1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacStats.inline.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_dirtied;
 116   G1CollectedHeap* _g1h;
 117   G1SATBCardTableLoggingModRefBS* _g1_bs;
 118 
 119   HeapRegion* region_for_card(jbyte* card_ptr) const {
 120     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 121   }
 122 
 123   bool will_become_free(HeapRegion* hr) const {
 124     // A region will be freed by free_collection_set if the region is in the
 125     // collection set and has not had an evacuation failure.
 126     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 127   }
 128 
 129  public:
 130   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 131     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 132 
 133   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 134     HeapRegion* hr = region_for_card(card_ptr);
 135 
 136     // Should only dirty cards in regions that won't be freed.
 137     if (!will_become_free(hr)) {
 138       *card_ptr = CardTableModRefBS::dirty_card_val();
 139       _num_dirtied++;
 140     }
 141 
 142     return true;
 143   }
 144 
 145   size_t num_dirtied()   const { return _num_dirtied; }
 146 };
 147 
 148 
 149 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 150   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 151 }
 152 
 153 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 154   // The from card cache is not the memory that is actually committed. So we cannot
 155   // take advantage of the zero_filled parameter.
 156   reset_from_card_cache(start_idx, num_regions);
 157 }
 158 
 159 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 160 {
 161   // Claim the right to put the region on the dirty cards region list
 162   // by installing a self pointer.
 163   HeapRegion* next = hr->get_next_dirty_cards_region();
 164   if (next == NULL) {
 165     HeapRegion* res = (HeapRegion*)
 166       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 167                           NULL);
 168     if (res == NULL) {
 169       HeapRegion* head;
 170       do {
 171         // Put the region to the dirty cards region list.
 172         head = _dirty_cards_region_list;
 173         next = (HeapRegion*)
 174           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 175         if (next == head) {
 176           assert(hr->get_next_dirty_cards_region() == hr,
 177                  "hr->get_next_dirty_cards_region() != hr");
 178           if (next == NULL) {
 179             // The last region in the list points to itself.
 180             hr->set_next_dirty_cards_region(hr);
 181           } else {
 182             hr->set_next_dirty_cards_region(next);
 183           }
 184         }
 185       } while (next != head);
 186     }
 187   }
 188 }
 189 
 190 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 191 {
 192   HeapRegion* head;
 193   HeapRegion* hr;
 194   do {
 195     head = _dirty_cards_region_list;
 196     if (head == NULL) {
 197       return NULL;
 198     }
 199     HeapRegion* new_head = head->get_next_dirty_cards_region();
 200     if (head == new_head) {
 201       // The last region.
 202       new_head = NULL;
 203     }
 204     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 205                                           head);
 206   } while (hr != head);
 207   assert(hr != NULL, "invariant");
 208   hr->set_next_dirty_cards_region(NULL);
 209   return hr;
 210 }
 211 
 212 // Returns true if the reference points to an object that
 213 // can move in an incremental collection.
 214 bool G1CollectedHeap::is_scavengable(const void* p) {
 215   HeapRegion* hr = heap_region_containing(p);
 216   return !hr->is_pinned();
 217 }
 218 
 219 // Private methods.
 220 
 221 HeapRegion*
 222 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 223   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 224   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 225     if (!_secondary_free_list.is_empty()) {
 226       if (G1ConcRegionFreeingVerbose) {
 227         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 228                                "secondary_free_list has %u entries",
 229                                _secondary_free_list.length());
 230       }
 231       // It looks as if there are free regions available on the
 232       // secondary_free_list. Let's move them to the free_list and try
 233       // again to allocate from it.
 234       append_secondary_free_list();
 235 
 236       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 237              "empty we should have moved at least one entry to the free_list");
 238       HeapRegion* res = _hrm.allocate_free_region(is_old);
 239       if (G1ConcRegionFreeingVerbose) {
 240         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 241                                "allocated " HR_FORMAT " from secondary_free_list",
 242                                HR_FORMAT_PARAMS(res));
 243       }
 244       return res;
 245     }
 246 
 247     // Wait here until we get notified either when (a) there are no
 248     // more free regions coming or (b) some regions have been moved on
 249     // the secondary_free_list.
 250     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 251   }
 252 
 253   if (G1ConcRegionFreeingVerbose) {
 254     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 255                            "could not allocate from secondary_free_list");
 256   }
 257   return NULL;
 258 }
 259 
 260 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 261   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 262          "the only time we use this to allocate a humongous region is "
 263          "when we are allocating a single humongous region");
 264 
 265   HeapRegion* res;
 266   if (G1StressConcRegionFreeing) {
 267     if (!_secondary_free_list.is_empty()) {
 268       if (G1ConcRegionFreeingVerbose) {
 269         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 270                                "forced to look at the secondary_free_list");
 271       }
 272       res = new_region_try_secondary_free_list(is_old);
 273       if (res != NULL) {
 274         return res;
 275       }
 276     }
 277   }
 278 
 279   res = _hrm.allocate_free_region(is_old);
 280 
 281   if (res == NULL) {
 282     if (G1ConcRegionFreeingVerbose) {
 283       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 284                              "res == NULL, trying the secondary_free_list");
 285     }
 286     res = new_region_try_secondary_free_list(is_old);
 287   }
 288   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 289     // Currently, only attempts to allocate GC alloc regions set
 290     // do_expand to true. So, we should only reach here during a
 291     // safepoint. If this assumption changes we might have to
 292     // reconsider the use of _expand_heap_after_alloc_failure.
 293     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 294 
 295     ergo_verbose1(ErgoHeapSizing,
 296                   "attempt heap expansion",
 297                   ergo_format_reason("region allocation request failed")
 298                   ergo_format_byte("allocation request"),
 299                   word_size * HeapWordSize);
 300     if (expand(word_size * HeapWordSize)) {
 301       // Given that expand() succeeded in expanding the heap, and we
 302       // always expand the heap by an amount aligned to the heap
 303       // region size, the free list should in theory not be empty.
 304       // In either case allocate_free_region() will check for NULL.
 305       res = _hrm.allocate_free_region(is_old);
 306     } else {
 307       _expand_heap_after_alloc_failure = false;
 308     }
 309   }
 310   return res;
 311 }
 312 
 313 HeapWord*
 314 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 315                                                            uint num_regions,
 316                                                            size_t word_size,
 317                                                            AllocationContext_t context) {
 318   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 319   assert(is_humongous(word_size), "word_size should be humongous");
 320   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 321 
 322   // Index of last region in the series.
 323   uint last = first + num_regions - 1;
 324 
 325   // We need to initialize the region(s) we just discovered. This is
 326   // a bit tricky given that it can happen concurrently with
 327   // refinement threads refining cards on these regions and
 328   // potentially wanting to refine the BOT as they are scanning
 329   // those cards (this can happen shortly after a cleanup; see CR
 330   // 6991377). So we have to set up the region(s) carefully and in
 331   // a specific order.
 332 
 333   // The word size sum of all the regions we will allocate.
 334   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 335   assert(word_size <= word_size_sum, "sanity");
 336 
 337   // This will be the "starts humongous" region.
 338   HeapRegion* first_hr = region_at(first);
 339   // The header of the new object will be placed at the bottom of
 340   // the first region.
 341   HeapWord* new_obj = first_hr->bottom();
 342   // This will be the new top of the new object.
 343   HeapWord* obj_top = new_obj + word_size;
 344 
 345   // First, we need to zero the header of the space that we will be
 346   // allocating. When we update top further down, some refinement
 347   // threads might try to scan the region. By zeroing the header we
 348   // ensure that any thread that will try to scan the region will
 349   // come across the zero klass word and bail out.
 350   //
 351   // NOTE: It would not have been correct to have used
 352   // CollectedHeap::fill_with_object() and make the space look like
 353   // an int array. The thread that is doing the allocation will
 354   // later update the object header to a potentially different array
 355   // type and, for a very short period of time, the klass and length
 356   // fields will be inconsistent. This could cause a refinement
 357   // thread to calculate the object size incorrectly.
 358   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 359 
 360   // How many words we use for filler objects.
 361   size_t word_fill_size = word_size_sum - word_size;
 362 
 363   // How many words memory we "waste" which cannot hold a filler object.
 364   size_t words_not_fillable = 0;
 365 
 366   if (word_fill_size >= min_fill_size()) {
 367     fill_with_objects(obj_top, word_fill_size);
 368   } else if (word_fill_size > 0) {
 369     // We have space to fill, but we cannot fit an object there.
 370     words_not_fillable = word_fill_size;
 371     word_fill_size = 0;
 372   }
 373 
 374   // We will set up the first region as "starts humongous". This
 375   // will also update the BOT covering all the regions to reflect
 376   // that there is a single object that starts at the bottom of the
 377   // first region.
 378   first_hr->set_starts_humongous(obj_top, word_fill_size);
 379   first_hr->set_allocation_context(context);
 380   // Then, if there are any, we will set up the "continues
 381   // humongous" regions.
 382   HeapRegion* hr = NULL;
 383   for (uint i = first + 1; i <= last; ++i) {
 384     hr = region_at(i);
 385     hr->set_continues_humongous(first_hr);
 386     hr->set_allocation_context(context);
 387   }
 388 
 389   // Up to this point no concurrent thread would have been able to
 390   // do any scanning on any region in this series. All the top
 391   // fields still point to bottom, so the intersection between
 392   // [bottom,top] and [card_start,card_end] will be empty. Before we
 393   // update the top fields, we'll do a storestore to make sure that
 394   // no thread sees the update to top before the zeroing of the
 395   // object header and the BOT initialization.
 396   OrderAccess::storestore();
 397 
 398   // Now, we will update the top fields of the "continues humongous"
 399   // regions except the last one.
 400   for (uint i = first; i < last; ++i) {
 401     hr = region_at(i);
 402     hr->set_top(hr->end());
 403   }
 404 
 405   hr = region_at(last);
 406   // If we cannot fit a filler object, we must set top to the end
 407   // of the humongous object, otherwise we cannot iterate the heap
 408   // and the BOT will not be complete.
 409   hr->set_top(hr->end() - words_not_fillable);
 410 
 411   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 412          "obj_top should be in last region");
 413 
 414   check_bitmaps("Humongous Region Allocation", first_hr);
 415 
 416   assert(words_not_fillable == 0 ||
 417          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 418          "Miscalculation in humongous allocation");
 419 
 420   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 421 
 422   for (uint i = first; i <= last; ++i) {
 423     hr = region_at(i);
 424     _humongous_set.add(hr);
 425     if (i == first) {
 426       _hr_printer.alloc(G1HRPrinter::StartsHumongous, hr, hr->top());
 427     } else {
 428       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->top());
 429     }
 430   }
 431 
 432   return new_obj;
 433 }
 434 
 435 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 436   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 437   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 438 }
 439 
 440 // If could fit into free regions w/o expansion, try.
 441 // Otherwise, if can expand, do so.
 442 // Otherwise, if using ex regions might help, try with ex given back.
 443 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 444   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 445 
 446   verify_region_sets_optional();
 447 
 448   uint first = G1_NO_HRM_INDEX;
 449   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 450 
 451   if (obj_regions == 1) {
 452     // Only one region to allocate, try to use a fast path by directly allocating
 453     // from the free lists. Do not try to expand here, we will potentially do that
 454     // later.
 455     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 456     if (hr != NULL) {
 457       first = hr->hrm_index();
 458     }
 459   } else {
 460     // We can't allocate humongous regions spanning more than one region while
 461     // cleanupComplete() is running, since some of the regions we find to be
 462     // empty might not yet be added to the free list. It is not straightforward
 463     // to know in which list they are on so that we can remove them. We only
 464     // need to do this if we need to allocate more than one region to satisfy the
 465     // current humongous allocation request. If we are only allocating one region
 466     // we use the one-region region allocation code (see above), that already
 467     // potentially waits for regions from the secondary free list.
 468     wait_while_free_regions_coming();
 469     append_secondary_free_list_if_not_empty_with_lock();
 470 
 471     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 472     // are lucky enough to find some.
 473     first = _hrm.find_contiguous_only_empty(obj_regions);
 474     if (first != G1_NO_HRM_INDEX) {
 475       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 476     }
 477   }
 478 
 479   if (first == G1_NO_HRM_INDEX) {
 480     // Policy: We could not find enough regions for the humongous object in the
 481     // free list. Look through the heap to find a mix of free and uncommitted regions.
 482     // If so, try expansion.
 483     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 484     if (first != G1_NO_HRM_INDEX) {
 485       // We found something. Make sure these regions are committed, i.e. expand
 486       // the heap. Alternatively we could do a defragmentation GC.
 487       ergo_verbose1(ErgoHeapSizing,
 488                     "attempt heap expansion",
 489                     ergo_format_reason("humongous allocation request failed")
 490                     ergo_format_byte("allocation request"),
 491                     word_size * HeapWordSize);
 492 
 493       _hrm.expand_at(first, obj_regions);
 494       g1_policy()->record_new_heap_size(num_regions());
 495 
 496 #ifdef ASSERT
 497       for (uint i = first; i < first + obj_regions; ++i) {
 498         HeapRegion* hr = region_at(i);
 499         assert(hr->is_free(), "sanity");
 500         assert(hr->is_empty(), "sanity");
 501         assert(is_on_master_free_list(hr), "sanity");
 502       }
 503 #endif
 504       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 505     } else {
 506       // Policy: Potentially trigger a defragmentation GC.
 507     }
 508   }
 509 
 510   HeapWord* result = NULL;
 511   if (first != G1_NO_HRM_INDEX) {
 512     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 513                                                        word_size, context);
 514     assert(result != NULL, "it should always return a valid result");
 515 
 516     // A successful humongous object allocation changes the used space
 517     // information of the old generation so we need to recalculate the
 518     // sizes and update the jstat counters here.
 519     g1mm()->update_sizes();
 520   }
 521 
 522   verify_region_sets_optional();
 523 
 524   return result;
 525 }
 526 
 527 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 528   assert_heap_not_locked_and_not_at_safepoint();
 529   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 530 
 531   uint dummy_gc_count_before;
 532   uint dummy_gclocker_retry_count = 0;
 533   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 534 }
 535 
 536 HeapWord*
 537 G1CollectedHeap::mem_allocate(size_t word_size,
 538                               bool*  gc_overhead_limit_was_exceeded) {
 539   assert_heap_not_locked_and_not_at_safepoint();
 540 
 541   // Loop until the allocation is satisfied, or unsatisfied after GC.
 542   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 543     uint gc_count_before;
 544 
 545     HeapWord* result = NULL;
 546     if (!is_humongous(word_size)) {
 547       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 548     } else {
 549       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 550     }
 551     if (result != NULL) {
 552       return result;
 553     }
 554 
 555     // Create the garbage collection operation...
 556     VM_G1CollectForAllocation op(gc_count_before, word_size);
 557     op.set_allocation_context(AllocationContext::current());
 558 
 559     // ...and get the VM thread to execute it.
 560     VMThread::execute(&op);
 561 
 562     if (op.prologue_succeeded() && op.pause_succeeded()) {
 563       // If the operation was successful we'll return the result even
 564       // if it is NULL. If the allocation attempt failed immediately
 565       // after a Full GC, it's unlikely we'll be able to allocate now.
 566       HeapWord* result = op.result();
 567       if (result != NULL && !is_humongous(word_size)) {
 568         // Allocations that take place on VM operations do not do any
 569         // card dirtying and we have to do it here. We only have to do
 570         // this for non-humongous allocations, though.
 571         dirty_young_block(result, word_size);
 572       }
 573       return result;
 574     } else {
 575       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 576         return NULL;
 577       }
 578       assert(op.result() == NULL,
 579              "the result should be NULL if the VM op did not succeed");
 580     }
 581 
 582     // Give a warning if we seem to be looping forever.
 583     if ((QueuedAllocationWarningCount > 0) &&
 584         (try_count % QueuedAllocationWarningCount == 0)) {
 585       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 586     }
 587   }
 588 
 589   ShouldNotReachHere();
 590   return NULL;
 591 }
 592 
 593 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 594                                                    AllocationContext_t context,
 595                                                    uint* gc_count_before_ret,
 596                                                    uint* gclocker_retry_count_ret) {
 597   // Make sure you read the note in attempt_allocation_humongous().
 598 
 599   assert_heap_not_locked_and_not_at_safepoint();
 600   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 601          "be called for humongous allocation requests");
 602 
 603   // We should only get here after the first-level allocation attempt
 604   // (attempt_allocation()) failed to allocate.
 605 
 606   // We will loop until a) we manage to successfully perform the
 607   // allocation or b) we successfully schedule a collection which
 608   // fails to perform the allocation. b) is the only case when we'll
 609   // return NULL.
 610   HeapWord* result = NULL;
 611   for (int try_count = 1; /* we'll return */; try_count += 1) {
 612     bool should_try_gc;
 613     uint gc_count_before;
 614 
 615     {
 616       MutexLockerEx x(Heap_lock);
 617       result = _allocator->attempt_allocation_locked(word_size, context);
 618       if (result != NULL) {
 619         return result;
 620       }
 621 
 622       if (GC_locker::is_active_and_needs_gc()) {
 623         if (g1_policy()->can_expand_young_list()) {
 624           // No need for an ergo verbose message here,
 625           // can_expand_young_list() does this when it returns true.
 626           result = _allocator->attempt_allocation_force(word_size, context);
 627           if (result != NULL) {
 628             return result;
 629           }
 630         }
 631         should_try_gc = false;
 632       } else {
 633         // The GCLocker may not be active but the GCLocker initiated
 634         // GC may not yet have been performed (GCLocker::needs_gc()
 635         // returns true). In this case we do not try this GC and
 636         // wait until the GCLocker initiated GC is performed, and
 637         // then retry the allocation.
 638         if (GC_locker::needs_gc()) {
 639           should_try_gc = false;
 640         } else {
 641           // Read the GC count while still holding the Heap_lock.
 642           gc_count_before = total_collections();
 643           should_try_gc = true;
 644         }
 645       }
 646     }
 647 
 648     if (should_try_gc) {
 649       bool succeeded;
 650       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 651                                    GCCause::_g1_inc_collection_pause);
 652       if (result != NULL) {
 653         assert(succeeded, "only way to get back a non-NULL result");
 654         return result;
 655       }
 656 
 657       if (succeeded) {
 658         // If we get here we successfully scheduled a collection which
 659         // failed to allocate. No point in trying to allocate
 660         // further. We'll just return NULL.
 661         MutexLockerEx x(Heap_lock);
 662         *gc_count_before_ret = total_collections();
 663         return NULL;
 664       }
 665     } else {
 666       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 667         MutexLockerEx x(Heap_lock);
 668         *gc_count_before_ret = total_collections();
 669         return NULL;
 670       }
 671       // The GCLocker is either active or the GCLocker initiated
 672       // GC has not yet been performed. Stall until it is and
 673       // then retry the allocation.
 674       GC_locker::stall_until_clear();
 675       (*gclocker_retry_count_ret) += 1;
 676     }
 677 
 678     // We can reach here if we were unsuccessful in scheduling a
 679     // collection (because another thread beat us to it) or if we were
 680     // stalled due to the GC locker. In either can we should retry the
 681     // allocation attempt in case another thread successfully
 682     // performed a collection and reclaimed enough space. We do the
 683     // first attempt (without holding the Heap_lock) here and the
 684     // follow-on attempt will be at the start of the next loop
 685     // iteration (after taking the Heap_lock).
 686     result = _allocator->attempt_allocation(word_size, context);
 687     if (result != NULL) {
 688       return result;
 689     }
 690 
 691     // Give a warning if we seem to be looping forever.
 692     if ((QueuedAllocationWarningCount > 0) &&
 693         (try_count % QueuedAllocationWarningCount == 0)) {
 694       warning("G1CollectedHeap::attempt_allocation_slow() "
 695               "retries %d times", try_count);
 696     }
 697   }
 698 
 699   ShouldNotReachHere();
 700   return NULL;
 701 }
 702 
 703 void G1CollectedHeap::begin_archive_alloc_range() {
 704   assert_at_safepoint(true /* should_be_vm_thread */);
 705   if (_archive_allocator == NULL) {
 706     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 707   }
 708 }
 709 
 710 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 711   // Allocations in archive regions cannot be of a size that would be considered
 712   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 713   // may be different at archive-restore time.
 714   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 715 }
 716 
 717 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 718   assert_at_safepoint(true /* should_be_vm_thread */);
 719   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 720   if (is_archive_alloc_too_large(word_size)) {
 721     return NULL;
 722   }
 723   return _archive_allocator->archive_mem_allocate(word_size);
 724 }
 725 
 726 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 727                                               size_t end_alignment_in_bytes) {
 728   assert_at_safepoint(true /* should_be_vm_thread */);
 729   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 730 
 731   // Call complete_archive to do the real work, filling in the MemRegion
 732   // array with the archive regions.
 733   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 734   delete _archive_allocator;
 735   _archive_allocator = NULL;
 736 }
 737 
 738 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 739   assert(ranges != NULL, "MemRegion array NULL");
 740   assert(count != 0, "No MemRegions provided");
 741   MemRegion reserved = _hrm.reserved();
 742   for (size_t i = 0; i < count; i++) {
 743     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 744       return false;
 745     }
 746   }
 747   return true;
 748 }
 749 
 750 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 751   assert(!is_init_completed(), "Expect to be called at JVM init time");
 752   assert(ranges != NULL, "MemRegion array NULL");
 753   assert(count != 0, "No MemRegions provided");
 754   MutexLockerEx x(Heap_lock);
 755 
 756   MemRegion reserved = _hrm.reserved();
 757   HeapWord* prev_last_addr = NULL;
 758   HeapRegion* prev_last_region = NULL;
 759 
 760   // Temporarily disable pretouching of heap pages. This interface is used
 761   // when mmap'ing archived heap data in, so pre-touching is wasted.
 762   FlagSetting fs(AlwaysPreTouch, false);
 763 
 764   // Enable archive object checking in G1MarkSweep. We have to let it know
 765   // about each archive range, so that objects in those ranges aren't marked.
 766   G1MarkSweep::enable_archive_object_check();
 767 
 768   // For each specified MemRegion range, allocate the corresponding G1
 769   // regions and mark them as archive regions. We expect the ranges in
 770   // ascending starting address order, without overlap.
 771   for (size_t i = 0; i < count; i++) {
 772     MemRegion curr_range = ranges[i];
 773     HeapWord* start_address = curr_range.start();
 774     size_t word_size = curr_range.word_size();
 775     HeapWord* last_address = curr_range.last();
 776     size_t commits = 0;
 777 
 778     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 779               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 780               p2i(start_address), p2i(last_address));
 781     guarantee(start_address > prev_last_addr,
 782               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 783               p2i(start_address), p2i(prev_last_addr));
 784     prev_last_addr = last_address;
 785 
 786     // Check for ranges that start in the same G1 region in which the previous
 787     // range ended, and adjust the start address so we don't try to allocate
 788     // the same region again. If the current range is entirely within that
 789     // region, skip it, just adjusting the recorded top.
 790     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 791     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 792       start_address = start_region->end();
 793       if (start_address > last_address) {
 794         increase_used(word_size * HeapWordSize);
 795         start_region->set_top(last_address + 1);
 796         continue;
 797       }
 798       start_region->set_top(start_address);
 799       curr_range = MemRegion(start_address, last_address + 1);
 800       start_region = _hrm.addr_to_region(start_address);
 801     }
 802 
 803     // Perform the actual region allocation, exiting if it fails.
 804     // Then note how much new space we have allocated.
 805     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 806       return false;
 807     }
 808     increase_used(word_size * HeapWordSize);
 809     if (commits != 0) {
 810       ergo_verbose1(ErgoHeapSizing,
 811                     "attempt heap expansion",
 812                     ergo_format_reason("allocate archive regions")
 813                     ergo_format_byte("total size"),
 814                     HeapRegion::GrainWords * HeapWordSize * commits);
 815     }
 816 
 817     // Mark each G1 region touched by the range as archive, add it to the old set,
 818     // and set the allocation context and top.
 819     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 820     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 821     prev_last_region = last_region;
 822 
 823     while (curr_region != NULL) {
 824       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 825              "Region already in use (index %u)", curr_region->hrm_index());
 826       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 827       curr_region->set_allocation_context(AllocationContext::system());
 828       curr_region->set_archive();
 829       _old_set.add(curr_region);
 830       if (curr_region != last_region) {
 831         curr_region->set_top(curr_region->end());
 832         curr_region = _hrm.next_region_in_heap(curr_region);
 833       } else {
 834         curr_region->set_top(last_address + 1);
 835         curr_region = NULL;
 836       }
 837     }
 838 
 839     // Notify mark-sweep of the archive range.
 840     G1MarkSweep::set_range_archive(curr_range, true);
 841   }
 842   return true;
 843 }
 844 
 845 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 846   assert(!is_init_completed(), "Expect to be called at JVM init time");
 847   assert(ranges != NULL, "MemRegion array NULL");
 848   assert(count != 0, "No MemRegions provided");
 849   MemRegion reserved = _hrm.reserved();
 850   HeapWord *prev_last_addr = NULL;
 851   HeapRegion* prev_last_region = NULL;
 852 
 853   // For each MemRegion, create filler objects, if needed, in the G1 regions
 854   // that contain the address range. The address range actually within the
 855   // MemRegion will not be modified. That is assumed to have been initialized
 856   // elsewhere, probably via an mmap of archived heap data.
 857   MutexLockerEx x(Heap_lock);
 858   for (size_t i = 0; i < count; i++) {
 859     HeapWord* start_address = ranges[i].start();
 860     HeapWord* last_address = ranges[i].last();
 861 
 862     assert(reserved.contains(start_address) && reserved.contains(last_address),
 863            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 864            p2i(start_address), p2i(last_address));
 865     assert(start_address > prev_last_addr,
 866            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 867            p2i(start_address), p2i(prev_last_addr));
 868 
 869     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 870     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 871     HeapWord* bottom_address = start_region->bottom();
 872 
 873     // Check for a range beginning in the same region in which the
 874     // previous one ended.
 875     if (start_region == prev_last_region) {
 876       bottom_address = prev_last_addr + 1;
 877     }
 878 
 879     // Verify that the regions were all marked as archive regions by
 880     // alloc_archive_regions.
 881     HeapRegion* curr_region = start_region;
 882     while (curr_region != NULL) {
 883       guarantee(curr_region->is_archive(),
 884                 "Expected archive region at index %u", curr_region->hrm_index());
 885       if (curr_region != last_region) {
 886         curr_region = _hrm.next_region_in_heap(curr_region);
 887       } else {
 888         curr_region = NULL;
 889       }
 890     }
 891 
 892     prev_last_addr = last_address;
 893     prev_last_region = last_region;
 894 
 895     // Fill the memory below the allocated range with dummy object(s),
 896     // if the region bottom does not match the range start, or if the previous
 897     // range ended within the same G1 region, and there is a gap.
 898     if (start_address != bottom_address) {
 899       size_t fill_size = pointer_delta(start_address, bottom_address);
 900       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 901       increase_used(fill_size * HeapWordSize);
 902     }
 903   }
 904 }
 905 
 906 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 907                                                      uint* gc_count_before_ret,
 908                                                      uint* gclocker_retry_count_ret) {
 909   assert_heap_not_locked_and_not_at_safepoint();
 910   assert(!is_humongous(word_size), "attempt_allocation() should not "
 911          "be called for humongous allocation requests");
 912 
 913   AllocationContext_t context = AllocationContext::current();
 914   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 915 
 916   if (result == NULL) {
 917     result = attempt_allocation_slow(word_size,
 918                                      context,
 919                                      gc_count_before_ret,
 920                                      gclocker_retry_count_ret);
 921   }
 922   assert_heap_not_locked();
 923   if (result != NULL) {
 924     dirty_young_block(result, word_size);
 925   }
 926   return result;
 927 }
 928 
 929 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 930   assert(!is_init_completed(), "Expect to be called at JVM init time");
 931   assert(ranges != NULL, "MemRegion array NULL");
 932   assert(count != 0, "No MemRegions provided");
 933   MemRegion reserved = _hrm.reserved();
 934   HeapWord* prev_last_addr = NULL;
 935   HeapRegion* prev_last_region = NULL;
 936   size_t size_used = 0;
 937   size_t uncommitted_regions = 0;
 938 
 939   // For each Memregion, free the G1 regions that constitute it, and
 940   // notify mark-sweep that the range is no longer to be considered 'archive.'
 941   MutexLockerEx x(Heap_lock);
 942   for (size_t i = 0; i < count; i++) {
 943     HeapWord* start_address = ranges[i].start();
 944     HeapWord* last_address = ranges[i].last();
 945 
 946     assert(reserved.contains(start_address) && reserved.contains(last_address),
 947            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 948            p2i(start_address), p2i(last_address));
 949     assert(start_address > prev_last_addr,
 950            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 951            p2i(start_address), p2i(prev_last_addr));
 952     size_used += ranges[i].byte_size();
 953     prev_last_addr = last_address;
 954 
 955     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 956     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 957 
 958     // Check for ranges that start in the same G1 region in which the previous
 959     // range ended, and adjust the start address so we don't try to free
 960     // the same region again. If the current range is entirely within that
 961     // region, skip it.
 962     if (start_region == prev_last_region) {
 963       start_address = start_region->end();
 964       if (start_address > last_address) {
 965         continue;
 966       }
 967       start_region = _hrm.addr_to_region(start_address);
 968     }
 969     prev_last_region = last_region;
 970 
 971     // After verifying that each region was marked as an archive region by
 972     // alloc_archive_regions, set it free and empty and uncommit it.
 973     HeapRegion* curr_region = start_region;
 974     while (curr_region != NULL) {
 975       guarantee(curr_region->is_archive(),
 976                 "Expected archive region at index %u", curr_region->hrm_index());
 977       uint curr_index = curr_region->hrm_index();
 978       _old_set.remove(curr_region);
 979       curr_region->set_free();
 980       curr_region->set_top(curr_region->bottom());
 981       if (curr_region != last_region) {
 982         curr_region = _hrm.next_region_in_heap(curr_region);
 983       } else {
 984         curr_region = NULL;
 985       }
 986       _hrm.shrink_at(curr_index, 1);
 987       uncommitted_regions++;
 988     }
 989 
 990     // Notify mark-sweep that this is no longer an archive range.
 991     G1MarkSweep::set_range_archive(ranges[i], false);
 992   }
 993 
 994   if (uncommitted_regions != 0) {
 995     ergo_verbose1(ErgoHeapSizing,
 996                   "attempt heap shrinking",
 997                   ergo_format_reason("uncommitted archive regions")
 998                   ergo_format_byte("total size"),
 999                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
1000   }
1001   decrease_used(size_used);
1002 }
1003 
1004 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1005                                                         uint* gc_count_before_ret,
1006                                                         uint* gclocker_retry_count_ret) {
1007   // The structure of this method has a lot of similarities to
1008   // attempt_allocation_slow(). The reason these two were not merged
1009   // into a single one is that such a method would require several "if
1010   // allocation is not humongous do this, otherwise do that"
1011   // conditional paths which would obscure its flow. In fact, an early
1012   // version of this code did use a unified method which was harder to
1013   // follow and, as a result, it had subtle bugs that were hard to
1014   // track down. So keeping these two methods separate allows each to
1015   // be more readable. It will be good to keep these two in sync as
1016   // much as possible.
1017 
1018   assert_heap_not_locked_and_not_at_safepoint();
1019   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1020          "should only be called for humongous allocations");
1021 
1022   // Humongous objects can exhaust the heap quickly, so we should check if we
1023   // need to start a marking cycle at each humongous object allocation. We do
1024   // the check before we do the actual allocation. The reason for doing it
1025   // before the allocation is that we avoid having to keep track of the newly
1026   // allocated memory while we do a GC.
1027   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1028                                            word_size)) {
1029     collect(GCCause::_g1_humongous_allocation);
1030   }
1031 
1032   // We will loop until a) we manage to successfully perform the
1033   // allocation or b) we successfully schedule a collection which
1034   // fails to perform the allocation. b) is the only case when we'll
1035   // return NULL.
1036   HeapWord* result = NULL;
1037   for (int try_count = 1; /* we'll return */; try_count += 1) {
1038     bool should_try_gc;
1039     uint gc_count_before;
1040 
1041     {
1042       MutexLockerEx x(Heap_lock);
1043 
1044       // Given that humongous objects are not allocated in young
1045       // regions, we'll first try to do the allocation without doing a
1046       // collection hoping that there's enough space in the heap.
1047       result = humongous_obj_allocate(word_size, AllocationContext::current());
1048       if (result != NULL) {
1049         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
1050         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
1051         return result;
1052       }
1053 
1054       if (GC_locker::is_active_and_needs_gc()) {
1055         should_try_gc = false;
1056       } else {
1057          // The GCLocker may not be active but the GCLocker initiated
1058         // GC may not yet have been performed (GCLocker::needs_gc()
1059         // returns true). In this case we do not try this GC and
1060         // wait until the GCLocker initiated GC is performed, and
1061         // then retry the allocation.
1062         if (GC_locker::needs_gc()) {
1063           should_try_gc = false;
1064         } else {
1065           // Read the GC count while still holding the Heap_lock.
1066           gc_count_before = total_collections();
1067           should_try_gc = true;
1068         }
1069       }
1070     }
1071 
1072     if (should_try_gc) {
1073       // If we failed to allocate the humongous object, we should try to
1074       // do a collection pause (if we're allowed) in case it reclaims
1075       // enough space for the allocation to succeed after the pause.
1076 
1077       bool succeeded;
1078       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1079                                    GCCause::_g1_humongous_allocation);
1080       if (result != NULL) {
1081         assert(succeeded, "only way to get back a non-NULL result");
1082         return result;
1083       }
1084 
1085       if (succeeded) {
1086         // If we get here we successfully scheduled a collection which
1087         // failed to allocate. No point in trying to allocate
1088         // further. We'll just return NULL.
1089         MutexLockerEx x(Heap_lock);
1090         *gc_count_before_ret = total_collections();
1091         return NULL;
1092       }
1093     } else {
1094       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1095         MutexLockerEx x(Heap_lock);
1096         *gc_count_before_ret = total_collections();
1097         return NULL;
1098       }
1099       // The GCLocker is either active or the GCLocker initiated
1100       // GC has not yet been performed. Stall until it is and
1101       // then retry the allocation.
1102       GC_locker::stall_until_clear();
1103       (*gclocker_retry_count_ret) += 1;
1104     }
1105 
1106     // We can reach here if we were unsuccessful in scheduling a
1107     // collection (because another thread beat us to it) or if we were
1108     // stalled due to the GC locker. In either can we should retry the
1109     // allocation attempt in case another thread successfully
1110     // performed a collection and reclaimed enough space.  Give a
1111     // warning if we seem to be looping forever.
1112 
1113     if ((QueuedAllocationWarningCount > 0) &&
1114         (try_count % QueuedAllocationWarningCount == 0)) {
1115       warning("G1CollectedHeap::attempt_allocation_humongous() "
1116               "retries %d times", try_count);
1117     }
1118   }
1119 
1120   ShouldNotReachHere();
1121   return NULL;
1122 }
1123 
1124 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1125                                                            AllocationContext_t context,
1126                                                            bool expect_null_mutator_alloc_region) {
1127   assert_at_safepoint(true /* should_be_vm_thread */);
1128   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1129          "the current alloc region was unexpectedly found to be non-NULL");
1130 
1131   if (!is_humongous(word_size)) {
1132     return _allocator->attempt_allocation_locked(word_size, context);
1133   } else {
1134     HeapWord* result = humongous_obj_allocate(word_size, context);
1135     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1136       collector_state()->set_initiate_conc_mark_if_possible(true);
1137     }
1138     return result;
1139   }
1140 
1141   ShouldNotReachHere();
1142 }
1143 
1144 class PostMCRemSetClearClosure: public HeapRegionClosure {
1145   G1CollectedHeap* _g1h;
1146   ModRefBarrierSet* _mr_bs;
1147 public:
1148   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1149     _g1h(g1h), _mr_bs(mr_bs) {}
1150 
1151   bool doHeapRegion(HeapRegion* r) {
1152     HeapRegionRemSet* hrrs = r->rem_set();
1153 
1154     _g1h->reset_gc_time_stamps(r);
1155 
1156     if (r->is_continues_humongous()) {
1157       // We'll assert that the strong code root list and RSet is empty
1158       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1159       assert(hrrs->occupied() == 0, "RSet should be empty");
1160     } else {
1161       hrrs->clear();
1162     }
1163     // You might think here that we could clear just the cards
1164     // corresponding to the used region.  But no: if we leave a dirty card
1165     // in a region we might allocate into, then it would prevent that card
1166     // from being enqueued, and cause it to be missed.
1167     // Re: the performance cost: we shouldn't be doing full GC anyway!
1168     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1169 
1170     return false;
1171   }
1172 };
1173 
1174 void G1CollectedHeap::clear_rsets_post_compaction() {
1175   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1176   heap_region_iterate(&rs_clear);
1177 }
1178 
1179 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1180   G1CollectedHeap*   _g1h;
1181   UpdateRSOopClosure _cl;
1182 public:
1183   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1184     _cl(g1->g1_rem_set(), worker_i),
1185     _g1h(g1)
1186   { }
1187 
1188   bool doHeapRegion(HeapRegion* r) {
1189     if (!r->is_continues_humongous()) {
1190       _cl.set_from(r);
1191       r->oop_iterate(&_cl);
1192     }
1193     return false;
1194   }
1195 };
1196 
1197 class ParRebuildRSTask: public AbstractGangTask {
1198   G1CollectedHeap* _g1;
1199   HeapRegionClaimer _hrclaimer;
1200 
1201 public:
1202   ParRebuildRSTask(G1CollectedHeap* g1) :
1203       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1204 
1205   void work(uint worker_id) {
1206     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1207     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1208   }
1209 };
1210 
1211 class PostCompactionPrinterClosure: public HeapRegionClosure {
1212 private:
1213   G1HRPrinter* _hr_printer;
1214 public:
1215   bool doHeapRegion(HeapRegion* hr) {
1216     assert(!hr->is_young(), "not expecting to find young regions");
1217     if (hr->is_free()) {
1218       // We only generate output for non-empty regions.
1219     } else if (hr->is_starts_humongous()) {
1220       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1221     } else if (hr->is_continues_humongous()) {
1222       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1223     } else if (hr->is_archive()) {
1224       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1225     } else if (hr->is_old()) {
1226       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1227     } else {
1228       ShouldNotReachHere();
1229     }
1230     return false;
1231   }
1232 
1233   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1234     : _hr_printer(hr_printer) { }
1235 };
1236 
1237 void G1CollectedHeap::print_hrm_post_compaction() {
1238   PostCompactionPrinterClosure cl(hr_printer());
1239   heap_region_iterate(&cl);
1240 }
1241 
1242 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1243                                          bool clear_all_soft_refs) {
1244   assert_at_safepoint(true /* should_be_vm_thread */);
1245 
1246   if (GC_locker::check_active_before_gc()) {
1247     return false;
1248   }
1249 
1250   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1251   gc_timer->register_gc_start();
1252 
1253   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1254   GCIdMark gc_id_mark;
1255   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1256 
1257   SvcGCMarker sgcm(SvcGCMarker::FULL);
1258   ResourceMark rm;
1259 
1260   G1Log::update_level();
1261   print_heap_before_gc();
1262   trace_heap_before_gc(gc_tracer);
1263 
1264   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1265 
1266   verify_region_sets_optional();
1267 
1268   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1269                            collector_policy()->should_clear_all_soft_refs();
1270 
1271   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1272 
1273   {
1274     IsGCActiveMark x;
1275 
1276     // Timing
1277     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1278     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1279 
1280     {
1281       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1282       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1283       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1284 
1285       g1_policy()->record_full_collection_start();
1286 
1287       // Note: When we have a more flexible GC logging framework that
1288       // allows us to add optional attributes to a GC log record we
1289       // could consider timing and reporting how long we wait in the
1290       // following two methods.
1291       wait_while_free_regions_coming();
1292       // If we start the compaction before the CM threads finish
1293       // scanning the root regions we might trip them over as we'll
1294       // be moving objects / updating references. So let's wait until
1295       // they are done. By telling them to abort, they should complete
1296       // early.
1297       _cm->root_regions()->abort();
1298       _cm->root_regions()->wait_until_scan_finished();
1299       append_secondary_free_list_if_not_empty_with_lock();
1300 
1301       gc_prologue(true);
1302       increment_total_collections(true /* full gc */);
1303       increment_old_marking_cycles_started();
1304 
1305       assert(used() == recalculate_used(), "Should be equal");
1306 
1307       verify_before_gc();
1308 
1309       check_bitmaps("Full GC Start");
1310       pre_full_gc_dump(gc_timer);
1311 
1312 #if defined(COMPILER2) || INCLUDE_JVMCI
1313       DerivedPointerTable::clear();
1314 #endif
1315 
1316       // Disable discovery and empty the discovered lists
1317       // for the CM ref processor.
1318       ref_processor_cm()->disable_discovery();
1319       ref_processor_cm()->abandon_partial_discovery();
1320       ref_processor_cm()->verify_no_references_recorded();
1321 
1322       // Abandon current iterations of concurrent marking and concurrent
1323       // refinement, if any are in progress. We have to do this before
1324       // wait_until_scan_finished() below.
1325       concurrent_mark()->abort();
1326 
1327       // Make sure we'll choose a new allocation region afterwards.
1328       _allocator->release_mutator_alloc_region();
1329       _allocator->abandon_gc_alloc_regions();
1330       g1_rem_set()->cleanupHRRS();
1331 
1332       // We should call this after we retire any currently active alloc
1333       // regions so that all the ALLOC / RETIRE events are generated
1334       // before the start GC event.
1335       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1336 
1337       // We may have added regions to the current incremental collection
1338       // set between the last GC or pause and now. We need to clear the
1339       // incremental collection set and then start rebuilding it afresh
1340       // after this full GC.
1341       abandon_collection_set(g1_policy()->inc_cset_head());
1342       g1_policy()->clear_incremental_cset();
1343       g1_policy()->stop_incremental_cset_building();
1344 
1345       tear_down_region_sets(false /* free_list_only */);
1346       collector_state()->set_gcs_are_young(true);
1347 
1348       // See the comments in g1CollectedHeap.hpp and
1349       // G1CollectedHeap::ref_processing_init() about
1350       // how reference processing currently works in G1.
1351 
1352       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1353       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1354 
1355       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1356       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1357 
1358       ref_processor_stw()->enable_discovery();
1359       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1360 
1361       // Do collection work
1362       {
1363         HandleMark hm;  // Discard invalid handles created during gc
1364         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1365       }
1366 
1367       assert(num_free_regions() == 0, "we should not have added any free regions");
1368       rebuild_region_sets(false /* free_list_only */);
1369 
1370       // Enqueue any discovered reference objects that have
1371       // not been removed from the discovered lists.
1372       ref_processor_stw()->enqueue_discovered_references();
1373 
1374 #if defined(COMPILER2) || INCLUDE_JVMCI
1375       DerivedPointerTable::update_pointers();
1376 #endif
1377 
1378       MemoryService::track_memory_usage();
1379 
1380       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1381       ref_processor_stw()->verify_no_references_recorded();
1382 
1383       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1384       ClassLoaderDataGraph::purge();
1385       MetaspaceAux::verify_metrics();
1386 
1387       // Note: since we've just done a full GC, concurrent
1388       // marking is no longer active. Therefore we need not
1389       // re-enable reference discovery for the CM ref processor.
1390       // That will be done at the start of the next marking cycle.
1391       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1392       ref_processor_cm()->verify_no_references_recorded();
1393 
1394       reset_gc_time_stamp();
1395       // Since everything potentially moved, we will clear all remembered
1396       // sets, and clear all cards.  Later we will rebuild remembered
1397       // sets. We will also reset the GC time stamps of the regions.
1398       clear_rsets_post_compaction();
1399       check_gc_time_stamps();
1400 
1401       resize_if_necessary_after_full_collection();
1402 
1403       if (_hr_printer.is_active()) {
1404         // We should do this after we potentially resize the heap so
1405         // that all the COMMIT / UNCOMMIT events are generated before
1406         // the end GC event.
1407 
1408         print_hrm_post_compaction();
1409         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1410       }
1411 
1412       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1413       if (hot_card_cache->use_cache()) {
1414         hot_card_cache->reset_card_counts();
1415         hot_card_cache->reset_hot_cache();
1416       }
1417 
1418       // Rebuild remembered sets of all regions.
1419       uint n_workers =
1420         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1421                                                 workers()->active_workers(),
1422                                                 Threads::number_of_non_daemon_threads());
1423       workers()->set_active_workers(n_workers);
1424 
1425       ParRebuildRSTask rebuild_rs_task(this);
1426       workers()->run_task(&rebuild_rs_task);
1427 
1428       // Rebuild the strong code root lists for each region
1429       rebuild_strong_code_roots();
1430 
1431       if (true) { // FIXME
1432         MetaspaceGC::compute_new_size();
1433       }
1434 
1435 #ifdef TRACESPINNING
1436       ParallelTaskTerminator::print_termination_counts();
1437 #endif
1438 
1439       // Discard all rset updates
1440       JavaThread::dirty_card_queue_set().abandon_logs();
1441       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1442 
1443       _young_list->reset_sampled_info();
1444       // At this point there should be no regions in the
1445       // entire heap tagged as young.
1446       assert(check_young_list_empty(true /* check_heap */),
1447              "young list should be empty at this point");
1448 
1449       // Update the number of full collections that have been completed.
1450       increment_old_marking_cycles_completed(false /* concurrent */);
1451 
1452       _hrm.verify_optional();
1453       verify_region_sets_optional();
1454 
1455       verify_after_gc();
1456 
1457       // Clear the previous marking bitmap, if needed for bitmap verification.
1458       // Note we cannot do this when we clear the next marking bitmap in
1459       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1460       // objects marked during a full GC against the previous bitmap.
1461       // But we need to clear it before calling check_bitmaps below since
1462       // the full GC has compacted objects and updated TAMS but not updated
1463       // the prev bitmap.
1464       if (G1VerifyBitmaps) {
1465         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1466       }
1467       check_bitmaps("Full GC End");
1468 
1469       // Start a new incremental collection set for the next pause
1470       assert(g1_policy()->collection_set() == NULL, "must be");
1471       g1_policy()->start_incremental_cset_building();
1472 
1473       clear_cset_fast_test();
1474 
1475       _allocator->init_mutator_alloc_region();
1476 
1477       g1_policy()->record_full_collection_end();
1478 
1479       if (G1Log::fine()) {
1480         g1_policy()->print_heap_transition();
1481       }
1482 
1483       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1484       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1485       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1486       // before any GC notifications are raised.
1487       g1mm()->update_sizes();
1488 
1489       gc_epilogue(true);
1490     }
1491 
1492     if (G1Log::finer()) {
1493       g1_policy()->print_detailed_heap_transition(true /* full */);
1494     }
1495 
1496     print_heap_after_gc();
1497     trace_heap_after_gc(gc_tracer);
1498 
1499     post_full_gc_dump(gc_timer);
1500 
1501     gc_timer->register_gc_end();
1502     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1503   }
1504 
1505   return true;
1506 }
1507 
1508 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1509   // Currently, there is no facility in the do_full_collection(bool) API to notify
1510   // the caller that the collection did not succeed (e.g., because it was locked
1511   // out by the GC locker). So, right now, we'll ignore the return value.
1512   bool dummy = do_full_collection(true,                /* explicit_gc */
1513                                   clear_all_soft_refs);
1514 }
1515 
1516 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1517   // Include bytes that will be pre-allocated to support collections, as "used".
1518   const size_t used_after_gc = used();
1519   const size_t capacity_after_gc = capacity();
1520   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1521 
1522   // This is enforced in arguments.cpp.
1523   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1524          "otherwise the code below doesn't make sense");
1525 
1526   // We don't have floating point command-line arguments
1527   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1528   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1529   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1530   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1531 
1532   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1533   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1534 
1535   // We have to be careful here as these two calculations can overflow
1536   // 32-bit size_t's.
1537   double used_after_gc_d = (double) used_after_gc;
1538   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1539   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1540 
1541   // Let's make sure that they are both under the max heap size, which
1542   // by default will make them fit into a size_t.
1543   double desired_capacity_upper_bound = (double) max_heap_size;
1544   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1545                                     desired_capacity_upper_bound);
1546   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1547                                     desired_capacity_upper_bound);
1548 
1549   // We can now safely turn them into size_t's.
1550   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1551   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1552 
1553   // This assert only makes sense here, before we adjust them
1554   // with respect to the min and max heap size.
1555   assert(minimum_desired_capacity <= maximum_desired_capacity,
1556          "minimum_desired_capacity = " SIZE_FORMAT ", "
1557          "maximum_desired_capacity = " SIZE_FORMAT,
1558          minimum_desired_capacity, maximum_desired_capacity);
1559 
1560   // Should not be greater than the heap max size. No need to adjust
1561   // it with respect to the heap min size as it's a lower bound (i.e.,
1562   // we'll try to make the capacity larger than it, not smaller).
1563   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1564   // Should not be less than the heap min size. No need to adjust it
1565   // with respect to the heap max size as it's an upper bound (i.e.,
1566   // we'll try to make the capacity smaller than it, not greater).
1567   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1568 
1569   if (capacity_after_gc < minimum_desired_capacity) {
1570     // Don't expand unless it's significant
1571     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1572     ergo_verbose4(ErgoHeapSizing,
1573                   "attempt heap expansion",
1574                   ergo_format_reason("capacity lower than "
1575                                      "min desired capacity after Full GC")
1576                   ergo_format_byte("capacity")
1577                   ergo_format_byte("occupancy")
1578                   ergo_format_byte_perc("min desired capacity"),
1579                   capacity_after_gc, used_after_gc,
1580                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1581     expand(expand_bytes);
1582 
1583     // No expansion, now see if we want to shrink
1584   } else if (capacity_after_gc > maximum_desired_capacity) {
1585     // Capacity too large, compute shrinking size
1586     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1587     ergo_verbose4(ErgoHeapSizing,
1588                   "attempt heap shrinking",
1589                   ergo_format_reason("capacity higher than "
1590                                      "max desired capacity after Full GC")
1591                   ergo_format_byte("capacity")
1592                   ergo_format_byte("occupancy")
1593                   ergo_format_byte_perc("max desired capacity"),
1594                   capacity_after_gc, used_after_gc,
1595                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1596     shrink(shrink_bytes);
1597   }
1598 }
1599 
1600 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1601                                                             AllocationContext_t context,
1602                                                             bool do_gc,
1603                                                             bool clear_all_soft_refs,
1604                                                             bool expect_null_mutator_alloc_region,
1605                                                             bool* gc_succeeded) {
1606   *gc_succeeded = true;
1607   // Let's attempt the allocation first.
1608   HeapWord* result =
1609     attempt_allocation_at_safepoint(word_size,
1610                                     context,
1611                                     expect_null_mutator_alloc_region);
1612   if (result != NULL) {
1613     assert(*gc_succeeded, "sanity");
1614     return result;
1615   }
1616 
1617   // In a G1 heap, we're supposed to keep allocation from failing by
1618   // incremental pauses.  Therefore, at least for now, we'll favor
1619   // expansion over collection.  (This might change in the future if we can
1620   // do something smarter than full collection to satisfy a failed alloc.)
1621   result = expand_and_allocate(word_size, context);
1622   if (result != NULL) {
1623     assert(*gc_succeeded, "sanity");
1624     return result;
1625   }
1626 
1627   if (do_gc) {
1628     // Expansion didn't work, we'll try to do a Full GC.
1629     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1630                                        clear_all_soft_refs);
1631   }
1632 
1633   return NULL;
1634 }
1635 
1636 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1637                                                      AllocationContext_t context,
1638                                                      bool* succeeded) {
1639   assert_at_safepoint(true /* should_be_vm_thread */);
1640 
1641   // Attempts to allocate followed by Full GC.
1642   HeapWord* result =
1643     satisfy_failed_allocation_helper(word_size,
1644                                      context,
1645                                      true,  /* do_gc */
1646                                      false, /* clear_all_soft_refs */
1647                                      false, /* expect_null_mutator_alloc_region */
1648                                      succeeded);
1649 
1650   if (result != NULL || !*succeeded) {
1651     return result;
1652   }
1653 
1654   // Attempts to allocate followed by Full GC that will collect all soft references.
1655   result = satisfy_failed_allocation_helper(word_size,
1656                                             context,
1657                                             true, /* do_gc */
1658                                             true, /* clear_all_soft_refs */
1659                                             true, /* expect_null_mutator_alloc_region */
1660                                             succeeded);
1661 
1662   if (result != NULL || !*succeeded) {
1663     return result;
1664   }
1665 
1666   // Attempts to allocate, no GC
1667   result = satisfy_failed_allocation_helper(word_size,
1668                                             context,
1669                                             false, /* do_gc */
1670                                             false, /* clear_all_soft_refs */
1671                                             true,  /* expect_null_mutator_alloc_region */
1672                                             succeeded);
1673 
1674   if (result != NULL) {
1675     assert(*succeeded, "sanity");
1676     return result;
1677   }
1678 
1679   assert(!collector_policy()->should_clear_all_soft_refs(),
1680          "Flag should have been handled and cleared prior to this point");
1681 
1682   // What else?  We might try synchronous finalization later.  If the total
1683   // space available is large enough for the allocation, then a more
1684   // complete compaction phase than we've tried so far might be
1685   // appropriate.
1686   assert(*succeeded, "sanity");
1687   return NULL;
1688 }
1689 
1690 // Attempting to expand the heap sufficiently
1691 // to support an allocation of the given "word_size".  If
1692 // successful, perform the allocation and return the address of the
1693 // allocated block, or else "NULL".
1694 
1695 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1696   assert_at_safepoint(true /* should_be_vm_thread */);
1697 
1698   verify_region_sets_optional();
1699 
1700   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1701   ergo_verbose1(ErgoHeapSizing,
1702                 "attempt heap expansion",
1703                 ergo_format_reason("allocation request failed")
1704                 ergo_format_byte("allocation request"),
1705                 word_size * HeapWordSize);
1706   if (expand(expand_bytes)) {
1707     _hrm.verify_optional();
1708     verify_region_sets_optional();
1709     return attempt_allocation_at_safepoint(word_size,
1710                                            context,
1711                                            false /* expect_null_mutator_alloc_region */);
1712   }
1713   return NULL;
1714 }
1715 
1716 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1717   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1718   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1719                                        HeapRegion::GrainBytes);
1720   ergo_verbose2(ErgoHeapSizing,
1721                 "expand the heap",
1722                 ergo_format_byte("requested expansion amount")
1723                 ergo_format_byte("attempted expansion amount"),
1724                 expand_bytes, aligned_expand_bytes);
1725 
1726   if (is_maximal_no_gc()) {
1727     ergo_verbose0(ErgoHeapSizing,
1728                       "did not expand the heap",
1729                       ergo_format_reason("heap already fully expanded"));
1730     return false;
1731   }
1732 
1733   double expand_heap_start_time_sec = os::elapsedTime();
1734   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1735   assert(regions_to_expand > 0, "Must expand by at least one region");
1736 
1737   uint expanded_by = _hrm.expand_by(regions_to_expand);
1738   if (expand_time_ms != NULL) {
1739     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1740   }
1741 
1742   if (expanded_by > 0) {
1743     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1744     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1745     g1_policy()->record_new_heap_size(num_regions());
1746   } else {
1747     ergo_verbose0(ErgoHeapSizing,
1748                   "did not expand the heap",
1749                   ergo_format_reason("heap expansion operation failed"));
1750     // The expansion of the virtual storage space was unsuccessful.
1751     // Let's see if it was because we ran out of swap.
1752     if (G1ExitOnExpansionFailure &&
1753         _hrm.available() >= regions_to_expand) {
1754       // We had head room...
1755       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1756     }
1757   }
1758   return regions_to_expand > 0;
1759 }
1760 
1761 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1762   size_t aligned_shrink_bytes =
1763     ReservedSpace::page_align_size_down(shrink_bytes);
1764   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1765                                          HeapRegion::GrainBytes);
1766   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1767 
1768   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1769   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1770 
1771   ergo_verbose3(ErgoHeapSizing,
1772                 "shrink the heap",
1773                 ergo_format_byte("requested shrinking amount")
1774                 ergo_format_byte("aligned shrinking amount")
1775                 ergo_format_byte("attempted shrinking amount"),
1776                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1777   if (num_regions_removed > 0) {
1778     g1_policy()->record_new_heap_size(num_regions());
1779   } else {
1780     ergo_verbose0(ErgoHeapSizing,
1781                   "did not shrink the heap",
1782                   ergo_format_reason("heap shrinking operation failed"));
1783   }
1784 }
1785 
1786 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1787   verify_region_sets_optional();
1788 
1789   // We should only reach here at the end of a Full GC which means we
1790   // should not not be holding to any GC alloc regions. The method
1791   // below will make sure of that and do any remaining clean up.
1792   _allocator->abandon_gc_alloc_regions();
1793 
1794   // Instead of tearing down / rebuilding the free lists here, we
1795   // could instead use the remove_all_pending() method on free_list to
1796   // remove only the ones that we need to remove.
1797   tear_down_region_sets(true /* free_list_only */);
1798   shrink_helper(shrink_bytes);
1799   rebuild_region_sets(true /* free_list_only */);
1800 
1801   _hrm.verify_optional();
1802   verify_region_sets_optional();
1803 }
1804 
1805 // Public methods.
1806 
1807 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1808   CollectedHeap(),
1809   _g1_policy(policy_),
1810   _dirty_card_queue_set(false),
1811   _is_alive_closure_cm(this),
1812   _is_alive_closure_stw(this),
1813   _ref_processor_cm(NULL),
1814   _ref_processor_stw(NULL),
1815   _bot_shared(NULL),
1816   _cg1r(NULL),
1817   _g1mm(NULL),
1818   _refine_cte_cl(NULL),
1819   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1820   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1821   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1822   _humongous_reclaim_candidates(),
1823   _has_humongous_reclaim_candidates(false),
1824   _archive_allocator(NULL),
1825   _free_regions_coming(false),
1826   _young_list(new YoungList(this)),
1827   _gc_time_stamp(0),
1828   _summary_bytes_used(0),
1829   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1830   _old_evac_stats(OldPLABSize, PLABWeight),
1831   _expand_heap_after_alloc_failure(true),
1832   _old_marking_cycles_started(0),
1833   _old_marking_cycles_completed(0),
1834   _heap_summary_sent(false),
1835   _in_cset_fast_test(),
1836   _dirty_cards_region_list(NULL),
1837   _worker_cset_start_region(NULL),
1838   _worker_cset_start_region_time_stamp(NULL),
1839   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1840   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1841   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1842   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1843 
1844   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1845                           /* are_GC_task_threads */true,
1846                           /* are_ConcurrentGC_threads */false);
1847   _workers->initialize_workers();
1848 
1849   _allocator = G1Allocator::create_allocator(this);
1850   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1851 
1852   // Override the default _filler_array_max_size so that no humongous filler
1853   // objects are created.
1854   _filler_array_max_size = _humongous_object_threshold_in_words;
1855 
1856   uint n_queues = ParallelGCThreads;
1857   _task_queues = new RefToScanQueueSet(n_queues);
1858 
1859   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1860   assert(n_rem_sets > 0, "Invariant.");
1861 
1862   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1863   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1864   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1865 
1866   for (uint i = 0; i < n_queues; i++) {
1867     RefToScanQueue* q = new RefToScanQueue();
1868     q->initialize();
1869     _task_queues->register_queue(i, q);
1870     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1871   }
1872   clear_cset_start_regions();
1873 
1874   // Initialize the G1EvacuationFailureALot counters and flags.
1875   NOT_PRODUCT(reset_evacuation_should_fail();)
1876 
1877   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1878 }
1879 
1880 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1881                                                                  size_t size,
1882                                                                  size_t translation_factor) {
1883   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1884   // Allocate a new reserved space, preferring to use large pages.
1885   ReservedSpace rs(size, preferred_page_size);
1886   G1RegionToSpaceMapper* result  =
1887     G1RegionToSpaceMapper::create_mapper(rs,
1888                                          size,
1889                                          rs.alignment(),
1890                                          HeapRegion::GrainBytes,
1891                                          translation_factor,
1892                                          mtGC);
1893   if (TracePageSizes) {
1894     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1895                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1896   }
1897   return result;
1898 }
1899 
1900 jint G1CollectedHeap::initialize() {
1901   CollectedHeap::pre_initialize();
1902   os::enable_vtime();
1903 
1904   G1Log::init();
1905 
1906   // Necessary to satisfy locking discipline assertions.
1907 
1908   MutexLocker x(Heap_lock);
1909 
1910   // We have to initialize the printer before committing the heap, as
1911   // it will be used then.
1912   _hr_printer.set_active(G1PrintHeapRegions);
1913 
1914   // While there are no constraints in the GC code that HeapWordSize
1915   // be any particular value, there are multiple other areas in the
1916   // system which believe this to be true (e.g. oop->object_size in some
1917   // cases incorrectly returns the size in wordSize units rather than
1918   // HeapWordSize).
1919   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1920 
1921   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1922   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1923   size_t heap_alignment = collector_policy()->heap_alignment();
1924 
1925   // Ensure that the sizes are properly aligned.
1926   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1927   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1928   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1929 
1930   _refine_cte_cl = new RefineCardTableEntryClosure();
1931 
1932   jint ecode = JNI_OK;
1933   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1934   if (_cg1r == NULL) {
1935     return ecode;
1936   }
1937 
1938   // Reserve the maximum.
1939 
1940   // When compressed oops are enabled, the preferred heap base
1941   // is calculated by subtracting the requested size from the
1942   // 32Gb boundary and using the result as the base address for
1943   // heap reservation. If the requested size is not aligned to
1944   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1945   // into the ReservedHeapSpace constructor) then the actual
1946   // base of the reserved heap may end up differing from the
1947   // address that was requested (i.e. the preferred heap base).
1948   // If this happens then we could end up using a non-optimal
1949   // compressed oops mode.
1950 
1951   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1952                                                  heap_alignment);
1953 
1954   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1955 
1956   // Create the barrier set for the entire reserved region.
1957   G1SATBCardTableLoggingModRefBS* bs
1958     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1959   bs->initialize();
1960   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1961   set_barrier_set(bs);
1962 
1963   // Also create a G1 rem set.
1964   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1965 
1966   // Carve out the G1 part of the heap.
1967 
1968   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1969   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1970   G1RegionToSpaceMapper* heap_storage =
1971     G1RegionToSpaceMapper::create_mapper(g1_rs,
1972                                          g1_rs.size(),
1973                                          page_size,
1974                                          HeapRegion::GrainBytes,
1975                                          1,
1976                                          mtJavaHeap);
1977   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1978                        max_byte_size, page_size,
1979                        heap_rs.base(),
1980                        heap_rs.size());
1981   heap_storage->set_mapping_changed_listener(&_listener);
1982 
1983   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1984   G1RegionToSpaceMapper* bot_storage =
1985     create_aux_memory_mapper("Block offset table",
1986                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1987                              G1BlockOffsetSharedArray::heap_map_factor());
1988 
1989   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1990   G1RegionToSpaceMapper* cardtable_storage =
1991     create_aux_memory_mapper("Card table",
1992                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1993                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1994 
1995   G1RegionToSpaceMapper* card_counts_storage =
1996     create_aux_memory_mapper("Card counts table",
1997                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1998                              G1CardCounts::heap_map_factor());
1999 
2000   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2001   G1RegionToSpaceMapper* prev_bitmap_storage =
2002     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2003   G1RegionToSpaceMapper* next_bitmap_storage =
2004     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2005 
2006   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2007   g1_barrier_set()->initialize(cardtable_storage);
2008    // Do later initialization work for concurrent refinement.
2009   _cg1r->init(card_counts_storage);
2010 
2011   // 6843694 - ensure that the maximum region index can fit
2012   // in the remembered set structures.
2013   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2014   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2015 
2016   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2017   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2018   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2019             "too many cards per region");
2020 
2021   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2022 
2023   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2024 
2025   {
2026     HeapWord* start = _hrm.reserved().start();
2027     HeapWord* end = _hrm.reserved().end();
2028     size_t granularity = HeapRegion::GrainBytes;
2029 
2030     _in_cset_fast_test.initialize(start, end, granularity);
2031     _humongous_reclaim_candidates.initialize(start, end, granularity);
2032   }
2033 
2034   // Create the ConcurrentMark data structure and thread.
2035   // (Must do this late, so that "max_regions" is defined.)
2036   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2037   if (_cm == NULL || !_cm->completed_initialization()) {
2038     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2039     return JNI_ENOMEM;
2040   }
2041   _cmThread = _cm->cmThread();
2042 
2043   // Initialize the from_card cache structure of HeapRegionRemSet.
2044   HeapRegionRemSet::init_heap(max_regions());
2045 
2046   // Now expand into the initial heap size.
2047   if (!expand(init_byte_size)) {
2048     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2049     return JNI_ENOMEM;
2050   }
2051 
2052   // Perform any initialization actions delegated to the policy.
2053   g1_policy()->init();
2054 
2055   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2056                                                SATB_Q_FL_lock,
2057                                                G1SATBProcessCompletedThreshold,
2058                                                Shared_SATB_Q_lock);
2059 
2060   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2061                                                 DirtyCardQ_CBL_mon,
2062                                                 DirtyCardQ_FL_lock,
2063                                                 concurrent_g1_refine()->yellow_zone(),
2064                                                 concurrent_g1_refine()->red_zone(),
2065                                                 Shared_DirtyCardQ_lock);
2066 
2067   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2068                                     DirtyCardQ_CBL_mon,
2069                                     DirtyCardQ_FL_lock,
2070                                     -1, // never trigger processing
2071                                     -1, // no limit on length
2072                                     Shared_DirtyCardQ_lock,
2073                                     &JavaThread::dirty_card_queue_set());
2074 
2075   // Here we allocate the dummy HeapRegion that is required by the
2076   // G1AllocRegion class.
2077   HeapRegion* dummy_region = _hrm.get_dummy_region();
2078 
2079   // We'll re-use the same region whether the alloc region will
2080   // require BOT updates or not and, if it doesn't, then a non-young
2081   // region will complain that it cannot support allocations without
2082   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2083   dummy_region->set_eden();
2084   // Make sure it's full.
2085   dummy_region->set_top(dummy_region->end());
2086   G1AllocRegion::setup(this, dummy_region);
2087 
2088   _allocator->init_mutator_alloc_region();
2089 
2090   // Do create of the monitoring and management support so that
2091   // values in the heap have been properly initialized.
2092   _g1mm = new G1MonitoringSupport(this);
2093 
2094   G1StringDedup::initialize();
2095 
2096   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2097   for (uint i = 0; i < ParallelGCThreads; i++) {
2098     new (&_preserved_objs[i]) OopAndMarkOopStack();
2099   }
2100 
2101   return JNI_OK;
2102 }
2103 
2104 void G1CollectedHeap::stop() {
2105   // Stop all concurrent threads. We do this to make sure these threads
2106   // do not continue to execute and access resources (e.g. gclog_or_tty)
2107   // that are destroyed during shutdown.
2108   _cg1r->stop();
2109   _cmThread->stop();
2110   if (G1StringDedup::is_enabled()) {
2111     G1StringDedup::stop();
2112   }
2113 }
2114 
2115 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2116   return HeapRegion::max_region_size();
2117 }
2118 
2119 void G1CollectedHeap::post_initialize() {
2120   CollectedHeap::post_initialize();
2121   ref_processing_init();
2122 }
2123 
2124 void G1CollectedHeap::ref_processing_init() {
2125   // Reference processing in G1 currently works as follows:
2126   //
2127   // * There are two reference processor instances. One is
2128   //   used to record and process discovered references
2129   //   during concurrent marking; the other is used to
2130   //   record and process references during STW pauses
2131   //   (both full and incremental).
2132   // * Both ref processors need to 'span' the entire heap as
2133   //   the regions in the collection set may be dotted around.
2134   //
2135   // * For the concurrent marking ref processor:
2136   //   * Reference discovery is enabled at initial marking.
2137   //   * Reference discovery is disabled and the discovered
2138   //     references processed etc during remarking.
2139   //   * Reference discovery is MT (see below).
2140   //   * Reference discovery requires a barrier (see below).
2141   //   * Reference processing may or may not be MT
2142   //     (depending on the value of ParallelRefProcEnabled
2143   //     and ParallelGCThreads).
2144   //   * A full GC disables reference discovery by the CM
2145   //     ref processor and abandons any entries on it's
2146   //     discovered lists.
2147   //
2148   // * For the STW processor:
2149   //   * Non MT discovery is enabled at the start of a full GC.
2150   //   * Processing and enqueueing during a full GC is non-MT.
2151   //   * During a full GC, references are processed after marking.
2152   //
2153   //   * Discovery (may or may not be MT) is enabled at the start
2154   //     of an incremental evacuation pause.
2155   //   * References are processed near the end of a STW evacuation pause.
2156   //   * For both types of GC:
2157   //     * Discovery is atomic - i.e. not concurrent.
2158   //     * Reference discovery will not need a barrier.
2159 
2160   MemRegion mr = reserved_region();
2161 
2162   // Concurrent Mark ref processor
2163   _ref_processor_cm =
2164     new ReferenceProcessor(mr,    // span
2165                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2166                                 // mt processing
2167                            ParallelGCThreads,
2168                                 // degree of mt processing
2169                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2170                                 // mt discovery
2171                            MAX2(ParallelGCThreads, ConcGCThreads),
2172                                 // degree of mt discovery
2173                            false,
2174                                 // Reference discovery is not atomic
2175                            &_is_alive_closure_cm);
2176                                 // is alive closure
2177                                 // (for efficiency/performance)
2178 
2179   // STW ref processor
2180   _ref_processor_stw =
2181     new ReferenceProcessor(mr,    // span
2182                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2183                                 // mt processing
2184                            ParallelGCThreads,
2185                                 // degree of mt processing
2186                            (ParallelGCThreads > 1),
2187                                 // mt discovery
2188                            ParallelGCThreads,
2189                                 // degree of mt discovery
2190                            true,
2191                                 // Reference discovery is atomic
2192                            &_is_alive_closure_stw);
2193                                 // is alive closure
2194                                 // (for efficiency/performance)
2195 }
2196 
2197 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2198   return g1_policy();
2199 }
2200 
2201 size_t G1CollectedHeap::capacity() const {
2202   return _hrm.length() * HeapRegion::GrainBytes;
2203 }
2204 
2205 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2206   hr->reset_gc_time_stamp();
2207 }
2208 
2209 #ifndef PRODUCT
2210 
2211 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2212 private:
2213   unsigned _gc_time_stamp;
2214   bool _failures;
2215 
2216 public:
2217   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2218     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2219 
2220   virtual bool doHeapRegion(HeapRegion* hr) {
2221     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2222     if (_gc_time_stamp != region_gc_time_stamp) {
2223       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2224                              "expected %d", HR_FORMAT_PARAMS(hr),
2225                              region_gc_time_stamp, _gc_time_stamp);
2226       _failures = true;
2227     }
2228     return false;
2229   }
2230 
2231   bool failures() { return _failures; }
2232 };
2233 
2234 void G1CollectedHeap::check_gc_time_stamps() {
2235   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2236   heap_region_iterate(&cl);
2237   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2238 }
2239 #endif // PRODUCT
2240 
2241 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2242   _cg1r->hot_card_cache()->drain(cl, worker_i);
2243 }
2244 
2245 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2246   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2247   size_t n_completed_buffers = 0;
2248   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2249     n_completed_buffers++;
2250   }
2251   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2252   dcqs.clear_n_completed_buffers();
2253   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2254 }
2255 
2256 // Computes the sum of the storage used by the various regions.
2257 size_t G1CollectedHeap::used() const {
2258   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2259   if (_archive_allocator != NULL) {
2260     result += _archive_allocator->used();
2261   }
2262   return result;
2263 }
2264 
2265 size_t G1CollectedHeap::used_unlocked() const {
2266   return _summary_bytes_used;
2267 }
2268 
2269 class SumUsedClosure: public HeapRegionClosure {
2270   size_t _used;
2271 public:
2272   SumUsedClosure() : _used(0) {}
2273   bool doHeapRegion(HeapRegion* r) {
2274     _used += r->used();
2275     return false;
2276   }
2277   size_t result() { return _used; }
2278 };
2279 
2280 size_t G1CollectedHeap::recalculate_used() const {
2281   double recalculate_used_start = os::elapsedTime();
2282 
2283   SumUsedClosure blk;
2284   heap_region_iterate(&blk);
2285 
2286   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2287   return blk.result();
2288 }
2289 
2290 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2291   switch (cause) {
2292     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2293     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2294     case GCCause::_update_allocation_context_stats_inc: return true;
2295     case GCCause::_wb_conc_mark:                        return true;
2296     default :                                           return false;
2297   }
2298 }
2299 
2300 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2301   switch (cause) {
2302     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2303     case GCCause::_g1_humongous_allocation: return true;
2304     default:                                return is_user_requested_concurrent_full_gc(cause);
2305   }
2306 }
2307 
2308 #ifndef PRODUCT
2309 void G1CollectedHeap::allocate_dummy_regions() {
2310   // Let's fill up most of the region
2311   size_t word_size = HeapRegion::GrainWords - 1024;
2312   // And as a result the region we'll allocate will be humongous.
2313   guarantee(is_humongous(word_size), "sanity");
2314 
2315   // _filler_array_max_size is set to humongous object threshold
2316   // but temporarily change it to use CollectedHeap::fill_with_object().
2317   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2318 
2319   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2320     // Let's use the existing mechanism for the allocation
2321     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2322                                                  AllocationContext::system());
2323     if (dummy_obj != NULL) {
2324       MemRegion mr(dummy_obj, word_size);
2325       CollectedHeap::fill_with_object(mr);
2326     } else {
2327       // If we can't allocate once, we probably cannot allocate
2328       // again. Let's get out of the loop.
2329       break;
2330     }
2331   }
2332 }
2333 #endif // !PRODUCT
2334 
2335 void G1CollectedHeap::increment_old_marking_cycles_started() {
2336   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2337          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2338          "Wrong marking cycle count (started: %d, completed: %d)",
2339          _old_marking_cycles_started, _old_marking_cycles_completed);
2340 
2341   _old_marking_cycles_started++;
2342 }
2343 
2344 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2345   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2346 
2347   // We assume that if concurrent == true, then the caller is a
2348   // concurrent thread that was joined the Suspendible Thread
2349   // Set. If there's ever a cheap way to check this, we should add an
2350   // assert here.
2351 
2352   // Given that this method is called at the end of a Full GC or of a
2353   // concurrent cycle, and those can be nested (i.e., a Full GC can
2354   // interrupt a concurrent cycle), the number of full collections
2355   // completed should be either one (in the case where there was no
2356   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2357   // behind the number of full collections started.
2358 
2359   // This is the case for the inner caller, i.e. a Full GC.
2360   assert(concurrent ||
2361          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2362          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2363          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2364          "is inconsistent with _old_marking_cycles_completed = %u",
2365          _old_marking_cycles_started, _old_marking_cycles_completed);
2366 
2367   // This is the case for the outer caller, i.e. the concurrent cycle.
2368   assert(!concurrent ||
2369          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2370          "for outer caller (concurrent cycle): "
2371          "_old_marking_cycles_started = %u "
2372          "is inconsistent with _old_marking_cycles_completed = %u",
2373          _old_marking_cycles_started, _old_marking_cycles_completed);
2374 
2375   _old_marking_cycles_completed += 1;
2376 
2377   // We need to clear the "in_progress" flag in the CM thread before
2378   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2379   // is set) so that if a waiter requests another System.gc() it doesn't
2380   // incorrectly see that a marking cycle is still in progress.
2381   if (concurrent) {
2382     _cmThread->set_idle();
2383   }
2384 
2385   // This notify_all() will ensure that a thread that called
2386   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2387   // and it's waiting for a full GC to finish will be woken up. It is
2388   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2389   FullGCCount_lock->notify_all();
2390 }
2391 
2392 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2393   GCIdMarkAndRestore conc_gc_id_mark;
2394   collector_state()->set_concurrent_cycle_started(true);
2395   _gc_timer_cm->register_gc_start(start_time);
2396 
2397   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2398   trace_heap_before_gc(_gc_tracer_cm);
2399   _cmThread->set_gc_id(GCId::current());
2400 }
2401 
2402 void G1CollectedHeap::register_concurrent_cycle_end() {
2403   if (collector_state()->concurrent_cycle_started()) {
2404     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2405     if (_cm->has_aborted()) {
2406       _gc_tracer_cm->report_concurrent_mode_failure();
2407     }
2408 
2409     _gc_timer_cm->register_gc_end();
2410     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2411 
2412     // Clear state variables to prepare for the next concurrent cycle.
2413      collector_state()->set_concurrent_cycle_started(false);
2414     _heap_summary_sent = false;
2415   }
2416 }
2417 
2418 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2419   if (collector_state()->concurrent_cycle_started()) {
2420     // This function can be called when:
2421     //  the cleanup pause is run
2422     //  the concurrent cycle is aborted before the cleanup pause.
2423     //  the concurrent cycle is aborted after the cleanup pause,
2424     //   but before the concurrent cycle end has been registered.
2425     // Make sure that we only send the heap information once.
2426     if (!_heap_summary_sent) {
2427       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2428       trace_heap_after_gc(_gc_tracer_cm);
2429       _heap_summary_sent = true;
2430     }
2431   }
2432 }
2433 
2434 void G1CollectedHeap::collect(GCCause::Cause cause) {
2435   assert_heap_not_locked();
2436 
2437   uint gc_count_before;
2438   uint old_marking_count_before;
2439   uint full_gc_count_before;
2440   bool retry_gc;
2441 
2442   do {
2443     retry_gc = false;
2444 
2445     {
2446       MutexLocker ml(Heap_lock);
2447 
2448       // Read the GC count while holding the Heap_lock
2449       gc_count_before = total_collections();
2450       full_gc_count_before = total_full_collections();
2451       old_marking_count_before = _old_marking_cycles_started;
2452     }
2453 
2454     if (should_do_concurrent_full_gc(cause)) {
2455       // Schedule an initial-mark evacuation pause that will start a
2456       // concurrent cycle. We're setting word_size to 0 which means that
2457       // we are not requesting a post-GC allocation.
2458       VM_G1IncCollectionPause op(gc_count_before,
2459                                  0,     /* word_size */
2460                                  true,  /* should_initiate_conc_mark */
2461                                  g1_policy()->max_pause_time_ms(),
2462                                  cause);
2463       op.set_allocation_context(AllocationContext::current());
2464 
2465       VMThread::execute(&op);
2466       if (!op.pause_succeeded()) {
2467         if (old_marking_count_before == _old_marking_cycles_started) {
2468           retry_gc = op.should_retry_gc();
2469         } else {
2470           // A Full GC happened while we were trying to schedule the
2471           // initial-mark GC. No point in starting a new cycle given
2472           // that the whole heap was collected anyway.
2473         }
2474 
2475         if (retry_gc) {
2476           if (GC_locker::is_active_and_needs_gc()) {
2477             GC_locker::stall_until_clear();
2478           }
2479         }
2480       }
2481     } else {
2482       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2483           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2484 
2485         // Schedule a standard evacuation pause. We're setting word_size
2486         // to 0 which means that we are not requesting a post-GC allocation.
2487         VM_G1IncCollectionPause op(gc_count_before,
2488                                    0,     /* word_size */
2489                                    false, /* should_initiate_conc_mark */
2490                                    g1_policy()->max_pause_time_ms(),
2491                                    cause);
2492         VMThread::execute(&op);
2493       } else {
2494         // Schedule a Full GC.
2495         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2496         VMThread::execute(&op);
2497       }
2498     }
2499   } while (retry_gc);
2500 }
2501 
2502 bool G1CollectedHeap::is_in(const void* p) const {
2503   if (_hrm.reserved().contains(p)) {
2504     // Given that we know that p is in the reserved space,
2505     // heap_region_containing() should successfully
2506     // return the containing region.
2507     HeapRegion* hr = heap_region_containing(p);
2508     return hr->is_in(p);
2509   } else {
2510     return false;
2511   }
2512 }
2513 
2514 #ifdef ASSERT
2515 bool G1CollectedHeap::is_in_exact(const void* p) const {
2516   bool contains = reserved_region().contains(p);
2517   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2518   if (contains && available) {
2519     return true;
2520   } else {
2521     return false;
2522   }
2523 }
2524 #endif
2525 
2526 bool G1CollectedHeap::obj_in_cs(oop obj) {
2527   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2528   return r != NULL && r->in_collection_set();
2529 }
2530 
2531 // Iteration functions.
2532 
2533 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2534 
2535 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2536   ExtendedOopClosure* _cl;
2537 public:
2538   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2539   bool doHeapRegion(HeapRegion* r) {
2540     if (!r->is_continues_humongous()) {
2541       r->oop_iterate(_cl);
2542     }
2543     return false;
2544   }
2545 };
2546 
2547 // Iterates an ObjectClosure over all objects within a HeapRegion.
2548 
2549 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2550   ObjectClosure* _cl;
2551 public:
2552   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2553   bool doHeapRegion(HeapRegion* r) {
2554     if (!r->is_continues_humongous()) {
2555       r->object_iterate(_cl);
2556     }
2557     return false;
2558   }
2559 };
2560 
2561 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2562   IterateObjectClosureRegionClosure blk(cl);
2563   heap_region_iterate(&blk);
2564 }
2565 
2566 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2567   _hrm.iterate(cl);
2568 }
2569 
2570 void
2571 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2572                                          uint worker_id,
2573                                          HeapRegionClaimer *hrclaimer,
2574                                          bool concurrent) const {
2575   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2576 }
2577 
2578 // Clear the cached CSet starting regions and (more importantly)
2579 // the time stamps. Called when we reset the GC time stamp.
2580 void G1CollectedHeap::clear_cset_start_regions() {
2581   assert(_worker_cset_start_region != NULL, "sanity");
2582   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2583 
2584   for (uint i = 0; i < ParallelGCThreads; i++) {
2585     _worker_cset_start_region[i] = NULL;
2586     _worker_cset_start_region_time_stamp[i] = 0;
2587   }
2588 }
2589 
2590 // Given the id of a worker, obtain or calculate a suitable
2591 // starting region for iterating over the current collection set.
2592 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2593   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2594 
2595   HeapRegion* result = NULL;
2596   unsigned gc_time_stamp = get_gc_time_stamp();
2597 
2598   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2599     // Cached starting region for current worker was set
2600     // during the current pause - so it's valid.
2601     // Note: the cached starting heap region may be NULL
2602     // (when the collection set is empty).
2603     result = _worker_cset_start_region[worker_i];
2604     assert(result == NULL || result->in_collection_set(), "sanity");
2605     return result;
2606   }
2607 
2608   // The cached entry was not valid so let's calculate
2609   // a suitable starting heap region for this worker.
2610 
2611   // We want the parallel threads to start their collection
2612   // set iteration at different collection set regions to
2613   // avoid contention.
2614   // If we have:
2615   //          n collection set regions
2616   //          p threads
2617   // Then thread t will start at region floor ((t * n) / p)
2618 
2619   result = g1_policy()->collection_set();
2620   uint cs_size = g1_policy()->cset_region_length();
2621   uint active_workers = workers()->active_workers();
2622 
2623   uint end_ind   = (cs_size * worker_i) / active_workers;
2624   uint start_ind = 0;
2625 
2626   if (worker_i > 0 &&
2627       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2628     // Previous workers starting region is valid
2629     // so let's iterate from there
2630     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2631     result = _worker_cset_start_region[worker_i - 1];
2632   }
2633 
2634   for (uint i = start_ind; i < end_ind; i++) {
2635     result = result->next_in_collection_set();
2636   }
2637 
2638   // Note: the calculated starting heap region may be NULL
2639   // (when the collection set is empty).
2640   assert(result == NULL || result->in_collection_set(), "sanity");
2641   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2642          "should be updated only once per pause");
2643   _worker_cset_start_region[worker_i] = result;
2644   OrderAccess::storestore();
2645   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2646   return result;
2647 }
2648 
2649 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2650   HeapRegion* r = g1_policy()->collection_set();
2651   while (r != NULL) {
2652     HeapRegion* next = r->next_in_collection_set();
2653     if (cl->doHeapRegion(r)) {
2654       cl->incomplete();
2655       return;
2656     }
2657     r = next;
2658   }
2659 }
2660 
2661 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2662                                                   HeapRegionClosure *cl) {
2663   if (r == NULL) {
2664     // The CSet is empty so there's nothing to do.
2665     return;
2666   }
2667 
2668   assert(r->in_collection_set(),
2669          "Start region must be a member of the collection set.");
2670   HeapRegion* cur = r;
2671   while (cur != NULL) {
2672     HeapRegion* next = cur->next_in_collection_set();
2673     if (cl->doHeapRegion(cur) && false) {
2674       cl->incomplete();
2675       return;
2676     }
2677     cur = next;
2678   }
2679   cur = g1_policy()->collection_set();
2680   while (cur != r) {
2681     HeapRegion* next = cur->next_in_collection_set();
2682     if (cl->doHeapRegion(cur) && false) {
2683       cl->incomplete();
2684       return;
2685     }
2686     cur = next;
2687   }
2688 }
2689 
2690 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2691   HeapRegion* result = _hrm.next_region_in_heap(from);
2692   while (result != NULL && result->is_pinned()) {
2693     result = _hrm.next_region_in_heap(result);
2694   }
2695   return result;
2696 }
2697 
2698 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2699   HeapRegion* hr = heap_region_containing(addr);
2700   return hr->block_start(addr);
2701 }
2702 
2703 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2704   HeapRegion* hr = heap_region_containing(addr);
2705   return hr->block_size(addr);
2706 }
2707 
2708 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2709   HeapRegion* hr = heap_region_containing(addr);
2710   return hr->block_is_obj(addr);
2711 }
2712 
2713 bool G1CollectedHeap::supports_tlab_allocation() const {
2714   return true;
2715 }
2716 
2717 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2718   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2719 }
2720 
2721 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2722   return young_list()->eden_used_bytes();
2723 }
2724 
2725 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2726 // must be equal to the humongous object limit.
2727 size_t G1CollectedHeap::max_tlab_size() const {
2728   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2729 }
2730 
2731 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2732   AllocationContext_t context = AllocationContext::current();
2733   return _allocator->unsafe_max_tlab_alloc(context);
2734 }
2735 
2736 size_t G1CollectedHeap::max_capacity() const {
2737   return _hrm.reserved().byte_size();
2738 }
2739 
2740 jlong G1CollectedHeap::millis_since_last_gc() {
2741   // assert(false, "NYI");
2742   return 0;
2743 }
2744 
2745 void G1CollectedHeap::prepare_for_verify() {
2746   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2747     ensure_parsability(false);
2748   }
2749   g1_rem_set()->prepare_for_verify();
2750 }
2751 
2752 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2753                                               VerifyOption vo) {
2754   switch (vo) {
2755   case VerifyOption_G1UsePrevMarking:
2756     return hr->obj_allocated_since_prev_marking(obj);
2757   case VerifyOption_G1UseNextMarking:
2758     return hr->obj_allocated_since_next_marking(obj);
2759   case VerifyOption_G1UseMarkWord:
2760     return false;
2761   default:
2762     ShouldNotReachHere();
2763   }
2764   return false; // keep some compilers happy
2765 }
2766 
2767 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2768   switch (vo) {
2769   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2770   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2771   case VerifyOption_G1UseMarkWord:    return NULL;
2772   default:                            ShouldNotReachHere();
2773   }
2774   return NULL; // keep some compilers happy
2775 }
2776 
2777 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2778   switch (vo) {
2779   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2780   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2781   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2782   default:                            ShouldNotReachHere();
2783   }
2784   return false; // keep some compilers happy
2785 }
2786 
2787 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2788   switch (vo) {
2789   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2790   case VerifyOption_G1UseNextMarking: return "NTAMS";
2791   case VerifyOption_G1UseMarkWord:    return "NONE";
2792   default:                            ShouldNotReachHere();
2793   }
2794   return NULL; // keep some compilers happy
2795 }
2796 
2797 class VerifyRootsClosure: public OopClosure {
2798 private:
2799   G1CollectedHeap* _g1h;
2800   VerifyOption     _vo;
2801   bool             _failures;
2802 public:
2803   // _vo == UsePrevMarking -> use "prev" marking information,
2804   // _vo == UseNextMarking -> use "next" marking information,
2805   // _vo == UseMarkWord    -> use mark word from object header.
2806   VerifyRootsClosure(VerifyOption vo) :
2807     _g1h(G1CollectedHeap::heap()),
2808     _vo(vo),
2809     _failures(false) { }
2810 
2811   bool failures() { return _failures; }
2812 
2813   template <class T> void do_oop_nv(T* p) {
2814     T heap_oop = oopDesc::load_heap_oop(p);
2815     if (!oopDesc::is_null(heap_oop)) {
2816       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2817       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2818         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2819                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2820         if (_vo == VerifyOption_G1UseMarkWord) {
2821           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2822         }
2823         obj->print_on(gclog_or_tty);
2824         _failures = true;
2825       }
2826     }
2827   }
2828 
2829   void do_oop(oop* p)       { do_oop_nv(p); }
2830   void do_oop(narrowOop* p) { do_oop_nv(p); }
2831 };
2832 
2833 class G1VerifyCodeRootOopClosure: public OopClosure {
2834   G1CollectedHeap* _g1h;
2835   OopClosure* _root_cl;
2836   nmethod* _nm;
2837   VerifyOption _vo;
2838   bool _failures;
2839 
2840   template <class T> void do_oop_work(T* p) {
2841     // First verify that this root is live
2842     _root_cl->do_oop(p);
2843 
2844     if (!G1VerifyHeapRegionCodeRoots) {
2845       // We're not verifying the code roots attached to heap region.
2846       return;
2847     }
2848 
2849     // Don't check the code roots during marking verification in a full GC
2850     if (_vo == VerifyOption_G1UseMarkWord) {
2851       return;
2852     }
2853 
2854     // Now verify that the current nmethod (which contains p) is
2855     // in the code root list of the heap region containing the
2856     // object referenced by p.
2857 
2858     T heap_oop = oopDesc::load_heap_oop(p);
2859     if (!oopDesc::is_null(heap_oop)) {
2860       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2861 
2862       // Now fetch the region containing the object
2863       HeapRegion* hr = _g1h->heap_region_containing(obj);
2864       HeapRegionRemSet* hrrs = hr->rem_set();
2865       // Verify that the strong code root list for this region
2866       // contains the nmethod
2867       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2868         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2869                                "from nmethod " PTR_FORMAT " not in strong "
2870                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2871                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2872         _failures = true;
2873       }
2874     }
2875   }
2876 
2877 public:
2878   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2879     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2880 
2881   void do_oop(oop* p) { do_oop_work(p); }
2882   void do_oop(narrowOop* p) { do_oop_work(p); }
2883 
2884   void set_nmethod(nmethod* nm) { _nm = nm; }
2885   bool failures() { return _failures; }
2886 };
2887 
2888 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2889   G1VerifyCodeRootOopClosure* _oop_cl;
2890 
2891 public:
2892   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2893     _oop_cl(oop_cl) {}
2894 
2895   void do_code_blob(CodeBlob* cb) {
2896     nmethod* nm = cb->as_nmethod_or_null();
2897     if (nm != NULL) {
2898       _oop_cl->set_nmethod(nm);
2899       nm->oops_do(_oop_cl);
2900     }
2901   }
2902 };
2903 
2904 class YoungRefCounterClosure : public OopClosure {
2905   G1CollectedHeap* _g1h;
2906   int              _count;
2907  public:
2908   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2909   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2910   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2911 
2912   int count() { return _count; }
2913   void reset_count() { _count = 0; };
2914 };
2915 
2916 class VerifyKlassClosure: public KlassClosure {
2917   YoungRefCounterClosure _young_ref_counter_closure;
2918   OopClosure *_oop_closure;
2919  public:
2920   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2921   void do_klass(Klass* k) {
2922     k->oops_do(_oop_closure);
2923 
2924     _young_ref_counter_closure.reset_count();
2925     k->oops_do(&_young_ref_counter_closure);
2926     if (_young_ref_counter_closure.count() > 0) {
2927       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2928     }
2929   }
2930 };
2931 
2932 class VerifyLivenessOopClosure: public OopClosure {
2933   G1CollectedHeap* _g1h;
2934   VerifyOption _vo;
2935 public:
2936   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2937     _g1h(g1h), _vo(vo)
2938   { }
2939   void do_oop(narrowOop *p) { do_oop_work(p); }
2940   void do_oop(      oop *p) { do_oop_work(p); }
2941 
2942   template <class T> void do_oop_work(T *p) {
2943     oop obj = oopDesc::load_decode_heap_oop(p);
2944     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2945               "Dead object referenced by a not dead object");
2946   }
2947 };
2948 
2949 class VerifyObjsInRegionClosure: public ObjectClosure {
2950 private:
2951   G1CollectedHeap* _g1h;
2952   size_t _live_bytes;
2953   HeapRegion *_hr;
2954   VerifyOption _vo;
2955 public:
2956   // _vo == UsePrevMarking -> use "prev" marking information,
2957   // _vo == UseNextMarking -> use "next" marking information,
2958   // _vo == UseMarkWord    -> use mark word from object header.
2959   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2960     : _live_bytes(0), _hr(hr), _vo(vo) {
2961     _g1h = G1CollectedHeap::heap();
2962   }
2963   void do_object(oop o) {
2964     VerifyLivenessOopClosure isLive(_g1h, _vo);
2965     assert(o != NULL, "Huh?");
2966     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2967       // If the object is alive according to the mark word,
2968       // then verify that the marking information agrees.
2969       // Note we can't verify the contra-positive of the
2970       // above: if the object is dead (according to the mark
2971       // word), it may not be marked, or may have been marked
2972       // but has since became dead, or may have been allocated
2973       // since the last marking.
2974       if (_vo == VerifyOption_G1UseMarkWord) {
2975         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2976       }
2977 
2978       o->oop_iterate_no_header(&isLive);
2979       if (!_hr->obj_allocated_since_prev_marking(o)) {
2980         size_t obj_size = o->size();    // Make sure we don't overflow
2981         _live_bytes += (obj_size * HeapWordSize);
2982       }
2983     }
2984   }
2985   size_t live_bytes() { return _live_bytes; }
2986 };
2987 
2988 class VerifyArchiveOopClosure: public OopClosure {
2989 public:
2990   VerifyArchiveOopClosure(HeapRegion *hr) { }
2991   void do_oop(narrowOop *p) { do_oop_work(p); }
2992   void do_oop(      oop *p) { do_oop_work(p); }
2993 
2994   template <class T> void do_oop_work(T *p) {
2995     oop obj = oopDesc::load_decode_heap_oop(p);
2996     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2997               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2998               p2i(p), p2i(obj));
2999   }
3000 };
3001 
3002 class VerifyArchiveRegionClosure: public ObjectClosure {
3003 public:
3004   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3005   // Verify that all object pointers are to archive regions.
3006   void do_object(oop o) {
3007     VerifyArchiveOopClosure checkOop(NULL);
3008     assert(o != NULL, "Should not be here for NULL oops");
3009     o->oop_iterate_no_header(&checkOop);
3010   }
3011 };
3012 
3013 class VerifyRegionClosure: public HeapRegionClosure {
3014 private:
3015   bool             _par;
3016   VerifyOption     _vo;
3017   bool             _failures;
3018 public:
3019   // _vo == UsePrevMarking -> use "prev" marking information,
3020   // _vo == UseNextMarking -> use "next" marking information,
3021   // _vo == UseMarkWord    -> use mark word from object header.
3022   VerifyRegionClosure(bool par, VerifyOption vo)
3023     : _par(par),
3024       _vo(vo),
3025       _failures(false) {}
3026 
3027   bool failures() {
3028     return _failures;
3029   }
3030 
3031   bool doHeapRegion(HeapRegion* r) {
3032     // For archive regions, verify there are no heap pointers to
3033     // non-pinned regions. For all others, verify liveness info.
3034     if (r->is_archive()) {
3035       VerifyArchiveRegionClosure verify_oop_pointers(r);
3036       r->object_iterate(&verify_oop_pointers);
3037       return true;
3038     }
3039     if (!r->is_continues_humongous()) {
3040       bool failures = false;
3041       r->verify(_vo, &failures);
3042       if (failures) {
3043         _failures = true;
3044       } else if (!r->is_starts_humongous()) {
3045         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3046         r->object_iterate(&not_dead_yet_cl);
3047         if (_vo != VerifyOption_G1UseNextMarking) {
3048           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3049             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3050                                    "max_live_bytes " SIZE_FORMAT " "
3051                                    "< calculated " SIZE_FORMAT,
3052                                    p2i(r->bottom()), p2i(r->end()),
3053                                    r->max_live_bytes(),
3054                                  not_dead_yet_cl.live_bytes());
3055             _failures = true;
3056           }
3057         } else {
3058           // When vo == UseNextMarking we cannot currently do a sanity
3059           // check on the live bytes as the calculation has not been
3060           // finalized yet.
3061         }
3062       }
3063     }
3064     return false; // stop the region iteration if we hit a failure
3065   }
3066 };
3067 
3068 // This is the task used for parallel verification of the heap regions
3069 
3070 class G1ParVerifyTask: public AbstractGangTask {
3071 private:
3072   G1CollectedHeap*  _g1h;
3073   VerifyOption      _vo;
3074   bool              _failures;
3075   HeapRegionClaimer _hrclaimer;
3076 
3077 public:
3078   // _vo == UsePrevMarking -> use "prev" marking information,
3079   // _vo == UseNextMarking -> use "next" marking information,
3080   // _vo == UseMarkWord    -> use mark word from object header.
3081   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3082       AbstractGangTask("Parallel verify task"),
3083       _g1h(g1h),
3084       _vo(vo),
3085       _failures(false),
3086       _hrclaimer(g1h->workers()->active_workers()) {}
3087 
3088   bool failures() {
3089     return _failures;
3090   }
3091 
3092   void work(uint worker_id) {
3093     HandleMark hm;
3094     VerifyRegionClosure blk(true, _vo);
3095     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3096     if (blk.failures()) {
3097       _failures = true;
3098     }
3099   }
3100 };
3101 
3102 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3103   if (SafepointSynchronize::is_at_safepoint()) {
3104     assert(Thread::current()->is_VM_thread(),
3105            "Expected to be executed serially by the VM thread at this point");
3106 
3107     if (!silent) { gclog_or_tty->print("Roots "); }
3108     VerifyRootsClosure rootsCl(vo);
3109     VerifyKlassClosure klassCl(this, &rootsCl);
3110     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3111 
3112     // We apply the relevant closures to all the oops in the
3113     // system dictionary, class loader data graph, the string table
3114     // and the nmethods in the code cache.
3115     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3116     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3117 
3118     {
3119       G1RootProcessor root_processor(this, 1);
3120       root_processor.process_all_roots(&rootsCl,
3121                                        &cldCl,
3122                                        &blobsCl);
3123     }
3124 
3125     bool failures = rootsCl.failures() || codeRootsCl.failures();
3126 
3127     if (vo != VerifyOption_G1UseMarkWord) {
3128       // If we're verifying during a full GC then the region sets
3129       // will have been torn down at the start of the GC. Therefore
3130       // verifying the region sets will fail. So we only verify
3131       // the region sets when not in a full GC.
3132       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3133       verify_region_sets();
3134     }
3135 
3136     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3137     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3138 
3139       G1ParVerifyTask task(this, vo);
3140       workers()->run_task(&task);
3141       if (task.failures()) {
3142         failures = true;
3143       }
3144 
3145     } else {
3146       VerifyRegionClosure blk(false, vo);
3147       heap_region_iterate(&blk);
3148       if (blk.failures()) {
3149         failures = true;
3150       }
3151     }
3152 
3153     if (G1StringDedup::is_enabled()) {
3154       if (!silent) gclog_or_tty->print("StrDedup ");
3155       G1StringDedup::verify();
3156     }
3157 
3158     if (failures) {
3159       gclog_or_tty->print_cr("Heap:");
3160       // It helps to have the per-region information in the output to
3161       // help us track down what went wrong. This is why we call
3162       // print_extended_on() instead of print_on().
3163       print_extended_on(gclog_or_tty);
3164       gclog_or_tty->cr();
3165       gclog_or_tty->flush();
3166     }
3167     guarantee(!failures, "there should not have been any failures");
3168   } else {
3169     if (!silent) {
3170       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3171       if (G1StringDedup::is_enabled()) {
3172         gclog_or_tty->print(", StrDedup");
3173       }
3174       gclog_or_tty->print(") ");
3175     }
3176   }
3177 }
3178 
3179 void G1CollectedHeap::verify(bool silent) {
3180   verify(silent, VerifyOption_G1UsePrevMarking);
3181 }
3182 
3183 double G1CollectedHeap::verify(bool guard, const char* msg) {
3184   double verify_time_ms = 0.0;
3185 
3186   if (guard && total_collections() >= VerifyGCStartAt) {
3187     double verify_start = os::elapsedTime();
3188     HandleMark hm;  // Discard invalid handles created during verification
3189     prepare_for_verify();
3190     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3191     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3192   }
3193 
3194   return verify_time_ms;
3195 }
3196 
3197 void G1CollectedHeap::verify_before_gc() {
3198   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3199   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3200 }
3201 
3202 void G1CollectedHeap::verify_after_gc() {
3203   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3204   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3205 }
3206 
3207 class PrintRegionClosure: public HeapRegionClosure {
3208   outputStream* _st;
3209 public:
3210   PrintRegionClosure(outputStream* st) : _st(st) {}
3211   bool doHeapRegion(HeapRegion* r) {
3212     r->print_on(_st);
3213     return false;
3214   }
3215 };
3216 
3217 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3218                                        const HeapRegion* hr,
3219                                        const VerifyOption vo) const {
3220   switch (vo) {
3221   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3222   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3223   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3224   default:                            ShouldNotReachHere();
3225   }
3226   return false; // keep some compilers happy
3227 }
3228 
3229 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3230                                        const VerifyOption vo) const {
3231   switch (vo) {
3232   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3233   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3234   case VerifyOption_G1UseMarkWord: {
3235     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3236     return !obj->is_gc_marked() && !hr->is_archive();
3237   }
3238   default:                            ShouldNotReachHere();
3239   }
3240   return false; // keep some compilers happy
3241 }
3242 
3243 void G1CollectedHeap::print_on(outputStream* st) const {
3244   st->print(" %-20s", "garbage-first heap");
3245   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3246             capacity()/K, used_unlocked()/K);
3247   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3248             p2i(_hrm.reserved().start()),
3249             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3250             p2i(_hrm.reserved().end()));
3251   st->cr();
3252   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3253   uint young_regions = _young_list->length();
3254   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3255             (size_t) young_regions * HeapRegion::GrainBytes / K);
3256   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3257   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3258             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3259   st->cr();
3260   MetaspaceAux::print_on(st);
3261 }
3262 
3263 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3264   print_on(st);
3265 
3266   // Print the per-region information.
3267   st->cr();
3268   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3269                "HS=humongous(starts), HC=humongous(continues), "
3270                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3271                "PTAMS=previous top-at-mark-start, "
3272                "NTAMS=next top-at-mark-start)");
3273   PrintRegionClosure blk(st);
3274   heap_region_iterate(&blk);
3275 }
3276 
3277 void G1CollectedHeap::print_on_error(outputStream* st) const {
3278   this->CollectedHeap::print_on_error(st);
3279 
3280   if (_cm != NULL) {
3281     st->cr();
3282     _cm->print_on_error(st);
3283   }
3284 }
3285 
3286 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3287   workers()->print_worker_threads_on(st);
3288   _cmThread->print_on(st);
3289   st->cr();
3290   _cm->print_worker_threads_on(st);
3291   _cg1r->print_worker_threads_on(st);
3292   if (G1StringDedup::is_enabled()) {
3293     G1StringDedup::print_worker_threads_on(st);
3294   }
3295 }
3296 
3297 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3298   workers()->threads_do(tc);
3299   tc->do_thread(_cmThread);
3300   _cg1r->threads_do(tc);
3301   if (G1StringDedup::is_enabled()) {
3302     G1StringDedup::threads_do(tc);
3303   }
3304 }
3305 
3306 void G1CollectedHeap::print_tracing_info() const {
3307   // We'll overload this to mean "trace GC pause statistics."
3308   if (TraceYoungGenTime || TraceOldGenTime) {
3309     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3310     // to that.
3311     g1_policy()->print_tracing_info();
3312   }
3313   if (G1SummarizeRSetStats) {
3314     g1_rem_set()->print_summary_info();
3315   }
3316   if (G1SummarizeConcMark) {
3317     concurrent_mark()->print_summary_info();
3318   }
3319   g1_policy()->print_yg_surv_rate_info();
3320 }
3321 
3322 #ifndef PRODUCT
3323 // Helpful for debugging RSet issues.
3324 
3325 class PrintRSetsClosure : public HeapRegionClosure {
3326 private:
3327   const char* _msg;
3328   size_t _occupied_sum;
3329 
3330 public:
3331   bool doHeapRegion(HeapRegion* r) {
3332     HeapRegionRemSet* hrrs = r->rem_set();
3333     size_t occupied = hrrs->occupied();
3334     _occupied_sum += occupied;
3335 
3336     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3337                            HR_FORMAT_PARAMS(r));
3338     if (occupied == 0) {
3339       gclog_or_tty->print_cr("  RSet is empty");
3340     } else {
3341       hrrs->print();
3342     }
3343     gclog_or_tty->print_cr("----------");
3344     return false;
3345   }
3346 
3347   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3348     gclog_or_tty->cr();
3349     gclog_or_tty->print_cr("========================================");
3350     gclog_or_tty->print_cr("%s", msg);
3351     gclog_or_tty->cr();
3352   }
3353 
3354   ~PrintRSetsClosure() {
3355     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3356     gclog_or_tty->print_cr("========================================");
3357     gclog_or_tty->cr();
3358   }
3359 };
3360 
3361 void G1CollectedHeap::print_cset_rsets() {
3362   PrintRSetsClosure cl("Printing CSet RSets");
3363   collection_set_iterate(&cl);
3364 }
3365 
3366 void G1CollectedHeap::print_all_rsets() {
3367   PrintRSetsClosure cl("Printing All RSets");;
3368   heap_region_iterate(&cl);
3369 }
3370 #endif // PRODUCT
3371 
3372 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3373   YoungList* young_list = heap()->young_list();
3374 
3375   size_t eden_used_bytes = young_list->eden_used_bytes();
3376   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3377 
3378   size_t eden_capacity_bytes =
3379     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3380 
3381   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3382   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3383 }
3384 
3385 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3386   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3387                        stats->unused(), stats->used(), stats->region_end_waste(),
3388                        stats->regions_filled(), stats->direct_allocated(),
3389                        stats->failure_used(), stats->failure_waste());
3390 }
3391 
3392 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3393   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3394   gc_tracer->report_gc_heap_summary(when, heap_summary);
3395 
3396   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3397   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3398 }
3399 
3400 
3401 G1CollectedHeap* G1CollectedHeap::heap() {
3402   CollectedHeap* heap = Universe::heap();
3403   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3404   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3405   return (G1CollectedHeap*)heap;
3406 }
3407 
3408 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3409   // always_do_update_barrier = false;
3410   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3411   // Fill TLAB's and such
3412   accumulate_statistics_all_tlabs();
3413   ensure_parsability(true);
3414 
3415   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3416       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3417     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3418   }
3419 }
3420 
3421 void G1CollectedHeap::gc_epilogue(bool full) {
3422 
3423   if (G1SummarizeRSetStats &&
3424       (G1SummarizeRSetStatsPeriod > 0) &&
3425       // we are at the end of the GC. Total collections has already been increased.
3426       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3427     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3428   }
3429 
3430   // FIXME: what is this about?
3431   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3432   // is set.
3433 #if defined(COMPILER2) || INCLUDE_JVMCI
3434   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3435 #endif
3436   // always_do_update_barrier = true;
3437 
3438   resize_all_tlabs();
3439   allocation_context_stats().update(full);
3440 
3441   // We have just completed a GC. Update the soft reference
3442   // policy with the new heap occupancy
3443   Universe::update_heap_info_at_gc();
3444 }
3445 
3446 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3447                                                uint gc_count_before,
3448                                                bool* succeeded,
3449                                                GCCause::Cause gc_cause) {
3450   assert_heap_not_locked_and_not_at_safepoint();
3451   g1_policy()->record_stop_world_start();
3452   VM_G1IncCollectionPause op(gc_count_before,
3453                              word_size,
3454                              false, /* should_initiate_conc_mark */
3455                              g1_policy()->max_pause_time_ms(),
3456                              gc_cause);
3457 
3458   op.set_allocation_context(AllocationContext::current());
3459   VMThread::execute(&op);
3460 
3461   HeapWord* result = op.result();
3462   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3463   assert(result == NULL || ret_succeeded,
3464          "the result should be NULL if the VM did not succeed");
3465   *succeeded = ret_succeeded;
3466 
3467   assert_heap_not_locked();
3468   return result;
3469 }
3470 
3471 void
3472 G1CollectedHeap::doConcurrentMark() {
3473   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3474   if (!_cmThread->in_progress()) {
3475     _cmThread->set_started();
3476     CGC_lock->notify();
3477   }
3478 }
3479 
3480 size_t G1CollectedHeap::pending_card_num() {
3481   size_t extra_cards = 0;
3482   JavaThread *curr = Threads::first();
3483   while (curr != NULL) {
3484     DirtyCardQueue& dcq = curr->dirty_card_queue();
3485     extra_cards += dcq.size();
3486     curr = curr->next();
3487   }
3488   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3489   size_t buffer_size = dcqs.buffer_size();
3490   size_t buffer_num = dcqs.completed_buffers_num();
3491 
3492   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3493   // in bytes - not the number of 'entries'. We need to convert
3494   // into a number of cards.
3495   return (buffer_size * buffer_num + extra_cards) / oopSize;
3496 }
3497 
3498 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3499  private:
3500   size_t _total_humongous;
3501   size_t _candidate_humongous;
3502 
3503   DirtyCardQueue _dcq;
3504 
3505   // We don't nominate objects with many remembered set entries, on
3506   // the assumption that such objects are likely still live.
3507   bool is_remset_small(HeapRegion* region) const {
3508     HeapRegionRemSet* const rset = region->rem_set();
3509     return G1EagerReclaimHumongousObjectsWithStaleRefs
3510       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3511       : rset->is_empty();
3512   }
3513 
3514   bool is_typeArray_region(HeapRegion* region) const {
3515     return oop(region->bottom())->is_typeArray();
3516   }
3517 
3518   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3519     assert(region->is_starts_humongous(), "Must start a humongous object");
3520 
3521     // Candidate selection must satisfy the following constraints
3522     // while concurrent marking is in progress:
3523     //
3524     // * In order to maintain SATB invariants, an object must not be
3525     // reclaimed if it was allocated before the start of marking and
3526     // has not had its references scanned.  Such an object must have
3527     // its references (including type metadata) scanned to ensure no
3528     // live objects are missed by the marking process.  Objects
3529     // allocated after the start of concurrent marking don't need to
3530     // be scanned.
3531     //
3532     // * An object must not be reclaimed if it is on the concurrent
3533     // mark stack.  Objects allocated after the start of concurrent
3534     // marking are never pushed on the mark stack.
3535     //
3536     // Nominating only objects allocated after the start of concurrent
3537     // marking is sufficient to meet both constraints.  This may miss
3538     // some objects that satisfy the constraints, but the marking data
3539     // structures don't support efficiently performing the needed
3540     // additional tests or scrubbing of the mark stack.
3541     //
3542     // However, we presently only nominate is_typeArray() objects.
3543     // A humongous object containing references induces remembered
3544     // set entries on other regions.  In order to reclaim such an
3545     // object, those remembered sets would need to be cleaned up.
3546     //
3547     // We also treat is_typeArray() objects specially, allowing them
3548     // to be reclaimed even if allocated before the start of
3549     // concurrent mark.  For this we rely on mark stack insertion to
3550     // exclude is_typeArray() objects, preventing reclaiming an object
3551     // that is in the mark stack.  We also rely on the metadata for
3552     // such objects to be built-in and so ensured to be kept live.
3553     // Frequent allocation and drop of large binary blobs is an
3554     // important use case for eager reclaim, and this special handling
3555     // may reduce needed headroom.
3556 
3557     return is_typeArray_region(region) && is_remset_small(region);
3558   }
3559 
3560  public:
3561   RegisterHumongousWithInCSetFastTestClosure()
3562   : _total_humongous(0),
3563     _candidate_humongous(0),
3564     _dcq(&JavaThread::dirty_card_queue_set()) {
3565   }
3566 
3567   virtual bool doHeapRegion(HeapRegion* r) {
3568     if (!r->is_starts_humongous()) {
3569       return false;
3570     }
3571     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3572 
3573     bool is_candidate = humongous_region_is_candidate(g1h, r);
3574     uint rindex = r->hrm_index();
3575     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3576     if (is_candidate) {
3577       _candidate_humongous++;
3578       g1h->register_humongous_region_with_cset(rindex);
3579       // Is_candidate already filters out humongous object with large remembered sets.
3580       // If we have a humongous object with a few remembered sets, we simply flush these
3581       // remembered set entries into the DCQS. That will result in automatic
3582       // re-evaluation of their remembered set entries during the following evacuation
3583       // phase.
3584       if (!r->rem_set()->is_empty()) {
3585         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3586                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3587         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3588         HeapRegionRemSetIterator hrrs(r->rem_set());
3589         size_t card_index;
3590         while (hrrs.has_next(card_index)) {
3591           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3592           // The remembered set might contain references to already freed
3593           // regions. Filter out such entries to avoid failing card table
3594           // verification.
3595           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3596             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3597               *card_ptr = CardTableModRefBS::dirty_card_val();
3598               _dcq.enqueue(card_ptr);
3599             }
3600           }
3601         }
3602         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3603                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3604                hrrs.n_yielded(), r->rem_set()->occupied());
3605         r->rem_set()->clear_locked();
3606       }
3607       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3608     }
3609     _total_humongous++;
3610 
3611     return false;
3612   }
3613 
3614   size_t total_humongous() const { return _total_humongous; }
3615   size_t candidate_humongous() const { return _candidate_humongous; }
3616 
3617   void flush_rem_set_entries() { _dcq.flush(); }
3618 };
3619 
3620 void G1CollectedHeap::register_humongous_regions_with_cset() {
3621   if (!G1EagerReclaimHumongousObjects) {
3622     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3623     return;
3624   }
3625   double time = os::elapsed_counter();
3626 
3627   // Collect reclaim candidate information and register candidates with cset.
3628   RegisterHumongousWithInCSetFastTestClosure cl;
3629   heap_region_iterate(&cl);
3630 
3631   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3632   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3633                                                                   cl.total_humongous(),
3634                                                                   cl.candidate_humongous());
3635   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3636 
3637   // Finally flush all remembered set entries to re-check into the global DCQS.
3638   cl.flush_rem_set_entries();
3639 }
3640 
3641 class VerifyRegionRSetClosure : public HeapRegionClosure {
3642 public:
3643   bool doHeapRegion(HeapRegion* hr) {
3644     if (!hr->is_archive() && !hr->is_continues_humongous()) {
3645       bool dummy = false;
3646       hr->verifyRSet(VerifyOption_G1UsePrevMarking, &dummy);
3647     }
3648     return false;
3649   }
3650 };
3651 
3652 #ifdef ASSERT
3653 class VerifyCSetClosure: public HeapRegionClosure {
3654 public:
3655   bool doHeapRegion(HeapRegion* hr) {
3656     // Here we check that the CSet region's RSet is ready for parallel
3657     // iteration. The fields that we'll verify are only manipulated
3658     // when the region is part of a CSet and is collected. Afterwards,
3659     // we reset these fields when we clear the region's RSet (when the
3660     // region is freed) so they are ready when the region is
3661     // re-allocated. The only exception to this is if there's an
3662     // evacuation failure and instead of freeing the region we leave
3663     // it in the heap. In that case, we reset these fields during
3664     // evacuation failure handling.
3665     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3666 
3667     // Here's a good place to add any other checks we'd like to
3668     // perform on CSet regions.
3669     return false;
3670   }
3671 };
3672 #endif // ASSERT
3673 
3674 uint G1CollectedHeap::num_task_queues() const {
3675   return _task_queues->size();
3676 }
3677 
3678 #if TASKQUEUE_STATS
3679 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3680   st->print_raw_cr("GC Task Stats");
3681   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3682   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3683 }
3684 
3685 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3686   print_taskqueue_stats_hdr(st);
3687 
3688   TaskQueueStats totals;
3689   const uint n = num_task_queues();
3690   for (uint i = 0; i < n; ++i) {
3691     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3692     totals += task_queue(i)->stats;
3693   }
3694   st->print_raw("tot "); totals.print(st); st->cr();
3695 
3696   DEBUG_ONLY(totals.verify());
3697 }
3698 
3699 void G1CollectedHeap::reset_taskqueue_stats() {
3700   const uint n = num_task_queues();
3701   for (uint i = 0; i < n; ++i) {
3702     task_queue(i)->stats.reset();
3703   }
3704 }
3705 #endif // TASKQUEUE_STATS
3706 
3707 void G1CollectedHeap::log_gc_header() {
3708   if (!G1Log::fine()) {
3709     return;
3710   }
3711 
3712   gclog_or_tty->gclog_stamp();
3713 
3714   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3715     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3716     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3717 
3718   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3719 }
3720 
3721 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3722   if (!G1Log::fine()) {
3723     return;
3724   }
3725 
3726   if (G1Log::finer()) {
3727     if (evacuation_failed()) {
3728       gclog_or_tty->print(" (to-space exhausted)");
3729     }
3730     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3731     g1_policy()->print_phases(pause_time_sec);
3732     g1_policy()->print_detailed_heap_transition();
3733   } else {
3734     if (evacuation_failed()) {
3735       gclog_or_tty->print("--");
3736     }
3737     g1_policy()->print_heap_transition();
3738     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3739   }
3740   gclog_or_tty->flush();
3741 }
3742 
3743 void G1CollectedHeap::wait_for_root_region_scanning() {
3744   double scan_wait_start = os::elapsedTime();
3745   // We have to wait until the CM threads finish scanning the
3746   // root regions as it's the only way to ensure that all the
3747   // objects on them have been correctly scanned before we start
3748   // moving them during the GC.
3749   bool waited = _cm->root_regions()->wait_until_scan_finished();
3750   double wait_time_ms = 0.0;
3751   if (waited) {
3752     double scan_wait_end = os::elapsedTime();
3753     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3754   }
3755   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3756 }
3757 
3758 bool
3759 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3760   assert_at_safepoint(true /* should_be_vm_thread */);
3761   guarantee(!is_gc_active(), "collection is not reentrant");
3762 
3763   if (GC_locker::check_active_before_gc()) {
3764     return false;
3765   }
3766 
3767   _gc_timer_stw->register_gc_start();
3768 
3769   GCIdMark gc_id_mark;
3770   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3771 
3772   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3773   ResourceMark rm;
3774 
3775   wait_for_root_region_scanning();
3776 
3777   G1Log::update_level();
3778   print_heap_before_gc();
3779   trace_heap_before_gc(_gc_tracer_stw);
3780 
3781   verify_region_sets_optional();
3782   verify_dirty_young_regions();
3783 
3784   // This call will decide whether this pause is an initial-mark
3785   // pause. If it is, during_initial_mark_pause() will return true
3786   // for the duration of this pause.
3787   g1_policy()->decide_on_conc_mark_initiation();
3788 
3789   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3790   assert(!collector_state()->during_initial_mark_pause() ||
3791           collector_state()->gcs_are_young(), "sanity");
3792 
3793   // We also do not allow mixed GCs during marking.
3794   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3795 
3796   // Record whether this pause is an initial mark. When the current
3797   // thread has completed its logging output and it's safe to signal
3798   // the CM thread, the flag's value in the policy has been reset.
3799   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3800 
3801   // Inner scope for scope based logging, timers, and stats collection
3802   {
3803     EvacuationInfo evacuation_info;
3804 
3805     if (collector_state()->during_initial_mark_pause()) {
3806       // We are about to start a marking cycle, so we increment the
3807       // full collection counter.
3808       increment_old_marking_cycles_started();
3809       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3810     }
3811 
3812     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3813 
3814     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3815 
3816     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3817                                                                   workers()->active_workers(),
3818                                                                   Threads::number_of_non_daemon_threads());
3819     workers()->set_active_workers(active_workers);
3820 
3821     double pause_start_sec = os::elapsedTime();
3822     g1_policy()->note_gc_start(active_workers);
3823     log_gc_header();
3824 
3825     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3826     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3827 
3828     // If the secondary_free_list is not empty, append it to the
3829     // free_list. No need to wait for the cleanup operation to finish;
3830     // the region allocation code will check the secondary_free_list
3831     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3832     // set, skip this step so that the region allocation code has to
3833     // get entries from the secondary_free_list.
3834     if (!G1StressConcRegionFreeing) {
3835       append_secondary_free_list_if_not_empty_with_lock();
3836     }
3837 
3838     assert(check_young_list_well_formed(), "young list should be well formed");
3839 
3840     // Don't dynamically change the number of GC threads this early.  A value of
3841     // 0 is used to indicate serial work.  When parallel work is done,
3842     // it will be set.
3843 
3844     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3845       IsGCActiveMark x;
3846 
3847       gc_prologue(false);
3848       increment_total_collections(false /* full gc */);
3849       increment_gc_time_stamp();
3850 
3851       verify_before_gc();
3852 
3853       check_bitmaps("GC Start");
3854 
3855 #if defined(COMPILER2) || INCLUDE_JVMCI
3856       DerivedPointerTable::clear();
3857 #endif
3858 
3859       // Please see comment in g1CollectedHeap.hpp and
3860       // G1CollectedHeap::ref_processing_init() to see how
3861       // reference processing currently works in G1.
3862 
3863       // Enable discovery in the STW reference processor
3864       if (g1_policy()->should_process_references()) {
3865         ref_processor_stw()->enable_discovery();
3866       } else {
3867         ref_processor_stw()->disable_discovery();
3868       }
3869 
3870       {
3871         // We want to temporarily turn off discovery by the
3872         // CM ref processor, if necessary, and turn it back on
3873         // on again later if we do. Using a scoped
3874         // NoRefDiscovery object will do this.
3875         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3876 
3877         // Forget the current alloc region (we might even choose it to be part
3878         // of the collection set!).
3879         _allocator->release_mutator_alloc_region();
3880 
3881         // We should call this after we retire the mutator alloc
3882         // region(s) so that all the ALLOC / RETIRE events are generated
3883         // before the start GC event.
3884         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3885 
3886         // This timing is only used by the ergonomics to handle our pause target.
3887         // It is unclear why this should not include the full pause. We will
3888         // investigate this in CR 7178365.
3889         //
3890         // Preserving the old comment here if that helps the investigation:
3891         //
3892         // The elapsed time induced by the start time below deliberately elides
3893         // the possible verification above.
3894         double sample_start_time_sec = os::elapsedTime();
3895 
3896         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3897 
3898         if (collector_state()->during_initial_mark_pause()) {
3899           concurrent_mark()->checkpointRootsInitialPre();
3900         }
3901 
3902         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3903         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3904 
3905         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3906 
3907         // Make sure the remembered sets are up to date. This needs to be
3908         // done before register_humongous_regions_with_cset(), because the
3909         // remembered sets are used there to choose eager reclaim candidates.
3910         // If the remembered sets are not up to date we might miss some
3911         // entries that need to be handled.
3912         g1_rem_set()->cleanupHRRS();
3913 
3914         register_humongous_regions_with_cset();
3915 
3916         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3917 
3918         _cm->note_start_of_gc();
3919         // We call this after finalize_cset() to
3920         // ensure that the CSet has been finalized.
3921         _cm->verify_no_cset_oops();
3922 
3923         if (_hr_printer.is_active()) {
3924           HeapRegion* hr = g1_policy()->collection_set();
3925           while (hr != NULL) {
3926             _hr_printer.cset(hr);
3927             hr = hr->next_in_collection_set();
3928           }
3929         }
3930 
3931 #ifdef ASSERT
3932         VerifyCSetClosure cl;
3933         collection_set_iterate(&cl);
3934 #endif // ASSERT
3935 
3936         // Initialize the GC alloc regions.
3937         _allocator->init_gc_alloc_regions(evacuation_info);
3938 
3939         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3940         pre_evacuate_collection_set();
3941 
3942         // Actually do the work...
3943         evacuate_collection_set(evacuation_info, &per_thread_states);
3944 
3945         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3946 
3947         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3948         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3949 
3950         eagerly_reclaim_humongous_regions();
3951 
3952         g1_policy()->clear_collection_set();
3953 
3954         // Start a new incremental collection set for the next pause.
3955         g1_policy()->start_incremental_cset_building();
3956 
3957         clear_cset_fast_test();
3958 
3959         _young_list->reset_sampled_info();
3960 
3961         // Don't check the whole heap at this point as the
3962         // GC alloc regions from this pause have been tagged
3963         // as survivors and moved on to the survivor list.
3964         // Survivor regions will fail the !is_young() check.
3965         assert(check_young_list_empty(false /* check_heap */),
3966           "young list should be empty");
3967 
3968         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3969                                              _young_list->first_survivor_region(),
3970                                              _young_list->last_survivor_region());
3971 
3972         _young_list->reset_auxilary_lists();
3973 
3974         if (evacuation_failed()) {
3975           set_used(recalculate_used());
3976           if (_archive_allocator != NULL) {
3977             _archive_allocator->clear_used();
3978           }
3979           for (uint i = 0; i < ParallelGCThreads; i++) {
3980             if (_evacuation_failed_info_array[i].has_failed()) {
3981               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3982             }
3983           }
3984         } else {
3985           // The "used" of the the collection set have already been subtracted
3986           // when they were freed.  Add in the bytes evacuated.
3987           increase_used(g1_policy()->bytes_copied_during_gc());
3988         }
3989 
3990         if (collector_state()->during_initial_mark_pause()) {
3991           // We have to do this before we notify the CM threads that
3992           // they can start working to make sure that all the
3993           // appropriate initialization is done on the CM object.
3994           concurrent_mark()->checkpointRootsInitialPost();
3995           collector_state()->set_mark_in_progress(true);
3996           // Note that we don't actually trigger the CM thread at
3997           // this point. We do that later when we're sure that
3998           // the current thread has completed its logging output.
3999         }
4000 
4001         allocate_dummy_regions();
4002 
4003         _allocator->init_mutator_alloc_region();
4004 
4005         {
4006           size_t expand_bytes = g1_policy()->expansion_amount();
4007           if (expand_bytes > 0) {
4008             size_t bytes_before = capacity();
4009             // No need for an ergo verbose message here,
4010             // expansion_amount() does this when it returns a value > 0.
4011             double expand_ms;
4012             if (!expand(expand_bytes, &expand_ms)) {
4013               // We failed to expand the heap. Cannot do anything about it.
4014             }
4015             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
4016           }
4017         }
4018 
4019         // We redo the verification but now wrt to the new CSet which
4020         // has just got initialized after the previous CSet was freed.
4021         _cm->verify_no_cset_oops();
4022         _cm->note_end_of_gc();
4023 
4024         // This timing is only used by the ergonomics to handle our pause target.
4025         // It is unclear why this should not include the full pause. We will
4026         // investigate this in CR 7178365.
4027         double sample_end_time_sec = os::elapsedTime();
4028         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4029         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
4030         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
4031 
4032         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
4033         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
4034 
4035         MemoryService::track_memory_usage();
4036 
4037         // In prepare_for_verify() below we'll need to scan the deferred
4038         // update buffers to bring the RSets up-to-date if
4039         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4040         // the update buffers we'll probably need to scan cards on the
4041         // regions we just allocated to (i.e., the GC alloc
4042         // regions). However, during the last GC we called
4043         // set_saved_mark() on all the GC alloc regions, so card
4044         // scanning might skip the [saved_mark_word()...top()] area of
4045         // those regions (i.e., the area we allocated objects into
4046         // during the last GC). But it shouldn't. Given that
4047         // saved_mark_word() is conditional on whether the GC time stamp
4048         // on the region is current or not, by incrementing the GC time
4049         // stamp here we invalidate all the GC time stamps on all the
4050         // regions and saved_mark_word() will simply return top() for
4051         // all the regions. This is a nicer way of ensuring this rather
4052         // than iterating over the regions and fixing them. In fact, the
4053         // GC time stamp increment here also ensures that
4054         // saved_mark_word() will return top() between pauses, i.e.,
4055         // during concurrent refinement. So we don't need the
4056         // is_gc_active() check to decided which top to use when
4057         // scanning cards (see CR 7039627).
4058         increment_gc_time_stamp();
4059 
4060         if (G1VerifyRSetsAfterEvacuationPause) {
4061           gclog_or_tty->print("[Verifying RSets]");
4062           VerifyRegionRSetClosure v_cl;
4063           heap_region_iterate(&v_cl);
4064         }
4065 
4066         verify_after_gc();
4067         check_bitmaps("GC End");
4068 
4069         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4070         ref_processor_stw()->verify_no_references_recorded();
4071 
4072         // CM reference discovery will be re-enabled if necessary.
4073       }
4074 
4075       // We should do this after we potentially expand the heap so
4076       // that all the COMMIT events are generated before the end GC
4077       // event, and after we retire the GC alloc regions so that all
4078       // RETIRE events are generated before the end GC event.
4079       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4080 
4081 #ifdef TRACESPINNING
4082       ParallelTaskTerminator::print_termination_counts();
4083 #endif
4084 
4085       gc_epilogue(false);
4086     }
4087 
4088     // Print the remainder of the GC log output.
4089     log_gc_footer(os::elapsedTime() - pause_start_sec);
4090 
4091     // It is not yet to safe to tell the concurrent mark to
4092     // start as we have some optional output below. We don't want the
4093     // output from the concurrent mark thread interfering with this
4094     // logging output either.
4095 
4096     _hrm.verify_optional();
4097     verify_region_sets_optional();
4098 
4099     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4100     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4101 
4102     print_heap_after_gc();
4103     trace_heap_after_gc(_gc_tracer_stw);
4104 
4105     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4106     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4107     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4108     // before any GC notifications are raised.
4109     g1mm()->update_sizes();
4110 
4111     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4112     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4113     _gc_timer_stw->register_gc_end();
4114     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4115   }
4116   // It should now be safe to tell the concurrent mark thread to start
4117   // without its logging output interfering with the logging output
4118   // that came from the pause.
4119 
4120   if (should_start_conc_mark) {
4121     // CAUTION: after the doConcurrentMark() call below,
4122     // the concurrent marking thread(s) could be running
4123     // concurrently with us. Make sure that anything after
4124     // this point does not assume that we are the only GC thread
4125     // running. Note: of course, the actual marking work will
4126     // not start until the safepoint itself is released in
4127     // SuspendibleThreadSet::desynchronize().
4128     doConcurrentMark();
4129   }
4130 
4131   return true;
4132 }
4133 
4134 void G1CollectedHeap::restore_preserved_marks() {
4135   G1RestorePreservedMarksTask rpm_task(_preserved_objs);
4136   workers()->run_task(&rpm_task);
4137 }
4138 
4139 void G1CollectedHeap::remove_self_forwarding_pointers() {
4140   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4141   workers()->run_task(&rsfp_task);
4142 }
4143 
4144 void G1CollectedHeap::restore_after_evac_failure() {
4145   double remove_self_forwards_start = os::elapsedTime();
4146 
4147   remove_self_forwarding_pointers();
4148   restore_preserved_marks();
4149 
4150   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4151 }
4152 
4153 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4154   if (!_evacuation_failed) {
4155     _evacuation_failed = true;
4156   }
4157 
4158   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4159 
4160   // We want to call the "for_promotion_failure" version only in the
4161   // case of a promotion failure.
4162   if (m->must_be_preserved_for_promotion_failure(obj)) {
4163     OopAndMarkOop elem(obj, m);
4164     _preserved_objs[worker_id].push(elem);
4165   }
4166 }
4167 
4168 bool G1ParEvacuateFollowersClosure::offer_termination() {
4169   G1ParScanThreadState* const pss = par_scan_state();
4170   start_term_time();
4171   const bool res = terminator()->offer_termination();
4172   end_term_time();
4173   return res;
4174 }
4175 
4176 void G1ParEvacuateFollowersClosure::do_void() {
4177   G1ParScanThreadState* const pss = par_scan_state();
4178   pss->trim_queue();
4179   do {
4180     pss->steal_and_trim_queue(queues());
4181   } while (!offer_termination());
4182 }
4183 
4184 class G1ParTask : public AbstractGangTask {
4185 protected:
4186   G1CollectedHeap*         _g1h;
4187   G1ParScanThreadStateSet* _pss;
4188   RefToScanQueueSet*       _queues;
4189   G1RootProcessor*         _root_processor;
4190   ParallelTaskTerminator   _terminator;
4191   uint                     _n_workers;
4192 
4193 public:
4194   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4195     : AbstractGangTask("G1 collection"),
4196       _g1h(g1h),
4197       _pss(per_thread_states),
4198       _queues(task_queues),
4199       _root_processor(root_processor),
4200       _terminator(n_workers, _queues),
4201       _n_workers(n_workers)
4202   {}
4203 
4204   void work(uint worker_id) {
4205     if (worker_id >= _n_workers) return;  // no work needed this round
4206 
4207     double start_sec = os::elapsedTime();
4208     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4209 
4210     {
4211       ResourceMark rm;
4212       HandleMark   hm;
4213 
4214       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4215 
4216       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4217       pss->set_ref_processor(rp);
4218 
4219       double start_strong_roots_sec = os::elapsedTime();
4220 
4221       _root_processor->evacuate_roots(pss->closures(), worker_id);
4222 
4223       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4224 
4225       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4226       // treating the nmethods visited to act as roots for concurrent marking.
4227       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4228       // objects copied by the current evacuation.
4229       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4230                                                                              pss->closures()->weak_codeblobs(),
4231                                                                              worker_id);
4232 
4233       _pss->add_cards_scanned(worker_id, cards_scanned);
4234 
4235       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4236 
4237       double term_sec = 0.0;
4238       size_t evac_term_attempts = 0;
4239       {
4240         double start = os::elapsedTime();
4241         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4242         evac.do_void();
4243 
4244         evac_term_attempts = evac.term_attempts();
4245         term_sec = evac.term_time();
4246         double elapsed_sec = os::elapsedTime() - start;
4247         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4248         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4249         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4250       }
4251 
4252       assert(pss->queue_is_empty(), "should be empty");
4253 
4254       if (PrintTerminationStats) {
4255         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4256         size_t lab_waste;
4257         size_t lab_undo_waste;
4258         pss->waste(lab_waste, lab_undo_waste);
4259         _g1h->print_termination_stats(gclog_or_tty,
4260                                       worker_id,
4261                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4262                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4263                                       term_sec * 1000.0,                          /* evac term time */
4264                                       evac_term_attempts,                         /* evac term attempts */
4265                                       lab_waste,                                  /* alloc buffer waste */
4266                                       lab_undo_waste                              /* undo waste */
4267                                       );
4268       }
4269 
4270       // Close the inner scope so that the ResourceMark and HandleMark
4271       // destructors are executed here and are included as part of the
4272       // "GC Worker Time".
4273     }
4274     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4275   }
4276 };
4277 
4278 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4279   st->print_raw_cr("GC Termination Stats");
4280   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4281   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4282   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4283 }
4284 
4285 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4286                                               uint worker_id,
4287                                               double elapsed_ms,
4288                                               double strong_roots_ms,
4289                                               double term_ms,
4290                                               size_t term_attempts,
4291                                               size_t alloc_buffer_waste,
4292                                               size_t undo_waste) const {
4293   st->print_cr("%3d %9.2f %9.2f %6.2f "
4294                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4295                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4296                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4297                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4298                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4299                alloc_buffer_waste * HeapWordSize / K,
4300                undo_waste * HeapWordSize / K);
4301 }
4302 
4303 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4304 private:
4305   BoolObjectClosure* _is_alive;
4306   int _initial_string_table_size;
4307   int _initial_symbol_table_size;
4308 
4309   bool  _process_strings;
4310   int _strings_processed;
4311   int _strings_removed;
4312 
4313   bool  _process_symbols;
4314   int _symbols_processed;
4315   int _symbols_removed;
4316 
4317 public:
4318   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4319     AbstractGangTask("String/Symbol Unlinking"),
4320     _is_alive(is_alive),
4321     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4322     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4323 
4324     _initial_string_table_size = StringTable::the_table()->table_size();
4325     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4326     if (process_strings) {
4327       StringTable::clear_parallel_claimed_index();
4328     }
4329     if (process_symbols) {
4330       SymbolTable::clear_parallel_claimed_index();
4331     }
4332   }
4333 
4334   ~G1StringSymbolTableUnlinkTask() {
4335     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4336               "claim value %d after unlink less than initial string table size %d",
4337               StringTable::parallel_claimed_index(), _initial_string_table_size);
4338     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4339               "claim value %d after unlink less than initial symbol table size %d",
4340               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4341 
4342     if (G1TraceStringSymbolTableScrubbing) {
4343       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4344                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4345                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4346                              strings_processed(), strings_removed(),
4347                              symbols_processed(), symbols_removed());
4348     }
4349   }
4350 
4351   void work(uint worker_id) {
4352     int strings_processed = 0;
4353     int strings_removed = 0;
4354     int symbols_processed = 0;
4355     int symbols_removed = 0;
4356     if (_process_strings) {
4357       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4358       Atomic::add(strings_processed, &_strings_processed);
4359       Atomic::add(strings_removed, &_strings_removed);
4360     }
4361     if (_process_symbols) {
4362       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4363       Atomic::add(symbols_processed, &_symbols_processed);
4364       Atomic::add(symbols_removed, &_symbols_removed);
4365     }
4366   }
4367 
4368   size_t strings_processed() const { return (size_t)_strings_processed; }
4369   size_t strings_removed()   const { return (size_t)_strings_removed; }
4370 
4371   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4372   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4373 };
4374 
4375 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4376 private:
4377   static Monitor* _lock;
4378 
4379   BoolObjectClosure* const _is_alive;
4380   const bool               _unloading_occurred;
4381   const uint               _num_workers;
4382 
4383   // Variables used to claim nmethods.
4384   nmethod* _first_nmethod;
4385   volatile nmethod* _claimed_nmethod;
4386 
4387   // The list of nmethods that need to be processed by the second pass.
4388   volatile nmethod* _postponed_list;
4389   volatile uint     _num_entered_barrier;
4390 
4391  public:
4392   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4393       _is_alive(is_alive),
4394       _unloading_occurred(unloading_occurred),
4395       _num_workers(num_workers),
4396       _first_nmethod(NULL),
4397       _claimed_nmethod(NULL),
4398       _postponed_list(NULL),
4399       _num_entered_barrier(0)
4400   {
4401     nmethod::increase_unloading_clock();
4402     // Get first alive nmethod
4403     NMethodIterator iter = NMethodIterator();
4404     if(iter.next_alive()) {
4405       _first_nmethod = iter.method();
4406     }
4407     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4408   }
4409 
4410   ~G1CodeCacheUnloadingTask() {
4411     CodeCache::verify_clean_inline_caches();
4412 
4413     CodeCache::set_needs_cache_clean(false);
4414     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4415 
4416     CodeCache::verify_icholder_relocations();
4417   }
4418 
4419  private:
4420   void add_to_postponed_list(nmethod* nm) {
4421       nmethod* old;
4422       do {
4423         old = (nmethod*)_postponed_list;
4424         nm->set_unloading_next(old);
4425       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4426   }
4427 
4428   void clean_nmethod(nmethod* nm) {
4429     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4430 
4431     if (postponed) {
4432       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4433       add_to_postponed_list(nm);
4434     }
4435 
4436     // Mark that this thread has been cleaned/unloaded.
4437     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4438     nm->set_unloading_clock(nmethod::global_unloading_clock());
4439   }
4440 
4441   void clean_nmethod_postponed(nmethod* nm) {
4442     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4443   }
4444 
4445   static const int MaxClaimNmethods = 16;
4446 
4447   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4448     nmethod* first;
4449     NMethodIterator last;
4450 
4451     do {
4452       *num_claimed_nmethods = 0;
4453 
4454       first = (nmethod*)_claimed_nmethod;
4455       last = NMethodIterator(first);
4456 
4457       if (first != NULL) {
4458 
4459         for (int i = 0; i < MaxClaimNmethods; i++) {
4460           if (!last.next_alive()) {
4461             break;
4462           }
4463           claimed_nmethods[i] = last.method();
4464           (*num_claimed_nmethods)++;
4465         }
4466       }
4467 
4468     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4469   }
4470 
4471   nmethod* claim_postponed_nmethod() {
4472     nmethod* claim;
4473     nmethod* next;
4474 
4475     do {
4476       claim = (nmethod*)_postponed_list;
4477       if (claim == NULL) {
4478         return NULL;
4479       }
4480 
4481       next = claim->unloading_next();
4482 
4483     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4484 
4485     return claim;
4486   }
4487 
4488  public:
4489   // Mark that we're done with the first pass of nmethod cleaning.
4490   void barrier_mark(uint worker_id) {
4491     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4492     _num_entered_barrier++;
4493     if (_num_entered_barrier == _num_workers) {
4494       ml.notify_all();
4495     }
4496   }
4497 
4498   // See if we have to wait for the other workers to
4499   // finish their first-pass nmethod cleaning work.
4500   void barrier_wait(uint worker_id) {
4501     if (_num_entered_barrier < _num_workers) {
4502       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4503       while (_num_entered_barrier < _num_workers) {
4504           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4505       }
4506     }
4507   }
4508 
4509   // Cleaning and unloading of nmethods. Some work has to be postponed
4510   // to the second pass, when we know which nmethods survive.
4511   void work_first_pass(uint worker_id) {
4512     // The first nmethods is claimed by the first worker.
4513     if (worker_id == 0 && _first_nmethod != NULL) {
4514       clean_nmethod(_first_nmethod);
4515       _first_nmethod = NULL;
4516     }
4517 
4518     int num_claimed_nmethods;
4519     nmethod* claimed_nmethods[MaxClaimNmethods];
4520 
4521     while (true) {
4522       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4523 
4524       if (num_claimed_nmethods == 0) {
4525         break;
4526       }
4527 
4528       for (int i = 0; i < num_claimed_nmethods; i++) {
4529         clean_nmethod(claimed_nmethods[i]);
4530       }
4531     }
4532   }
4533 
4534   void work_second_pass(uint worker_id) {
4535     nmethod* nm;
4536     // Take care of postponed nmethods.
4537     while ((nm = claim_postponed_nmethod()) != NULL) {
4538       clean_nmethod_postponed(nm);
4539     }
4540   }
4541 };
4542 
4543 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4544 
4545 class G1KlassCleaningTask : public StackObj {
4546   BoolObjectClosure*                      _is_alive;
4547   volatile jint                           _clean_klass_tree_claimed;
4548   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4549 
4550  public:
4551   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4552       _is_alive(is_alive),
4553       _clean_klass_tree_claimed(0),
4554       _klass_iterator() {
4555   }
4556 
4557  private:
4558   bool claim_clean_klass_tree_task() {
4559     if (_clean_klass_tree_claimed) {
4560       return false;
4561     }
4562 
4563     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4564   }
4565 
4566   InstanceKlass* claim_next_klass() {
4567     Klass* klass;
4568     do {
4569       klass =_klass_iterator.next_klass();
4570     } while (klass != NULL && !klass->is_instance_klass());
4571 
4572     // this can be null so don't call InstanceKlass::cast
4573     return static_cast<InstanceKlass*>(klass);
4574   }
4575 
4576 public:
4577 
4578   void clean_klass(InstanceKlass* ik) {
4579     ik->clean_weak_instanceklass_links(_is_alive);
4580   }
4581 
4582   void work() {
4583     ResourceMark rm;
4584 
4585     // One worker will clean the subklass/sibling klass tree.
4586     if (claim_clean_klass_tree_task()) {
4587       Klass::clean_subklass_tree(_is_alive);
4588     }
4589 
4590     // All workers will help cleaning the classes,
4591     InstanceKlass* klass;
4592     while ((klass = claim_next_klass()) != NULL) {
4593       clean_klass(klass);
4594     }
4595   }
4596 };
4597 
4598 // To minimize the remark pause times, the tasks below are done in parallel.
4599 class G1ParallelCleaningTask : public AbstractGangTask {
4600 private:
4601   G1StringSymbolTableUnlinkTask _string_symbol_task;
4602   G1CodeCacheUnloadingTask      _code_cache_task;
4603   G1KlassCleaningTask           _klass_cleaning_task;
4604 
4605 public:
4606   // The constructor is run in the VMThread.
4607   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4608       AbstractGangTask("Parallel Cleaning"),
4609       _string_symbol_task(is_alive, process_strings, process_symbols),
4610       _code_cache_task(num_workers, is_alive, unloading_occurred),
4611       _klass_cleaning_task(is_alive) {
4612   }
4613 
4614   // The parallel work done by all worker threads.
4615   void work(uint worker_id) {
4616     // Do first pass of code cache cleaning.
4617     _code_cache_task.work_first_pass(worker_id);
4618 
4619     // Let the threads mark that the first pass is done.
4620     _code_cache_task.barrier_mark(worker_id);
4621 
4622     // Clean the Strings and Symbols.
4623     _string_symbol_task.work(worker_id);
4624 
4625     // Wait for all workers to finish the first code cache cleaning pass.
4626     _code_cache_task.barrier_wait(worker_id);
4627 
4628     // Do the second code cache cleaning work, which realize on
4629     // the liveness information gathered during the first pass.
4630     _code_cache_task.work_second_pass(worker_id);
4631 
4632     // Clean all klasses that were not unloaded.
4633     _klass_cleaning_task.work();
4634   }
4635 };
4636 
4637 
4638 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4639                                         bool process_strings,
4640                                         bool process_symbols,
4641                                         bool class_unloading_occurred) {
4642   uint n_workers = workers()->active_workers();
4643 
4644   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4645                                         n_workers, class_unloading_occurred);
4646   workers()->run_task(&g1_unlink_task);
4647 }
4648 
4649 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4650                                                      bool process_strings, bool process_symbols) {
4651   {
4652     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4653     workers()->run_task(&g1_unlink_task);
4654   }
4655 
4656   if (G1StringDedup::is_enabled()) {
4657     G1StringDedup::unlink(is_alive);
4658   }
4659 }
4660 
4661 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4662  private:
4663   DirtyCardQueueSet* _queue;
4664   G1CollectedHeap* _g1h;
4665  public:
4666   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
4667     _queue(queue), _g1h(g1h) { }
4668 
4669   virtual void work(uint worker_id) {
4670     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
4671     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4672 
4673     RedirtyLoggedCardTableEntryClosure cl(_g1h);
4674     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4675 
4676     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
4677   }
4678 };
4679 
4680 void G1CollectedHeap::redirty_logged_cards() {
4681   double redirty_logged_cards_start = os::elapsedTime();
4682 
4683   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
4684   dirty_card_queue_set().reset_for_par_iteration();
4685   workers()->run_task(&redirty_task);
4686 
4687   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4688   dcq.merge_bufferlists(&dirty_card_queue_set());
4689   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4690 
4691   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4692 }
4693 
4694 // Weak Reference Processing support
4695 
4696 // An always "is_alive" closure that is used to preserve referents.
4697 // If the object is non-null then it's alive.  Used in the preservation
4698 // of referent objects that are pointed to by reference objects
4699 // discovered by the CM ref processor.
4700 class G1AlwaysAliveClosure: public BoolObjectClosure {
4701   G1CollectedHeap* _g1;
4702 public:
4703   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4704   bool do_object_b(oop p) {
4705     if (p != NULL) {
4706       return true;
4707     }
4708     return false;
4709   }
4710 };
4711 
4712 bool G1STWIsAliveClosure::do_object_b(oop p) {
4713   // An object is reachable if it is outside the collection set,
4714   // or is inside and copied.
4715   return !_g1->is_in_cset(p) || p->is_forwarded();
4716 }
4717 
4718 // Non Copying Keep Alive closure
4719 class G1KeepAliveClosure: public OopClosure {
4720   G1CollectedHeap* _g1;
4721 public:
4722   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4723   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4724   void do_oop(oop* p) {
4725     oop obj = *p;
4726     assert(obj != NULL, "the caller should have filtered out NULL values");
4727 
4728     const InCSetState cset_state = _g1->in_cset_state(obj);
4729     if (!cset_state.is_in_cset_or_humongous()) {
4730       return;
4731     }
4732     if (cset_state.is_in_cset()) {
4733       assert( obj->is_forwarded(), "invariant" );
4734       *p = obj->forwardee();
4735     } else {
4736       assert(!obj->is_forwarded(), "invariant" );
4737       assert(cset_state.is_humongous(),
4738              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4739       _g1->set_humongous_is_live(obj);
4740     }
4741   }
4742 };
4743 
4744 // Copying Keep Alive closure - can be called from both
4745 // serial and parallel code as long as different worker
4746 // threads utilize different G1ParScanThreadState instances
4747 // and different queues.
4748 
4749 class G1CopyingKeepAliveClosure: public OopClosure {
4750   G1CollectedHeap*         _g1h;
4751   OopClosure*              _copy_non_heap_obj_cl;
4752   G1ParScanThreadState*    _par_scan_state;
4753 
4754 public:
4755   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4756                             OopClosure* non_heap_obj_cl,
4757                             G1ParScanThreadState* pss):
4758     _g1h(g1h),
4759     _copy_non_heap_obj_cl(non_heap_obj_cl),
4760     _par_scan_state(pss)
4761   {}
4762 
4763   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4764   virtual void do_oop(      oop* p) { do_oop_work(p); }
4765 
4766   template <class T> void do_oop_work(T* p) {
4767     oop obj = oopDesc::load_decode_heap_oop(p);
4768 
4769     if (_g1h->is_in_cset_or_humongous(obj)) {
4770       // If the referent object has been forwarded (either copied
4771       // to a new location or to itself in the event of an
4772       // evacuation failure) then we need to update the reference
4773       // field and, if both reference and referent are in the G1
4774       // heap, update the RSet for the referent.
4775       //
4776       // If the referent has not been forwarded then we have to keep
4777       // it alive by policy. Therefore we have copy the referent.
4778       //
4779       // If the reference field is in the G1 heap then we can push
4780       // on the PSS queue. When the queue is drained (after each
4781       // phase of reference processing) the object and it's followers
4782       // will be copied, the reference field set to point to the
4783       // new location, and the RSet updated. Otherwise we need to
4784       // use the the non-heap or metadata closures directly to copy
4785       // the referent object and update the pointer, while avoiding
4786       // updating the RSet.
4787 
4788       if (_g1h->is_in_g1_reserved(p)) {
4789         _par_scan_state->push_on_queue(p);
4790       } else {
4791         assert(!Metaspace::contains((const void*)p),
4792                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4793         _copy_non_heap_obj_cl->do_oop(p);
4794       }
4795     }
4796   }
4797 };
4798 
4799 // Serial drain queue closure. Called as the 'complete_gc'
4800 // closure for each discovered list in some of the
4801 // reference processing phases.
4802 
4803 class G1STWDrainQueueClosure: public VoidClosure {
4804 protected:
4805   G1CollectedHeap* _g1h;
4806   G1ParScanThreadState* _par_scan_state;
4807 
4808   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4809 
4810 public:
4811   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4812     _g1h(g1h),
4813     _par_scan_state(pss)
4814   { }
4815 
4816   void do_void() {
4817     G1ParScanThreadState* const pss = par_scan_state();
4818     pss->trim_queue();
4819   }
4820 };
4821 
4822 // Parallel Reference Processing closures
4823 
4824 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4825 // processing during G1 evacuation pauses.
4826 
4827 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4828 private:
4829   G1CollectedHeap*          _g1h;
4830   G1ParScanThreadStateSet*  _pss;
4831   RefToScanQueueSet*        _queues;
4832   WorkGang*                 _workers;
4833   uint                      _active_workers;
4834 
4835 public:
4836   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4837                            G1ParScanThreadStateSet* per_thread_states,
4838                            WorkGang* workers,
4839                            RefToScanQueueSet *task_queues,
4840                            uint n_workers) :
4841     _g1h(g1h),
4842     _pss(per_thread_states),
4843     _queues(task_queues),
4844     _workers(workers),
4845     _active_workers(n_workers)
4846   {
4847     assert(n_workers > 0, "shouldn't call this otherwise");
4848   }
4849 
4850   // Executes the given task using concurrent marking worker threads.
4851   virtual void execute(ProcessTask& task);
4852   virtual void execute(EnqueueTask& task);
4853 };
4854 
4855 // Gang task for possibly parallel reference processing
4856 
4857 class G1STWRefProcTaskProxy: public AbstractGangTask {
4858   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4859   ProcessTask&     _proc_task;
4860   G1CollectedHeap* _g1h;
4861   G1ParScanThreadStateSet* _pss;
4862   RefToScanQueueSet* _task_queues;
4863   ParallelTaskTerminator* _terminator;
4864 
4865 public:
4866   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4867                         G1CollectedHeap* g1h,
4868                         G1ParScanThreadStateSet* per_thread_states,
4869                         RefToScanQueueSet *task_queues,
4870                         ParallelTaskTerminator* terminator) :
4871     AbstractGangTask("Process reference objects in parallel"),
4872     _proc_task(proc_task),
4873     _g1h(g1h),
4874     _pss(per_thread_states),
4875     _task_queues(task_queues),
4876     _terminator(terminator)
4877   {}
4878 
4879   virtual void work(uint worker_id) {
4880     // The reference processing task executed by a single worker.
4881     ResourceMark rm;
4882     HandleMark   hm;
4883 
4884     G1STWIsAliveClosure is_alive(_g1h);
4885 
4886     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4887     pss->set_ref_processor(NULL);
4888 
4889     // Keep alive closure.
4890     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4891 
4892     // Complete GC closure
4893     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4894 
4895     // Call the reference processing task's work routine.
4896     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4897 
4898     // Note we cannot assert that the refs array is empty here as not all
4899     // of the processing tasks (specifically phase2 - pp2_work) execute
4900     // the complete_gc closure (which ordinarily would drain the queue) so
4901     // the queue may not be empty.
4902   }
4903 };
4904 
4905 // Driver routine for parallel reference processing.
4906 // Creates an instance of the ref processing gang
4907 // task and has the worker threads execute it.
4908 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4909   assert(_workers != NULL, "Need parallel worker threads.");
4910 
4911   ParallelTaskTerminator terminator(_active_workers, _queues);
4912   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4913 
4914   _workers->run_task(&proc_task_proxy);
4915 }
4916 
4917 // Gang task for parallel reference enqueueing.
4918 
4919 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4920   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4921   EnqueueTask& _enq_task;
4922 
4923 public:
4924   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4925     AbstractGangTask("Enqueue reference objects in parallel"),
4926     _enq_task(enq_task)
4927   { }
4928 
4929   virtual void work(uint worker_id) {
4930     _enq_task.work(worker_id);
4931   }
4932 };
4933 
4934 // Driver routine for parallel reference enqueueing.
4935 // Creates an instance of the ref enqueueing gang
4936 // task and has the worker threads execute it.
4937 
4938 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4939   assert(_workers != NULL, "Need parallel worker threads.");
4940 
4941   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4942 
4943   _workers->run_task(&enq_task_proxy);
4944 }
4945 
4946 // End of weak reference support closures
4947 
4948 // Abstract task used to preserve (i.e. copy) any referent objects
4949 // that are in the collection set and are pointed to by reference
4950 // objects discovered by the CM ref processor.
4951 
4952 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4953 protected:
4954   G1CollectedHeap*         _g1h;
4955   G1ParScanThreadStateSet* _pss;
4956   RefToScanQueueSet*       _queues;
4957   ParallelTaskTerminator   _terminator;
4958   uint                     _n_workers;
4959 
4960 public:
4961   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4962     AbstractGangTask("ParPreserveCMReferents"),
4963     _g1h(g1h),
4964     _pss(per_thread_states),
4965     _queues(task_queues),
4966     _terminator(workers, _queues),
4967     _n_workers(workers)
4968   { }
4969 
4970   void work(uint worker_id) {
4971     ResourceMark rm;
4972     HandleMark   hm;
4973 
4974     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4975     pss->set_ref_processor(NULL);
4976     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4977 
4978     // Is alive closure
4979     G1AlwaysAliveClosure always_alive(_g1h);
4980 
4981     // Copying keep alive closure. Applied to referent objects that need
4982     // to be copied.
4983     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4984 
4985     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4986 
4987     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4988     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4989 
4990     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4991     // So this must be true - but assert just in case someone decides to
4992     // change the worker ids.
4993     assert(worker_id < limit, "sanity");
4994     assert(!rp->discovery_is_atomic(), "check this code");
4995 
4996     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4997     for (uint idx = worker_id; idx < limit; idx += stride) {
4998       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4999 
5000       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5001       while (iter.has_next()) {
5002         // Since discovery is not atomic for the CM ref processor, we
5003         // can see some null referent objects.
5004         iter.load_ptrs(DEBUG_ONLY(true));
5005         oop ref = iter.obj();
5006 
5007         // This will filter nulls.
5008         if (iter.is_referent_alive()) {
5009           iter.make_referent_alive();
5010         }
5011         iter.move_to_next();
5012       }
5013     }
5014 
5015     // Drain the queue - which may cause stealing
5016     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
5017     drain_queue.do_void();
5018     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5019     assert(pss->queue_is_empty(), "should be");
5020   }
5021 };
5022 
5023 void G1CollectedHeap::process_weak_jni_handles() {
5024   double ref_proc_start = os::elapsedTime();
5025 
5026   G1STWIsAliveClosure is_alive(this);
5027   G1KeepAliveClosure keep_alive(this);
5028   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5029 
5030   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5031   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5032 }
5033 
5034 // Weak Reference processing during an evacuation pause (part 1).
5035 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5036   double ref_proc_start = os::elapsedTime();
5037 
5038   ReferenceProcessor* rp = _ref_processor_stw;
5039   assert(rp->discovery_enabled(), "should have been enabled");
5040 
5041   // Any reference objects, in the collection set, that were 'discovered'
5042   // by the CM ref processor should have already been copied (either by
5043   // applying the external root copy closure to the discovered lists, or
5044   // by following an RSet entry).
5045   //
5046   // But some of the referents, that are in the collection set, that these
5047   // reference objects point to may not have been copied: the STW ref
5048   // processor would have seen that the reference object had already
5049   // been 'discovered' and would have skipped discovering the reference,
5050   // but would not have treated the reference object as a regular oop.
5051   // As a result the copy closure would not have been applied to the
5052   // referent object.
5053   //
5054   // We need to explicitly copy these referent objects - the references
5055   // will be processed at the end of remarking.
5056   //
5057   // We also need to do this copying before we process the reference
5058   // objects discovered by the STW ref processor in case one of these
5059   // referents points to another object which is also referenced by an
5060   // object discovered by the STW ref processor.
5061 
5062   uint no_of_gc_workers = workers()->active_workers();
5063 
5064   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5065                                                  per_thread_states,
5066                                                  no_of_gc_workers,
5067                                                  _task_queues);
5068 
5069   workers()->run_task(&keep_cm_referents);
5070 
5071   // Closure to test whether a referent is alive.
5072   G1STWIsAliveClosure is_alive(this);
5073 
5074   // Even when parallel reference processing is enabled, the processing
5075   // of JNI refs is serial and performed serially by the current thread
5076   // rather than by a worker. The following PSS will be used for processing
5077   // JNI refs.
5078 
5079   // Use only a single queue for this PSS.
5080   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5081   pss->set_ref_processor(NULL);
5082   assert(pss->queue_is_empty(), "pre-condition");
5083 
5084   // Keep alive closure.
5085   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5086 
5087   // Serial Complete GC closure
5088   G1STWDrainQueueClosure drain_queue(this, pss);
5089 
5090   // Setup the soft refs policy...
5091   rp->setup_policy(false);
5092 
5093   ReferenceProcessorStats stats;
5094   if (!rp->processing_is_mt()) {
5095     // Serial reference processing...
5096     stats = rp->process_discovered_references(&is_alive,
5097                                               &keep_alive,
5098                                               &drain_queue,
5099                                               NULL,
5100                                               _gc_timer_stw);
5101   } else {
5102     // Parallel reference processing
5103     assert(rp->num_q() == no_of_gc_workers, "sanity");
5104     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5105 
5106     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5107     stats = rp->process_discovered_references(&is_alive,
5108                                               &keep_alive,
5109                                               &drain_queue,
5110                                               &par_task_executor,
5111                                               _gc_timer_stw);
5112   }
5113 
5114   _gc_tracer_stw->report_gc_reference_stats(stats);
5115 
5116   // We have completed copying any necessary live referent objects.
5117   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5118 
5119   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5120   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5121 }
5122 
5123 // Weak Reference processing during an evacuation pause (part 2).
5124 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5125   double ref_enq_start = os::elapsedTime();
5126 
5127   ReferenceProcessor* rp = _ref_processor_stw;
5128   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5129 
5130   // Now enqueue any remaining on the discovered lists on to
5131   // the pending list.
5132   if (!rp->processing_is_mt()) {
5133     // Serial reference processing...
5134     rp->enqueue_discovered_references();
5135   } else {
5136     // Parallel reference enqueueing
5137 
5138     uint n_workers = workers()->active_workers();
5139 
5140     assert(rp->num_q() == n_workers, "sanity");
5141     assert(n_workers <= rp->max_num_q(), "sanity");
5142 
5143     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5144     rp->enqueue_discovered_references(&par_task_executor);
5145   }
5146 
5147   rp->verify_no_references_recorded();
5148   assert(!rp->discovery_enabled(), "should have been disabled");
5149 
5150   // FIXME
5151   // CM's reference processing also cleans up the string and symbol tables.
5152   // Should we do that here also? We could, but it is a serial operation
5153   // and could significantly increase the pause time.
5154 
5155   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5156   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5157 }
5158 
5159 void G1CollectedHeap::pre_evacuate_collection_set() {
5160   _expand_heap_after_alloc_failure = true;
5161   _evacuation_failed = false;
5162 
5163   // Disable the hot card cache.
5164   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5165   hot_card_cache->reset_hot_cache_claimed_index();
5166   hot_card_cache->set_use_cache(false);
5167 
5168   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5169 }
5170 
5171 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5172   // Should G1EvacuationFailureALot be in effect for this GC?
5173   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5174 
5175   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5176   double start_par_time_sec = os::elapsedTime();
5177   double end_par_time_sec;
5178 
5179   {
5180     const uint n_workers = workers()->active_workers();
5181     G1RootProcessor root_processor(this, n_workers);
5182     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5183     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5184     if (collector_state()->during_initial_mark_pause()) {
5185       ClassLoaderDataGraph::clear_claimed_marks();
5186     }
5187 
5188     // The individual threads will set their evac-failure closures.
5189     if (PrintTerminationStats) {
5190       print_termination_stats_hdr(gclog_or_tty);
5191     }
5192 
5193     workers()->run_task(&g1_par_task);
5194     end_par_time_sec = os::elapsedTime();
5195 
5196     // Closing the inner scope will execute the destructor
5197     // for the G1RootProcessor object. We record the current
5198     // elapsed time before closing the scope so that time
5199     // taken for the destructor is NOT included in the
5200     // reported parallel time.
5201   }
5202 
5203   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5204 
5205   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5206   phase_times->record_par_time(par_time_ms);
5207 
5208   double code_root_fixup_time_ms =
5209         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5210   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5211 }
5212 
5213 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5214   // Process any discovered reference objects - we have
5215   // to do this _before_ we retire the GC alloc regions
5216   // as we may have to copy some 'reachable' referent
5217   // objects (and their reachable sub-graphs) that were
5218   // not copied during the pause.
5219   if (g1_policy()->should_process_references()) {
5220     process_discovered_references(per_thread_states);
5221   } else {
5222     ref_processor_stw()->verify_no_references_recorded();
5223     process_weak_jni_handles();
5224   }
5225 
5226   if (G1StringDedup::is_enabled()) {
5227     double fixup_start = os::elapsedTime();
5228 
5229     G1STWIsAliveClosure is_alive(this);
5230     G1KeepAliveClosure keep_alive(this);
5231     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
5232 
5233     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5234     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
5235   }
5236 
5237   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5238 
5239   if (evacuation_failed()) {
5240     restore_after_evac_failure();
5241 
5242     // Reset the G1EvacuationFailureALot counters and flags
5243     // Note: the values are reset only when an actual
5244     // evacuation failure occurs.
5245     NOT_PRODUCT(reset_evacuation_should_fail();)
5246   }
5247 
5248   // Enqueue any remaining references remaining on the STW
5249   // reference processor's discovered lists. We need to do
5250   // this after the card table is cleaned (and verified) as
5251   // the act of enqueueing entries on to the pending list
5252   // will log these updates (and dirty their associated
5253   // cards). We need these updates logged to update any
5254   // RSets.
5255   if (g1_policy()->should_process_references()) {
5256     enqueue_discovered_references(per_thread_states);
5257   } else {
5258     g1_policy()->phase_times()->record_ref_enq_time(0);
5259   }
5260 
5261   _allocator->release_gc_alloc_regions(evacuation_info);
5262 
5263   per_thread_states->flush();
5264 
5265   record_obj_copy_mem_stats();
5266 
5267   _survivor_evac_stats.adjust_desired_plab_sz();
5268   _old_evac_stats.adjust_desired_plab_sz();
5269 
5270   // Reset and re-enable the hot card cache.
5271   // Note the counts for the cards in the regions in the
5272   // collection set are reset when the collection set is freed.
5273   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5274   hot_card_cache->reset_hot_cache();
5275   hot_card_cache->set_use_cache(true);
5276 
5277   purge_code_root_memory();
5278 
5279   redirty_logged_cards();
5280 #if defined(COMPILER2) || INCLUDE_JVMCI
5281   DerivedPointerTable::update_pointers();
5282 #endif
5283 }
5284 
5285 void G1CollectedHeap::record_obj_copy_mem_stats() {
5286   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
5287 
5288   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5289                                                create_g1_evac_summary(&_old_evac_stats));
5290 }
5291 
5292 void G1CollectedHeap::free_region(HeapRegion* hr,
5293                                   FreeRegionList* free_list,
5294                                   bool par,
5295                                   bool locked) {
5296   assert(!hr->is_free(), "the region should not be free");
5297   assert(!hr->is_empty(), "the region should not be empty");
5298   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5299   assert(free_list != NULL, "pre-condition");
5300 
5301   if (G1VerifyBitmaps) {
5302     MemRegion mr(hr->bottom(), hr->end());
5303     concurrent_mark()->clearRangePrevBitmap(mr);
5304   }
5305 
5306   // Clear the card counts for this region.
5307   // Note: we only need to do this if the region is not young
5308   // (since we don't refine cards in young regions).
5309   if (!hr->is_young()) {
5310     _cg1r->hot_card_cache()->reset_card_counts(hr);
5311   }
5312   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5313   free_list->add_ordered(hr);
5314 }
5315 
5316 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5317                                             FreeRegionList* free_list,
5318                                             bool par) {
5319   assert(hr->is_humongous(), "this is only for humongous regions");
5320   assert(free_list != NULL, "pre-condition");
5321   hr->clear_humongous();
5322   free_region(hr, free_list, par);
5323 }
5324 
5325 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5326                                            const HeapRegionSetCount& humongous_regions_removed) {
5327   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5328     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5329     _old_set.bulk_remove(old_regions_removed);
5330     _humongous_set.bulk_remove(humongous_regions_removed);
5331   }
5332 
5333 }
5334 
5335 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5336   assert(list != NULL, "list can't be null");
5337   if (!list->is_empty()) {
5338     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5339     _hrm.insert_list_into_free_list(list);
5340   }
5341 }
5342 
5343 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5344   decrease_used(bytes);
5345 }
5346 
5347 class G1ParCleanupCTTask : public AbstractGangTask {
5348   G1SATBCardTableModRefBS* _ct_bs;
5349   G1CollectedHeap* _g1h;
5350   HeapRegion* volatile _su_head;
5351 public:
5352   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5353                      G1CollectedHeap* g1h) :
5354     AbstractGangTask("G1 Par Cleanup CT Task"),
5355     _ct_bs(ct_bs), _g1h(g1h) { }
5356 
5357   void work(uint worker_id) {
5358     HeapRegion* r;
5359     while (r = _g1h->pop_dirty_cards_region()) {
5360       clear_cards(r);
5361     }
5362   }
5363 
5364   void clear_cards(HeapRegion* r) {
5365     // Cards of the survivors should have already been dirtied.
5366     if (!r->is_survivor()) {
5367       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5368     }
5369   }
5370 };
5371 
5372 #ifndef PRODUCT
5373 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5374   G1CollectedHeap* _g1h;
5375   G1SATBCardTableModRefBS* _ct_bs;
5376 public:
5377   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5378     : _g1h(g1h), _ct_bs(ct_bs) { }
5379   virtual bool doHeapRegion(HeapRegion* r) {
5380     if (r->is_survivor()) {
5381       _g1h->verify_dirty_region(r);
5382     } else {
5383       _g1h->verify_not_dirty_region(r);
5384     }
5385     return false;
5386   }
5387 };
5388 
5389 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5390   // All of the region should be clean.
5391   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5392   MemRegion mr(hr->bottom(), hr->end());
5393   ct_bs->verify_not_dirty_region(mr);
5394 }
5395 
5396 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5397   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5398   // dirty allocated blocks as they allocate them. The thread that
5399   // retires each region and replaces it with a new one will do a
5400   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5401   // not dirty that area (one less thing to have to do while holding
5402   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5403   // is dirty.
5404   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5405   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5406   if (hr->is_young()) {
5407     ct_bs->verify_g1_young_region(mr);
5408   } else {
5409     ct_bs->verify_dirty_region(mr);
5410   }
5411 }
5412 
5413 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5414   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5415   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5416     verify_dirty_region(hr);
5417   }
5418 }
5419 
5420 void G1CollectedHeap::verify_dirty_young_regions() {
5421   verify_dirty_young_list(_young_list->first_region());
5422 }
5423 
5424 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5425                                                HeapWord* tams, HeapWord* end) {
5426   guarantee(tams <= end,
5427             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5428   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5429   if (result < end) {
5430     gclog_or_tty->cr();
5431     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5432                            bitmap_name, p2i(result));
5433     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5434                            bitmap_name, p2i(tams), p2i(end));
5435     return false;
5436   }
5437   return true;
5438 }
5439 
5440 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5441   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5442   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5443 
5444   HeapWord* bottom = hr->bottom();
5445   HeapWord* ptams  = hr->prev_top_at_mark_start();
5446   HeapWord* ntams  = hr->next_top_at_mark_start();
5447   HeapWord* end    = hr->end();
5448 
5449   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5450 
5451   bool res_n = true;
5452   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5453   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5454   // if we happen to be in that state.
5455   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5456     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5457   }
5458   if (!res_p || !res_n) {
5459     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5460                            HR_FORMAT_PARAMS(hr));
5461     gclog_or_tty->print_cr("#### Caller: %s", caller);
5462     return false;
5463   }
5464   return true;
5465 }
5466 
5467 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5468   if (!G1VerifyBitmaps) return;
5469 
5470   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5471 }
5472 
5473 class G1VerifyBitmapClosure : public HeapRegionClosure {
5474 private:
5475   const char* _caller;
5476   G1CollectedHeap* _g1h;
5477   bool _failures;
5478 
5479 public:
5480   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5481     _caller(caller), _g1h(g1h), _failures(false) { }
5482 
5483   bool failures() { return _failures; }
5484 
5485   virtual bool doHeapRegion(HeapRegion* hr) {
5486     bool result = _g1h->verify_bitmaps(_caller, hr);
5487     if (!result) {
5488       _failures = true;
5489     }
5490     return false;
5491   }
5492 };
5493 
5494 void G1CollectedHeap::check_bitmaps(const char* caller) {
5495   if (!G1VerifyBitmaps) return;
5496 
5497   G1VerifyBitmapClosure cl(caller, this);
5498   heap_region_iterate(&cl);
5499   guarantee(!cl.failures(), "bitmap verification");
5500 }
5501 
5502 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5503  private:
5504   bool _failures;
5505  public:
5506   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5507 
5508   virtual bool doHeapRegion(HeapRegion* hr) {
5509     uint i = hr->hrm_index();
5510     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5511     if (hr->is_humongous()) {
5512       if (hr->in_collection_set()) {
5513         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5514         _failures = true;
5515         return true;
5516       }
5517       if (cset_state.is_in_cset()) {
5518         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5519         _failures = true;
5520         return true;
5521       }
5522       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5523         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5524         _failures = true;
5525         return true;
5526       }
5527     } else {
5528       if (cset_state.is_humongous()) {
5529         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5530         _failures = true;
5531         return true;
5532       }
5533       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5534         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5535                                hr->in_collection_set(), cset_state.value(), i);
5536         _failures = true;
5537         return true;
5538       }
5539       if (cset_state.is_in_cset()) {
5540         if (hr->is_young() != (cset_state.is_young())) {
5541           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5542                                  hr->is_young(), cset_state.value(), i);
5543           _failures = true;
5544           return true;
5545         }
5546         if (hr->is_old() != (cset_state.is_old())) {
5547           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5548                                  hr->is_old(), cset_state.value(), i);
5549           _failures = true;
5550           return true;
5551         }
5552       }
5553     }
5554     return false;
5555   }
5556 
5557   bool failures() const { return _failures; }
5558 };
5559 
5560 bool G1CollectedHeap::check_cset_fast_test() {
5561   G1CheckCSetFastTableClosure cl;
5562   _hrm.iterate(&cl);
5563   return !cl.failures();
5564 }
5565 #endif // PRODUCT
5566 
5567 void G1CollectedHeap::cleanUpCardTable() {
5568   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5569   double start = os::elapsedTime();
5570 
5571   {
5572     // Iterate over the dirty cards region list.
5573     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5574 
5575     workers()->run_task(&cleanup_task);
5576 #ifndef PRODUCT
5577     if (G1VerifyCTCleanup || VerifyAfterGC) {
5578       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5579       heap_region_iterate(&cleanup_verifier);
5580     }
5581 #endif
5582   }
5583 
5584   double elapsed = os::elapsedTime() - start;
5585   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5586 }
5587 
5588 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5589   size_t pre_used = 0;
5590   FreeRegionList local_free_list("Local List for CSet Freeing");
5591 
5592   double young_time_ms     = 0.0;
5593   double non_young_time_ms = 0.0;
5594 
5595   // Since the collection set is a superset of the the young list,
5596   // all we need to do to clear the young list is clear its
5597   // head and length, and unlink any young regions in the code below
5598   _young_list->clear();
5599 
5600   G1CollectorPolicy* policy = g1_policy();
5601 
5602   double start_sec = os::elapsedTime();
5603   bool non_young = true;
5604 
5605   HeapRegion* cur = cs_head;
5606   int age_bound = -1;
5607   size_t rs_lengths = 0;
5608 
5609   while (cur != NULL) {
5610     assert(!is_on_master_free_list(cur), "sanity");
5611     if (non_young) {
5612       if (cur->is_young()) {
5613         double end_sec = os::elapsedTime();
5614         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5615         non_young_time_ms += elapsed_ms;
5616 
5617         start_sec = os::elapsedTime();
5618         non_young = false;
5619       }
5620     } else {
5621       if (!cur->is_young()) {
5622         double end_sec = os::elapsedTime();
5623         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5624         young_time_ms += elapsed_ms;
5625 
5626         start_sec = os::elapsedTime();
5627         non_young = true;
5628       }
5629     }
5630 
5631     rs_lengths += cur->rem_set()->occupied_locked();
5632 
5633     HeapRegion* next = cur->next_in_collection_set();
5634     assert(cur->in_collection_set(), "bad CS");
5635     cur->set_next_in_collection_set(NULL);
5636     clear_in_cset(cur);
5637 
5638     if (cur->is_young()) {
5639       int index = cur->young_index_in_cset();
5640       assert(index != -1, "invariant");
5641       assert((uint) index < policy->young_cset_region_length(), "invariant");
5642       size_t words_survived = surviving_young_words[index];
5643       cur->record_surv_words_in_group(words_survived);
5644 
5645       // At this point the we have 'popped' cur from the collection set
5646       // (linked via next_in_collection_set()) but it is still in the
5647       // young list (linked via next_young_region()). Clear the
5648       // _next_young_region field.
5649       cur->set_next_young_region(NULL);
5650     } else {
5651       int index = cur->young_index_in_cset();
5652       assert(index == -1, "invariant");
5653     }
5654 
5655     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5656             (!cur->is_young() && cur->young_index_in_cset() == -1),
5657             "invariant" );
5658 
5659     if (!cur->evacuation_failed()) {
5660       MemRegion used_mr = cur->used_region();
5661 
5662       // And the region is empty.
5663       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5664       pre_used += cur->used();
5665       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5666     } else {
5667       cur->uninstall_surv_rate_group();
5668       if (cur->is_young()) {
5669         cur->set_young_index_in_cset(-1);
5670       }
5671       cur->set_evacuation_failed(false);
5672       // When moving a young gen region to old gen, we "allocate" that whole region
5673       // there. This is in addition to any already evacuated objects. Notify the
5674       // policy about that.
5675       // Old gen regions do not cause an additional allocation: both the objects
5676       // still in the region and the ones already moved are accounted for elsewhere.
5677       if (cur->is_young()) {
5678         policy->add_bytes_allocated_in_old_since_last_gc(HeapRegion::GrainBytes);
5679       }
5680       // The region is now considered to be old.
5681       cur->set_old();
5682       // Do some allocation statistics accounting. Regions that failed evacuation
5683       // are always made old, so there is no need to update anything in the young
5684       // gen statistics, but we need to update old gen statistics.
5685       size_t used_words = cur->marked_bytes() / HeapWordSize;
5686       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5687       _old_set.add(cur);
5688       evacuation_info.increment_collectionset_used_after(cur->used());
5689     }
5690     cur = next;
5691   }
5692 
5693   evacuation_info.set_regions_freed(local_free_list.length());
5694   policy->record_max_rs_lengths(rs_lengths);
5695   policy->cset_regions_freed();
5696 
5697   double end_sec = os::elapsedTime();
5698   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5699 
5700   if (non_young) {
5701     non_young_time_ms += elapsed_ms;
5702   } else {
5703     young_time_ms += elapsed_ms;
5704   }
5705 
5706   prepend_to_freelist(&local_free_list);
5707   decrement_summary_bytes(pre_used);
5708   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5709   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5710 }
5711 
5712 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5713  private:
5714   FreeRegionList* _free_region_list;
5715   HeapRegionSet* _proxy_set;
5716   HeapRegionSetCount _humongous_regions_removed;
5717   size_t _freed_bytes;
5718  public:
5719 
5720   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5721     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5722   }
5723 
5724   virtual bool doHeapRegion(HeapRegion* r) {
5725     if (!r->is_starts_humongous()) {
5726       return false;
5727     }
5728 
5729     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5730 
5731     oop obj = (oop)r->bottom();
5732     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5733 
5734     // The following checks whether the humongous object is live are sufficient.
5735     // The main additional check (in addition to having a reference from the roots
5736     // or the young gen) is whether the humongous object has a remembered set entry.
5737     //
5738     // A humongous object cannot be live if there is no remembered set for it
5739     // because:
5740     // - there can be no references from within humongous starts regions referencing
5741     // the object because we never allocate other objects into them.
5742     // (I.e. there are no intra-region references that may be missed by the
5743     // remembered set)
5744     // - as soon there is a remembered set entry to the humongous starts region
5745     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5746     // until the end of a concurrent mark.
5747     //
5748     // It is not required to check whether the object has been found dead by marking
5749     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5750     // all objects allocated during that time are considered live.
5751     // SATB marking is even more conservative than the remembered set.
5752     // So if at this point in the collection there is no remembered set entry,
5753     // nobody has a reference to it.
5754     // At the start of collection we flush all refinement logs, and remembered sets
5755     // are completely up-to-date wrt to references to the humongous object.
5756     //
5757     // Other implementation considerations:
5758     // - never consider object arrays at this time because they would pose
5759     // considerable effort for cleaning up the the remembered sets. This is
5760     // required because stale remembered sets might reference locations that
5761     // are currently allocated into.
5762     uint region_idx = r->hrm_index();
5763     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5764         !r->rem_set()->is_empty()) {
5765 
5766       if (G1TraceEagerReclaimHumongousObjects) {
5767         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5768                                region_idx,
5769                                (size_t)obj->size() * HeapWordSize,
5770                                p2i(r->bottom()),
5771                                r->rem_set()->occupied(),
5772                                r->rem_set()->strong_code_roots_list_length(),
5773                                next_bitmap->isMarked(r->bottom()),
5774                                g1h->is_humongous_reclaim_candidate(region_idx),
5775                                obj->is_typeArray()
5776                               );
5777       }
5778 
5779       return false;
5780     }
5781 
5782     guarantee(obj->is_typeArray(),
5783               "Only eagerly reclaiming type arrays is supported, but the object "
5784               PTR_FORMAT " is not.", p2i(r->bottom()));
5785 
5786     if (G1TraceEagerReclaimHumongousObjects) {
5787       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5788                              region_idx,
5789                              (size_t)obj->size() * HeapWordSize,
5790                              p2i(r->bottom()),
5791                              r->rem_set()->occupied(),
5792                              r->rem_set()->strong_code_roots_list_length(),
5793                              next_bitmap->isMarked(r->bottom()),
5794                              g1h->is_humongous_reclaim_candidate(region_idx),
5795                              obj->is_typeArray()
5796                             );
5797     }
5798     // Need to clear mark bit of the humongous object if already set.
5799     if (next_bitmap->isMarked(r->bottom())) {
5800       next_bitmap->clear(r->bottom());
5801     }
5802     do {
5803       HeapRegion* next = g1h->next_region_in_humongous(r);
5804       _freed_bytes += r->used();
5805       r->set_containing_set(NULL);
5806       _humongous_regions_removed.increment(1u, r->capacity());
5807       g1h->free_humongous_region(r, _free_region_list, false);
5808       r = next;
5809     } while (r != NULL);
5810 
5811     return false;
5812   }
5813 
5814   HeapRegionSetCount& humongous_free_count() {
5815     return _humongous_regions_removed;
5816   }
5817 
5818   size_t bytes_freed() const {
5819     return _freed_bytes;
5820   }
5821 
5822   size_t humongous_reclaimed() const {
5823     return _humongous_regions_removed.length();
5824   }
5825 };
5826 
5827 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5828   assert_at_safepoint(true);
5829 
5830   if (!G1EagerReclaimHumongousObjects ||
5831       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5832     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5833     return;
5834   }
5835 
5836   double start_time = os::elapsedTime();
5837 
5838   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5839 
5840   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5841   heap_region_iterate(&cl);
5842 
5843   HeapRegionSetCount empty_set;
5844   remove_from_old_sets(empty_set, cl.humongous_free_count());
5845 
5846   G1HRPrinter* hrp = hr_printer();
5847   if (hrp->is_active()) {
5848     FreeRegionListIterator iter(&local_cleanup_list);
5849     while (iter.more_available()) {
5850       HeapRegion* hr = iter.get_next();
5851       hrp->cleanup(hr);
5852     }
5853   }
5854 
5855   prepend_to_freelist(&local_cleanup_list);
5856   decrement_summary_bytes(cl.bytes_freed());
5857 
5858   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5859                                                                     cl.humongous_reclaimed());
5860 }
5861 
5862 // This routine is similar to the above but does not record
5863 // any policy statistics or update free lists; we are abandoning
5864 // the current incremental collection set in preparation of a
5865 // full collection. After the full GC we will start to build up
5866 // the incremental collection set again.
5867 // This is only called when we're doing a full collection
5868 // and is immediately followed by the tearing down of the young list.
5869 
5870 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5871   HeapRegion* cur = cs_head;
5872 
5873   while (cur != NULL) {
5874     HeapRegion* next = cur->next_in_collection_set();
5875     assert(cur->in_collection_set(), "bad CS");
5876     cur->set_next_in_collection_set(NULL);
5877     clear_in_cset(cur);
5878     cur->set_young_index_in_cset(-1);
5879     cur = next;
5880   }
5881 }
5882 
5883 void G1CollectedHeap::set_free_regions_coming() {
5884   if (G1ConcRegionFreeingVerbose) {
5885     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5886                            "setting free regions coming");
5887   }
5888 
5889   assert(!free_regions_coming(), "pre-condition");
5890   _free_regions_coming = true;
5891 }
5892 
5893 void G1CollectedHeap::reset_free_regions_coming() {
5894   assert(free_regions_coming(), "pre-condition");
5895 
5896   {
5897     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5898     _free_regions_coming = false;
5899     SecondaryFreeList_lock->notify_all();
5900   }
5901 
5902   if (G1ConcRegionFreeingVerbose) {
5903     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5904                            "reset free regions coming");
5905   }
5906 }
5907 
5908 void G1CollectedHeap::wait_while_free_regions_coming() {
5909   // Most of the time we won't have to wait, so let's do a quick test
5910   // first before we take the lock.
5911   if (!free_regions_coming()) {
5912     return;
5913   }
5914 
5915   if (G1ConcRegionFreeingVerbose) {
5916     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5917                            "waiting for free regions");
5918   }
5919 
5920   {
5921     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5922     while (free_regions_coming()) {
5923       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5924     }
5925   }
5926 
5927   if (G1ConcRegionFreeingVerbose) {
5928     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5929                            "done waiting for free regions");
5930   }
5931 }
5932 
5933 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5934   return _allocator->is_retained_old_region(hr);
5935 }
5936 
5937 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5938   _young_list->push_region(hr);
5939 }
5940 
5941 class NoYoungRegionsClosure: public HeapRegionClosure {
5942 private:
5943   bool _success;
5944 public:
5945   NoYoungRegionsClosure() : _success(true) { }
5946   bool doHeapRegion(HeapRegion* r) {
5947     if (r->is_young()) {
5948       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5949                              p2i(r->bottom()), p2i(r->end()));
5950       _success = false;
5951     }
5952     return false;
5953   }
5954   bool success() { return _success; }
5955 };
5956 
5957 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5958   bool ret = _young_list->check_list_empty(check_sample);
5959 
5960   if (check_heap) {
5961     NoYoungRegionsClosure closure;
5962     heap_region_iterate(&closure);
5963     ret = ret && closure.success();
5964   }
5965 
5966   return ret;
5967 }
5968 
5969 class TearDownRegionSetsClosure : public HeapRegionClosure {
5970 private:
5971   HeapRegionSet *_old_set;
5972 
5973 public:
5974   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5975 
5976   bool doHeapRegion(HeapRegion* r) {
5977     if (r->is_old()) {
5978       _old_set->remove(r);
5979     } else {
5980       // We ignore free regions, we'll empty the free list afterwards.
5981       // We ignore young regions, we'll empty the young list afterwards.
5982       // We ignore humongous regions, we're not tearing down the
5983       // humongous regions set.
5984       assert(r->is_free() || r->is_young() || r->is_humongous(),
5985              "it cannot be another type");
5986     }
5987     return false;
5988   }
5989 
5990   ~TearDownRegionSetsClosure() {
5991     assert(_old_set->is_empty(), "post-condition");
5992   }
5993 };
5994 
5995 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5996   assert_at_safepoint(true /* should_be_vm_thread */);
5997 
5998   if (!free_list_only) {
5999     TearDownRegionSetsClosure cl(&_old_set);
6000     heap_region_iterate(&cl);
6001 
6002     // Note that emptying the _young_list is postponed and instead done as
6003     // the first step when rebuilding the regions sets again. The reason for
6004     // this is that during a full GC string deduplication needs to know if
6005     // a collected region was young or old when the full GC was initiated.
6006   }
6007   _hrm.remove_all_free_regions();
6008 }
6009 
6010 void G1CollectedHeap::increase_used(size_t bytes) {
6011   _summary_bytes_used += bytes;
6012 }
6013 
6014 void G1CollectedHeap::decrease_used(size_t bytes) {
6015   assert(_summary_bytes_used >= bytes,
6016          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
6017          _summary_bytes_used, bytes);
6018   _summary_bytes_used -= bytes;
6019 }
6020 
6021 void G1CollectedHeap::set_used(size_t bytes) {
6022   _summary_bytes_used = bytes;
6023 }
6024 
6025 class RebuildRegionSetsClosure : public HeapRegionClosure {
6026 private:
6027   bool            _free_list_only;
6028   HeapRegionSet*   _old_set;
6029   HeapRegionManager*   _hrm;
6030   size_t          _total_used;
6031 
6032 public:
6033   RebuildRegionSetsClosure(bool free_list_only,
6034                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6035     _free_list_only(free_list_only),
6036     _old_set(old_set), _hrm(hrm), _total_used(0) {
6037     assert(_hrm->num_free_regions() == 0, "pre-condition");
6038     if (!free_list_only) {
6039       assert(_old_set->is_empty(), "pre-condition");
6040     }
6041   }
6042 
6043   bool doHeapRegion(HeapRegion* r) {
6044     if (r->is_empty()) {
6045       // Add free regions to the free list
6046       r->set_free();
6047       r->set_allocation_context(AllocationContext::system());
6048       _hrm->insert_into_free_list(r);
6049     } else if (!_free_list_only) {
6050       assert(!r->is_young(), "we should not come across young regions");
6051 
6052       if (r->is_humongous()) {
6053         // We ignore humongous regions. We left the humongous set unchanged.
6054       } else {
6055         // Objects that were compacted would have ended up on regions
6056         // that were previously old or free.  Archive regions (which are
6057         // old) will not have been touched.
6058         assert(r->is_free() || r->is_old(), "invariant");
6059         // We now consider them old, so register as such. Leave
6060         // archive regions set that way, however, while still adding
6061         // them to the old set.
6062         if (!r->is_archive()) {
6063           r->set_old();
6064         }
6065         _old_set->add(r);
6066       }
6067       _total_used += r->used();
6068     }
6069 
6070     return false;
6071   }
6072 
6073   size_t total_used() {
6074     return _total_used;
6075   }
6076 };
6077 
6078 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6079   assert_at_safepoint(true /* should_be_vm_thread */);
6080 
6081   if (!free_list_only) {
6082     _young_list->empty_list();
6083   }
6084 
6085   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6086   heap_region_iterate(&cl);
6087 
6088   if (!free_list_only) {
6089     set_used(cl.total_used());
6090     if (_archive_allocator != NULL) {
6091       _archive_allocator->clear_used();
6092     }
6093   }
6094   assert(used_unlocked() == recalculate_used(),
6095          "inconsistent used_unlocked(), "
6096          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6097          used_unlocked(), recalculate_used());
6098 }
6099 
6100 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6101   _refine_cte_cl->set_concurrent(concurrent);
6102 }
6103 
6104 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6105   HeapRegion* hr = heap_region_containing(p);
6106   return hr->is_in(p);
6107 }
6108 
6109 // Methods for the mutator alloc region
6110 
6111 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6112                                                       bool force) {
6113   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6114   assert(!force || g1_policy()->can_expand_young_list(),
6115          "if force is true we should be able to expand the young list");
6116   bool young_list_full = g1_policy()->is_young_list_full();
6117   if (force || !young_list_full) {
6118     HeapRegion* new_alloc_region = new_region(word_size,
6119                                               false /* is_old */,
6120                                               false /* do_expand */);
6121     if (new_alloc_region != NULL) {
6122       set_region_short_lived_locked(new_alloc_region);
6123       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6124       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6125       return new_alloc_region;
6126     }
6127   }
6128   return NULL;
6129 }
6130 
6131 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6132                                                   size_t allocated_bytes) {
6133   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6134   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6135 
6136   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6137   increase_used(allocated_bytes);
6138   _hr_printer.retire(alloc_region);
6139   // We update the eden sizes here, when the region is retired,
6140   // instead of when it's allocated, since this is the point that its
6141   // used space has been recored in _summary_bytes_used.
6142   g1mm()->update_eden_size();
6143 }
6144 
6145 // Methods for the GC alloc regions
6146 
6147 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6148                                                  uint count,
6149                                                  InCSetState dest) {
6150   assert(FreeList_lock->owned_by_self(), "pre-condition");
6151 
6152   if (count < g1_policy()->max_regions(dest)) {
6153     const bool is_survivor = (dest.is_young());
6154     HeapRegion* new_alloc_region = new_region(word_size,
6155                                               !is_survivor,
6156                                               true /* do_expand */);
6157     if (new_alloc_region != NULL) {
6158       // We really only need to do this for old regions given that we
6159       // should never scan survivors. But it doesn't hurt to do it
6160       // for survivors too.
6161       new_alloc_region->record_timestamp();
6162       if (is_survivor) {
6163         new_alloc_region->set_survivor();
6164         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6165         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6166       } else {
6167         new_alloc_region->set_old();
6168         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6169         check_bitmaps("Old Region Allocation", new_alloc_region);
6170       }
6171       bool during_im = collector_state()->during_initial_mark_pause();
6172       new_alloc_region->note_start_of_copying(during_im);
6173       return new_alloc_region;
6174     }
6175   }
6176   return NULL;
6177 }
6178 
6179 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6180                                              size_t allocated_bytes,
6181                                              InCSetState dest) {
6182   bool during_im = collector_state()->during_initial_mark_pause();
6183   alloc_region->note_end_of_copying(during_im);
6184   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6185   if (dest.is_young()) {
6186     young_list()->add_survivor_region(alloc_region);
6187   } else {
6188     _old_set.add(alloc_region);
6189   }
6190   _hr_printer.retire(alloc_region);
6191 }
6192 
6193 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6194   bool expanded = false;
6195   uint index = _hrm.find_highest_free(&expanded);
6196 
6197   if (index != G1_NO_HRM_INDEX) {
6198     if (expanded) {
6199       ergo_verbose1(ErgoHeapSizing,
6200                     "attempt heap expansion",
6201                     ergo_format_reason("requested address range outside heap bounds")
6202                     ergo_format_byte("region size"),
6203                     HeapRegion::GrainWords * HeapWordSize);
6204     }
6205     _hrm.allocate_free_regions_starting_at(index, 1);
6206     return region_at(index);
6207   }
6208   return NULL;
6209 }
6210 
6211 // Heap region set verification
6212 
6213 class VerifyRegionListsClosure : public HeapRegionClosure {
6214 private:
6215   HeapRegionSet*   _old_set;
6216   HeapRegionSet*   _humongous_set;
6217   HeapRegionManager*   _hrm;
6218 
6219 public:
6220   HeapRegionSetCount _old_count;
6221   HeapRegionSetCount _humongous_count;
6222   HeapRegionSetCount _free_count;
6223 
6224   VerifyRegionListsClosure(HeapRegionSet* old_set,
6225                            HeapRegionSet* humongous_set,
6226                            HeapRegionManager* hrm) :
6227     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6228     _old_count(), _humongous_count(), _free_count(){ }
6229 
6230   bool doHeapRegion(HeapRegion* hr) {
6231     if (hr->is_young()) {
6232       // TODO
6233     } else if (hr->is_humongous()) {
6234       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6235       _humongous_count.increment(1u, hr->capacity());
6236     } else if (hr->is_empty()) {
6237       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6238       _free_count.increment(1u, hr->capacity());
6239     } else if (hr->is_old()) {
6240       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6241       _old_count.increment(1u, hr->capacity());
6242     } else {
6243       // There are no other valid region types. Check for one invalid
6244       // one we can identify: pinned without old or humongous set.
6245       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6246       ShouldNotReachHere();
6247     }
6248     return false;
6249   }
6250 
6251   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6252     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6253     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6254               old_set->total_capacity_bytes(), _old_count.capacity());
6255 
6256     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6257     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6258               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6259 
6260     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6261     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6262               free_list->total_capacity_bytes(), _free_count.capacity());
6263   }
6264 };
6265 
6266 void G1CollectedHeap::verify_region_sets() {
6267   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6268 
6269   // First, check the explicit lists.
6270   _hrm.verify();
6271   {
6272     // Given that a concurrent operation might be adding regions to
6273     // the secondary free list we have to take the lock before
6274     // verifying it.
6275     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6276     _secondary_free_list.verify_list();
6277   }
6278 
6279   // If a concurrent region freeing operation is in progress it will
6280   // be difficult to correctly attributed any free regions we come
6281   // across to the correct free list given that they might belong to
6282   // one of several (free_list, secondary_free_list, any local lists,
6283   // etc.). So, if that's the case we will skip the rest of the
6284   // verification operation. Alternatively, waiting for the concurrent
6285   // operation to complete will have a non-trivial effect on the GC's
6286   // operation (no concurrent operation will last longer than the
6287   // interval between two calls to verification) and it might hide
6288   // any issues that we would like to catch during testing.
6289   if (free_regions_coming()) {
6290     return;
6291   }
6292 
6293   // Make sure we append the secondary_free_list on the free_list so
6294   // that all free regions we will come across can be safely
6295   // attributed to the free_list.
6296   append_secondary_free_list_if_not_empty_with_lock();
6297 
6298   // Finally, make sure that the region accounting in the lists is
6299   // consistent with what we see in the heap.
6300 
6301   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6302   heap_region_iterate(&cl);
6303   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6304 }
6305 
6306 // Optimized nmethod scanning
6307 
6308 class RegisterNMethodOopClosure: public OopClosure {
6309   G1CollectedHeap* _g1h;
6310   nmethod* _nm;
6311 
6312   template <class T> void do_oop_work(T* p) {
6313     T heap_oop = oopDesc::load_heap_oop(p);
6314     if (!oopDesc::is_null(heap_oop)) {
6315       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6316       HeapRegion* hr = _g1h->heap_region_containing(obj);
6317       assert(!hr->is_continues_humongous(),
6318              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6319              " starting at " HR_FORMAT,
6320              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6321 
6322       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6323       hr->add_strong_code_root_locked(_nm);
6324     }
6325   }
6326 
6327 public:
6328   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6329     _g1h(g1h), _nm(nm) {}
6330 
6331   void do_oop(oop* p)       { do_oop_work(p); }
6332   void do_oop(narrowOop* p) { do_oop_work(p); }
6333 };
6334 
6335 class UnregisterNMethodOopClosure: public OopClosure {
6336   G1CollectedHeap* _g1h;
6337   nmethod* _nm;
6338 
6339   template <class T> void do_oop_work(T* p) {
6340     T heap_oop = oopDesc::load_heap_oop(p);
6341     if (!oopDesc::is_null(heap_oop)) {
6342       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6343       HeapRegion* hr = _g1h->heap_region_containing(obj);
6344       assert(!hr->is_continues_humongous(),
6345              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6346              " starting at " HR_FORMAT,
6347              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6348 
6349       hr->remove_strong_code_root(_nm);
6350     }
6351   }
6352 
6353 public:
6354   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6355     _g1h(g1h), _nm(nm) {}
6356 
6357   void do_oop(oop* p)       { do_oop_work(p); }
6358   void do_oop(narrowOop* p) { do_oop_work(p); }
6359 };
6360 
6361 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6362   CollectedHeap::register_nmethod(nm);
6363 
6364   guarantee(nm != NULL, "sanity");
6365   RegisterNMethodOopClosure reg_cl(this, nm);
6366   nm->oops_do(&reg_cl);
6367 }
6368 
6369 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6370   CollectedHeap::unregister_nmethod(nm);
6371 
6372   guarantee(nm != NULL, "sanity");
6373   UnregisterNMethodOopClosure reg_cl(this, nm);
6374   nm->oops_do(&reg_cl, true);
6375 }
6376 
6377 void G1CollectedHeap::purge_code_root_memory() {
6378   double purge_start = os::elapsedTime();
6379   G1CodeRootSet::purge();
6380   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6381   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6382 }
6383 
6384 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6385   G1CollectedHeap* _g1h;
6386 
6387 public:
6388   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6389     _g1h(g1h) {}
6390 
6391   void do_code_blob(CodeBlob* cb) {
6392     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6393     if (nm == NULL) {
6394       return;
6395     }
6396 
6397     if (ScavengeRootsInCode) {
6398       _g1h->register_nmethod(nm);
6399     }
6400   }
6401 };
6402 
6403 void G1CollectedHeap::rebuild_strong_code_roots() {
6404   RebuildStrongCodeRootClosure blob_cl(this);
6405   CodeCache::blobs_do(&blob_cl);
6406 }