/* * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "classfile/javaClasses.hpp" #include "gc/z/c2/zBarrierSetC2.hpp" #include "gc/z/zBarrierSet.hpp" #include "gc/z/zBarrierSetAssembler.hpp" #include "gc/z/zBarrierSetRuntime.hpp" #include "opto/block.hpp" #include "opto/compile.hpp" #include "opto/graphKit.hpp" #include "opto/machnode.hpp" #include "opto/memnode.hpp" #include "opto/node.hpp" #include "opto/regalloc.hpp" #include "opto/rootnode.hpp" #include "utilities/growableArray.hpp" #include "utilities/macros.hpp" class ZBarrierSetC2State : public ResourceObj { private: GrowableArray* _stubs; Node_Array _live; public: ZBarrierSetC2State(Arena* arena) : _stubs(new (arena) GrowableArray(arena, 8, 0, NULL)), _live(arena) {} GrowableArray* stubs() { return _stubs; } RegMask* live(const Node* node) { if (!node->is_Mach()) { // Don't need liveness for non-MachNodes return NULL; } const MachNode* const mach = node->as_Mach(); if (mach->barrier_data() != ZLoadBarrierStrong && mach->barrier_data() != ZLoadBarrierWeak) { // Don't need liveness data for nodes without barriers return NULL; } RegMask* live = (RegMask*)_live[node->_idx]; if (live == NULL) { live = new (Compile::current()->comp_arena()->Amalloc_D(sizeof(RegMask))) RegMask(); _live.map(node->_idx, (Node*)live); } return live; } }; static ZBarrierSetC2State* barrier_set_state() { return reinterpret_cast(Compile::current()->barrier_set_state()); } ZLoadBarrierStubC2* ZLoadBarrierStubC2::create(const MachNode* node, Address ref_addr, Register ref, Register tmp, bool weak) { ZLoadBarrierStubC2* const stub = new (Compile::current()->comp_arena()) ZLoadBarrierStubC2(node, ref_addr, ref, tmp, weak); if (!Compile::current()->in_scratch_emit_size()) { barrier_set_state()->stubs()->append(stub); } return stub; } ZLoadBarrierStubC2::ZLoadBarrierStubC2(const MachNode* node, Address ref_addr, Register ref, Register tmp, bool weak) : _node(node), _ref_addr(ref_addr), _ref(ref), _tmp(tmp), _weak(weak), _entry(), _continuation() { assert_different_registers(ref, ref_addr.base()); assert_different_registers(ref, ref_addr.index()); } Address ZLoadBarrierStubC2::ref_addr() const { return _ref_addr; } Register ZLoadBarrierStubC2::ref() const { return _ref; } Register ZLoadBarrierStubC2::tmp() const { return _tmp; } address ZLoadBarrierStubC2::slow_path() const { const DecoratorSet decorators = _weak ? ON_WEAK_OOP_REF : ON_STRONG_OOP_REF; return ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded_addr(decorators); } RegMask& ZLoadBarrierStubC2::live() const { return *barrier_set_state()->live(_node); } Label* ZLoadBarrierStubC2::entry() { // The _entry will never be bound when in_scratch_emit_size() is true. // However, we still need to return a label that is not bound now, but // will eventually be bound. Any lable will do, as it will only act as // a placeholder, so we return the _continuation label. return Compile::current()->in_scratch_emit_size() ? &_continuation : &_entry; } Label* ZLoadBarrierStubC2::continuation() { return &_continuation; } void* ZBarrierSetC2::create_barrier_state(Arena* comp_arena) const { return new (comp_arena) ZBarrierSetC2State(comp_arena); } void ZBarrierSetC2::late_barrier_analysis() const { analyze_dominating_barriers(); compute_liveness_at_stubs(); } void ZBarrierSetC2::emit_stubs(CodeBuffer& cb) const { MacroAssembler masm(&cb); GrowableArray* const stubs = barrier_set_state()->stubs(); for (int i = 0; i < stubs->length(); i++) { // Make sure there is enough space in the code buffer if (cb.insts()->maybe_expand_to_ensure_remaining(Compile::MAX_inst_size) && cb.blob() == NULL) { ciEnv::current()->record_failure("CodeCache is full"); return; } ZBarrierSet::assembler()->generate_c2_load_barrier_stub(&masm, stubs->at(i)); } masm.flush(); } size_t ZBarrierSetC2::estimate_stub_size() const { Compile* const C = Compile::current(); BufferBlob* const blob = C->scratch_buffer_blob(); GrowableArray* const stubs = barrier_set_state()->stubs(); size_t size = 0; for (int i = 0; i < stubs->length(); i++) { CodeBuffer cb(blob->content_begin(), (address)C->scratch_locs_memory() - blob->content_begin()); MacroAssembler masm(&cb); ZBarrierSet::assembler()->generate_c2_load_barrier_stub(&masm, stubs->at(i)); size += cb.insts_size(); } return size; } static bool barrier_needed(C2Access& access) { return ZBarrierSet::barrier_needed(access.decorators(), access.type()); } Node* ZBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { Node* result = BarrierSetC2::load_at_resolved(access, val_type); if (barrier_needed(access) && access.raw_access()->is_Mem()) { if ((access.decorators() & ON_WEAK_OOP_REF) != 0) { access.raw_access()->as_Load()->set_barrier_data(ZLoadBarrierWeak); } else { access.raw_access()->as_Load()->set_barrier_data(ZLoadBarrierStrong); } } return result; } Node* ZBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, Node* new_val, const Type* val_type) const { Node* result = BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, val_type); if (barrier_needed(access)) { access.raw_access()->as_LoadStore()->set_barrier_data(ZLoadBarrierStrong); } return result; } Node* ZBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, Node* new_val, const Type* value_type) const { Node* result = BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); if (barrier_needed(access)) { access.raw_access()->as_LoadStore()->set_barrier_data(ZLoadBarrierStrong); } return result; } Node* ZBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* val_type) const { Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, new_val, val_type); if (barrier_needed(access)) { access.raw_access()->as_LoadStore()->set_barrier_data(ZLoadBarrierStrong); } return result; } bool ZBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, ArrayCopyPhase phase) const { return type == T_OBJECT || type == T_ARRAY; } // == Dominating barrier elision == static bool block_has_safepoint(const Block* block, uint from, uint to) { for (uint i = from; i < to; i++) { if (block->get_node(i)->is_MachSafePoint()) { // Safepoint found return true; } } // Safepoint not found return false; } static bool block_has_safepoint(const Block* block) { return block_has_safepoint(block, 0, block->number_of_nodes()); } static uint block_index(const Block* block, const Node* node) { for (uint j = 0; j < block->number_of_nodes(); ++j) { if (block->get_node(j) == node) { return j; } } ShouldNotReachHere(); return 0; } void ZBarrierSetC2::analyze_dominating_barriers() const { ResourceMark rm; Compile* const C = Compile::current(); PhaseCFG* const cfg = C->cfg(); Block_List worklist; Node_List mem_ops; Node_List barrier_loads; // Step 1 - Find accesses, and track them in lists for (uint i = 0; i < cfg->number_of_blocks(); ++i) { const Block* const block = cfg->get_block(i); for (uint j = 0; j < block->number_of_nodes(); ++j) { const Node* const node = block->get_node(j); if (!node->is_Mach()) { continue; } MachNode* const mach = node->as_Mach(); switch (mach->ideal_Opcode()) { case Op_LoadP: case Op_CompareAndExchangeP: case Op_CompareAndSwapP: case Op_GetAndSetP: if (mach->barrier_data() == ZLoadBarrierStrong) { barrier_loads.push(mach); } case Op_StoreP: mem_ops.push(mach); break; default: break; } } } // Step 2 - Find dominating accesses for each load for (uint i = 0; i < barrier_loads.size(); i++) { MachNode* const load = barrier_loads.at(i)->as_Mach(); const TypePtr* load_adr_type = NULL; intptr_t load_offset = 0; const Node* const load_obj = load->get_base_and_disp(load_offset, load_adr_type); Block* const load_block = cfg->get_block_for_node(load); const uint load_index = block_index(load_block, load); for (uint j = 0; j < mem_ops.size(); j++) { MachNode* mem = mem_ops.at(j)->as_Mach(); const TypePtr* mem_adr_type = NULL; intptr_t mem_offset = 0; const Node* mem_obj = mem_obj = mem->get_base_and_disp(mem_offset, mem_adr_type); Block* mem_block = cfg->get_block_for_node(mem); uint mem_index = block_index(mem_block, mem); if (load_obj == NodeSentinel || mem_obj == NodeSentinel || load_obj == NULL || mem_obj == NULL || load_offset < 0 || mem_offset < 0) { continue; } if (mem_obj != load_obj || mem_offset != load_offset) { // Not the same addresses, not a candidate continue; } if (load_block == mem_block) { // Earlier accesses in the same block if (mem_index < load_index && !block_has_safepoint(mem_block, mem_index + 1, load_index)) { load->set_barrier_data(ZLoadBarrierElided); } } else if (mem_block->dominates(load_block)) { // Dominating block? Look around for safepoints ResourceMark rm; Block_List stack; VectorSet visited(Thread::current()->resource_area()); stack.push(load_block); bool safepoint_found = block_has_safepoint(load_block); while (!safepoint_found && stack.size() > 0) { Block* block = stack.pop(); if (visited.test_set(block->_pre_order)) { continue; } if (block_has_safepoint(block)) { safepoint_found = true; break; } if (block == mem_block) { continue; } // Push predecessor blocks for (uint p = 1; p < block->num_preds(); ++p) { Block* pred = cfg->get_block_for_node(block->pred(p)); stack.push(pred); } } if (!safepoint_found) { load->set_barrier_data(ZLoadBarrierElided); } } } } } // == Reduced spilling optimization == void ZBarrierSetC2::compute_liveness_at_stubs() const { ResourceMark rm; Compile* const C = Compile::current(); Arena* const A = Thread::current()->resource_area(); PhaseCFG* const cfg = C->cfg(); PhaseRegAlloc* const regalloc = C->regalloc(); RegMask* const live = NEW_ARENA_ARRAY(A, RegMask, cfg->number_of_blocks() * sizeof(RegMask)); ZBarrierSetAssembler* const bs = ZBarrierSet::assembler(); Block_List worklist; for (uint i = 0; i < cfg->number_of_blocks(); ++i) { new ((void*)(live + i)) RegMask(); worklist.push(cfg->get_block(i)); } while (worklist.size() > 0) { const Block* const block = worklist.pop(); RegMask& old_live = live[block->_pre_order]; RegMask new_live; // Initialize to union of successors for (uint i = 0; i < block->_num_succs; i++) { const uint succ_id = block->_succs[i]->_pre_order; new_live.OR(live[succ_id]); } // Walk block backwards, computing liveness for (int i = block->number_of_nodes() - 1; i >= 0; --i) { const Node* const node = block->get_node(i); // Remove def bits const OptoReg::Name first = bs->refine_register(node, regalloc->get_reg_first(node)); const OptoReg::Name second = bs->refine_register(node, regalloc->get_reg_second(node)); if (first != OptoReg::Bad) { new_live.Remove(first); } if (second != OptoReg::Bad) { new_live.Remove(second); } // Add use bits for (uint j = 1; j < node->req(); ++j) { const Node* const use = node->in(j); const OptoReg::Name first = bs->refine_register(use, regalloc->get_reg_first(use)); const OptoReg::Name second = bs->refine_register(use, regalloc->get_reg_second(use)); if (first != OptoReg::Bad) { new_live.Insert(first); } if (second != OptoReg::Bad) { new_live.Insert(second); } } // If this node tracks liveness, update it RegMask* const regs = barrier_set_state()->live(node); if (regs != NULL) { regs->OR(new_live); } } // Now at block top, see if we have any changes new_live.SUBTRACT(old_live); if (new_live.is_NotEmpty()) { // Liveness has refined, update and propagate to prior blocks old_live.OR(new_live); for (uint i = 1; i < block->num_preds(); ++i) { Block* const pred = cfg->get_block_for_node(block->pred(i)); worklist.push(pred); } } } }