/* * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "classfile/javaClasses.inline.hpp" #include "gc/shared/referencePolicy.hpp" #include "gc/shared/referenceProcessorStats.hpp" #include "gc/z/zHeap.inline.hpp" #include "gc/z/zOopClosures.inline.hpp" #include "gc/z/zReferenceProcessor.hpp" #include "gc/z/zStat.hpp" #include "gc/z/zTask.hpp" #include "gc/z/zTracer.inline.hpp" #include "gc/z/zUtils.inline.hpp" #include "memory/universe.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/os.hpp" static const ZStatSubPhase ZSubPhaseConcurrentReferencesProcess("Concurrent References Process"); static const ZStatSubPhase ZSubPhaseConcurrentReferencesEnqueue("Concurrent References Enqueue"); ZReferenceProcessor::ZReferenceProcessor(ZWorkers* workers) : _workers(workers), _soft_reference_policy(NULL), _encountered_count(), _discovered_count(), _enqueued_count(), _discovered_list(NULL), _pending_list(NULL), _pending_list_tail(_pending_list.addr()) {} void ZReferenceProcessor::set_soft_reference_policy(bool clear) { static AlwaysClearPolicy always_clear_policy; static LRUMaxHeapPolicy lru_max_heap_policy; if (clear) { log_info(gc, ref)("Clearing All Soft References"); _soft_reference_policy = &always_clear_policy; } else { _soft_reference_policy = &lru_max_heap_policy; } _soft_reference_policy->setup(); } void ZReferenceProcessor::update_soft_reference_clock() const { const jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; java_lang_ref_SoftReference::set_clock(now); } bool ZReferenceProcessor::is_reference_inactive(oop obj) const { // A non-null next field means the reference is inactive return java_lang_ref_Reference::next(obj) != NULL; } ReferenceType ZReferenceProcessor::reference_type(oop obj) const { return InstanceKlass::cast(obj->klass())->reference_type(); } volatile oop* ZReferenceProcessor::reference_referent_addr(oop obj) const { return (volatile oop*)java_lang_ref_Reference::referent_addr(obj); } oop ZReferenceProcessor::reference_referent(oop obj) const { return *reference_referent_addr(obj); } bool ZReferenceProcessor::is_referent_alive_or_null(oop obj, ReferenceType type) const { volatile oop* const p = reference_referent_addr(obj); // Check if the referent is alive or null, in which case we don't want to discover // the reference. It can only be null if the application called Reference.clear(). if (type == REF_PHANTOM) { const oop o = ZBarrier::weak_load_barrier_on_phantom_oop_field(p); return o == NULL || ZHeap::heap()->is_object_live(ZOop::to_address(o)); } else { const oop o = ZBarrier::weak_load_barrier_on_weak_oop_field(p); return o == NULL || ZHeap::heap()->is_object_strongly_live(ZOop::to_address(o)); } } bool ZReferenceProcessor::is_referent_softly_alive(oop obj, ReferenceType type) const { if (type != REF_SOFT) { // Not a soft reference return false; } // Ask soft reference policy const jlong clock = java_lang_ref_SoftReference::clock(); assert(clock != 0, "Clock not initialized"); assert(_soft_reference_policy != NULL, "Policy not initialized"); return !_soft_reference_policy->should_clear_reference(obj, clock); } bool ZReferenceProcessor::should_drop_reference(oop obj, ReferenceType type) const { // This check is racing with a call to Reference.clear() from the application. // If the application clears the reference after this check it will still end // up on the pending list, and there's nothing we can do about that without // changing the Reference.clear() API. const oop o = reference_referent(obj); if (o == NULL) { // Reference has already been cleared, by an application call to // Reference.clear(), which means we should drop the reference. return true; } // Check if the referent is still alive, in which case we should // drop the reference. if (type == REF_PHANTOM) { return ZBarrier::is_alive_barrier_on_phantom_oop(o); } else { return ZBarrier::is_alive_barrier_on_weak_oop(o); } } bool ZReferenceProcessor::should_mark_referent(ReferenceType type) const { // Referents of final references (and its reachable sub graph) are // always marked finalizable during discovery. This avoids the problem // of later having to mark those objects if the referent is still final // reachable during processing. return type == REF_FINAL; } bool ZReferenceProcessor::should_clear_referent(ReferenceType type) const { // Referents that were not marked must be cleared return !should_mark_referent(type); } void ZReferenceProcessor::keep_referent_alive(oop obj, ReferenceType type) const { volatile oop* const p = reference_referent_addr(obj); if (type == REF_PHANTOM) { ZBarrier::keep_alive_barrier_on_phantom_oop_field(p); } else { ZBarrier::keep_alive_barrier_on_weak_oop_field(p); } } bool ZReferenceProcessor::discover_reference(oop obj, ReferenceType type) { if (!RegisterReferences) { // Reference processing disabled return false; } // Update statistics _encountered_count.get()[type]++; if (is_reference_inactive(obj) || is_referent_alive_or_null(obj, type) || is_referent_softly_alive(obj, type)) { // Not discovered return false; } discover(obj, type); // Discovered return true; } void ZReferenceProcessor::discover(oop obj, ReferenceType type) { log_trace(gc, ref)("Discovered Reference: " PTR_FORMAT " (%s)", p2i(obj), ReferenceTypeName[type]); // Update statistics _discovered_count.get()[type]++; // Mark referent finalizable if (should_mark_referent(type)) { oop* const referent_addr = (oop*)java_lang_ref_Reference::referent_addr(obj); ZBarrier::mark_barrier_on_oop_field(referent_addr, true /* finalizable */); } // Add reference to discovered list assert(java_lang_ref_Reference::discovered(obj) == NULL, "Already discovered"); oop* const list = _discovered_list.addr(); java_lang_ref_Reference::set_discovered(obj, *list); *list = obj; } oop ZReferenceProcessor::drop(oop obj, ReferenceType type) { log_trace(gc, ref)("Dropped Reference: " PTR_FORMAT " (%s)", p2i(obj), ReferenceTypeName[type]); // Keep referent alive keep_referent_alive(obj, type); // Unlink and return next in list const oop next = java_lang_ref_Reference::discovered(obj); java_lang_ref_Reference::set_discovered(obj, NULL); return next; } oop* ZReferenceProcessor::keep(oop obj, ReferenceType type) { log_trace(gc, ref)("Pending Reference: " PTR_FORMAT " (%s)", p2i(obj), ReferenceTypeName[type]); // Update statistics _enqueued_count.get()[type]++; // Clear referent if (should_clear_referent(type)) { java_lang_ref_Reference::set_referent(obj, NULL); } // Make reference inactive by self-looping the next field. We could be racing with a // call to Reference.enqueue() from the application, which is why we are using a CAS // to make sure we change the next field only if it is NULL. A failing CAS means the // reference has already been enqueued. However, we don't check the result of the CAS, // since we still have no option other than keeping the reference on the pending list. // It's ok to have the reference both on the pending list and enqueued at the same // time (the pending list is linked through the discovered field, while the reference // queue is linked through the next field). When the ReferenceHandler thread later // calls Reference.enqueue() we detect that it has already been enqueued and drop it. oop* const next_addr = (oop*)java_lang_ref_Reference::next_addr(obj); Atomic::cmpxchg(obj, next_addr, oop(NULL)); // Return next in list return (oop*)java_lang_ref_Reference::discovered_addr(obj); } void ZReferenceProcessor::work() { // Process discovered references oop* const list = _discovered_list.addr(); oop* p = list; while (*p != NULL) { const oop obj = *p; const ReferenceType type = reference_type(obj); if (should_drop_reference(obj, type)) { *p = drop(obj, type); } else { p = keep(obj, type); } } // Prepend discovered references to internal pending list if (*list != NULL) { *p = Atomic::xchg(*list, _pending_list.addr()); if (*p == NULL) { // First to prepend to list, record tail _pending_list_tail = p; } // Clear discovered list *list = NULL; } } bool ZReferenceProcessor::is_empty() const { ZPerWorkerConstIterator iter(&_discovered_list); for (const oop* list; iter.next(&list);) { if (*list != NULL) { return false; } } if (_pending_list.get() != NULL) { return false; } return true; } void ZReferenceProcessor::reset_statistics() { assert(is_empty(), "Should be empty"); // Reset encountered ZPerWorkerIterator iter_encountered(&_encountered_count); for (Counters* counters; iter_encountered.next(&counters);) { for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { (*counters)[i] = 0; } } // Reset discovered ZPerWorkerIterator iter_discovered(&_discovered_count); for (Counters* counters; iter_discovered.next(&counters);) { for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { (*counters)[i] = 0; } } // Reset enqueued ZPerWorkerIterator iter_enqueued(&_enqueued_count); for (Counters* counters; iter_enqueued.next(&counters);) { for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { (*counters)[i] = 0; } } } void ZReferenceProcessor::collect_statistics() { Counters encountered = {}; Counters discovered = {}; Counters enqueued = {}; // Sum encountered ZPerWorkerConstIterator iter_encountered(&_encountered_count); for (const Counters* counters; iter_encountered.next(&counters);) { for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { encountered[i] += (*counters)[i]; } } // Sum discovered ZPerWorkerConstIterator iter_discovered(&_discovered_count); for (const Counters* counters; iter_discovered.next(&counters);) { for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { discovered[i] += (*counters)[i]; } } // Sum enqueued ZPerWorkerConstIterator iter_enqueued(&_enqueued_count); for (const Counters* counters; iter_enqueued.next(&counters);) { for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { enqueued[i] += (*counters)[i]; } } // Update statistics ZStatReferences::set_soft(encountered[REF_SOFT], discovered[REF_SOFT], enqueued[REF_SOFT]); ZStatReferences::set_weak(encountered[REF_WEAK], discovered[REF_WEAK], enqueued[REF_WEAK]); ZStatReferences::set_final(encountered[REF_FINAL], discovered[REF_FINAL], enqueued[REF_FINAL]); ZStatReferences::set_phantom(encountered[REF_PHANTOM], discovered[REF_PHANTOM], enqueued[REF_PHANTOM]); // Trace statistics const ReferenceProcessorStats stats(discovered[REF_SOFT], discovered[REF_WEAK], discovered[REF_FINAL], discovered[REF_PHANTOM]); ZTracer::tracer()->report_gc_reference_stats(stats); } class ZReferenceProcessorTask : public ZTask { private: ZReferenceProcessor* const _reference_processor; public: ZReferenceProcessorTask(ZReferenceProcessor* reference_processor) : ZTask("ZReferenceProcessorTask"), _reference_processor(reference_processor) {} virtual void work() { _reference_processor->work(); } }; void ZReferenceProcessor::process_references() { ZStatTimer timer(ZSubPhaseConcurrentReferencesProcess); // Process discovered lists ZReferenceProcessorTask task(this); _workers->run_concurrent(&task); // Update soft reference clock update_soft_reference_clock(); // Collect, log and trace statistics collect_statistics(); } void ZReferenceProcessor::enqueue_references() { ZStatTimer timer(ZSubPhaseConcurrentReferencesEnqueue); if (_pending_list.get() == NULL) { // Nothing to enqueue return; } { // Heap_lock protects external pending list MonitorLockerEx ml(Heap_lock); // Prepend internal pending list to external pending list *_pending_list_tail = Universe::swap_reference_pending_list(_pending_list.get()); // Notify ReferenceHandler thread ml.notify_all(); } // Reset internal pending list _pending_list.set(NULL); _pending_list_tail = _pending_list.addr(); } void ZReferenceProcessor::process_and_enqueue_references() { process_references(); enqueue_references(); }