1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_NODE_HPP
  26 #define SHARE_OPTO_NODE_HPP
  27 
  28 #include "libadt/vectset.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 class AbstractLockNode;
  38 class AddNode;
  39 class AddPNode;
  40 class AliasInfo;
  41 class AllocateArrayNode;
  42 class AllocateNode;
  43 class ArrayCopyNode;
  44 class Block;
  45 class BoolNode;
  46 class BoxLockNode;
  47 class CMoveNode;
  48 class CallDynamicJavaNode;
  49 class CallJavaNode;
  50 class CallLeafNode;
  51 class CallNode;
  52 class CallRuntimeNode;
  53 class CallStaticJavaNode;
  54 class CastIINode;
  55 class CastLLNode;
  56 class CatchNode;
  57 class CatchProjNode;
  58 class CheckCastPPNode;
  59 class ClearArrayNode;
  60 class CmpNode;
  61 class CodeBuffer;
  62 class ConstraintCastNode;
  63 class ConNode;
  64 class CompareAndSwapNode;
  65 class CompareAndExchangeNode;
  66 class CountedLoopNode;
  67 class CountedLoopEndNode;
  68 class DecodeNarrowPtrNode;
  69 class DecodeNNode;
  70 class DecodeNKlassNode;
  71 class EncodeNarrowPtrNode;
  72 class EncodePNode;
  73 class EncodePKlassNode;
  74 class FastLockNode;
  75 class FastUnlockNode;
  76 class HaltNode;
  77 class IfNode;
  78 class IfProjNode;
  79 class IfFalseNode;
  80 class IfTrueNode;
  81 class InitializeNode;
  82 class JVMState;
  83 class JumpNode;
  84 class JumpProjNode;
  85 class LoadNode;
  86 class LoadStoreNode;
  87 class LoadStoreConditionalNode;
  88 class LockNode;
  89 class LoopNode;
  90 class MachBranchNode;
  91 class MachCallDynamicJavaNode;
  92 class MachCallJavaNode;
  93 class MachCallLeafNode;
  94 class MachCallNode;
  95 class MachCallRuntimeNode;
  96 class MachCallStaticJavaNode;
  97 class MachConstantBaseNode;
  98 class MachConstantNode;
  99 class MachGotoNode;
 100 class MachIfNode;
 101 class MachJumpNode;
 102 class MachNode;
 103 class MachNullCheckNode;
 104 class MachProjNode;
 105 class MachReturnNode;
 106 class MachSafePointNode;
 107 class MachSpillCopyNode;
 108 class MachTempNode;
 109 class MachMergeNode;
 110 class MachMemBarNode;
 111 class Matcher;
 112 class MemBarNode;
 113 class MemBarStoreStoreNode;
 114 class MemNode;
 115 class MergeMemNode;
 116 class MulNode;
 117 class MultiNode;
 118 class MultiBranchNode;
 119 class NeverBranchNode;
 120 class OuterStripMinedLoopNode;
 121 class OuterStripMinedLoopEndNode;
 122 class Node;
 123 class Node_Array;
 124 class Node_List;
 125 class Node_Stack;
 126 class NullCheckNode;
 127 class OopMap;
 128 class ParmNode;
 129 class PCTableNode;
 130 class PhaseCCP;
 131 class PhaseGVN;
 132 class PhaseIterGVN;
 133 class PhaseRegAlloc;
 134 class PhaseTransform;
 135 class PhaseValues;
 136 class PhiNode;
 137 class Pipeline;
 138 class ProjNode;
 139 class RangeCheckNode;
 140 class RegMask;
 141 class RegionNode;
 142 class RootNode;
 143 class SafePointNode;
 144 class SafePointScalarObjectNode;
 145 class StartNode;
 146 class State;
 147 class StoreNode;
 148 class SubNode;
 149 class Type;
 150 class TypeNode;
 151 class UnlockNode;
 152 class VectorNode;
 153 class LoadVectorNode;
 154 class StoreVectorNode;
 155 class VectorSet;
 156 typedef void (*NFunc)(Node&,void*);
 157 extern "C" {
 158   typedef int (*C_sort_func_t)(const void *, const void *);
 159 }
 160 
 161 // The type of all node counts and indexes.
 162 // It must hold at least 16 bits, but must also be fast to load and store.
 163 // This type, if less than 32 bits, could limit the number of possible nodes.
 164 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 165 typedef unsigned int node_idx_t;
 166 
 167 
 168 #ifndef OPTO_DU_ITERATOR_ASSERT
 169 #ifdef ASSERT
 170 #define OPTO_DU_ITERATOR_ASSERT 1
 171 #else
 172 #define OPTO_DU_ITERATOR_ASSERT 0
 173 #endif
 174 #endif //OPTO_DU_ITERATOR_ASSERT
 175 
 176 #if OPTO_DU_ITERATOR_ASSERT
 177 class DUIterator;
 178 class DUIterator_Fast;
 179 class DUIterator_Last;
 180 #else
 181 typedef uint   DUIterator;
 182 typedef Node** DUIterator_Fast;
 183 typedef Node** DUIterator_Last;
 184 #endif
 185 
 186 // Node Sentinel
 187 #define NodeSentinel (Node*)-1
 188 
 189 // Unknown count frequency
 190 #define COUNT_UNKNOWN (-1.0f)
 191 
 192 //------------------------------Node-------------------------------------------
 193 // Nodes define actions in the program.  They create values, which have types.
 194 // They are both vertices in a directed graph and program primitives.  Nodes
 195 // are labeled; the label is the "opcode", the primitive function in the lambda
 196 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 197 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 198 // the Node's function.  These inputs also define a Type equation for the Node.
 199 // Solving these Type equations amounts to doing dataflow analysis.
 200 // Control and data are uniformly represented in the graph.  Finally, Nodes
 201 // have a unique dense integer index which is used to index into side arrays
 202 // whenever I have phase-specific information.
 203 
 204 class Node {
 205   friend class VMStructs;
 206 
 207   // Lots of restrictions on cloning Nodes
 208   Node(const Node&);            // not defined; linker error to use these
 209   Node &operator=(const Node &rhs);
 210 
 211 public:
 212   friend class Compile;
 213   #if OPTO_DU_ITERATOR_ASSERT
 214   friend class DUIterator_Common;
 215   friend class DUIterator;
 216   friend class DUIterator_Fast;
 217   friend class DUIterator_Last;
 218   #endif
 219 
 220   // Because Nodes come and go, I define an Arena of Node structures to pull
 221   // from.  This should allow fast access to node creation & deletion.  This
 222   // field is a local cache of a value defined in some "program fragment" for
 223   // which these Nodes are just a part of.
 224 
 225   inline void* operator new(size_t x) throw() {
 226     Compile* C = Compile::current();
 227     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 228     return (void*)n;
 229   }
 230 
 231   // Delete is a NOP
 232   void operator delete( void *ptr ) {}
 233   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 234   void destruct();
 235 
 236   // Create a new Node.  Required is the number is of inputs required for
 237   // semantic correctness.
 238   Node( uint required );
 239 
 240   // Create a new Node with given input edges.
 241   // This version requires use of the "edge-count" new.
 242   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 243   Node( Node *n0 );
 244   Node( Node *n0, Node *n1 );
 245   Node( Node *n0, Node *n1, Node *n2 );
 246   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 247   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 248   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 249   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 250             Node *n4, Node *n5, Node *n6 );
 251 
 252   // Clone an inherited Node given only the base Node type.
 253   Node* clone() const;
 254 
 255   // Clone a Node, immediately supplying one or two new edges.
 256   // The first and second arguments, if non-null, replace in(1) and in(2),
 257   // respectively.
 258   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 259     Node* nn = clone();
 260     if (in1 != NULL)  nn->set_req(1, in1);
 261     if (in2 != NULL)  nn->set_req(2, in2);
 262     return nn;
 263   }
 264 
 265 private:
 266   // Shared setup for the above constructors.
 267   // Handles all interactions with Compile::current.
 268   // Puts initial values in all Node fields except _idx.
 269   // Returns the initial value for _idx, which cannot
 270   // be initialized by assignment.
 271   inline int Init(int req);
 272 
 273 //----------------- input edge handling
 274 protected:
 275   friend class PhaseCFG;        // Access to address of _in array elements
 276   Node **_in;                   // Array of use-def references to Nodes
 277   Node **_out;                  // Array of def-use references to Nodes
 278 
 279   // Input edges are split into two categories.  Required edges are required
 280   // for semantic correctness; order is important and NULLs are allowed.
 281   // Precedence edges are used to help determine execution order and are
 282   // added, e.g., for scheduling purposes.  They are unordered and not
 283   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 284   // are required, from _cnt to _max-1 are precedence edges.
 285   node_idx_t _cnt;              // Total number of required Node inputs.
 286 
 287   node_idx_t _max;              // Actual length of input array.
 288 
 289   // Output edges are an unordered list of def-use edges which exactly
 290   // correspond to required input edges which point from other nodes
 291   // to this one.  Thus the count of the output edges is the number of
 292   // users of this node.
 293   node_idx_t _outcnt;           // Total number of Node outputs.
 294 
 295   node_idx_t _outmax;           // Actual length of output array.
 296 
 297   // Grow the actual input array to the next larger power-of-2 bigger than len.
 298   void grow( uint len );
 299   // Grow the output array to the next larger power-of-2 bigger than len.
 300   void out_grow( uint len );
 301 
 302  public:
 303   // Each Node is assigned a unique small/dense number.  This number is used
 304   // to index into auxiliary arrays of data and bit vectors.
 305   // The field _idx is declared constant to defend against inadvertent assignments,
 306   // since it is used by clients as a naked field. However, the field's value can be
 307   // changed using the set_idx() method.
 308   //
 309   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 310   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 311   // preserved in _parse_idx.
 312   const node_idx_t _idx;
 313   DEBUG_ONLY(const node_idx_t _parse_idx;)
 314 
 315   // Get the (read-only) number of input edges
 316   uint req() const { return _cnt; }
 317   uint len() const { return _max; }
 318   // Get the (read-only) number of output edges
 319   uint outcnt() const { return _outcnt; }
 320 
 321 #if OPTO_DU_ITERATOR_ASSERT
 322   // Iterate over the out-edges of this node.  Deletions are illegal.
 323   inline DUIterator outs() const;
 324   // Use this when the out array might have changed to suppress asserts.
 325   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 326   // Does the node have an out at this position?  (Used for iteration.)
 327   inline bool has_out(DUIterator& i) const;
 328   inline Node*    out(DUIterator& i) const;
 329   // Iterate over the out-edges of this node.  All changes are illegal.
 330   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 331   inline Node*    fast_out(DUIterator_Fast& i) const;
 332   // Iterate over the out-edges of this node, deleting one at a time.
 333   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 334   inline Node*    last_out(DUIterator_Last& i) const;
 335   // The inline bodies of all these methods are after the iterator definitions.
 336 #else
 337   // Iterate over the out-edges of this node.  Deletions are illegal.
 338   // This iteration uses integral indexes, to decouple from array reallocations.
 339   DUIterator outs() const  { return 0; }
 340   // Use this when the out array might have changed to suppress asserts.
 341   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 342 
 343   // Reference to the i'th output Node.  Error if out of bounds.
 344   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 345   // Does the node have an out at this position?  (Used for iteration.)
 346   bool has_out(DUIterator i) const { return i < _outcnt; }
 347 
 348   // Iterate over the out-edges of this node.  All changes are illegal.
 349   // This iteration uses a pointer internal to the out array.
 350   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 351     Node** out = _out;
 352     // Assign a limit pointer to the reference argument:
 353     max = out + (ptrdiff_t)_outcnt;
 354     // Return the base pointer:
 355     return out;
 356   }
 357   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 358   // Iterate over the out-edges of this node, deleting one at a time.
 359   // This iteration uses a pointer internal to the out array.
 360   DUIterator_Last last_outs(DUIterator_Last& min) const {
 361     Node** out = _out;
 362     // Assign a limit pointer to the reference argument:
 363     min = out;
 364     // Return the pointer to the start of the iteration:
 365     return out + (ptrdiff_t)_outcnt - 1;
 366   }
 367   Node*    last_out(DUIterator_Last i) const  { return *i; }
 368 #endif
 369 
 370   // Reference to the i'th input Node.  Error if out of bounds.
 371   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 372   // Reference to the i'th input Node.  NULL if out of bounds.
 373   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
 374   // Reference to the i'th output Node.  Error if out of bounds.
 375   // Use this accessor sparingly.  We are going trying to use iterators instead.
 376   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 377   // Return the unique out edge.
 378   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 379   // Delete out edge at position 'i' by moving last out edge to position 'i'
 380   void  raw_del_out(uint i) {
 381     assert(i < _outcnt,"oob");
 382     assert(_outcnt > 0,"oob");
 383     #if OPTO_DU_ITERATOR_ASSERT
 384     // Record that a change happened here.
 385     debug_only(_last_del = _out[i]; ++_del_tick);
 386     #endif
 387     _out[i] = _out[--_outcnt];
 388     // Smash the old edge so it can't be used accidentally.
 389     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 390   }
 391 
 392 #ifdef ASSERT
 393   bool is_dead() const;
 394 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 395   bool is_reachable_from_root() const;
 396 #endif
 397   // Check whether node has become unreachable
 398   bool is_unreachable(PhaseIterGVN &igvn) const;
 399 
 400   // Set a required input edge, also updates corresponding output edge
 401   void add_req( Node *n ); // Append a NEW required input
 402   void add_req( Node *n0, Node *n1 ) {
 403     add_req(n0); add_req(n1); }
 404   void add_req( Node *n0, Node *n1, Node *n2 ) {
 405     add_req(n0); add_req(n1); add_req(n2); }
 406   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 407   void del_req( uint idx ); // Delete required edge & compact
 408   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 409   void ins_req( uint i, Node *n ); // Insert a NEW required input
 410   void set_req( uint i, Node *n ) {
 411     assert( is_not_dead(n), "can not use dead node");
 412     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 413     assert( !VerifyHashTableKeys || _hash_lock == 0,
 414             "remove node from hash table before modifying it");
 415     Node** p = &_in[i];    // cache this._in, across the del_out call
 416     if (*p != NULL)  (*p)->del_out((Node *)this);
 417     (*p) = n;
 418     if (n != NULL)      n->add_out((Node *)this);
 419     Compile::current()->record_modified_node(this);
 420   }
 421   // Light version of set_req() to init inputs after node creation.
 422   void init_req( uint i, Node *n ) {
 423     assert( i == 0 && this == n ||
 424             is_not_dead(n), "can not use dead node");
 425     assert( i < _cnt, "oob");
 426     assert( !VerifyHashTableKeys || _hash_lock == 0,
 427             "remove node from hash table before modifying it");
 428     assert( _in[i] == NULL, "sanity");
 429     _in[i] = n;
 430     if (n != NULL)      n->add_out((Node *)this);
 431     Compile::current()->record_modified_node(this);
 432   }
 433   // Find first occurrence of n among my edges:
 434   int find_edge(Node* n);
 435   int find_prec_edge(Node* n) {
 436     for (uint i = req(); i < len(); i++) {
 437       if (_in[i] == n) return i;
 438       if (_in[i] == NULL) {
 439         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
 440         break;
 441       }
 442     }
 443     return -1;
 444   }
 445   int replace_edge(Node* old, Node* neww);
 446   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
 447   // NULL out all inputs to eliminate incoming Def-Use edges.
 448   // Return the number of edges between 'n' and 'this'
 449   int  disconnect_inputs(Node *n, Compile *c);
 450 
 451   // Quickly, return true if and only if I am Compile::current()->top().
 452   bool is_top() const {
 453     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 454     return (_out == NULL);
 455   }
 456   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 457   void setup_is_top();
 458 
 459   // Strip away casting.  (It is depth-limited.)
 460   Node* uncast(bool keep_deps = false) const;
 461   // Return whether two Nodes are equivalent, after stripping casting.
 462   bool eqv_uncast(const Node* n, bool keep_deps = false) const {
 463     return (this->uncast(keep_deps) == n->uncast(keep_deps));
 464   }
 465 
 466   // Find out of current node that matches opcode.
 467   Node* find_out_with(int opcode);
 468   // Return true if the current node has an out that matches opcode.
 469   bool has_out_with(int opcode);
 470   // Return true if the current node has an out that matches any of the opcodes.
 471   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 472 
 473 private:
 474   static Node* uncast_helper(const Node* n, bool keep_deps);
 475 
 476   // Add an output edge to the end of the list
 477   void add_out( Node *n ) {
 478     if (is_top())  return;
 479     if( _outcnt == _outmax ) out_grow(_outcnt);
 480     _out[_outcnt++] = n;
 481   }
 482   // Delete an output edge
 483   void del_out( Node *n ) {
 484     if (is_top())  return;
 485     Node** outp = &_out[_outcnt];
 486     // Find and remove n
 487     do {
 488       assert(outp > _out, "Missing Def-Use edge");
 489     } while (*--outp != n);
 490     *outp = _out[--_outcnt];
 491     // Smash the old edge so it can't be used accidentally.
 492     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 493     // Record that a change happened here.
 494     #if OPTO_DU_ITERATOR_ASSERT
 495     debug_only(_last_del = n; ++_del_tick);
 496     #endif
 497   }
 498   // Close gap after removing edge.
 499   void close_prec_gap_at(uint gap) {
 500     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 501     uint i = gap;
 502     Node *last = NULL;
 503     for (; i < _max-1; ++i) {
 504       Node *next = _in[i+1];
 505       if (next == NULL) break;
 506       last = next;
 507     }
 508     _in[gap] = last; // Move last slot to empty one.
 509     _in[i] = NULL;   // NULL out last slot.
 510   }
 511 
 512 public:
 513   // Globally replace this node by a given new node, updating all uses.
 514   void replace_by(Node* new_node);
 515   // Globally replace this node by a given new node, updating all uses
 516   // and cutting input edges of old node.
 517   void subsume_by(Node* new_node, Compile* c) {
 518     replace_by(new_node);
 519     disconnect_inputs(NULL, c);
 520   }
 521   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 522   // Find the one non-null required input.  RegionNode only
 523   Node *nonnull_req() const;
 524   // Add or remove precedence edges
 525   void add_prec( Node *n );
 526   void rm_prec( uint i );
 527 
 528   // Note: prec(i) will not necessarily point to n if edge already exists.
 529   void set_prec( uint i, Node *n ) {
 530     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
 531     assert(is_not_dead(n), "can not use dead node");
 532     assert(i >= _cnt, "not a precedence edge");
 533     // Avoid spec violation: duplicated prec edge.
 534     if (_in[i] == n) return;
 535     if (n == NULL || find_prec_edge(n) != -1) {
 536       rm_prec(i);
 537       return;
 538     }
 539     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 540     _in[i] = n;
 541     if (n != NULL) n->add_out((Node *)this);
 542   }
 543 
 544   // Set this node's index, used by cisc_version to replace current node
 545   void set_idx(uint new_idx) {
 546     const node_idx_t* ref = &_idx;
 547     *(node_idx_t*)ref = new_idx;
 548   }
 549   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 550   void swap_edges(uint i1, uint i2) {
 551     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 552     // Def-Use info is unchanged
 553     Node* n1 = in(i1);
 554     Node* n2 = in(i2);
 555     _in[i1] = n2;
 556     _in[i2] = n1;
 557     // If this node is in the hash table, make sure it doesn't need a rehash.
 558     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 559   }
 560 
 561   // Iterators over input Nodes for a Node X are written as:
 562   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 563   // NOTE: Required edges can contain embedded NULL pointers.
 564 
 565 //----------------- Other Node Properties
 566 
 567   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 568   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 569   //
 570   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 571   // the type of the node the ID represents; another subset of an ID's bits are reserved
 572   // for the superclasses of the node represented by the ID.
 573   //
 574   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 575   // returns false. A.is_A() returns true.
 576   //
 577   // If two classes, A and B, have the same superclass, a different bit of A's class id
 578   // is reserved for A's type than for B's type. That bit is specified by the third
 579   // parameter in the macro DEFINE_CLASS_ID.
 580   //
 581   // By convention, classes with deeper hierarchy are declared first. Moreover,
 582   // classes with the same hierarchy depth are sorted by usage frequency.
 583   //
 584   // The query method masks the bits to cut off bits of subclasses and then compares
 585   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 586   //
 587   //  Class_MachCall=30, ClassMask_MachCall=31
 588   // 12               8               4               0
 589   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 590   //                                  |   |   |   |
 591   //                                  |   |   |   Bit_Mach=2
 592   //                                  |   |   Bit_MachReturn=4
 593   //                                  |   Bit_MachSafePoint=8
 594   //                                  Bit_MachCall=16
 595   //
 596   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 597   // 12               8               4               0
 598   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 599   //                              |   |   |
 600   //                              |   |   Bit_Region=8
 601   //                              |   Bit_Loop=16
 602   //                              Bit_CountedLoop=32
 603 
 604   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 605   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 606   Class_##cl = Class_##supcl + Bit_##cl , \
 607   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 608 
 609   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 610   // so that it's values fits into 16 bits.
 611   enum NodeClasses {
 612     Bit_Node   = 0x0000,
 613     Class_Node = 0x0000,
 614     ClassMask_Node = 0xFFFF,
 615 
 616     DEFINE_CLASS_ID(Multi, Node, 0)
 617       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 618         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 619           DEFINE_CLASS_ID(CallJava,         Call, 0)
 620             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 621             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 622           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 623             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 624           DEFINE_CLASS_ID(Allocate,         Call, 2)
 625             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 626           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 627             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 628             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 629           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 630       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 631         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 632           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 633           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 634         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 635           DEFINE_CLASS_ID(CountedLoopEnd,         If, 0)
 636           DEFINE_CLASS_ID(RangeCheck,             If, 1)
 637           DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
 638         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 639       DEFINE_CLASS_ID(Start,       Multi, 2)
 640       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 641         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 642         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 643 
 644     DEFINE_CLASS_ID(Mach,  Node, 1)
 645       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 646         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 647           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 648             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 649               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 650               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 651             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 652               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 653       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 654         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 655         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 656         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 657       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 658       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 659       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 660       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 661         DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
 662       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 663       DEFINE_CLASS_ID(MachMemBar,       Mach, 7)
 664 
 665     DEFINE_CLASS_ID(Type,  Node, 2)
 666       DEFINE_CLASS_ID(Phi,   Type, 0)
 667       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 668         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 669         DEFINE_CLASS_ID(CastLL, ConstraintCast, 1)
 670         DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 2)
 671       DEFINE_CLASS_ID(CMove, Type, 3)
 672       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 673       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 674         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 675         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 676       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 677         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 678         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 679 
 680     DEFINE_CLASS_ID(Proj,  Node, 3)
 681       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 682       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 683       DEFINE_CLASS_ID(IfProj,    Proj, 2)
 684         DEFINE_CLASS_ID(IfTrue,    IfProj, 0)
 685         DEFINE_CLASS_ID(IfFalse,   IfProj, 1)
 686       DEFINE_CLASS_ID(Parm,      Proj, 4)
 687       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 688 
 689     DEFINE_CLASS_ID(Mem,   Node, 4)
 690       DEFINE_CLASS_ID(Load,  Mem, 0)
 691         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 692       DEFINE_CLASS_ID(Store, Mem, 1)
 693         DEFINE_CLASS_ID(StoreVector, Store, 0)
 694       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 695         DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
 696           DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
 697         DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
 698 
 699     DEFINE_CLASS_ID(Region, Node, 5)
 700       DEFINE_CLASS_ID(Loop, Region, 0)
 701         DEFINE_CLASS_ID(Root,                Loop, 0)
 702         DEFINE_CLASS_ID(CountedLoop,         Loop, 1)
 703         DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
 704 
 705     DEFINE_CLASS_ID(Sub,   Node, 6)
 706       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 707         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 708         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 709 
 710     DEFINE_CLASS_ID(MergeMem, Node, 7)
 711     DEFINE_CLASS_ID(Bool,     Node, 8)
 712     DEFINE_CLASS_ID(AddP,     Node, 9)
 713     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 714     DEFINE_CLASS_ID(Add,      Node, 11)
 715     DEFINE_CLASS_ID(Mul,      Node, 12)
 716     DEFINE_CLASS_ID(Vector,   Node, 13)
 717     DEFINE_CLASS_ID(ClearArray, Node, 14)
 718     DEFINE_CLASS_ID(Halt, Node, 15)
 719 
 720     _max_classes  = ClassMask_Halt
 721   };
 722   #undef DEFINE_CLASS_ID
 723 
 724   // Flags are sorted by usage frequency.
 725   enum NodeFlags {
 726     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
 727     Flag_rematerialize               = Flag_is_Copy << 1,
 728     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 729     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
 730     Flag_is_Con                      = Flag_is_macro << 1,
 731     Flag_is_cisc_alternate           = Flag_is_Con << 1,
 732     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
 733     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
 734     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
 735     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
 736     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
 737     Flag_is_reduction                = Flag_has_call << 1,
 738     Flag_is_scheduled                = Flag_is_reduction << 1,
 739     Flag_has_vector_mask_set         = Flag_is_scheduled << 1,
 740     Flag_is_expensive                = Flag_has_vector_mask_set << 1,
 741     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
 742   };
 743 
 744 private:
 745   jushort _class_id;
 746   jushort _flags;
 747 
 748 protected:
 749   // These methods should be called from constructors only.
 750   void init_class_id(jushort c) {
 751     _class_id = c; // cast out const
 752   }
 753   void init_flags(jushort fl) {
 754     assert(fl <= _max_flags, "invalid node flag");
 755     _flags |= fl;
 756   }
 757   void clear_flag(jushort fl) {
 758     assert(fl <= _max_flags, "invalid node flag");
 759     _flags &= ~fl;
 760   }
 761 
 762 public:
 763   const jushort class_id() const { return _class_id; }
 764 
 765   const jushort flags() const { return _flags; }
 766 
 767   void add_flag(jushort fl) { init_flags(fl); }
 768 
 769   void remove_flag(jushort fl) { clear_flag(fl); }
 770 
 771   // Return a dense integer opcode number
 772   virtual int Opcode() const;
 773 
 774   // Virtual inherited Node size
 775   virtual uint size_of() const;
 776 
 777   // Other interesting Node properties
 778   #define DEFINE_CLASS_QUERY(type)                           \
 779   bool is_##type() const {                                   \
 780     return ((_class_id & ClassMask_##type) == Class_##type); \
 781   }                                                          \
 782   type##Node *as_##type() const {                            \
 783     assert(is_##type(), "invalid node class");               \
 784     return (type##Node*)this;                                \
 785   }                                                          \
 786   type##Node* isa_##type() const {                           \
 787     return (is_##type()) ? as_##type() : NULL;               \
 788   }
 789 
 790   DEFINE_CLASS_QUERY(AbstractLock)
 791   DEFINE_CLASS_QUERY(Add)
 792   DEFINE_CLASS_QUERY(AddP)
 793   DEFINE_CLASS_QUERY(Allocate)
 794   DEFINE_CLASS_QUERY(AllocateArray)
 795   DEFINE_CLASS_QUERY(ArrayCopy)
 796   DEFINE_CLASS_QUERY(Bool)
 797   DEFINE_CLASS_QUERY(BoxLock)
 798   DEFINE_CLASS_QUERY(Call)
 799   DEFINE_CLASS_QUERY(CallDynamicJava)
 800   DEFINE_CLASS_QUERY(CallJava)
 801   DEFINE_CLASS_QUERY(CallLeaf)
 802   DEFINE_CLASS_QUERY(CallRuntime)
 803   DEFINE_CLASS_QUERY(CallStaticJava)
 804   DEFINE_CLASS_QUERY(Catch)
 805   DEFINE_CLASS_QUERY(CatchProj)
 806   DEFINE_CLASS_QUERY(CheckCastPP)
 807   DEFINE_CLASS_QUERY(CastII)
 808   DEFINE_CLASS_QUERY(CastLL)
 809   DEFINE_CLASS_QUERY(ConstraintCast)
 810   DEFINE_CLASS_QUERY(ClearArray)
 811   DEFINE_CLASS_QUERY(CMove)
 812   DEFINE_CLASS_QUERY(Cmp)
 813   DEFINE_CLASS_QUERY(CountedLoop)
 814   DEFINE_CLASS_QUERY(CountedLoopEnd)
 815   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 816   DEFINE_CLASS_QUERY(DecodeN)
 817   DEFINE_CLASS_QUERY(DecodeNKlass)
 818   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 819   DEFINE_CLASS_QUERY(EncodeP)
 820   DEFINE_CLASS_QUERY(EncodePKlass)
 821   DEFINE_CLASS_QUERY(FastLock)
 822   DEFINE_CLASS_QUERY(FastUnlock)
 823   DEFINE_CLASS_QUERY(Halt)
 824   DEFINE_CLASS_QUERY(If)
 825   DEFINE_CLASS_QUERY(RangeCheck)
 826   DEFINE_CLASS_QUERY(IfProj)
 827   DEFINE_CLASS_QUERY(IfFalse)
 828   DEFINE_CLASS_QUERY(IfTrue)
 829   DEFINE_CLASS_QUERY(Initialize)
 830   DEFINE_CLASS_QUERY(Jump)
 831   DEFINE_CLASS_QUERY(JumpProj)
 832   DEFINE_CLASS_QUERY(Load)
 833   DEFINE_CLASS_QUERY(LoadStore)
 834   DEFINE_CLASS_QUERY(LoadStoreConditional)
 835   DEFINE_CLASS_QUERY(Lock)
 836   DEFINE_CLASS_QUERY(Loop)
 837   DEFINE_CLASS_QUERY(Mach)
 838   DEFINE_CLASS_QUERY(MachBranch)
 839   DEFINE_CLASS_QUERY(MachCall)
 840   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 841   DEFINE_CLASS_QUERY(MachCallJava)
 842   DEFINE_CLASS_QUERY(MachCallLeaf)
 843   DEFINE_CLASS_QUERY(MachCallRuntime)
 844   DEFINE_CLASS_QUERY(MachCallStaticJava)
 845   DEFINE_CLASS_QUERY(MachConstantBase)
 846   DEFINE_CLASS_QUERY(MachConstant)
 847   DEFINE_CLASS_QUERY(MachGoto)
 848   DEFINE_CLASS_QUERY(MachIf)
 849   DEFINE_CLASS_QUERY(MachJump)
 850   DEFINE_CLASS_QUERY(MachNullCheck)
 851   DEFINE_CLASS_QUERY(MachProj)
 852   DEFINE_CLASS_QUERY(MachReturn)
 853   DEFINE_CLASS_QUERY(MachSafePoint)
 854   DEFINE_CLASS_QUERY(MachSpillCopy)
 855   DEFINE_CLASS_QUERY(MachTemp)
 856   DEFINE_CLASS_QUERY(MachMemBar)
 857   DEFINE_CLASS_QUERY(MachMerge)
 858   DEFINE_CLASS_QUERY(Mem)
 859   DEFINE_CLASS_QUERY(MemBar)
 860   DEFINE_CLASS_QUERY(MemBarStoreStore)
 861   DEFINE_CLASS_QUERY(MergeMem)
 862   DEFINE_CLASS_QUERY(Mul)
 863   DEFINE_CLASS_QUERY(Multi)
 864   DEFINE_CLASS_QUERY(MultiBranch)
 865   DEFINE_CLASS_QUERY(OuterStripMinedLoop)
 866   DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
 867   DEFINE_CLASS_QUERY(Parm)
 868   DEFINE_CLASS_QUERY(PCTable)
 869   DEFINE_CLASS_QUERY(Phi)
 870   DEFINE_CLASS_QUERY(Proj)
 871   DEFINE_CLASS_QUERY(Region)
 872   DEFINE_CLASS_QUERY(Root)
 873   DEFINE_CLASS_QUERY(SafePoint)
 874   DEFINE_CLASS_QUERY(SafePointScalarObject)
 875   DEFINE_CLASS_QUERY(Start)
 876   DEFINE_CLASS_QUERY(Store)
 877   DEFINE_CLASS_QUERY(Sub)
 878   DEFINE_CLASS_QUERY(Type)
 879   DEFINE_CLASS_QUERY(Vector)
 880   DEFINE_CLASS_QUERY(LoadVector)
 881   DEFINE_CLASS_QUERY(StoreVector)
 882   DEFINE_CLASS_QUERY(Unlock)
 883 
 884   #undef DEFINE_CLASS_QUERY
 885 
 886   // duplicate of is_MachSpillCopy()
 887   bool is_SpillCopy () const {
 888     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 889   }
 890 
 891   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 892   // The data node which is safe to leave in dead loop during IGVN optimization.
 893   bool is_dead_loop_safe() const {
 894     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 895            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 896             (!is_Proj() || !in(0)->is_Allocate()));
 897   }
 898 
 899   // is_Copy() returns copied edge index (0 or 1)
 900   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 901 
 902   virtual bool is_CFG() const { return false; }
 903 
 904   // If this node is control-dependent on a test, can it be
 905   // rerouted to a dominating equivalent test?  This is usually
 906   // true of non-CFG nodes, but can be false for operations which
 907   // depend for their correct sequencing on more than one test.
 908   // (In that case, hoisting to a dominating test may silently
 909   // skip some other important test.)
 910   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 911 
 912   // When building basic blocks, I need to have a notion of block beginning
 913   // Nodes, next block selector Nodes (block enders), and next block
 914   // projections.  These calls need to work on their machine equivalents.  The
 915   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 916   bool is_block_start() const {
 917     if ( is_Region() )
 918       return this == (const Node*)in(0);
 919     else
 920       return is_Start();
 921   }
 922 
 923   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 924   // Goto and Return.  This call also returns the block ending Node.
 925   virtual const Node *is_block_proj() const;
 926 
 927   // The node is a "macro" node which needs to be expanded before matching
 928   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 929   // The node is expensive: the best control is set during loop opts
 930   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
 931 
 932   // An arithmetic node which accumulates a data in a loop.
 933   // It must have the loop's phi as input and provide a def to the phi.
 934   bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; }
 935 
 936   // The node is a CountedLoopEnd with a mask annotation so as to emit a restore context
 937   bool has_vector_mask_set() const { return (_flags & Flag_has_vector_mask_set) != 0; }
 938 
 939   // Used in lcm to mark nodes that have scheduled
 940   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
 941 
 942 //----------------- Optimization
 943 
 944   // Get the worst-case Type output for this Node.
 945   virtual const class Type *bottom_type() const;
 946 
 947   // If we find a better type for a node, try to record it permanently.
 948   // Return true if this node actually changed.
 949   // Be sure to do the hash_delete game in the "rehash" variant.
 950   void raise_bottom_type(const Type* new_type);
 951 
 952   // Get the address type with which this node uses and/or defs memory,
 953   // or NULL if none.  The address type is conservatively wide.
 954   // Returns non-null for calls, membars, loads, stores, etc.
 955   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 956   virtual const class TypePtr *adr_type() const { return NULL; }
 957 
 958   // Return an existing node which computes the same function as this node.
 959   // The optimistic combined algorithm requires this to return a Node which
 960   // is a small number of steps away (e.g., one of my inputs).
 961   virtual Node* Identity(PhaseGVN* phase);
 962 
 963   // Return the set of values this Node can take on at runtime.
 964   virtual const Type* Value(PhaseGVN* phase) const;
 965 
 966   // Return a node which is more "ideal" than the current node.
 967   // The invariants on this call are subtle.  If in doubt, read the
 968   // treatise in node.cpp above the default implemention AND TEST WITH
 969   // +VerifyIterativeGVN!
 970   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 971 
 972   // Some nodes have specific Ideal subgraph transformations only if they are
 973   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 974   // for the transformations to happen.
 975   bool has_special_unique_user() const;
 976 
 977   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 978   Node* find_exact_control(Node* ctrl);
 979 
 980   // Check if 'this' node dominates or equal to 'sub'.
 981   bool dominates(Node* sub, Node_List &nlist);
 982 
 983 protected:
 984   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 985 public:
 986 
 987   // See if there is valid pipeline info
 988   static  const Pipeline *pipeline_class();
 989   virtual const Pipeline *pipeline() const;
 990 
 991   // Compute the latency from the def to this instruction of the ith input node
 992   uint latency(uint i);
 993 
 994   // Hash & compare functions, for pessimistic value numbering
 995 
 996   // If the hash function returns the special sentinel value NO_HASH,
 997   // the node is guaranteed never to compare equal to any other node.
 998   // If we accidentally generate a hash with value NO_HASH the node
 999   // won't go into the table and we'll lose a little optimization.
1000   static const uint NO_HASH = 0;
1001   virtual uint hash() const;
1002   virtual bool cmp( const Node &n ) const;
1003 
1004   // Operation appears to be iteratively computed (such as an induction variable)
1005   // It is possible for this operation to return false for a loop-varying
1006   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1007   bool is_iteratively_computed();
1008 
1009   // Determine if a node is a counted loop induction variable.
1010   // NOTE: The method is defined in "loopnode.cpp".
1011   bool is_cloop_ind_var() const;
1012 
1013   // Return a node with opcode "opc" and same inputs as "this" if one can
1014   // be found; Otherwise return NULL;
1015   Node* find_similar(int opc);
1016 
1017   // Return the unique control out if only one. Null if none or more than one.
1018   Node* unique_ctrl_out() const;
1019 
1020   // Set control or add control as precedence edge
1021   void ensure_control_or_add_prec(Node* c);
1022 
1023 //----------------- Code Generation
1024 
1025   // Ideal register class for Matching.  Zero means unmatched instruction
1026   // (these are cloned instead of converted to machine nodes).
1027   virtual uint ideal_reg() const;
1028 
1029   static const uint NotAMachineReg;   // must be > max. machine register
1030 
1031   // Do we Match on this edge index or not?  Generally false for Control
1032   // and true for everything else.  Weird for calls & returns.
1033   virtual uint match_edge(uint idx) const;
1034 
1035   // Register class output is returned in
1036   virtual const RegMask &out_RegMask() const;
1037   // Register class input is expected in
1038   virtual const RegMask &in_RegMask(uint) const;
1039   // Should we clone rather than spill this instruction?
1040   bool rematerialize() const;
1041 
1042   // Return JVM State Object if this Node carries debug info, or NULL otherwise
1043   virtual JVMState* jvms() const;
1044 
1045   // Print as assembly
1046   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1047   // Emit bytes starting at parameter 'ptr'
1048   // Bump 'ptr' by the number of output bytes
1049   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
1050   // Size of instruction in bytes
1051   virtual uint size(PhaseRegAlloc *ra_) const;
1052 
1053   // Convenience function to extract an integer constant from a node.
1054   // If it is not an integer constant (either Con, CastII, or Mach),
1055   // return value_if_unknown.
1056   jint find_int_con(jint value_if_unknown) const {
1057     const TypeInt* t = find_int_type();
1058     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1059   }
1060   // Return the constant, knowing it is an integer constant already
1061   jint get_int() const {
1062     const TypeInt* t = find_int_type();
1063     guarantee(t != NULL, "must be con");
1064     return t->get_con();
1065   }
1066   // Here's where the work is done.  Can produce non-constant int types too.
1067   const TypeInt* find_int_type() const;
1068 
1069   // Same thing for long (and intptr_t, via type.hpp):
1070   jlong get_long() const {
1071     const TypeLong* t = find_long_type();
1072     guarantee(t != NULL, "must be con");
1073     return t->get_con();
1074   }
1075   jlong find_long_con(jint value_if_unknown) const {
1076     const TypeLong* t = find_long_type();
1077     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1078   }
1079   const TypeLong* find_long_type() const;
1080 
1081   const TypePtr* get_ptr_type() const;
1082 
1083   // These guys are called by code generated by ADLC:
1084   intptr_t get_ptr() const;
1085   intptr_t get_narrowcon() const;
1086   jdouble getd() const;
1087   jfloat getf() const;
1088 
1089   // Nodes which are pinned into basic blocks
1090   virtual bool pinned() const { return false; }
1091 
1092   // Nodes which use memory without consuming it, hence need antidependences
1093   // More specifically, needs_anti_dependence_check returns true iff the node
1094   // (a) does a load, and (b) does not perform a store (except perhaps to a
1095   // stack slot or some other unaliased location).
1096   bool needs_anti_dependence_check() const;
1097 
1098   // Return which operand this instruction may cisc-spill. In other words,
1099   // return operand position that can convert from reg to memory access
1100   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1101   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1102 
1103 //----------------- Graph walking
1104 public:
1105   // Walk and apply member functions recursively.
1106   // Supplied (this) pointer is root.
1107   void walk(NFunc pre, NFunc post, void *env);
1108   static void nop(Node &, void*); // Dummy empty function
1109   static void packregion( Node &n, void* );
1110 private:
1111   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1112 
1113 //----------------- Printing, etc
1114 public:
1115 #ifndef PRODUCT
1116   Node* find(int idx) const;         // Search the graph for the given idx.
1117   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1118   void dump() const { dump("\n"); }  // Print this node.
1119   void dump(const char* suffix, bool mark = false, outputStream *st = tty) const; // Print this node.
1120   void dump(int depth) const;        // Print this node, recursively to depth d
1121   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1122   void dump_comp() const;            // Print this node in compact representation.
1123   // Print this node in compact representation.
1124   void dump_comp(const char* suffix, outputStream *st = tty) const;
1125   virtual void dump_req(outputStream *st = tty) const;    // Print required-edge info
1126   virtual void dump_prec(outputStream *st = tty) const;   // Print precedence-edge info
1127   virtual void dump_out(outputStream *st = tty) const;    // Print the output edge info
1128   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1129   // Print compact per-node info
1130   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1131   void dump_related() const;             // Print related nodes (depends on node at hand).
1132   // Print related nodes up to given depths for input and output nodes.
1133   void dump_related(uint d_in, uint d_out) const;
1134   void dump_related_compact() const;     // Print related nodes in compact representation.
1135   // Collect related nodes.
1136   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1137   // Collect nodes starting from this node, explicitly including/excluding control and data links.
1138   void collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const;
1139 
1140   // Node collectors, to be used in implementations of Node::rel().
1141   // Collect the entire data input graph. Include control inputs if requested.
1142   void collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const;
1143   // Collect the entire control input graph. Include data inputs if requested.
1144   void collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const;
1145   // Collect the entire output graph until hitting and including control nodes.
1146   void collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const;
1147 
1148   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1149   void verify() const;               // Check Def-Use info for my subgraph
1150   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1151 
1152   // This call defines a class-unique string used to identify class instances
1153   virtual const char *Name() const;
1154 
1155   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1156   // RegMask Print Functions
1157   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1158   void dump_out_regmask() { out_RegMask().dump(); }
1159   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1160   void fast_dump() const {
1161     tty->print("%4d: %-17s", _idx, Name());
1162     for (uint i = 0; i < len(); i++)
1163       if (in(i))
1164         tty->print(" %4d", in(i)->_idx);
1165       else
1166         tty->print(" NULL");
1167     tty->print("\n");
1168   }
1169 #endif
1170 #ifdef ASSERT
1171   void verify_construction();
1172   bool verify_jvms(const JVMState* jvms) const;
1173   int  _debug_idx;                     // Unique value assigned to every node.
1174   int   debug_idx() const              { return _debug_idx; }
1175   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1176 
1177   Node* _debug_orig;                   // Original version of this, if any.
1178   Node*  debug_orig() const            { return _debug_orig; }
1179   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1180 
1181   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1182   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1183   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1184 
1185   static void init_NodeProperty();
1186 
1187   #if OPTO_DU_ITERATOR_ASSERT
1188   const Node* _last_del;               // The last deleted node.
1189   uint        _del_tick;               // Bumped when a deletion happens..
1190   #endif
1191 #endif
1192 };
1193 
1194 
1195 #ifndef PRODUCT
1196 
1197 // Used in debugging code to avoid walking across dead or uninitialized edges.
1198 inline bool NotANode(const Node* n) {
1199   if (n == NULL)                   return true;
1200   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1201   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1202   return false;
1203 }
1204 
1205 #endif
1206 
1207 
1208 //-----------------------------------------------------------------------------
1209 // Iterators over DU info, and associated Node functions.
1210 
1211 #if OPTO_DU_ITERATOR_ASSERT
1212 
1213 // Common code for assertion checking on DU iterators.
1214 class DUIterator_Common {
1215 #ifdef ASSERT
1216  protected:
1217   bool         _vdui;               // cached value of VerifyDUIterators
1218   const Node*  _node;               // the node containing the _out array
1219   uint         _outcnt;             // cached node->_outcnt
1220   uint         _del_tick;           // cached node->_del_tick
1221   Node*        _last;               // last value produced by the iterator
1222 
1223   void sample(const Node* node);    // used by c'tor to set up for verifies
1224   void verify(const Node* node, bool at_end_ok = false);
1225   void verify_resync();
1226   void reset(const DUIterator_Common& that);
1227 
1228 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1229   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1230 #else
1231   #define I_VDUI_ONLY(i,x) { }
1232 #endif //ASSERT
1233 };
1234 
1235 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1236 
1237 // Default DU iterator.  Allows appends onto the out array.
1238 // Allows deletion from the out array only at the current point.
1239 // Usage:
1240 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1241 //    Node* y = x->out(i);
1242 //    ...
1243 //  }
1244 // Compiles in product mode to a unsigned integer index, which indexes
1245 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1246 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1247 // before continuing the loop.  You must delete only the last-produced
1248 // edge.  You must delete only a single copy of the last-produced edge,
1249 // or else you must delete all copies at once (the first time the edge
1250 // is produced by the iterator).
1251 class DUIterator : public DUIterator_Common {
1252   friend class Node;
1253 
1254   // This is the index which provides the product-mode behavior.
1255   // Whatever the product-mode version of the system does to the
1256   // DUI index is done to this index.  All other fields in
1257   // this class are used only for assertion checking.
1258   uint         _idx;
1259 
1260   #ifdef ASSERT
1261   uint         _refresh_tick;    // Records the refresh activity.
1262 
1263   void sample(const Node* node); // Initialize _refresh_tick etc.
1264   void verify(const Node* node, bool at_end_ok = false);
1265   void verify_increment();       // Verify an increment operation.
1266   void verify_resync();          // Verify that we can back up over a deletion.
1267   void verify_finish();          // Verify that the loop terminated properly.
1268   void refresh();                // Resample verification info.
1269   void reset(const DUIterator& that);  // Resample after assignment.
1270   #endif
1271 
1272   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1273     { _idx = 0;                         debug_only(sample(node)); }
1274 
1275  public:
1276   // initialize to garbage; clear _vdui to disable asserts
1277   DUIterator()
1278     { /*initialize to garbage*/         debug_only(_vdui = false); }
1279 
1280   void operator++(int dummy_to_specify_postfix_op)
1281     { _idx++;                           VDUI_ONLY(verify_increment()); }
1282 
1283   void operator--()
1284     { VDUI_ONLY(verify_resync());       --_idx; }
1285 
1286   ~DUIterator()
1287     { VDUI_ONLY(verify_finish()); }
1288 
1289   void operator=(const DUIterator& that)
1290     { _idx = that._idx;                 debug_only(reset(that)); }
1291 };
1292 
1293 DUIterator Node::outs() const
1294   { return DUIterator(this, 0); }
1295 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1296   { I_VDUI_ONLY(i, i.refresh());        return i; }
1297 bool Node::has_out(DUIterator& i) const
1298   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1299 Node*    Node::out(DUIterator& i) const
1300   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1301 
1302 
1303 // Faster DU iterator.  Disallows insertions into the out array.
1304 // Allows deletion from the out array only at the current point.
1305 // Usage:
1306 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1307 //    Node* y = x->fast_out(i);
1308 //    ...
1309 //  }
1310 // Compiles in product mode to raw Node** pointer arithmetic, with
1311 // no reloading of pointers from the original node x.  If you delete,
1312 // you must perform "--i; --imax" just before continuing the loop.
1313 // If you delete multiple copies of the same edge, you must decrement
1314 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1315 class DUIterator_Fast : public DUIterator_Common {
1316   friend class Node;
1317   friend class DUIterator_Last;
1318 
1319   // This is the pointer which provides the product-mode behavior.
1320   // Whatever the product-mode version of the system does to the
1321   // DUI pointer is done to this pointer.  All other fields in
1322   // this class are used only for assertion checking.
1323   Node**       _outp;
1324 
1325   #ifdef ASSERT
1326   void verify(const Node* node, bool at_end_ok = false);
1327   void verify_limit();
1328   void verify_resync();
1329   void verify_relimit(uint n);
1330   void reset(const DUIterator_Fast& that);
1331   #endif
1332 
1333   // Note:  offset must be signed, since -1 is sometimes passed
1334   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1335     { _outp = node->_out + offset;      debug_only(sample(node)); }
1336 
1337  public:
1338   // initialize to garbage; clear _vdui to disable asserts
1339   DUIterator_Fast()
1340     { /*initialize to garbage*/         debug_only(_vdui = false); }
1341 
1342   void operator++(int dummy_to_specify_postfix_op)
1343     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1344 
1345   void operator--()
1346     { VDUI_ONLY(verify_resync());       --_outp; }
1347 
1348   void operator-=(uint n)   // applied to the limit only
1349     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1350 
1351   bool operator<(DUIterator_Fast& limit) {
1352     I_VDUI_ONLY(*this, this->verify(_node, true));
1353     I_VDUI_ONLY(limit, limit.verify_limit());
1354     return _outp < limit._outp;
1355   }
1356 
1357   void operator=(const DUIterator_Fast& that)
1358     { _outp = that._outp;               debug_only(reset(that)); }
1359 };
1360 
1361 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1362   // Assign a limit pointer to the reference argument:
1363   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1364   // Return the base pointer:
1365   return DUIterator_Fast(this, 0);
1366 }
1367 Node* Node::fast_out(DUIterator_Fast& i) const {
1368   I_VDUI_ONLY(i, i.verify(this));
1369   return debug_only(i._last=) *i._outp;
1370 }
1371 
1372 
1373 // Faster DU iterator.  Requires each successive edge to be removed.
1374 // Does not allow insertion of any edges.
1375 // Usage:
1376 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1377 //    Node* y = x->last_out(i);
1378 //    ...
1379 //  }
1380 // Compiles in product mode to raw Node** pointer arithmetic, with
1381 // no reloading of pointers from the original node x.
1382 class DUIterator_Last : private DUIterator_Fast {
1383   friend class Node;
1384 
1385   #ifdef ASSERT
1386   void verify(const Node* node, bool at_end_ok = false);
1387   void verify_limit();
1388   void verify_step(uint num_edges);
1389   #endif
1390 
1391   // Note:  offset must be signed, since -1 is sometimes passed
1392   DUIterator_Last(const Node* node, ptrdiff_t offset)
1393     : DUIterator_Fast(node, offset) { }
1394 
1395   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1396   void operator<(int)                              {} // do not use
1397 
1398  public:
1399   DUIterator_Last() { }
1400   // initialize to garbage
1401 
1402   void operator--()
1403     { _outp--;              VDUI_ONLY(verify_step(1));  }
1404 
1405   void operator-=(uint n)
1406     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1407 
1408   bool operator>=(DUIterator_Last& limit) {
1409     I_VDUI_ONLY(*this, this->verify(_node, true));
1410     I_VDUI_ONLY(limit, limit.verify_limit());
1411     return _outp >= limit._outp;
1412   }
1413 
1414   void operator=(const DUIterator_Last& that)
1415     { DUIterator_Fast::operator=(that); }
1416 };
1417 
1418 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1419   // Assign a limit pointer to the reference argument:
1420   imin = DUIterator_Last(this, 0);
1421   // Return the initial pointer:
1422   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1423 }
1424 Node* Node::last_out(DUIterator_Last& i) const {
1425   I_VDUI_ONLY(i, i.verify(this));
1426   return debug_only(i._last=) *i._outp;
1427 }
1428 
1429 #endif //OPTO_DU_ITERATOR_ASSERT
1430 
1431 #undef I_VDUI_ONLY
1432 #undef VDUI_ONLY
1433 
1434 // An Iterator that truly follows the iterator pattern.  Doesn't
1435 // support deletion but could be made to.
1436 //
1437 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1438 //     Node* m = i.get();
1439 //
1440 class SimpleDUIterator : public StackObj {
1441  private:
1442   Node* node;
1443   DUIterator_Fast i;
1444   DUIterator_Fast imax;
1445  public:
1446   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1447   bool has_next() { return i < imax; }
1448   void next() { i++; }
1449   Node* get() { return node->fast_out(i); }
1450 };
1451 
1452 
1453 //-----------------------------------------------------------------------------
1454 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1455 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1456 // Note that the constructor just zeros things, and since I use Arena
1457 // allocation I do not need a destructor to reclaim storage.
1458 class Node_Array : public ResourceObj {
1459   friend class VMStructs;
1460 protected:
1461   Arena *_a;                    // Arena to allocate in
1462   uint   _max;
1463   Node **_nodes;
1464   void   grow( uint i );        // Grow array node to fit
1465 public:
1466   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1467     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1468     for( int i = 0; i < OptoNodeListSize; i++ ) {
1469       _nodes[i] = NULL;
1470     }
1471   }
1472 
1473   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1474   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1475   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1476   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1477   Node **adr() { return _nodes; }
1478   // Extend the mapping: index i maps to Node *n.
1479   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1480   void insert( uint i, Node *n );
1481   void remove( uint i );        // Remove, preserving order
1482   void sort( C_sort_func_t func);
1483   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1484   void clear();                 // Set all entries to NULL, keep storage
1485   uint Size() const { return _max; }
1486   void dump() const;
1487 };
1488 
1489 class Node_List : public Node_Array {
1490   friend class VMStructs;
1491   uint _cnt;
1492 public:
1493   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1494   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1495   bool contains(const Node* n) const {
1496     for (uint e = 0; e < size(); e++) {
1497       if (at(e) == n) return true;
1498     }
1499     return false;
1500   }
1501   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1502   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1503   void push( Node *b ) { map(_cnt++,b); }
1504   void yank( Node *n );         // Find and remove
1505   Node *pop() { return _nodes[--_cnt]; }
1506   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1507   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1508   uint size() const { return _cnt; }
1509   void dump() const;
1510   void dump_simple() const;
1511 };
1512 
1513 //------------------------------Unique_Node_List-------------------------------
1514 class Unique_Node_List : public Node_List {
1515   friend class VMStructs;
1516   VectorSet _in_worklist;
1517   uint _clock_index;            // Index in list where to pop from next
1518 public:
1519   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1520   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1521 
1522   void remove( Node *n );
1523   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1524   VectorSet &member_set(){ return _in_worklist; }
1525 
1526   void push( Node *b ) {
1527     if( !_in_worklist.test_set(b->_idx) )
1528       Node_List::push(b);
1529   }
1530   Node *pop() {
1531     if( _clock_index >= size() ) _clock_index = 0;
1532     Node *b = at(_clock_index);
1533     map( _clock_index, Node_List::pop());
1534     if (size() != 0) _clock_index++; // Always start from 0
1535     _in_worklist >>= b->_idx;
1536     return b;
1537   }
1538   Node *remove( uint i ) {
1539     Node *b = Node_List::at(i);
1540     _in_worklist >>= b->_idx;
1541     map(i,Node_List::pop());
1542     return b;
1543   }
1544   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1545   void  clear() {
1546     _in_worklist.Clear();        // Discards storage but grows automatically
1547     Node_List::clear();
1548     _clock_index = 0;
1549   }
1550 
1551   // Used after parsing to remove useless nodes before Iterative GVN
1552   void remove_useless_nodes(VectorSet &useful);
1553 
1554 #ifndef PRODUCT
1555   void print_set() const { _in_worklist.print(); }
1556 #endif
1557 };
1558 
1559 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1560 inline void Compile::record_for_igvn(Node* n) {
1561   _for_igvn->push(n);
1562 }
1563 
1564 //------------------------------Node_Stack-------------------------------------
1565 class Node_Stack {
1566   friend class VMStructs;
1567 protected:
1568   struct INode {
1569     Node *node; // Processed node
1570     uint  indx; // Index of next node's child
1571   };
1572   INode *_inode_top; // tos, stack grows up
1573   INode *_inode_max; // End of _inodes == _inodes + _max
1574   INode *_inodes;    // Array storage for the stack
1575   Arena *_a;         // Arena to allocate in
1576   void grow();
1577 public:
1578   Node_Stack(int size) {
1579     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1580     _a = Thread::current()->resource_area();
1581     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1582     _inode_max = _inodes + max;
1583     _inode_top = _inodes - 1; // stack is empty
1584   }
1585 
1586   Node_Stack(Arena *a, int size) : _a(a) {
1587     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1588     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1589     _inode_max = _inodes + max;
1590     _inode_top = _inodes - 1; // stack is empty
1591   }
1592 
1593   void pop() {
1594     assert(_inode_top >= _inodes, "node stack underflow");
1595     --_inode_top;
1596   }
1597   void push(Node *n, uint i) {
1598     ++_inode_top;
1599     if (_inode_top >= _inode_max) grow();
1600     INode *top = _inode_top; // optimization
1601     top->node = n;
1602     top->indx = i;
1603   }
1604   Node *node() const {
1605     return _inode_top->node;
1606   }
1607   Node* node_at(uint i) const {
1608     assert(_inodes + i <= _inode_top, "in range");
1609     return _inodes[i].node;
1610   }
1611   uint index() const {
1612     return _inode_top->indx;
1613   }
1614   uint index_at(uint i) const {
1615     assert(_inodes + i <= _inode_top, "in range");
1616     return _inodes[i].indx;
1617   }
1618   void set_node(Node *n) {
1619     _inode_top->node = n;
1620   }
1621   void set_index(uint i) {
1622     _inode_top->indx = i;
1623   }
1624   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1625   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1626   bool is_nonempty() const { return (_inode_top >= _inodes); }
1627   bool is_empty() const { return (_inode_top < _inodes); }
1628   void clear() { _inode_top = _inodes - 1; } // retain storage
1629 
1630   // Node_Stack is used to map nodes.
1631   Node* find(uint idx) const;
1632 };
1633 
1634 
1635 //-----------------------------Node_Notes--------------------------------------
1636 // Debugging or profiling annotations loosely and sparsely associated
1637 // with some nodes.  See Compile::node_notes_at for the accessor.
1638 class Node_Notes {
1639   friend class VMStructs;
1640   JVMState* _jvms;
1641 
1642 public:
1643   Node_Notes(JVMState* jvms = NULL) {
1644     _jvms = jvms;
1645   }
1646 
1647   JVMState* jvms()            { return _jvms; }
1648   void  set_jvms(JVMState* x) {        _jvms = x; }
1649 
1650   // True if there is nothing here.
1651   bool is_clear() {
1652     return (_jvms == NULL);
1653   }
1654 
1655   // Make there be nothing here.
1656   void clear() {
1657     _jvms = NULL;
1658   }
1659 
1660   // Make a new, clean node notes.
1661   static Node_Notes* make(Compile* C) {
1662     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1663     nn->clear();
1664     return nn;
1665   }
1666 
1667   Node_Notes* clone(Compile* C) {
1668     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1669     (*nn) = (*this);
1670     return nn;
1671   }
1672 
1673   // Absorb any information from source.
1674   bool update_from(Node_Notes* source) {
1675     bool changed = false;
1676     if (source != NULL) {
1677       if (source->jvms() != NULL) {
1678         set_jvms(source->jvms());
1679         changed = true;
1680       }
1681     }
1682     return changed;
1683   }
1684 };
1685 
1686 // Inlined accessors for Compile::node_nodes that require the preceding class:
1687 inline Node_Notes*
1688 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1689                            int idx, bool can_grow) {
1690   assert(idx >= 0, "oob");
1691   int block_idx = (idx >> _log2_node_notes_block_size);
1692   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1693   if (grow_by >= 0) {
1694     if (!can_grow) return NULL;
1695     grow_node_notes(arr, grow_by + 1);
1696   }
1697   if (arr == NULL) return NULL;
1698   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1699   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1700 }
1701 
1702 inline bool
1703 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1704   if (value == NULL || value->is_clear())
1705     return false;  // nothing to write => write nothing
1706   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1707   assert(loc != NULL, "");
1708   return loc->update_from(value);
1709 }
1710 
1711 
1712 //------------------------------TypeNode---------------------------------------
1713 // Node with a Type constant.
1714 class TypeNode : public Node {
1715 protected:
1716   virtual uint hash() const;    // Check the type
1717   virtual bool cmp( const Node &n ) const;
1718   virtual uint size_of() const; // Size is bigger
1719   const Type* const _type;
1720 public:
1721   void set_type(const Type* t) {
1722     assert(t != NULL, "sanity");
1723     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1724     *(const Type**)&_type = t;   // cast away const-ness
1725     // If this node is in the hash table, make sure it doesn't need a rehash.
1726     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1727   }
1728   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1729   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1730     init_class_id(Class_Type);
1731   }
1732   virtual const Type* Value(PhaseGVN* phase) const;
1733   virtual const Type *bottom_type() const;
1734   virtual       uint  ideal_reg() const;
1735 #ifndef PRODUCT
1736   virtual void dump_spec(outputStream *st) const;
1737   virtual void dump_compact_spec(outputStream *st) const;
1738 #endif
1739 };
1740 
1741 #endif // SHARE_OPTO_NODE_HPP