1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "vmreg_x86.inline.hpp"
  42 
  43 
  44 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  45 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  46 // fast versions of NegF/NegD and AbsF/AbsD.
  47 
  48 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  49 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  50   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  51   // of 128-bits operands for SSE instructions.
  52   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  53   // Store the value to a 128-bits operand.
  54   operand[0] = lo;
  55   operand[1] = hi;
  56   return operand;
  57 }
  58 
  59 // Buffer for 128-bits masks used by SSE instructions.
  60 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  61 
  62 // Static initialization during VM startup.
  63 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  64 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  65 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  66 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  67 
  68 
  69 
  70 NEEDS_CLEANUP // remove this definitions ?
  71 const Register IC_Klass    = rax;   // where the IC klass is cached
  72 const Register SYNC_header = rax;   // synchronization header
  73 const Register SHIFT_count = rcx;   // where count for shift operations must be
  74 
  75 #define __ _masm->
  76 
  77 
  78 static void select_different_registers(Register preserve,
  79                                        Register extra,
  80                                        Register &tmp1,
  81                                        Register &tmp2) {
  82   if (tmp1 == preserve) {
  83     assert_different_registers(tmp1, tmp2, extra);
  84     tmp1 = extra;
  85   } else if (tmp2 == preserve) {
  86     assert_different_registers(tmp1, tmp2, extra);
  87     tmp2 = extra;
  88   }
  89   assert_different_registers(preserve, tmp1, tmp2);
  90 }
  91 
  92 
  93 
  94 static void select_different_registers(Register preserve,
  95                                        Register extra,
  96                                        Register &tmp1,
  97                                        Register &tmp2,
  98                                        Register &tmp3) {
  99   if (tmp1 == preserve) {
 100     assert_different_registers(tmp1, tmp2, tmp3, extra);
 101     tmp1 = extra;
 102   } else if (tmp2 == preserve) {
 103     assert_different_registers(tmp1, tmp2, tmp3, extra);
 104     tmp2 = extra;
 105   } else if (tmp3 == preserve) {
 106     assert_different_registers(tmp1, tmp2, tmp3, extra);
 107     tmp3 = extra;
 108   }
 109   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 110 }
 111 
 112 
 113 
 114 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 115   if (opr->is_constant()) {
 116     LIR_Const* constant = opr->as_constant_ptr();
 117     switch (constant->type()) {
 118       case T_INT: {
 119         return true;
 120       }
 121 
 122       default:
 123         return false;
 124     }
 125   }
 126   return false;
 127 }
 128 
 129 
 130 LIR_Opr LIR_Assembler::receiverOpr() {
 131   return FrameMap::receiver_opr;
 132 }
 133 
 134 LIR_Opr LIR_Assembler::osrBufferPointer() {
 135   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 136 }
 137 
 138 //--------------fpu register translations-----------------------
 139 
 140 
 141 address LIR_Assembler::float_constant(float f) {
 142   address const_addr = __ float_constant(f);
 143   if (const_addr == NULL) {
 144     bailout("const section overflow");
 145     return __ code()->consts()->start();
 146   } else {
 147     return const_addr;
 148   }
 149 }
 150 
 151 
 152 address LIR_Assembler::double_constant(double d) {
 153   address const_addr = __ double_constant(d);
 154   if (const_addr == NULL) {
 155     bailout("const section overflow");
 156     return __ code()->consts()->start();
 157   } else {
 158     return const_addr;
 159   }
 160 }
 161 
 162 
 163 void LIR_Assembler::set_24bit_FPU() {
 164   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 165 }
 166 
 167 void LIR_Assembler::reset_FPU() {
 168   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 169 }
 170 
 171 void LIR_Assembler::fpop() {
 172   __ fpop();
 173 }
 174 
 175 void LIR_Assembler::fxch(int i) {
 176   __ fxch(i);
 177 }
 178 
 179 void LIR_Assembler::fld(int i) {
 180   __ fld_s(i);
 181 }
 182 
 183 void LIR_Assembler::ffree(int i) {
 184   __ ffree(i);
 185 }
 186 
 187 void LIR_Assembler::breakpoint() {
 188   __ int3();
 189 }
 190 
 191 void LIR_Assembler::push(LIR_Opr opr) {
 192   if (opr->is_single_cpu()) {
 193     __ push_reg(opr->as_register());
 194   } else if (opr->is_double_cpu()) {
 195     NOT_LP64(__ push_reg(opr->as_register_hi()));
 196     __ push_reg(opr->as_register_lo());
 197   } else if (opr->is_stack()) {
 198     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 199   } else if (opr->is_constant()) {
 200     LIR_Const* const_opr = opr->as_constant_ptr();
 201     if (const_opr->type() == T_OBJECT) {
 202       __ push_oop(const_opr->as_jobject());
 203     } else if (const_opr->type() == T_INT) {
 204       __ push_jint(const_opr->as_jint());
 205     } else {
 206       ShouldNotReachHere();
 207     }
 208 
 209   } else {
 210     ShouldNotReachHere();
 211   }
 212 }
 213 
 214 void LIR_Assembler::pop(LIR_Opr opr) {
 215   if (opr->is_single_cpu()) {
 216     __ pop_reg(opr->as_register());
 217   } else {
 218     ShouldNotReachHere();
 219   }
 220 }
 221 
 222 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 223   return addr->base()->is_illegal() && addr->index()->is_illegal();
 224 }
 225 
 226 //-------------------------------------------
 227 
 228 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 229   return as_Address(addr, rscratch1);
 230 }
 231 
 232 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 233   if (addr->base()->is_illegal()) {
 234     assert(addr->index()->is_illegal(), "must be illegal too");
 235     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 236     if (! __ reachable(laddr)) {
 237       __ movptr(tmp, laddr.addr());
 238       Address res(tmp, 0);
 239       return res;
 240     } else {
 241       return __ as_Address(laddr);
 242     }
 243   }
 244 
 245   Register base = addr->base()->as_pointer_register();
 246 
 247   if (addr->index()->is_illegal()) {
 248     return Address( base, addr->disp());
 249   } else if (addr->index()->is_cpu_register()) {
 250     Register index = addr->index()->as_pointer_register();
 251     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 252   } else if (addr->index()->is_constant()) {
 253     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 254     assert(Assembler::is_simm32(addr_offset), "must be");
 255 
 256     return Address(base, addr_offset);
 257   } else {
 258     Unimplemented();
 259     return Address();
 260   }
 261 }
 262 
 263 
 264 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 265   Address base = as_Address(addr);
 266   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 267 }
 268 
 269 
 270 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 271   return as_Address(addr);
 272 }
 273 
 274 
 275 void LIR_Assembler::osr_entry() {
 276   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 277   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 278   ValueStack* entry_state = osr_entry->state();
 279   int number_of_locks = entry_state->locks_size();
 280 
 281   // we jump here if osr happens with the interpreter
 282   // state set up to continue at the beginning of the
 283   // loop that triggered osr - in particular, we have
 284   // the following registers setup:
 285   //
 286   // rcx: osr buffer
 287   //
 288 
 289   // build frame
 290   ciMethod* m = compilation()->method();
 291   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 292 
 293   // OSR buffer is
 294   //
 295   // locals[nlocals-1..0]
 296   // monitors[0..number_of_locks]
 297   //
 298   // locals is a direct copy of the interpreter frame so in the osr buffer
 299   // so first slot in the local array is the last local from the interpreter
 300   // and last slot is local[0] (receiver) from the interpreter
 301   //
 302   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 303   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 304   // in the interpreter frame (the method lock if a sync method)
 305 
 306   // Initialize monitors in the compiled activation.
 307   //   rcx: pointer to osr buffer
 308   //
 309   // All other registers are dead at this point and the locals will be
 310   // copied into place by code emitted in the IR.
 311 
 312   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 313   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 314     int monitor_offset = BytesPerWord * method()->max_locals() +
 315       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 316     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 317     // the OSR buffer using 2 word entries: first the lock and then
 318     // the oop.
 319     for (int i = 0; i < number_of_locks; i++) {
 320       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 321 #ifdef ASSERT
 322       // verify the interpreter's monitor has a non-null object
 323       {
 324         Label L;
 325         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 326         __ jcc(Assembler::notZero, L);
 327         __ stop("locked object is NULL");
 328         __ bind(L);
 329       }
 330 #endif
 331       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 332       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 333       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 334       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 335     }
 336   }
 337 }
 338 
 339 
 340 // inline cache check; done before the frame is built.
 341 int LIR_Assembler::check_icache() {
 342   Register receiver = FrameMap::receiver_opr->as_register();
 343   Register ic_klass = IC_Klass;
 344   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 345   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 346   if (!do_post_padding) {
 347     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 348     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 349   }
 350   int offset = __ offset();
 351   __ inline_cache_check(receiver, IC_Klass);
 352   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 353   if (do_post_padding) {
 354     // force alignment after the cache check.
 355     // It's been verified to be aligned if !VerifyOops
 356     __ align(CodeEntryAlignment);
 357   }
 358   return offset;
 359 }
 360 
 361 
 362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 363   jobject o = NULL;
 364   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 365   __ movoop(reg, o);
 366   patching_epilog(patch, lir_patch_normal, reg, info);
 367 }
 368 
 369 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 370   Metadata* o = NULL;
 371   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 372   __ mov_metadata(reg, o);
 373   patching_epilog(patch, lir_patch_normal, reg, info);
 374 }
 375 
 376 // This specifies the rsp decrement needed to build the frame
 377 int LIR_Assembler::initial_frame_size_in_bytes() const {
 378   // if rounding, must let FrameMap know!
 379 
 380   // The frame_map records size in slots (32bit word)
 381 
 382   // subtract two words to account for return address and link
 383   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 384 }
 385 
 386 
 387 int LIR_Assembler::emit_exception_handler() {
 388   // if the last instruction is a call (typically to do a throw which
 389   // is coming at the end after block reordering) the return address
 390   // must still point into the code area in order to avoid assertion
 391   // failures when searching for the corresponding bci => add a nop
 392   // (was bug 5/14/1999 - gri)
 393   __ nop();
 394 
 395   // generate code for exception handler
 396   address handler_base = __ start_a_stub(exception_handler_size());
 397   if (handler_base == NULL) {
 398     // not enough space left for the handler
 399     bailout("exception handler overflow");
 400     return -1;
 401   }
 402 
 403   int offset = code_offset();
 404 
 405   // the exception oop and pc are in rax, and rdx
 406   // no other registers need to be preserved, so invalidate them
 407   __ invalidate_registers(false, true, true, false, true, true);
 408 
 409   // check that there is really an exception
 410   __ verify_not_null_oop(rax);
 411 
 412   // search an exception handler (rax: exception oop, rdx: throwing pc)
 413   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 414   __ should_not_reach_here();
 415   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 416   __ end_a_stub();
 417 
 418   return offset;
 419 }
 420 
 421 
 422 // Emit the code to remove the frame from the stack in the exception
 423 // unwind path.
 424 int LIR_Assembler::emit_unwind_handler() {
 425 #ifndef PRODUCT
 426   if (CommentedAssembly) {
 427     _masm->block_comment("Unwind handler");
 428   }
 429 #endif
 430 
 431   int offset = code_offset();
 432 
 433   // Fetch the exception from TLS and clear out exception related thread state
 434   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 435   NOT_LP64(__ get_thread(rsi));
 436   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 437   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 438   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 439 
 440   __ bind(_unwind_handler_entry);
 441   __ verify_not_null_oop(rax);
 442   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 443     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 444   }
 445 
 446   // Preform needed unlocking
 447   MonitorExitStub* stub = NULL;
 448   if (method()->is_synchronized()) {
 449     monitor_address(0, FrameMap::rax_opr);
 450     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 451     __ unlock_object(rdi, rsi, rax, *stub->entry());
 452     __ bind(*stub->continuation());
 453   }
 454 
 455   if (compilation()->env()->dtrace_method_probes()) {
 456 #ifdef _LP64
 457     __ mov(rdi, r15_thread);
 458     __ mov_metadata(rsi, method()->constant_encoding());
 459 #else
 460     __ get_thread(rax);
 461     __ movptr(Address(rsp, 0), rax);
 462     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 463 #endif
 464     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 465   }
 466 
 467   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 468     __ mov(rax, rbx);  // Restore the exception
 469   }
 470 
 471   // remove the activation and dispatch to the unwind handler
 472   __ remove_frame(initial_frame_size_in_bytes());
 473   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 474 
 475   // Emit the slow path assembly
 476   if (stub != NULL) {
 477     stub->emit_code(this);
 478   }
 479 
 480   return offset;
 481 }
 482 
 483 
 484 int LIR_Assembler::emit_deopt_handler() {
 485   // if the last instruction is a call (typically to do a throw which
 486   // is coming at the end after block reordering) the return address
 487   // must still point into the code area in order to avoid assertion
 488   // failures when searching for the corresponding bci => add a nop
 489   // (was bug 5/14/1999 - gri)
 490   __ nop();
 491 
 492   // generate code for exception handler
 493   address handler_base = __ start_a_stub(deopt_handler_size());
 494   if (handler_base == NULL) {
 495     // not enough space left for the handler
 496     bailout("deopt handler overflow");
 497     return -1;
 498   }
 499 
 500   int offset = code_offset();
 501   InternalAddress here(__ pc());
 502 
 503   __ pushptr(here.addr());
 504   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 505   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 506   __ end_a_stub();
 507 
 508   return offset;
 509 }
 510 
 511 
 512 void LIR_Assembler::return_op(LIR_Opr result) {
 513   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 514   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 515     assert(result->fpu() == 0, "result must already be on TOS");
 516   }
 517 
 518   // Pop the stack before the safepoint code
 519   __ remove_frame(initial_frame_size_in_bytes());
 520 
 521   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 522     __ reserved_stack_check();
 523   }
 524 
 525   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 526 
 527   // Note: we do not need to round double result; float result has the right precision
 528   // the poll sets the condition code, but no data registers
 529 
 530   if (SafepointMechanism::uses_thread_local_poll()) {
 531 #ifdef _LP64
 532     const Register poll_addr = rscratch1;
 533     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 534 #else
 535     const Register poll_addr = rbx;
 536     assert(FrameMap::is_caller_save_register(poll_addr), "will overwrite");
 537     __ get_thread(poll_addr);
 538     __ movptr(poll_addr, Address(poll_addr, Thread::polling_page_offset()));
 539 #endif
 540     __ relocate(relocInfo::poll_return_type);
 541     __ testl(rax, Address(poll_addr, 0));
 542   } else {
 543     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 544 
 545     if (Assembler::is_polling_page_far()) {
 546       __ lea(rscratch1, polling_page);
 547       __ relocate(relocInfo::poll_return_type);
 548       __ testl(rax, Address(rscratch1, 0));
 549     } else {
 550       __ testl(rax, polling_page);
 551     }
 552   }
 553   __ ret(0);
 554 }
 555 
 556 
 557 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 558   guarantee(info != NULL, "Shouldn't be NULL");
 559   int offset = __ offset();
 560   if (SafepointMechanism::uses_thread_local_poll()) {
 561 #ifdef _LP64
 562     const Register poll_addr = rscratch1;
 563     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 564 #else
 565     assert(tmp->is_cpu_register(), "needed");
 566     const Register poll_addr = tmp->as_register();
 567     __ get_thread(poll_addr);
 568     __ movptr(poll_addr, Address(poll_addr, in_bytes(Thread::polling_page_offset())));
 569 #endif
 570     add_debug_info_for_branch(info);
 571     __ relocate(relocInfo::poll_type);
 572     address pre_pc = __ pc();
 573     __ testl(rax, Address(poll_addr, 0));
 574     address post_pc = __ pc();
 575     guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 576   } else {
 577     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 578     if (Assembler::is_polling_page_far()) {
 579       __ lea(rscratch1, polling_page);
 580       offset = __ offset();
 581       add_debug_info_for_branch(info);
 582       __ relocate(relocInfo::poll_type);
 583       __ testl(rax, Address(rscratch1, 0));
 584     } else {
 585       add_debug_info_for_branch(info);
 586       __ testl(rax, polling_page);
 587     }
 588   }
 589   return offset;
 590 }
 591 
 592 
 593 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 594   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 595 }
 596 
 597 void LIR_Assembler::swap_reg(Register a, Register b) {
 598   __ xchgptr(a, b);
 599 }
 600 
 601 
 602 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 603   assert(src->is_constant(), "should not call otherwise");
 604   assert(dest->is_register(), "should not call otherwise");
 605   LIR_Const* c = src->as_constant_ptr();
 606 
 607   switch (c->type()) {
 608     case T_INT: {
 609       assert(patch_code == lir_patch_none, "no patching handled here");
 610       __ movl(dest->as_register(), c->as_jint());
 611       break;
 612     }
 613 
 614     case T_ADDRESS: {
 615       assert(patch_code == lir_patch_none, "no patching handled here");
 616       __ movptr(dest->as_register(), c->as_jint());
 617       break;
 618     }
 619 
 620     case T_LONG: {
 621       assert(patch_code == lir_patch_none, "no patching handled here");
 622 #ifdef _LP64
 623       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 624 #else
 625       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 626       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 627 #endif // _LP64
 628       break;
 629     }
 630 
 631     case T_OBJECT: {
 632       if (patch_code != lir_patch_none) {
 633         jobject2reg_with_patching(dest->as_register(), info);
 634       } else {
 635         __ movoop(dest->as_register(), c->as_jobject());
 636       }
 637       break;
 638     }
 639 
 640     case T_METADATA: {
 641       if (patch_code != lir_patch_none) {
 642         klass2reg_with_patching(dest->as_register(), info);
 643       } else {
 644         __ mov_metadata(dest->as_register(), c->as_metadata());
 645       }
 646       break;
 647     }
 648 
 649     case T_FLOAT: {
 650       if (dest->is_single_xmm()) {
 651         if (c->is_zero_float()) {
 652           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 653         } else {
 654           __ movflt(dest->as_xmm_float_reg(),
 655                    InternalAddress(float_constant(c->as_jfloat())));
 656         }
 657       } else {
 658         assert(dest->is_single_fpu(), "must be");
 659         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 660         if (c->is_zero_float()) {
 661           __ fldz();
 662         } else if (c->is_one_float()) {
 663           __ fld1();
 664         } else {
 665           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 666         }
 667       }
 668       break;
 669     }
 670 
 671     case T_DOUBLE: {
 672       if (dest->is_double_xmm()) {
 673         if (c->is_zero_double()) {
 674           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 675         } else {
 676           __ movdbl(dest->as_xmm_double_reg(),
 677                     InternalAddress(double_constant(c->as_jdouble())));
 678         }
 679       } else {
 680         assert(dest->is_double_fpu(), "must be");
 681         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 682         if (c->is_zero_double()) {
 683           __ fldz();
 684         } else if (c->is_one_double()) {
 685           __ fld1();
 686         } else {
 687           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 688         }
 689       }
 690       break;
 691     }
 692 
 693     default:
 694       ShouldNotReachHere();
 695   }
 696 }
 697 
 698 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 699   assert(src->is_constant(), "should not call otherwise");
 700   assert(dest->is_stack(), "should not call otherwise");
 701   LIR_Const* c = src->as_constant_ptr();
 702 
 703   switch (c->type()) {
 704     case T_INT:  // fall through
 705     case T_FLOAT:
 706       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 707       break;
 708 
 709     case T_ADDRESS:
 710       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 711       break;
 712 
 713     case T_OBJECT:
 714       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 715       break;
 716 
 717     case T_LONG:  // fall through
 718     case T_DOUBLE:
 719 #ifdef _LP64
 720       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 721                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 722 #else
 723       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 724                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 725       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 726                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 727 #endif // _LP64
 728       break;
 729 
 730     default:
 731       ShouldNotReachHere();
 732   }
 733 }
 734 
 735 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 736   assert(src->is_constant(), "should not call otherwise");
 737   assert(dest->is_address(), "should not call otherwise");
 738   LIR_Const* c = src->as_constant_ptr();
 739   LIR_Address* addr = dest->as_address_ptr();
 740 
 741   int null_check_here = code_offset();
 742   switch (type) {
 743     case T_INT:    // fall through
 744     case T_FLOAT:
 745       __ movl(as_Address(addr), c->as_jint_bits());
 746       break;
 747 
 748     case T_ADDRESS:
 749       __ movptr(as_Address(addr), c->as_jint_bits());
 750       break;
 751 
 752     case T_OBJECT:  // fall through
 753     case T_ARRAY:
 754       if (c->as_jobject() == NULL) {
 755         if (UseCompressedOops && !wide) {
 756           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 757         } else {
 758 #ifdef _LP64
 759           __ xorptr(rscratch1, rscratch1);
 760           null_check_here = code_offset();
 761           __ movptr(as_Address(addr), rscratch1);
 762 #else
 763           __ movptr(as_Address(addr), NULL_WORD);
 764 #endif
 765         }
 766       } else {
 767         if (is_literal_address(addr)) {
 768           ShouldNotReachHere();
 769           __ movoop(as_Address(addr, noreg), c->as_jobject());
 770         } else {
 771 #ifdef _LP64
 772           __ movoop(rscratch1, c->as_jobject());
 773           if (UseCompressedOops && !wide) {
 774             __ encode_heap_oop(rscratch1);
 775             null_check_here = code_offset();
 776             __ movl(as_Address_lo(addr), rscratch1);
 777           } else {
 778             null_check_here = code_offset();
 779             __ movptr(as_Address_lo(addr), rscratch1);
 780           }
 781 #else
 782           __ movoop(as_Address(addr), c->as_jobject());
 783 #endif
 784         }
 785       }
 786       break;
 787 
 788     case T_LONG:    // fall through
 789     case T_DOUBLE:
 790 #ifdef _LP64
 791       if (is_literal_address(addr)) {
 792         ShouldNotReachHere();
 793         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 794       } else {
 795         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 796         null_check_here = code_offset();
 797         __ movptr(as_Address_lo(addr), r10);
 798       }
 799 #else
 800       // Always reachable in 32bit so this doesn't produce useless move literal
 801       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 802       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 803 #endif // _LP64
 804       break;
 805 
 806     case T_BOOLEAN: // fall through
 807     case T_BYTE:
 808       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 809       break;
 810 
 811     case T_CHAR:    // fall through
 812     case T_SHORT:
 813       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 814       break;
 815 
 816     default:
 817       ShouldNotReachHere();
 818   };
 819 
 820   if (info != NULL) {
 821     add_debug_info_for_null_check(null_check_here, info);
 822   }
 823 }
 824 
 825 
 826 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 827   assert(src->is_register(), "should not call otherwise");
 828   assert(dest->is_register(), "should not call otherwise");
 829 
 830   // move between cpu-registers
 831   if (dest->is_single_cpu()) {
 832 #ifdef _LP64
 833     if (src->type() == T_LONG) {
 834       // Can do LONG -> OBJECT
 835       move_regs(src->as_register_lo(), dest->as_register());
 836       return;
 837     }
 838 #endif
 839     assert(src->is_single_cpu(), "must match");
 840     if (src->type() == T_OBJECT) {
 841       __ verify_oop(src->as_register());
 842     }
 843     move_regs(src->as_register(), dest->as_register());
 844 
 845   } else if (dest->is_double_cpu()) {
 846 #ifdef _LP64
 847     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 848       // Surprising to me but we can see move of a long to t_object
 849       __ verify_oop(src->as_register());
 850       move_regs(src->as_register(), dest->as_register_lo());
 851       return;
 852     }
 853 #endif
 854     assert(src->is_double_cpu(), "must match");
 855     Register f_lo = src->as_register_lo();
 856     Register f_hi = src->as_register_hi();
 857     Register t_lo = dest->as_register_lo();
 858     Register t_hi = dest->as_register_hi();
 859 #ifdef _LP64
 860     assert(f_hi == f_lo, "must be same");
 861     assert(t_hi == t_lo, "must be same");
 862     move_regs(f_lo, t_lo);
 863 #else
 864     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 865 
 866 
 867     if (f_lo == t_hi && f_hi == t_lo) {
 868       swap_reg(f_lo, f_hi);
 869     } else if (f_hi == t_lo) {
 870       assert(f_lo != t_hi, "overwriting register");
 871       move_regs(f_hi, t_hi);
 872       move_regs(f_lo, t_lo);
 873     } else {
 874       assert(f_hi != t_lo, "overwriting register");
 875       move_regs(f_lo, t_lo);
 876       move_regs(f_hi, t_hi);
 877     }
 878 #endif // LP64
 879 
 880     // special moves from fpu-register to xmm-register
 881     // necessary for method results
 882   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 883     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 884     __ fld_s(Address(rsp, 0));
 885   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 886     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 887     __ fld_d(Address(rsp, 0));
 888   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 889     __ fstp_s(Address(rsp, 0));
 890     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 891   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 892     __ fstp_d(Address(rsp, 0));
 893     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 894 
 895     // move between xmm-registers
 896   } else if (dest->is_single_xmm()) {
 897     assert(src->is_single_xmm(), "must match");
 898     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 899   } else if (dest->is_double_xmm()) {
 900     assert(src->is_double_xmm(), "must match");
 901     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 902 
 903     // move between fpu-registers (no instruction necessary because of fpu-stack)
 904   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 905     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 906     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 907   } else {
 908     ShouldNotReachHere();
 909   }
 910 }
 911 
 912 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 913   assert(src->is_register(), "should not call otherwise");
 914   assert(dest->is_stack(), "should not call otherwise");
 915 
 916   if (src->is_single_cpu()) {
 917     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 918     if (type == T_OBJECT || type == T_ARRAY) {
 919       __ verify_oop(src->as_register());
 920       __ movptr (dst, src->as_register());
 921     } else if (type == T_METADATA) {
 922       __ movptr (dst, src->as_register());
 923     } else {
 924       __ movl (dst, src->as_register());
 925     }
 926 
 927   } else if (src->is_double_cpu()) {
 928     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 929     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 930     __ movptr (dstLO, src->as_register_lo());
 931     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 932 
 933   } else if (src->is_single_xmm()) {
 934     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 935     __ movflt(dst_addr, src->as_xmm_float_reg());
 936 
 937   } else if (src->is_double_xmm()) {
 938     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 939     __ movdbl(dst_addr, src->as_xmm_double_reg());
 940 
 941   } else if (src->is_single_fpu()) {
 942     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 943     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 944     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 945     else                   __ fst_s  (dst_addr);
 946 
 947   } else if (src->is_double_fpu()) {
 948     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 949     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 950     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 951     else                   __ fst_d  (dst_addr);
 952 
 953   } else {
 954     ShouldNotReachHere();
 955   }
 956 }
 957 
 958 
 959 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 960   LIR_Address* to_addr = dest->as_address_ptr();
 961   PatchingStub* patch = NULL;
 962   Register compressed_src = rscratch1;
 963 
 964   if (type == T_ARRAY || type == T_OBJECT) {
 965     __ verify_oop(src->as_register());
 966 #ifdef _LP64
 967     if (UseCompressedOops && !wide) {
 968       __ movptr(compressed_src, src->as_register());
 969       __ encode_heap_oop(compressed_src);
 970       if (patch_code != lir_patch_none) {
 971         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 972       }
 973     }
 974 #endif
 975   }
 976 
 977   if (patch_code != lir_patch_none) {
 978     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 979     Address toa = as_Address(to_addr);
 980     assert(toa.disp() != 0, "must have");
 981   }
 982 
 983   int null_check_here = code_offset();
 984   switch (type) {
 985     case T_FLOAT: {
 986       if (src->is_single_xmm()) {
 987         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 988       } else {
 989         assert(src->is_single_fpu(), "must be");
 990         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 991         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 992         else                    __ fst_s (as_Address(to_addr));
 993       }
 994       break;
 995     }
 996 
 997     case T_DOUBLE: {
 998       if (src->is_double_xmm()) {
 999         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1000       } else {
1001         assert(src->is_double_fpu(), "must be");
1002         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1003         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1004         else                    __ fst_d (as_Address(to_addr));
1005       }
1006       break;
1007     }
1008 
1009     case T_ARRAY:   // fall through
1010     case T_OBJECT:  // fall through
1011       if (UseCompressedOops && !wide) {
1012         __ movl(as_Address(to_addr), compressed_src);
1013       } else {
1014         __ movptr(as_Address(to_addr), src->as_register());
1015       }
1016       break;
1017     case T_METADATA:
1018       // We get here to store a method pointer to the stack to pass to
1019       // a dtrace runtime call. This can't work on 64 bit with
1020       // compressed klass ptrs: T_METADATA can be a compressed klass
1021       // ptr or a 64 bit method pointer.
1022       LP64_ONLY(ShouldNotReachHere());
1023       __ movptr(as_Address(to_addr), src->as_register());
1024       break;
1025     case T_ADDRESS:
1026       __ movptr(as_Address(to_addr), src->as_register());
1027       break;
1028     case T_INT:
1029       __ movl(as_Address(to_addr), src->as_register());
1030       break;
1031 
1032     case T_LONG: {
1033       Register from_lo = src->as_register_lo();
1034       Register from_hi = src->as_register_hi();
1035 #ifdef _LP64
1036       __ movptr(as_Address_lo(to_addr), from_lo);
1037 #else
1038       Register base = to_addr->base()->as_register();
1039       Register index = noreg;
1040       if (to_addr->index()->is_register()) {
1041         index = to_addr->index()->as_register();
1042       }
1043       if (base == from_lo || index == from_lo) {
1044         assert(base != from_hi, "can't be");
1045         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1046         __ movl(as_Address_hi(to_addr), from_hi);
1047         if (patch != NULL) {
1048           patching_epilog(patch, lir_patch_high, base, info);
1049           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1050           patch_code = lir_patch_low;
1051         }
1052         __ movl(as_Address_lo(to_addr), from_lo);
1053       } else {
1054         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1055         __ movl(as_Address_lo(to_addr), from_lo);
1056         if (patch != NULL) {
1057           patching_epilog(patch, lir_patch_low, base, info);
1058           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1059           patch_code = lir_patch_high;
1060         }
1061         __ movl(as_Address_hi(to_addr), from_hi);
1062       }
1063 #endif // _LP64
1064       break;
1065     }
1066 
1067     case T_BYTE:    // fall through
1068     case T_BOOLEAN: {
1069       Register src_reg = src->as_register();
1070       Address dst_addr = as_Address(to_addr);
1071       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1072       __ movb(dst_addr, src_reg);
1073       break;
1074     }
1075 
1076     case T_CHAR:    // fall through
1077     case T_SHORT:
1078       __ movw(as_Address(to_addr), src->as_register());
1079       break;
1080 
1081     default:
1082       ShouldNotReachHere();
1083   }
1084   if (info != NULL) {
1085     add_debug_info_for_null_check(null_check_here, info);
1086   }
1087 
1088   if (patch_code != lir_patch_none) {
1089     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1090   }
1091 }
1092 
1093 
1094 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1095   assert(src->is_stack(), "should not call otherwise");
1096   assert(dest->is_register(), "should not call otherwise");
1097 
1098   if (dest->is_single_cpu()) {
1099     if (type == T_ARRAY || type == T_OBJECT) {
1100       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1101       __ verify_oop(dest->as_register());
1102     } else if (type == T_METADATA) {
1103       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1104     } else {
1105       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1106     }
1107 
1108   } else if (dest->is_double_cpu()) {
1109     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1110     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1111     __ movptr(dest->as_register_lo(), src_addr_LO);
1112     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1113 
1114   } else if (dest->is_single_xmm()) {
1115     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1116     __ movflt(dest->as_xmm_float_reg(), src_addr);
1117 
1118   } else if (dest->is_double_xmm()) {
1119     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1120     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1121 
1122   } else if (dest->is_single_fpu()) {
1123     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1124     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1125     __ fld_s(src_addr);
1126 
1127   } else if (dest->is_double_fpu()) {
1128     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1129     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1130     __ fld_d(src_addr);
1131 
1132   } else {
1133     ShouldNotReachHere();
1134   }
1135 }
1136 
1137 
1138 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1139   if (src->is_single_stack()) {
1140     if (type == T_OBJECT || type == T_ARRAY) {
1141       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1142       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1143     } else {
1144 #ifndef _LP64
1145       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1146       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1147 #else
1148       //no pushl on 64bits
1149       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1150       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1151 #endif
1152     }
1153 
1154   } else if (src->is_double_stack()) {
1155 #ifdef _LP64
1156     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1157     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1158 #else
1159     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1160     // push and pop the part at src + wordSize, adding wordSize for the previous push
1161     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1162     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1163     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1164 #endif // _LP64
1165 
1166   } else {
1167     ShouldNotReachHere();
1168   }
1169 }
1170 
1171 
1172 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1173   assert(src->is_address(), "should not call otherwise");
1174   assert(dest->is_register(), "should not call otherwise");
1175 
1176   LIR_Address* addr = src->as_address_ptr();
1177   Address from_addr = as_Address(addr);
1178 
1179   if (addr->base()->type() == T_OBJECT) {
1180     __ verify_oop(addr->base()->as_pointer_register());
1181   }
1182 
1183   switch (type) {
1184     case T_BOOLEAN: // fall through
1185     case T_BYTE:    // fall through
1186     case T_CHAR:    // fall through
1187     case T_SHORT:
1188       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1189         // on pre P6 processors we may get partial register stalls
1190         // so blow away the value of to_rinfo before loading a
1191         // partial word into it.  Do it here so that it precedes
1192         // the potential patch point below.
1193         __ xorptr(dest->as_register(), dest->as_register());
1194       }
1195       break;
1196    default:
1197      break;
1198   }
1199 
1200   PatchingStub* patch = NULL;
1201   if (patch_code != lir_patch_none) {
1202     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1203     assert(from_addr.disp() != 0, "must have");
1204   }
1205   if (info != NULL) {
1206     add_debug_info_for_null_check_here(info);
1207   }
1208 
1209   switch (type) {
1210     case T_FLOAT: {
1211       if (dest->is_single_xmm()) {
1212         __ movflt(dest->as_xmm_float_reg(), from_addr);
1213       } else {
1214         assert(dest->is_single_fpu(), "must be");
1215         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1216         __ fld_s(from_addr);
1217       }
1218       break;
1219     }
1220 
1221     case T_DOUBLE: {
1222       if (dest->is_double_xmm()) {
1223         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1224       } else {
1225         assert(dest->is_double_fpu(), "must be");
1226         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1227         __ fld_d(from_addr);
1228       }
1229       break;
1230     }
1231 
1232     case T_OBJECT:  // fall through
1233     case T_ARRAY:   // fall through
1234       if (UseCompressedOops && !wide) {
1235         __ movl(dest->as_register(), from_addr);
1236       } else {
1237         __ movptr(dest->as_register(), from_addr);
1238       }
1239       break;
1240 
1241     case T_ADDRESS:
1242       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1243         __ movl(dest->as_register(), from_addr);
1244       } else {
1245         __ movptr(dest->as_register(), from_addr);
1246       }
1247       break;
1248     case T_INT:
1249       __ movl(dest->as_register(), from_addr);
1250       break;
1251 
1252     case T_LONG: {
1253       Register to_lo = dest->as_register_lo();
1254       Register to_hi = dest->as_register_hi();
1255 #ifdef _LP64
1256       __ movptr(to_lo, as_Address_lo(addr));
1257 #else
1258       Register base = addr->base()->as_register();
1259       Register index = noreg;
1260       if (addr->index()->is_register()) {
1261         index = addr->index()->as_register();
1262       }
1263       if ((base == to_lo && index == to_hi) ||
1264           (base == to_hi && index == to_lo)) {
1265         // addresses with 2 registers are only formed as a result of
1266         // array access so this code will never have to deal with
1267         // patches or null checks.
1268         assert(info == NULL && patch == NULL, "must be");
1269         __ lea(to_hi, as_Address(addr));
1270         __ movl(to_lo, Address(to_hi, 0));
1271         __ movl(to_hi, Address(to_hi, BytesPerWord));
1272       } else if (base == to_lo || index == to_lo) {
1273         assert(base != to_hi, "can't be");
1274         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1275         __ movl(to_hi, as_Address_hi(addr));
1276         if (patch != NULL) {
1277           patching_epilog(patch, lir_patch_high, base, info);
1278           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1279           patch_code = lir_patch_low;
1280         }
1281         __ movl(to_lo, as_Address_lo(addr));
1282       } else {
1283         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1284         __ movl(to_lo, as_Address_lo(addr));
1285         if (patch != NULL) {
1286           patching_epilog(patch, lir_patch_low, base, info);
1287           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1288           patch_code = lir_patch_high;
1289         }
1290         __ movl(to_hi, as_Address_hi(addr));
1291       }
1292 #endif // _LP64
1293       break;
1294     }
1295 
1296     case T_BOOLEAN: // fall through
1297     case T_BYTE: {
1298       Register dest_reg = dest->as_register();
1299       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1300       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1301         __ movsbl(dest_reg, from_addr);
1302       } else {
1303         __ movb(dest_reg, from_addr);
1304         __ shll(dest_reg, 24);
1305         __ sarl(dest_reg, 24);
1306       }
1307       break;
1308     }
1309 
1310     case T_CHAR: {
1311       Register dest_reg = dest->as_register();
1312       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1313       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1314         __ movzwl(dest_reg, from_addr);
1315       } else {
1316         __ movw(dest_reg, from_addr);
1317       }
1318       break;
1319     }
1320 
1321     case T_SHORT: {
1322       Register dest_reg = dest->as_register();
1323       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1324         __ movswl(dest_reg, from_addr);
1325       } else {
1326         __ movw(dest_reg, from_addr);
1327         __ shll(dest_reg, 16);
1328         __ sarl(dest_reg, 16);
1329       }
1330       break;
1331     }
1332 
1333     default:
1334       ShouldNotReachHere();
1335   }
1336 
1337   if (patch != NULL) {
1338     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1339   }
1340 
1341   if (type == T_ARRAY || type == T_OBJECT) {
1342 #ifdef _LP64
1343     if (UseCompressedOops && !wide) {
1344       __ decode_heap_oop(dest->as_register());
1345     }
1346 #endif
1347     if (!UseLoadBarrier) {
1348       // Load barrier not yet applied, so a verification here would fail
1349       __ verify_oop(dest->as_register());
1350     }
1351   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1352 #ifdef _LP64
1353     if (UseCompressedClassPointers) {
1354       __ decode_klass_not_null(dest->as_register());
1355     }
1356 #endif
1357   }
1358 }
1359 
1360 
1361 NEEDS_CLEANUP; // This could be static?
1362 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1363   int elem_size = type2aelembytes(type);
1364   switch (elem_size) {
1365     case 1: return Address::times_1;
1366     case 2: return Address::times_2;
1367     case 4: return Address::times_4;
1368     case 8: return Address::times_8;
1369   }
1370   ShouldNotReachHere();
1371   return Address::no_scale;
1372 }
1373 
1374 
1375 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1376   switch (op->code()) {
1377     case lir_idiv:
1378     case lir_irem:
1379       arithmetic_idiv(op->code(),
1380                       op->in_opr1(),
1381                       op->in_opr2(),
1382                       op->in_opr3(),
1383                       op->result_opr(),
1384                       op->info());
1385       break;
1386     case lir_fmad:
1387       __ fmad(op->result_opr()->as_xmm_double_reg(),
1388               op->in_opr1()->as_xmm_double_reg(),
1389               op->in_opr2()->as_xmm_double_reg(),
1390               op->in_opr3()->as_xmm_double_reg());
1391       break;
1392     case lir_fmaf:
1393       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1394               op->in_opr1()->as_xmm_float_reg(),
1395               op->in_opr2()->as_xmm_float_reg(),
1396               op->in_opr3()->as_xmm_float_reg());
1397       break;
1398     default:      ShouldNotReachHere(); break;
1399   }
1400 }
1401 
1402 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1403 #ifdef ASSERT
1404   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1405   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1406   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1407 #endif
1408 
1409   if (op->cond() == lir_cond_always) {
1410     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1411     __ jmp (*(op->label()));
1412   } else {
1413     Assembler::Condition acond = Assembler::zero;
1414     if (op->code() == lir_cond_float_branch) {
1415       assert(op->ublock() != NULL, "must have unordered successor");
1416       __ jcc(Assembler::parity, *(op->ublock()->label()));
1417       switch(op->cond()) {
1418         case lir_cond_equal:        acond = Assembler::equal;      break;
1419         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1420         case lir_cond_less:         acond = Assembler::below;      break;
1421         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1422         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1423         case lir_cond_greater:      acond = Assembler::above;      break;
1424         default:                         ShouldNotReachHere();
1425       }
1426     } else {
1427       switch (op->cond()) {
1428         case lir_cond_equal:        acond = Assembler::equal;       break;
1429         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1430         case lir_cond_less:         acond = Assembler::less;        break;
1431         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1432         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1433         case lir_cond_greater:      acond = Assembler::greater;     break;
1434         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1435         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1436         default:                         ShouldNotReachHere();
1437       }
1438     }
1439     __ jcc(acond,*(op->label()));
1440   }
1441 }
1442 
1443 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1444   LIR_Opr src  = op->in_opr();
1445   LIR_Opr dest = op->result_opr();
1446 
1447   switch (op->bytecode()) {
1448     case Bytecodes::_i2l:
1449 #ifdef _LP64
1450       __ movl2ptr(dest->as_register_lo(), src->as_register());
1451 #else
1452       move_regs(src->as_register(), dest->as_register_lo());
1453       move_regs(src->as_register(), dest->as_register_hi());
1454       __ sarl(dest->as_register_hi(), 31);
1455 #endif // LP64
1456       break;
1457 
1458     case Bytecodes::_l2i:
1459 #ifdef _LP64
1460       __ movl(dest->as_register(), src->as_register_lo());
1461 #else
1462       move_regs(src->as_register_lo(), dest->as_register());
1463 #endif
1464       break;
1465 
1466     case Bytecodes::_i2b:
1467       move_regs(src->as_register(), dest->as_register());
1468       __ sign_extend_byte(dest->as_register());
1469       break;
1470 
1471     case Bytecodes::_i2c:
1472       move_regs(src->as_register(), dest->as_register());
1473       __ andl(dest->as_register(), 0xFFFF);
1474       break;
1475 
1476     case Bytecodes::_i2s:
1477       move_regs(src->as_register(), dest->as_register());
1478       __ sign_extend_short(dest->as_register());
1479       break;
1480 
1481 
1482     case Bytecodes::_f2d:
1483     case Bytecodes::_d2f:
1484       if (dest->is_single_xmm()) {
1485         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1486       } else if (dest->is_double_xmm()) {
1487         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1488       } else {
1489         assert(src->fpu() == dest->fpu(), "register must be equal");
1490         // do nothing (float result is rounded later through spilling)
1491       }
1492       break;
1493 
1494     case Bytecodes::_i2f:
1495     case Bytecodes::_i2d:
1496       if (dest->is_single_xmm()) {
1497         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1498       } else if (dest->is_double_xmm()) {
1499         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1500       } else {
1501         assert(dest->fpu() == 0, "result must be on TOS");
1502         __ movl(Address(rsp, 0), src->as_register());
1503         __ fild_s(Address(rsp, 0));
1504       }
1505       break;
1506 
1507     case Bytecodes::_f2i:
1508     case Bytecodes::_d2i:
1509       if (src->is_single_xmm()) {
1510         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1511       } else if (src->is_double_xmm()) {
1512         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1513       } else {
1514         assert(src->fpu() == 0, "input must be on TOS");
1515         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1516         __ fist_s(Address(rsp, 0));
1517         __ movl(dest->as_register(), Address(rsp, 0));
1518         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1519       }
1520 
1521       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1522       assert(op->stub() != NULL, "stub required");
1523       __ cmpl(dest->as_register(), 0x80000000);
1524       __ jcc(Assembler::equal, *op->stub()->entry());
1525       __ bind(*op->stub()->continuation());
1526       break;
1527 
1528     case Bytecodes::_l2f:
1529     case Bytecodes::_l2d:
1530       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1531       assert(dest->fpu() == 0, "result must be on TOS");
1532 
1533       __ movptr(Address(rsp, 0),            src->as_register_lo());
1534       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1535       __ fild_d(Address(rsp, 0));
1536       // float result is rounded later through spilling
1537       break;
1538 
1539     case Bytecodes::_f2l:
1540     case Bytecodes::_d2l:
1541       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1542       assert(src->fpu() == 0, "input must be on TOS");
1543       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1544 
1545       // instruction sequence too long to inline it here
1546       {
1547         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1548       }
1549       break;
1550 
1551     default: ShouldNotReachHere();
1552   }
1553 }
1554 
1555 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1556   if (op->init_check()) {
1557     add_debug_info_for_null_check_here(op->stub()->info());
1558     __ cmpb(Address(op->klass()->as_register(),
1559                     InstanceKlass::init_state_offset()),
1560                     InstanceKlass::fully_initialized);
1561     __ jcc(Assembler::notEqual, *op->stub()->entry());
1562   }
1563   __ allocate_object(op->obj()->as_register(),
1564                      op->tmp1()->as_register(),
1565                      op->tmp2()->as_register(),
1566                      op->header_size(),
1567                      op->object_size(),
1568                      op->klass()->as_register(),
1569                      *op->stub()->entry());
1570   __ bind(*op->stub()->continuation());
1571 }
1572 
1573 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1574   Register len =  op->len()->as_register();
1575   LP64_ONLY( __ movslq(len, len); )
1576 
1577   if (UseSlowPath ||
1578       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1579       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1580     __ jmp(*op->stub()->entry());
1581   } else {
1582     Register tmp1 = op->tmp1()->as_register();
1583     Register tmp2 = op->tmp2()->as_register();
1584     Register tmp3 = op->tmp3()->as_register();
1585     if (len == tmp1) {
1586       tmp1 = tmp3;
1587     } else if (len == tmp2) {
1588       tmp2 = tmp3;
1589     } else if (len == tmp3) {
1590       // everything is ok
1591     } else {
1592       __ mov(tmp3, len);
1593     }
1594     __ allocate_array(op->obj()->as_register(),
1595                       len,
1596                       tmp1,
1597                       tmp2,
1598                       arrayOopDesc::header_size(op->type()),
1599                       array_element_size(op->type()),
1600                       op->klass()->as_register(),
1601                       *op->stub()->entry());
1602   }
1603   __ bind(*op->stub()->continuation());
1604 }
1605 
1606 void LIR_Assembler::type_profile_helper(Register mdo,
1607                                         ciMethodData *md, ciProfileData *data,
1608                                         Register recv, Label* update_done) {
1609   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1610     Label next_test;
1611     // See if the receiver is receiver[n].
1612     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1613     __ jccb(Assembler::notEqual, next_test);
1614     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1615     __ addptr(data_addr, DataLayout::counter_increment);
1616     __ jmp(*update_done);
1617     __ bind(next_test);
1618   }
1619 
1620   // Didn't find receiver; find next empty slot and fill it in
1621   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1622     Label next_test;
1623     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1624     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1625     __ jccb(Assembler::notEqual, next_test);
1626     __ movptr(recv_addr, recv);
1627     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1628     __ jmp(*update_done);
1629     __ bind(next_test);
1630   }
1631 }
1632 
1633 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1634   // we always need a stub for the failure case.
1635   CodeStub* stub = op->stub();
1636   Register obj = op->object()->as_register();
1637   Register k_RInfo = op->tmp1()->as_register();
1638   Register klass_RInfo = op->tmp2()->as_register();
1639   Register dst = op->result_opr()->as_register();
1640   ciKlass* k = op->klass();
1641   Register Rtmp1 = noreg;
1642 
1643   // check if it needs to be profiled
1644   ciMethodData* md = NULL;
1645   ciProfileData* data = NULL;
1646 
1647   if (op->should_profile()) {
1648     ciMethod* method = op->profiled_method();
1649     assert(method != NULL, "Should have method");
1650     int bci = op->profiled_bci();
1651     md = method->method_data_or_null();
1652     assert(md != NULL, "Sanity");
1653     data = md->bci_to_data(bci);
1654     assert(data != NULL,                "need data for type check");
1655     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1656   }
1657   Label profile_cast_success, profile_cast_failure;
1658   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1659   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1660 
1661   if (obj == k_RInfo) {
1662     k_RInfo = dst;
1663   } else if (obj == klass_RInfo) {
1664     klass_RInfo = dst;
1665   }
1666   if (k->is_loaded() && !UseCompressedClassPointers) {
1667     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1668   } else {
1669     Rtmp1 = op->tmp3()->as_register();
1670     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1671   }
1672 
1673   assert_different_registers(obj, k_RInfo, klass_RInfo);
1674 
1675   __ cmpptr(obj, (int32_t)NULL_WORD);
1676   if (op->should_profile()) {
1677     Label not_null;
1678     __ jccb(Assembler::notEqual, not_null);
1679     // Object is null; update MDO and exit
1680     Register mdo  = klass_RInfo;
1681     __ mov_metadata(mdo, md->constant_encoding());
1682     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1683     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1684     __ orl(data_addr, header_bits);
1685     __ jmp(*obj_is_null);
1686     __ bind(not_null);
1687   } else {
1688     __ jcc(Assembler::equal, *obj_is_null);
1689   }
1690 
1691   if (!k->is_loaded()) {
1692     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1693   } else {
1694 #ifdef _LP64
1695     __ mov_metadata(k_RInfo, k->constant_encoding());
1696 #endif // _LP64
1697   }
1698   __ verify_oop(obj);
1699 
1700   if (op->fast_check()) {
1701     // get object class
1702     // not a safepoint as obj null check happens earlier
1703 #ifdef _LP64
1704     if (UseCompressedClassPointers) {
1705       __ load_klass(Rtmp1, obj);
1706       __ cmpptr(k_RInfo, Rtmp1);
1707     } else {
1708       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1709     }
1710 #else
1711     if (k->is_loaded()) {
1712       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1713     } else {
1714       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1715     }
1716 #endif
1717     __ jcc(Assembler::notEqual, *failure_target);
1718     // successful cast, fall through to profile or jump
1719   } else {
1720     // get object class
1721     // not a safepoint as obj null check happens earlier
1722     __ load_klass(klass_RInfo, obj);
1723     if (k->is_loaded()) {
1724       // See if we get an immediate positive hit
1725 #ifdef _LP64
1726       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1727 #else
1728       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1729 #endif // _LP64
1730       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1731         __ jcc(Assembler::notEqual, *failure_target);
1732         // successful cast, fall through to profile or jump
1733       } else {
1734         // See if we get an immediate positive hit
1735         __ jcc(Assembler::equal, *success_target);
1736         // check for self
1737 #ifdef _LP64
1738         __ cmpptr(klass_RInfo, k_RInfo);
1739 #else
1740         __ cmpklass(klass_RInfo, k->constant_encoding());
1741 #endif // _LP64
1742         __ jcc(Assembler::equal, *success_target);
1743 
1744         __ push(klass_RInfo);
1745 #ifdef _LP64
1746         __ push(k_RInfo);
1747 #else
1748         __ pushklass(k->constant_encoding());
1749 #endif // _LP64
1750         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1751         __ pop(klass_RInfo);
1752         __ pop(klass_RInfo);
1753         // result is a boolean
1754         __ cmpl(klass_RInfo, 0);
1755         __ jcc(Assembler::equal, *failure_target);
1756         // successful cast, fall through to profile or jump
1757       }
1758     } else {
1759       // perform the fast part of the checking logic
1760       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1761       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1762       __ push(klass_RInfo);
1763       __ push(k_RInfo);
1764       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1765       __ pop(klass_RInfo);
1766       __ pop(k_RInfo);
1767       // result is a boolean
1768       __ cmpl(k_RInfo, 0);
1769       __ jcc(Assembler::equal, *failure_target);
1770       // successful cast, fall through to profile or jump
1771     }
1772   }
1773   if (op->should_profile()) {
1774     Register mdo  = klass_RInfo, recv = k_RInfo;
1775     __ bind(profile_cast_success);
1776     __ mov_metadata(mdo, md->constant_encoding());
1777     __ load_klass(recv, obj);
1778     Label update_done;
1779     type_profile_helper(mdo, md, data, recv, success);
1780     __ jmp(*success);
1781 
1782     __ bind(profile_cast_failure);
1783     __ mov_metadata(mdo, md->constant_encoding());
1784     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1785     __ subptr(counter_addr, DataLayout::counter_increment);
1786     __ jmp(*failure);
1787   }
1788   __ jmp(*success);
1789 }
1790 
1791 
1792 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1793   LIR_Code code = op->code();
1794   if (code == lir_store_check) {
1795     Register value = op->object()->as_register();
1796     Register array = op->array()->as_register();
1797     Register k_RInfo = op->tmp1()->as_register();
1798     Register klass_RInfo = op->tmp2()->as_register();
1799     Register Rtmp1 = op->tmp3()->as_register();
1800 
1801     CodeStub* stub = op->stub();
1802 
1803     // check if it needs to be profiled
1804     ciMethodData* md = NULL;
1805     ciProfileData* data = NULL;
1806 
1807     if (op->should_profile()) {
1808       ciMethod* method = op->profiled_method();
1809       assert(method != NULL, "Should have method");
1810       int bci = op->profiled_bci();
1811       md = method->method_data_or_null();
1812       assert(md != NULL, "Sanity");
1813       data = md->bci_to_data(bci);
1814       assert(data != NULL,                "need data for type check");
1815       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1816     }
1817     Label profile_cast_success, profile_cast_failure, done;
1818     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1819     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1820 
1821     __ cmpptr(value, (int32_t)NULL_WORD);
1822     if (op->should_profile()) {
1823       Label not_null;
1824       __ jccb(Assembler::notEqual, not_null);
1825       // Object is null; update MDO and exit
1826       Register mdo  = klass_RInfo;
1827       __ mov_metadata(mdo, md->constant_encoding());
1828       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1829       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1830       __ orl(data_addr, header_bits);
1831       __ jmp(done);
1832       __ bind(not_null);
1833     } else {
1834       __ jcc(Assembler::equal, done);
1835     }
1836 
1837     add_debug_info_for_null_check_here(op->info_for_exception());
1838     __ load_klass(k_RInfo, array);
1839     __ load_klass(klass_RInfo, value);
1840 
1841     // get instance klass (it's already uncompressed)
1842     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1843     // perform the fast part of the checking logic
1844     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1845     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1846     __ push(klass_RInfo);
1847     __ push(k_RInfo);
1848     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1849     __ pop(klass_RInfo);
1850     __ pop(k_RInfo);
1851     // result is a boolean
1852     __ cmpl(k_RInfo, 0);
1853     __ jcc(Assembler::equal, *failure_target);
1854     // fall through to the success case
1855 
1856     if (op->should_profile()) {
1857       Register mdo  = klass_RInfo, recv = k_RInfo;
1858       __ bind(profile_cast_success);
1859       __ mov_metadata(mdo, md->constant_encoding());
1860       __ load_klass(recv, value);
1861       Label update_done;
1862       type_profile_helper(mdo, md, data, recv, &done);
1863       __ jmpb(done);
1864 
1865       __ bind(profile_cast_failure);
1866       __ mov_metadata(mdo, md->constant_encoding());
1867       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1868       __ subptr(counter_addr, DataLayout::counter_increment);
1869       __ jmp(*stub->entry());
1870     }
1871 
1872     __ bind(done);
1873   } else
1874     if (code == lir_checkcast) {
1875       Register obj = op->object()->as_register();
1876       Register dst = op->result_opr()->as_register();
1877       Label success;
1878       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1879       __ bind(success);
1880       if (dst != obj) {
1881         __ mov(dst, obj);
1882       }
1883     } else
1884       if (code == lir_instanceof) {
1885         Register obj = op->object()->as_register();
1886         Register dst = op->result_opr()->as_register();
1887         Label success, failure, done;
1888         emit_typecheck_helper(op, &success, &failure, &failure);
1889         __ bind(failure);
1890         __ xorptr(dst, dst);
1891         __ jmpb(done);
1892         __ bind(success);
1893         __ movptr(dst, 1);
1894         __ bind(done);
1895       } else {
1896         ShouldNotReachHere();
1897       }
1898 
1899 }
1900 
1901 
1902 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1903   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1904     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1905     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1906     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1907     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1908     Register addr = op->addr()->as_register();
1909     if (os::is_MP()) {
1910       __ lock();
1911     }
1912     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1913 
1914   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1915     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1916     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1917     Register newval = op->new_value()->as_register();
1918     Register cmpval = op->cmp_value()->as_register();
1919     assert(cmpval == rax, "wrong register");
1920     assert(newval != NULL, "new val must be register");
1921     assert(cmpval != newval, "cmp and new values must be in different registers");
1922     assert(cmpval != addr, "cmp and addr must be in different registers");
1923     assert(newval != addr, "new value and addr must be in different registers");
1924 
1925     if ( op->code() == lir_cas_obj) {
1926 #ifdef _LP64
1927       if (UseCompressedOops) {
1928         __ encode_heap_oop(cmpval);
1929         __ mov(rscratch1, newval);
1930         __ encode_heap_oop(rscratch1);
1931         if (os::is_MP()) {
1932           __ lock();
1933         }
1934         // cmpval (rax) is implicitly used by this instruction
1935         __ cmpxchgl(rscratch1, Address(addr, 0));
1936       } else
1937 #endif
1938       {
1939         if (os::is_MP()) {
1940           __ lock();
1941         }
1942         __ cmpxchgptr(newval, Address(addr, 0));
1943       }
1944     } else {
1945       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1946       if (os::is_MP()) {
1947         __ lock();
1948       }
1949       __ cmpxchgl(newval, Address(addr, 0));
1950     }
1951 #ifdef _LP64
1952   } else if (op->code() == lir_cas_long) {
1953     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1954     Register newval = op->new_value()->as_register_lo();
1955     Register cmpval = op->cmp_value()->as_register_lo();
1956     assert(cmpval == rax, "wrong register");
1957     assert(newval != NULL, "new val must be register");
1958     assert(cmpval != newval, "cmp and new values must be in different registers");
1959     assert(cmpval != addr, "cmp and addr must be in different registers");
1960     assert(newval != addr, "new value and addr must be in different registers");
1961     if (os::is_MP()) {
1962       __ lock();
1963     }
1964     __ cmpxchgq(newval, Address(addr, 0));
1965 #endif // _LP64
1966   } else {
1967     Unimplemented();
1968   }
1969 }
1970 
1971 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1972   Assembler::Condition acond, ncond;
1973   switch (condition) {
1974     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1975     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1976     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1977     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1978     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1979     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1980     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1981     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1982     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1983                                 ShouldNotReachHere();
1984   }
1985 
1986   if (opr1->is_cpu_register()) {
1987     reg2reg(opr1, result);
1988   } else if (opr1->is_stack()) {
1989     stack2reg(opr1, result, result->type());
1990   } else if (opr1->is_constant()) {
1991     const2reg(opr1, result, lir_patch_none, NULL);
1992   } else {
1993     ShouldNotReachHere();
1994   }
1995 
1996   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1997     // optimized version that does not require a branch
1998     if (opr2->is_single_cpu()) {
1999       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2000       __ cmov(ncond, result->as_register(), opr2->as_register());
2001     } else if (opr2->is_double_cpu()) {
2002       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2003       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2004       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2005       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2006     } else if (opr2->is_single_stack()) {
2007       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2008     } else if (opr2->is_double_stack()) {
2009       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2010       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2011     } else {
2012       ShouldNotReachHere();
2013     }
2014 
2015   } else {
2016     Label skip;
2017     __ jcc (acond, skip);
2018     if (opr2->is_cpu_register()) {
2019       reg2reg(opr2, result);
2020     } else if (opr2->is_stack()) {
2021       stack2reg(opr2, result, result->type());
2022     } else if (opr2->is_constant()) {
2023       const2reg(opr2, result, lir_patch_none, NULL);
2024     } else {
2025       ShouldNotReachHere();
2026     }
2027     __ bind(skip);
2028   }
2029 }
2030 
2031 
2032 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2033   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2034 
2035   if (left->is_single_cpu()) {
2036     assert(left == dest, "left and dest must be equal");
2037     Register lreg = left->as_register();
2038 
2039     if (right->is_single_cpu()) {
2040       // cpu register - cpu register
2041       Register rreg = right->as_register();
2042       switch (code) {
2043         case lir_add: __ addl (lreg, rreg); break;
2044         case lir_sub: __ subl (lreg, rreg); break;
2045         case lir_mul: __ imull(lreg, rreg); break;
2046         default:      ShouldNotReachHere();
2047       }
2048 
2049     } else if (right->is_stack()) {
2050       // cpu register - stack
2051       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2052       switch (code) {
2053         case lir_add: __ addl(lreg, raddr); break;
2054         case lir_sub: __ subl(lreg, raddr); break;
2055         default:      ShouldNotReachHere();
2056       }
2057 
2058     } else if (right->is_constant()) {
2059       // cpu register - constant
2060       jint c = right->as_constant_ptr()->as_jint();
2061       switch (code) {
2062         case lir_add: {
2063           __ incrementl(lreg, c);
2064           break;
2065         }
2066         case lir_sub: {
2067           __ decrementl(lreg, c);
2068           break;
2069         }
2070         default: ShouldNotReachHere();
2071       }
2072 
2073     } else {
2074       ShouldNotReachHere();
2075     }
2076 
2077   } else if (left->is_double_cpu()) {
2078     assert(left == dest, "left and dest must be equal");
2079     Register lreg_lo = left->as_register_lo();
2080     Register lreg_hi = left->as_register_hi();
2081 
2082     if (right->is_double_cpu()) {
2083       // cpu register - cpu register
2084       Register rreg_lo = right->as_register_lo();
2085       Register rreg_hi = right->as_register_hi();
2086       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2087       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2088       switch (code) {
2089         case lir_add:
2090           __ addptr(lreg_lo, rreg_lo);
2091           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2092           break;
2093         case lir_sub:
2094           __ subptr(lreg_lo, rreg_lo);
2095           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2096           break;
2097         case lir_mul:
2098 #ifdef _LP64
2099           __ imulq(lreg_lo, rreg_lo);
2100 #else
2101           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2102           __ imull(lreg_hi, rreg_lo);
2103           __ imull(rreg_hi, lreg_lo);
2104           __ addl (rreg_hi, lreg_hi);
2105           __ mull (rreg_lo);
2106           __ addl (lreg_hi, rreg_hi);
2107 #endif // _LP64
2108           break;
2109         default:
2110           ShouldNotReachHere();
2111       }
2112 
2113     } else if (right->is_constant()) {
2114       // cpu register - constant
2115 #ifdef _LP64
2116       jlong c = right->as_constant_ptr()->as_jlong_bits();
2117       __ movptr(r10, (intptr_t) c);
2118       switch (code) {
2119         case lir_add:
2120           __ addptr(lreg_lo, r10);
2121           break;
2122         case lir_sub:
2123           __ subptr(lreg_lo, r10);
2124           break;
2125         default:
2126           ShouldNotReachHere();
2127       }
2128 #else
2129       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2130       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2131       switch (code) {
2132         case lir_add:
2133           __ addptr(lreg_lo, c_lo);
2134           __ adcl(lreg_hi, c_hi);
2135           break;
2136         case lir_sub:
2137           __ subptr(lreg_lo, c_lo);
2138           __ sbbl(lreg_hi, c_hi);
2139           break;
2140         default:
2141           ShouldNotReachHere();
2142       }
2143 #endif // _LP64
2144 
2145     } else {
2146       ShouldNotReachHere();
2147     }
2148 
2149   } else if (left->is_single_xmm()) {
2150     assert(left == dest, "left and dest must be equal");
2151     XMMRegister lreg = left->as_xmm_float_reg();
2152 
2153     if (right->is_single_xmm()) {
2154       XMMRegister rreg = right->as_xmm_float_reg();
2155       switch (code) {
2156         case lir_add: __ addss(lreg, rreg);  break;
2157         case lir_sub: __ subss(lreg, rreg);  break;
2158         case lir_mul_strictfp: // fall through
2159         case lir_mul: __ mulss(lreg, rreg);  break;
2160         case lir_div_strictfp: // fall through
2161         case lir_div: __ divss(lreg, rreg);  break;
2162         default: ShouldNotReachHere();
2163       }
2164     } else {
2165       Address raddr;
2166       if (right->is_single_stack()) {
2167         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2168       } else if (right->is_constant()) {
2169         // hack for now
2170         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2171       } else {
2172         ShouldNotReachHere();
2173       }
2174       switch (code) {
2175         case lir_add: __ addss(lreg, raddr);  break;
2176         case lir_sub: __ subss(lreg, raddr);  break;
2177         case lir_mul_strictfp: // fall through
2178         case lir_mul: __ mulss(lreg, raddr);  break;
2179         case lir_div_strictfp: // fall through
2180         case lir_div: __ divss(lreg, raddr);  break;
2181         default: ShouldNotReachHere();
2182       }
2183     }
2184 
2185   } else if (left->is_double_xmm()) {
2186     assert(left == dest, "left and dest must be equal");
2187 
2188     XMMRegister lreg = left->as_xmm_double_reg();
2189     if (right->is_double_xmm()) {
2190       XMMRegister rreg = right->as_xmm_double_reg();
2191       switch (code) {
2192         case lir_add: __ addsd(lreg, rreg);  break;
2193         case lir_sub: __ subsd(lreg, rreg);  break;
2194         case lir_mul_strictfp: // fall through
2195         case lir_mul: __ mulsd(lreg, rreg);  break;
2196         case lir_div_strictfp: // fall through
2197         case lir_div: __ divsd(lreg, rreg);  break;
2198         default: ShouldNotReachHere();
2199       }
2200     } else {
2201       Address raddr;
2202       if (right->is_double_stack()) {
2203         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2204       } else if (right->is_constant()) {
2205         // hack for now
2206         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2207       } else {
2208         ShouldNotReachHere();
2209       }
2210       switch (code) {
2211         case lir_add: __ addsd(lreg, raddr);  break;
2212         case lir_sub: __ subsd(lreg, raddr);  break;
2213         case lir_mul_strictfp: // fall through
2214         case lir_mul: __ mulsd(lreg, raddr);  break;
2215         case lir_div_strictfp: // fall through
2216         case lir_div: __ divsd(lreg, raddr);  break;
2217         default: ShouldNotReachHere();
2218       }
2219     }
2220 
2221   } else if (left->is_single_fpu()) {
2222     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2223 
2224     if (right->is_single_fpu()) {
2225       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2226 
2227     } else {
2228       assert(left->fpu_regnr() == 0, "left must be on TOS");
2229       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2230 
2231       Address raddr;
2232       if (right->is_single_stack()) {
2233         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2234       } else if (right->is_constant()) {
2235         address const_addr = float_constant(right->as_jfloat());
2236         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2237         // hack for now
2238         raddr = __ as_Address(InternalAddress(const_addr));
2239       } else {
2240         ShouldNotReachHere();
2241       }
2242 
2243       switch (code) {
2244         case lir_add: __ fadd_s(raddr); break;
2245         case lir_sub: __ fsub_s(raddr); break;
2246         case lir_mul_strictfp: // fall through
2247         case lir_mul: __ fmul_s(raddr); break;
2248         case lir_div_strictfp: // fall through
2249         case lir_div: __ fdiv_s(raddr); break;
2250         default:      ShouldNotReachHere();
2251       }
2252     }
2253 
2254   } else if (left->is_double_fpu()) {
2255     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2256 
2257     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2258       // Double values require special handling for strictfp mul/div on x86
2259       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2260       __ fmulp(left->fpu_regnrLo() + 1);
2261     }
2262 
2263     if (right->is_double_fpu()) {
2264       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2265 
2266     } else {
2267       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2268       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2269 
2270       Address raddr;
2271       if (right->is_double_stack()) {
2272         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2273       } else if (right->is_constant()) {
2274         // hack for now
2275         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2276       } else {
2277         ShouldNotReachHere();
2278       }
2279 
2280       switch (code) {
2281         case lir_add: __ fadd_d(raddr); break;
2282         case lir_sub: __ fsub_d(raddr); break;
2283         case lir_mul_strictfp: // fall through
2284         case lir_mul: __ fmul_d(raddr); break;
2285         case lir_div_strictfp: // fall through
2286         case lir_div: __ fdiv_d(raddr); break;
2287         default: ShouldNotReachHere();
2288       }
2289     }
2290 
2291     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2292       // Double values require special handling for strictfp mul/div on x86
2293       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2294       __ fmulp(dest->fpu_regnrLo() + 1);
2295     }
2296 
2297   } else if (left->is_single_stack() || left->is_address()) {
2298     assert(left == dest, "left and dest must be equal");
2299 
2300     Address laddr;
2301     if (left->is_single_stack()) {
2302       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2303     } else if (left->is_address()) {
2304       laddr = as_Address(left->as_address_ptr());
2305     } else {
2306       ShouldNotReachHere();
2307     }
2308 
2309     if (right->is_single_cpu()) {
2310       Register rreg = right->as_register();
2311       switch (code) {
2312         case lir_add: __ addl(laddr, rreg); break;
2313         case lir_sub: __ subl(laddr, rreg); break;
2314         default:      ShouldNotReachHere();
2315       }
2316     } else if (right->is_constant()) {
2317       jint c = right->as_constant_ptr()->as_jint();
2318       switch (code) {
2319         case lir_add: {
2320           __ incrementl(laddr, c);
2321           break;
2322         }
2323         case lir_sub: {
2324           __ decrementl(laddr, c);
2325           break;
2326         }
2327         default: ShouldNotReachHere();
2328       }
2329     } else {
2330       ShouldNotReachHere();
2331     }
2332 
2333   } else {
2334     ShouldNotReachHere();
2335   }
2336 }
2337 
2338 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2339   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2340   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2341   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2342 
2343   bool left_is_tos = (left_index == 0);
2344   bool dest_is_tos = (dest_index == 0);
2345   int non_tos_index = (left_is_tos ? right_index : left_index);
2346 
2347   switch (code) {
2348     case lir_add:
2349       if (pop_fpu_stack)       __ faddp(non_tos_index);
2350       else if (dest_is_tos)    __ fadd (non_tos_index);
2351       else                     __ fadda(non_tos_index);
2352       break;
2353 
2354     case lir_sub:
2355       if (left_is_tos) {
2356         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2357         else if (dest_is_tos)  __ fsub  (non_tos_index);
2358         else                   __ fsubra(non_tos_index);
2359       } else {
2360         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2361         else if (dest_is_tos)  __ fsubr (non_tos_index);
2362         else                   __ fsuba (non_tos_index);
2363       }
2364       break;
2365 
2366     case lir_mul_strictfp: // fall through
2367     case lir_mul:
2368       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2369       else if (dest_is_tos)    __ fmul (non_tos_index);
2370       else                     __ fmula(non_tos_index);
2371       break;
2372 
2373     case lir_div_strictfp: // fall through
2374     case lir_div:
2375       if (left_is_tos) {
2376         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2377         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2378         else                   __ fdivra(non_tos_index);
2379       } else {
2380         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2381         else if (dest_is_tos)  __ fdivr (non_tos_index);
2382         else                   __ fdiva (non_tos_index);
2383       }
2384       break;
2385 
2386     case lir_rem:
2387       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2388       __ fremr(noreg);
2389       break;
2390 
2391     default:
2392       ShouldNotReachHere();
2393   }
2394 }
2395 
2396 
2397 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2398   if (value->is_double_xmm()) {
2399     switch(code) {
2400       case lir_abs :
2401         {
2402           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2403             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2404           }
2405           __ andpd(dest->as_xmm_double_reg(),
2406                     ExternalAddress((address)double_signmask_pool));
2407         }
2408         break;
2409 
2410       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2411       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2412       default      : ShouldNotReachHere();
2413     }
2414 
2415   } else if (value->is_double_fpu()) {
2416     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2417     switch(code) {
2418       case lir_abs   : __ fabs() ; break;
2419       case lir_sqrt  : __ fsqrt(); break;
2420       default      : ShouldNotReachHere();
2421     }
2422   } else {
2423     Unimplemented();
2424   }
2425 }
2426 
2427 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2428   // assert(left->destroys_register(), "check");
2429   if (left->is_single_cpu()) {
2430     Register reg = left->as_register();
2431     if (right->is_constant()) {
2432       int val = right->as_constant_ptr()->as_jint();
2433       switch (code) {
2434         case lir_logic_and: __ andl (reg, val); break;
2435         case lir_logic_or:  __ orl  (reg, val); break;
2436         case lir_logic_xor: __ xorl (reg, val); break;
2437         default: ShouldNotReachHere();
2438       }
2439     } else if (right->is_stack()) {
2440       // added support for stack operands
2441       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2442       switch (code) {
2443         case lir_logic_and: __ andl (reg, raddr); break;
2444         case lir_logic_or:  __ orl  (reg, raddr); break;
2445         case lir_logic_xor: __ xorl (reg, raddr); break;
2446         default: ShouldNotReachHere();
2447       }
2448     } else {
2449       Register rright = right->as_register();
2450       switch (code) {
2451         case lir_logic_and: __ andptr (reg, rright); break;
2452         case lir_logic_or : __ orptr  (reg, rright); break;
2453         case lir_logic_xor: __ xorptr (reg, rright); break;
2454         default: ShouldNotReachHere();
2455       }
2456     }
2457     move_regs(reg, dst->as_register());
2458   } else {
2459     Register l_lo = left->as_register_lo();
2460     Register l_hi = left->as_register_hi();
2461     if (right->is_constant()) {
2462 #ifdef _LP64
2463       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2464       switch (code) {
2465         case lir_logic_and:
2466           __ andq(l_lo, rscratch1);
2467           break;
2468         case lir_logic_or:
2469           __ orq(l_lo, rscratch1);
2470           break;
2471         case lir_logic_xor:
2472           __ xorq(l_lo, rscratch1);
2473           break;
2474         default: ShouldNotReachHere();
2475       }
2476 #else
2477       int r_lo = right->as_constant_ptr()->as_jint_lo();
2478       int r_hi = right->as_constant_ptr()->as_jint_hi();
2479       switch (code) {
2480         case lir_logic_and:
2481           __ andl(l_lo, r_lo);
2482           __ andl(l_hi, r_hi);
2483           break;
2484         case lir_logic_or:
2485           __ orl(l_lo, r_lo);
2486           __ orl(l_hi, r_hi);
2487           break;
2488         case lir_logic_xor:
2489           __ xorl(l_lo, r_lo);
2490           __ xorl(l_hi, r_hi);
2491           break;
2492         default: ShouldNotReachHere();
2493       }
2494 #endif // _LP64
2495     } else {
2496 #ifdef _LP64
2497       Register r_lo;
2498       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2499         r_lo = right->as_register();
2500       } else {
2501         r_lo = right->as_register_lo();
2502       }
2503 #else
2504       Register r_lo = right->as_register_lo();
2505       Register r_hi = right->as_register_hi();
2506       assert(l_lo != r_hi, "overwriting registers");
2507 #endif
2508       switch (code) {
2509         case lir_logic_and:
2510           __ andptr(l_lo, r_lo);
2511           NOT_LP64(__ andptr(l_hi, r_hi);)
2512           break;
2513         case lir_logic_or:
2514           __ orptr(l_lo, r_lo);
2515           NOT_LP64(__ orptr(l_hi, r_hi);)
2516           break;
2517         case lir_logic_xor:
2518           __ xorptr(l_lo, r_lo);
2519           NOT_LP64(__ xorptr(l_hi, r_hi);)
2520           break;
2521         default: ShouldNotReachHere();
2522       }
2523     }
2524 
2525     Register dst_lo = dst->as_register_lo();
2526     Register dst_hi = dst->as_register_hi();
2527 
2528 #ifdef _LP64
2529     move_regs(l_lo, dst_lo);
2530 #else
2531     if (dst_lo == l_hi) {
2532       assert(dst_hi != l_lo, "overwriting registers");
2533       move_regs(l_hi, dst_hi);
2534       move_regs(l_lo, dst_lo);
2535     } else {
2536       assert(dst_lo != l_hi, "overwriting registers");
2537       move_regs(l_lo, dst_lo);
2538       move_regs(l_hi, dst_hi);
2539     }
2540 #endif // _LP64
2541   }
2542 }
2543 
2544 
2545 // we assume that rax, and rdx can be overwritten
2546 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2547 
2548   assert(left->is_single_cpu(),   "left must be register");
2549   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2550   assert(result->is_single_cpu(), "result must be register");
2551 
2552   //  assert(left->destroys_register(), "check");
2553   //  assert(right->destroys_register(), "check");
2554 
2555   Register lreg = left->as_register();
2556   Register dreg = result->as_register();
2557 
2558   if (right->is_constant()) {
2559     int divisor = right->as_constant_ptr()->as_jint();
2560     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2561     if (code == lir_idiv) {
2562       assert(lreg == rax, "must be rax,");
2563       assert(temp->as_register() == rdx, "tmp register must be rdx");
2564       __ cdql(); // sign extend into rdx:rax
2565       if (divisor == 2) {
2566         __ subl(lreg, rdx);
2567       } else {
2568         __ andl(rdx, divisor - 1);
2569         __ addl(lreg, rdx);
2570       }
2571       __ sarl(lreg, log2_intptr(divisor));
2572       move_regs(lreg, dreg);
2573     } else if (code == lir_irem) {
2574       Label done;
2575       __ mov(dreg, lreg);
2576       __ andl(dreg, 0x80000000 | (divisor - 1));
2577       __ jcc(Assembler::positive, done);
2578       __ decrement(dreg);
2579       __ orl(dreg, ~(divisor - 1));
2580       __ increment(dreg);
2581       __ bind(done);
2582     } else {
2583       ShouldNotReachHere();
2584     }
2585   } else {
2586     Register rreg = right->as_register();
2587     assert(lreg == rax, "left register must be rax,");
2588     assert(rreg != rdx, "right register must not be rdx");
2589     assert(temp->as_register() == rdx, "tmp register must be rdx");
2590 
2591     move_regs(lreg, rax);
2592 
2593     int idivl_offset = __ corrected_idivl(rreg);
2594     if (ImplicitDiv0Checks) {
2595       add_debug_info_for_div0(idivl_offset, info);
2596     }
2597     if (code == lir_irem) {
2598       move_regs(rdx, dreg); // result is in rdx
2599     } else {
2600       move_regs(rax, dreg);
2601     }
2602   }
2603 }
2604 
2605 
2606 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2607   if (opr1->is_single_cpu()) {
2608     Register reg1 = opr1->as_register();
2609     if (opr2->is_single_cpu()) {
2610       // cpu register - cpu register
2611       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2612         __ cmpoop(reg1, opr2->as_register());
2613       } else {
2614         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2615         __ cmpl(reg1, opr2->as_register());
2616       }
2617     } else if (opr2->is_stack()) {
2618       // cpu register - stack
2619       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2620         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2621       } else {
2622         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2623       }
2624     } else if (opr2->is_constant()) {
2625       // cpu register - constant
2626       LIR_Const* c = opr2->as_constant_ptr();
2627       if (c->type() == T_INT) {
2628         __ cmpl(reg1, c->as_jint());
2629       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2630         // In 64bit oops are single register
2631         jobject o = c->as_jobject();
2632         if (o == NULL) {
2633           __ cmpptr(reg1, (int32_t)NULL_WORD);
2634         } else {
2635           __ cmpoop(reg1, o);
2636         }
2637       } else {
2638         fatal("unexpected type: %s", basictype_to_str(c->type()));
2639       }
2640       // cpu register - address
2641     } else if (opr2->is_address()) {
2642       if (op->info() != NULL) {
2643         add_debug_info_for_null_check_here(op->info());
2644       }
2645       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2646     } else {
2647       ShouldNotReachHere();
2648     }
2649 
2650   } else if(opr1->is_double_cpu()) {
2651     Register xlo = opr1->as_register_lo();
2652     Register xhi = opr1->as_register_hi();
2653     if (opr2->is_double_cpu()) {
2654 #ifdef _LP64
2655       __ cmpptr(xlo, opr2->as_register_lo());
2656 #else
2657       // cpu register - cpu register
2658       Register ylo = opr2->as_register_lo();
2659       Register yhi = opr2->as_register_hi();
2660       __ subl(xlo, ylo);
2661       __ sbbl(xhi, yhi);
2662       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2663         __ orl(xhi, xlo);
2664       }
2665 #endif // _LP64
2666     } else if (opr2->is_constant()) {
2667       // cpu register - constant 0
2668       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2669 #ifdef _LP64
2670       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2671 #else
2672       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2673       __ orl(xhi, xlo);
2674 #endif // _LP64
2675     } else {
2676       ShouldNotReachHere();
2677     }
2678 
2679   } else if (opr1->is_single_xmm()) {
2680     XMMRegister reg1 = opr1->as_xmm_float_reg();
2681     if (opr2->is_single_xmm()) {
2682       // xmm register - xmm register
2683       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2684     } else if (opr2->is_stack()) {
2685       // xmm register - stack
2686       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2687     } else if (opr2->is_constant()) {
2688       // xmm register - constant
2689       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2690     } else if (opr2->is_address()) {
2691       // xmm register - address
2692       if (op->info() != NULL) {
2693         add_debug_info_for_null_check_here(op->info());
2694       }
2695       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2696     } else {
2697       ShouldNotReachHere();
2698     }
2699 
2700   } else if (opr1->is_double_xmm()) {
2701     XMMRegister reg1 = opr1->as_xmm_double_reg();
2702     if (opr2->is_double_xmm()) {
2703       // xmm register - xmm register
2704       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2705     } else if (opr2->is_stack()) {
2706       // xmm register - stack
2707       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2708     } else if (opr2->is_constant()) {
2709       // xmm register - constant
2710       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2711     } else if (opr2->is_address()) {
2712       // xmm register - address
2713       if (op->info() != NULL) {
2714         add_debug_info_for_null_check_here(op->info());
2715       }
2716       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2717     } else {
2718       ShouldNotReachHere();
2719     }
2720 
2721   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2722     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2723     assert(opr2->is_fpu_register(), "both must be registers");
2724     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2725 
2726   } else if (opr1->is_address() && opr2->is_constant()) {
2727     LIR_Const* c = opr2->as_constant_ptr();
2728 #ifdef _LP64
2729     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2730       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2731       __ movoop(rscratch1, c->as_jobject());
2732     }
2733 #endif // LP64
2734     if (op->info() != NULL) {
2735       add_debug_info_for_null_check_here(op->info());
2736     }
2737     // special case: address - constant
2738     LIR_Address* addr = opr1->as_address_ptr();
2739     if (c->type() == T_INT) {
2740       __ cmpl(as_Address(addr), c->as_jint());
2741     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2742 #ifdef _LP64
2743       // %%% Make this explode if addr isn't reachable until we figure out a
2744       // better strategy by giving noreg as the temp for as_Address
2745       __ cmpoop(rscratch1, as_Address(addr, noreg));
2746 #else
2747       __ cmpoop(as_Address(addr), c->as_jobject());
2748 #endif // _LP64
2749     } else {
2750       ShouldNotReachHere();
2751     }
2752 
2753   } else {
2754     ShouldNotReachHere();
2755   }
2756 }
2757 
2758 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2759   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2760     if (left->is_single_xmm()) {
2761       assert(right->is_single_xmm(), "must match");
2762       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2763     } else if (left->is_double_xmm()) {
2764       assert(right->is_double_xmm(), "must match");
2765       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2766 
2767     } else {
2768       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2769       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2770 
2771       assert(left->fpu() == 0, "left must be on TOS");
2772       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2773                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2774     }
2775   } else {
2776     assert(code == lir_cmp_l2i, "check");
2777 #ifdef _LP64
2778     Label done;
2779     Register dest = dst->as_register();
2780     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2781     __ movl(dest, -1);
2782     __ jccb(Assembler::less, done);
2783     __ set_byte_if_not_zero(dest);
2784     __ movzbl(dest, dest);
2785     __ bind(done);
2786 #else
2787     __ lcmp2int(left->as_register_hi(),
2788                 left->as_register_lo(),
2789                 right->as_register_hi(),
2790                 right->as_register_lo());
2791     move_regs(left->as_register_hi(), dst->as_register());
2792 #endif // _LP64
2793   }
2794 }
2795 
2796 
2797 void LIR_Assembler::align_call(LIR_Code code) {
2798   if (os::is_MP()) {
2799     // make sure that the displacement word of the call ends up word aligned
2800     int offset = __ offset();
2801     switch (code) {
2802       case lir_static_call:
2803       case lir_optvirtual_call:
2804       case lir_dynamic_call:
2805         offset += NativeCall::displacement_offset;
2806         break;
2807       case lir_icvirtual_call:
2808         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2809       break;
2810       case lir_virtual_call:  // currently, sparc-specific for niagara
2811       default: ShouldNotReachHere();
2812     }
2813     __ align(BytesPerWord, offset);
2814   }
2815 }
2816 
2817 
2818 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2819   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2820          "must be aligned");
2821   __ call(AddressLiteral(op->addr(), rtype));
2822   add_call_info(code_offset(), op->info());
2823 }
2824 
2825 
2826 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2827   __ ic_call(op->addr());
2828   add_call_info(code_offset(), op->info());
2829   assert(!os::is_MP() ||
2830          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2831          "must be aligned");
2832 }
2833 
2834 
2835 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2836 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2837   ShouldNotReachHere();
2838 }
2839 
2840 
2841 void LIR_Assembler::emit_static_call_stub() {
2842   address call_pc = __ pc();
2843   address stub = __ start_a_stub(call_stub_size());
2844   if (stub == NULL) {
2845     bailout("static call stub overflow");
2846     return;
2847   }
2848 
2849   int start = __ offset();
2850   if (os::is_MP()) {
2851     // make sure that the displacement word of the call ends up word aligned
2852     __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2853   }
2854   __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2855   __ mov_metadata(rbx, (Metadata*)NULL);
2856   // must be set to -1 at code generation time
2857   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2858   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2859   __ jump(RuntimeAddress(__ pc()));
2860 
2861   if (UseAOT) {
2862     // Trampoline to aot code
2863     __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2864 #ifdef _LP64
2865     __ mov64(rax, CONST64(0));  // address is zapped till fixup time.
2866 #else
2867     __ movl(rax, 0xdeadffff);  // address is zapped till fixup time.
2868 #endif
2869     __ jmp(rax);
2870   }
2871   assert(__ offset() - start <= call_stub_size(), "stub too big");
2872   __ end_a_stub();
2873 }
2874 
2875 
2876 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2877   assert(exceptionOop->as_register() == rax, "must match");
2878   assert(exceptionPC->as_register() == rdx, "must match");
2879 
2880   // exception object is not added to oop map by LinearScan
2881   // (LinearScan assumes that no oops are in fixed registers)
2882   info->add_register_oop(exceptionOop);
2883   Runtime1::StubID unwind_id;
2884 
2885   // get current pc information
2886   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2887   int pc_for_athrow_offset = __ offset();
2888   InternalAddress pc_for_athrow(__ pc());
2889   __ lea(exceptionPC->as_register(), pc_for_athrow);
2890   add_call_info(pc_for_athrow_offset, info); // for exception handler
2891 
2892   __ verify_not_null_oop(rax);
2893   // search an exception handler (rax: exception oop, rdx: throwing pc)
2894   if (compilation()->has_fpu_code()) {
2895     unwind_id = Runtime1::handle_exception_id;
2896   } else {
2897     unwind_id = Runtime1::handle_exception_nofpu_id;
2898   }
2899   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2900 
2901   // enough room for two byte trap
2902   __ nop();
2903 }
2904 
2905 
2906 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2907   assert(exceptionOop->as_register() == rax, "must match");
2908 
2909   __ jmp(_unwind_handler_entry);
2910 }
2911 
2912 
2913 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2914 
2915   // optimized version for linear scan:
2916   // * count must be already in ECX (guaranteed by LinearScan)
2917   // * left and dest must be equal
2918   // * tmp must be unused
2919   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2920   assert(left == dest, "left and dest must be equal");
2921   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2922 
2923   if (left->is_single_cpu()) {
2924     Register value = left->as_register();
2925     assert(value != SHIFT_count, "left cannot be ECX");
2926 
2927     switch (code) {
2928       case lir_shl:  __ shll(value); break;
2929       case lir_shr:  __ sarl(value); break;
2930       case lir_ushr: __ shrl(value); break;
2931       default: ShouldNotReachHere();
2932     }
2933   } else if (left->is_double_cpu()) {
2934     Register lo = left->as_register_lo();
2935     Register hi = left->as_register_hi();
2936     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2937 #ifdef _LP64
2938     switch (code) {
2939       case lir_shl:  __ shlptr(lo);        break;
2940       case lir_shr:  __ sarptr(lo);        break;
2941       case lir_ushr: __ shrptr(lo);        break;
2942       default: ShouldNotReachHere();
2943     }
2944 #else
2945 
2946     switch (code) {
2947       case lir_shl:  __ lshl(hi, lo);        break;
2948       case lir_shr:  __ lshr(hi, lo, true);  break;
2949       case lir_ushr: __ lshr(hi, lo, false); break;
2950       default: ShouldNotReachHere();
2951     }
2952 #endif // LP64
2953   } else {
2954     ShouldNotReachHere();
2955   }
2956 }
2957 
2958 
2959 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2960   if (dest->is_single_cpu()) {
2961     // first move left into dest so that left is not destroyed by the shift
2962     Register value = dest->as_register();
2963     count = count & 0x1F; // Java spec
2964 
2965     move_regs(left->as_register(), value);
2966     switch (code) {
2967       case lir_shl:  __ shll(value, count); break;
2968       case lir_shr:  __ sarl(value, count); break;
2969       case lir_ushr: __ shrl(value, count); break;
2970       default: ShouldNotReachHere();
2971     }
2972   } else if (dest->is_double_cpu()) {
2973 #ifndef _LP64
2974     Unimplemented();
2975 #else
2976     // first move left into dest so that left is not destroyed by the shift
2977     Register value = dest->as_register_lo();
2978     count = count & 0x1F; // Java spec
2979 
2980     move_regs(left->as_register_lo(), value);
2981     switch (code) {
2982       case lir_shl:  __ shlptr(value, count); break;
2983       case lir_shr:  __ sarptr(value, count); break;
2984       case lir_ushr: __ shrptr(value, count); break;
2985       default: ShouldNotReachHere();
2986     }
2987 #endif // _LP64
2988   } else {
2989     ShouldNotReachHere();
2990   }
2991 }
2992 
2993 void LIR_Assembler::load_barrier_test(LIR_Opr ref) {
2994   __ testptr(ref->as_register(), Address(r15_thread, JavaThread::zaddress_bad_mask_offset()));
2995 }
2996 
2997 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2998   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2999   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3000   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3001   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3002 }
3003 
3004 
3005 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3006   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3007   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3008   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3009   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3010 }
3011 
3012 
3013 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3014   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3015   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3016   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3017   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3018 }
3019 
3020 
3021 void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
3022   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3023   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3024   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3025   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
3026 }
3027 
3028 
3029 // This code replaces a call to arraycopy; no exception may
3030 // be thrown in this code, they must be thrown in the System.arraycopy
3031 // activation frame; we could save some checks if this would not be the case
3032 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3033   ciArrayKlass* default_type = op->expected_type();
3034   Register src = op->src()->as_register();
3035   Register dst = op->dst()->as_register();
3036   Register src_pos = op->src_pos()->as_register();
3037   Register dst_pos = op->dst_pos()->as_register();
3038   Register length  = op->length()->as_register();
3039   Register tmp = op->tmp()->as_register();
3040 
3041   CodeStub* stub = op->stub();
3042   int flags = op->flags();
3043   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3044   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3045 
3046   // if we don't know anything, just go through the generic arraycopy
3047   if (default_type == NULL) {
3048     Label done;
3049     // save outgoing arguments on stack in case call to System.arraycopy is needed
3050     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3051     // for interpreter calling conventions. Now we have to do it in new style conventions.
3052     // For the moment until C1 gets the new register allocator I just force all the
3053     // args to the right place (except the register args) and then on the back side
3054     // reload the register args properly if we go slow path. Yuck
3055 
3056     // These are proper for the calling convention
3057     store_parameter(length, 2);
3058     store_parameter(dst_pos, 1);
3059     store_parameter(dst, 0);
3060 
3061     // these are just temporary placements until we need to reload
3062     store_parameter(src_pos, 3);
3063     store_parameter(src, 4);
3064     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3065 
3066     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3067 
3068     address copyfunc_addr = StubRoutines::generic_arraycopy();
3069 
3070     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3071 #ifdef _LP64
3072     // The arguments are in java calling convention so we can trivially shift them to C
3073     // convention
3074     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3075     __ mov(c_rarg0, j_rarg0);
3076     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3077     __ mov(c_rarg1, j_rarg1);
3078     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3079     __ mov(c_rarg2, j_rarg2);
3080     assert_different_registers(c_rarg3, j_rarg4);
3081     __ mov(c_rarg3, j_rarg3);
3082 #ifdef _WIN64
3083     // Allocate abi space for args but be sure to keep stack aligned
3084     __ subptr(rsp, 6*wordSize);
3085     store_parameter(j_rarg4, 4);
3086     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3087       __ call(RuntimeAddress(C_entry));
3088     } else {
3089 #ifndef PRODUCT
3090       if (PrintC1Statistics) {
3091         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3092       }
3093 #endif
3094       __ call(RuntimeAddress(copyfunc_addr));
3095     }
3096     __ addptr(rsp, 6*wordSize);
3097 #else
3098     __ mov(c_rarg4, j_rarg4);
3099     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3100       __ call(RuntimeAddress(C_entry));
3101     } else {
3102 #ifndef PRODUCT
3103       if (PrintC1Statistics) {
3104         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3105       }
3106 #endif
3107       __ call(RuntimeAddress(copyfunc_addr));
3108     }
3109 #endif // _WIN64
3110 #else
3111     __ push(length);
3112     __ push(dst_pos);
3113     __ push(dst);
3114     __ push(src_pos);
3115     __ push(src);
3116 
3117     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3118       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3119     } else {
3120 #ifndef PRODUCT
3121       if (PrintC1Statistics) {
3122         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3123       }
3124 #endif
3125       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3126     }
3127 
3128 #endif // _LP64
3129 
3130     __ cmpl(rax, 0);
3131     __ jcc(Assembler::equal, *stub->continuation());
3132 
3133     if (copyfunc_addr != NULL) {
3134       __ mov(tmp, rax);
3135       __ xorl(tmp, -1);
3136     }
3137 
3138     // Reload values from the stack so they are where the stub
3139     // expects them.
3140     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3141     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3142     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3143     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3144     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3145 
3146     if (copyfunc_addr != NULL) {
3147       __ subl(length, tmp);
3148       __ addl(src_pos, tmp);
3149       __ addl(dst_pos, tmp);
3150     }
3151     __ jmp(*stub->entry());
3152 
3153     __ bind(*stub->continuation());
3154     return;
3155   }
3156 
3157   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3158 
3159   int elem_size = type2aelembytes(basic_type);
3160   Address::ScaleFactor scale;
3161 
3162   switch (elem_size) {
3163     case 1 :
3164       scale = Address::times_1;
3165       break;
3166     case 2 :
3167       scale = Address::times_2;
3168       break;
3169     case 4 :
3170       scale = Address::times_4;
3171       break;
3172     case 8 :
3173       scale = Address::times_8;
3174       break;
3175     default:
3176       scale = Address::no_scale;
3177       ShouldNotReachHere();
3178   }
3179 
3180   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3181   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3182   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3183   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3184 
3185   // length and pos's are all sign extended at this point on 64bit
3186 
3187   // test for NULL
3188   if (flags & LIR_OpArrayCopy::src_null_check) {
3189     __ testptr(src, src);
3190     __ jcc(Assembler::zero, *stub->entry());
3191   }
3192   if (flags & LIR_OpArrayCopy::dst_null_check) {
3193     __ testptr(dst, dst);
3194     __ jcc(Assembler::zero, *stub->entry());
3195   }
3196 
3197   // If the compiler was not able to prove that exact type of the source or the destination
3198   // of the arraycopy is an array type, check at runtime if the source or the destination is
3199   // an instance type.
3200   if (flags & LIR_OpArrayCopy::type_check) {
3201     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3202       __ load_klass(tmp, dst);
3203       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3204       __ jcc(Assembler::greaterEqual, *stub->entry());
3205     }
3206 
3207     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3208       __ load_klass(tmp, src);
3209       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3210       __ jcc(Assembler::greaterEqual, *stub->entry());
3211     }
3212   }
3213 
3214   // check if negative
3215   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3216     __ testl(src_pos, src_pos);
3217     __ jcc(Assembler::less, *stub->entry());
3218   }
3219   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3220     __ testl(dst_pos, dst_pos);
3221     __ jcc(Assembler::less, *stub->entry());
3222   }
3223 
3224   if (flags & LIR_OpArrayCopy::src_range_check) {
3225     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3226     __ cmpl(tmp, src_length_addr);
3227     __ jcc(Assembler::above, *stub->entry());
3228   }
3229   if (flags & LIR_OpArrayCopy::dst_range_check) {
3230     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3231     __ cmpl(tmp, dst_length_addr);
3232     __ jcc(Assembler::above, *stub->entry());
3233   }
3234 
3235   if (flags & LIR_OpArrayCopy::length_positive_check) {
3236     __ testl(length, length);
3237     __ jcc(Assembler::less, *stub->entry());
3238   }
3239 
3240 #ifdef _LP64
3241   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3242   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3243 #endif
3244 
3245   if (flags & LIR_OpArrayCopy::type_check) {
3246     // We don't know the array types are compatible
3247     if (basic_type != T_OBJECT) {
3248       // Simple test for basic type arrays
3249       if (UseCompressedClassPointers) {
3250         __ movl(tmp, src_klass_addr);
3251         __ cmpl(tmp, dst_klass_addr);
3252       } else {
3253         __ movptr(tmp, src_klass_addr);
3254         __ cmpptr(tmp, dst_klass_addr);
3255       }
3256       __ jcc(Assembler::notEqual, *stub->entry());
3257     } else {
3258       // For object arrays, if src is a sub class of dst then we can
3259       // safely do the copy.
3260       Label cont, slow;
3261 
3262       __ push(src);
3263       __ push(dst);
3264 
3265       __ load_klass(src, src);
3266       __ load_klass(dst, dst);
3267 
3268       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3269 
3270       __ push(src);
3271       __ push(dst);
3272       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3273       __ pop(dst);
3274       __ pop(src);
3275 
3276       __ cmpl(src, 0);
3277       __ jcc(Assembler::notEqual, cont);
3278 
3279       __ bind(slow);
3280       __ pop(dst);
3281       __ pop(src);
3282 
3283       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3284       if (copyfunc_addr != NULL) { // use stub if available
3285         // src is not a sub class of dst so we have to do a
3286         // per-element check.
3287 
3288         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3289         if ((flags & mask) != mask) {
3290           // Check that at least both of them object arrays.
3291           assert(flags & mask, "one of the two should be known to be an object array");
3292 
3293           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3294             __ load_klass(tmp, src);
3295           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3296             __ load_klass(tmp, dst);
3297           }
3298           int lh_offset = in_bytes(Klass::layout_helper_offset());
3299           Address klass_lh_addr(tmp, lh_offset);
3300           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3301           __ cmpl(klass_lh_addr, objArray_lh);
3302           __ jcc(Assembler::notEqual, *stub->entry());
3303         }
3304 
3305        // Spill because stubs can use any register they like and it's
3306        // easier to restore just those that we care about.
3307        store_parameter(dst, 0);
3308        store_parameter(dst_pos, 1);
3309        store_parameter(length, 2);
3310        store_parameter(src_pos, 3);
3311        store_parameter(src, 4);
3312 
3313 #ifndef _LP64
3314         __ movptr(tmp, dst_klass_addr);
3315         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3316         __ push(tmp);
3317         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3318         __ push(tmp);
3319         __ push(length);
3320         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3321         __ push(tmp);
3322         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3323         __ push(tmp);
3324 
3325         __ call_VM_leaf(copyfunc_addr, 5);
3326 #else
3327         __ movl2ptr(length, length); //higher 32bits must be null
3328 
3329         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3330         assert_different_registers(c_rarg0, dst, dst_pos, length);
3331         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3332         assert_different_registers(c_rarg1, dst, length);
3333 
3334         __ mov(c_rarg2, length);
3335         assert_different_registers(c_rarg2, dst);
3336 
3337 #ifdef _WIN64
3338         // Allocate abi space for args but be sure to keep stack aligned
3339         __ subptr(rsp, 6*wordSize);
3340         __ load_klass(c_rarg3, dst);
3341         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3342         store_parameter(c_rarg3, 4);
3343         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3344         __ call(RuntimeAddress(copyfunc_addr));
3345         __ addptr(rsp, 6*wordSize);
3346 #else
3347         __ load_klass(c_rarg4, dst);
3348         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3349         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3350         __ call(RuntimeAddress(copyfunc_addr));
3351 #endif
3352 
3353 #endif
3354 
3355 #ifndef PRODUCT
3356         if (PrintC1Statistics) {
3357           Label failed;
3358           __ testl(rax, rax);
3359           __ jcc(Assembler::notZero, failed);
3360           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3361           __ bind(failed);
3362         }
3363 #endif
3364 
3365         __ testl(rax, rax);
3366         __ jcc(Assembler::zero, *stub->continuation());
3367 
3368 #ifndef PRODUCT
3369         if (PrintC1Statistics) {
3370           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3371         }
3372 #endif
3373 
3374         __ mov(tmp, rax);
3375 
3376         __ xorl(tmp, -1);
3377 
3378         // Restore previously spilled arguments
3379         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3380         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3381         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3382         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3383         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3384 
3385 
3386         __ subl(length, tmp);
3387         __ addl(src_pos, tmp);
3388         __ addl(dst_pos, tmp);
3389       }
3390 
3391       __ jmp(*stub->entry());
3392 
3393       __ bind(cont);
3394       __ pop(dst);
3395       __ pop(src);
3396     }
3397   }
3398 
3399 #ifdef ASSERT
3400   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3401     // Sanity check the known type with the incoming class.  For the
3402     // primitive case the types must match exactly with src.klass and
3403     // dst.klass each exactly matching the default type.  For the
3404     // object array case, if no type check is needed then either the
3405     // dst type is exactly the expected type and the src type is a
3406     // subtype which we can't check or src is the same array as dst
3407     // but not necessarily exactly of type default_type.
3408     Label known_ok, halt;
3409     __ mov_metadata(tmp, default_type->constant_encoding());
3410 #ifdef _LP64
3411     if (UseCompressedClassPointers) {
3412       __ encode_klass_not_null(tmp);
3413     }
3414 #endif
3415 
3416     if (basic_type != T_OBJECT) {
3417 
3418       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3419       else                   __ cmpptr(tmp, dst_klass_addr);
3420       __ jcc(Assembler::notEqual, halt);
3421       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3422       else                   __ cmpptr(tmp, src_klass_addr);
3423       __ jcc(Assembler::equal, known_ok);
3424     } else {
3425       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3426       else                   __ cmpptr(tmp, dst_klass_addr);
3427       __ jcc(Assembler::equal, known_ok);
3428       __ cmpptr(src, dst);
3429       __ jcc(Assembler::equal, known_ok);
3430     }
3431     __ bind(halt);
3432     __ stop("incorrect type information in arraycopy");
3433     __ bind(known_ok);
3434   }
3435 #endif
3436 
3437 #ifndef PRODUCT
3438   if (PrintC1Statistics) {
3439     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3440   }
3441 #endif
3442 
3443 #ifdef _LP64
3444   assert_different_registers(c_rarg0, dst, dst_pos, length);
3445   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3446   assert_different_registers(c_rarg1, length);
3447   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3448   __ mov(c_rarg2, length);
3449 
3450 #else
3451   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3452   store_parameter(tmp, 0);
3453   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3454   store_parameter(tmp, 1);
3455   store_parameter(length, 2);
3456 #endif // _LP64
3457 
3458   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3459   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3460   const char *name;
3461   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3462   __ call_VM_leaf(entry, 0);
3463 
3464   __ bind(*stub->continuation());
3465 }
3466 
3467 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3468   assert(op->crc()->is_single_cpu(),  "crc must be register");
3469   assert(op->val()->is_single_cpu(),  "byte value must be register");
3470   assert(op->result_opr()->is_single_cpu(), "result must be register");
3471   Register crc = op->crc()->as_register();
3472   Register val = op->val()->as_register();
3473   Register res = op->result_opr()->as_register();
3474 
3475   assert_different_registers(val, crc, res);
3476 
3477   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3478   __ notl(crc); // ~crc
3479   __ update_byte_crc32(crc, val, res);
3480   __ notl(crc); // ~crc
3481   __ mov(res, crc);
3482 }
3483 
3484 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3485   Register obj = op->obj_opr()->as_register();  // may not be an oop
3486   Register hdr = op->hdr_opr()->as_register();
3487   Register lock = op->lock_opr()->as_register();
3488   if (!UseFastLocking) {
3489     __ jmp(*op->stub()->entry());
3490   } else if (op->code() == lir_lock) {
3491     Register scratch = noreg;
3492     if (UseBiasedLocking) {
3493       scratch = op->scratch_opr()->as_register();
3494     }
3495     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3496     // add debug info for NullPointerException only if one is possible
3497     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3498     if (op->info() != NULL) {
3499       add_debug_info_for_null_check(null_check_offset, op->info());
3500     }
3501     // done
3502   } else if (op->code() == lir_unlock) {
3503     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3504     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3505   } else {
3506     Unimplemented();
3507   }
3508   __ bind(*op->stub()->continuation());
3509 }
3510 
3511 
3512 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3513   ciMethod* method = op->profiled_method();
3514   int bci          = op->profiled_bci();
3515   ciMethod* callee = op->profiled_callee();
3516 
3517   // Update counter for all call types
3518   ciMethodData* md = method->method_data_or_null();
3519   assert(md != NULL, "Sanity");
3520   ciProfileData* data = md->bci_to_data(bci);
3521   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
3522   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3523   Register mdo  = op->mdo()->as_register();
3524   __ mov_metadata(mdo, md->constant_encoding());
3525   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3526   // Perform additional virtual call profiling for invokevirtual and
3527   // invokeinterface bytecodes
3528   if (op->should_profile_receiver_type()) {
3529     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3530     Register recv = op->recv()->as_register();
3531     assert_different_registers(mdo, recv);
3532     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3533     ciKlass* known_klass = op->known_holder();
3534     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3535       // We know the type that will be seen at this call site; we can
3536       // statically update the MethodData* rather than needing to do
3537       // dynamic tests on the receiver type
3538 
3539       // NOTE: we should probably put a lock around this search to
3540       // avoid collisions by concurrent compilations
3541       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3542       uint i;
3543       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3544         ciKlass* receiver = vc_data->receiver(i);
3545         if (known_klass->equals(receiver)) {
3546           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3547           __ addptr(data_addr, DataLayout::counter_increment);
3548           return;
3549         }
3550       }
3551 
3552       // Receiver type not found in profile data; select an empty slot
3553 
3554       // Note that this is less efficient than it should be because it
3555       // always does a write to the receiver part of the
3556       // VirtualCallData rather than just the first time
3557       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3558         ciKlass* receiver = vc_data->receiver(i);
3559         if (receiver == NULL) {
3560           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3561           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3562           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3563           __ addptr(data_addr, DataLayout::counter_increment);
3564           return;
3565         }
3566       }
3567     } else {
3568       __ load_klass(recv, recv);
3569       Label update_done;
3570       type_profile_helper(mdo, md, data, recv, &update_done);
3571       // Receiver did not match any saved receiver and there is no empty row for it.
3572       // Increment total counter to indicate polymorphic case.
3573       __ addptr(counter_addr, DataLayout::counter_increment);
3574 
3575       __ bind(update_done);
3576     }
3577   } else {
3578     // Static call
3579     __ addptr(counter_addr, DataLayout::counter_increment);
3580   }
3581 }
3582 
3583 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3584   Register obj = op->obj()->as_register();
3585   Register tmp = op->tmp()->as_pointer_register();
3586   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3587   ciKlass* exact_klass = op->exact_klass();
3588   intptr_t current_klass = op->current_klass();
3589   bool not_null = op->not_null();
3590   bool no_conflict = op->no_conflict();
3591 
3592   Label update, next, none;
3593 
3594   bool do_null = !not_null;
3595   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3596   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3597 
3598   assert(do_null || do_update, "why are we here?");
3599   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3600 
3601   __ verify_oop(obj);
3602 
3603   if (tmp != obj) {
3604     __ mov(tmp, obj);
3605   }
3606   if (do_null) {
3607     __ testptr(tmp, tmp);
3608     __ jccb(Assembler::notZero, update);
3609     if (!TypeEntries::was_null_seen(current_klass)) {
3610       __ orptr(mdo_addr, TypeEntries::null_seen);
3611     }
3612     if (do_update) {
3613 #ifndef ASSERT
3614       __ jmpb(next);
3615     }
3616 #else
3617       __ jmp(next);
3618     }
3619   } else {
3620     __ testptr(tmp, tmp);
3621     __ jccb(Assembler::notZero, update);
3622     __ stop("unexpect null obj");
3623 #endif
3624   }
3625 
3626   __ bind(update);
3627 
3628   if (do_update) {
3629 #ifdef ASSERT
3630     if (exact_klass != NULL) {
3631       Label ok;
3632       __ load_klass(tmp, tmp);
3633       __ push(tmp);
3634       __ mov_metadata(tmp, exact_klass->constant_encoding());
3635       __ cmpptr(tmp, Address(rsp, 0));
3636       __ jccb(Assembler::equal, ok);
3637       __ stop("exact klass and actual klass differ");
3638       __ bind(ok);
3639       __ pop(tmp);
3640     }
3641 #endif
3642     if (!no_conflict) {
3643       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3644         if (exact_klass != NULL) {
3645           __ mov_metadata(tmp, exact_klass->constant_encoding());
3646         } else {
3647           __ load_klass(tmp, tmp);
3648         }
3649 
3650         __ xorptr(tmp, mdo_addr);
3651         __ testptr(tmp, TypeEntries::type_klass_mask);
3652         // klass seen before, nothing to do. The unknown bit may have been
3653         // set already but no need to check.
3654         __ jccb(Assembler::zero, next);
3655 
3656         __ testptr(tmp, TypeEntries::type_unknown);
3657         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3658 
3659         if (TypeEntries::is_type_none(current_klass)) {
3660           __ cmpptr(mdo_addr, 0);
3661           __ jccb(Assembler::equal, none);
3662           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3663           __ jccb(Assembler::equal, none);
3664           // There is a chance that the checks above (re-reading profiling
3665           // data from memory) fail if another thread has just set the
3666           // profiling to this obj's klass
3667           __ xorptr(tmp, mdo_addr);
3668           __ testptr(tmp, TypeEntries::type_klass_mask);
3669           __ jccb(Assembler::zero, next);
3670         }
3671       } else {
3672         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3673                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3674 
3675         __ movptr(tmp, mdo_addr);
3676         __ testptr(tmp, TypeEntries::type_unknown);
3677         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3678       }
3679 
3680       // different than before. Cannot keep accurate profile.
3681       __ orptr(mdo_addr, TypeEntries::type_unknown);
3682 
3683       if (TypeEntries::is_type_none(current_klass)) {
3684         __ jmpb(next);
3685 
3686         __ bind(none);
3687         // first time here. Set profile type.
3688         __ movptr(mdo_addr, tmp);
3689       }
3690     } else {
3691       // There's a single possible klass at this profile point
3692       assert(exact_klass != NULL, "should be");
3693       if (TypeEntries::is_type_none(current_klass)) {
3694         __ mov_metadata(tmp, exact_klass->constant_encoding());
3695         __ xorptr(tmp, mdo_addr);
3696         __ testptr(tmp, TypeEntries::type_klass_mask);
3697 #ifdef ASSERT
3698         __ jcc(Assembler::zero, next);
3699 
3700         {
3701           Label ok;
3702           __ push(tmp);
3703           __ cmpptr(mdo_addr, 0);
3704           __ jcc(Assembler::equal, ok);
3705           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3706           __ jcc(Assembler::equal, ok);
3707           // may have been set by another thread
3708           __ mov_metadata(tmp, exact_klass->constant_encoding());
3709           __ xorptr(tmp, mdo_addr);
3710           __ testptr(tmp, TypeEntries::type_mask);
3711           __ jcc(Assembler::zero, ok);
3712 
3713           __ stop("unexpected profiling mismatch");
3714           __ bind(ok);
3715           __ pop(tmp);
3716         }
3717 #else
3718         __ jccb(Assembler::zero, next);
3719 #endif
3720         // first time here. Set profile type.
3721         __ movptr(mdo_addr, tmp);
3722       } else {
3723         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3724                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3725 
3726         __ movptr(tmp, mdo_addr);
3727         __ testptr(tmp, TypeEntries::type_unknown);
3728         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3729 
3730         __ orptr(mdo_addr, TypeEntries::type_unknown);
3731       }
3732     }
3733 
3734     __ bind(next);
3735   }
3736 }
3737 
3738 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3739   Unimplemented();
3740 }
3741 
3742 
3743 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3744   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3745 }
3746 
3747 
3748 void LIR_Assembler::align_backward_branch_target() {
3749   __ align(BytesPerWord);
3750 }
3751 
3752 
3753 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3754   if (left->is_single_cpu()) {
3755     __ negl(left->as_register());
3756     move_regs(left->as_register(), dest->as_register());
3757 
3758   } else if (left->is_double_cpu()) {
3759     Register lo = left->as_register_lo();
3760 #ifdef _LP64
3761     Register dst = dest->as_register_lo();
3762     __ movptr(dst, lo);
3763     __ negptr(dst);
3764 #else
3765     Register hi = left->as_register_hi();
3766     __ lneg(hi, lo);
3767     if (dest->as_register_lo() == hi) {
3768       assert(dest->as_register_hi() != lo, "destroying register");
3769       move_regs(hi, dest->as_register_hi());
3770       move_regs(lo, dest->as_register_lo());
3771     } else {
3772       move_regs(lo, dest->as_register_lo());
3773       move_regs(hi, dest->as_register_hi());
3774     }
3775 #endif // _LP64
3776 
3777   } else if (dest->is_single_xmm()) {
3778     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3779       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3780     }
3781     if (UseAVX > 0) {
3782       __ vnegatess(dest->as_xmm_float_reg(), dest->as_xmm_float_reg(),
3783                    ExternalAddress((address)float_signflip_pool));
3784     } else {
3785       __ xorps(dest->as_xmm_float_reg(),
3786                ExternalAddress((address)float_signflip_pool));
3787     }
3788   } else if (dest->is_double_xmm()) {
3789     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3790       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3791     }
3792     if (UseAVX > 0) {
3793       __ vnegatesd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg(),
3794                    ExternalAddress((address)double_signflip_pool));
3795     } else {
3796       __ xorpd(dest->as_xmm_double_reg(),
3797                ExternalAddress((address)double_signflip_pool));
3798     }
3799   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3800     assert(left->fpu() == 0, "arg must be on TOS");
3801     assert(dest->fpu() == 0, "dest must be TOS");
3802     __ fchs();
3803 
3804   } else {
3805     ShouldNotReachHere();
3806   }
3807 }
3808 
3809 
3810 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3811   assert(src->is_address() && dest->is_register(), "check");
3812 
3813   LIR_Address* addr = src->as_address_ptr();
3814 
3815   PatchingStub* patch = NULL;
3816   if (patch_code != lir_patch_none) {
3817     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3818     assert(addr->disp() != 0, "must have");
3819   }
3820 
3821   Register reg;
3822   reg = dest->as_pointer_register();
3823   __ lea(reg, as_Address(addr));
3824 
3825   if (patch != NULL) {
3826     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3827   }
3828 }
3829 
3830 
3831 
3832 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3833   assert(!tmp->is_valid(), "don't need temporary");
3834   __ call(RuntimeAddress(dest));
3835   if (info != NULL) {
3836     add_call_info_here(info);
3837   }
3838 }
3839 
3840 
3841 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3842   assert(type == T_LONG, "only for volatile long fields");
3843 
3844   if (info != NULL) {
3845     add_debug_info_for_null_check_here(info);
3846   }
3847 
3848   if (src->is_double_xmm()) {
3849     if (dest->is_double_cpu()) {
3850 #ifdef _LP64
3851       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3852 #else
3853       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3854       __ psrlq(src->as_xmm_double_reg(), 32);
3855       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3856 #endif // _LP64
3857     } else if (dest->is_double_stack()) {
3858       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3859     } else if (dest->is_address()) {
3860       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3861     } else {
3862       ShouldNotReachHere();
3863     }
3864 
3865   } else if (dest->is_double_xmm()) {
3866     if (src->is_double_stack()) {
3867       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3868     } else if (src->is_address()) {
3869       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3870     } else {
3871       ShouldNotReachHere();
3872     }
3873 
3874   } else if (src->is_double_fpu()) {
3875     assert(src->fpu_regnrLo() == 0, "must be TOS");
3876     if (dest->is_double_stack()) {
3877       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3878     } else if (dest->is_address()) {
3879       __ fistp_d(as_Address(dest->as_address_ptr()));
3880     } else {
3881       ShouldNotReachHere();
3882     }
3883 
3884   } else if (dest->is_double_fpu()) {
3885     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3886     if (src->is_double_stack()) {
3887       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3888     } else if (src->is_address()) {
3889       __ fild_d(as_Address(src->as_address_ptr()));
3890     } else {
3891       ShouldNotReachHere();
3892     }
3893   } else {
3894     ShouldNotReachHere();
3895   }
3896 }
3897 
3898 #ifdef ASSERT
3899 // emit run-time assertion
3900 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3901   assert(op->code() == lir_assert, "must be");
3902 
3903   if (op->in_opr1()->is_valid()) {
3904     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3905     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3906   } else {
3907     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3908     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3909   }
3910 
3911   Label ok;
3912   if (op->condition() != lir_cond_always) {
3913     Assembler::Condition acond = Assembler::zero;
3914     switch (op->condition()) {
3915       case lir_cond_equal:        acond = Assembler::equal;       break;
3916       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3917       case lir_cond_less:         acond = Assembler::less;        break;
3918       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3919       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3920       case lir_cond_greater:      acond = Assembler::greater;     break;
3921       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3922       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3923       default:                    ShouldNotReachHere();
3924     }
3925     __ jcc(acond, ok);
3926   }
3927   if (op->halt()) {
3928     const char* str = __ code_string(op->msg());
3929     __ stop(str);
3930   } else {
3931     breakpoint();
3932   }
3933   __ bind(ok);
3934 }
3935 #endif
3936 
3937 void LIR_Assembler::membar() {
3938   // QQQ sparc TSO uses this,
3939   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3940 }
3941 
3942 void LIR_Assembler::membar_acquire() {
3943   // No x86 machines currently require load fences
3944 }
3945 
3946 void LIR_Assembler::membar_release() {
3947   // No x86 machines currently require store fences
3948 }
3949 
3950 void LIR_Assembler::membar_loadload() {
3951   // no-op
3952   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3953 }
3954 
3955 void LIR_Assembler::membar_storestore() {
3956   // no-op
3957   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3958 }
3959 
3960 void LIR_Assembler::membar_loadstore() {
3961   // no-op
3962   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3963 }
3964 
3965 void LIR_Assembler::membar_storeload() {
3966   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3967 }
3968 
3969 void LIR_Assembler::on_spin_wait() {
3970   __ pause ();
3971 }
3972 
3973 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3974   assert(result_reg->is_register(), "check");
3975 #ifdef _LP64
3976   // __ get_thread(result_reg->as_register_lo());
3977   __ mov(result_reg->as_register(), r15_thread);
3978 #else
3979   __ get_thread(result_reg->as_register());
3980 #endif // _LP64
3981 }
3982 
3983 
3984 void LIR_Assembler::peephole(LIR_List*) {
3985   // do nothing for now
3986 }
3987 
3988 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3989   assert(data == dest, "xchg/xadd uses only 2 operands");
3990 
3991   if (data->type() == T_INT) {
3992     if (code == lir_xadd) {
3993       if (os::is_MP()) {
3994         __ lock();
3995       }
3996       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3997     } else {
3998       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
3999     }
4000   } else if (data->is_oop()) {
4001     assert (code == lir_xchg, "xadd for oops");
4002     Register obj = data->as_register();
4003 #ifdef _LP64
4004     if (UseCompressedOops) {
4005       __ encode_heap_oop(obj);
4006       __ xchgl(obj, as_Address(src->as_address_ptr()));
4007       __ decode_heap_oop(obj);
4008     } else {
4009       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4010     }
4011 #else
4012     __ xchgl(obj, as_Address(src->as_address_ptr()));
4013 #endif
4014   } else if (data->type() == T_LONG) {
4015 #ifdef _LP64
4016     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4017     if (code == lir_xadd) {
4018       if (os::is_MP()) {
4019         __ lock();
4020       }
4021       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4022     } else {
4023       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4024     }
4025 #else
4026     ShouldNotReachHere();
4027 #endif
4028   } else {
4029     ShouldNotReachHere();
4030   }
4031 }
4032 
4033 #undef __