1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2019, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 #include "oops/compressedOops.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39 
  40  public:
  41   using Assembler::mov;
  42   using Assembler::movi;
  43 
  44  protected:
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51   virtual void call_VM_leaf_base(
  52     address entry_point,               // the entry point
  53     int     number_of_arguments,        // the number of arguments to pop after the call
  54     Label *retaddr = NULL
  55   );
  56 
  57   virtual void call_VM_leaf_base(
  58     address entry_point,               // the entry point
  59     int     number_of_arguments,        // the number of arguments to pop after the call
  60     Label &retaddr) {
  61     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  62   }
  63 
  64   // This is the base routine called by the different versions of call_VM. The interpreter
  65   // may customize this version by overriding it for its purposes (e.g., to save/restore
  66   // additional registers when doing a VM call).
  67   //
  68   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  69   // returns the register which contains the thread upon return. If a thread register has been
  70   // specified, the return value will correspond to that register. If no last_java_sp is specified
  71   // (noreg) than rsp will be used instead.
  72   virtual void call_VM_base(           // returns the register containing the thread upon return
  73     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  74     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  75     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  76     address  entry_point,              // the entry point
  77     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  78     bool     check_exceptions          // whether to check for pending exceptions after return
  79   );
  80 
  81   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  82 
  83   // True if an XOR can be used to expand narrow klass references.
  84   bool use_XOR_for_compressed_class_base;
  85 
  86  public:
  87   MacroAssembler(CodeBuffer* code) : Assembler(code) {
  88     use_XOR_for_compressed_class_base
  89       = operand_valid_for_logical_immediate
  90            (/*is32*/false, (uint64_t)CompressedKlassPointers::base())
  91          && ((uint64_t)CompressedKlassPointers::base()
  92              > (1UL << log2_intptr(CompressedKlassPointers::range())));
  93   }
  94 
  95  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  96  // The implementation is only non-empty for the InterpreterMacroAssembler,
  97  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  98  virtual void check_and_handle_popframe(Register java_thread);
  99  virtual void check_and_handle_earlyret(Register java_thread);
 100 
 101   void safepoint_poll(Label& slow_path);
 102   void safepoint_poll_acquire(Label& slow_path);
 103 
 104   // Biased locking support
 105   // lock_reg and obj_reg must be loaded up with the appropriate values.
 106   // swap_reg is killed.
 107   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 108   // Optional slow case is for implementations (interpreter and C1) which branch to
 109   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 110   // Returns offset of first potentially-faulting instruction for null
 111   // check info (currently consumed only by C1). If
 112   // swap_reg_contains_mark is true then returns -1 as it is assumed
 113   // the calling code has already passed any potential faults.
 114   int biased_locking_enter(Register lock_reg, Register obj_reg,
 115                            Register swap_reg, Register tmp_reg,
 116                            bool swap_reg_contains_mark,
 117                            Label& done, Label* slow_case = NULL,
 118                            BiasedLockingCounters* counters = NULL);
 119   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 120 
 121 
 122   // Helper functions for statistics gathering.
 123   // Unconditional atomic increment.
 124   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 125   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 126     lea(tmp1, counter_addr);
 127     atomic_incw(tmp1, tmp2, tmp3);
 128   }
 129   // Load Effective Address
 130   void lea(Register r, const Address &a) {
 131     InstructionMark im(this);
 132     code_section()->relocate(inst_mark(), a.rspec());
 133     a.lea(this, r);
 134   }
 135 
 136   void addmw(Address a, Register incr, Register scratch) {
 137     ldrw(scratch, a);
 138     addw(scratch, scratch, incr);
 139     strw(scratch, a);
 140   }
 141 
 142   // Add constant to memory word
 143   void addmw(Address a, int imm, Register scratch) {
 144     ldrw(scratch, a);
 145     if (imm > 0)
 146       addw(scratch, scratch, (unsigned)imm);
 147     else
 148       subw(scratch, scratch, (unsigned)-imm);
 149     strw(scratch, a);
 150   }
 151 
 152   void bind(Label& L) {
 153     Assembler::bind(L);
 154     code()->clear_last_insn();
 155   }
 156 
 157   void membar(Membar_mask_bits order_constraint);
 158 
 159   using Assembler::ldr;
 160   using Assembler::str;
 161 
 162   void ldr(Register Rx, const Address &adr);
 163   void ldrw(Register Rw, const Address &adr);
 164   void str(Register Rx, const Address &adr);
 165   void strw(Register Rx, const Address &adr);
 166 
 167   // Frame creation and destruction shared between JITs.
 168   void build_frame(int framesize);
 169   void remove_frame(int framesize);
 170 
 171   virtual void _call_Unimplemented(address call_site) {
 172     mov(rscratch2, call_site);
 173   }
 174 
 175 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 176 
 177   // aliases defined in AARCH64 spec
 178 
 179   template<class T>
 180   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 181 
 182   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 183   inline void cmp(Register Rd, unsigned imm) __attribute__ ((deprecated));
 184 
 185   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 186   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 187 
 188   void cset(Register Rd, Assembler::Condition cond) {
 189     csinc(Rd, zr, zr, ~cond);
 190   }
 191   void csetw(Register Rd, Assembler::Condition cond) {
 192     csincw(Rd, zr, zr, ~cond);
 193   }
 194 
 195   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 196     csneg(Rd, Rn, Rn, ~cond);
 197   }
 198   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 199     csnegw(Rd, Rn, Rn, ~cond);
 200   }
 201 
 202   inline void movw(Register Rd, Register Rn) {
 203     if (Rd == sp || Rn == sp) {
 204       addw(Rd, Rn, 0U);
 205     } else {
 206       orrw(Rd, zr, Rn);
 207     }
 208   }
 209   inline void mov(Register Rd, Register Rn) {
 210     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 211     if (Rd == Rn) {
 212     } else if (Rd == sp || Rn == sp) {
 213       add(Rd, Rn, 0U);
 214     } else {
 215       orr(Rd, zr, Rn);
 216     }
 217   }
 218 
 219   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 220   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 221 
 222   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 223   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 224 
 225   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 226   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 227 
 228   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 229     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 230   }
 231   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 232     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 233   }
 234 
 235   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 236     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 237   }
 238   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 239     bfm(Rd, Rn, lsb , (lsb + width - 1));
 240   }
 241 
 242   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 243     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 244   }
 245   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 246     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 247   }
 248 
 249   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 250     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 251   }
 252   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 253     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 254   }
 255 
 256   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 257     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 258   }
 259   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 260     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 261   }
 262 
 263   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 264     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 265   }
 266   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 267     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 268   }
 269 
 270   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 271     sbfmw(Rd, Rn, imm, 31);
 272   }
 273 
 274   inline void asr(Register Rd, Register Rn, unsigned imm) {
 275     sbfm(Rd, Rn, imm, 63);
 276   }
 277 
 278   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 279     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 280   }
 281 
 282   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 283     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 284   }
 285 
 286   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 287     ubfmw(Rd, Rn, imm, 31);
 288   }
 289 
 290   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 291     ubfm(Rd, Rn, imm, 63);
 292   }
 293 
 294   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 295     extrw(Rd, Rn, Rn, imm);
 296   }
 297 
 298   inline void ror(Register Rd, Register Rn, unsigned imm) {
 299     extr(Rd, Rn, Rn, imm);
 300   }
 301 
 302   inline void sxtbw(Register Rd, Register Rn) {
 303     sbfmw(Rd, Rn, 0, 7);
 304   }
 305   inline void sxthw(Register Rd, Register Rn) {
 306     sbfmw(Rd, Rn, 0, 15);
 307   }
 308   inline void sxtb(Register Rd, Register Rn) {
 309     sbfm(Rd, Rn, 0, 7);
 310   }
 311   inline void sxth(Register Rd, Register Rn) {
 312     sbfm(Rd, Rn, 0, 15);
 313   }
 314   inline void sxtw(Register Rd, Register Rn) {
 315     sbfm(Rd, Rn, 0, 31);
 316   }
 317 
 318   inline void uxtbw(Register Rd, Register Rn) {
 319     ubfmw(Rd, Rn, 0, 7);
 320   }
 321   inline void uxthw(Register Rd, Register Rn) {
 322     ubfmw(Rd, Rn, 0, 15);
 323   }
 324   inline void uxtb(Register Rd, Register Rn) {
 325     ubfm(Rd, Rn, 0, 7);
 326   }
 327   inline void uxth(Register Rd, Register Rn) {
 328     ubfm(Rd, Rn, 0, 15);
 329   }
 330   inline void uxtw(Register Rd, Register Rn) {
 331     ubfm(Rd, Rn, 0, 31);
 332   }
 333 
 334   inline void cmnw(Register Rn, Register Rm) {
 335     addsw(zr, Rn, Rm);
 336   }
 337   inline void cmn(Register Rn, Register Rm) {
 338     adds(zr, Rn, Rm);
 339   }
 340 
 341   inline void cmpw(Register Rn, Register Rm) {
 342     subsw(zr, Rn, Rm);
 343   }
 344   inline void cmp(Register Rn, Register Rm) {
 345     subs(zr, Rn, Rm);
 346   }
 347 
 348   inline void negw(Register Rd, Register Rn) {
 349     subw(Rd, zr, Rn);
 350   }
 351 
 352   inline void neg(Register Rd, Register Rn) {
 353     sub(Rd, zr, Rn);
 354   }
 355 
 356   inline void negsw(Register Rd, Register Rn) {
 357     subsw(Rd, zr, Rn);
 358   }
 359 
 360   inline void negs(Register Rd, Register Rn) {
 361     subs(Rd, zr, Rn);
 362   }
 363 
 364   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 365     addsw(zr, Rn, Rm, kind, shift);
 366   }
 367   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 368     adds(zr, Rn, Rm, kind, shift);
 369   }
 370 
 371   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 372     subsw(zr, Rn, Rm, kind, shift);
 373   }
 374   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 375     subs(zr, Rn, Rm, kind, shift);
 376   }
 377 
 378   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 379     subw(Rd, zr, Rn, kind, shift);
 380   }
 381 
 382   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 383     sub(Rd, zr, Rn, kind, shift);
 384   }
 385 
 386   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 387     subsw(Rd, zr, Rn, kind, shift);
 388   }
 389 
 390   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 391     subs(Rd, zr, Rn, kind, shift);
 392   }
 393 
 394   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 395     msubw(Rd, Rn, Rm, zr);
 396   }
 397   inline void mneg(Register Rd, Register Rn, Register Rm) {
 398     msub(Rd, Rn, Rm, zr);
 399   }
 400 
 401   inline void mulw(Register Rd, Register Rn, Register Rm) {
 402     maddw(Rd, Rn, Rm, zr);
 403   }
 404   inline void mul(Register Rd, Register Rn, Register Rm) {
 405     madd(Rd, Rn, Rm, zr);
 406   }
 407 
 408   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 409     smsubl(Rd, Rn, Rm, zr);
 410   }
 411   inline void smull(Register Rd, Register Rn, Register Rm) {
 412     smaddl(Rd, Rn, Rm, zr);
 413   }
 414 
 415   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 416     umsubl(Rd, Rn, Rm, zr);
 417   }
 418   inline void umull(Register Rd, Register Rn, Register Rm) {
 419     umaddl(Rd, Rn, Rm, zr);
 420   }
 421 
 422 #define WRAP(INSN)                                                            \
 423   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 424     if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
 425       nop();                                                                  \
 426     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 427   }
 428 
 429   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 430   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 431 #undef WRAP
 432 
 433 
 434   // macro assembly operations needed for aarch64
 435 
 436   // first two private routines for loading 32 bit or 64 bit constants
 437 private:
 438 
 439   void mov_immediate64(Register dst, u_int64_t imm64);
 440   void mov_immediate32(Register dst, u_int32_t imm32);
 441 
 442   int push(unsigned int bitset, Register stack);
 443   int pop(unsigned int bitset, Register stack);
 444 
 445   int push_fp(unsigned int bitset, Register stack);
 446   int pop_fp(unsigned int bitset, Register stack);
 447 
 448   void mov(Register dst, Address a);
 449 
 450 public:
 451   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 452   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 453 
 454   void push_fp(RegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); }
 455   void pop_fp(RegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); }
 456 
 457   // Push and pop everything that might be clobbered by a native
 458   // runtime call except rscratch1 and rscratch2.  (They are always
 459   // scratch, so we don't have to protect them.)  Only save the lower
 460   // 64 bits of each vector register.
 461   void push_call_clobbered_registers();
 462   void pop_call_clobbered_registers();
 463 
 464   // now mov instructions for loading absolute addresses and 32 or
 465   // 64 bit integers
 466 
 467   inline void mov(Register dst, address addr)
 468   {
 469     mov_immediate64(dst, (u_int64_t)addr);
 470   }
 471 
 472   inline void mov(Register dst, u_int64_t imm64)
 473   {
 474     mov_immediate64(dst, imm64);
 475   }
 476 
 477   inline void movw(Register dst, u_int32_t imm32)
 478   {
 479     mov_immediate32(dst, imm32);
 480   }
 481 
 482   inline void mov(Register dst, long l)
 483   {
 484     mov(dst, (u_int64_t)l);
 485   }
 486 
 487   inline void mov(Register dst, int i)
 488   {
 489     mov(dst, (long)i);
 490   }
 491 
 492   void mov(Register dst, RegisterOrConstant src) {
 493     if (src.is_register())
 494       mov(dst, src.as_register());
 495     else
 496       mov(dst, src.as_constant());
 497   }
 498 
 499   void movptr(Register r, uintptr_t imm64);
 500 
 501   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 502 
 503   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 504     orr(Vd, T, Vn, Vn);
 505   }
 506 
 507 public:
 508 
 509   // Generalized Test Bit And Branch, including a "far" variety which
 510   // spans more than 32KiB.
 511   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
 512     assert(cond == EQ || cond == NE, "must be");
 513 
 514     if (far)
 515       cond = ~cond;
 516 
 517     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 518     if (cond == Assembler::EQ)
 519       branch = &Assembler::tbz;
 520     else
 521       branch = &Assembler::tbnz;
 522 
 523     if (far) {
 524       Label L;
 525       (this->*branch)(Rt, bitpos, L);
 526       b(dest);
 527       bind(L);
 528     } else {
 529       (this->*branch)(Rt, bitpos, dest);
 530     }
 531   }
 532 
 533   // macro instructions for accessing and updating floating point
 534   // status register
 535   //
 536   // FPSR : op1 == 011
 537   //        CRn == 0100
 538   //        CRm == 0100
 539   //        op2 == 001
 540 
 541   inline void get_fpsr(Register reg)
 542   {
 543     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 544   }
 545 
 546   inline void set_fpsr(Register reg)
 547   {
 548     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 549   }
 550 
 551   inline void clear_fpsr()
 552   {
 553     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 554   }
 555 
 556   // DCZID_EL0: op1 == 011
 557   //            CRn == 0000
 558   //            CRm == 0000
 559   //            op2 == 111
 560   inline void get_dczid_el0(Register reg)
 561   {
 562     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 563   }
 564 
 565   // CTR_EL0:   op1 == 011
 566   //            CRn == 0000
 567   //            CRm == 0000
 568   //            op2 == 001
 569   inline void get_ctr_el0(Register reg)
 570   {
 571     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 572   }
 573 
 574   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 575   int corrected_idivl(Register result, Register ra, Register rb,
 576                       bool want_remainder, Register tmp = rscratch1);
 577   int corrected_idivq(Register result, Register ra, Register rb,
 578                       bool want_remainder, Register tmp = rscratch1);
 579 
 580   // Support for NULL-checks
 581   //
 582   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 583   // If the accessed location is M[reg + offset] and the offset is known, provide the
 584   // offset. No explicit code generation is needed if the offset is within a certain
 585   // range (0 <= offset <= page_size).
 586 
 587   virtual void null_check(Register reg, int offset = -1);
 588   static bool needs_explicit_null_check(intptr_t offset);
 589   static bool uses_implicit_null_check(void* address);
 590 
 591   static address target_addr_for_insn(address insn_addr, unsigned insn);
 592   static address target_addr_for_insn(address insn_addr) {
 593     unsigned insn = *(unsigned*)insn_addr;
 594     return target_addr_for_insn(insn_addr, insn);
 595   }
 596 
 597   // Required platform-specific helpers for Label::patch_instructions.
 598   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 599   static int pd_patch_instruction_size(address branch, address target);
 600   static void pd_patch_instruction(address branch, address target, const char* file = NULL, int line = 0) {
 601     pd_patch_instruction_size(branch, target);
 602   }
 603   static address pd_call_destination(address branch) {
 604     return target_addr_for_insn(branch);
 605   }
 606 #ifndef PRODUCT
 607   static void pd_print_patched_instruction(address branch);
 608 #endif
 609 
 610   static int patch_oop(address insn_addr, address o);
 611   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 612 
 613   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 614   void emit_static_call_stub();
 615 
 616   // The following 4 methods return the offset of the appropriate move instruction
 617 
 618   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 619   int load_unsigned_byte(Register dst, Address src);
 620   int load_unsigned_short(Register dst, Address src);
 621 
 622   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 623   int load_signed_byte(Register dst, Address src);
 624   int load_signed_short(Register dst, Address src);
 625 
 626   int load_signed_byte32(Register dst, Address src);
 627   int load_signed_short32(Register dst, Address src);
 628 
 629   // Support for sign-extension (hi:lo = extend_sign(lo))
 630   void extend_sign(Register hi, Register lo);
 631 
 632   // Load and store values by size and signed-ness
 633   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 634   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 635 
 636   // Support for inc/dec with optimal instruction selection depending on value
 637 
 638   // x86_64 aliases an unqualified register/address increment and
 639   // decrement to call incrementq and decrementq but also supports
 640   // explicitly sized calls to incrementq/decrementq or
 641   // incrementl/decrementl
 642 
 643   // for aarch64 the proper convention would be to use
 644   // increment/decrement for 64 bit operatons and
 645   // incrementw/decrementw for 32 bit operations. so when porting
 646   // x86_64 code we can leave calls to increment/decrement as is,
 647   // replace incrementq/decrementq with increment/decrement and
 648   // replace incrementl/decrementl with incrementw/decrementw.
 649 
 650   // n.b. increment/decrement calls with an Address destination will
 651   // need to use a scratch register to load the value to be
 652   // incremented. increment/decrement calls which add or subtract a
 653   // constant value greater than 2^12 will need to use a 2nd scratch
 654   // register to hold the constant. so, a register increment/decrement
 655   // may trash rscratch2 and an address increment/decrement trash
 656   // rscratch and rscratch2
 657 
 658   void decrementw(Address dst, int value = 1);
 659   void decrementw(Register reg, int value = 1);
 660 
 661   void decrement(Register reg, int value = 1);
 662   void decrement(Address dst, int value = 1);
 663 
 664   void incrementw(Address dst, int value = 1);
 665   void incrementw(Register reg, int value = 1);
 666 
 667   void increment(Register reg, int value = 1);
 668   void increment(Address dst, int value = 1);
 669 
 670 
 671   // Alignment
 672   void align(int modulus);
 673 
 674   // Stack frame creation/removal
 675   void enter()
 676   {
 677     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 678     mov(rfp, sp);
 679   }
 680   void leave()
 681   {
 682     mov(sp, rfp);
 683     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 684   }
 685 
 686   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 687   // The pointer will be loaded into the thread register.
 688   void get_thread(Register thread);
 689 
 690 
 691   // Support for VM calls
 692   //
 693   // It is imperative that all calls into the VM are handled via the call_VM macros.
 694   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 695   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 696 
 697 
 698   void call_VM(Register oop_result,
 699                address entry_point,
 700                bool check_exceptions = true);
 701   void call_VM(Register oop_result,
 702                address entry_point,
 703                Register arg_1,
 704                bool check_exceptions = true);
 705   void call_VM(Register oop_result,
 706                address entry_point,
 707                Register arg_1, Register arg_2,
 708                bool check_exceptions = true);
 709   void call_VM(Register oop_result,
 710                address entry_point,
 711                Register arg_1, Register arg_2, Register arg_3,
 712                bool check_exceptions = true);
 713 
 714   // Overloadings with last_Java_sp
 715   void call_VM(Register oop_result,
 716                Register last_java_sp,
 717                address entry_point,
 718                int number_of_arguments = 0,
 719                bool check_exceptions = true);
 720   void call_VM(Register oop_result,
 721                Register last_java_sp,
 722                address entry_point,
 723                Register arg_1, bool
 724                check_exceptions = true);
 725   void call_VM(Register oop_result,
 726                Register last_java_sp,
 727                address entry_point,
 728                Register arg_1, Register arg_2,
 729                bool check_exceptions = true);
 730   void call_VM(Register oop_result,
 731                Register last_java_sp,
 732                address entry_point,
 733                Register arg_1, Register arg_2, Register arg_3,
 734                bool check_exceptions = true);
 735 
 736   void get_vm_result  (Register oop_result, Register thread);
 737   void get_vm_result_2(Register metadata_result, Register thread);
 738 
 739   // These always tightly bind to MacroAssembler::call_VM_base
 740   // bypassing the virtual implementation
 741   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 742   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 743   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 744   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 745   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 746 
 747   void call_VM_leaf(address entry_point,
 748                     int number_of_arguments = 0);
 749   void call_VM_leaf(address entry_point,
 750                     Register arg_1);
 751   void call_VM_leaf(address entry_point,
 752                     Register arg_1, Register arg_2);
 753   void call_VM_leaf(address entry_point,
 754                     Register arg_1, Register arg_2, Register arg_3);
 755 
 756   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 757   // bypassing the virtual implementation
 758   void super_call_VM_leaf(address entry_point);
 759   void super_call_VM_leaf(address entry_point, Register arg_1);
 760   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 761   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 762   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 763 
 764   // last Java Frame (fills frame anchor)
 765   void set_last_Java_frame(Register last_java_sp,
 766                            Register last_java_fp,
 767                            address last_java_pc,
 768                            Register scratch);
 769 
 770   void set_last_Java_frame(Register last_java_sp,
 771                            Register last_java_fp,
 772                            Label &last_java_pc,
 773                            Register scratch);
 774 
 775   void set_last_Java_frame(Register last_java_sp,
 776                            Register last_java_fp,
 777                            Register last_java_pc,
 778                            Register scratch);
 779 
 780   void reset_last_Java_frame(Register thread);
 781 
 782   // thread in the default location (rthread)
 783   void reset_last_Java_frame(bool clear_fp);
 784 
 785   // Stores
 786   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 787   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 788 
 789   void resolve_jobject(Register value, Register thread, Register tmp);
 790 
 791   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 792   void c2bool(Register x);
 793 
 794   void load_method_holder(Register holder, Register method);
 795 
 796   // oop manipulations
 797   void load_klass(Register dst, Register src);
 798   void store_klass(Register dst, Register src);
 799   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 800 
 801   void resolve_oop_handle(Register result, Register tmp = r5);
 802   void load_mirror(Register dst, Register method, Register tmp = r5);
 803 
 804   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 805                       Register tmp1, Register tmp_thread);
 806 
 807   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 808                        Register tmp1, Register tmp_thread);
 809 
 810   // Resolves obj for access. Result is placed in the same register.
 811   // All other registers are preserved.
 812   void resolve(DecoratorSet decorators, Register obj);
 813 
 814   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 815                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 816 
 817   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 818                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 819   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 820                       Register tmp_thread = noreg, DecoratorSet decorators = 0);
 821 
 822   // currently unimplemented
 823   // Used for storing NULL. All other oop constants should be
 824   // stored using routines that take a jobject.
 825   void store_heap_oop_null(Address dst);
 826 
 827   void load_prototype_header(Register dst, Register src);
 828 
 829   void store_klass_gap(Register dst, Register src);
 830 
 831   // This dummy is to prevent a call to store_heap_oop from
 832   // converting a zero (like NULL) into a Register by giving
 833   // the compiler two choices it can't resolve
 834 
 835   void store_heap_oop(Address dst, void* dummy);
 836 
 837   void encode_heap_oop(Register d, Register s);
 838   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 839   void decode_heap_oop(Register d, Register s);
 840   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 841   void encode_heap_oop_not_null(Register r);
 842   void decode_heap_oop_not_null(Register r);
 843   void encode_heap_oop_not_null(Register dst, Register src);
 844   void decode_heap_oop_not_null(Register dst, Register src);
 845 
 846   void set_narrow_oop(Register dst, jobject obj);
 847 
 848   void encode_klass_not_null(Register r);
 849   void decode_klass_not_null(Register r);
 850   void encode_klass_not_null(Register dst, Register src);
 851   void decode_klass_not_null(Register dst, Register src);
 852 
 853   void set_narrow_klass(Register dst, Klass* k);
 854 
 855   // if heap base register is used - reinit it with the correct value
 856   void reinit_heapbase();
 857 
 858   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 859 
 860   void push_CPU_state(bool save_vectors = false);
 861   void pop_CPU_state(bool restore_vectors = false) ;
 862 
 863   // Round up to a power of two
 864   void round_to(Register reg, int modulus);
 865 
 866   // allocation
 867   void eden_allocate(
 868     Register obj,                      // result: pointer to object after successful allocation
 869     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 870     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 871     Register t1,                       // temp register
 872     Label&   slow_case                 // continuation point if fast allocation fails
 873   );
 874   void tlab_allocate(
 875     Register obj,                      // result: pointer to object after successful allocation
 876     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 877     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 878     Register t1,                       // temp register
 879     Register t2,                       // temp register
 880     Label&   slow_case                 // continuation point if fast allocation fails
 881   );
 882   void zero_memory(Register addr, Register len, Register t1);
 883   void verify_tlab();
 884 
 885   // interface method calling
 886   void lookup_interface_method(Register recv_klass,
 887                                Register intf_klass,
 888                                RegisterOrConstant itable_index,
 889                                Register method_result,
 890                                Register scan_temp,
 891                                Label& no_such_interface,
 892                    bool return_method = true);
 893 
 894   // virtual method calling
 895   // n.b. x86 allows RegisterOrConstant for vtable_index
 896   void lookup_virtual_method(Register recv_klass,
 897                              RegisterOrConstant vtable_index,
 898                              Register method_result);
 899 
 900   // Test sub_klass against super_klass, with fast and slow paths.
 901 
 902   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 903   // One of the three labels can be NULL, meaning take the fall-through.
 904   // If super_check_offset is -1, the value is loaded up from super_klass.
 905   // No registers are killed, except temp_reg.
 906   void check_klass_subtype_fast_path(Register sub_klass,
 907                                      Register super_klass,
 908                                      Register temp_reg,
 909                                      Label* L_success,
 910                                      Label* L_failure,
 911                                      Label* L_slow_path,
 912                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 913 
 914   // The rest of the type check; must be wired to a corresponding fast path.
 915   // It does not repeat the fast path logic, so don't use it standalone.
 916   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 917   // Updates the sub's secondary super cache as necessary.
 918   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 919   void check_klass_subtype_slow_path(Register sub_klass,
 920                                      Register super_klass,
 921                                      Register temp_reg,
 922                                      Register temp2_reg,
 923                                      Label* L_success,
 924                                      Label* L_failure,
 925                                      bool set_cond_codes = false);
 926 
 927   // Simplified, combined version, good for typical uses.
 928   // Falls through on failure.
 929   void check_klass_subtype(Register sub_klass,
 930                            Register super_klass,
 931                            Register temp_reg,
 932                            Label& L_success);
 933 
 934   void clinit_barrier(Register klass,
 935                       Register thread,
 936                       Label* L_fast_path = NULL,
 937                       Label* L_slow_path = NULL);
 938 
 939   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 940 
 941 
 942   // Debugging
 943 
 944   // only if +VerifyOops
 945   void verify_oop(Register reg, const char* s = "broken oop");
 946   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 947 
 948 // TODO: verify method and klass metadata (compare against vptr?)
 949   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 950   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 951 
 952 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 953 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 954 
 955   // only if +VerifyFPU
 956   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 957 
 958   // prints msg, dumps registers and stops execution
 959   void stop(const char* msg);
 960 
 961   // prints msg and continues
 962   void warn(const char* msg);
 963 
 964   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 965 
 966   void untested()                                { stop("untested"); }
 967 
 968   void unimplemented(const char* what = "");
 969 
 970   void should_not_reach_here()                   { stop("should not reach here"); }
 971 
 972   // Stack overflow checking
 973   void bang_stack_with_offset(int offset) {
 974     // stack grows down, caller passes positive offset
 975     assert(offset > 0, "must bang with negative offset");
 976     sub(rscratch2, sp, offset);
 977     str(zr, Address(rscratch2));
 978   }
 979 
 980   // Writes to stack successive pages until offset reached to check for
 981   // stack overflow + shadow pages.  Also, clobbers tmp
 982   void bang_stack_size(Register size, Register tmp);
 983 
 984   // Check for reserved stack access in method being exited (for JIT)
 985   void reserved_stack_check();
 986 
 987   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 988                                                 Register tmp,
 989                                                 int offset);
 990 
 991   // Arithmetics
 992 
 993   void addptr(const Address &dst, int32_t src);
 994   void cmpptr(Register src1, Address src2);
 995 
 996   void cmpoop(Register obj1, Register obj2);
 997 
 998   // Various forms of CAS
 999 
1000   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1001                           Label &suceed, Label *fail);
1002   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1003                   Label &suceed, Label *fail);
1004 
1005   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1006                   Label &suceed, Label *fail);
1007 
1008   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1009   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1010   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1011   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1012 
1013   void atomic_xchg(Register prev, Register newv, Register addr);
1014   void atomic_xchgw(Register prev, Register newv, Register addr);
1015   void atomic_xchgal(Register prev, Register newv, Register addr);
1016   void atomic_xchgalw(Register prev, Register newv, Register addr);
1017 
1018   void orptr(Address adr, RegisterOrConstant src) {
1019     ldr(rscratch1, adr);
1020     if (src.is_register())
1021       orr(rscratch1, rscratch1, src.as_register());
1022     else
1023       orr(rscratch1, rscratch1, src.as_constant());
1024     str(rscratch1, adr);
1025   }
1026 
1027   // A generic CAS; success or failure is in the EQ flag.
1028   // Clobbers rscratch1
1029   void cmpxchg(Register addr, Register expected, Register new_val,
1030                enum operand_size size,
1031                bool acquire, bool release, bool weak,
1032                Register result);
1033 private:
1034   void compare_eq(Register rn, Register rm, enum operand_size size);
1035 
1036 public:
1037   // Calls
1038 
1039   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1040 
1041   static bool far_branches() {
1042     return ReservedCodeCacheSize > branch_range || UseAOT;
1043   }
1044 
1045   // Jumps that can reach anywhere in the code cache.
1046   // Trashes tmp.
1047   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1048   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1049 
1050   static int far_branch_size() {
1051     if (far_branches()) {
1052       return 3 * 4;  // adrp, add, br
1053     } else {
1054       return 4;
1055     }
1056   }
1057 
1058   // Emit the CompiledIC call idiom
1059   address ic_call(address entry, jint method_index = 0);
1060 
1061 public:
1062 
1063   // Data
1064 
1065   void mov_metadata(Register dst, Metadata* obj);
1066   Address allocate_metadata_address(Metadata* obj);
1067   Address constant_oop_address(jobject obj);
1068 
1069   void movoop(Register dst, jobject obj, bool immediate = false);
1070 
1071   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1072   void kernel_crc32(Register crc, Register buf, Register len,
1073         Register table0, Register table1, Register table2, Register table3,
1074         Register tmp, Register tmp2, Register tmp3);
1075   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1076   void kernel_crc32c(Register crc, Register buf, Register len,
1077         Register table0, Register table1, Register table2, Register table3,
1078         Register tmp, Register tmp2, Register tmp3);
1079 
1080   // Stack push and pop individual 64 bit registers
1081   void push(Register src);
1082   void pop(Register dst);
1083 
1084   // push all registers onto the stack
1085   void pusha();
1086   void popa();
1087 
1088   void repne_scan(Register addr, Register value, Register count,
1089                   Register scratch);
1090   void repne_scanw(Register addr, Register value, Register count,
1091                    Register scratch);
1092 
1093   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1094   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1095 
1096   // If a constant does not fit in an immediate field, generate some
1097   // number of MOV instructions and then perform the operation
1098   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1099                              add_sub_imm_insn insn1,
1100                              add_sub_reg_insn insn2);
1101   // Seperate vsn which sets the flags
1102   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1103                              add_sub_imm_insn insn1,
1104                              add_sub_reg_insn insn2);
1105 
1106 #define WRAP(INSN)                                                      \
1107   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1108     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1109   }                                                                     \
1110                                                                         \
1111   void INSN(Register Rd, Register Rn, Register Rm,                      \
1112              enum shift_kind kind, unsigned shift = 0) {                \
1113     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1114   }                                                                     \
1115                                                                         \
1116   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1117     Assembler::INSN(Rd, Rn, Rm);                                        \
1118   }                                                                     \
1119                                                                         \
1120   void INSN(Register Rd, Register Rn, Register Rm,                      \
1121            ext::operation option, int amount = 0) {                     \
1122     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1123   }
1124 
1125   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1126 
1127 #undef WRAP
1128 #define WRAP(INSN)                                                      \
1129   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1130     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1131   }                                                                     \
1132                                                                         \
1133   void INSN(Register Rd, Register Rn, Register Rm,                      \
1134              enum shift_kind kind, unsigned shift = 0) {                \
1135     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1136   }                                                                     \
1137                                                                         \
1138   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1139     Assembler::INSN(Rd, Rn, Rm);                                        \
1140   }                                                                     \
1141                                                                         \
1142   void INSN(Register Rd, Register Rn, Register Rm,                      \
1143            ext::operation option, int amount = 0) {                     \
1144     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1145   }
1146 
1147   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1148 
1149   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1150   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1151   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1152   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1153 
1154   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1155 
1156   void tableswitch(Register index, jint lowbound, jint highbound,
1157                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1158     adr(rscratch1, jumptable);
1159     subsw(rscratch2, index, lowbound);
1160     subsw(zr, rscratch2, highbound - lowbound);
1161     br(Assembler::HS, jumptable_end);
1162     add(rscratch1, rscratch1, rscratch2,
1163         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1164     br(rscratch1);
1165   }
1166 
1167   // Form an address from base + offset in Rd.  Rd may or may not
1168   // actually be used: you must use the Address that is returned.  It
1169   // is up to you to ensure that the shift provided matches the size
1170   // of your data.
1171   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1172 
1173   // Return true iff an address is within the 48-bit AArch64 address
1174   // space.
1175   bool is_valid_AArch64_address(address a) {
1176     return ((uint64_t)a >> 48) == 0;
1177   }
1178 
1179   // Load the base of the cardtable byte map into reg.
1180   void load_byte_map_base(Register reg);
1181 
1182   // Prolog generator routines to support switch between x86 code and
1183   // generated ARM code
1184 
1185   // routine to generate an x86 prolog for a stub function which
1186   // bootstraps into the generated ARM code which directly follows the
1187   // stub
1188   //
1189 
1190   public:
1191 
1192   void ldr_constant(Register dest, const Address &const_addr) {
1193     if (NearCpool) {
1194       ldr(dest, const_addr);
1195     } else {
1196       unsigned long offset;
1197       adrp(dest, InternalAddress(const_addr.target()), offset);
1198       ldr(dest, Address(dest, offset));
1199     }
1200   }
1201 
1202   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1203   address read_polling_page(Register r, relocInfo::relocType rtype);
1204   void get_polling_page(Register dest, address page, relocInfo::relocType rtype);
1205 
1206   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1207   void update_byte_crc32(Register crc, Register val, Register table);
1208   void update_word_crc32(Register crc, Register v, Register tmp,
1209         Register table0, Register table1, Register table2, Register table3,
1210         bool upper = false);
1211 
1212   void string_compare(Register str1, Register str2,
1213                       Register cnt1, Register cnt2, Register result,
1214                       Register tmp1, Register tmp2, FloatRegister vtmp1,
1215                       FloatRegister vtmp2, FloatRegister vtmp3, int ae);
1216 
1217   void has_negatives(Register ary1, Register len, Register result);
1218 
1219   void arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1220                      Register tmp1, Register tmp2, Register tmp3, int elem_size);
1221 
1222   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1223                      int elem_size);
1224 
1225   void fill_words(Register base, Register cnt, Register value);
1226   void zero_words(Register base, u_int64_t cnt);
1227   void zero_words(Register ptr, Register cnt);
1228   void zero_dcache_blocks(Register base, Register cnt);
1229 
1230   static const int zero_words_block_size;
1231 
1232   void byte_array_inflate(Register src, Register dst, Register len,
1233                           FloatRegister vtmp1, FloatRegister vtmp2,
1234                           FloatRegister vtmp3, Register tmp4);
1235 
1236   void char_array_compress(Register src, Register dst, Register len,
1237                            FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1238                            FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1239                            Register result);
1240 
1241   void encode_iso_array(Register src, Register dst,
1242                         Register len, Register result,
1243                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1244                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1245   void string_indexof(Register str1, Register str2,
1246                       Register cnt1, Register cnt2,
1247                       Register tmp1, Register tmp2,
1248                       Register tmp3, Register tmp4,
1249                       Register tmp5, Register tmp6,
1250                       int int_cnt1, Register result, int ae);
1251   void string_indexof_char(Register str1, Register cnt1,
1252                            Register ch, Register result,
1253                            Register tmp1, Register tmp2, Register tmp3);
1254   void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1255                 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1256                 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1257                 FloatRegister tmpC4, Register tmp1, Register tmp2,
1258                 Register tmp3, Register tmp4, Register tmp5);
1259   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1260       address pio2, address dsin_coef, address dcos_coef);
1261  private:
1262   // begin trigonometric functions support block
1263   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1264   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1265   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1266   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1267   // end trigonometric functions support block
1268   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1269                        Register src1, Register src2);
1270   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1271     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1272   }
1273   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1274                              Register y, Register y_idx, Register z,
1275                              Register carry, Register product,
1276                              Register idx, Register kdx);
1277   void multiply_128_x_128_loop(Register y, Register z,
1278                                Register carry, Register carry2,
1279                                Register idx, Register jdx,
1280                                Register yz_idx1, Register yz_idx2,
1281                                Register tmp, Register tmp3, Register tmp4,
1282                                Register tmp7, Register product_hi);
1283   void kernel_crc32_using_crc32(Register crc, Register buf,
1284         Register len, Register tmp0, Register tmp1, Register tmp2,
1285         Register tmp3);
1286   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1287         Register len, Register tmp0, Register tmp1, Register tmp2,
1288         Register tmp3);
1289 public:
1290   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1291                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1292                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1293   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1294   // ISB may be needed because of a safepoint
1295   void maybe_isb() { isb(); }
1296 
1297 private:
1298   // Return the effective address r + (r1 << ext) + offset.
1299   // Uses rscratch2.
1300   Address offsetted_address(Register r, Register r1, Address::extend ext,
1301                             int offset, int size);
1302 
1303 private:
1304   // Returns an address on the stack which is reachable with a ldr/str of size
1305   // Uses rscratch2 if the address is not directly reachable
1306   Address spill_address(int size, int offset, Register tmp=rscratch2);
1307 
1308   bool merge_alignment_check(Register base, size_t size, long cur_offset, long prev_offset) const;
1309 
1310   // Check whether two loads/stores can be merged into ldp/stp.
1311   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1312 
1313   // Merge current load/store with previous load/store into ldp/stp.
1314   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1315 
1316   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1317   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1318 
1319 public:
1320   void spill(Register Rx, bool is64, int offset) {
1321     if (is64) {
1322       str(Rx, spill_address(8, offset));
1323     } else {
1324       strw(Rx, spill_address(4, offset));
1325     }
1326   }
1327   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1328     str(Vx, T, spill_address(1 << (int)T, offset));
1329   }
1330   void unspill(Register Rx, bool is64, int offset) {
1331     if (is64) {
1332       ldr(Rx, spill_address(8, offset));
1333     } else {
1334       ldrw(Rx, spill_address(4, offset));
1335     }
1336   }
1337   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1338     ldr(Vx, T, spill_address(1 << (int)T, offset));
1339   }
1340   void spill_copy128(int src_offset, int dst_offset,
1341                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1342     if (src_offset < 512 && (src_offset & 7) == 0 &&
1343         dst_offset < 512 && (dst_offset & 7) == 0) {
1344       ldp(tmp1, tmp2, Address(sp, src_offset));
1345       stp(tmp1, tmp2, Address(sp, dst_offset));
1346     } else {
1347       unspill(tmp1, true, src_offset);
1348       spill(tmp1, true, dst_offset);
1349       unspill(tmp1, true, src_offset+8);
1350       spill(tmp1, true, dst_offset+8);
1351     }
1352   }
1353 
1354   void cache_wb(Address line);
1355   void cache_wbsync(bool is_pre);
1356 };
1357 
1358 #ifdef ASSERT
1359 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1360 #endif
1361 
1362 /**
1363  * class SkipIfEqual:
1364  *
1365  * Instantiating this class will result in assembly code being output that will
1366  * jump around any code emitted between the creation of the instance and it's
1367  * automatic destruction at the end of a scope block, depending on the value of
1368  * the flag passed to the constructor, which will be checked at run-time.
1369  */
1370 class SkipIfEqual {
1371  private:
1372   MacroAssembler* _masm;
1373   Label _label;
1374 
1375  public:
1376    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1377    ~SkipIfEqual();
1378 };
1379 
1380 struct tableswitch {
1381   Register _reg;
1382   int _insn_index; jint _first_key; jint _last_key;
1383   Label _after;
1384   Label _branches;
1385 };
1386 
1387 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP