1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 // This class defines a Type lattice.  The lattice is used in the constant
  38 // propagation algorithms, and for some type-checking of the iloc code.
  39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  40 // float & double precision constants, sets of data-labels and code-labels.
  41 // The complete lattice is described below.  Subtypes have no relationship to
  42 // up or down in the lattice; that is entirely determined by the behavior of
  43 // the MEET/JOIN functions.
  44 
  45 class Dict;
  46 class Type;
  47 class   TypeD;
  48 class   TypeF;
  49 class   TypeInt;
  50 class   TypeLong;
  51 class   TypeNarrowPtr;
  52 class     TypeNarrowOop;
  53 class     TypeNarrowKlass;
  54 class   TypeAry;
  55 class   TypeTuple;
  56 class   TypeVect;
  57 class     TypeVectS;
  58 class     TypeVectD;
  59 class     TypeVectX;
  60 class     TypeVectY;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class     TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94 
  95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  96     RawPtr,                     // Raw (non-oop) pointers
  97     OopPtr,                     // Any and all Java heap entities
  98     InstPtr,                    // Instance pointers (non-array objects)
  99     AryPtr,                     // Array pointers
 100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 101 
 102     MetadataPtr,                // Generic metadata
 103     KlassPtr,                   // Klass pointers
 104 
 105     Function,                   // Function signature
 106     Abio,                       // Abstract I/O
 107     Return_Address,             // Subroutine return address
 108     Memory,                     // Abstract store
 109     FloatTop,                   // No float value
 110     FloatCon,                   // Floating point constant
 111     FloatBot,                   // Any float value
 112     DoubleTop,                  // No double value
 113     DoubleCon,                  // Double precision constant
 114     DoubleBot,                  // Any double value
 115     Bottom,                     // Bottom of lattice
 116     lastype                     // Bogus ending type (not in lattice)
 117   };
 118 
 119   // Signal values for offsets from a base pointer
 120   enum OFFSET_SIGNALS {
 121     OffsetTop = -2000000000,    // undefined offset
 122     OffsetBot = -2000000001     // any possible offset
 123   };
 124 
 125   // Min and max WIDEN values.
 126   enum WIDEN {
 127     WidenMin = 0,
 128     WidenMax = 3
 129   };
 130 
 131 private:
 132   typedef struct {
 133     const TYPES                dual_type;
 134     const BasicType            basic_type;
 135     const char*                msg;
 136     const bool                 isa_oop;
 137     const int                  ideal_reg;
 138     const relocInfo::relocType reloc;
 139   } TypeInfo;
 140 
 141   // Dictionary of types shared among compilations.
 142   static Dict* _shared_type_dict;
 143   static TypeInfo _type_info[];
 144 
 145   static int uhash( const Type *const t );
 146   // Structural equality check.  Assumes that cmp() has already compared
 147   // the _base types and thus knows it can cast 't' appropriately.
 148   virtual bool eq( const Type *t ) const;
 149 
 150   // Top-level hash-table of types
 151   static Dict *type_dict() {
 152     return Compile::current()->type_dict();
 153   }
 154 
 155   // DUAL operation: reflect around lattice centerline.  Used instead of
 156   // join to ensure my lattice is symmetric up and down.  Dual is computed
 157   // lazily, on demand, and cached in _dual.
 158   const Type *_dual;            // Cached dual value
 159   // Table for efficient dualing of base types
 160   static const TYPES dual_type[lastype];
 161 
 162 #ifdef ASSERT
 163   // One type is interface, the other is oop
 164   virtual bool interface_vs_oop_helper(const Type *t) const;
 165 #endif
 166 
 167   const Type *meet_helper(const Type *t, bool include_speculative) const;
 168 
 169 protected:
 170   // Each class of type is also identified by its base.
 171   const TYPES _base;            // Enum of Types type
 172 
 173   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 174   // ~Type();                   // Use fast deallocation
 175   const Type *hashcons();       // Hash-cons the type
 176   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 177   const Type *join_helper(const Type *t, bool include_speculative) const {
 178     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 179   }
 180 
 181 public:
 182 
 183   inline void* operator new( size_t x ) throw() {
 184     Compile* compile = Compile::current();
 185     compile->set_type_last_size(x);
 186     void *temp = compile->type_arena()->Amalloc_D(x);
 187     compile->set_type_hwm(temp);
 188     return temp;
 189   }
 190   inline void operator delete( void* ptr ) {
 191     Compile* compile = Compile::current();
 192     compile->type_arena()->Afree(ptr,compile->type_last_size());
 193   }
 194 
 195   // Initialize the type system for a particular compilation.
 196   static void Initialize(Compile* compile);
 197 
 198   // Initialize the types shared by all compilations.
 199   static void Initialize_shared(Compile* compile);
 200 
 201   TYPES base() const {
 202     assert(_base > Bad && _base < lastype, "sanity");
 203     return _base;
 204   }
 205 
 206   // Create a new hash-consd type
 207   static const Type *make(enum TYPES);
 208   // Test for equivalence of types
 209   static int cmp( const Type *const t1, const Type *const t2 );
 210   // Test for higher or equal in lattice
 211   // Variant that drops the speculative part of the types
 212   int higher_equal(const Type *t) const {
 213     return !cmp(meet(t),t->remove_speculative());
 214   }
 215   // Variant that keeps the speculative part of the types
 216   int higher_equal_speculative(const Type *t) const {
 217     return !cmp(meet_speculative(t),t);
 218   }
 219 
 220   // MEET operation; lower in lattice.
 221   // Variant that drops the speculative part of the types
 222   const Type *meet(const Type *t) const {
 223     return meet_helper(t, false);
 224   }
 225   // Variant that keeps the speculative part of the types
 226   const Type *meet_speculative(const Type *t) const {
 227     return meet_helper(t, true);
 228   }
 229   // WIDEN: 'widens' for Ints and other range types
 230   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 231   // NARROW: complement for widen, used by pessimistic phases
 232   virtual const Type *narrow( const Type *old ) const { return this; }
 233 
 234   // DUAL operation: reflect around lattice centerline.  Used instead of
 235   // join to ensure my lattice is symmetric up and down.
 236   const Type *dual() const { return _dual; }
 237 
 238   // Compute meet dependent on base type
 239   virtual const Type *xmeet( const Type *t ) const;
 240   virtual const Type *xdual() const;    // Compute dual right now.
 241 
 242   // JOIN operation; higher in lattice.  Done by finding the dual of the
 243   // meet of the dual of the 2 inputs.
 244   // Variant that drops the speculative part of the types
 245   const Type *join(const Type *t) const {
 246     return join_helper(t, false);
 247   }
 248   // Variant that keeps the speculative part of the types
 249   const Type *join_speculative(const Type *t) const {
 250     return join_helper(t, true);
 251   }
 252 
 253   // Modified version of JOIN adapted to the needs Node::Value.
 254   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 255   // Currently, it also works around limitations involving interface types.
 256   // Variant that drops the speculative part of the types
 257   const Type *filter(const Type *kills) const {
 258     return filter_helper(kills, false);
 259   }
 260   // Variant that keeps the speculative part of the types
 261   const Type *filter_speculative(const Type *kills) const {
 262     return filter_helper(kills, true);
 263   }
 264 
 265 #ifdef ASSERT
 266   // One type is interface, the other is oop
 267   virtual bool interface_vs_oop(const Type *t) const;
 268 #endif
 269 
 270   // Returns true if this pointer points at memory which contains a
 271   // compressed oop references.
 272   bool is_ptr_to_narrowoop() const;
 273   bool is_ptr_to_narrowklass() const;
 274 
 275   bool is_ptr_to_boxing_obj() const;
 276 
 277 
 278   // Convenience access
 279   float getf() const;
 280   double getd() const;
 281 
 282   const TypeInt    *is_int() const;
 283   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 284   const TypeLong   *is_long() const;
 285   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 286   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 287   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 288   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 289   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 290   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 291   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 292   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 293   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 294   const TypeVect   *is_vect() const;             // Vector
 295   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 296   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 297   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 298   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 299   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 300   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 301   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 302   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 303   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 304   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 305   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 306   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 307   const TypeInstPtr  *is_instptr() const;        // Instance
 308   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 309   const TypeAryPtr   *is_aryptr() const;         // Array oop
 310 
 311   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 312   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 313   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 314   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 315 
 316   virtual bool      is_finite() const;           // Has a finite value
 317   virtual bool      is_nan()    const;           // Is not a number (NaN)
 318 
 319   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 320   const TypePtr* make_ptr() const;
 321 
 322   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 323   // Asserts if the underlying type is not an oopptr or narrowoop.
 324   const TypeOopPtr* make_oopptr() const;
 325 
 326   // Returns this compressed pointer or the equivalent compressed version
 327   // of this pointer type.
 328   const TypeNarrowOop* make_narrowoop() const;
 329 
 330   // Returns this compressed klass pointer or the equivalent
 331   // compressed version of this pointer type.
 332   const TypeNarrowKlass* make_narrowklass() const;
 333 
 334   // Special test for register pressure heuristic
 335   bool is_floatingpoint() const;        // True if Float or Double base type
 336 
 337   // Do you have memory, directly or through a tuple?
 338   bool has_memory( ) const;
 339 
 340   // TRUE if type is a singleton
 341   virtual bool singleton(void) const;
 342 
 343   // TRUE if type is above the lattice centerline, and is therefore vacuous
 344   virtual bool empty(void) const;
 345 
 346   // Return a hash for this type.  The hash function is public so ConNode
 347   // (constants) can hash on their constant, which is represented by a Type.
 348   virtual int hash() const;
 349 
 350   // Map ideal registers (machine types) to ideal types
 351   static const Type *mreg2type[];
 352 
 353   // Printing, statistics
 354 #ifndef PRODUCT
 355   void         dump_on(outputStream *st) const;
 356   void         dump() const {
 357     dump_on(tty);
 358   }
 359   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 360   static  void dump_stats();
 361 #endif
 362   void typerr(const Type *t) const; // Mixing types error
 363 
 364   // Create basic type
 365   static const Type* get_const_basic_type(BasicType type) {
 366     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 367     return _const_basic_type[type];
 368   }
 369 
 370   // Mapping to the array element's basic type.
 371   BasicType array_element_basic_type() const;
 372 
 373   // Create standard type for a ciType:
 374   static const Type* get_const_type(ciType* type);
 375 
 376   // Create standard zero value:
 377   static const Type* get_zero_type(BasicType type) {
 378     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 379     return _zero_type[type];
 380   }
 381 
 382   // Report if this is a zero value (not top).
 383   bool is_zero_type() const {
 384     BasicType type = basic_type();
 385     if (type == T_VOID || type >= T_CONFLICT)
 386       return false;
 387     else
 388       return (this == _zero_type[type]);
 389   }
 390 
 391   // Convenience common pre-built types.
 392   static const Type *ABIO;
 393   static const Type *BOTTOM;
 394   static const Type *CONTROL;
 395   static const Type *DOUBLE;
 396   static const Type *FLOAT;
 397   static const Type *HALF;
 398   static const Type *MEMORY;
 399   static const Type *MULTI;
 400   static const Type *RETURN_ADDRESS;
 401   static const Type *TOP;
 402 
 403   // Mapping from compiler type to VM BasicType
 404   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 405   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
 406   const char* msg() const            { return _type_info[_base].msg; }
 407   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 408   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 409 
 410   // Mapping from CI type system to compiler type:
 411   static const Type* get_typeflow_type(ciType* type);
 412 
 413   static const Type* make_from_constant(ciConstant constant,
 414                                         bool require_constant = false,
 415                                         bool is_autobox_cache = false);
 416 
 417   // Speculative type. See TypeInstPtr
 418   virtual const TypeOopPtr* speculative() const { return NULL; }
 419   virtual ciKlass* speculative_type() const { return NULL; }
 420   const Type* maybe_remove_speculative(bool include_speculative) const;
 421   virtual const Type* remove_speculative() const { return this; }
 422 
 423   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const {
 424     return exact_kls != NULL;
 425   }
 426 
 427 private:
 428   // support arrays
 429   static const BasicType _basic_type[];
 430   static const Type*        _zero_type[T_CONFLICT+1];
 431   static const Type* _const_basic_type[T_CONFLICT+1];
 432 };
 433 
 434 //------------------------------TypeF------------------------------------------
 435 // Class of Float-Constant Types.
 436 class TypeF : public Type {
 437   TypeF( float f ) : Type(FloatCon), _f(f) {};
 438 public:
 439   virtual bool eq( const Type *t ) const;
 440   virtual int  hash() const;             // Type specific hashing
 441   virtual bool singleton(void) const;    // TRUE if type is a singleton
 442   virtual bool empty(void) const;        // TRUE if type is vacuous
 443 public:
 444   const float _f;               // Float constant
 445 
 446   static const TypeF *make(float f);
 447 
 448   virtual bool        is_finite() const;  // Has a finite value
 449   virtual bool        is_nan()    const;  // Is not a number (NaN)
 450 
 451   virtual const Type *xmeet( const Type *t ) const;
 452   virtual const Type *xdual() const;    // Compute dual right now.
 453   // Convenience common pre-built types.
 454   static const TypeF *ZERO; // positive zero only
 455   static const TypeF *ONE;
 456 #ifndef PRODUCT
 457   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 458 #endif
 459 };
 460 
 461 //------------------------------TypeD------------------------------------------
 462 // Class of Double-Constant Types.
 463 class TypeD : public Type {
 464   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 465 public:
 466   virtual bool eq( const Type *t ) const;
 467   virtual int  hash() const;             // Type specific hashing
 468   virtual bool singleton(void) const;    // TRUE if type is a singleton
 469   virtual bool empty(void) const;        // TRUE if type is vacuous
 470 public:
 471   const double _d;              // Double constant
 472 
 473   static const TypeD *make(double d);
 474 
 475   virtual bool        is_finite() const;  // Has a finite value
 476   virtual bool        is_nan()    const;  // Is not a number (NaN)
 477 
 478   virtual const Type *xmeet( const Type *t ) const;
 479   virtual const Type *xdual() const;    // Compute dual right now.
 480   // Convenience common pre-built types.
 481   static const TypeD *ZERO; // positive zero only
 482   static const TypeD *ONE;
 483 #ifndef PRODUCT
 484   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 485 #endif
 486 };
 487 
 488 //------------------------------TypeInt----------------------------------------
 489 // Class of integer ranges, the set of integers between a lower bound and an
 490 // upper bound, inclusive.
 491 class TypeInt : public Type {
 492   TypeInt( jint lo, jint hi, int w );
 493 protected:
 494   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 495 
 496 public:
 497   typedef jint NativeType;
 498   virtual bool eq( const Type *t ) const;
 499   virtual int  hash() const;             // Type specific hashing
 500   virtual bool singleton(void) const;    // TRUE if type is a singleton
 501   virtual bool empty(void) const;        // TRUE if type is vacuous
 502   const jint _lo, _hi;          // Lower bound, upper bound
 503   const short _widen;           // Limit on times we widen this sucker
 504 
 505   static const TypeInt *make(jint lo);
 506   // must always specify w
 507   static const TypeInt *make(jint lo, jint hi, int w);
 508 
 509   // Check for single integer
 510   int is_con() const { return _lo==_hi; }
 511   bool is_con(int i) const { return is_con() && _lo == i; }
 512   jint get_con() const { assert( is_con(), "" );  return _lo; }
 513 
 514   virtual bool        is_finite() const;  // Has a finite value
 515 
 516   virtual const Type *xmeet( const Type *t ) const;
 517   virtual const Type *xdual() const;    // Compute dual right now.
 518   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 519   virtual const Type *narrow( const Type *t ) const;
 520   // Do not kill _widen bits.
 521   // Convenience common pre-built types.
 522   static const TypeInt *MINUS_1;
 523   static const TypeInt *ZERO;
 524   static const TypeInt *ONE;
 525   static const TypeInt *BOOL;
 526   static const TypeInt *CC;
 527   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 528   static const TypeInt *CC_GT;  // [1]   == ONE
 529   static const TypeInt *CC_EQ;  // [0]   == ZERO
 530   static const TypeInt *CC_LE;  // [-1,0]
 531   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 532   static const TypeInt *BYTE;
 533   static const TypeInt *UBYTE;
 534   static const TypeInt *CHAR;
 535   static const TypeInt *SHORT;
 536   static const TypeInt *POS;
 537   static const TypeInt *POS1;
 538   static const TypeInt *INT;
 539   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 540   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
 541 
 542   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 543 #ifndef PRODUCT
 544   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 545 #endif
 546 };
 547 
 548 
 549 //------------------------------TypeLong---------------------------------------
 550 // Class of long integer ranges, the set of integers between a lower bound and
 551 // an upper bound, inclusive.
 552 class TypeLong : public Type {
 553   TypeLong( jlong lo, jlong hi, int w );
 554 protected:
 555   // Do not kill _widen bits.
 556   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 557 public:
 558   typedef jlong NativeType;
 559   virtual bool eq( const Type *t ) const;
 560   virtual int  hash() const;             // Type specific hashing
 561   virtual bool singleton(void) const;    // TRUE if type is a singleton
 562   virtual bool empty(void) const;        // TRUE if type is vacuous
 563 public:
 564   const jlong _lo, _hi;         // Lower bound, upper bound
 565   const short _widen;           // Limit on times we widen this sucker
 566 
 567   static const TypeLong *make(jlong lo);
 568   // must always specify w
 569   static const TypeLong *make(jlong lo, jlong hi, int w);
 570 
 571   // Check for single integer
 572   int is_con() const { return _lo==_hi; }
 573   bool is_con(int i) const { return is_con() && _lo == i; }
 574   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 575 
 576   // Check for positive 32-bit value.
 577   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 578 
 579   virtual bool        is_finite() const;  // Has a finite value
 580 
 581 
 582   virtual const Type *xmeet( const Type *t ) const;
 583   virtual const Type *xdual() const;    // Compute dual right now.
 584   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 585   virtual const Type *narrow( const Type *t ) const;
 586   // Convenience common pre-built types.
 587   static const TypeLong *MINUS_1;
 588   static const TypeLong *ZERO;
 589   static const TypeLong *ONE;
 590   static const TypeLong *POS;
 591   static const TypeLong *LONG;
 592   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 593   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 594   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
 595 
 596   // static convenience methods.
 597   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 598 
 599 #ifndef PRODUCT
 600   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 601 #endif
 602 };
 603 
 604 //------------------------------TypeTuple--------------------------------------
 605 // Class of Tuple Types, essentially type collections for function signatures
 606 // and class layouts.  It happens to also be a fast cache for the HotSpot
 607 // signature types.
 608 class TypeTuple : public Type {
 609   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 610 public:
 611   virtual bool eq( const Type *t ) const;
 612   virtual int  hash() const;             // Type specific hashing
 613   virtual bool singleton(void) const;    // TRUE if type is a singleton
 614   virtual bool empty(void) const;        // TRUE if type is vacuous
 615 
 616 public:
 617   const uint          _cnt;              // Count of fields
 618   const Type ** const _fields;           // Array of field types
 619 
 620   // Accessors:
 621   uint cnt() const { return _cnt; }
 622   const Type* field_at(uint i) const {
 623     assert(i < _cnt, "oob");
 624     return _fields[i];
 625   }
 626   void set_field_at(uint i, const Type* t) {
 627     assert(i < _cnt, "oob");
 628     _fields[i] = t;
 629   }
 630 
 631   static const TypeTuple *make( uint cnt, const Type **fields );
 632   static const TypeTuple *make_range(ciSignature *sig);
 633   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 634 
 635   // Subroutine call type with space allocated for argument types
 636   static const Type **fields( uint arg_cnt );
 637 
 638   virtual const Type *xmeet( const Type *t ) const;
 639   virtual const Type *xdual() const;    // Compute dual right now.
 640   // Convenience common pre-built types.
 641   static const TypeTuple *IFBOTH;
 642   static const TypeTuple *IFFALSE;
 643   static const TypeTuple *IFTRUE;
 644   static const TypeTuple *IFNEITHER;
 645   static const TypeTuple *LOOPBODY;
 646   static const TypeTuple *MEMBAR;
 647   static const TypeTuple *STORECONDITIONAL;
 648   static const TypeTuple *START_I2C;
 649   static const TypeTuple *INT_PAIR;
 650   static const TypeTuple *LONG_PAIR;
 651   static const TypeTuple *INT_CC_PAIR;
 652   static const TypeTuple *LONG_CC_PAIR;
 653 #ifndef PRODUCT
 654   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 655 #endif
 656 };
 657 
 658 //------------------------------TypeAry----------------------------------------
 659 // Class of Array Types
 660 class TypeAry : public Type {
 661   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 662       _elem(elem), _size(size), _stable(stable) {}
 663 public:
 664   virtual bool eq( const Type *t ) const;
 665   virtual int  hash() const;             // Type specific hashing
 666   virtual bool singleton(void) const;    // TRUE if type is a singleton
 667   virtual bool empty(void) const;        // TRUE if type is vacuous
 668 
 669 private:
 670   const Type *_elem;            // Element type of array
 671   const TypeInt *_size;         // Elements in array
 672   const bool _stable;           // Are elements @Stable?
 673   friend class TypeAryPtr;
 674 
 675 public:
 676   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 677 
 678   virtual const Type *xmeet( const Type *t ) const;
 679   virtual const Type *xdual() const;    // Compute dual right now.
 680   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 681   virtual const Type* remove_speculative() const;
 682 #ifdef ASSERT
 683   // One type is interface, the other is oop
 684   virtual bool interface_vs_oop(const Type *t) const;
 685 #endif
 686 #ifndef PRODUCT
 687   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 688 #endif
 689 };
 690 
 691 //------------------------------TypeVect---------------------------------------
 692 // Class of Vector Types
 693 class TypeVect : public Type {
 694   const Type*   _elem;  // Vector's element type
 695   const uint  _length;  // Elements in vector (power of 2)
 696 
 697 protected:
 698   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 699     _elem(elem), _length(length) {}
 700 
 701 public:
 702   const Type* element_type() const { return _elem; }
 703   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 704   uint length() const { return _length; }
 705   uint length_in_bytes() const {
 706    return _length * type2aelembytes(element_basic_type());
 707   }
 708 
 709   virtual bool eq(const Type *t) const;
 710   virtual int  hash() const;             // Type specific hashing
 711   virtual bool singleton(void) const;    // TRUE if type is a singleton
 712   virtual bool empty(void) const;        // TRUE if type is vacuous
 713 
 714   static const TypeVect *make(const BasicType elem_bt, uint length) {
 715     // Use bottom primitive type.
 716     return make(get_const_basic_type(elem_bt), length);
 717   }
 718   // Used directly by Replicate nodes to construct singleton vector.
 719   static const TypeVect *make(const Type* elem, uint length);
 720 
 721   virtual const Type *xmeet( const Type *t) const;
 722   virtual const Type *xdual() const;     // Compute dual right now.
 723 
 724   static const TypeVect *VECTS;
 725   static const TypeVect *VECTD;
 726   static const TypeVect *VECTX;
 727   static const TypeVect *VECTY;
 728 
 729 #ifndef PRODUCT
 730   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 731 #endif
 732 };
 733 
 734 class TypeVectS : public TypeVect {
 735   friend class TypeVect;
 736   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 737 };
 738 
 739 class TypeVectD : public TypeVect {
 740   friend class TypeVect;
 741   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 742 };
 743 
 744 class TypeVectX : public TypeVect {
 745   friend class TypeVect;
 746   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 747 };
 748 
 749 class TypeVectY : public TypeVect {
 750   friend class TypeVect;
 751   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 752 };
 753 
 754 //------------------------------TypePtr----------------------------------------
 755 // Class of machine Pointer Types: raw data, instances or arrays.
 756 // If the _base enum is AnyPtr, then this refers to all of the above.
 757 // Otherwise the _base will indicate which subset of pointers is affected,
 758 // and the class will be inherited from.
 759 class TypePtr : public Type {
 760   friend class TypeNarrowPtr;
 761 public:
 762   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 763 protected:
 764   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
 765   virtual bool eq( const Type *t ) const;
 766   virtual int  hash() const;             // Type specific hashing
 767   static const PTR ptr_meet[lastPTR][lastPTR];
 768   static const PTR ptr_dual[lastPTR];
 769   static const char * const ptr_msg[lastPTR];
 770 
 771 public:
 772   const int _offset;            // Offset into oop, with TOP & BOT
 773   const PTR _ptr;               // Pointer equivalence class
 774 
 775   const int offset() const { return _offset; }
 776   const PTR ptr()    const { return _ptr; }
 777 
 778   static const TypePtr *make( TYPES t, PTR ptr, int offset );
 779 
 780   // Return a 'ptr' version of this type
 781   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 782 
 783   virtual intptr_t get_con() const;
 784 
 785   int xadd_offset( intptr_t offset ) const;
 786   virtual const TypePtr *add_offset( intptr_t offset ) const;
 787 
 788   virtual bool singleton(void) const;    // TRUE if type is a singleton
 789   virtual bool empty(void) const;        // TRUE if type is vacuous
 790   virtual const Type *xmeet( const Type *t ) const;
 791   int meet_offset( int offset ) const;
 792   int dual_offset( ) const;
 793   virtual const Type *xdual() const;    // Compute dual right now.
 794 
 795   // meet, dual and join over pointer equivalence sets
 796   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 797   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 798 
 799   // This is textually confusing unless one recalls that
 800   // join(t) == dual()->meet(t->dual())->dual().
 801   PTR join_ptr( const PTR in_ptr ) const {
 802     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 803   }
 804 
 805   // Tests for relation to centerline of type lattice:
 806   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 807   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 808   // Convenience common pre-built types.
 809   static const TypePtr *NULL_PTR;
 810   static const TypePtr *NOTNULL;
 811   static const TypePtr *BOTTOM;
 812 #ifndef PRODUCT
 813   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 814 #endif
 815 };
 816 
 817 //------------------------------TypeRawPtr-------------------------------------
 818 // Class of raw pointers, pointers to things other than Oops.  Examples
 819 // include the stack pointer, top of heap, card-marking area, handles, etc.
 820 class TypeRawPtr : public TypePtr {
 821 protected:
 822   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 823 public:
 824   virtual bool eq( const Type *t ) const;
 825   virtual int  hash() const;     // Type specific hashing
 826 
 827   const address _bits;          // Constant value, if applicable
 828 
 829   static const TypeRawPtr *make( PTR ptr );
 830   static const TypeRawPtr *make( address bits );
 831 
 832   // Return a 'ptr' version of this type
 833   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 834 
 835   virtual intptr_t get_con() const;
 836 
 837   virtual const TypePtr *add_offset( intptr_t offset ) const;
 838 
 839   virtual const Type *xmeet( const Type *t ) const;
 840   virtual const Type *xdual() const;    // Compute dual right now.
 841   // Convenience common pre-built types.
 842   static const TypeRawPtr *BOTTOM;
 843   static const TypeRawPtr *NOTNULL;
 844 #ifndef PRODUCT
 845   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 846 #endif
 847 };
 848 
 849 //------------------------------TypeOopPtr-------------------------------------
 850 // Some kind of oop (Java pointer), either klass or instance or array.
 851 class TypeOopPtr : public TypePtr {
 852 protected:
 853   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth);
 854 public:
 855   virtual bool eq( const Type *t ) const;
 856   virtual int  hash() const;             // Type specific hashing
 857   virtual bool singleton(void) const;    // TRUE if type is a singleton
 858   enum {
 859    InstanceTop = -1,   // undefined instance
 860    InstanceBot = 0     // any possible instance
 861   };
 862 protected:
 863 
 864   enum {
 865     InlineDepthBottom = INT_MAX,
 866     InlineDepthTop = -InlineDepthBottom
 867   };
 868   // Oop is NULL, unless this is a constant oop.
 869   ciObject*     _const_oop;   // Constant oop
 870   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 871   ciKlass*      _klass;       // Klass object
 872   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 873   bool          _klass_is_exact;
 874   bool          _is_ptr_to_narrowoop;
 875   bool          _is_ptr_to_narrowklass;
 876   bool          _is_ptr_to_boxed_value;
 877 
 878   // If not InstanceTop or InstanceBot, indicates that this is
 879   // a particular instance of this type which is distinct.
 880   // This is the the node index of the allocation node creating this instance.
 881   int           _instance_id;
 882 
 883   // Extra type information profiling gave us. We propagate it the
 884   // same way the rest of the type info is propagated. If we want to
 885   // use it, then we have to emit a guard: this part of the type is
 886   // not something we know but something we speculate about the type.
 887   const TypeOopPtr*   _speculative;
 888   // For speculative types, we record at what inlining depth the
 889   // profiling point that provided the data is. We want to favor
 890   // profile data coming from outer scopes which are likely better for
 891   // the current compilation.
 892   int _inline_depth;
 893 
 894   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 895 
 896   int dual_instance_id() const;
 897   int meet_instance_id(int uid) const;
 898 
 899   // utility methods to work on the speculative part of the type
 900   const TypeOopPtr* dual_speculative() const;
 901   const TypeOopPtr* xmeet_speculative(const TypeOopPtr* other) const;
 902   bool eq_speculative(const TypeOopPtr* other) const;
 903   int hash_speculative() const;
 904   const TypeOopPtr* add_offset_speculative(intptr_t offset) const;
 905 #ifndef PRODUCT
 906   void dump_speculative(outputStream *st) const;
 907 #endif
 908   // utility methods to work on the inline depth of the type
 909   int dual_inline_depth() const;
 910   int meet_inline_depth(int depth) const;
 911 #ifndef PRODUCT
 912   void dump_inline_depth(outputStream *st) const;
 913 #endif
 914 
 915   // Do not allow interface-vs.-noninterface joins to collapse to top.
 916   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 917 
 918 public:
 919   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 920   // Respects UseUniqueSubclasses.
 921   // If the klass is final, the resulting type will be exact.
 922   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 923     return make_from_klass_common(klass, true, false);
 924   }
 925   // Same as before, but will produce an exact type, even if
 926   // the klass is not final, as long as it has exactly one implementation.
 927   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 928     return make_from_klass_common(klass, true, true);
 929   }
 930   // Same as before, but does not respects UseUniqueSubclasses.
 931   // Use this only for creating array element types.
 932   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 933     return make_from_klass_common(klass, false, false);
 934   }
 935   // Creates a singleton type given an object.
 936   // If the object cannot be rendered as a constant,
 937   // may return a non-singleton type.
 938   // If require_constant, produce a NULL if a singleton is not possible.
 939   static const TypeOopPtr* make_from_constant(ciObject* o,
 940                                               bool require_constant = false,
 941                                               bool not_null_elements = false);
 942 
 943   // Make a generic (unclassed) pointer to an oop.
 944   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
 945 
 946   ciObject* const_oop()    const { return _const_oop; }
 947   virtual ciKlass* klass() const { return _klass;     }
 948   bool klass_is_exact()    const { return _klass_is_exact; }
 949 
 950   // Returns true if this pointer points at memory which contains a
 951   // compressed oop references.
 952   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
 953   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
 954   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
 955   bool is_known_instance()       const { return _instance_id > 0; }
 956   int  instance_id()             const { return _instance_id; }
 957   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
 958   virtual const TypeOopPtr* speculative() const { return _speculative; }
 959 
 960   virtual intptr_t get_con() const;
 961 
 962   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 963 
 964   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 965 
 966   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 967 
 968   // corresponding pointer to klass, for a given instance
 969   const TypeKlassPtr* as_klass_type() const;
 970 
 971   virtual const TypePtr *add_offset( intptr_t offset ) const;
 972   // Return same type without a speculative part
 973   virtual const Type* remove_speculative() const;
 974 
 975   virtual const Type *xmeet(const Type *t) const;
 976   virtual const Type *xdual() const;    // Compute dual right now.
 977   // the core of the computation of the meet for TypeOopPtr and for its subclasses
 978   virtual const Type *xmeet_helper(const Type *t) const;
 979 
 980   // Convenience common pre-built type.
 981   static const TypeOopPtr *BOTTOM;
 982 #ifndef PRODUCT
 983   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 984 #endif
 985 
 986   // Return the speculative type if any
 987   ciKlass* speculative_type() const {
 988     if (_speculative != NULL) {
 989       const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
 990       if (speculative->klass_is_exact()) {
 991         return speculative->klass();
 992       }
 993     }
 994     return NULL;
 995   }
 996   int inline_depth() const {
 997     return _inline_depth;
 998   }
 999   virtual const TypeOopPtr* with_inline_depth(int depth) const;
1000   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1001 };
1002 
1003 //------------------------------TypeInstPtr------------------------------------
1004 // Class of Java object pointers, pointing either to non-array Java instances
1005 // or to a Klass* (including array klasses).
1006 class TypeInstPtr : public TypeOopPtr {
1007   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth);
1008   virtual bool eq( const Type *t ) const;
1009   virtual int  hash() const;             // Type specific hashing
1010 
1011   ciSymbol*  _name;        // class name
1012 
1013  public:
1014   ciSymbol* name()         const { return _name; }
1015 
1016   bool  is_loaded() const { return _klass->is_loaded(); }
1017 
1018   // Make a pointer to a constant oop.
1019   static const TypeInstPtr *make(ciObject* o) {
1020     return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
1021   }
1022   // Make a pointer to a constant oop with offset.
1023   static const TypeInstPtr *make(ciObject* o, int offset) {
1024     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
1025   }
1026 
1027   // Make a pointer to some value of type klass.
1028   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
1029     return make(ptr, klass, false, NULL, 0, InstanceBot);
1030   }
1031 
1032   // Make a pointer to some non-polymorphic value of exactly type klass.
1033   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1034     return make(ptr, klass, true, NULL, 0, InstanceBot);
1035   }
1036 
1037   // Make a pointer to some value of type klass with offset.
1038   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1039     return make(ptr, klass, false, NULL, offset, InstanceBot);
1040   }
1041 
1042   // Make a pointer to an oop.
1043   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
1044 
1045   /** Create constant type for a constant boxed value */
1046   const Type* get_const_boxed_value() const;
1047 
1048   // If this is a java.lang.Class constant, return the type for it or NULL.
1049   // Pass to Type::get_const_type to turn it to a type, which will usually
1050   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1051   ciType* java_mirror_type() const;
1052 
1053   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1054 
1055   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1056 
1057   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1058 
1059   virtual const TypePtr *add_offset( intptr_t offset ) const;
1060   // Return same type without a speculative part
1061   virtual const Type* remove_speculative() const;
1062   virtual const TypeOopPtr* with_inline_depth(int depth) const;
1063 
1064   // the core of the computation of the meet of 2 types
1065   virtual const Type *xmeet_helper(const Type *t) const;
1066   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1067   virtual const Type *xdual() const;    // Compute dual right now.
1068 
1069   // Convenience common pre-built types.
1070   static const TypeInstPtr *NOTNULL;
1071   static const TypeInstPtr *BOTTOM;
1072   static const TypeInstPtr *MIRROR;
1073   static const TypeInstPtr *MARK;
1074   static const TypeInstPtr *KLASS;
1075 #ifndef PRODUCT
1076   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1077 #endif
1078 };
1079 
1080 //------------------------------TypeAryPtr-------------------------------------
1081 // Class of Java array pointers
1082 class TypeAryPtr : public TypeOopPtr {
1083   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1084               int offset, int instance_id, bool is_autobox_cache, const TypeOopPtr* speculative, int inline_depth)
1085     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth),
1086     _ary(ary),
1087     _is_autobox_cache(is_autobox_cache)
1088  {
1089 #ifdef ASSERT
1090     if (k != NULL) {
1091       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1092       ciKlass* ck = compute_klass(true);
1093       if (k != ck) {
1094         this->dump(); tty->cr();
1095         tty->print(" k: ");
1096         k->print(); tty->cr();
1097         tty->print("ck: ");
1098         if (ck != NULL) ck->print();
1099         else tty->print("<NULL>");
1100         tty->cr();
1101         assert(false, "unexpected TypeAryPtr::_klass");
1102       }
1103     }
1104 #endif
1105   }
1106   virtual bool eq( const Type *t ) const;
1107   virtual int hash() const;     // Type specific hashing
1108   const TypeAry *_ary;          // Array we point into
1109   const bool     _is_autobox_cache;
1110 
1111   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1112 
1113 public:
1114   // Accessors
1115   ciKlass* klass() const;
1116   const TypeAry* ary() const  { return _ary; }
1117   const Type*    elem() const { return _ary->_elem; }
1118   const TypeInt* size() const { return _ary->_size; }
1119   bool      is_stable() const { return _ary->_stable; }
1120 
1121   bool is_autobox_cache() const { return _is_autobox_cache; }
1122 
1123   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
1124   // Constant pointer to array
1125   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom, bool is_autobox_cache= false);
1126 
1127   // Return a 'ptr' version of this type
1128   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1129 
1130   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1131 
1132   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1133 
1134   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1135   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1136 
1137   virtual bool empty(void) const;        // TRUE if type is vacuous
1138   virtual const TypePtr *add_offset( intptr_t offset ) const;
1139   // Return same type without a speculative part
1140   virtual const Type* remove_speculative() const;
1141   virtual const TypeOopPtr* with_inline_depth(int depth) const;
1142 
1143   // the core of the computation of the meet of 2 types
1144   virtual const Type *xmeet_helper(const Type *t) const;
1145   virtual const Type *xdual() const;    // Compute dual right now.
1146 
1147   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1148   int stable_dimension() const;
1149 
1150   // Convenience common pre-built types.
1151   static const TypeAryPtr *RANGE;
1152   static const TypeAryPtr *OOPS;
1153   static const TypeAryPtr *NARROWOOPS;
1154   static const TypeAryPtr *BYTES;
1155   static const TypeAryPtr *SHORTS;
1156   static const TypeAryPtr *CHARS;
1157   static const TypeAryPtr *INTS;
1158   static const TypeAryPtr *LONGS;
1159   static const TypeAryPtr *FLOATS;
1160   static const TypeAryPtr *DOUBLES;
1161   // selects one of the above:
1162   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1163     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1164     return _array_body_type[elem];
1165   }
1166   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1167   // sharpen the type of an int which is used as an array size
1168 #ifdef ASSERT
1169   // One type is interface, the other is oop
1170   virtual bool interface_vs_oop(const Type *t) const;
1171 #endif
1172 #ifndef PRODUCT
1173   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1174 #endif
1175 };
1176 
1177 //------------------------------TypeMetadataPtr-------------------------------------
1178 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1179 class TypeMetadataPtr : public TypePtr {
1180 protected:
1181   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1182   // Do not allow interface-vs.-noninterface joins to collapse to top.
1183   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1184 public:
1185   virtual bool eq( const Type *t ) const;
1186   virtual int  hash() const;             // Type specific hashing
1187   virtual bool singleton(void) const;    // TRUE if type is a singleton
1188 
1189 private:
1190   ciMetadata*   _metadata;
1191 
1192 public:
1193   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1194 
1195   static const TypeMetadataPtr* make(ciMethod* m);
1196   static const TypeMetadataPtr* make(ciMethodData* m);
1197 
1198   ciMetadata* metadata() const { return _metadata; }
1199 
1200   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1201 
1202   virtual const TypePtr *add_offset( intptr_t offset ) const;
1203 
1204   virtual const Type *xmeet( const Type *t ) const;
1205   virtual const Type *xdual() const;    // Compute dual right now.
1206 
1207   virtual intptr_t get_con() const;
1208 
1209   // Convenience common pre-built types.
1210   static const TypeMetadataPtr *BOTTOM;
1211 
1212 #ifndef PRODUCT
1213   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1214 #endif
1215 };
1216 
1217 //------------------------------TypeKlassPtr-----------------------------------
1218 // Class of Java Klass pointers
1219 class TypeKlassPtr : public TypePtr {
1220   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1221 
1222 protected:
1223   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1224  public:
1225   virtual bool eq( const Type *t ) const;
1226   virtual int hash() const;             // Type specific hashing
1227   virtual bool singleton(void) const;    // TRUE if type is a singleton
1228  private:
1229 
1230   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1231 
1232   ciKlass* _klass;
1233 
1234   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1235   bool          _klass_is_exact;
1236 
1237 public:
1238   ciSymbol* name()  const { return klass()->name(); }
1239 
1240   ciKlass* klass() const { return  _klass; }
1241   bool klass_is_exact()    const { return _klass_is_exact; }
1242 
1243   bool  is_loaded() const { return klass()->is_loaded(); }
1244 
1245   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1246   // Respects UseUniqueSubclasses.
1247   // If the klass is final, the resulting type will be exact.
1248   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1249     return make_from_klass_common(klass, true, false);
1250   }
1251   // Same as before, but will produce an exact type, even if
1252   // the klass is not final, as long as it has exactly one implementation.
1253   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1254     return make_from_klass_common(klass, true, true);
1255   }
1256   // Same as before, but does not respects UseUniqueSubclasses.
1257   // Use this only for creating array element types.
1258   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1259     return make_from_klass_common(klass, false, false);
1260   }
1261 
1262   // Make a generic (unclassed) pointer to metadata.
1263   static const TypeKlassPtr* make(PTR ptr, int offset);
1264 
1265   // ptr to klass 'k'
1266   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1267   // ptr to klass 'k' with offset
1268   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1269   // ptr to klass 'k' or sub-klass
1270   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1271 
1272   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1273 
1274   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1275 
1276   // corresponding pointer to instance, for a given class
1277   const TypeOopPtr* as_instance_type() const;
1278 
1279   virtual const TypePtr *add_offset( intptr_t offset ) const;
1280   virtual const Type    *xmeet( const Type *t ) const;
1281   virtual const Type    *xdual() const;      // Compute dual right now.
1282 
1283   virtual intptr_t get_con() const;
1284 
1285   // Convenience common pre-built types.
1286   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1287   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1288 #ifndef PRODUCT
1289   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1290 #endif
1291 };
1292 
1293 class TypeNarrowPtr : public Type {
1294 protected:
1295   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1296 
1297   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1298                                                   Type(t) {
1299     assert(ptrtype->offset() == 0 ||
1300            ptrtype->offset() == OffsetBot ||
1301            ptrtype->offset() == OffsetTop, "no real offsets");
1302   }
1303 
1304   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1305   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1306   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1307   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1308   // Do not allow interface-vs.-noninterface joins to collapse to top.
1309   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1310 public:
1311   virtual bool eq( const Type *t ) const;
1312   virtual int  hash() const;             // Type specific hashing
1313   virtual bool singleton(void) const;    // TRUE if type is a singleton
1314 
1315   virtual const Type *xmeet( const Type *t ) const;
1316   virtual const Type *xdual() const;    // Compute dual right now.
1317 
1318   virtual intptr_t get_con() const;
1319 
1320   virtual bool empty(void) const;        // TRUE if type is vacuous
1321 
1322   // returns the equivalent ptr type for this compressed pointer
1323   const TypePtr *get_ptrtype() const {
1324     return _ptrtype;
1325   }
1326 
1327 #ifndef PRODUCT
1328   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1329 #endif
1330 };
1331 
1332 //------------------------------TypeNarrowOop----------------------------------
1333 // A compressed reference to some kind of Oop.  This type wraps around
1334 // a preexisting TypeOopPtr and forwards most of it's operations to
1335 // the underlying type.  It's only real purpose is to track the
1336 // oopness of the compressed oop value when we expose the conversion
1337 // between the normal and the compressed form.
1338 class TypeNarrowOop : public TypeNarrowPtr {
1339 protected:
1340   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1341   }
1342 
1343   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1344     return t->isa_narrowoop();
1345   }
1346 
1347   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1348     return t->is_narrowoop();
1349   }
1350 
1351   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1352     return new TypeNarrowOop(t);
1353   }
1354 
1355   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1356     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1357   }
1358 
1359 public:
1360 
1361   static const TypeNarrowOop *make( const TypePtr* type);
1362 
1363   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1364     return make(TypeOopPtr::make_from_constant(con, require_constant));
1365   }
1366 
1367   static const TypeNarrowOop *BOTTOM;
1368   static const TypeNarrowOop *NULL_PTR;
1369 
1370   virtual const Type* remove_speculative() const {
1371     return make(_ptrtype->remove_speculative()->is_ptr());
1372   }
1373 
1374 #ifndef PRODUCT
1375   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1376 #endif
1377 };
1378 
1379 //------------------------------TypeNarrowKlass----------------------------------
1380 // A compressed reference to klass pointer.  This type wraps around a
1381 // preexisting TypeKlassPtr and forwards most of it's operations to
1382 // the underlying type.
1383 class TypeNarrowKlass : public TypeNarrowPtr {
1384 protected:
1385   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1386   }
1387 
1388   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1389     return t->isa_narrowklass();
1390   }
1391 
1392   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1393     return t->is_narrowklass();
1394   }
1395 
1396   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1397     return new TypeNarrowKlass(t);
1398   }
1399 
1400   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1401     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1402   }
1403 
1404 public:
1405   static const TypeNarrowKlass *make( const TypePtr* type);
1406 
1407   // static const TypeNarrowKlass *BOTTOM;
1408   static const TypeNarrowKlass *NULL_PTR;
1409 
1410 #ifndef PRODUCT
1411   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1412 #endif
1413 };
1414 
1415 //------------------------------TypeFunc---------------------------------------
1416 // Class of Array Types
1417 class TypeFunc : public Type {
1418   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1419   virtual bool eq( const Type *t ) const;
1420   virtual int  hash() const;             // Type specific hashing
1421   virtual bool singleton(void) const;    // TRUE if type is a singleton
1422   virtual bool empty(void) const;        // TRUE if type is vacuous
1423 public:
1424   // Constants are shared among ADLC and VM
1425   enum { Control    = AdlcVMDeps::Control,
1426          I_O        = AdlcVMDeps::I_O,
1427          Memory     = AdlcVMDeps::Memory,
1428          FramePtr   = AdlcVMDeps::FramePtr,
1429          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1430          Parms      = AdlcVMDeps::Parms
1431   };
1432 
1433   const TypeTuple* const _domain;     // Domain of inputs
1434   const TypeTuple* const _range;      // Range of results
1435 
1436   // Accessors:
1437   const TypeTuple* domain() const { return _domain; }
1438   const TypeTuple* range()  const { return _range; }
1439 
1440   static const TypeFunc *make(ciMethod* method);
1441   static const TypeFunc *make(ciSignature signature, const Type* extra);
1442   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1443 
1444   virtual const Type *xmeet( const Type *t ) const;
1445   virtual const Type *xdual() const;    // Compute dual right now.
1446 
1447   BasicType return_type() const;
1448 
1449 #ifndef PRODUCT
1450   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1451 #endif
1452   // Convenience common pre-built types.
1453 };
1454 
1455 //------------------------------accessors--------------------------------------
1456 inline bool Type::is_ptr_to_narrowoop() const {
1457 #ifdef _LP64
1458   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1459 #else
1460   return false;
1461 #endif
1462 }
1463 
1464 inline bool Type::is_ptr_to_narrowklass() const {
1465 #ifdef _LP64
1466   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1467 #else
1468   return false;
1469 #endif
1470 }
1471 
1472 inline float Type::getf() const {
1473   assert( _base == FloatCon, "Not a FloatCon" );
1474   return ((TypeF*)this)->_f;
1475 }
1476 
1477 inline double Type::getd() const {
1478   assert( _base == DoubleCon, "Not a DoubleCon" );
1479   return ((TypeD*)this)->_d;
1480 }
1481 
1482 inline const TypeInt *Type::is_int() const {
1483   assert( _base == Int, "Not an Int" );
1484   return (TypeInt*)this;
1485 }
1486 
1487 inline const TypeInt *Type::isa_int() const {
1488   return ( _base == Int ? (TypeInt*)this : NULL);
1489 }
1490 
1491 inline const TypeLong *Type::is_long() const {
1492   assert( _base == Long, "Not a Long" );
1493   return (TypeLong*)this;
1494 }
1495 
1496 inline const TypeLong *Type::isa_long() const {
1497   return ( _base == Long ? (TypeLong*)this : NULL);
1498 }
1499 
1500 inline const TypeF *Type::isa_float() const {
1501   return ((_base == FloatTop ||
1502            _base == FloatCon ||
1503            _base == FloatBot) ? (TypeF*)this : NULL);
1504 }
1505 
1506 inline const TypeF *Type::is_float_constant() const {
1507   assert( _base == FloatCon, "Not a Float" );
1508   return (TypeF*)this;
1509 }
1510 
1511 inline const TypeF *Type::isa_float_constant() const {
1512   return ( _base == FloatCon ? (TypeF*)this : NULL);
1513 }
1514 
1515 inline const TypeD *Type::isa_double() const {
1516   return ((_base == DoubleTop ||
1517            _base == DoubleCon ||
1518            _base == DoubleBot) ? (TypeD*)this : NULL);
1519 }
1520 
1521 inline const TypeD *Type::is_double_constant() const {
1522   assert( _base == DoubleCon, "Not a Double" );
1523   return (TypeD*)this;
1524 }
1525 
1526 inline const TypeD *Type::isa_double_constant() const {
1527   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1528 }
1529 
1530 inline const TypeTuple *Type::is_tuple() const {
1531   assert( _base == Tuple, "Not a Tuple" );
1532   return (TypeTuple*)this;
1533 }
1534 
1535 inline const TypeAry *Type::is_ary() const {
1536   assert( _base == Array , "Not an Array" );
1537   return (TypeAry*)this;
1538 }
1539 
1540 inline const TypeVect *Type::is_vect() const {
1541   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
1542   return (TypeVect*)this;
1543 }
1544 
1545 inline const TypeVect *Type::isa_vect() const {
1546   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
1547 }
1548 
1549 inline const TypePtr *Type::is_ptr() const {
1550   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1551   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1552   return (TypePtr*)this;
1553 }
1554 
1555 inline const TypePtr *Type::isa_ptr() const {
1556   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1557   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1558 }
1559 
1560 inline const TypeOopPtr *Type::is_oopptr() const {
1561   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1562   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1563   return (TypeOopPtr*)this;
1564 }
1565 
1566 inline const TypeOopPtr *Type::isa_oopptr() const {
1567   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1568   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1569 }
1570 
1571 inline const TypeRawPtr *Type::isa_rawptr() const {
1572   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1573 }
1574 
1575 inline const TypeRawPtr *Type::is_rawptr() const {
1576   assert( _base == RawPtr, "Not a raw pointer" );
1577   return (TypeRawPtr*)this;
1578 }
1579 
1580 inline const TypeInstPtr *Type::isa_instptr() const {
1581   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1582 }
1583 
1584 inline const TypeInstPtr *Type::is_instptr() const {
1585   assert( _base == InstPtr, "Not an object pointer" );
1586   return (TypeInstPtr*)this;
1587 }
1588 
1589 inline const TypeAryPtr *Type::isa_aryptr() const {
1590   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1591 }
1592 
1593 inline const TypeAryPtr *Type::is_aryptr() const {
1594   assert( _base == AryPtr, "Not an array pointer" );
1595   return (TypeAryPtr*)this;
1596 }
1597 
1598 inline const TypeNarrowOop *Type::is_narrowoop() const {
1599   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1600   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1601   return (TypeNarrowOop*)this;
1602 }
1603 
1604 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1605   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1606   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1607 }
1608 
1609 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1610   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1611   return (TypeNarrowKlass*)this;
1612 }
1613 
1614 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1615   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1616 }
1617 
1618 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1619   // MetadataPtr is the first and CPCachePtr the last
1620   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1621   return (TypeMetadataPtr*)this;
1622 }
1623 
1624 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1625   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1626 }
1627 
1628 inline const TypeKlassPtr *Type::isa_klassptr() const {
1629   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1630 }
1631 
1632 inline const TypeKlassPtr *Type::is_klassptr() const {
1633   assert( _base == KlassPtr, "Not a klass pointer" );
1634   return (TypeKlassPtr*)this;
1635 }
1636 
1637 inline const TypePtr* Type::make_ptr() const {
1638   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1639     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1640      (isa_ptr() ? is_ptr() : NULL));
1641 }
1642 
1643 inline const TypeOopPtr* Type::make_oopptr() const {
1644   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
1645 }
1646 
1647 inline const TypeNarrowOop* Type::make_narrowoop() const {
1648   return (_base == NarrowOop) ? is_narrowoop() :
1649                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1650 }
1651 
1652 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1653   return (_base == NarrowKlass) ? is_narrowklass() :
1654                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1655 }
1656 
1657 inline bool Type::is_floatingpoint() const {
1658   if( (_base == FloatCon)  || (_base == FloatBot) ||
1659       (_base == DoubleCon) || (_base == DoubleBot) )
1660     return true;
1661   return false;
1662 }
1663 
1664 inline bool Type::is_ptr_to_boxing_obj() const {
1665   const TypeInstPtr* tp = isa_instptr();
1666   return (tp != NULL) && (tp->offset() == 0) &&
1667          tp->klass()->is_instance_klass()  &&
1668          tp->klass()->as_instance_klass()->is_box_klass();
1669 }
1670 
1671 
1672 // ===============================================================
1673 // Things that need to be 64-bits in the 64-bit build but
1674 // 32-bits in the 32-bit build.  Done this way to get full
1675 // optimization AND strong typing.
1676 #ifdef _LP64
1677 
1678 // For type queries and asserts
1679 #define is_intptr_t  is_long
1680 #define isa_intptr_t isa_long
1681 #define find_intptr_t_type find_long_type
1682 #define find_intptr_t_con  find_long_con
1683 #define TypeX        TypeLong
1684 #define Type_X       Type::Long
1685 #define TypeX_X      TypeLong::LONG
1686 #define TypeX_ZERO   TypeLong::ZERO
1687 // For 'ideal_reg' machine registers
1688 #define Op_RegX      Op_RegL
1689 // For phase->intcon variants
1690 #define MakeConX     longcon
1691 #define ConXNode     ConLNode
1692 // For array index arithmetic
1693 #define MulXNode     MulLNode
1694 #define AndXNode     AndLNode
1695 #define OrXNode      OrLNode
1696 #define CmpXNode     CmpLNode
1697 #define SubXNode     SubLNode
1698 #define LShiftXNode  LShiftLNode
1699 // For object size computation:
1700 #define AddXNode     AddLNode
1701 #define RShiftXNode  RShiftLNode
1702 // For card marks and hashcodes
1703 #define URShiftXNode URShiftLNode
1704 // UseOptoBiasInlining
1705 #define XorXNode     XorLNode
1706 #define StoreXConditionalNode StoreLConditionalNode
1707 // Opcodes
1708 #define Op_LShiftX   Op_LShiftL
1709 #define Op_AndX      Op_AndL
1710 #define Op_AddX      Op_AddL
1711 #define Op_SubX      Op_SubL
1712 #define Op_XorX      Op_XorL
1713 #define Op_URShiftX  Op_URShiftL
1714 // conversions
1715 #define ConvI2X(x)   ConvI2L(x)
1716 #define ConvL2X(x)   (x)
1717 #define ConvX2I(x)   ConvL2I(x)
1718 #define ConvX2L(x)   (x)
1719 
1720 #else
1721 
1722 // For type queries and asserts
1723 #define is_intptr_t  is_int
1724 #define isa_intptr_t isa_int
1725 #define find_intptr_t_type find_int_type
1726 #define find_intptr_t_con  find_int_con
1727 #define TypeX        TypeInt
1728 #define Type_X       Type::Int
1729 #define TypeX_X      TypeInt::INT
1730 #define TypeX_ZERO   TypeInt::ZERO
1731 // For 'ideal_reg' machine registers
1732 #define Op_RegX      Op_RegI
1733 // For phase->intcon variants
1734 #define MakeConX     intcon
1735 #define ConXNode     ConINode
1736 // For array index arithmetic
1737 #define MulXNode     MulINode
1738 #define AndXNode     AndINode
1739 #define OrXNode      OrINode
1740 #define CmpXNode     CmpINode
1741 #define SubXNode     SubINode
1742 #define LShiftXNode  LShiftINode
1743 // For object size computation:
1744 #define AddXNode     AddINode
1745 #define RShiftXNode  RShiftINode
1746 // For card marks and hashcodes
1747 #define URShiftXNode URShiftINode
1748 // UseOptoBiasInlining
1749 #define XorXNode     XorINode
1750 #define StoreXConditionalNode StoreIConditionalNode
1751 // Opcodes
1752 #define Op_LShiftX   Op_LShiftI
1753 #define Op_AndX      Op_AndI
1754 #define Op_AddX      Op_AddI
1755 #define Op_SubX      Op_SubI
1756 #define Op_XorX      Op_XorI
1757 #define Op_URShiftX  Op_URShiftI
1758 // conversions
1759 #define ConvI2X(x)   (x)
1760 #define ConvL2X(x)   ConvL2I(x)
1761 #define ConvX2I(x)   (x)
1762 #define ConvX2L(x)   ConvI2L(x)
1763 
1764 #endif
1765 
1766 #endif // SHARE_VM_OPTO_TYPE_HPP