z
9769 
9770   Label L_first_loop, L_first_loop_exit;
9771 
9772   testl(xlen, 1);
9773   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9774 
9775   // Square and right shift by 1 the odd element using 32 bit multiply
9776   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9777   imulq(raxReg, raxReg);
9778   shrq(raxReg, 1);
9779   adcq(tmp5, 0);
9780   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9781   incrementl(tmp1);
9782   addl(tmp4, 2);
9783 
9784   // Square and  right shift by 1 the rest using 64 bit multiply
9785   bind(L_first_loop);
9786   cmpptr(tmp1, xlen);
9787   jccb(Assembler::equal, L_first_loop_exit);
9788 
9789   // Square
9790   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9791   rorq(raxReg, 32);    // convert big-endian to little-endian
9792   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9793 
9794   // Right shift by 1 and save carry
9795   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9796   rcrq(rdxReg, 1);
9797   rcrq(raxReg, 1);
9798   adcq(tmp5, 0);
9799 
9800   // Store result in z
9801   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9802   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9803 
9804   // Update indices for x and z
9805   addl(tmp1, 2);
9806   addl(tmp4, 4);
9807   jmp(L_first_loop);
9808 
9809   bind(L_first_loop_exit);
9810 }
9811 
9812 
9813 /**
9814  * Perform the following multiply add operation using BMI2 instructions
9815  * carry:sum = sum + op1*op2 + carry
9816  * op2 should be in rdx
9817  * op2 is preserved, all other registers are modified
9818  */
9819 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9820   // assert op2 is rdx
9821   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9822   addq(sum, carry);
9823   adcq(tmp2, 0);
9824   addq(sum, op1);
9825   adcq(tmp2, 0);
9826   movq(carry, tmp2);
9827 }
9828 
9829 /**
9830  * Perform the following multiply add operation:
9831  * carry:sum = sum + op1*op2 + carry
9832  * Preserves op1, op2 and modifies rest of registers
9833  */
9834 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9835   // rdx:rax = op1 * op2
9836   movq(raxReg, op2);
9837   mulq(op1);
9838 
9839   //  rdx:rax = sum + carry + rdx:rax
9840   addq(sum, carry);
9841   adcq(rdxReg, 0);
9842   addq(sum, raxReg);
9843   adcq(rdxReg, 0);
9844 
9845   // carry:sum = rdx:sum
9846   movq(carry, rdxReg);
9847 }
9848 
9849 /**
9850  * Add 64 bit long carry into z[] with carry propogation.
9851  * Preserves z and carry register values and modifies rest of registers.
9852  *
9853  */
9854 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9855   Label L_fourth_loop, L_fourth_loop_exit;
9856 
9857   movl(tmp1, 1);
9858   subl(zlen, 2);
9859   addq(Address(z, zlen, Address::times_4, 0), carry);
9860 
9861   bind(L_fourth_loop);
9862   jccb(Assembler::carryClear, L_fourth_loop_exit);
9863   subl(zlen, 2);
9864   jccb(Assembler::negative, L_fourth_loop_exit);
9865   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9866   jmp(L_fourth_loop);
9867   bind(L_fourth_loop_exit);
9868 }
9869 
9870 /**
9871  * Shift z[] left by 1 bit.
9872  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9873  *
9874  */
9875 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9876 
9877   Label L_fifth_loop, L_fifth_loop_exit;
9878 
9879   // Fifth loop
9880   // Perform primitiveLeftShift(z, zlen, 1)
9881 
9882   const Register prev_carry = tmp1;
9883   const Register new_carry = tmp4;
9884   const Register value = tmp2;
9885   const Register zidx = tmp3;
9886 
9887   // int zidx, carry;
9888   // long value;
9889   // carry = 0;
9890   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9891   //    (carry:value)  = (z[i] << 1) | carry ;
9892   //    z[i] = value;
9893   // }
9894 
9895   movl(zidx, zlen);
9896   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9897 
9898   bind(L_fifth_loop);
9899   decl(zidx);  // Use decl to preserve carry flag
9900   decl(zidx);
9901   jccb(Assembler::negative, L_fifth_loop_exit);
9902 
9903   if (UseBMI2Instructions) {
9904      movq(value, Address(z, zidx, Address::times_4, 0));
9905      rclq(value, 1);
9906      rorxq(value, value, 32);
9907      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9908   }
9909   else {
9910     // clear new_carry
9911     xorl(new_carry, new_carry);
9912 
9913     // Shift z[i] by 1, or in previous carry and save new carry
9914     movq(value, Address(z, zidx, Address::times_4, 0));
9915     shlq(value, 1);
9916     adcl(new_carry, 0);
9917 
9918     orq(value, prev_carry);
9919     rorq(value, 0x20);
9920     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9921 
9922     // Set previous carry = new carry
9923     movl(prev_carry, new_carry);
9924   }
9925   jmp(L_fifth_loop);
9926 
9927   bind(L_fifth_loop_exit);
9928 }
9929 
9930 
9931 /**
9932  * Code for BigInteger::squareToLen() intrinsic
9933  *
9934  * rdi: x
9935  * rsi: len
9936  * r8:  z
9937  * rcx: zlen
9938  * r12: tmp1
9939  * r13: tmp2
9940  * r14: tmp3
9941  * r15: tmp4
9942  * rbx: tmp5
9943  *
9944  */
9945 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9946 
9947   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9948   push(tmp1);
9949   push(tmp2);
9950   push(tmp3);
9951   push(tmp4);
9952   push(tmp5);
9953 
9954   // First loop
9955   // Store the squares, right shifted one bit (i.e., divided by 2).
9956   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9957 
9958   // Add in off-diagonal sums.
9959   //
9960   // Second, third (nested) and fourth loops.
9961   // zlen +=2;
9962   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9963   //    carry = 0;
9964   //    long op2 = x[xidx:xidx+1];
9965   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9966   //       k -= 2;
9967   //       long op1 = x[j:j+1];
9968   //       long sum = z[k:k+1];
9969   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9970   //       z[k:k+1] = sum;
9971   //    }
9972   //    add_one_64(z, k, carry, tmp_regs);
9973   // }
9974 
9975   const Register carry = tmp5;
9976   const Register sum = tmp3;
9977   const Register op1 = tmp4;
9978   Register op2 = tmp2;
9979 
9980   push(zlen);
9981   push(len);
9982   addl(zlen,2);
9983   bind(L_second_loop);
9984   xorq(carry, carry);
9985   subl(zlen, 4);
9986   subl(len, 2);
9987   push(zlen);
9988   push(len);
9989   cmpl(len, 0);
9990   jccb(Assembler::lessEqual, L_second_loop_exit);
9991 
9992   // Multiply an array by one 64 bit long.
9993   if (UseBMI2Instructions) {
9994     op2 = rdxReg;
9995     movq(op2, Address(x, len, Address::times_4,  0));
9996     rorxq(op2, op2, 32);
9997   }
9998   else {
9999     movq(op2, Address(x, len, Address::times_4,  0));
10000     rorq(op2, 32);
10001   }
10002 
10003   bind(L_third_loop);
10004   decrementl(len);
10005   jccb(Assembler::negative, L_third_loop_exit);
10006   decrementl(len);
10007   jccb(Assembler::negative, L_last_x);
10008 
10009   movq(op1, Address(x, len, Address::times_4,  0));
10010   rorq(op1, 32);
10011 
10012   bind(L_multiply);
10013   subl(zlen, 2);
10014   movq(sum, Address(z, zlen, Address::times_4,  0));
10015 
10016   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
10017   if (UseBMI2Instructions) {
10018     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
10019   }
10020   else {
10021     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10022   }
10023 
10024   movq(Address(z, zlen, Address::times_4, 0), sum);
10025 
10026   jmp(L_third_loop);
10027   bind(L_third_loop_exit);
10028 
10029   // Fourth loop
10030   // Add 64 bit long carry into z with carry propogation.
10031   // Uses offsetted zlen.
10032   add_one_64(z, zlen, carry, tmp1);
10033 
10034   pop(len);
10035   pop(zlen);
10036   jmp(L_second_loop);
10037 
10038   // Next infrequent code is moved outside loops.
10039   bind(L_last_x);
10040   movl(op1, Address(x, 0));
10041   jmp(L_multiply);
10042 
10043   bind(L_second_loop_exit);
10044   pop(len);
10045   pop(zlen);
10046   pop(len);
10047   pop(zlen);
10048 
10049   // Fifth loop
10050   // Shift z left 1 bit.
10051   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
10052 
10053   // z[zlen-1] |= x[len-1] & 1;
10054   movl(tmp3, Address(x, len, Address::times_4, -4));
10055   andl(tmp3, 1);
10056   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
10057 
10058   pop(tmp5);
10059   pop(tmp4);
10060   pop(tmp3);
10061   pop(tmp2);
10062   pop(tmp1);
10063 }
10064 
10065 /**
10066  * Helper function for mul_add()
10067  * Multiply the in[] by int k and add to out[] starting at offset offs using
10068  * 128 bit by 32 bit multiply and return the carry in tmp5.
10069  * Only quad int aligned length of in[] is operated on in this function.
10070  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
10071  * This function preserves out, in and k registers.
10072  * len and offset point to the appropriate index in "in" & "out" correspondingly
10073  * tmp5 has the carry.
10074  * other registers are temporary and are modified.
10075  *
10076  */
10077 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
10078   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
10079   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
10080 
10081   Label L_first_loop, L_first_loop_exit;
10082 
10083   movl(tmp1, len);
10084   shrl(tmp1, 2);
10085 
10086   bind(L_first_loop);
10087   subl(tmp1, 1);
10088   jccb(Assembler::negative, L_first_loop_exit);
10089 
10090   subl(len, 4);
10091   subl(offset, 4);
10092 
10093   Register op2 = tmp2;
10094   const Register sum = tmp3;
10095   const Register op1 = tmp4;
10096   const Register carry = tmp5;
10097 
10098   if (UseBMI2Instructions) {
10099     op2 = rdxReg;
10100   }
10101 
10102   movq(op1, Address(in, len, Address::times_4,  8));
10103   rorq(op1, 32);
10104   movq(sum, Address(out, offset, Address::times_4,  8));
10105   rorq(sum, 32);
10106   if (UseBMI2Instructions) {
10107     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10108   }
10109   else {
10110     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10111   }
10112   // Store back in big endian from little endian
10113   rorq(sum, 0x20);
10114   movq(Address(out, offset, Address::times_4,  8), sum);
10115 
10116   movq(op1, Address(in, len, Address::times_4,  0));
10117   rorq(op1, 32);
10118   movq(sum, Address(out, offset, Address::times_4,  0));
10119   rorq(sum, 32);
10120   if (UseBMI2Instructions) {
10121     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10122   }
10123   else {
10124     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10125   }
10126   // Store back in big endian from little endian
10127   rorq(sum, 0x20);
10128   movq(Address(out, offset, Address::times_4,  0), sum);
10129 
10130   jmp(L_first_loop);
10131   bind(L_first_loop_exit);
10132 }
10133 
10134 /**
10135  * Code for BigInteger::mulAdd() intrinsic
10136  *
10137  * rdi: out
10138  * rsi: in
10139  * r11: offs (out.length - offset)
10140  * rcx: len
10141  * r8:  k
10142  * r12: tmp1
10143  * r13: tmp2
10144  * r14: tmp3
10145  * r15: tmp4
10146  * rbx: tmp5
10147  * Multiply the in[] by word k and add to out[], return the carry in rax
10148  */
10149 void MacroAssembler::mul_add(Register out, Register in, Register offs,
10150    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
10151    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
10152 
10153   Label L_carry, L_last_in, L_done;
10154 
10155 // carry = 0;
10156 // for (int j=len-1; j >= 0; j--) {
10157 //    long product = (in[j] & LONG_MASK) * kLong +
10158 //                   (out[offs] & LONG_MASK) + carry;
10159 //    out[offs--] = (int)product;
10160 //    carry = product >>> 32;
10161 // }
10162 //
10163   push(tmp1);
10164   push(tmp2);
10165   push(tmp3);
10166   push(tmp4);
10167   push(tmp5);
10168 
10169   Register op2 = tmp2;
10170   const Register sum = tmp3;
10171   const Register op1 = tmp4;
10172   const Register carry =  tmp5;
10173 
10174   if (UseBMI2Instructions) {
10175     op2 = rdxReg;
10176     movl(op2, k);
10177   }
10178   else {
10179     movl(op2, k);
10180   }
10181 
10182   xorq(carry, carry);
10183 
10184   //First loop
10185 
10186   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
10187   //The carry is in tmp5
10188   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
10189 
10190   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
10191   decrementl(len);
10192   jccb(Assembler::negative, L_carry);
10193   decrementl(len);
10194   jccb(Assembler::negative, L_last_in);
10195 
10196   movq(op1, Address(in, len, Address::times_4,  0));
10197   rorq(op1, 32);
10198 
10199   subl(offs, 2);
10200   movq(sum, Address(out, offs, Address::times_4,  0));
10201   rorq(sum, 32);
10202 
10203   if (UseBMI2Instructions) {
10204     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10205   }
10206   else {
10207     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10208   }
10209 
10210   // Store back in big endian from little endian
10211   rorq(sum, 0x20);
10212   movq(Address(out, offs, Address::times_4,  0), sum);
10213 
10214   testl(len, len);
10215   jccb(Assembler::zero, L_carry);
10216 
10217   //Multiply the last in[] entry, if any
10218   bind(L_last_in);
10219   movl(op1, Address(in, 0));
10220   movl(sum, Address(out, offs, Address::times_4,  -4));
10221 
10222   movl(raxReg, k);
10223   mull(op1); //tmp4 * eax -> edx:eax
10224   addl(sum, carry);
10225   adcl(rdxReg, 0);
10226   addl(sum, raxReg);
10227   adcl(rdxReg, 0);
10228   movl(carry, rdxReg);
10229 
10230   movl(Address(out, offs, Address::times_4,  -4), sum);
10231 
10232   bind(L_carry);
10233   //return tmp5/carry as carry in rax
10234   movl(rax, carry);
10235 
10236   bind(L_done);
10237   pop(tmp5);
10238   pop(tmp4);
10239   pop(tmp3);
10240   pop(tmp2);
10241   pop(tmp1);
10242 }
10243 #endif
10244 
10245 /**
10246  * Emits code to update CRC-32 with a byte value according to constants in table
10247  *
10248  * @param [in,out]crc   Register containing the crc.
10249  * @param [in]val       Register containing the byte to fold into the CRC.
10250  * @param [in]table     Register containing the table of crc constants.
10251  *
10252  * uint32_t crc;
10253  * val = crc_table[(val ^ crc) & 0xFF];
10254  * crc = val ^ (crc >> 8);
10255  *
10256  */
10257 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
10258   xorl(val, crc);
10259   andl(val, 0xFF);
10260   shrl(crc, 8); // unsigned shift
10261   xorl(crc, Address(table, val, Address::times_4, 0));
10262 }
10263 
10264 /**
10265  * Fold 128-bit data chunk
10266  */
10267 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
10268   if (UseAVX > 0) {
10269     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
10270     vpclmulldq(xcrc, xK, xcrc); // [63:0]
10271     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
10272     pxor(xcrc, xtmp);
10273   } else {
10274     movdqa(xtmp, xcrc);
10275     pclmulhdq(xtmp, xK);   // [123:64]
10276     pclmulldq(xcrc, xK);   // [63:0]
10277     pxor(xcrc, xtmp);
10278     movdqu(xtmp, Address(buf, offset));
10279     pxor(xcrc, xtmp);
10280   }
10281 }
10282 
10283 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
10284   if (UseAVX > 0) {
10285     vpclmulhdq(xtmp, xK, xcrc);
10286     vpclmulldq(xcrc, xK, xcrc);
10287     pxor(xcrc, xbuf);
10288     pxor(xcrc, xtmp);
10289   } else {
10290     movdqa(xtmp, xcrc);
10291     pclmulhdq(xtmp, xK);
10292     pclmulldq(xcrc, xK);
10293     pxor(xcrc, xbuf);
10294     pxor(xcrc, xtmp);
10295   }
10296 }
10297 
10298 /**
10299  * 8-bit folds to compute 32-bit CRC
10300  *
10301  * uint64_t xcrc;
10302  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
10303  */
10304 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
10305   movdl(tmp, xcrc);
10306   andl(tmp, 0xFF);
10307   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
10308   psrldq(xcrc, 1); // unsigned shift one byte
10309   pxor(xcrc, xtmp);
10310 }
10311 
10312 /**
10313  * uint32_t crc;
10314  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
10315  */
10316 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
10317   movl(tmp, crc);
10318   andl(tmp, 0xFF);
10319   shrl(crc, 8);
10320   xorl(crc, Address(table, tmp, Address::times_4, 0));
10321 }
10322 
10323 /**
10324  * @param crc   register containing existing CRC (32-bit)
10325  * @param buf   register pointing to input byte buffer (byte*)
10326  * @param len   register containing number of bytes
10327  * @param table register that will contain address of CRC table
10328  * @param tmp   scratch register
10329  */
10330 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
10331   assert_different_registers(crc, buf, len, table, tmp, rax);
10332 
10333   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
10334   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
10335 
10336   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
10337   // context for the registers used, where all instructions below are using 128-bit mode
10338   // On EVEX without VL and BW, these instructions will all be AVX.
10339   if (VM_Version::supports_avx512vlbw()) {
10340     movl(tmp, 0xffff);
10341     kmovwl(k1, tmp);
10342   }
10343 
10344   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
10345   notl(crc); // ~crc
10346   cmpl(len, 16);
10347   jcc(Assembler::less, L_tail);
10348 
10349   // Align buffer to 16 bytes
10350   movl(tmp, buf);
10351   andl(tmp, 0xF);
10352   jccb(Assembler::zero, L_aligned);
10353   subl(tmp,  16);
10354   addl(len, tmp);
10355 
10356   align(4);
10357   BIND(L_align_loop);
10358   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10359   update_byte_crc32(crc, rax, table);
10360   increment(buf);
10361   incrementl(tmp);
10362   jccb(Assembler::less, L_align_loop);
10363 
10364   BIND(L_aligned);
10365   movl(tmp, len); // save
10366   shrl(len, 4);
10367   jcc(Assembler::zero, L_tail_restore);
10368 
10369   // Fold crc into first bytes of vector
10370   movdqa(xmm1, Address(buf, 0));
10371   movdl(rax, xmm1);
10372   xorl(crc, rax);
10373   if (VM_Version::supports_sse4_1()) {
10374     pinsrd(xmm1, crc, 0);
10375   } else {
10376     pinsrw(xmm1, crc, 0);
10377     shrl(crc, 16);
10378     pinsrw(xmm1, crc, 1);
10379   }
10380   addptr(buf, 16);
10381   subl(len, 4); // len > 0
10382   jcc(Assembler::less, L_fold_tail);
10383 
10384   movdqa(xmm2, Address(buf,  0));
10385   movdqa(xmm3, Address(buf, 16));
10386   movdqa(xmm4, Address(buf, 32));
10387   addptr(buf, 48);
10388   subl(len, 3);
10389   jcc(Assembler::lessEqual, L_fold_512b);
10390 
10391   // Fold total 512 bits of polynomial on each iteration,
10392   // 128 bits per each of 4 parallel streams.
10393   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10394 
10395   align(32);
10396   BIND(L_fold_512b_loop);
10397   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10398   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10399   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10400   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10401   addptr(buf, 64);
10402   subl(len, 4);
10403   jcc(Assembler::greater, L_fold_512b_loop);
10404 
10405   // Fold 512 bits to 128 bits.
10406   BIND(L_fold_512b);
10407   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10408   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10409   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10410   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10411 
10412   // Fold the rest of 128 bits data chunks
10413   BIND(L_fold_tail);
10414   addl(len, 3);
10415   jccb(Assembler::lessEqual, L_fold_128b);
10416   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10417 
10418   BIND(L_fold_tail_loop);
10419   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10420   addptr(buf, 16);
10421   decrementl(len);
10422   jccb(Assembler::greater, L_fold_tail_loop);
10423 
10424   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10425   BIND(L_fold_128b);
10426   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10427   if (UseAVX > 0) {
10428     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10429     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10430     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10431   } else {
10432     movdqa(xmm2, xmm0);
10433     pclmulqdq(xmm2, xmm1, 0x1);
10434     movdqa(xmm3, xmm0);
10435     pand(xmm3, xmm2);
10436     pclmulqdq(xmm0, xmm3, 0x1);
10437   }
10438   psrldq(xmm1, 8);
10439   psrldq(xmm2, 4);
10440   pxor(xmm0, xmm1);
10441   pxor(xmm0, xmm2);
10442 
10443   // 8 8-bit folds to compute 32-bit CRC.
10444   for (int j = 0; j < 4; j++) {
10445     fold_8bit_crc32(xmm0, table, xmm1, rax);
10446   }
10447   movdl(crc, xmm0); // mov 32 bits to general register
10448   for (int j = 0; j < 4; j++) {
10449     fold_8bit_crc32(crc, table, rax);
10450   }
10451 
10452   BIND(L_tail_restore);
10453   movl(len, tmp); // restore
10454   BIND(L_tail);
10455   andl(len, 0xf);
10456   jccb(Assembler::zero, L_exit);
10457 
10458   // Fold the rest of bytes
10459   align(4);
10460   BIND(L_tail_loop);
10461   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10462   update_byte_crc32(crc, rax, table);
10463   increment(buf);
10464   decrementl(len);
10465   jccb(Assembler::greater, L_tail_loop);
10466 
10467   BIND(L_exit);
10468   notl(crc); // ~c
10469 }
10470 
10471 #ifdef _LP64
10472 // S. Gueron / Information Processing Letters 112 (2012) 184
10473 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10474 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10475 // Output: the 64-bit carry-less product of B * CONST
10476 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10477                                      Register tmp1, Register tmp2, Register tmp3) {
10478   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10479   if (n > 0) {
10480     addq(tmp3, n * 256 * 8);
10481   }
10482   //    Q1 = TABLEExt[n][B & 0xFF];
10483   movl(tmp1, in);
10484   andl(tmp1, 0x000000FF);
10485   shll(tmp1, 3);
10486   addq(tmp1, tmp3);
10487   movq(tmp1, Address(tmp1, 0));
10488 
10489   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10490   movl(tmp2, in);
10491   shrl(tmp2, 8);
10492   andl(tmp2, 0x000000FF);
10493   shll(tmp2, 3);
10494   addq(tmp2, tmp3);
10495   movq(tmp2, Address(tmp2, 0));
10496 
10497   shlq(tmp2, 8);
10498   xorq(tmp1, tmp2);
10499 
10500   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10501   movl(tmp2, in);
10502   shrl(tmp2, 16);
10503   andl(tmp2, 0x000000FF);
10504   shll(tmp2, 3);
10505   addq(tmp2, tmp3);
10506   movq(tmp2, Address(tmp2, 0));
10507 
10508   shlq(tmp2, 16);
10509   xorq(tmp1, tmp2);
10510 
10511   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10512   shrl(in, 24);
10513   andl(in, 0x000000FF);
10514   shll(in, 3);
10515   addq(in, tmp3);
10516   movq(in, Address(in, 0));
10517 
10518   shlq(in, 24);
10519   xorq(in, tmp1);
10520   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10521 }
10522 
10523 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10524                                       Register in_out,
10525                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10526                                       XMMRegister w_xtmp2,
10527                                       Register tmp1,
10528                                       Register n_tmp2, Register n_tmp3) {
10529   if (is_pclmulqdq_supported) {
10530     movdl(w_xtmp1, in_out); // modified blindly
10531 
10532     movl(tmp1, const_or_pre_comp_const_index);
10533     movdl(w_xtmp2, tmp1);
10534     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10535 
10536     movdq(in_out, w_xtmp1);
10537   } else {
10538     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10539   }
10540 }
10541 
10542 // Recombination Alternative 2: No bit-reflections
10543 // T1 = (CRC_A * U1) << 1
10544 // T2 = (CRC_B * U2) << 1
10545 // C1 = T1 >> 32
10546 // C2 = T2 >> 32
10547 // T1 = T1 & 0xFFFFFFFF
10548 // T2 = T2 & 0xFFFFFFFF
10549 // T1 = CRC32(0, T1)
10550 // T2 = CRC32(0, T2)
10551 // C1 = C1 ^ T1
10552 // C2 = C2 ^ T2
10553 // CRC = C1 ^ C2 ^ CRC_C
10554 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10555                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10556                                      Register tmp1, Register tmp2,
10557                                      Register n_tmp3) {
10558   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10559   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10560   shlq(in_out, 1);
10561   movl(tmp1, in_out);
10562   shrq(in_out, 32);
10563   xorl(tmp2, tmp2);
10564   crc32(tmp2, tmp1, 4);
10565   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10566   shlq(in1, 1);
10567   movl(tmp1, in1);
10568   shrq(in1, 32);
10569   xorl(tmp2, tmp2);
10570   crc32(tmp2, tmp1, 4);
10571   xorl(in1, tmp2);
10572   xorl(in_out, in1);
10573   xorl(in_out, in2);
10574 }
10575 
10576 // Set N to predefined value
10577 // Subtract from a lenght of a buffer
10578 // execute in a loop:
10579 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10580 // for i = 1 to N do
10581 //  CRC_A = CRC32(CRC_A, A[i])
10582 //  CRC_B = CRC32(CRC_B, B[i])
10583 //  CRC_C = CRC32(CRC_C, C[i])
10584 // end for
10585 // Recombine
10586 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10587                                        Register in_out1, Register in_out2, Register in_out3,
10588                                        Register tmp1, Register tmp2, Register tmp3,
10589                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10590                                        Register tmp4, Register tmp5,
10591                                        Register n_tmp6) {
10592   Label L_processPartitions;
10593   Label L_processPartition;
10594   Label L_exit;
10595 
10596   bind(L_processPartitions);
10597   cmpl(in_out1, 3 * size);
10598   jcc(Assembler::less, L_exit);
10599     xorl(tmp1, tmp1);
10600     xorl(tmp2, tmp2);
10601     movq(tmp3, in_out2);
10602     addq(tmp3, size);
10603 
10604     bind(L_processPartition);
10605       crc32(in_out3, Address(in_out2, 0), 8);
10606       crc32(tmp1, Address(in_out2, size), 8);
10607       crc32(tmp2, Address(in_out2, size * 2), 8);
10608       addq(in_out2, 8);
10609       cmpq(in_out2, tmp3);
10610       jcc(Assembler::less, L_processPartition);
10611     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10612             w_xtmp1, w_xtmp2, w_xtmp3,
10613             tmp4, tmp5,
10614             n_tmp6);
10615     addq(in_out2, 2 * size);
10616     subl(in_out1, 3 * size);
10617     jmp(L_processPartitions);
10618 
10619   bind(L_exit);
10620 }
10621 #else
10622 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10623                                      Register tmp1, Register tmp2, Register tmp3,
10624                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10625   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10626   if (n > 0) {
10627     addl(tmp3, n * 256 * 8);
10628   }
10629   //    Q1 = TABLEExt[n][B & 0xFF];
10630   movl(tmp1, in_out);
10631   andl(tmp1, 0x000000FF);
10632   shll(tmp1, 3);
10633   addl(tmp1, tmp3);
10634   movq(xtmp1, Address(tmp1, 0));
10635 
10636   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10637   movl(tmp2, in_out);
10638   shrl(tmp2, 8);
10639   andl(tmp2, 0x000000FF);
10640   shll(tmp2, 3);
10641   addl(tmp2, tmp3);
10642   movq(xtmp2, Address(tmp2, 0));
10643 
10644   psllq(xtmp2, 8);
10645   pxor(xtmp1, xtmp2);
10646 
10647   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10648   movl(tmp2, in_out);
10649   shrl(tmp2, 16);
10650   andl(tmp2, 0x000000FF);
10651   shll(tmp2, 3);
10652   addl(tmp2, tmp3);
10653   movq(xtmp2, Address(tmp2, 0));
10654 
10655   psllq(xtmp2, 16);
10656   pxor(xtmp1, xtmp2);
10657 
10658   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10659   shrl(in_out, 24);
10660   andl(in_out, 0x000000FF);
10661   shll(in_out, 3);
10662   addl(in_out, tmp3);
10663   movq(xtmp2, Address(in_out, 0));
10664 
10665   psllq(xtmp2, 24);
10666   pxor(xtmp1, xtmp2); // Result in CXMM
10667   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10668 }
10669 
10670 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10671                                       Register in_out,
10672                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10673                                       XMMRegister w_xtmp2,
10674                                       Register tmp1,
10675                                       Register n_tmp2, Register n_tmp3) {
10676   if (is_pclmulqdq_supported) {
10677     movdl(w_xtmp1, in_out);
10678 
10679     movl(tmp1, const_or_pre_comp_const_index);
10680     movdl(w_xtmp2, tmp1);
10681     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10682     // Keep result in XMM since GPR is 32 bit in length
10683   } else {
10684     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10685   }
10686 }
10687 
10688 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10689                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10690                                      Register tmp1, Register tmp2,
10691                                      Register n_tmp3) {
10692   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10693   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10694 
10695   psllq(w_xtmp1, 1);
10696   movdl(tmp1, w_xtmp1);
10697   psrlq(w_xtmp1, 32);
10698   movdl(in_out, w_xtmp1);
10699 
10700   xorl(tmp2, tmp2);
10701   crc32(tmp2, tmp1, 4);
10702   xorl(in_out, tmp2);
10703 
10704   psllq(w_xtmp2, 1);
10705   movdl(tmp1, w_xtmp2);
10706   psrlq(w_xtmp2, 32);
10707   movdl(in1, w_xtmp2);
10708 
10709   xorl(tmp2, tmp2);
10710   crc32(tmp2, tmp1, 4);
10711   xorl(in1, tmp2);
10712   xorl(in_out, in1);
10713   xorl(in_out, in2);
10714 }
10715 
10716 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10717                                        Register in_out1, Register in_out2, Register in_out3,
10718                                        Register tmp1, Register tmp2, Register tmp3,
10719                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10720                                        Register tmp4, Register tmp5,
10721                                        Register n_tmp6) {
10722   Label L_processPartitions;
10723   Label L_processPartition;
10724   Label L_exit;
10725 
10726   bind(L_processPartitions);
10727   cmpl(in_out1, 3 * size);
10728   jcc(Assembler::less, L_exit);
10729     xorl(tmp1, tmp1);
10730     xorl(tmp2, tmp2);
10731     movl(tmp3, in_out2);
10732     addl(tmp3, size);
10733 
10734     bind(L_processPartition);
10735       crc32(in_out3, Address(in_out2, 0), 4);
10736       crc32(tmp1, Address(in_out2, size), 4);
10737       crc32(tmp2, Address(in_out2, size*2), 4);
10738       crc32(in_out3, Address(in_out2, 0+4), 4);
10739       crc32(tmp1, Address(in_out2, size+4), 4);
10740       crc32(tmp2, Address(in_out2, size*2+4), 4);
10741       addl(in_out2, 8);
10742       cmpl(in_out2, tmp3);
10743       jcc(Assembler::less, L_processPartition);
10744 
10745         push(tmp3);
10746         push(in_out1);
10747         push(in_out2);
10748         tmp4 = tmp3;
10749         tmp5 = in_out1;
10750         n_tmp6 = in_out2;
10751 
10752       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10753             w_xtmp1, w_xtmp2, w_xtmp3,
10754             tmp4, tmp5,
10755             n_tmp6);
10756 
10757         pop(in_out2);
10758         pop(in_out1);
10759         pop(tmp3);
10760 
10761     addl(in_out2, 2 * size);
10762     subl(in_out1, 3 * size);
10763     jmp(L_processPartitions);
10764 
10765   bind(L_exit);
10766 }
10767 #endif //LP64
10768 
10769 #ifdef _LP64
10770 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10771 // Input: A buffer I of L bytes.
10772 // Output: the CRC32C value of the buffer.
10773 // Notations:
10774 // Write L = 24N + r, with N = floor (L/24).
10775 // r = L mod 24 (0 <= r < 24).
10776 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10777 // N quadwords, and R consists of r bytes.
10778 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10779 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10780 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10781 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10782 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10783                                           Register tmp1, Register tmp2, Register tmp3,
10784                                           Register tmp4, Register tmp5, Register tmp6,
10785                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10786                                           bool is_pclmulqdq_supported) {
10787   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10788   Label L_wordByWord;
10789   Label L_byteByByteProlog;
10790   Label L_byteByByte;
10791   Label L_exit;
10792 
10793   if (is_pclmulqdq_supported ) {
10794     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10795     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10796 
10797     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10798     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10799 
10800     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10801     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10802     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10803   } else {
10804     const_or_pre_comp_const_index[0] = 1;
10805     const_or_pre_comp_const_index[1] = 0;
10806 
10807     const_or_pre_comp_const_index[2] = 3;
10808     const_or_pre_comp_const_index[3] = 2;
10809 
10810     const_or_pre_comp_const_index[4] = 5;
10811     const_or_pre_comp_const_index[5] = 4;
10812    }
10813   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10814                     in2, in1, in_out,
10815                     tmp1, tmp2, tmp3,
10816                     w_xtmp1, w_xtmp2, w_xtmp3,
10817                     tmp4, tmp5,
10818                     tmp6);
10819   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10820                     in2, in1, in_out,
10821                     tmp1, tmp2, tmp3,
10822                     w_xtmp1, w_xtmp2, w_xtmp3,
10823                     tmp4, tmp5,
10824                     tmp6);
10825   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10826                     in2, in1, in_out,
10827                     tmp1, tmp2, tmp3,
10828                     w_xtmp1, w_xtmp2, w_xtmp3,
10829                     tmp4, tmp5,
10830                     tmp6);
10831   movl(tmp1, in2);
10832   andl(tmp1, 0x00000007);
10833   negl(tmp1);
10834   addl(tmp1, in2);
10835   addq(tmp1, in1);
10836 
10837   BIND(L_wordByWord);
10838   cmpq(in1, tmp1);
10839   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10840     crc32(in_out, Address(in1, 0), 4);
10841     addq(in1, 4);
10842     jmp(L_wordByWord);
10843 
10844   BIND(L_byteByByteProlog);
10845   andl(in2, 0x00000007);
10846   movl(tmp2, 1);
10847 
10848   BIND(L_byteByByte);
10849   cmpl(tmp2, in2);
10850   jccb(Assembler::greater, L_exit);
10851     crc32(in_out, Address(in1, 0), 1);
10852     incq(in1);
10853     incl(tmp2);
10854     jmp(L_byteByByte);
10855 
10856   BIND(L_exit);
10857 }
10858 #else
10859 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10860                                           Register tmp1, Register  tmp2, Register tmp3,
10861                                           Register tmp4, Register  tmp5, Register tmp6,
10862                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10863                                           bool is_pclmulqdq_supported) {
10864   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10865   Label L_wordByWord;
10866   Label L_byteByByteProlog;
10867   Label L_byteByByte;
10868   Label L_exit;
10869 
10870   if (is_pclmulqdq_supported) {
10871     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10872     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10873 
10874     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10875     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10876 
10877     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10878     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10879   } else {
10880     const_or_pre_comp_const_index[0] = 1;
10881     const_or_pre_comp_const_index[1] = 0;
10882 
10883     const_or_pre_comp_const_index[2] = 3;
10884     const_or_pre_comp_const_index[3] = 2;
10885 
10886     const_or_pre_comp_const_index[4] = 5;
10887     const_or_pre_comp_const_index[5] = 4;
10888   }
10889   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10890                     in2, in1, in_out,
10891                     tmp1, tmp2, tmp3,
10892                     w_xtmp1, w_xtmp2, w_xtmp3,
10893                     tmp4, tmp5,
10894                     tmp6);
10895   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10896                     in2, in1, in_out,
10897                     tmp1, tmp2, tmp3,
10898                     w_xtmp1, w_xtmp2, w_xtmp3,
10899                     tmp4, tmp5,
10900                     tmp6);
10901   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10902                     in2, in1, in_out,
10903                     tmp1, tmp2, tmp3,
10904                     w_xtmp1, w_xtmp2, w_xtmp3,
10905                     tmp4, tmp5,
10906                     tmp6);
10907   movl(tmp1, in2);
10908   andl(tmp1, 0x00000007);
10909   negl(tmp1);
10910   addl(tmp1, in2);
10911   addl(tmp1, in1);
10912 
10913   BIND(L_wordByWord);
10914   cmpl(in1, tmp1);
10915   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10916     crc32(in_out, Address(in1,0), 4);
10917     addl(in1, 4);
10918     jmp(L_wordByWord);
10919 
10920   BIND(L_byteByByteProlog);
10921   andl(in2, 0x00000007);
10922   movl(tmp2, 1);
10923 
10924   BIND(L_byteByByte);
10925   cmpl(tmp2, in2);
10926   jccb(Assembler::greater, L_exit);
10927     movb(tmp1, Address(in1, 0));
10928     crc32(in_out, tmp1, 1);
10929     incl(in1);
10930     incl(tmp2);
10931     jmp(L_byteByByte);
10932 
10933   BIND(L_exit);
10934 }
10935 #endif // LP64
10936 #undef BIND
10937 #undef BLOCK_COMMENT
10938 
10939 // Compress char[] array to byte[].
10940 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10941 //   @HotSpotIntrinsicCandidate
10942 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10943 //     for (int i = 0; i < len; i++) {
10944 //       int c = src[srcOff++];
10945 //       if (c >>> 8 != 0) {
10946 //         return 0;
10947 //       }
10948 //       dst[dstOff++] = (byte)c;
10949 //     }
10950 //     return len;
10951 //   }
10952 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10953   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10954   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10955   Register tmp5, Register result) {
10956   Label copy_chars_loop, return_length, return_zero, done, below_threshold;
10957 
10958   // rsi: src
10959   // rdi: dst
10960   // rdx: len
10961   // rcx: tmp5
10962   // rax: result
10963 
10964   // rsi holds start addr of source char[] to be compressed
10965   // rdi holds start addr of destination byte[]
10966   // rdx holds length
10967 
10968   assert(len != result, "");
10969 
10970   // save length for return
10971   push(len);
10972 
10973   if ((UseAVX > 2) && // AVX512
10974     VM_Version::supports_avx512vlbw() &&
10975     VM_Version::supports_bmi2()) {
10976 
10977     set_vector_masking();  // opening of the stub context for programming mask registers
10978 
10979     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero;
10980 
10981     // alignement
10982     Label post_alignement;
10983 
10984     // if length of the string is less than 16, handle it in an old fashioned
10985     // way
10986     testl(len, -32);
10987     jcc(Assembler::zero, below_threshold);
10988 
10989     // First check whether a character is compressable ( <= 0xFF).
10990     // Create mask to test for Unicode chars inside zmm vector
10991     movl(result, 0x00FF);
10992     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10993 
10994     // Save k1
10995     kmovql(k3, k1);
10996 
10997     testl(len, -64);
10998     jcc(Assembler::zero, post_alignement);
10999 
11000     movl(tmp5, dst);
11001     andl(tmp5, (32 - 1));
11002     negl(tmp5);
11003     andl(tmp5, (32 - 1));
11004 
11005     // bail out when there is nothing to be done
11006     testl(tmp5, 0xFFFFFFFF);
11007     jcc(Assembler::zero, post_alignement);
11008 
11009     // ~(~0 << len), where len is the # of remaining elements to process
11010     movl(result, 0xFFFFFFFF);
11011     shlxl(result, result, tmp5);
11012     notl(result);
11013     kmovdl(k1, result);
11014 
11015     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
11016     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
11017     ktestd(k2, k1);
11018     jcc(Assembler::carryClear, restore_k1_return_zero);
11019 
11020     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
11021 
11022     addptr(src, tmp5);
11023     addptr(src, tmp5);
11024     addptr(dst, tmp5);
11025     subl(len, tmp5);
11026 
11027     bind(post_alignement);
11028     // end of alignement
11029 
11030     movl(tmp5, len);
11031     andl(tmp5, (32 - 1));    // tail count (in chars)
11032     andl(len, ~(32 - 1));    // vector count (in chars)
11033     jcc(Assembler::zero, copy_loop_tail);
11034 
11035     lea(src, Address(src, len, Address::times_2));
11036     lea(dst, Address(dst, len, Address::times_1));
11037     negptr(len);
11038 
11039     bind(copy_32_loop);
11040     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
11041     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
11042     kortestdl(k2, k2);
11043     jcc(Assembler::carryClear, restore_k1_return_zero);
11044 
11045     // All elements in current processed chunk are valid candidates for
11046     // compression. Write a truncated byte elements to the memory.
11047     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
11048     addptr(len, 32);
11049     jcc(Assembler::notZero, copy_32_loop);
11050 
11051     bind(copy_loop_tail);
11052     // bail out when there is nothing to be done
11053     testl(tmp5, 0xFFFFFFFF);
11054     // Restore k1
11055     kmovql(k1, k3);
11056     jcc(Assembler::zero, return_length);
11057 
11058     movl(len, tmp5);
11059 
11060     // ~(~0 << len), where len is the # of remaining elements to process
11061     movl(result, 0xFFFFFFFF);
11062     shlxl(result, result, len);
11063     notl(result);
11064 
11065     kmovdl(k1, result);
11066 
11067     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
11068     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
11069     ktestd(k2, k1);
11070     jcc(Assembler::carryClear, restore_k1_return_zero);
11071 
11072     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
11073     // Restore k1
11074     kmovql(k1, k3);
11075     jmp(return_length);
11076 
11077     bind(restore_k1_return_zero);
11078     // Restore k1
11079     kmovql(k1, k3);
11080     jmp(return_zero);
11081 
11082     clear_vector_masking();   // closing of the stub context for programming mask registers
11083   }
11084   if (UseSSE42Intrinsics) {
11085     Label copy_32_loop, copy_16, copy_tail;
11086 
11087     bind(below_threshold);
11088 
11089     movl(result, len);
11090 
11091     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
11092 
11093     // vectored compression
11094     andl(len, 0xfffffff0);    // vector count (in chars)
11095     andl(result, 0x0000000f);    // tail count (in chars)
11096     testl(len, len);
11097     jccb(Assembler::zero, copy_16);
11098 
11099     // compress 16 chars per iter
11100     movdl(tmp1Reg, tmp5);
11101     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
11102     pxor(tmp4Reg, tmp4Reg);
11103 
11104     lea(src, Address(src, len, Address::times_2));
11105     lea(dst, Address(dst, len, Address::times_1));
11106     negptr(len);
11107 
11108     bind(copy_32_loop);
11109     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
11110     por(tmp4Reg, tmp2Reg);
11111     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
11112     por(tmp4Reg, tmp3Reg);
11113     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
11114     jcc(Assembler::notZero, return_zero);
11115     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
11116     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
11117     addptr(len, 16);
11118     jcc(Assembler::notZero, copy_32_loop);
11119 
11120     // compress next vector of 8 chars (if any)
11121     bind(copy_16);
11122     movl(len, result);
11123     andl(len, 0xfffffff8);    // vector count (in chars)
11124     andl(result, 0x00000007);    // tail count (in chars)
11125     testl(len, len);
11126     jccb(Assembler::zero, copy_tail);
11127 
11128     movdl(tmp1Reg, tmp5);
11129     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
11130     pxor(tmp3Reg, tmp3Reg);
11131 
11132     movdqu(tmp2Reg, Address(src, 0));
11133     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
11134     jccb(Assembler::notZero, return_zero);
11135     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
11136     movq(Address(dst, 0), tmp2Reg);
11137     addptr(src, 16);
11138     addptr(dst, 8);
11139 
11140     bind(copy_tail);
11141     movl(len, result);
11142   }
11143   // compress 1 char per iter
11144   testl(len, len);
11145   jccb(Assembler::zero, return_length);
11146   lea(src, Address(src, len, Address::times_2));
11147   lea(dst, Address(dst, len, Address::times_1));
11148   negptr(len);
11149 
11150   bind(copy_chars_loop);
11151   load_unsigned_short(result, Address(src, len, Address::times_2));
11152   testl(result, 0xff00);      // check if Unicode char
11153   jccb(Assembler::notZero, return_zero);
11154   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
11155   increment(len);
11156   jcc(Assembler::notZero, copy_chars_loop);
11157 
11158   // if compression succeeded, return length
11159   bind(return_length);
11160   pop(result);
11161   jmpb(done);
11162 
11163   // if compression failed, return 0
11164   bind(return_zero);
11165   xorl(result, result);
11166   addptr(rsp, wordSize);
11167 
11168   bind(done);
11169 }
11170 
11171 // Inflate byte[] array to char[].
11172 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
11173 //   @HotSpotIntrinsicCandidate
11174 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
11175 //     for (int i = 0; i < len; i++) {
11176 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
11177 //     }
11178 //   }
11179 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
11180   XMMRegister tmp1, Register tmp2) {
11181   Label copy_chars_loop, done, below_threshold;
11182   // rsi: src
11183   // rdi: dst
11184   // rdx: len
11185   // rcx: tmp2
11186 
11187   // rsi holds start addr of source byte[] to be inflated
11188   // rdi holds start addr of destination char[]
11189   // rdx holds length
11190   assert_different_registers(src, dst, len, tmp2);
11191 
11192   if ((UseAVX > 2) && // AVX512
11193     VM_Version::supports_avx512vlbw() &&
11194     VM_Version::supports_bmi2()) {
11195 
11196     set_vector_masking();  // opening of the stub context for programming mask registers
11197 
11198     Label copy_32_loop, copy_tail;
11199     Register tmp3_aliased = len;
11200 
11201     // if length of the string is less than 16, handle it in an old fashioned
11202     // way
11203     testl(len, -16);
11204     jcc(Assembler::zero, below_threshold);
11205 
11206     // In order to use only one arithmetic operation for the main loop we use
11207     // this pre-calculation
11208     movl(tmp2, len);
11209     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
11210     andl(len, -32);     // vector count
11211     jccb(Assembler::zero, copy_tail);
11212 
11213     lea(src, Address(src, len, Address::times_1));
11214     lea(dst, Address(dst, len, Address::times_2));
11215     negptr(len);
11216 
11217 
11218     // inflate 32 chars per iter
11219     bind(copy_32_loop);
11220     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
11221     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
11222     addptr(len, 32);
11223     jcc(Assembler::notZero, copy_32_loop);
11224 
11225     bind(copy_tail);
11226     // bail out when there is nothing to be done
11227     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
11228     jcc(Assembler::zero, done);
11229 
11230     // Save k1
11231     kmovql(k2, k1);
11232 
11233     // ~(~0 << length), where length is the # of remaining elements to process
11234     movl(tmp3_aliased, -1);
11235     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
11236     notl(tmp3_aliased);
11237     kmovdl(k1, tmp3_aliased);
11238     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
11239     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
11240 
11241     // Restore k1
11242     kmovql(k1, k2);
11243     jmp(done);
11244 
11245     clear_vector_masking();   // closing of the stub context for programming mask registers
11246   }
11247   if (UseSSE42Intrinsics) {
11248     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
11249 
11250     movl(tmp2, len);
11251 
11252     if (UseAVX > 1) {
11253       andl(tmp2, (16 - 1));
11254       andl(len, -16);
11255       jccb(Assembler::zero, copy_new_tail);
11256     } else {
11257       andl(tmp2, 0x00000007);   // tail count (in chars)
11258       andl(len, 0xfffffff8);    // vector count (in chars)
11259       jccb(Assembler::zero, copy_tail);
11260     }
11261 
11262     // vectored inflation
11263     lea(src, Address(src, len, Address::times_1));
11264     lea(dst, Address(dst, len, Address::times_2));
11265     negptr(len);
11266 
11267     if (UseAVX > 1) {
11268       bind(copy_16_loop);
11269       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
11270       vmovdqu(Address(dst, len, Address::times_2), tmp1);
11271       addptr(len, 16);
11272       jcc(Assembler::notZero, copy_16_loop);
11273 
11274       bind(below_threshold);
11275       bind(copy_new_tail);
11276       if ((UseAVX > 2) &&
11277         VM_Version::supports_avx512vlbw() &&
11278         VM_Version::supports_bmi2()) {
11279         movl(tmp2, len);
11280       } else {
11281         movl(len, tmp2);
11282       }
11283       andl(tmp2, 0x00000007);
11284       andl(len, 0xFFFFFFF8);
11285       jccb(Assembler::zero, copy_tail);
11286 
11287       pmovzxbw(tmp1, Address(src, 0));
11288       movdqu(Address(dst, 0), tmp1);
11289       addptr(src, 8);
11290       addptr(dst, 2 * 8);
11291 
11292       jmp(copy_tail, true);
11293     }
11294 
11295     // inflate 8 chars per iter
11296     bind(copy_8_loop);
11297     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
11298     movdqu(Address(dst, len, Address::times_2), tmp1);
11299     addptr(len, 8);
11300     jcc(Assembler::notZero, copy_8_loop);
11301 
11302     bind(copy_tail);
11303     movl(len, tmp2);
11304 
11305     cmpl(len, 4);
11306     jccb(Assembler::less, copy_bytes);
11307 
11308     movdl(tmp1, Address(src, 0));  // load 4 byte chars
11309     pmovzxbw(tmp1, tmp1);
11310     movq(Address(dst, 0), tmp1);
11311     subptr(len, 4);
11312     addptr(src, 4);
11313     addptr(dst, 8);
11314 
11315     bind(copy_bytes);
11316   }
11317   testl(len, len);
11318   jccb(Assembler::zero, done);
11319   lea(src, Address(src, len, Address::times_1));
11320   lea(dst, Address(dst, len, Address::times_2));
11321   negptr(len);
11322 
11323   // inflate 1 char per iter
11324   bind(copy_chars_loop);
11325   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
11326   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
11327   increment(len);
11328   jcc(Assembler::notZero, copy_chars_loop);
11329 
11330   bind(done);
11331 }
11332 
11333 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
11334   switch (cond) {
11335     // Note some conditions are synonyms for others
11336     case Assembler::zero:         return Assembler::notZero;
11337     case Assembler::notZero:      return Assembler::zero;
11338     case Assembler::less:         return Assembler::greaterEqual;
11339     case Assembler::lessEqual:    return Assembler::greater;
11340     case Assembler::greater:      return Assembler::lessEqual;
11341     case Assembler::greaterEqual: return Assembler::less;
11342     case Assembler::below:        return Assembler::aboveEqual;
11343     case Assembler::belowEqual:   return Assembler::above;
11344     case Assembler::above:        return Assembler::belowEqual;
11345     case Assembler::aboveEqual:   return Assembler::below;
11346     case Assembler::overflow:     return Assembler::noOverflow;
11347     case Assembler::noOverflow:   return Assembler::overflow;
11348     case Assembler::negative:     return Assembler::positive;
11349     case Assembler::positive:     return Assembler::negative;
11350     case Assembler::parity:       return Assembler::noParity;
11351     case Assembler::noParity:     return Assembler::parity;
11352   }
11353   ShouldNotReachHere(); return Assembler::overflow;
11354 }
11355 
11356 SkipIfEqual::SkipIfEqual(
11357     MacroAssembler* masm, const bool* flag_addr, bool value) {
11358   _masm = masm;
11359   _masm->cmp8(ExternalAddress((address)flag_addr), value);
11360   _masm->jcc(Assembler::equal, _label);
11361 }
11362 
11363 SkipIfEqual::~SkipIfEqual() {
11364   _masm->bind(_label);
11365 }
11366 
11367 // 32-bit Windows has its own fast-path implementation
11368 // of get_thread
11369 #if !defined(WIN32) || defined(_LP64)
11370 
11371 // This is simply a call to Thread::current()
11372 void MacroAssembler::get_thread(Register thread) {
11373   if (thread != rax) {
11374     push(rax);
11375   }
11376   LP64_ONLY(push(rdi);)
11377   LP64_ONLY(push(rsi);)
11378   push(rdx);
11379   push(rcx);
11380 #ifdef _LP64
11381   push(r8);
11382   push(r9);
11383   push(r10);
11384   push(r11);
11385 #endif
11386 
11387   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
11388 
11389 #ifdef _LP64
11390   pop(r11);
11391   pop(r10);
11392   pop(r9);
11393   pop(r8);
11394 #endif
11395   pop(rcx);
11396   pop(rdx);
11397   LP64_ONLY(pop(rsi);)
11398   LP64_ONLY(pop(rdi);)
11399   if (thread != rax) {
11400     mov(thread, rax);
11401     pop(rax);
11402   }
11403 }
11404 
11405 #endif