1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2019, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 #include "oops/compressedOops.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39 
  40  public:
  41   using Assembler::mov;
  42   using Assembler::movi;
  43 
  44  protected:
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51   virtual void call_VM_leaf_base(
  52     address entry_point,               // the entry point
  53     int     number_of_arguments,        // the number of arguments to pop after the call
  54     Label *retaddr = NULL
  55   );
  56 
  57   virtual void call_VM_leaf_base(
  58     address entry_point,               // the entry point
  59     int     number_of_arguments,        // the number of arguments to pop after the call
  60     Label &retaddr) {
  61     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  62   }
  63 
  64   // This is the base routine called by the different versions of call_VM. The interpreter
  65   // may customize this version by overriding it for its purposes (e.g., to save/restore
  66   // additional registers when doing a VM call).
  67   //
  68   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  69   // returns the register which contains the thread upon return. If a thread register has been
  70   // specified, the return value will correspond to that register. If no last_java_sp is specified
  71   // (noreg) than rsp will be used instead.
  72   virtual void call_VM_base(           // returns the register containing the thread upon return
  73     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  74     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  75     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  76     address  entry_point,              // the entry point
  77     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  78     bool     check_exceptions          // whether to check for pending exceptions after return
  79   );
  80 
  81   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  82 
  83   // True if an XOR can be used to expand narrow klass references.
  84   bool use_XOR_for_compressed_class_base;
  85 
  86  public:
  87   MacroAssembler(CodeBuffer* code) : Assembler(code) {
  88     use_XOR_for_compressed_class_base
  89       = operand_valid_for_logical_immediate
  90            (/*is32*/false, (uint64_t)CompressedKlassPointers::base())
  91          && ((uint64_t)CompressedKlassPointers::base()
  92              > (1UL << log2_intptr(CompressedKlassPointers::range())));
  93   }
  94 
  95  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  96  // The implementation is only non-empty for the InterpreterMacroAssembler,
  97  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  98  virtual void check_and_handle_popframe(Register java_thread);
  99  virtual void check_and_handle_earlyret(Register java_thread);
 100 
 101   void safepoint_poll(Label& slow_path);
 102   void safepoint_poll_acquire(Label& slow_path);
 103 
 104   // Biased locking support
 105   // lock_reg and obj_reg must be loaded up with the appropriate values.
 106   // swap_reg is killed.
 107   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 108   // Optional slow case is for implementations (interpreter and C1) which branch to
 109   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 110   // Returns offset of first potentially-faulting instruction for null
 111   // check info (currently consumed only by C1). If
 112   // swap_reg_contains_mark is true then returns -1 as it is assumed
 113   // the calling code has already passed any potential faults.
 114   int biased_locking_enter(Register lock_reg, Register obj_reg,
 115                            Register swap_reg, Register tmp_reg,
 116                            bool swap_reg_contains_mark,
 117                            Label& done, Label* slow_case = NULL,
 118                            BiasedLockingCounters* counters = NULL);
 119   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 120 
 121 
 122   // Helper functions for statistics gathering.
 123   // Unconditional atomic increment.
 124   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 125   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 126     lea(tmp1, counter_addr);
 127     atomic_incw(tmp1, tmp2, tmp3);
 128   }
 129   // Load Effective Address
 130   void lea(Register r, const Address &a) {
 131     InstructionMark im(this);
 132     code_section()->relocate(inst_mark(), a.rspec());
 133     a.lea(this, r);
 134   }
 135 
 136   void addmw(Address a, Register incr, Register scratch) {
 137     ldrw(scratch, a);
 138     addw(scratch, scratch, incr);
 139     strw(scratch, a);
 140   }
 141 
 142   // Add constant to memory word
 143   void addmw(Address a, int imm, Register scratch) {
 144     ldrw(scratch, a);
 145     if (imm > 0)
 146       addw(scratch, scratch, (unsigned)imm);
 147     else
 148       subw(scratch, scratch, (unsigned)-imm);
 149     strw(scratch, a);
 150   }
 151 
 152   void bind(Label& L) {
 153     Assembler::bind(L);
 154     code()->clear_last_insn();
 155   }
 156 
 157   void membar(Membar_mask_bits order_constraint);
 158 
 159   using Assembler::ldr;
 160   using Assembler::str;
 161 
 162   void ldr(Register Rx, const Address &adr);
 163   void ldrw(Register Rw, const Address &adr);
 164   void str(Register Rx, const Address &adr);
 165   void strw(Register Rx, const Address &adr);
 166 
 167   // Frame creation and destruction shared between JITs.
 168   void build_frame(int framesize);
 169   void remove_frame(int framesize);
 170 
 171   virtual void _call_Unimplemented(address call_site) {
 172     mov(rscratch2, call_site);
 173   }
 174 
 175 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 176 
 177   // aliases defined in AARCH64 spec
 178 
 179   template<class T>
 180   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 181 
 182   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 183   inline void cmp(Register Rd, unsigned imm) __attribute__ ((deprecated));
 184 
 185   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 186   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 187 
 188   void cset(Register Rd, Assembler::Condition cond) {
 189     csinc(Rd, zr, zr, ~cond);
 190   }
 191   void csetw(Register Rd, Assembler::Condition cond) {
 192     csincw(Rd, zr, zr, ~cond);
 193   }
 194 
 195   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 196     csneg(Rd, Rn, Rn, ~cond);
 197   }
 198   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 199     csnegw(Rd, Rn, Rn, ~cond);
 200   }
 201 
 202   inline void movw(Register Rd, Register Rn) {
 203     if (Rd == sp || Rn == sp) {
 204       addw(Rd, Rn, 0U);
 205     } else {
 206       orrw(Rd, zr, Rn);
 207     }
 208   }
 209   inline void mov(Register Rd, Register Rn) {
 210     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 211     if (Rd == Rn) {
 212     } else if (Rd == sp || Rn == sp) {
 213       add(Rd, Rn, 0U);
 214     } else {
 215       orr(Rd, zr, Rn);
 216     }
 217   }
 218 
 219   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 220   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 221 
 222   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 223   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 224 
 225   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 226   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 227 
 228   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 229     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 230   }
 231   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 232     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 233   }
 234 
 235   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 236     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 237   }
 238   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 239     bfm(Rd, Rn, lsb , (lsb + width - 1));
 240   }
 241 
 242   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 243     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 244   }
 245   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 246     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 247   }
 248 
 249   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 250     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 251   }
 252   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 253     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 254   }
 255 
 256   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 257     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 258   }
 259   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 260     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 261   }
 262 
 263   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 264     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 265   }
 266   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 267     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 268   }
 269 
 270   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 271     sbfmw(Rd, Rn, imm, 31);
 272   }
 273 
 274   inline void asr(Register Rd, Register Rn, unsigned imm) {
 275     sbfm(Rd, Rn, imm, 63);
 276   }
 277 
 278   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 279     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 280   }
 281 
 282   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 283     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 284   }
 285 
 286   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 287     ubfmw(Rd, Rn, imm, 31);
 288   }
 289 
 290   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 291     ubfm(Rd, Rn, imm, 63);
 292   }
 293 
 294   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 295     extrw(Rd, Rn, Rn, imm);
 296   }
 297 
 298   inline void ror(Register Rd, Register Rn, unsigned imm) {
 299     extr(Rd, Rn, Rn, imm);
 300   }
 301 
 302   inline void sxtbw(Register Rd, Register Rn) {
 303     sbfmw(Rd, Rn, 0, 7);
 304   }
 305   inline void sxthw(Register Rd, Register Rn) {
 306     sbfmw(Rd, Rn, 0, 15);
 307   }
 308   inline void sxtb(Register Rd, Register Rn) {
 309     sbfm(Rd, Rn, 0, 7);
 310   }
 311   inline void sxth(Register Rd, Register Rn) {
 312     sbfm(Rd, Rn, 0, 15);
 313   }
 314   inline void sxtw(Register Rd, Register Rn) {
 315     sbfm(Rd, Rn, 0, 31);
 316   }
 317 
 318   inline void uxtbw(Register Rd, Register Rn) {
 319     ubfmw(Rd, Rn, 0, 7);
 320   }
 321   inline void uxthw(Register Rd, Register Rn) {
 322     ubfmw(Rd, Rn, 0, 15);
 323   }
 324   inline void uxtb(Register Rd, Register Rn) {
 325     ubfm(Rd, Rn, 0, 7);
 326   }
 327   inline void uxth(Register Rd, Register Rn) {
 328     ubfm(Rd, Rn, 0, 15);
 329   }
 330   inline void uxtw(Register Rd, Register Rn) {
 331     ubfm(Rd, Rn, 0, 31);
 332   }
 333 
 334   inline void cmnw(Register Rn, Register Rm) {
 335     addsw(zr, Rn, Rm);
 336   }
 337   inline void cmn(Register Rn, Register Rm) {
 338     adds(zr, Rn, Rm);
 339   }
 340 
 341   inline void cmpw(Register Rn, Register Rm) {
 342     subsw(zr, Rn, Rm);
 343   }
 344   inline void cmp(Register Rn, Register Rm) {
 345     subs(zr, Rn, Rm);
 346   }
 347 
 348   inline void negw(Register Rd, Register Rn) {
 349     subw(Rd, zr, Rn);
 350   }
 351 
 352   inline void neg(Register Rd, Register Rn) {
 353     sub(Rd, zr, Rn);
 354   }
 355 
 356   inline void negsw(Register Rd, Register Rn) {
 357     subsw(Rd, zr, Rn);
 358   }
 359 
 360   inline void negs(Register Rd, Register Rn) {
 361     subs(Rd, zr, Rn);
 362   }
 363 
 364   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 365     addsw(zr, Rn, Rm, kind, shift);
 366   }
 367   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 368     adds(zr, Rn, Rm, kind, shift);
 369   }
 370 
 371   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 372     subsw(zr, Rn, Rm, kind, shift);
 373   }
 374   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 375     subs(zr, Rn, Rm, kind, shift);
 376   }
 377 
 378   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 379     subw(Rd, zr, Rn, kind, shift);
 380   }
 381 
 382   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 383     sub(Rd, zr, Rn, kind, shift);
 384   }
 385 
 386   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 387     subsw(Rd, zr, Rn, kind, shift);
 388   }
 389 
 390   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 391     subs(Rd, zr, Rn, kind, shift);
 392   }
 393 
 394   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 395     msubw(Rd, Rn, Rm, zr);
 396   }
 397   inline void mneg(Register Rd, Register Rn, Register Rm) {
 398     msub(Rd, Rn, Rm, zr);
 399   }
 400 
 401   inline void mulw(Register Rd, Register Rn, Register Rm) {
 402     maddw(Rd, Rn, Rm, zr);
 403   }
 404   inline void mul(Register Rd, Register Rn, Register Rm) {
 405     madd(Rd, Rn, Rm, zr);
 406   }
 407 
 408   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 409     smsubl(Rd, Rn, Rm, zr);
 410   }
 411   inline void smull(Register Rd, Register Rn, Register Rm) {
 412     smaddl(Rd, Rn, Rm, zr);
 413   }
 414 
 415   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 416     umsubl(Rd, Rn, Rm, zr);
 417   }
 418   inline void umull(Register Rd, Register Rn, Register Rm) {
 419     umaddl(Rd, Rn, Rm, zr);
 420   }
 421 
 422 #define WRAP(INSN)                                                            \
 423   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 424     if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
 425       nop();                                                                  \
 426     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 427   }
 428 
 429   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 430   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 431 #undef WRAP
 432 
 433 
 434   // macro assembly operations needed for aarch64
 435 
 436   // first two private routines for loading 32 bit or 64 bit constants
 437 private:
 438 
 439   void mov_immediate64(Register dst, u_int64_t imm64);
 440   void mov_immediate32(Register dst, u_int32_t imm32);
 441 
 442   int push(unsigned int bitset, Register stack);
 443   int pop(unsigned int bitset, Register stack);
 444 
 445   void mov(Register dst, Address a);
 446 
 447 public:
 448   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 449   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 450 
 451   // Push and pop everything that might be clobbered by a native
 452   // runtime call except rscratch1 and rscratch2.  (They are always
 453   // scratch, so we don't have to protect them.)  Only save the lower
 454   // 64 bits of each vector register.
 455   void push_call_clobbered_registers();
 456   void pop_call_clobbered_registers();
 457 
 458   // now mov instructions for loading absolute addresses and 32 or
 459   // 64 bit integers
 460 
 461   inline void mov(Register dst, address addr)
 462   {
 463     mov_immediate64(dst, (u_int64_t)addr);
 464   }
 465 
 466   inline void mov(Register dst, u_int64_t imm64)
 467   {
 468     mov_immediate64(dst, imm64);
 469   }
 470 
 471   inline void movw(Register dst, u_int32_t imm32)
 472   {
 473     mov_immediate32(dst, imm32);
 474   }
 475 
 476   inline void mov(Register dst, long l)
 477   {
 478     mov(dst, (u_int64_t)l);
 479   }
 480 
 481   inline void mov(Register dst, int i)
 482   {
 483     mov(dst, (long)i);
 484   }
 485 
 486   void mov(Register dst, RegisterOrConstant src) {
 487     if (src.is_register())
 488       mov(dst, src.as_register());
 489     else
 490       mov(dst, src.as_constant());
 491   }
 492 
 493   void movptr(Register r, uintptr_t imm64);
 494 
 495   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 496 
 497   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 498     orr(Vd, T, Vn, Vn);
 499   }
 500 
 501 public:
 502 
 503   // Generalized Test Bit And Branch, including a "far" variety which
 504   // spans more than 32KiB.
 505   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
 506     assert(cond == EQ || cond == NE, "must be");
 507 
 508     if (far)
 509       cond = ~cond;
 510 
 511     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 512     if (cond == Assembler::EQ)
 513       branch = &Assembler::tbz;
 514     else
 515       branch = &Assembler::tbnz;
 516 
 517     if (far) {
 518       Label L;
 519       (this->*branch)(Rt, bitpos, L);
 520       b(dest);
 521       bind(L);
 522     } else {
 523       (this->*branch)(Rt, bitpos, dest);
 524     }
 525   }
 526 
 527   // macro instructions for accessing and updating floating point
 528   // status register
 529   //
 530   // FPSR : op1 == 011
 531   //        CRn == 0100
 532   //        CRm == 0100
 533   //        op2 == 001
 534 
 535   inline void get_fpsr(Register reg)
 536   {
 537     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 538   }
 539 
 540   inline void set_fpsr(Register reg)
 541   {
 542     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 543   }
 544 
 545   inline void clear_fpsr()
 546   {
 547     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 548   }
 549 
 550   // DCZID_EL0: op1 == 011
 551   //            CRn == 0000
 552   //            CRm == 0000
 553   //            op2 == 111
 554   inline void get_dczid_el0(Register reg)
 555   {
 556     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 557   }
 558 
 559   // CTR_EL0:   op1 == 011
 560   //            CRn == 0000
 561   //            CRm == 0000
 562   //            op2 == 001
 563   inline void get_ctr_el0(Register reg)
 564   {
 565     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 566   }
 567 
 568   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 569   int corrected_idivl(Register result, Register ra, Register rb,
 570                       bool want_remainder, Register tmp = rscratch1);
 571   int corrected_idivq(Register result, Register ra, Register rb,
 572                       bool want_remainder, Register tmp = rscratch1);
 573 
 574   // Support for NULL-checks
 575   //
 576   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 577   // If the accessed location is M[reg + offset] and the offset is known, provide the
 578   // offset. No explicit code generation is needed if the offset is within a certain
 579   // range (0 <= offset <= page_size).
 580 
 581   virtual void null_check(Register reg, int offset = -1);
 582   static bool needs_explicit_null_check(intptr_t offset);
 583   static bool uses_implicit_null_check(void* address);
 584 
 585   static address target_addr_for_insn(address insn_addr, unsigned insn);
 586   static address target_addr_for_insn(address insn_addr) {
 587     unsigned insn = *(unsigned*)insn_addr;
 588     return target_addr_for_insn(insn_addr, insn);
 589   }
 590 
 591   // Required platform-specific helpers for Label::patch_instructions.
 592   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 593   static int pd_patch_instruction_size(address branch, address target);
 594   static void pd_patch_instruction(address branch, address target, const char* file = NULL, int line = 0) {
 595     pd_patch_instruction_size(branch, target);
 596   }
 597   static address pd_call_destination(address branch) {
 598     return target_addr_for_insn(branch);
 599   }
 600 #ifndef PRODUCT
 601   static void pd_print_patched_instruction(address branch);
 602 #endif
 603 
 604   static int patch_oop(address insn_addr, address o);
 605   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 606 
 607   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 608   void emit_static_call_stub();
 609 
 610   // The following 4 methods return the offset of the appropriate move instruction
 611 
 612   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 613   int load_unsigned_byte(Register dst, Address src);
 614   int load_unsigned_short(Register dst, Address src);
 615 
 616   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 617   int load_signed_byte(Register dst, Address src);
 618   int load_signed_short(Register dst, Address src);
 619 
 620   int load_signed_byte32(Register dst, Address src);
 621   int load_signed_short32(Register dst, Address src);
 622 
 623   // Support for sign-extension (hi:lo = extend_sign(lo))
 624   void extend_sign(Register hi, Register lo);
 625 
 626   // Load and store values by size and signed-ness
 627   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 628   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 629 
 630   // Support for inc/dec with optimal instruction selection depending on value
 631 
 632   // x86_64 aliases an unqualified register/address increment and
 633   // decrement to call incrementq and decrementq but also supports
 634   // explicitly sized calls to incrementq/decrementq or
 635   // incrementl/decrementl
 636 
 637   // for aarch64 the proper convention would be to use
 638   // increment/decrement for 64 bit operatons and
 639   // incrementw/decrementw for 32 bit operations. so when porting
 640   // x86_64 code we can leave calls to increment/decrement as is,
 641   // replace incrementq/decrementq with increment/decrement and
 642   // replace incrementl/decrementl with incrementw/decrementw.
 643 
 644   // n.b. increment/decrement calls with an Address destination will
 645   // need to use a scratch register to load the value to be
 646   // incremented. increment/decrement calls which add or subtract a
 647   // constant value greater than 2^12 will need to use a 2nd scratch
 648   // register to hold the constant. so, a register increment/decrement
 649   // may trash rscratch2 and an address increment/decrement trash
 650   // rscratch and rscratch2
 651 
 652   void decrementw(Address dst, int value = 1);
 653   void decrementw(Register reg, int value = 1);
 654 
 655   void decrement(Register reg, int value = 1);
 656   void decrement(Address dst, int value = 1);
 657 
 658   void incrementw(Address dst, int value = 1);
 659   void incrementw(Register reg, int value = 1);
 660 
 661   void increment(Register reg, int value = 1);
 662   void increment(Address dst, int value = 1);
 663 
 664 
 665   // Alignment
 666   void align(int modulus);
 667 
 668   // Stack frame creation/removal
 669   void enter()
 670   {
 671     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 672     mov(rfp, sp);
 673   }
 674   void leave()
 675   {
 676     mov(sp, rfp);
 677     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 678   }
 679 
 680   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 681   // The pointer will be loaded into the thread register.
 682   void get_thread(Register thread);
 683 
 684 
 685   // Support for VM calls
 686   //
 687   // It is imperative that all calls into the VM are handled via the call_VM macros.
 688   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 689   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 690 
 691 
 692   void call_VM(Register oop_result,
 693                address entry_point,
 694                bool check_exceptions = true);
 695   void call_VM(Register oop_result,
 696                address entry_point,
 697                Register arg_1,
 698                bool check_exceptions = true);
 699   void call_VM(Register oop_result,
 700                address entry_point,
 701                Register arg_1, Register arg_2,
 702                bool check_exceptions = true);
 703   void call_VM(Register oop_result,
 704                address entry_point,
 705                Register arg_1, Register arg_2, Register arg_3,
 706                bool check_exceptions = true);
 707 
 708   // Overloadings with last_Java_sp
 709   void call_VM(Register oop_result,
 710                Register last_java_sp,
 711                address entry_point,
 712                int number_of_arguments = 0,
 713                bool check_exceptions = true);
 714   void call_VM(Register oop_result,
 715                Register last_java_sp,
 716                address entry_point,
 717                Register arg_1, bool
 718                check_exceptions = true);
 719   void call_VM(Register oop_result,
 720                Register last_java_sp,
 721                address entry_point,
 722                Register arg_1, Register arg_2,
 723                bool check_exceptions = true);
 724   void call_VM(Register oop_result,
 725                Register last_java_sp,
 726                address entry_point,
 727                Register arg_1, Register arg_2, Register arg_3,
 728                bool check_exceptions = true);
 729 
 730   void get_vm_result  (Register oop_result, Register thread);
 731   void get_vm_result_2(Register metadata_result, Register thread);
 732 
 733   // These always tightly bind to MacroAssembler::call_VM_base
 734   // bypassing the virtual implementation
 735   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 736   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 737   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 738   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 739   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 740 
 741   void call_VM_leaf(address entry_point,
 742                     int number_of_arguments = 0);
 743   void call_VM_leaf(address entry_point,
 744                     Register arg_1);
 745   void call_VM_leaf(address entry_point,
 746                     Register arg_1, Register arg_2);
 747   void call_VM_leaf(address entry_point,
 748                     Register arg_1, Register arg_2, Register arg_3);
 749 
 750   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 751   // bypassing the virtual implementation
 752   void super_call_VM_leaf(address entry_point);
 753   void super_call_VM_leaf(address entry_point, Register arg_1);
 754   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 755   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 756   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 757 
 758   // last Java Frame (fills frame anchor)
 759   void set_last_Java_frame(Register last_java_sp,
 760                            Register last_java_fp,
 761                            address last_java_pc,
 762                            Register scratch);
 763 
 764   void set_last_Java_frame(Register last_java_sp,
 765                            Register last_java_fp,
 766                            Label &last_java_pc,
 767                            Register scratch);
 768 
 769   void set_last_Java_frame(Register last_java_sp,
 770                            Register last_java_fp,
 771                            Register last_java_pc,
 772                            Register scratch);
 773 
 774   void reset_last_Java_frame(Register thread);
 775 
 776   // thread in the default location (rthread)
 777   void reset_last_Java_frame(bool clear_fp);
 778 
 779   // Stores
 780   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 781   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 782 
 783   void resolve_jobject(Register value, Register thread, Register tmp);
 784 
 785   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 786   void c2bool(Register x);
 787 
 788   void load_method_holder(Register holder, Register method);
 789 
 790   // oop manipulations
 791   void load_klass(Register dst, Register src);
 792   void store_klass(Register dst, Register src);
 793   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 794 
 795   void resolve_oop_handle(Register result, Register tmp = r5);
 796   void load_mirror(Register dst, Register method, Register tmp = r5);
 797 
 798   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 799                       Register tmp1, Register tmp_thread);
 800 
 801   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 802                        Register tmp1, Register tmp_thread);
 803 
 804   // Resolves obj for access. Result is placed in the same register.
 805   // All other registers are preserved.
 806   void resolve(DecoratorSet decorators, Register obj);
 807 
 808   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 809                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 810 
 811   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 812                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 813   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 814                       Register tmp_thread = noreg, DecoratorSet decorators = 0);
 815 
 816   // currently unimplemented
 817   // Used for storing NULL. All other oop constants should be
 818   // stored using routines that take a jobject.
 819   void store_heap_oop_null(Address dst);
 820 
 821   void load_prototype_header(Register dst, Register src);
 822 
 823   void store_klass_gap(Register dst, Register src);
 824 
 825   // This dummy is to prevent a call to store_heap_oop from
 826   // converting a zero (like NULL) into a Register by giving
 827   // the compiler two choices it can't resolve
 828 
 829   void store_heap_oop(Address dst, void* dummy);
 830 
 831   void encode_heap_oop(Register d, Register s);
 832   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 833   void decode_heap_oop(Register d, Register s);
 834   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 835   void encode_heap_oop_not_null(Register r);
 836   void decode_heap_oop_not_null(Register r);
 837   void encode_heap_oop_not_null(Register dst, Register src);
 838   void decode_heap_oop_not_null(Register dst, Register src);
 839 
 840   void set_narrow_oop(Register dst, jobject obj);
 841 
 842   void encode_klass_not_null(Register r);
 843   void decode_klass_not_null(Register r);
 844   void encode_klass_not_null(Register dst, Register src);
 845   void decode_klass_not_null(Register dst, Register src);
 846 
 847   void set_narrow_klass(Register dst, Klass* k);
 848 
 849   // if heap base register is used - reinit it with the correct value
 850   void reinit_heapbase();
 851 
 852   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 853 
 854   void push_CPU_state(bool save_vectors = false);
 855   void pop_CPU_state(bool restore_vectors = false) ;
 856 
 857   // Round up to a power of two
 858   void round_to(Register reg, int modulus);
 859 
 860   // allocation
 861   void eden_allocate(
 862     Register obj,                      // result: pointer to object after successful allocation
 863     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 864     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 865     Register t1,                       // temp register
 866     Label&   slow_case                 // continuation point if fast allocation fails
 867   );
 868   void tlab_allocate(
 869     Register obj,                      // result: pointer to object after successful allocation
 870     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 871     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 872     Register t1,                       // temp register
 873     Register t2,                       // temp register
 874     Label&   slow_case                 // continuation point if fast allocation fails
 875   );
 876   void zero_memory(Register addr, Register len, Register t1);
 877   void verify_tlab();
 878 
 879   // interface method calling
 880   void lookup_interface_method(Register recv_klass,
 881                                Register intf_klass,
 882                                RegisterOrConstant itable_index,
 883                                Register method_result,
 884                                Register scan_temp,
 885                                Label& no_such_interface,
 886                    bool return_method = true);
 887 
 888   // virtual method calling
 889   // n.b. x86 allows RegisterOrConstant for vtable_index
 890   void lookup_virtual_method(Register recv_klass,
 891                              RegisterOrConstant vtable_index,
 892                              Register method_result);
 893 
 894   // Test sub_klass against super_klass, with fast and slow paths.
 895 
 896   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 897   // One of the three labels can be NULL, meaning take the fall-through.
 898   // If super_check_offset is -1, the value is loaded up from super_klass.
 899   // No registers are killed, except temp_reg.
 900   void check_klass_subtype_fast_path(Register sub_klass,
 901                                      Register super_klass,
 902                                      Register temp_reg,
 903                                      Label* L_success,
 904                                      Label* L_failure,
 905                                      Label* L_slow_path,
 906                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 907 
 908   // The rest of the type check; must be wired to a corresponding fast path.
 909   // It does not repeat the fast path logic, so don't use it standalone.
 910   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 911   // Updates the sub's secondary super cache as necessary.
 912   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 913   void check_klass_subtype_slow_path(Register sub_klass,
 914                                      Register super_klass,
 915                                      Register temp_reg,
 916                                      Register temp2_reg,
 917                                      Label* L_success,
 918                                      Label* L_failure,
 919                                      bool set_cond_codes = false);
 920 
 921   // Simplified, combined version, good for typical uses.
 922   // Falls through on failure.
 923   void check_klass_subtype(Register sub_klass,
 924                            Register super_klass,
 925                            Register temp_reg,
 926                            Label& L_success);
 927 
 928   void clinit_barrier(Register klass,
 929                       Register thread,
 930                       Label* L_fast_path = NULL,
 931                       Label* L_slow_path = NULL);
 932 
 933   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 934 
 935 
 936   // Debugging
 937 
 938   // only if +VerifyOops
 939   void verify_oop(Register reg, const char* s = "broken oop");
 940   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 941 
 942 // TODO: verify method and klass metadata (compare against vptr?)
 943   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 944   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 945 
 946 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 947 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 948 
 949   // only if +VerifyFPU
 950   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 951 
 952   // prints msg, dumps registers and stops execution
 953   void stop(const char* msg);
 954 
 955   // prints msg and continues
 956   void warn(const char* msg);
 957 
 958   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 959 
 960   void untested()                                { stop("untested"); }
 961 
 962   void unimplemented(const char* what = "");
 963 
 964   void should_not_reach_here()                   { stop("should not reach here"); }
 965 
 966   // Stack overflow checking
 967   void bang_stack_with_offset(int offset) {
 968     // stack grows down, caller passes positive offset
 969     assert(offset > 0, "must bang with negative offset");
 970     sub(rscratch2, sp, offset);
 971     str(zr, Address(rscratch2));
 972   }
 973 
 974   // Writes to stack successive pages until offset reached to check for
 975   // stack overflow + shadow pages.  Also, clobbers tmp
 976   void bang_stack_size(Register size, Register tmp);
 977 
 978   // Check for reserved stack access in method being exited (for JIT)
 979   void reserved_stack_check();
 980 
 981   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 982                                                 Register tmp,
 983                                                 int offset);
 984 
 985   // Arithmetics
 986 
 987   void addptr(const Address &dst, int32_t src);
 988   void cmpptr(Register src1, Address src2);
 989 
 990   void cmpoop(Register obj1, Register obj2);
 991 
 992   // Various forms of CAS
 993 
 994   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
 995                           Label &suceed, Label *fail);
 996   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 997                   Label &suceed, Label *fail);
 998 
 999   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1000                   Label &suceed, Label *fail);
1001 
1002   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1003   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1004   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1005   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1006 
1007   void atomic_xchg(Register prev, Register newv, Register addr);
1008   void atomic_xchgw(Register prev, Register newv, Register addr);
1009   void atomic_xchgal(Register prev, Register newv, Register addr);
1010   void atomic_xchgalw(Register prev, Register newv, Register addr);
1011 
1012   void orptr(Address adr, RegisterOrConstant src) {
1013     ldr(rscratch1, adr);
1014     if (src.is_register())
1015       orr(rscratch1, rscratch1, src.as_register());
1016     else
1017       orr(rscratch1, rscratch1, src.as_constant());
1018     str(rscratch1, adr);
1019   }
1020 
1021   // A generic CAS; success or failure is in the EQ flag.
1022   // Clobbers rscratch1
1023   void cmpxchg(Register addr, Register expected, Register new_val,
1024                enum operand_size size,
1025                bool acquire, bool release, bool weak,
1026                Register result);
1027 private:
1028   void compare_eq(Register rn, Register rm, enum operand_size size);
1029 
1030 public:
1031   // Calls
1032 
1033   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1034 
1035   static bool far_branches() {
1036     return ReservedCodeCacheSize > branch_range || UseAOT;
1037   }
1038 
1039   // Jumps that can reach anywhere in the code cache.
1040   // Trashes tmp.
1041   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1042   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1043 
1044   static int far_branch_size() {
1045     if (far_branches()) {
1046       return 3 * 4;  // adrp, add, br
1047     } else {
1048       return 4;
1049     }
1050   }
1051 
1052   // Emit the CompiledIC call idiom
1053   address ic_call(address entry, jint method_index = 0);
1054 
1055 public:
1056 
1057   // Data
1058 
1059   void mov_metadata(Register dst, Metadata* obj);
1060   Address allocate_metadata_address(Metadata* obj);
1061   Address constant_oop_address(jobject obj);
1062 
1063   void movoop(Register dst, jobject obj, bool immediate = false);
1064 
1065   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1066   void kernel_crc32(Register crc, Register buf, Register len,
1067         Register table0, Register table1, Register table2, Register table3,
1068         Register tmp, Register tmp2, Register tmp3);
1069   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1070   void kernel_crc32c(Register crc, Register buf, Register len,
1071         Register table0, Register table1, Register table2, Register table3,
1072         Register tmp, Register tmp2, Register tmp3);
1073 
1074   // Stack push and pop individual 64 bit registers
1075   void push(Register src);
1076   void pop(Register dst);
1077 
1078   // push all registers onto the stack
1079   void pusha();
1080   void popa();
1081 
1082   void repne_scan(Register addr, Register value, Register count,
1083                   Register scratch);
1084   void repne_scanw(Register addr, Register value, Register count,
1085                    Register scratch);
1086 
1087   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1088   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1089 
1090   // If a constant does not fit in an immediate field, generate some
1091   // number of MOV instructions and then perform the operation
1092   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1093                              add_sub_imm_insn insn1,
1094                              add_sub_reg_insn insn2);
1095   // Seperate vsn which sets the flags
1096   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1097                              add_sub_imm_insn insn1,
1098                              add_sub_reg_insn insn2);
1099 
1100 #define WRAP(INSN)                                                      \
1101   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1102     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1103   }                                                                     \
1104                                                                         \
1105   void INSN(Register Rd, Register Rn, Register Rm,                      \
1106              enum shift_kind kind, unsigned shift = 0) {                \
1107     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1108   }                                                                     \
1109                                                                         \
1110   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1111     Assembler::INSN(Rd, Rn, Rm);                                        \
1112   }                                                                     \
1113                                                                         \
1114   void INSN(Register Rd, Register Rn, Register Rm,                      \
1115            ext::operation option, int amount = 0) {                     \
1116     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1117   }
1118 
1119   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1120 
1121 #undef WRAP
1122 #define WRAP(INSN)                                                      \
1123   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1124     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1125   }                                                                     \
1126                                                                         \
1127   void INSN(Register Rd, Register Rn, Register Rm,                      \
1128              enum shift_kind kind, unsigned shift = 0) {                \
1129     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1130   }                                                                     \
1131                                                                         \
1132   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1133     Assembler::INSN(Rd, Rn, Rm);                                        \
1134   }                                                                     \
1135                                                                         \
1136   void INSN(Register Rd, Register Rn, Register Rm,                      \
1137            ext::operation option, int amount = 0) {                     \
1138     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1139   }
1140 
1141   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1142 
1143   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1144   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1145   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1146   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1147 
1148   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1149 
1150   void tableswitch(Register index, jint lowbound, jint highbound,
1151                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1152     adr(rscratch1, jumptable);
1153     subsw(rscratch2, index, lowbound);
1154     subsw(zr, rscratch2, highbound - lowbound);
1155     br(Assembler::HS, jumptable_end);
1156     add(rscratch1, rscratch1, rscratch2,
1157         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1158     br(rscratch1);
1159   }
1160 
1161   // Form an address from base + offset in Rd.  Rd may or may not
1162   // actually be used: you must use the Address that is returned.  It
1163   // is up to you to ensure that the shift provided matches the size
1164   // of your data.
1165   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1166 
1167   // Return true iff an address is within the 48-bit AArch64 address
1168   // space.
1169   bool is_valid_AArch64_address(address a) {
1170     return ((uint64_t)a >> 48) == 0;
1171   }
1172 
1173   // Load the base of the cardtable byte map into reg.
1174   void load_byte_map_base(Register reg);
1175 
1176   // Prolog generator routines to support switch between x86 code and
1177   // generated ARM code
1178 
1179   // routine to generate an x86 prolog for a stub function which
1180   // bootstraps into the generated ARM code which directly follows the
1181   // stub
1182   //
1183 
1184   public:
1185 
1186   void ldr_constant(Register dest, const Address &const_addr) {
1187     if (NearCpool) {
1188       ldr(dest, const_addr);
1189     } else {
1190       unsigned long offset;
1191       adrp(dest, InternalAddress(const_addr.target()), offset);
1192       ldr(dest, Address(dest, offset));
1193     }
1194   }
1195 
1196   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1197   address read_polling_page(Register r, relocInfo::relocType rtype);
1198   void get_polling_page(Register dest, address page, relocInfo::relocType rtype);
1199 
1200   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1201   void update_byte_crc32(Register crc, Register val, Register table);
1202   void update_word_crc32(Register crc, Register v, Register tmp,
1203         Register table0, Register table1, Register table2, Register table3,
1204         bool upper = false);
1205 
1206   void string_compare(Register str1, Register str2,
1207                       Register cnt1, Register cnt2, Register result,
1208                       Register tmp1, Register tmp2, FloatRegister vtmp1,
1209                       FloatRegister vtmp2, FloatRegister vtmp3, int ae);
1210 
1211   void has_negatives(Register ary1, Register len, Register result);
1212 
1213   void arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1214                      Register tmp1, Register tmp2, Register tmp3, int elem_size);
1215 
1216   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1217                      int elem_size);
1218 
1219   void fill_words(Register base, Register cnt, Register value);
1220   void zero_words(Register base, u_int64_t cnt);
1221   void zero_words(Register ptr, Register cnt);
1222   void zero_dcache_blocks(Register base, Register cnt);
1223 
1224   static const int zero_words_block_size;
1225 
1226   void byte_array_inflate(Register src, Register dst, Register len,
1227                           FloatRegister vtmp1, FloatRegister vtmp2,
1228                           FloatRegister vtmp3, Register tmp4);
1229 
1230   void char_array_compress(Register src, Register dst, Register len,
1231                            FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1232                            FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1233                            Register result);
1234 
1235   void encode_iso_array(Register src, Register dst,
1236                         Register len, Register result,
1237                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1238                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1239   void string_indexof(Register str1, Register str2,
1240                       Register cnt1, Register cnt2,
1241                       Register tmp1, Register tmp2,
1242                       Register tmp3, Register tmp4,
1243                       Register tmp5, Register tmp6,
1244                       int int_cnt1, Register result, int ae);
1245   void string_indexof_char(Register str1, Register cnt1,
1246                            Register ch, Register result,
1247                            Register tmp1, Register tmp2, Register tmp3);
1248   void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1249                 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1250                 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1251                 FloatRegister tmpC4, Register tmp1, Register tmp2,
1252                 Register tmp3, Register tmp4, Register tmp5);
1253   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1254       address pio2, address dsin_coef, address dcos_coef);
1255  private:
1256   // begin trigonometric functions support block
1257   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1258   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1259   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1260   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1261   // end trigonometric functions support block
1262   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1263                        Register src1, Register src2);
1264   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1265     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1266   }
1267   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1268                              Register y, Register y_idx, Register z,
1269                              Register carry, Register product,
1270                              Register idx, Register kdx);
1271   void multiply_128_x_128_loop(Register y, Register z,
1272                                Register carry, Register carry2,
1273                                Register idx, Register jdx,
1274                                Register yz_idx1, Register yz_idx2,
1275                                Register tmp, Register tmp3, Register tmp4,
1276                                Register tmp7, Register product_hi);
1277   void kernel_crc32_using_crc32(Register crc, Register buf,
1278         Register len, Register tmp0, Register tmp1, Register tmp2,
1279         Register tmp3);
1280   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1281         Register len, Register tmp0, Register tmp1, Register tmp2,
1282         Register tmp3);
1283 public:
1284   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1285                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1286                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1287   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1288   // ISB may be needed because of a safepoint
1289   void maybe_isb() { isb(); }
1290 
1291 private:
1292   // Return the effective address r + (r1 << ext) + offset.
1293   // Uses rscratch2.
1294   Address offsetted_address(Register r, Register r1, Address::extend ext,
1295                             int offset, int size);
1296 
1297 private:
1298   // Returns an address on the stack which is reachable with a ldr/str of size
1299   // Uses rscratch2 if the address is not directly reachable
1300   Address spill_address(int size, int offset, Register tmp=rscratch2);
1301 
1302   bool merge_alignment_check(Register base, size_t size, long cur_offset, long prev_offset) const;
1303 
1304   // Check whether two loads/stores can be merged into ldp/stp.
1305   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1306 
1307   // Merge current load/store with previous load/store into ldp/stp.
1308   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1309 
1310   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1311   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1312 
1313 public:
1314   void spill(Register Rx, bool is64, int offset) {
1315     if (is64) {
1316       str(Rx, spill_address(8, offset));
1317     } else {
1318       strw(Rx, spill_address(4, offset));
1319     }
1320   }
1321   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1322     str(Vx, T, spill_address(1 << (int)T, offset));
1323   }
1324   void unspill(Register Rx, bool is64, int offset) {
1325     if (is64) {
1326       ldr(Rx, spill_address(8, offset));
1327     } else {
1328       ldrw(Rx, spill_address(4, offset));
1329     }
1330   }
1331   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1332     ldr(Vx, T, spill_address(1 << (int)T, offset));
1333   }
1334   void spill_copy128(int src_offset, int dst_offset,
1335                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1336     if (src_offset < 512 && (src_offset & 7) == 0 &&
1337         dst_offset < 512 && (dst_offset & 7) == 0) {
1338       ldp(tmp1, tmp2, Address(sp, src_offset));
1339       stp(tmp1, tmp2, Address(sp, dst_offset));
1340     } else {
1341       unspill(tmp1, true, src_offset);
1342       spill(tmp1, true, dst_offset);
1343       unspill(tmp1, true, src_offset+8);
1344       spill(tmp1, true, dst_offset+8);
1345     }
1346   }
1347 
1348   void cache_wb(Address line);
1349   void cache_wbsync(bool is_pre);
1350 };
1351 
1352 #ifdef ASSERT
1353 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1354 #endif
1355 
1356 /**
1357  * class SkipIfEqual:
1358  *
1359  * Instantiating this class will result in assembly code being output that will
1360  * jump around any code emitted between the creation of the instance and it's
1361  * automatic destruction at the end of a scope block, depending on the value of
1362  * the flag passed to the constructor, which will be checked at run-time.
1363  */
1364 class SkipIfEqual {
1365  private:
1366   MacroAssembler* _masm;
1367   Label _label;
1368 
1369  public:
1370    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1371    ~SkipIfEqual();
1372 };
1373 
1374 struct tableswitch {
1375   Register _reg;
1376   int _insn_index; jint _first_key; jint _last_key;
1377   Label _after;
1378   Label _branches;
1379 };
1380 
1381 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP