1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/cms/cmsGCStats.hpp"
  30 #include "gc/cms/cmsHeap.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/cmsVMOperations.hpp"
  33 #include "gc/cms/compactibleFreeListSpace.hpp"
  34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc/cms/concurrentMarkSweepThread.hpp"
  36 #include "gc/cms/parNewGeneration.hpp"
  37 #include "gc/cms/promotionInfo.inline.hpp"
  38 #include "gc/serial/genMarkSweep.hpp"
  39 #include "gc/serial/tenuredGeneration.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/cardGeneration.inline.hpp"
  42 #include "gc/shared/cardTableRS.hpp"
  43 #include "gc/shared/collectedHeap.inline.hpp"
  44 #include "gc/shared/collectorCounters.hpp"
  45 #include "gc/shared/gcLocker.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.inline.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/owstTaskTerminator.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  56 #include "gc/shared/space.inline.hpp"
  57 #include "gc/shared/strongRootsScope.hpp"
  58 #include "gc/shared/taskqueue.inline.hpp"
  59 #include "gc/shared/weakProcessor.hpp"
  60 #include "gc/shared/workerPolicy.hpp"
  61 #include "logging/log.hpp"
  62 #include "logging/logStream.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/binaryTreeDictionary.inline.hpp"
  65 #include "memory/iterator.inline.hpp"
  66 #include "memory/padded.hpp"
  67 #include "memory/resourceArea.hpp"
  68 #include "memory/universe.hpp"
  69 #include "oops/access.inline.hpp"
  70 #include "oops/oop.inline.hpp"
  71 #include "prims/jvmtiExport.hpp"
  72 #include "runtime/atomic.hpp"
  73 #include "runtime/flags/flagSetting.hpp"
  74 #include "runtime/globals_extension.hpp"
  75 #include "runtime/handles.inline.hpp"
  76 #include "runtime/java.hpp"
  77 #include "runtime/orderAccess.hpp"
  78 #include "runtime/timer.hpp"
  79 #include "runtime/vmThread.hpp"
  80 #include "services/memoryService.hpp"
  81 #include "services/runtimeService.hpp"
  82 #include "utilities/align.hpp"
  83 #include "utilities/stack.inline.hpp"
  84 #if INCLUDE_JVMCI
  85 #include "jvmci/jvmci.hpp"
  86 #endif
  87 
  88 // statics
  89 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  90 bool CMSCollector::_full_gc_requested = false;
  91 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  92 
  93 //////////////////////////////////////////////////////////////////
  94 // In support of CMS/VM thread synchronization
  95 //////////////////////////////////////////////////////////////////
  96 // We split use of the CGC_lock into 2 "levels".
  97 // The low-level locking is of the usual CGC_lock monitor. We introduce
  98 // a higher level "token" (hereafter "CMS token") built on top of the
  99 // low level monitor (hereafter "CGC lock").
 100 // The token-passing protocol gives priority to the VM thread. The
 101 // CMS-lock doesn't provide any fairness guarantees, but clients
 102 // should ensure that it is only held for very short, bounded
 103 // durations.
 104 //
 105 // When either of the CMS thread or the VM thread is involved in
 106 // collection operations during which it does not want the other
 107 // thread to interfere, it obtains the CMS token.
 108 //
 109 // If either thread tries to get the token while the other has
 110 // it, that thread waits. However, if the VM thread and CMS thread
 111 // both want the token, then the VM thread gets priority while the
 112 // CMS thread waits. This ensures, for instance, that the "concurrent"
 113 // phases of the CMS thread's work do not block out the VM thread
 114 // for long periods of time as the CMS thread continues to hog
 115 // the token. (See bug 4616232).
 116 //
 117 // The baton-passing functions are, however, controlled by the
 118 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 119 // and here the low-level CMS lock, not the high level token,
 120 // ensures mutual exclusion.
 121 //
 122 // Two important conditions that we have to satisfy:
 123 // 1. if a thread does a low-level wait on the CMS lock, then it
 124 //    relinquishes the CMS token if it were holding that token
 125 //    when it acquired the low-level CMS lock.
 126 // 2. any low-level notifications on the low-level lock
 127 //    should only be sent when a thread has relinquished the token.
 128 //
 129 // In the absence of either property, we'd have potential deadlock.
 130 //
 131 // We protect each of the CMS (concurrent and sequential) phases
 132 // with the CMS _token_, not the CMS _lock_.
 133 //
 134 // The only code protected by CMS lock is the token acquisition code
 135 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 136 // baton-passing code.
 137 //
 138 // Unfortunately, i couldn't come up with a good abstraction to factor and
 139 // hide the naked CGC_lock manipulation in the baton-passing code
 140 // further below. That's something we should try to do. Also, the proof
 141 // of correctness of this 2-level locking scheme is far from obvious,
 142 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 143 // that there may be a theoretical possibility of delay/starvation in the
 144 // low-level lock/wait/notify scheme used for the baton-passing because of
 145 // potential interference with the priority scheme embodied in the
 146 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 147 // invocation further below and marked with "XXX 20011219YSR".
 148 // Indeed, as we note elsewhere, this may become yet more slippery
 149 // in the presence of multiple CMS and/or multiple VM threads. XXX
 150 
 151 class CMSTokenSync: public StackObj {
 152  private:
 153   bool _is_cms_thread;
 154  public:
 155   CMSTokenSync(bool is_cms_thread):
 156     _is_cms_thread(is_cms_thread) {
 157     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 158            "Incorrect argument to constructor");
 159     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 160   }
 161 
 162   ~CMSTokenSync() {
 163     assert(_is_cms_thread ?
 164              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 165              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 166           "Incorrect state");
 167     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 168   }
 169 };
 170 
 171 // Convenience class that does a CMSTokenSync, and then acquires
 172 // upto three locks.
 173 class CMSTokenSyncWithLocks: public CMSTokenSync {
 174  private:
 175   // Note: locks are acquired in textual declaration order
 176   // and released in the opposite order
 177   MutexLocker _locker1, _locker2, _locker3;
 178  public:
 179   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 180                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 181     CMSTokenSync(is_cms_thread),
 182     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 183     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 184     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 185   { }
 186 };
 187 
 188 
 189 //////////////////////////////////////////////////////////////////
 190 //  Concurrent Mark-Sweep Generation /////////////////////////////
 191 //////////////////////////////////////////////////////////////////
 192 
 193 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 194 
 195 // This struct contains per-thread things necessary to support parallel
 196 // young-gen collection.
 197 class CMSParGCThreadState: public CHeapObj<mtGC> {
 198  public:
 199   CompactibleFreeListSpaceLAB lab;
 200   PromotionInfo promo;
 201 
 202   // Constructor.
 203   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 204     promo.setSpace(cfls);
 205   }
 206 };
 207 
 208 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 209      ReservedSpace rs,
 210      size_t initial_byte_size,
 211      size_t min_byte_size,
 212      size_t max_byte_size,
 213      CardTableRS* ct) :
 214   CardGeneration(rs, initial_byte_size, ct),
 215   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 216   _did_compact(false)
 217 {
 218   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 219   HeapWord* end    = (HeapWord*) _virtual_space.high();
 220 
 221   _direct_allocated_words = 0;
 222   NOT_PRODUCT(
 223     _numObjectsPromoted = 0;
 224     _numWordsPromoted = 0;
 225     _numObjectsAllocated = 0;
 226     _numWordsAllocated = 0;
 227   )
 228 
 229   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 230   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 231   _cmsSpace->_old_gen = this;
 232 
 233   _gc_stats = new CMSGCStats();
 234 
 235   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 236   // offsets match. The ability to tell free chunks from objects
 237   // depends on this property.
 238   debug_only(
 239     FreeChunk* junk = NULL;
 240     assert(UseCompressedClassPointers ||
 241            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 242            "Offset of FreeChunk::_prev within FreeChunk must match"
 243            "  that of OopDesc::_klass within OopDesc");
 244   )
 245 
 246   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 247   for (uint i = 0; i < ParallelGCThreads; i++) {
 248     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 249   }
 250 
 251   _incremental_collection_failed = false;
 252   // The "dilatation_factor" is the expansion that can occur on
 253   // account of the fact that the minimum object size in the CMS
 254   // generation may be larger than that in, say, a contiguous young
 255   //  generation.
 256   // Ideally, in the calculation below, we'd compute the dilatation
 257   // factor as: MinChunkSize/(promoting_gen's min object size)
 258   // Since we do not have such a general query interface for the
 259   // promoting generation, we'll instead just use the minimum
 260   // object size (which today is a header's worth of space);
 261   // note that all arithmetic is in units of HeapWords.
 262   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 263   assert(_dilatation_factor >= 1.0, "from previous assert");
 264 
 265   initialize_performance_counters(min_byte_size, max_byte_size);
 266 }
 267 
 268 
 269 // The field "_initiating_occupancy" represents the occupancy percentage
 270 // at which we trigger a new collection cycle.  Unless explicitly specified
 271 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 272 // is calculated by:
 273 //
 274 //   Let "f" be MinHeapFreeRatio in
 275 //
 276 //    _initiating_occupancy = 100-f +
 277 //                           f * (CMSTriggerRatio/100)
 278 //   where CMSTriggerRatio is the argument "tr" below.
 279 //
 280 // That is, if we assume the heap is at its desired maximum occupancy at the
 281 // end of a collection, we let CMSTriggerRatio of the (purported) free
 282 // space be allocated before initiating a new collection cycle.
 283 //
 284 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 285   assert(io <= 100 && tr <= 100, "Check the arguments");
 286   if (io >= 0) {
 287     _initiating_occupancy = (double)io / 100.0;
 288   } else {
 289     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 290                              (double)(tr * MinHeapFreeRatio) / 100.0)
 291                             / 100.0;
 292   }
 293 }
 294 
 295 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 296   assert(collector() != NULL, "no collector");
 297   collector()->ref_processor_init();
 298 }
 299 
 300 void CMSCollector::ref_processor_init() {
 301   if (_ref_processor == NULL) {
 302     // Allocate and initialize a reference processor
 303     _ref_processor =
 304       new ReferenceProcessor(&_span_based_discoverer,
 305                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 306                              ParallelGCThreads,                      // mt processing degree
 307                              _cmsGen->refs_discovery_is_mt(),        // mt discovery
 308                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 309                              _cmsGen->refs_discovery_is_atomic(),    // discovery is not atomic
 310                              &_is_alive_closure,                     // closure for liveness info
 311                              false);                                 // disable adjusting number of processing threads
 312     // Initialize the _ref_processor field of CMSGen
 313     _cmsGen->set_ref_processor(_ref_processor);
 314 
 315   }
 316 }
 317 
 318 AdaptiveSizePolicy* CMSCollector::size_policy() {
 319   return CMSHeap::heap()->size_policy();
 320 }
 321 
 322 void ConcurrentMarkSweepGeneration::initialize_performance_counters(size_t min_old_size,
 323                                                                     size_t max_old_size) {
 324 
 325   const char* gen_name = "old";
 326   // Generation Counters - generation 1, 1 subspace
 327   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 328       min_old_size, max_old_size, &_virtual_space);
 329 
 330   _space_counters = new GSpaceCounters(gen_name, 0,
 331                                        _virtual_space.reserved_size(),
 332                                        this, _gen_counters);
 333 }
 334 
 335 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 336   _cms_gen(cms_gen)
 337 {
 338   assert(alpha <= 100, "bad value");
 339   _saved_alpha = alpha;
 340 
 341   // Initialize the alphas to the bootstrap value of 100.
 342   _gc0_alpha = _cms_alpha = 100;
 343 
 344   _cms_begin_time.update();
 345   _cms_end_time.update();
 346 
 347   _gc0_duration = 0.0;
 348   _gc0_period = 0.0;
 349   _gc0_promoted = 0;
 350 
 351   _cms_duration = 0.0;
 352   _cms_period = 0.0;
 353   _cms_allocated = 0;
 354 
 355   _cms_used_at_gc0_begin = 0;
 356   _cms_used_at_gc0_end = 0;
 357   _allow_duty_cycle_reduction = false;
 358   _valid_bits = 0;
 359 }
 360 
 361 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 362   // TBD: CR 6909490
 363   return 1.0;
 364 }
 365 
 366 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 367 }
 368 
 369 // If promotion failure handling is on use
 370 // the padded average size of the promotion for each
 371 // young generation collection.
 372 double CMSStats::time_until_cms_gen_full() const {
 373   size_t cms_free = _cms_gen->cmsSpace()->free();
 374   CMSHeap* heap = CMSHeap::heap();
 375   size_t expected_promotion = MIN2(heap->young_gen()->capacity(),
 376                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 377   if (cms_free > expected_promotion) {
 378     // Start a cms collection if there isn't enough space to promote
 379     // for the next young collection.  Use the padded average as
 380     // a safety factor.
 381     cms_free -= expected_promotion;
 382 
 383     // Adjust by the safety factor.
 384     double cms_free_dbl = (double)cms_free;
 385     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 386     // Apply a further correction factor which tries to adjust
 387     // for recent occurance of concurrent mode failures.
 388     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 389     cms_free_dbl = cms_free_dbl * cms_adjustment;
 390 
 391     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 392                   cms_free, expected_promotion);
 393     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 394     // Add 1 in case the consumption rate goes to zero.
 395     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 396   }
 397   return 0.0;
 398 }
 399 
 400 // Compare the duration of the cms collection to the
 401 // time remaining before the cms generation is empty.
 402 // Note that the time from the start of the cms collection
 403 // to the start of the cms sweep (less than the total
 404 // duration of the cms collection) can be used.  This
 405 // has been tried and some applications experienced
 406 // promotion failures early in execution.  This was
 407 // possibly because the averages were not accurate
 408 // enough at the beginning.
 409 double CMSStats::time_until_cms_start() const {
 410   // We add "gc0_period" to the "work" calculation
 411   // below because this query is done (mostly) at the
 412   // end of a scavenge, so we need to conservatively
 413   // account for that much possible delay
 414   // in the query so as to avoid concurrent mode failures
 415   // due to starting the collection just a wee bit too
 416   // late.
 417   double work = cms_duration() + gc0_period();
 418   double deadline = time_until_cms_gen_full();
 419   // If a concurrent mode failure occurred recently, we want to be
 420   // more conservative and halve our expected time_until_cms_gen_full()
 421   if (work > deadline) {
 422     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 423                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 424     return 0.0;
 425   }
 426   return work - deadline;
 427 }
 428 
 429 #ifndef PRODUCT
 430 void CMSStats::print_on(outputStream *st) const {
 431   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 432   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 433                gc0_duration(), gc0_period(), gc0_promoted());
 434   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 435             cms_duration(), cms_period(), cms_allocated());
 436   st->print(",cms_since_beg=%g,cms_since_end=%g",
 437             cms_time_since_begin(), cms_time_since_end());
 438   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 439             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 440 
 441   if (valid()) {
 442     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 443               promotion_rate(), cms_allocation_rate());
 444     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 445               cms_consumption_rate(), time_until_cms_gen_full());
 446   }
 447   st->cr();
 448 }
 449 #endif // #ifndef PRODUCT
 450 
 451 CMSCollector::CollectorState CMSCollector::_collectorState =
 452                              CMSCollector::Idling;
 453 bool CMSCollector::_foregroundGCIsActive = false;
 454 bool CMSCollector::_foregroundGCShouldWait = false;
 455 
 456 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 457                            CardTableRS*                   ct):
 458   _overflow_list(NULL),
 459   _conc_workers(NULL),     // may be set later
 460   _completed_initialization(false),
 461   _collection_count_start(0),
 462   _should_unload_classes(CMSClassUnloadingEnabled),
 463   _concurrent_cycles_since_last_unload(0),
 464   _roots_scanning_options(GenCollectedHeap::SO_None),
 465   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 466   _verifying(false),
 467   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 468   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 469   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 470   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 471   _cms_start_registered(false),
 472   _cmsGen(cmsGen),
 473   // Adjust span to cover old (cms) gen
 474   _span(cmsGen->reserved()),
 475   _ct(ct),
 476   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 477   _modUnionTable((CardTable::card_shift - LogHeapWordSize),
 478                  -1 /* lock-free */, "No_lock" /* dummy */),
 479   _restart_addr(NULL),
 480   _ser_pmc_preclean_ovflw(0),
 481   _ser_pmc_remark_ovflw(0),
 482   _par_pmc_remark_ovflw(0),
 483   _ser_kac_preclean_ovflw(0),
 484   _ser_kac_ovflw(0),
 485   _par_kac_ovflw(0),
 486 #ifndef PRODUCT
 487   _num_par_pushes(0),
 488 #endif
 489   _span_based_discoverer(_span),
 490   _ref_processor(NULL),    // will be set later
 491   // Construct the is_alive_closure with _span & markBitMap
 492   _is_alive_closure(_span, &_markBitMap),
 493   _modUnionClosurePar(&_modUnionTable),
 494   _between_prologue_and_epilogue(false),
 495   _abort_preclean(false),
 496   _start_sampling(false),
 497   _stats(cmsGen),
 498   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 499                              //verify that this lock should be acquired with safepoint check.
 500                              Monitor::_safepoint_check_never)),
 501   _eden_chunk_array(NULL),     // may be set in ctor body
 502   _eden_chunk_index(0),        // -- ditto --
 503   _eden_chunk_capacity(0),     // -- ditto --
 504   _survivor_chunk_array(NULL), // -- ditto --
 505   _survivor_chunk_index(0),    // -- ditto --
 506   _survivor_chunk_capacity(0), // -- ditto --
 507   _survivor_plab_array(NULL)   // -- ditto --
 508 {
 509   // Now expand the span and allocate the collection support structures
 510   // (MUT, marking bit map etc.) to cover both generations subject to
 511   // collection.
 512 
 513   // For use by dirty card to oop closures.
 514   _cmsGen->cmsSpace()->set_collector(this);
 515 
 516   // Allocate MUT and marking bit map
 517   {
 518     MutexLocker x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 519     if (!_markBitMap.allocate(_span)) {
 520       log_warning(gc)("Failed to allocate CMS Bit Map");
 521       return;
 522     }
 523     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 524   }
 525   {
 526     _modUnionTable.allocate(_span);
 527     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 528   }
 529 
 530   if (!_markStack.allocate(MarkStackSize)) {
 531     log_warning(gc)("Failed to allocate CMS Marking Stack");
 532     return;
 533   }
 534 
 535   // Support for multi-threaded concurrent phases
 536   if (CMSConcurrentMTEnabled) {
 537     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 538       // just for now
 539       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 540     }
 541     if (ConcGCThreads > 1) {
 542       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 543                                  ConcGCThreads, true);
 544       if (_conc_workers == NULL) {
 545         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 546         CMSConcurrentMTEnabled = false;
 547       } else {
 548         _conc_workers->initialize_workers();
 549       }
 550     } else {
 551       CMSConcurrentMTEnabled = false;
 552     }
 553   }
 554   if (!CMSConcurrentMTEnabled) {
 555     ConcGCThreads = 0;
 556   } else {
 557     // Turn off CMSCleanOnEnter optimization temporarily for
 558     // the MT case where it's not fixed yet; see 6178663.
 559     CMSCleanOnEnter = false;
 560   }
 561   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 562          "Inconsistency");
 563   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 564   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 565 
 566   // Parallel task queues; these are shared for the
 567   // concurrent and stop-world phases of CMS, but
 568   // are not shared with parallel scavenge (ParNew).
 569   {
 570     uint i;
 571     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 572 
 573     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 574          || ParallelRefProcEnabled)
 575         && num_queues > 0) {
 576       _task_queues = new OopTaskQueueSet(num_queues);
 577       if (_task_queues == NULL) {
 578         log_warning(gc)("task_queues allocation failure.");
 579         return;
 580       }
 581       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 582       for (i = 0; i < num_queues; i++) {
 583         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 584         if (q == NULL) {
 585           log_warning(gc)("work_queue allocation failure.");
 586           return;
 587         }
 588         _task_queues->register_queue(i, q);
 589       }
 590       for (i = 0; i < num_queues; i++) {
 591         _task_queues->queue(i)->initialize();
 592       }
 593     }
 594   }
 595 
 596   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 597 
 598   // Clip CMSBootstrapOccupancy between 0 and 100.
 599   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 600 
 601   // Now tell CMS generations the identity of their collector
 602   ConcurrentMarkSweepGeneration::set_collector(this);
 603 
 604   // Create & start a CMS thread for this CMS collector
 605   _cmsThread = ConcurrentMarkSweepThread::start(this);
 606   assert(cmsThread() != NULL, "CMS Thread should have been created");
 607   assert(cmsThread()->collector() == this,
 608          "CMS Thread should refer to this gen");
 609   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 610 
 611   // Support for parallelizing young gen rescan
 612   CMSHeap* heap = CMSHeap::heap();
 613   _young_gen = heap->young_gen();
 614   if (heap->supports_inline_contig_alloc()) {
 615     _top_addr = heap->top_addr();
 616     _end_addr = heap->end_addr();
 617     assert(_young_gen != NULL, "no _young_gen");
 618     _eden_chunk_index = 0;
 619     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 620     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 621   }
 622 
 623   // Support for parallelizing survivor space rescan
 624   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 625     const size_t max_plab_samples =
 626       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 627 
 628     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 629     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 630     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 631     _survivor_chunk_capacity = max_plab_samples;
 632     for (uint i = 0; i < ParallelGCThreads; i++) {
 633       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 634       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 635       assert(cur->end() == 0, "Should be 0");
 636       assert(cur->array() == vec, "Should be vec");
 637       assert(cur->capacity() == max_plab_samples, "Error");
 638     }
 639   }
 640 
 641   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 642   _gc_counters = new CollectorCounters("CMS full collection pauses", 1);
 643   _cgc_counters = new CollectorCounters("CMS concurrent cycle pauses", 2);
 644   _completed_initialization = true;
 645   _inter_sweep_timer.start();  // start of time
 646 }
 647 
 648 const char* ConcurrentMarkSweepGeneration::name() const {
 649   return "concurrent mark-sweep generation";
 650 }
 651 void ConcurrentMarkSweepGeneration::update_counters() {
 652   if (UsePerfData) {
 653     _space_counters->update_all();
 654     _gen_counters->update_all();
 655   }
 656 }
 657 
 658 // this is an optimized version of update_counters(). it takes the
 659 // used value as a parameter rather than computing it.
 660 //
 661 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 662   if (UsePerfData) {
 663     _space_counters->update_used(used);
 664     _space_counters->update_capacity();
 665     _gen_counters->update_all();
 666   }
 667 }
 668 
 669 void ConcurrentMarkSweepGeneration::print() const {
 670   Generation::print();
 671   cmsSpace()->print();
 672 }
 673 
 674 #ifndef PRODUCT
 675 void ConcurrentMarkSweepGeneration::print_statistics() {
 676   cmsSpace()->printFLCensus(0);
 677 }
 678 #endif
 679 
 680 size_t
 681 ConcurrentMarkSweepGeneration::contiguous_available() const {
 682   // dld proposes an improvement in precision here. If the committed
 683   // part of the space ends in a free block we should add that to
 684   // uncommitted size in the calculation below. Will make this
 685   // change later, staying with the approximation below for the
 686   // time being. -- ysr.
 687   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 688 }
 689 
 690 size_t
 691 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 692   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 693 }
 694 
 695 size_t ConcurrentMarkSweepGeneration::used_stable() const {
 696   return cmsSpace()->used_stable();
 697 }
 698 
 699 size_t ConcurrentMarkSweepGeneration::max_available() const {
 700   return free() + _virtual_space.uncommitted_size();
 701 }
 702 
 703 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 704   size_t available = max_available();
 705   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 706   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 707   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 708                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 709   return res;
 710 }
 711 
 712 // At a promotion failure dump information on block layout in heap
 713 // (cms old generation).
 714 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 715   Log(gc, promotion) log;
 716   if (log.is_trace()) {
 717     LogStream ls(log.trace());
 718     cmsSpace()->dump_at_safepoint_with_locks(collector(), &ls);
 719   }
 720 }
 721 
 722 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 723   // Clear the promotion information.  These pointers can be adjusted
 724   // along with all the other pointers into the heap but
 725   // compaction is expected to be a rare event with
 726   // a heap using cms so don't do it without seeing the need.
 727   for (uint i = 0; i < ParallelGCThreads; i++) {
 728     _par_gc_thread_states[i]->promo.reset();
 729   }
 730 }
 731 
 732 void ConcurrentMarkSweepGeneration::compute_new_size() {
 733   assert_locked_or_safepoint(Heap_lock);
 734 
 735   // If incremental collection failed, we just want to expand
 736   // to the limit.
 737   if (incremental_collection_failed()) {
 738     clear_incremental_collection_failed();
 739     grow_to_reserved();
 740     return;
 741   }
 742 
 743   // The heap has been compacted but not reset yet.
 744   // Any metric such as free() or used() will be incorrect.
 745 
 746   CardGeneration::compute_new_size();
 747 
 748   // Reset again after a possible resizing
 749   if (did_compact()) {
 750     cmsSpace()->reset_after_compaction();
 751   }
 752 }
 753 
 754 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 755   assert_locked_or_safepoint(Heap_lock);
 756 
 757   // If incremental collection failed, we just want to expand
 758   // to the limit.
 759   if (incremental_collection_failed()) {
 760     clear_incremental_collection_failed();
 761     grow_to_reserved();
 762     return;
 763   }
 764 
 765   double free_percentage = ((double) free()) / capacity();
 766   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 767   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 768 
 769   // compute expansion delta needed for reaching desired free percentage
 770   if (free_percentage < desired_free_percentage) {
 771     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 772     assert(desired_capacity >= capacity(), "invalid expansion size");
 773     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 774     Log(gc) log;
 775     if (log.is_trace()) {
 776       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 777       log.trace("From compute_new_size: ");
 778       log.trace("  Free fraction %f", free_percentage);
 779       log.trace("  Desired free fraction %f", desired_free_percentage);
 780       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 781       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 782       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 783       CMSHeap* heap = CMSHeap::heap();
 784       size_t young_size = heap->young_gen()->capacity();
 785       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 786       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 787       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 788       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 789     }
 790     // safe if expansion fails
 791     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 792     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 793   } else {
 794     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 795     assert(desired_capacity <= capacity(), "invalid expansion size");
 796     size_t shrink_bytes = capacity() - desired_capacity;
 797     // Don't shrink unless the delta is greater than the minimum shrink we want
 798     if (shrink_bytes >= MinHeapDeltaBytes) {
 799       shrink_free_list_by(shrink_bytes);
 800     }
 801   }
 802 }
 803 
 804 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 805   return cmsSpace()->freelistLock();
 806 }
 807 
 808 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 809   CMSSynchronousYieldRequest yr;
 810   MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
 811   return have_lock_and_allocate(size, tlab);
 812 }
 813 
 814 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 815                                                                 bool   tlab /* ignored */) {
 816   assert_lock_strong(freelistLock());
 817   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 818   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 819   // Allocate the object live (grey) if the background collector has
 820   // started marking. This is necessary because the marker may
 821   // have passed this address and consequently this object will
 822   // not otherwise be greyed and would be incorrectly swept up.
 823   // Note that if this object contains references, the writing
 824   // of those references will dirty the card containing this object
 825   // allowing the object to be blackened (and its references scanned)
 826   // either during a preclean phase or at the final checkpoint.
 827   if (res != NULL) {
 828     // We may block here with an uninitialized object with
 829     // its mark-bit or P-bits not yet set. Such objects need
 830     // to be safely navigable by block_start().
 831     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 832     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 833     collector()->direct_allocated(res, adjustedSize);
 834     _direct_allocated_words += adjustedSize;
 835     // allocation counters
 836     NOT_PRODUCT(
 837       _numObjectsAllocated++;
 838       _numWordsAllocated += (int)adjustedSize;
 839     )
 840   }
 841   return res;
 842 }
 843 
 844 // In the case of direct allocation by mutators in a generation that
 845 // is being concurrently collected, the object must be allocated
 846 // live (grey) if the background collector has started marking.
 847 // This is necessary because the marker may
 848 // have passed this address and consequently this object will
 849 // not otherwise be greyed and would be incorrectly swept up.
 850 // Note that if this object contains references, the writing
 851 // of those references will dirty the card containing this object
 852 // allowing the object to be blackened (and its references scanned)
 853 // either during a preclean phase or at the final checkpoint.
 854 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 855   assert(_markBitMap.covers(start, size), "Out of bounds");
 856   if (_collectorState >= Marking) {
 857     MutexLocker y(_markBitMap.lock(),
 858                   Mutex::_no_safepoint_check_flag);
 859     // [see comments preceding SweepClosure::do_blk() below for details]
 860     //
 861     // Can the P-bits be deleted now?  JJJ
 862     //
 863     // 1. need to mark the object as live so it isn't collected
 864     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 865     // 3. need to mark the end of the object so marking, precleaning or sweeping
 866     //    can skip over uninitialized or unparsable objects. An allocated
 867     //    object is considered uninitialized for our purposes as long as
 868     //    its klass word is NULL.  All old gen objects are parsable
 869     //    as soon as they are initialized.)
 870     _markBitMap.mark(start);          // object is live
 871     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 872     _markBitMap.mark(start + size - 1);
 873                                       // mark end of object
 874   }
 875   // check that oop looks uninitialized
 876   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 877 }
 878 
 879 void CMSCollector::promoted(bool par, HeapWord* start,
 880                             bool is_obj_array, size_t obj_size) {
 881   assert(_markBitMap.covers(start), "Out of bounds");
 882   // See comment in direct_allocated() about when objects should
 883   // be allocated live.
 884   if (_collectorState >= Marking) {
 885     // we already hold the marking bit map lock, taken in
 886     // the prologue
 887     if (par) {
 888       _markBitMap.par_mark(start);
 889     } else {
 890       _markBitMap.mark(start);
 891     }
 892     // We don't need to mark the object as uninitialized (as
 893     // in direct_allocated above) because this is being done with the
 894     // world stopped and the object will be initialized by the
 895     // time the marking, precleaning or sweeping get to look at it.
 896     // But see the code for copying objects into the CMS generation,
 897     // where we need to ensure that concurrent readers of the
 898     // block offset table are able to safely navigate a block that
 899     // is in flux from being free to being allocated (and in
 900     // transition while being copied into) and subsequently
 901     // becoming a bona-fide object when the copy/promotion is complete.
 902     assert(SafepointSynchronize::is_at_safepoint(),
 903            "expect promotion only at safepoints");
 904 
 905     if (_collectorState < Sweeping) {
 906       // Mark the appropriate cards in the modUnionTable, so that
 907       // this object gets scanned before the sweep. If this is
 908       // not done, CMS generation references in the object might
 909       // not get marked.
 910       // For the case of arrays, which are otherwise precisely
 911       // marked, we need to dirty the entire array, not just its head.
 912       if (is_obj_array) {
 913         // The [par_]mark_range() method expects mr.end() below to
 914         // be aligned to the granularity of a bit's representation
 915         // in the heap. In the case of the MUT below, that's a
 916         // card size.
 917         MemRegion mr(start,
 918                      align_up(start + obj_size,
 919                               CardTable::card_size /* bytes */));
 920         if (par) {
 921           _modUnionTable.par_mark_range(mr);
 922         } else {
 923           _modUnionTable.mark_range(mr);
 924         }
 925       } else {  // not an obj array; we can just mark the head
 926         if (par) {
 927           _modUnionTable.par_mark(start);
 928         } else {
 929           _modUnionTable.mark(start);
 930         }
 931       }
 932     }
 933   }
 934 }
 935 
 936 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 937   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 938   // allocate, copy and if necessary update promoinfo --
 939   // delegate to underlying space.
 940   assert_lock_strong(freelistLock());
 941 
 942 #ifndef PRODUCT
 943   if (CMSHeap::heap()->promotion_should_fail()) {
 944     return NULL;
 945   }
 946 #endif  // #ifndef PRODUCT
 947 
 948   oop res = _cmsSpace->promote(obj, obj_size);
 949   if (res == NULL) {
 950     // expand and retry
 951     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 952     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 953     // Since this is the old generation, we don't try to promote
 954     // into a more senior generation.
 955     res = _cmsSpace->promote(obj, obj_size);
 956   }
 957   if (res != NULL) {
 958     // See comment in allocate() about when objects should
 959     // be allocated live.
 960     assert(oopDesc::is_oop(obj), "Will dereference klass pointer below");
 961     collector()->promoted(false,           // Not parallel
 962                           (HeapWord*)res, obj->is_objArray(), obj_size);
 963     // promotion counters
 964     NOT_PRODUCT(
 965       _numObjectsPromoted++;
 966       _numWordsPromoted +=
 967         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 968     )
 969   }
 970   return res;
 971 }
 972 
 973 
 974 // IMPORTANT: Notes on object size recognition in CMS.
 975 // ---------------------------------------------------
 976 // A block of storage in the CMS generation is always in
 977 // one of three states. A free block (FREE), an allocated
 978 // object (OBJECT) whose size() method reports the correct size,
 979 // and an intermediate state (TRANSIENT) in which its size cannot
 980 // be accurately determined.
 981 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 982 // -----------------------------------------------------
 983 // FREE:      klass_word & 1 == 1; mark_word holds block size
 984 //
 985 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 986 //            obj->size() computes correct size
 987 //
 988 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 989 //
 990 // STATE IDENTIFICATION: (64 bit+COOPS)
 991 // ------------------------------------
 992 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 993 //
 994 // OBJECT:    klass_word installed; klass_word != 0;
 995 //            obj->size() computes correct size
 996 //
 997 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 998 //
 999 //
1000 // STATE TRANSITION DIAGRAM
1001 //
1002 //        mut / parnew                     mut  /  parnew
1003 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1004 //  ^                                                                   |
1005 //  |------------------------ DEAD <------------------------------------|
1006 //         sweep                            mut
1007 //
1008 // While a block is in TRANSIENT state its size cannot be determined
1009 // so readers will either need to come back later or stall until
1010 // the size can be determined. Note that for the case of direct
1011 // allocation, P-bits, when available, may be used to determine the
1012 // size of an object that may not yet have been initialized.
1013 
1014 // Things to support parallel young-gen collection.
1015 oop
1016 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1017                                            oop old, markOop m,
1018                                            size_t word_sz) {
1019 #ifndef PRODUCT
1020   if (CMSHeap::heap()->promotion_should_fail()) {
1021     return NULL;
1022   }
1023 #endif  // #ifndef PRODUCT
1024 
1025   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1026   PromotionInfo* promoInfo = &ps->promo;
1027   // if we are tracking promotions, then first ensure space for
1028   // promotion (including spooling space for saving header if necessary).
1029   // then allocate and copy, then track promoted info if needed.
1030   // When tracking (see PromotionInfo::track()), the mark word may
1031   // be displaced and in this case restoration of the mark word
1032   // occurs in the (oop_since_save_marks_)iterate phase.
1033   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1034     // Out of space for allocating spooling buffers;
1035     // try expanding and allocating spooling buffers.
1036     if (!expand_and_ensure_spooling_space(promoInfo)) {
1037       return NULL;
1038     }
1039   }
1040   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1041   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1042   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1043   if (obj_ptr == NULL) {
1044      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1045      if (obj_ptr == NULL) {
1046        return NULL;
1047      }
1048   }
1049   oop obj = oop(obj_ptr);
1050   OrderAccess::storestore();
1051   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1052   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1053   // IMPORTANT: See note on object initialization for CMS above.
1054   // Otherwise, copy the object.  Here we must be careful to insert the
1055   // klass pointer last, since this marks the block as an allocated object.
1056   // Except with compressed oops it's the mark word.
1057   HeapWord* old_ptr = (HeapWord*)old;
1058   // Restore the mark word copied above.
1059   obj->set_mark_raw(m);
1060   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1061   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1062   OrderAccess::storestore();
1063 
1064   if (UseCompressedClassPointers) {
1065     // Copy gap missed by (aligned) header size calculation below
1066     obj->set_klass_gap(old->klass_gap());
1067   }
1068   if (word_sz > (size_t)oopDesc::header_size()) {
1069     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1070                                  obj_ptr + oopDesc::header_size(),
1071                                  word_sz - oopDesc::header_size());
1072   }
1073 
1074   // Now we can track the promoted object, if necessary.  We take care
1075   // to delay the transition from uninitialized to full object
1076   // (i.e., insertion of klass pointer) until after, so that it
1077   // atomically becomes a promoted object.
1078   if (promoInfo->tracking()) {
1079     promoInfo->track((PromotedObject*)obj, old->klass());
1080   }
1081   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1082   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1083   assert(oopDesc::is_oop(old), "Will use and dereference old klass ptr below");
1084 
1085   // Finally, install the klass pointer (this should be volatile).
1086   OrderAccess::storestore();
1087   obj->set_klass(old->klass());
1088   // We should now be able to calculate the right size for this object
1089   assert(oopDesc::is_oop(obj) && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1090 
1091   collector()->promoted(true,          // parallel
1092                         obj_ptr, old->is_objArray(), word_sz);
1093 
1094   NOT_PRODUCT(
1095     Atomic::inc(&_numObjectsPromoted);
1096     Atomic::add(alloc_sz, &_numWordsPromoted);
1097   )
1098 
1099   return obj;
1100 }
1101 
1102 void
1103 ConcurrentMarkSweepGeneration::
1104 par_promote_alloc_done(int thread_num) {
1105   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1106   ps->lab.retire(thread_num);
1107 }
1108 
1109 void
1110 ConcurrentMarkSweepGeneration::
1111 par_oop_since_save_marks_iterate_done(int thread_num) {
1112   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1113   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1114   ps->promo.promoted_oops_iterate(dummy_cl);
1115 
1116   // Because card-scanning has been completed, subsequent phases
1117   // (e.g., reference processing) will not need to recognize which
1118   // objects have been promoted during this GC. So, we can now disable
1119   // promotion tracking.
1120   ps->promo.stopTrackingPromotions();
1121 }
1122 
1123 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1124                                                    size_t size,
1125                                                    bool   tlab)
1126 {
1127   // We allow a STW collection only if a full
1128   // collection was requested.
1129   return full || should_allocate(size, tlab); // FIX ME !!!
1130   // This and promotion failure handling are connected at the
1131   // hip and should be fixed by untying them.
1132 }
1133 
1134 bool CMSCollector::shouldConcurrentCollect() {
1135   LogTarget(Trace, gc) log;
1136 
1137   if (_full_gc_requested) {
1138     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1139     return true;
1140   }
1141 
1142   FreelistLocker x(this);
1143   // ------------------------------------------------------------------
1144   // Print out lots of information which affects the initiation of
1145   // a collection.
1146   if (log.is_enabled() && stats().valid()) {
1147     log.print("CMSCollector shouldConcurrentCollect: ");
1148 
1149     LogStream out(log);
1150     stats().print_on(&out);
1151 
1152     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1153     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1154     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1155     log.print("promotion_rate=%g", stats().promotion_rate());
1156     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1157     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1158     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1159     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1160     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1161     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1162   }
1163   // ------------------------------------------------------------------
1164 
1165   // If the estimated time to complete a cms collection (cms_duration())
1166   // is less than the estimated time remaining until the cms generation
1167   // is full, start a collection.
1168   if (!UseCMSInitiatingOccupancyOnly) {
1169     if (stats().valid()) {
1170       if (stats().time_until_cms_start() == 0.0) {
1171         return true;
1172       }
1173     } else {
1174       // We want to conservatively collect somewhat early in order
1175       // to try and "bootstrap" our CMS/promotion statistics;
1176       // this branch will not fire after the first successful CMS
1177       // collection because the stats should then be valid.
1178       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1179         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1180                   _cmsGen->occupancy(), _bootstrap_occupancy);
1181         return true;
1182       }
1183     }
1184   }
1185 
1186   // Otherwise, we start a collection cycle if
1187   // old gen want a collection cycle started. Each may use
1188   // an appropriate criterion for making this decision.
1189   // XXX We need to make sure that the gen expansion
1190   // criterion dovetails well with this. XXX NEED TO FIX THIS
1191   if (_cmsGen->should_concurrent_collect()) {
1192     log.print("CMS old gen initiated");
1193     return true;
1194   }
1195 
1196   // We start a collection if we believe an incremental collection may fail;
1197   // this is not likely to be productive in practice because it's probably too
1198   // late anyway.
1199   CMSHeap* heap = CMSHeap::heap();
1200   if (heap->incremental_collection_will_fail(true /* consult_young */)) {
1201     log.print("CMSCollector: collect because incremental collection will fail ");
1202     return true;
1203   }
1204 
1205   if (MetaspaceGC::should_concurrent_collect()) {
1206     log.print("CMSCollector: collect for metadata allocation ");
1207     return true;
1208   }
1209 
1210   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1211   if (CMSTriggerInterval >= 0) {
1212     if (CMSTriggerInterval == 0) {
1213       // Trigger always
1214       return true;
1215     }
1216 
1217     // Check the CMS time since begin (we do not check the stats validity
1218     // as we want to be able to trigger the first CMS cycle as well)
1219     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1220       if (stats().valid()) {
1221         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1222                   stats().cms_time_since_begin());
1223       } else {
1224         log.print("CMSCollector: collect because of trigger interval (first collection)");
1225       }
1226       return true;
1227     }
1228   }
1229 
1230   return false;
1231 }
1232 
1233 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1234 
1235 // Clear _expansion_cause fields of constituent generations
1236 void CMSCollector::clear_expansion_cause() {
1237   _cmsGen->clear_expansion_cause();
1238 }
1239 
1240 // We should be conservative in starting a collection cycle.  To
1241 // start too eagerly runs the risk of collecting too often in the
1242 // extreme.  To collect too rarely falls back on full collections,
1243 // which works, even if not optimum in terms of concurrent work.
1244 // As a work around for too eagerly collecting, use the flag
1245 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1246 // giving the user an easily understandable way of controlling the
1247 // collections.
1248 // We want to start a new collection cycle if any of the following
1249 // conditions hold:
1250 // . our current occupancy exceeds the configured initiating occupancy
1251 //   for this generation, or
1252 // . we recently needed to expand this space and have not, since that
1253 //   expansion, done a collection of this generation, or
1254 // . the underlying space believes that it may be a good idea to initiate
1255 //   a concurrent collection (this may be based on criteria such as the
1256 //   following: the space uses linear allocation and linear allocation is
1257 //   going to fail, or there is believed to be excessive fragmentation in
1258 //   the generation, etc... or ...
1259 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1260 //   the case of the old generation; see CR 6543076):
1261 //   we may be approaching a point at which allocation requests may fail because
1262 //   we will be out of sufficient free space given allocation rate estimates.]
1263 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1264 
1265   assert_lock_strong(freelistLock());
1266   if (occupancy() > initiating_occupancy()) {
1267     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1268                   short_name(), occupancy(), initiating_occupancy());
1269     return true;
1270   }
1271   if (UseCMSInitiatingOccupancyOnly) {
1272     return false;
1273   }
1274   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1275     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1276     return true;
1277   }
1278   return false;
1279 }
1280 
1281 void ConcurrentMarkSweepGeneration::collect(bool   full,
1282                                             bool   clear_all_soft_refs,
1283                                             size_t size,
1284                                             bool   tlab)
1285 {
1286   collector()->collect(full, clear_all_soft_refs, size, tlab);
1287 }
1288 
1289 void CMSCollector::collect(bool   full,
1290                            bool   clear_all_soft_refs,
1291                            size_t size,
1292                            bool   tlab)
1293 {
1294   // The following "if" branch is present for defensive reasons.
1295   // In the current uses of this interface, it can be replaced with:
1296   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1297   // But I am not placing that assert here to allow future
1298   // generality in invoking this interface.
1299   if (GCLocker::is_active()) {
1300     // A consistency test for GCLocker
1301     assert(GCLocker::needs_gc(), "Should have been set already");
1302     // Skip this foreground collection, instead
1303     // expanding the heap if necessary.
1304     // Need the free list locks for the call to free() in compute_new_size()
1305     compute_new_size();
1306     return;
1307   }
1308   acquire_control_and_collect(full, clear_all_soft_refs);
1309 }
1310 
1311 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1312   CMSHeap* heap = CMSHeap::heap();
1313   unsigned int gc_count = heap->total_full_collections();
1314   if (gc_count == full_gc_count) {
1315     MutexLocker y(CGC_lock, Mutex::_no_safepoint_check_flag);
1316     _full_gc_requested = true;
1317     _full_gc_cause = cause;
1318     CGC_lock->notify();   // nudge CMS thread
1319   } else {
1320     assert(gc_count > full_gc_count, "Error: causal loop");
1321   }
1322 }
1323 
1324 bool CMSCollector::is_external_interruption() {
1325   GCCause::Cause cause = CMSHeap::heap()->gc_cause();
1326   return GCCause::is_user_requested_gc(cause) ||
1327          GCCause::is_serviceability_requested_gc(cause);
1328 }
1329 
1330 void CMSCollector::report_concurrent_mode_interruption() {
1331   if (is_external_interruption()) {
1332     log_debug(gc)("Concurrent mode interrupted");
1333   } else {
1334     log_debug(gc)("Concurrent mode failure");
1335     _gc_tracer_cm->report_concurrent_mode_failure();
1336   }
1337 }
1338 
1339 
1340 // The foreground and background collectors need to coordinate in order
1341 // to make sure that they do not mutually interfere with CMS collections.
1342 // When a background collection is active,
1343 // the foreground collector may need to take over (preempt) and
1344 // synchronously complete an ongoing collection. Depending on the
1345 // frequency of the background collections and the heap usage
1346 // of the application, this preemption can be seldom or frequent.
1347 // There are only certain
1348 // points in the background collection that the "collection-baton"
1349 // can be passed to the foreground collector.
1350 //
1351 // The foreground collector will wait for the baton before
1352 // starting any part of the collection.  The foreground collector
1353 // will only wait at one location.
1354 //
1355 // The background collector will yield the baton before starting a new
1356 // phase of the collection (e.g., before initial marking, marking from roots,
1357 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1358 // of the loop which switches the phases. The background collector does some
1359 // of the phases (initial mark, final re-mark) with the world stopped.
1360 // Because of locking involved in stopping the world,
1361 // the foreground collector should not block waiting for the background
1362 // collector when it is doing a stop-the-world phase.  The background
1363 // collector will yield the baton at an additional point just before
1364 // it enters a stop-the-world phase.  Once the world is stopped, the
1365 // background collector checks the phase of the collection.  If the
1366 // phase has not changed, it proceeds with the collection.  If the
1367 // phase has changed, it skips that phase of the collection.  See
1368 // the comments on the use of the Heap_lock in collect_in_background().
1369 //
1370 // Variable used in baton passing.
1371 //   _foregroundGCIsActive - Set to true by the foreground collector when
1372 //      it wants the baton.  The foreground clears it when it has finished
1373 //      the collection.
1374 //   _foregroundGCShouldWait - Set to true by the background collector
1375 //        when it is running.  The foreground collector waits while
1376 //      _foregroundGCShouldWait is true.
1377 //  CGC_lock - monitor used to protect access to the above variables
1378 //      and to notify the foreground and background collectors.
1379 //  _collectorState - current state of the CMS collection.
1380 //
1381 // The foreground collector
1382 //   acquires the CGC_lock
1383 //   sets _foregroundGCIsActive
1384 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1385 //     various locks acquired in preparation for the collection
1386 //     are released so as not to block the background collector
1387 //     that is in the midst of a collection
1388 //   proceeds with the collection
1389 //   clears _foregroundGCIsActive
1390 //   returns
1391 //
1392 // The background collector in a loop iterating on the phases of the
1393 //      collection
1394 //   acquires the CGC_lock
1395 //   sets _foregroundGCShouldWait
1396 //   if _foregroundGCIsActive is set
1397 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1398 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1399 //     and exits the loop.
1400 //   otherwise
1401 //     proceed with that phase of the collection
1402 //     if the phase is a stop-the-world phase,
1403 //       yield the baton once more just before enqueueing
1404 //       the stop-world CMS operation (executed by the VM thread).
1405 //   returns after all phases of the collection are done
1406 //
1407 
1408 void CMSCollector::acquire_control_and_collect(bool full,
1409         bool clear_all_soft_refs) {
1410   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1411   assert(!Thread::current()->is_ConcurrentGC_thread(),
1412          "shouldn't try to acquire control from self!");
1413 
1414   // Start the protocol for acquiring control of the
1415   // collection from the background collector (aka CMS thread).
1416   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1417          "VM thread should have CMS token");
1418   // Remember the possibly interrupted state of an ongoing
1419   // concurrent collection
1420   CollectorState first_state = _collectorState;
1421 
1422   // Signal to a possibly ongoing concurrent collection that
1423   // we want to do a foreground collection.
1424   _foregroundGCIsActive = true;
1425 
1426   // release locks and wait for a notify from the background collector
1427   // releasing the locks in only necessary for phases which
1428   // do yields to improve the granularity of the collection.
1429   assert_lock_strong(bitMapLock());
1430   // We need to lock the Free list lock for the space that we are
1431   // currently collecting.
1432   assert(haveFreelistLocks(), "Must be holding free list locks");
1433   bitMapLock()->unlock();
1434   releaseFreelistLocks();
1435   {
1436     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
1437     if (_foregroundGCShouldWait) {
1438       // We are going to be waiting for action for the CMS thread;
1439       // it had better not be gone (for instance at shutdown)!
1440       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1441              "CMS thread must be running");
1442       // Wait here until the background collector gives us the go-ahead
1443       ConcurrentMarkSweepThread::clear_CMS_flag(
1444         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1445       // Get a possibly blocked CMS thread going:
1446       //   Note that we set _foregroundGCIsActive true above,
1447       //   without protection of the CGC_lock.
1448       CGC_lock->notify();
1449       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1450              "Possible deadlock");
1451       while (_foregroundGCShouldWait) {
1452         // wait for notification
1453         CGC_lock->wait_without_safepoint_check();
1454         // Possibility of delay/starvation here, since CMS token does
1455         // not know to give priority to VM thread? Actually, i think
1456         // there wouldn't be any delay/starvation, but the proof of
1457         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1458       }
1459       ConcurrentMarkSweepThread::set_CMS_flag(
1460         ConcurrentMarkSweepThread::CMS_vm_has_token);
1461     }
1462   }
1463   // The CMS_token is already held.  Get back the other locks.
1464   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1465          "VM thread should have CMS token");
1466   getFreelistLocks();
1467   bitMapLock()->lock_without_safepoint_check();
1468   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1469                        p2i(Thread::current()), first_state);
1470   log_debug(gc, state)("    gets control with state %d", _collectorState);
1471 
1472   // Inform cms gen if this was due to partial collection failing.
1473   // The CMS gen may use this fact to determine its expansion policy.
1474   CMSHeap* heap = CMSHeap::heap();
1475   if (heap->incremental_collection_will_fail(false /* don't consult_young */)) {
1476     assert(!_cmsGen->incremental_collection_failed(),
1477            "Should have been noticed, reacted to and cleared");
1478     _cmsGen->set_incremental_collection_failed();
1479   }
1480 
1481   if (first_state > Idling) {
1482     report_concurrent_mode_interruption();
1483   }
1484 
1485   set_did_compact(true);
1486 
1487   // If the collection is being acquired from the background
1488   // collector, there may be references on the discovered
1489   // references lists.  Abandon those references, since some
1490   // of them may have become unreachable after concurrent
1491   // discovery; the STW compacting collector will redo discovery
1492   // more precisely, without being subject to floating garbage.
1493   // Leaving otherwise unreachable references in the discovered
1494   // lists would require special handling.
1495   ref_processor()->disable_discovery();
1496   ref_processor()->abandon_partial_discovery();
1497   ref_processor()->verify_no_references_recorded();
1498 
1499   if (first_state > Idling) {
1500     save_heap_summary();
1501   }
1502 
1503   do_compaction_work(clear_all_soft_refs);
1504 
1505   // Has the GC time limit been exceeded?
1506   size_t max_eden_size = _young_gen->max_eden_size();
1507   GCCause::Cause gc_cause = heap->gc_cause();
1508   size_policy()->check_gc_overhead_limit(_young_gen->eden()->used(),
1509                                          _cmsGen->max_capacity(),
1510                                          max_eden_size,
1511                                          full,
1512                                          gc_cause,
1513                                          heap->soft_ref_policy());
1514 
1515   // Reset the expansion cause, now that we just completed
1516   // a collection cycle.
1517   clear_expansion_cause();
1518   _foregroundGCIsActive = false;
1519   return;
1520 }
1521 
1522 // Resize the tenured generation
1523 // after obtaining the free list locks for the
1524 // two generations.
1525 void CMSCollector::compute_new_size() {
1526   assert_locked_or_safepoint(Heap_lock);
1527   FreelistLocker z(this);
1528   MetaspaceGC::compute_new_size();
1529   _cmsGen->compute_new_size_free_list();
1530   // recalculate CMS used space after CMS collection
1531   _cmsGen->cmsSpace()->recalculate_used_stable();
1532 }
1533 
1534 // A work method used by the foreground collector to do
1535 // a mark-sweep-compact.
1536 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1537   CMSHeap* heap = CMSHeap::heap();
1538 
1539   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1540   gc_timer->register_gc_start();
1541 
1542   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1543   gc_tracer->report_gc_start(heap->gc_cause(), gc_timer->gc_start());
1544 
1545   heap->pre_full_gc_dump(gc_timer);
1546 
1547   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1548 
1549   // Temporarily widen the span of the weak reference processing to
1550   // the entire heap.
1551   MemRegion new_span(CMSHeap::heap()->reserved_region());
1552   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1553   // Temporarily, clear the "is_alive_non_header" field of the
1554   // reference processor.
1555   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1556   // Temporarily make reference _processing_ single threaded (non-MT).
1557   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1558   // Temporarily make refs discovery atomic
1559   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1560   // Temporarily make reference _discovery_ single threaded (non-MT)
1561   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1562 
1563   ref_processor()->set_enqueuing_is_done(false);
1564   ref_processor()->enable_discovery();
1565   ref_processor()->setup_policy(clear_all_soft_refs);
1566   // If an asynchronous collection finishes, the _modUnionTable is
1567   // all clear.  If we are assuming the collection from an asynchronous
1568   // collection, clear the _modUnionTable.
1569   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1570     "_modUnionTable should be clear if the baton was not passed");
1571   _modUnionTable.clear_all();
1572   assert(_collectorState != Idling || _ct->cld_rem_set()->mod_union_is_clear(),
1573     "mod union for klasses should be clear if the baton was passed");
1574   _ct->cld_rem_set()->clear_mod_union();
1575 
1576 
1577   // We must adjust the allocation statistics being maintained
1578   // in the free list space. We do so by reading and clearing
1579   // the sweep timer and updating the block flux rate estimates below.
1580   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1581   if (_inter_sweep_timer.is_active()) {
1582     _inter_sweep_timer.stop();
1583     // Note that we do not use this sample to update the _inter_sweep_estimate.
1584     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1585                                             _inter_sweep_estimate.padded_average(),
1586                                             _intra_sweep_estimate.padded_average());
1587   }
1588 
1589   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1590   #ifdef ASSERT
1591     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1592     size_t free_size = cms_space->free();
1593     assert(free_size ==
1594            pointer_delta(cms_space->end(), cms_space->compaction_top())
1595            * HeapWordSize,
1596       "All the free space should be compacted into one chunk at top");
1597     assert(cms_space->dictionary()->total_chunk_size(
1598                                       debug_only(cms_space->freelistLock())) == 0 ||
1599            cms_space->totalSizeInIndexedFreeLists() == 0,
1600       "All the free space should be in a single chunk");
1601     size_t num = cms_space->totalCount();
1602     assert((free_size == 0 && num == 0) ||
1603            (free_size > 0  && (num == 1 || num == 2)),
1604          "There should be at most 2 free chunks after compaction");
1605   #endif // ASSERT
1606   _collectorState = Resetting;
1607   assert(_restart_addr == NULL,
1608          "Should have been NULL'd before baton was passed");
1609   reset_stw();
1610   _cmsGen->reset_after_compaction();
1611   _concurrent_cycles_since_last_unload = 0;
1612 
1613   // Clear any data recorded in the PLAB chunk arrays.
1614   if (_survivor_plab_array != NULL) {
1615     reset_survivor_plab_arrays();
1616   }
1617 
1618   // Adjust the per-size allocation stats for the next epoch.
1619   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1620   // Restart the "inter sweep timer" for the next epoch.
1621   _inter_sweep_timer.reset();
1622   _inter_sweep_timer.start();
1623 
1624   // No longer a need to do a concurrent collection for Metaspace.
1625   MetaspaceGC::set_should_concurrent_collect(false);
1626 
1627   heap->post_full_gc_dump(gc_timer);
1628 
1629   gc_timer->register_gc_end();
1630 
1631   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1632 
1633   // For a mark-sweep-compact, compute_new_size() will be called
1634   // in the heap's do_collection() method.
1635 }
1636 
1637 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1638   Log(gc, heap) log;
1639   if (!log.is_trace()) {
1640     return;
1641   }
1642 
1643   ContiguousSpace* eden_space = _young_gen->eden();
1644   ContiguousSpace* from_space = _young_gen->from();
1645   ContiguousSpace* to_space   = _young_gen->to();
1646   // Eden
1647   if (_eden_chunk_array != NULL) {
1648     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1649               p2i(eden_space->bottom()), p2i(eden_space->top()),
1650               p2i(eden_space->end()), eden_space->capacity());
1651     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1652               _eden_chunk_index, _eden_chunk_capacity);
1653     for (size_t i = 0; i < _eden_chunk_index; i++) {
1654       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1655     }
1656   }
1657   // Survivor
1658   if (_survivor_chunk_array != NULL) {
1659     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1660               p2i(from_space->bottom()), p2i(from_space->top()),
1661               p2i(from_space->end()), from_space->capacity());
1662     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1663               _survivor_chunk_index, _survivor_chunk_capacity);
1664     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1665       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1666     }
1667   }
1668 }
1669 
1670 void CMSCollector::getFreelistLocks() const {
1671   // Get locks for all free lists in all generations that this
1672   // collector is responsible for
1673   _cmsGen->freelistLock()->lock_without_safepoint_check();
1674 }
1675 
1676 void CMSCollector::releaseFreelistLocks() const {
1677   // Release locks for all free lists in all generations that this
1678   // collector is responsible for
1679   _cmsGen->freelistLock()->unlock();
1680 }
1681 
1682 bool CMSCollector::haveFreelistLocks() const {
1683   // Check locks for all free lists in all generations that this
1684   // collector is responsible for
1685   assert_lock_strong(_cmsGen->freelistLock());
1686   PRODUCT_ONLY(ShouldNotReachHere());
1687   return true;
1688 }
1689 
1690 // A utility class that is used by the CMS collector to
1691 // temporarily "release" the foreground collector from its
1692 // usual obligation to wait for the background collector to
1693 // complete an ongoing phase before proceeding.
1694 class ReleaseForegroundGC: public StackObj {
1695  private:
1696   CMSCollector* _c;
1697  public:
1698   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1699     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1700     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
1701     // allow a potentially blocked foreground collector to proceed
1702     _c->_foregroundGCShouldWait = false;
1703     if (_c->_foregroundGCIsActive) {
1704       CGC_lock->notify();
1705     }
1706     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1707            "Possible deadlock");
1708   }
1709 
1710   ~ReleaseForegroundGC() {
1711     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1712     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
1713     _c->_foregroundGCShouldWait = true;
1714   }
1715 };
1716 
1717 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1718   assert(Thread::current()->is_ConcurrentGC_thread(),
1719     "A CMS asynchronous collection is only allowed on a CMS thread.");
1720 
1721   CMSHeap* heap = CMSHeap::heap();
1722   {
1723     MutexLocker hl(Heap_lock, Mutex::_no_safepoint_check_flag);
1724     FreelistLocker fll(this);
1725     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
1726     if (_foregroundGCIsActive) {
1727       // The foreground collector is. Skip this
1728       // background collection.
1729       assert(!_foregroundGCShouldWait, "Should be clear");
1730       return;
1731     } else {
1732       assert(_collectorState == Idling, "Should be idling before start.");
1733       _collectorState = InitialMarking;
1734       register_gc_start(cause);
1735       // Reset the expansion cause, now that we are about to begin
1736       // a new cycle.
1737       clear_expansion_cause();
1738 
1739       // Clear the MetaspaceGC flag since a concurrent collection
1740       // is starting but also clear it after the collection.
1741       MetaspaceGC::set_should_concurrent_collect(false);
1742     }
1743     // Decide if we want to enable class unloading as part of the
1744     // ensuing concurrent GC cycle.
1745     update_should_unload_classes();
1746     _full_gc_requested = false;           // acks all outstanding full gc requests
1747     _full_gc_cause = GCCause::_no_gc;
1748     // Signal that we are about to start a collection
1749     heap->increment_total_full_collections();  // ... starting a collection cycle
1750     _collection_count_start = heap->total_full_collections();
1751   }
1752 
1753   size_t prev_used = _cmsGen->used();
1754   _cmsGen->cmsSpace()->recalculate_used_stable();
1755 
1756   // The change of the collection state is normally done at this level;
1757   // the exceptions are phases that are executed while the world is
1758   // stopped.  For those phases the change of state is done while the
1759   // world is stopped.  For baton passing purposes this allows the
1760   // background collector to finish the phase and change state atomically.
1761   // The foreground collector cannot wait on a phase that is done
1762   // while the world is stopped because the foreground collector already
1763   // has the world stopped and would deadlock.
1764   while (_collectorState != Idling) {
1765     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1766                          p2i(Thread::current()), _collectorState);
1767     // The foreground collector
1768     //   holds the Heap_lock throughout its collection.
1769     //   holds the CMS token (but not the lock)
1770     //     except while it is waiting for the background collector to yield.
1771     //
1772     // The foreground collector should be blocked (not for long)
1773     //   if the background collector is about to start a phase
1774     //   executed with world stopped.  If the background
1775     //   collector has already started such a phase, the
1776     //   foreground collector is blocked waiting for the
1777     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1778     //   are executed in the VM thread.
1779     //
1780     // The locking order is
1781     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1782     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1783     //   CMS token  (claimed in
1784     //                stop_world_and_do() -->
1785     //                  safepoint_synchronize() -->
1786     //                    CMSThread::synchronize())
1787 
1788     {
1789       // Check if the FG collector wants us to yield.
1790       CMSTokenSync x(true); // is cms thread
1791       if (waitForForegroundGC()) {
1792         // We yielded to a foreground GC, nothing more to be
1793         // done this round.
1794         assert(_foregroundGCShouldWait == false, "We set it to false in "
1795                "waitForForegroundGC()");
1796         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1797                              p2i(Thread::current()), _collectorState);
1798         return;
1799       } else {
1800         // The background collector can run but check to see if the
1801         // foreground collector has done a collection while the
1802         // background collector was waiting to get the CGC_lock
1803         // above.  If yes, break so that _foregroundGCShouldWait
1804         // is cleared before returning.
1805         if (_collectorState == Idling) {
1806           break;
1807         }
1808       }
1809     }
1810 
1811     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1812       "should be waiting");
1813 
1814     switch (_collectorState) {
1815       case InitialMarking:
1816         {
1817           ReleaseForegroundGC x(this);
1818           stats().record_cms_begin();
1819           VM_CMS_Initial_Mark initial_mark_op(this);
1820           VMThread::execute(&initial_mark_op);
1821         }
1822         // The collector state may be any legal state at this point
1823         // since the background collector may have yielded to the
1824         // foreground collector.
1825         break;
1826       case Marking:
1827         // initial marking in checkpointRootsInitialWork has been completed
1828         if (markFromRoots()) { // we were successful
1829           assert(_collectorState == Precleaning, "Collector state should "
1830             "have changed");
1831         } else {
1832           assert(_foregroundGCIsActive, "Internal state inconsistency");
1833         }
1834         break;
1835       case Precleaning:
1836         // marking from roots in markFromRoots has been completed
1837         preclean();
1838         assert(_collectorState == AbortablePreclean ||
1839                _collectorState == FinalMarking,
1840                "Collector state should have changed");
1841         break;
1842       case AbortablePreclean:
1843         abortable_preclean();
1844         assert(_collectorState == FinalMarking, "Collector state should "
1845           "have changed");
1846         break;
1847       case FinalMarking:
1848         {
1849           ReleaseForegroundGC x(this);
1850 
1851           VM_CMS_Final_Remark final_remark_op(this);
1852           VMThread::execute(&final_remark_op);
1853         }
1854         assert(_foregroundGCShouldWait, "block post-condition");
1855         break;
1856       case Sweeping:
1857         // final marking in checkpointRootsFinal has been completed
1858         sweep();
1859         assert(_collectorState == Resizing, "Collector state change "
1860           "to Resizing must be done under the free_list_lock");
1861 
1862       case Resizing: {
1863         // Sweeping has been completed...
1864         // At this point the background collection has completed.
1865         // Don't move the call to compute_new_size() down
1866         // into code that might be executed if the background
1867         // collection was preempted.
1868         {
1869           ReleaseForegroundGC x(this);   // unblock FG collection
1870           MutexLocker         y(Heap_lock, Mutex::_no_safepoint_check_flag);
1871           CMSTokenSync        z(true);   // not strictly needed.
1872           if (_collectorState == Resizing) {
1873             compute_new_size();
1874             save_heap_summary();
1875             _collectorState = Resetting;
1876           } else {
1877             assert(_collectorState == Idling, "The state should only change"
1878                    " because the foreground collector has finished the collection");
1879           }
1880         }
1881         break;
1882       }
1883       case Resetting:
1884         // CMS heap resizing has been completed
1885         reset_concurrent();
1886         assert(_collectorState == Idling, "Collector state should "
1887           "have changed");
1888 
1889         MetaspaceGC::set_should_concurrent_collect(false);
1890 
1891         stats().record_cms_end();
1892         // Don't move the concurrent_phases_end() and compute_new_size()
1893         // calls to here because a preempted background collection
1894         // has it's state set to "Resetting".
1895         break;
1896       case Idling:
1897       default:
1898         ShouldNotReachHere();
1899         break;
1900     }
1901     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1902                          p2i(Thread::current()), _collectorState);
1903     assert(_foregroundGCShouldWait, "block post-condition");
1904   }
1905 
1906   // Should this be in gc_epilogue?
1907   heap->counters()->update_counters();
1908 
1909   {
1910     // Clear _foregroundGCShouldWait and, in the event that the
1911     // foreground collector is waiting, notify it, before
1912     // returning.
1913     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
1914     _foregroundGCShouldWait = false;
1915     if (_foregroundGCIsActive) {
1916       CGC_lock->notify();
1917     }
1918     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1919            "Possible deadlock");
1920   }
1921   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1922                        p2i(Thread::current()), _collectorState);
1923   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1924                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1925 }
1926 
1927 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1928   _cms_start_registered = true;
1929   _gc_timer_cm->register_gc_start();
1930   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1931 }
1932 
1933 void CMSCollector::register_gc_end() {
1934   if (_cms_start_registered) {
1935     report_heap_summary(GCWhen::AfterGC);
1936 
1937     _gc_timer_cm->register_gc_end();
1938     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1939     _cms_start_registered = false;
1940   }
1941 }
1942 
1943 void CMSCollector::save_heap_summary() {
1944   CMSHeap* heap = CMSHeap::heap();
1945   _last_heap_summary = heap->create_heap_summary();
1946   _last_metaspace_summary = heap->create_metaspace_summary();
1947 }
1948 
1949 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1950   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1951   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1952 }
1953 
1954 bool CMSCollector::waitForForegroundGC() {
1955   bool res = false;
1956   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1957          "CMS thread should have CMS token");
1958   // Block the foreground collector until the
1959   // background collectors decides whether to
1960   // yield.
1961   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
1962   _foregroundGCShouldWait = true;
1963   if (_foregroundGCIsActive) {
1964     // The background collector yields to the
1965     // foreground collector and returns a value
1966     // indicating that it has yielded.  The foreground
1967     // collector can proceed.
1968     res = true;
1969     _foregroundGCShouldWait = false;
1970     ConcurrentMarkSweepThread::clear_CMS_flag(
1971       ConcurrentMarkSweepThread::CMS_cms_has_token);
1972     ConcurrentMarkSweepThread::set_CMS_flag(
1973       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1974     // Get a possibly blocked foreground thread going
1975     CGC_lock->notify();
1976     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1977                          p2i(Thread::current()), _collectorState);
1978     while (_foregroundGCIsActive) {
1979       CGC_lock->wait_without_safepoint_check();
1980     }
1981     ConcurrentMarkSweepThread::set_CMS_flag(
1982       ConcurrentMarkSweepThread::CMS_cms_has_token);
1983     ConcurrentMarkSweepThread::clear_CMS_flag(
1984       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1985   }
1986   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1987                        p2i(Thread::current()), _collectorState);
1988   return res;
1989 }
1990 
1991 // Because of the need to lock the free lists and other structures in
1992 // the collector, common to all the generations that the collector is
1993 // collecting, we need the gc_prologues of individual CMS generations
1994 // delegate to their collector. It may have been simpler had the
1995 // current infrastructure allowed one to call a prologue on a
1996 // collector. In the absence of that we have the generation's
1997 // prologue delegate to the collector, which delegates back
1998 // some "local" work to a worker method in the individual generations
1999 // that it's responsible for collecting, while itself doing any
2000 // work common to all generations it's responsible for. A similar
2001 // comment applies to the  gc_epilogue()'s.
2002 // The role of the variable _between_prologue_and_epilogue is to
2003 // enforce the invocation protocol.
2004 void CMSCollector::gc_prologue(bool full) {
2005   // Call gc_prologue_work() for the CMSGen
2006   // we are responsible for.
2007 
2008   // The following locking discipline assumes that we are only called
2009   // when the world is stopped.
2010   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2011 
2012   // The CMSCollector prologue must call the gc_prologues for the
2013   // "generations" that it's responsible
2014   // for.
2015 
2016   assert(   Thread::current()->is_VM_thread()
2017          || (   CMSScavengeBeforeRemark
2018              && Thread::current()->is_ConcurrentGC_thread()),
2019          "Incorrect thread type for prologue execution");
2020 
2021   if (_between_prologue_and_epilogue) {
2022     // We have already been invoked; this is a gc_prologue delegation
2023     // from yet another CMS generation that we are responsible for, just
2024     // ignore it since all relevant work has already been done.
2025     return;
2026   }
2027 
2028   // set a bit saying prologue has been called; cleared in epilogue
2029   _between_prologue_and_epilogue = true;
2030   // Claim locks for common data structures, then call gc_prologue_work()
2031   // for each CMSGen.
2032 
2033   getFreelistLocks();   // gets free list locks on constituent spaces
2034   bitMapLock()->lock_without_safepoint_check();
2035 
2036   // Should call gc_prologue_work() for all cms gens we are responsible for
2037   bool duringMarking =    _collectorState >= Marking
2038                          && _collectorState < Sweeping;
2039 
2040   // The young collections clear the modified oops state, which tells if
2041   // there are any modified oops in the class. The remark phase also needs
2042   // that information. Tell the young collection to save the union of all
2043   // modified klasses.
2044   if (duringMarking) {
2045     _ct->cld_rem_set()->set_accumulate_modified_oops(true);
2046   }
2047 
2048   bool registerClosure = duringMarking;
2049 
2050   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2051 
2052   if (!full) {
2053     stats().record_gc0_begin();
2054   }
2055 }
2056 
2057 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2058 
2059   _capacity_at_prologue = capacity();
2060   _used_at_prologue = used();
2061   _cmsSpace->recalculate_used_stable();
2062 
2063   // We enable promotion tracking so that card-scanning can recognize
2064   // which objects have been promoted during this GC and skip them.
2065   for (uint i = 0; i < ParallelGCThreads; i++) {
2066     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2067   }
2068 
2069   // Delegate to CMScollector which knows how to coordinate between
2070   // this and any other CMS generations that it is responsible for
2071   // collecting.
2072   collector()->gc_prologue(full);
2073 }
2074 
2075 // This is a "private" interface for use by this generation's CMSCollector.
2076 // Not to be called directly by any other entity (for instance,
2077 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2078 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2079   bool registerClosure, ModUnionClosure* modUnionClosure) {
2080   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2081   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2082     "Should be NULL");
2083   if (registerClosure) {
2084     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2085   }
2086   cmsSpace()->gc_prologue();
2087   // Clear stat counters
2088   NOT_PRODUCT(
2089     assert(_numObjectsPromoted == 0, "check");
2090     assert(_numWordsPromoted   == 0, "check");
2091     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2092                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2093     _numObjectsAllocated = 0;
2094     _numWordsAllocated   = 0;
2095   )
2096 }
2097 
2098 void CMSCollector::gc_epilogue(bool full) {
2099   // The following locking discipline assumes that we are only called
2100   // when the world is stopped.
2101   assert(SafepointSynchronize::is_at_safepoint(),
2102          "world is stopped assumption");
2103 
2104   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2105   // if linear allocation blocks need to be appropriately marked to allow the
2106   // the blocks to be parsable. We also check here whether we need to nudge the
2107   // CMS collector thread to start a new cycle (if it's not already active).
2108   assert(   Thread::current()->is_VM_thread()
2109          || (   CMSScavengeBeforeRemark
2110              && Thread::current()->is_ConcurrentGC_thread()),
2111          "Incorrect thread type for epilogue execution");
2112 
2113   if (!_between_prologue_and_epilogue) {
2114     // We have already been invoked; this is a gc_epilogue delegation
2115     // from yet another CMS generation that we are responsible for, just
2116     // ignore it since all relevant work has already been done.
2117     return;
2118   }
2119   assert(haveFreelistLocks(), "must have freelist locks");
2120   assert_lock_strong(bitMapLock());
2121 
2122   _ct->cld_rem_set()->set_accumulate_modified_oops(false);
2123 
2124   _cmsGen->gc_epilogue_work(full);
2125 
2126   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2127     // in case sampling was not already enabled, enable it
2128     _start_sampling = true;
2129   }
2130   // reset _eden_chunk_array so sampling starts afresh
2131   _eden_chunk_index = 0;
2132 
2133   size_t cms_used   = _cmsGen->cmsSpace()->used();
2134   _cmsGen->cmsSpace()->recalculate_used_stable();
2135 
2136   // update performance counters - this uses a special version of
2137   // update_counters() that allows the utilization to be passed as a
2138   // parameter, avoiding multiple calls to used().
2139   //
2140   _cmsGen->update_counters(cms_used);
2141 
2142   bitMapLock()->unlock();
2143   releaseFreelistLocks();
2144 
2145   if (!CleanChunkPoolAsync) {
2146     Chunk::clean_chunk_pool();
2147   }
2148 
2149   set_did_compact(false);
2150   _between_prologue_and_epilogue = false;  // ready for next cycle
2151 }
2152 
2153 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2154   collector()->gc_epilogue(full);
2155 
2156   // When using ParNew, promotion tracking should have already been
2157   // disabled. However, the prologue (which enables promotion
2158   // tracking) and epilogue are called irrespective of the type of
2159   // GC. So they will also be called before and after Full GCs, during
2160   // which promotion tracking will not be explicitly disabled. So,
2161   // it's safer to also disable it here too (to be symmetric with
2162   // enabling it in the prologue).
2163   for (uint i = 0; i < ParallelGCThreads; i++) {
2164     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2165   }
2166 }
2167 
2168 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2169   assert(!incremental_collection_failed(), "Should have been cleared");
2170   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2171   cmsSpace()->gc_epilogue();
2172     // Print stat counters
2173   NOT_PRODUCT(
2174     assert(_numObjectsAllocated == 0, "check");
2175     assert(_numWordsAllocated == 0, "check");
2176     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2177                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2178     _numObjectsPromoted = 0;
2179     _numWordsPromoted   = 0;
2180   )
2181 
2182   // Call down the chain in contiguous_available needs the freelistLock
2183   // so print this out before releasing the freeListLock.
2184   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2185 }
2186 
2187 #ifndef PRODUCT
2188 bool CMSCollector::have_cms_token() {
2189   Thread* thr = Thread::current();
2190   if (thr->is_VM_thread()) {
2191     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2192   } else if (thr->is_ConcurrentGC_thread()) {
2193     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2194   } else if (thr->is_GC_task_thread()) {
2195     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2196            ParGCRareEvent_lock->owned_by_self();
2197   }
2198   return false;
2199 }
2200 
2201 // Check reachability of the given heap address in CMS generation,
2202 // treating all other generations as roots.
2203 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2204   // We could "guarantee" below, rather than assert, but I'll
2205   // leave these as "asserts" so that an adventurous debugger
2206   // could try this in the product build provided some subset of
2207   // the conditions were met, provided they were interested in the
2208   // results and knew that the computation below wouldn't interfere
2209   // with other concurrent computations mutating the structures
2210   // being read or written.
2211   assert(SafepointSynchronize::is_at_safepoint(),
2212          "Else mutations in object graph will make answer suspect");
2213   assert(have_cms_token(), "Should hold cms token");
2214   assert(haveFreelistLocks(), "must hold free list locks");
2215   assert_lock_strong(bitMapLock());
2216 
2217   // Clear the marking bit map array before starting, but, just
2218   // for kicks, first report if the given address is already marked
2219   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2220                 _markBitMap.isMarked(addr) ? "" : " not");
2221 
2222   if (verify_after_remark()) {
2223     MutexLocker x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2224     bool result = verification_mark_bm()->isMarked(addr);
2225     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2226                   result ? "IS" : "is NOT");
2227     return result;
2228   } else {
2229     tty->print_cr("Could not compute result");
2230     return false;
2231   }
2232 }
2233 #endif
2234 
2235 void
2236 CMSCollector::print_on_error(outputStream* st) {
2237   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2238   if (collector != NULL) {
2239     CMSBitMap* bitmap = &collector->_markBitMap;
2240     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2241     bitmap->print_on_error(st, " Bits: ");
2242 
2243     st->cr();
2244 
2245     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2246     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2247     mut_bitmap->print_on_error(st, " Bits: ");
2248   }
2249 }
2250 
2251 ////////////////////////////////////////////////////////
2252 // CMS Verification Support
2253 ////////////////////////////////////////////////////////
2254 // Following the remark phase, the following invariant
2255 // should hold -- each object in the CMS heap which is
2256 // marked in markBitMap() should be marked in the verification_mark_bm().
2257 
2258 class VerifyMarkedClosure: public BitMapClosure {
2259   CMSBitMap* _marks;
2260   bool       _failed;
2261 
2262  public:
2263   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2264 
2265   bool do_bit(size_t offset) {
2266     HeapWord* addr = _marks->offsetToHeapWord(offset);
2267     if (!_marks->isMarked(addr)) {
2268       Log(gc, verify) log;
2269       ResourceMark rm;
2270       LogStream ls(log.error());
2271       oop(addr)->print_on(&ls);
2272       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2273       _failed = true;
2274     }
2275     return true;
2276   }
2277 
2278   bool failed() { return _failed; }
2279 };
2280 
2281 bool CMSCollector::verify_after_remark() {
2282   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2283   MutexLocker ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2284   static bool init = false;
2285 
2286   assert(SafepointSynchronize::is_at_safepoint(),
2287          "Else mutations in object graph will make answer suspect");
2288   assert(have_cms_token(),
2289          "Else there may be mutual interference in use of "
2290          " verification data structures");
2291   assert(_collectorState > Marking && _collectorState <= Sweeping,
2292          "Else marking info checked here may be obsolete");
2293   assert(haveFreelistLocks(), "must hold free list locks");
2294   assert_lock_strong(bitMapLock());
2295 
2296 
2297   // Allocate marking bit map if not already allocated
2298   if (!init) { // first time
2299     if (!verification_mark_bm()->allocate(_span)) {
2300       return false;
2301     }
2302     init = true;
2303   }
2304 
2305   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2306 
2307   // Turn off refs discovery -- so we will be tracing through refs.
2308   // This is as intended, because by this time
2309   // GC must already have cleared any refs that need to be cleared,
2310   // and traced those that need to be marked; moreover,
2311   // the marking done here is not going to interfere in any
2312   // way with the marking information used by GC.
2313   NoRefDiscovery no_discovery(ref_processor());
2314 
2315 #if COMPILER2_OR_JVMCI
2316   DerivedPointerTableDeactivate dpt_deact;
2317 #endif
2318 
2319   // Clear any marks from a previous round
2320   verification_mark_bm()->clear_all();
2321   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2322   verify_work_stacks_empty();
2323 
2324   CMSHeap* heap = CMSHeap::heap();
2325   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2326   // Update the saved marks which may affect the root scans.
2327   heap->save_marks();
2328 
2329   if (CMSRemarkVerifyVariant == 1) {
2330     // In this first variant of verification, we complete
2331     // all marking, then check if the new marks-vector is
2332     // a subset of the CMS marks-vector.
2333     verify_after_remark_work_1();
2334   } else {
2335     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2336     // In this second variant of verification, we flag an error
2337     // (i.e. an object reachable in the new marks-vector not reachable
2338     // in the CMS marks-vector) immediately, also indicating the
2339     // identify of an object (A) that references the unmarked object (B) --
2340     // presumably, a mutation to A failed to be picked up by preclean/remark?
2341     verify_after_remark_work_2();
2342   }
2343 
2344   return true;
2345 }
2346 
2347 void CMSCollector::verify_after_remark_work_1() {
2348   ResourceMark rm;
2349   HandleMark  hm;
2350   CMSHeap* heap = CMSHeap::heap();
2351 
2352   // Get a clear set of claim bits for the roots processing to work with.
2353   ClassLoaderDataGraph::clear_claimed_marks();
2354 
2355   // Mark from roots one level into CMS
2356   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2357   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2358 
2359   {
2360     StrongRootsScope srs(1);
2361 
2362     heap->cms_process_roots(&srs,
2363                            true,   // young gen as roots
2364                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2365                            should_unload_classes(),
2366                            &notOlder,
2367                            NULL);
2368   }
2369 
2370   // Now mark from the roots
2371   MarkFromRootsClosure markFromRootsClosure(this, _span,
2372     verification_mark_bm(), verification_mark_stack(),
2373     false /* don't yield */, true /* verifying */);
2374   assert(_restart_addr == NULL, "Expected pre-condition");
2375   verification_mark_bm()->iterate(&markFromRootsClosure);
2376   while (_restart_addr != NULL) {
2377     // Deal with stack overflow: by restarting at the indicated
2378     // address.
2379     HeapWord* ra = _restart_addr;
2380     markFromRootsClosure.reset(ra);
2381     _restart_addr = NULL;
2382     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2383   }
2384   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2385   verify_work_stacks_empty();
2386 
2387   // Marking completed -- now verify that each bit marked in
2388   // verification_mark_bm() is also marked in markBitMap(); flag all
2389   // errors by printing corresponding objects.
2390   VerifyMarkedClosure vcl(markBitMap());
2391   verification_mark_bm()->iterate(&vcl);
2392   if (vcl.failed()) {
2393     Log(gc, verify) log;
2394     log.error("Failed marking verification after remark");
2395     ResourceMark rm;
2396     LogStream ls(log.error());
2397     heap->print_on(&ls);
2398     fatal("CMS: failed marking verification after remark");
2399   }
2400 }
2401 
2402 class VerifyCLDOopsCLDClosure : public CLDClosure {
2403   class VerifyCLDOopsClosure : public OopClosure {
2404     CMSBitMap* _bitmap;
2405    public:
2406     VerifyCLDOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2407     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2408     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2409   } _oop_closure;
2410  public:
2411   VerifyCLDOopsCLDClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2412   void do_cld(ClassLoaderData* cld) {
2413     cld->oops_do(&_oop_closure, ClassLoaderData::_claim_none, false);
2414   }
2415 };
2416 
2417 void CMSCollector::verify_after_remark_work_2() {
2418   ResourceMark rm;
2419   HandleMark  hm;
2420   CMSHeap* heap = CMSHeap::heap();
2421 
2422   // Get a clear set of claim bits for the roots processing to work with.
2423   ClassLoaderDataGraph::clear_claimed_marks();
2424 
2425   // Mark from roots one level into CMS
2426   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2427                                      markBitMap());
2428   CLDToOopClosure cld_closure(&notOlder, ClassLoaderData::_claim_strong);
2429 
2430   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2431 
2432   {
2433     StrongRootsScope srs(1);
2434 
2435     heap->cms_process_roots(&srs,
2436                            true,   // young gen as roots
2437                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2438                            should_unload_classes(),
2439                            &notOlder,
2440                            &cld_closure);
2441   }
2442 
2443   // Now mark from the roots
2444   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2445     verification_mark_bm(), markBitMap(), verification_mark_stack());
2446   assert(_restart_addr == NULL, "Expected pre-condition");
2447   verification_mark_bm()->iterate(&markFromRootsClosure);
2448   while (_restart_addr != NULL) {
2449     // Deal with stack overflow: by restarting at the indicated
2450     // address.
2451     HeapWord* ra = _restart_addr;
2452     markFromRootsClosure.reset(ra);
2453     _restart_addr = NULL;
2454     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2455   }
2456   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2457   verify_work_stacks_empty();
2458 
2459   VerifyCLDOopsCLDClosure verify_cld_oops(verification_mark_bm());
2460   ClassLoaderDataGraph::cld_do(&verify_cld_oops);
2461 
2462   // Marking completed -- now verify that each bit marked in
2463   // verification_mark_bm() is also marked in markBitMap(); flag all
2464   // errors by printing corresponding objects.
2465   VerifyMarkedClosure vcl(markBitMap());
2466   verification_mark_bm()->iterate(&vcl);
2467   assert(!vcl.failed(), "Else verification above should not have succeeded");
2468 }
2469 
2470 void ConcurrentMarkSweepGeneration::save_marks() {
2471   // delegate to CMS space
2472   cmsSpace()->save_marks();
2473 }
2474 
2475 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2476   return cmsSpace()->no_allocs_since_save_marks();
2477 }
2478 
2479 void
2480 ConcurrentMarkSweepGeneration::oop_iterate(OopIterateClosure* cl) {
2481   if (freelistLock()->owned_by_self()) {
2482     Generation::oop_iterate(cl);
2483   } else {
2484     MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
2485     Generation::oop_iterate(cl);
2486   }
2487 }
2488 
2489 void
2490 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2491   if (freelistLock()->owned_by_self()) {
2492     Generation::object_iterate(cl);
2493   } else {
2494     MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
2495     Generation::object_iterate(cl);
2496   }
2497 }
2498 
2499 void
2500 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2501   if (freelistLock()->owned_by_self()) {
2502     Generation::safe_object_iterate(cl);
2503   } else {
2504     MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
2505     Generation::safe_object_iterate(cl);
2506   }
2507 }
2508 
2509 void
2510 ConcurrentMarkSweepGeneration::post_compact() {
2511 }
2512 
2513 void
2514 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2515   // Fix the linear allocation blocks to look like free blocks.
2516 
2517   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2518   // are not called when the heap is verified during universe initialization and
2519   // at vm shutdown.
2520   if (freelistLock()->owned_by_self()) {
2521     cmsSpace()->prepare_for_verify();
2522   } else {
2523     MutexLocker fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2524     cmsSpace()->prepare_for_verify();
2525   }
2526 }
2527 
2528 void
2529 ConcurrentMarkSweepGeneration::verify() {
2530   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2531   // are not called when the heap is verified during universe initialization and
2532   // at vm shutdown.
2533   if (freelistLock()->owned_by_self()) {
2534     cmsSpace()->verify();
2535   } else {
2536     MutexLocker fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2537     cmsSpace()->verify();
2538   }
2539 }
2540 
2541 void CMSCollector::verify() {
2542   _cmsGen->verify();
2543 }
2544 
2545 #ifndef PRODUCT
2546 bool CMSCollector::overflow_list_is_empty() const {
2547   assert(_num_par_pushes >= 0, "Inconsistency");
2548   if (_overflow_list == NULL) {
2549     assert(_num_par_pushes == 0, "Inconsistency");
2550   }
2551   return _overflow_list == NULL;
2552 }
2553 
2554 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2555 // merely consolidate assertion checks that appear to occur together frequently.
2556 void CMSCollector::verify_work_stacks_empty() const {
2557   assert(_markStack.isEmpty(), "Marking stack should be empty");
2558   assert(overflow_list_is_empty(), "Overflow list should be empty");
2559 }
2560 
2561 void CMSCollector::verify_overflow_empty() const {
2562   assert(overflow_list_is_empty(), "Overflow list should be empty");
2563   assert(no_preserved_marks(), "No preserved marks");
2564 }
2565 #endif // PRODUCT
2566 
2567 // Decide if we want to enable class unloading as part of the
2568 // ensuing concurrent GC cycle. We will collect and
2569 // unload classes if it's the case that:
2570 //  (a) class unloading is enabled at the command line, and
2571 //  (b) old gen is getting really full
2572 // NOTE: Provided there is no change in the state of the heap between
2573 // calls to this method, it should have idempotent results. Moreover,
2574 // its results should be monotonically increasing (i.e. going from 0 to 1,
2575 // but not 1 to 0) between successive calls between which the heap was
2576 // not collected. For the implementation below, it must thus rely on
2577 // the property that concurrent_cycles_since_last_unload()
2578 // will not decrease unless a collection cycle happened and that
2579 // _cmsGen->is_too_full() are
2580 // themselves also monotonic in that sense. See check_monotonicity()
2581 // below.
2582 void CMSCollector::update_should_unload_classes() {
2583   _should_unload_classes = false;
2584   if (CMSClassUnloadingEnabled) {
2585     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2586                               CMSClassUnloadingMaxInterval)
2587                            || _cmsGen->is_too_full();
2588   }
2589 }
2590 
2591 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2592   bool res = should_concurrent_collect();
2593   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2594   return res;
2595 }
2596 
2597 void CMSCollector::setup_cms_unloading_and_verification_state() {
2598   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2599                              || VerifyBeforeExit;
2600   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2601 
2602   // We set the proper root for this CMS cycle here.
2603   if (should_unload_classes()) {   // Should unload classes this cycle
2604     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2605     set_verifying(should_verify);    // Set verification state for this cycle
2606     return;                            // Nothing else needs to be done at this time
2607   }
2608 
2609   // Not unloading classes this cycle
2610   assert(!should_unload_classes(), "Inconsistency!");
2611 
2612   // If we are not unloading classes then add SO_AllCodeCache to root
2613   // scanning options.
2614   add_root_scanning_option(rso);
2615 
2616   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2617     set_verifying(true);
2618   } else if (verifying() && !should_verify) {
2619     // We were verifying, but some verification flags got disabled.
2620     set_verifying(false);
2621     // Exclude symbols, strings and code cache elements from root scanning to
2622     // reduce IM and RM pauses.
2623     remove_root_scanning_option(rso);
2624   }
2625 }
2626 
2627 
2628 #ifndef PRODUCT
2629 HeapWord* CMSCollector::block_start(const void* p) const {
2630   const HeapWord* addr = (HeapWord*)p;
2631   if (_span.contains(p)) {
2632     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2633       return _cmsGen->cmsSpace()->block_start(p);
2634     }
2635   }
2636   return NULL;
2637 }
2638 #endif
2639 
2640 HeapWord*
2641 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2642                                                    bool   tlab,
2643                                                    bool   parallel) {
2644   CMSSynchronousYieldRequest yr;
2645   assert(!tlab, "Can't deal with TLAB allocation");
2646   MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
2647   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2648   if (GCExpandToAllocateDelayMillis > 0) {
2649     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2650   }
2651   return have_lock_and_allocate(word_size, tlab);
2652 }
2653 
2654 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2655     size_t bytes,
2656     size_t expand_bytes,
2657     CMSExpansionCause::Cause cause)
2658 {
2659 
2660   bool success = expand(bytes, expand_bytes);
2661 
2662   // remember why we expanded; this information is used
2663   // by shouldConcurrentCollect() when making decisions on whether to start
2664   // a new CMS cycle.
2665   if (success) {
2666     set_expansion_cause(cause);
2667     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2668   }
2669 }
2670 
2671 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2672   HeapWord* res = NULL;
2673   MutexLocker x(ParGCRareEvent_lock);
2674   while (true) {
2675     // Expansion by some other thread might make alloc OK now:
2676     res = ps->lab.alloc(word_sz);
2677     if (res != NULL) return res;
2678     // If there's not enough expansion space available, give up.
2679     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2680       return NULL;
2681     }
2682     // Otherwise, we try expansion.
2683     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2684     // Now go around the loop and try alloc again;
2685     // A competing par_promote might beat us to the expansion space,
2686     // so we may go around the loop again if promotion fails again.
2687     if (GCExpandToAllocateDelayMillis > 0) {
2688       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2689     }
2690   }
2691 }
2692 
2693 
2694 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2695   PromotionInfo* promo) {
2696   MutexLocker x(ParGCRareEvent_lock);
2697   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2698   while (true) {
2699     // Expansion by some other thread might make alloc OK now:
2700     if (promo->ensure_spooling_space()) {
2701       assert(promo->has_spooling_space(),
2702              "Post-condition of successful ensure_spooling_space()");
2703       return true;
2704     }
2705     // If there's not enough expansion space available, give up.
2706     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2707       return false;
2708     }
2709     // Otherwise, we try expansion.
2710     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2711     // Now go around the loop and try alloc again;
2712     // A competing allocation might beat us to the expansion space,
2713     // so we may go around the loop again if allocation fails again.
2714     if (GCExpandToAllocateDelayMillis > 0) {
2715       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2716     }
2717   }
2718 }
2719 
2720 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2721   // Only shrink if a compaction was done so that all the free space
2722   // in the generation is in a contiguous block at the end.
2723   if (did_compact()) {
2724     CardGeneration::shrink(bytes);
2725   }
2726 }
2727 
2728 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2729   assert_locked_or_safepoint(Heap_lock);
2730 }
2731 
2732 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2733   assert_locked_or_safepoint(Heap_lock);
2734   assert_lock_strong(freelistLock());
2735   log_trace(gc)("Shrinking of CMS not yet implemented");
2736   return;
2737 }
2738 
2739 
2740 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2741 // phases.
2742 class CMSPhaseAccounting: public StackObj {
2743  public:
2744   CMSPhaseAccounting(CMSCollector *collector,
2745                      const char *title);
2746   ~CMSPhaseAccounting();
2747 
2748  private:
2749   CMSCollector *_collector;
2750   const char *_title;
2751   GCTraceConcTime(Info, gc) _trace_time;
2752 
2753  public:
2754   // Not MT-safe; so do not pass around these StackObj's
2755   // where they may be accessed by other threads.
2756   double wallclock_millis() {
2757     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2758   }
2759 };
2760 
2761 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2762                                        const char *title) :
2763   _collector(collector), _title(title), _trace_time(title) {
2764 
2765   _collector->resetYields();
2766   _collector->resetTimer();
2767   _collector->startTimer();
2768   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2769 }
2770 
2771 CMSPhaseAccounting::~CMSPhaseAccounting() {
2772   _collector->gc_timer_cm()->register_gc_concurrent_end();
2773   _collector->stopTimer();
2774   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_millis(_collector->timerTicks()));
2775   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2776 }
2777 
2778 // CMS work
2779 
2780 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2781 class CMSParMarkTask : public AbstractGangTask {
2782  protected:
2783   CMSCollector*     _collector;
2784   uint              _n_workers;
2785   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2786       AbstractGangTask(name),
2787       _collector(collector),
2788       _n_workers(n_workers) {}
2789   // Work method in support of parallel rescan ... of young gen spaces
2790   void do_young_space_rescan(OopsInGenClosure* cl,
2791                              ContiguousSpace* space,
2792                              HeapWord** chunk_array, size_t chunk_top);
2793   void work_on_young_gen_roots(OopsInGenClosure* cl);
2794 };
2795 
2796 // Parallel initial mark task
2797 class CMSParInitialMarkTask: public CMSParMarkTask {
2798   StrongRootsScope* _strong_roots_scope;
2799  public:
2800   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2801       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2802       _strong_roots_scope(strong_roots_scope) {}
2803   void work(uint worker_id);
2804 };
2805 
2806 // Checkpoint the roots into this generation from outside
2807 // this generation. [Note this initial checkpoint need only
2808 // be approximate -- we'll do a catch up phase subsequently.]
2809 void CMSCollector::checkpointRootsInitial() {
2810   assert(_collectorState == InitialMarking, "Wrong collector state");
2811   check_correct_thread_executing();
2812   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
2813 
2814   save_heap_summary();
2815   report_heap_summary(GCWhen::BeforeGC);
2816 
2817   ReferenceProcessor* rp = ref_processor();
2818   assert(_restart_addr == NULL, "Control point invariant");
2819   {
2820     // acquire locks for subsequent manipulations
2821     MutexLocker x(bitMapLock(),
2822                   Mutex::_no_safepoint_check_flag);
2823     checkpointRootsInitialWork();
2824     // enable ("weak") refs discovery
2825     rp->enable_discovery();
2826     _collectorState = Marking;
2827   }
2828 
2829   _cmsGen->cmsSpace()->recalculate_used_stable();
2830 }
2831 
2832 void CMSCollector::checkpointRootsInitialWork() {
2833   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2834   assert(_collectorState == InitialMarking, "just checking");
2835 
2836   // Already have locks.
2837   assert_lock_strong(bitMapLock());
2838   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2839 
2840   // Setup the verification and class unloading state for this
2841   // CMS collection cycle.
2842   setup_cms_unloading_and_verification_state();
2843 
2844   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2845 
2846   // Reset all the PLAB chunk arrays if necessary.
2847   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2848     reset_survivor_plab_arrays();
2849   }
2850 
2851   ResourceMark rm;
2852   HandleMark  hm;
2853 
2854   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2855   CMSHeap* heap = CMSHeap::heap();
2856 
2857   verify_work_stacks_empty();
2858   verify_overflow_empty();
2859 
2860   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2861   // Update the saved marks which may affect the root scans.
2862   heap->save_marks();
2863 
2864   // weak reference processing has not started yet.
2865   ref_processor()->set_enqueuing_is_done(false);
2866 
2867   // Need to remember all newly created CLDs,
2868   // so that we can guarantee that the remark finds them.
2869   ClassLoaderDataGraph::remember_new_clds(true);
2870 
2871   // Whenever a CLD is found, it will be claimed before proceeding to mark
2872   // the klasses. The claimed marks need to be cleared before marking starts.
2873   ClassLoaderDataGraph::clear_claimed_marks();
2874 
2875   print_eden_and_survivor_chunk_arrays();
2876 
2877   {
2878 #if COMPILER2_OR_JVMCI
2879     DerivedPointerTableDeactivate dpt_deact;
2880 #endif
2881     if (CMSParallelInitialMarkEnabled) {
2882       // The parallel version.
2883       WorkGang* workers = heap->workers();
2884       assert(workers != NULL, "Need parallel worker threads.");
2885       uint n_workers = workers->active_workers();
2886 
2887       StrongRootsScope srs(n_workers);
2888 
2889       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2890       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2891       // If the total workers is greater than 1, then multiple workers
2892       // may be used at some time and the initialization has been set
2893       // such that the single threaded path cannot be used.
2894       if (workers->total_workers() > 1) {
2895         workers->run_task(&tsk);
2896       } else {
2897         tsk.work(0);
2898       }
2899     } else {
2900       // The serial version.
2901       CLDToOopClosure cld_closure(&notOlder, ClassLoaderData::_claim_strong);
2902       heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2903 
2904       StrongRootsScope srs(1);
2905 
2906       heap->cms_process_roots(&srs,
2907                              true,   // young gen as roots
2908                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2909                              should_unload_classes(),
2910                              &notOlder,
2911                              &cld_closure);
2912     }
2913   }
2914 
2915   // Clear mod-union table; it will be dirtied in the prologue of
2916   // CMS generation per each young generation collection.
2917 
2918   assert(_modUnionTable.isAllClear(),
2919        "Was cleared in most recent final checkpoint phase"
2920        " or no bits are set in the gc_prologue before the start of the next "
2921        "subsequent marking phase.");
2922 
2923   assert(_ct->cld_rem_set()->mod_union_is_clear(), "Must be");
2924 
2925   // Save the end of the used_region of the constituent generations
2926   // to be used to limit the extent of sweep in each generation.
2927   save_sweep_limits();
2928   verify_overflow_empty();
2929 }
2930 
2931 bool CMSCollector::markFromRoots() {
2932   // we might be tempted to assert that:
2933   // assert(!SafepointSynchronize::is_at_safepoint(),
2934   //        "inconsistent argument?");
2935   // However that wouldn't be right, because it's possible that
2936   // a safepoint is indeed in progress as a young generation
2937   // stop-the-world GC happens even as we mark in this generation.
2938   assert(_collectorState == Marking, "inconsistent state?");
2939   check_correct_thread_executing();
2940   verify_overflow_empty();
2941 
2942   // Weak ref discovery note: We may be discovering weak
2943   // refs in this generation concurrent (but interleaved) with
2944   // weak ref discovery by the young generation collector.
2945 
2946   CMSTokenSyncWithLocks ts(true, bitMapLock());
2947   GCTraceCPUTime tcpu;
2948   CMSPhaseAccounting pa(this, "Concurrent Mark");
2949   bool res = markFromRootsWork();
2950   if (res) {
2951     _collectorState = Precleaning;
2952   } else { // We failed and a foreground collection wants to take over
2953     assert(_foregroundGCIsActive, "internal state inconsistency");
2954     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2955     log_debug(gc)("bailing out to foreground collection");
2956   }
2957   verify_overflow_empty();
2958   return res;
2959 }
2960 
2961 bool CMSCollector::markFromRootsWork() {
2962   // iterate over marked bits in bit map, doing a full scan and mark
2963   // from these roots using the following algorithm:
2964   // . if oop is to the right of the current scan pointer,
2965   //   mark corresponding bit (we'll process it later)
2966   // . else (oop is to left of current scan pointer)
2967   //   push oop on marking stack
2968   // . drain the marking stack
2969 
2970   // Note that when we do a marking step we need to hold the
2971   // bit map lock -- recall that direct allocation (by mutators)
2972   // and promotion (by the young generation collector) is also
2973   // marking the bit map. [the so-called allocate live policy.]
2974   // Because the implementation of bit map marking is not
2975   // robust wrt simultaneous marking of bits in the same word,
2976   // we need to make sure that there is no such interference
2977   // between concurrent such updates.
2978 
2979   // already have locks
2980   assert_lock_strong(bitMapLock());
2981 
2982   verify_work_stacks_empty();
2983   verify_overflow_empty();
2984   bool result = false;
2985   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2986     result = do_marking_mt();
2987   } else {
2988     result = do_marking_st();
2989   }
2990   return result;
2991 }
2992 
2993 // Forward decl
2994 class CMSConcMarkingTask;
2995 
2996 class CMSConcMarkingParallelTerminator: public ParallelTaskTerminator {
2997   CMSCollector*       _collector;
2998   CMSConcMarkingTask* _task;
2999  public:
3000   virtual void yield();
3001 
3002   // "n_threads" is the number of threads to be terminated.
3003   // "queue_set" is a set of work queues of other threads.
3004   // "collector" is the CMS collector associated with this task terminator.
3005   // "yield" indicates whether we need the gang as a whole to yield.
3006   CMSConcMarkingParallelTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3007     ParallelTaskTerminator(n_threads, queue_set),
3008     _collector(collector) { }
3009 
3010   void set_task(CMSConcMarkingTask* task) {
3011     _task = task;
3012   }
3013 };
3014 
3015 class CMSConcMarkingOWSTTerminator: public OWSTTaskTerminator {
3016   CMSCollector*       _collector;
3017   CMSConcMarkingTask* _task;
3018  public:
3019   virtual void yield();
3020 
3021   // "n_threads" is the number of threads to be terminated.
3022   // "queue_set" is a set of work queues of other threads.
3023   // "collector" is the CMS collector associated with this task terminator.
3024   // "yield" indicates whether we need the gang as a whole to yield.
3025   CMSConcMarkingOWSTTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3026     OWSTTaskTerminator(n_threads, queue_set),
3027     _collector(collector) { }
3028 
3029   void set_task(CMSConcMarkingTask* task) {
3030     _task = task;
3031   }
3032 };
3033 
3034 class CMSConcMarkingTaskTerminator {
3035  private:
3036   ParallelTaskTerminator* _term;
3037  public:
3038   CMSConcMarkingTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) {
3039     if (UseOWSTTaskTerminator) {
3040       _term = new CMSConcMarkingOWSTTerminator(n_threads, queue_set, collector);
3041     } else {
3042       _term = new CMSConcMarkingParallelTerminator(n_threads, queue_set, collector);
3043     }
3044   }
3045   ~CMSConcMarkingTaskTerminator() {
3046     assert(_term != NULL, "Must not be NULL");
3047     delete _term;
3048   }
3049 
3050   void set_task(CMSConcMarkingTask* task);
3051   ParallelTaskTerminator* terminator() const { return _term; }
3052 };
3053 
3054 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3055   CMSConcMarkingTask* _task;
3056  public:
3057   bool should_exit_termination();
3058   void set_task(CMSConcMarkingTask* task) {
3059     _task = task;
3060   }
3061 };
3062 
3063 // MT Concurrent Marking Task
3064 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3065   CMSCollector*             _collector;
3066   uint                      _n_workers;      // requested/desired # workers
3067   bool                      _result;
3068   CompactibleFreeListSpace* _cms_space;
3069   char                      _pad_front[64];   // padding to ...
3070   HeapWord* volatile        _global_finger;   // ... avoid sharing cache line
3071   char                      _pad_back[64];
3072   HeapWord*                 _restart_addr;
3073 
3074   //  Exposed here for yielding support
3075   Mutex* const _bit_map_lock;
3076 
3077   // The per thread work queues, available here for stealing
3078   OopTaskQueueSet*  _task_queues;
3079 
3080   // Termination (and yielding) support
3081   CMSConcMarkingTaskTerminator       _term;
3082   CMSConcMarkingTerminatorTerminator _term_term;
3083 
3084  public:
3085   CMSConcMarkingTask(CMSCollector* collector,
3086                  CompactibleFreeListSpace* cms_space,
3087                  YieldingFlexibleWorkGang* workers,
3088                  OopTaskQueueSet* task_queues):
3089     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3090     _collector(collector),
3091     _n_workers(0),
3092     _result(true),
3093     _cms_space(cms_space),
3094     _bit_map_lock(collector->bitMapLock()),
3095     _task_queues(task_queues),
3096     _term(_n_workers, task_queues, _collector)
3097   {
3098     _requested_size = _n_workers;
3099     _term.set_task(this);
3100     _term_term.set_task(this);
3101     _restart_addr = _global_finger = _cms_space->bottom();
3102   }
3103 
3104 
3105   OopTaskQueueSet* task_queues()  { return _task_queues; }
3106 
3107   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3108 
3109   HeapWord* volatile* global_finger_addr() { return &_global_finger; }
3110 
3111   ParallelTaskTerminator* terminator() { return _term.terminator(); }
3112 
3113   virtual void set_for_termination(uint active_workers) {
3114     terminator()->reset_for_reuse(active_workers);
3115   }
3116 
3117   void work(uint worker_id);
3118   bool should_yield() {
3119     return    ConcurrentMarkSweepThread::should_yield()
3120            && !_collector->foregroundGCIsActive();
3121   }
3122 
3123   virtual void coordinator_yield();  // stuff done by coordinator
3124   bool result() { return _result; }
3125 
3126   void reset(HeapWord* ra) {
3127     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3128     _restart_addr = _global_finger = ra;
3129     _term.terminator()->reset_for_reuse();
3130   }
3131 
3132   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3133                                            OopTaskQueue* work_q);
3134 
3135  private:
3136   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3137   void do_work_steal(int i);
3138   void bump_global_finger(HeapWord* f);
3139 };
3140 
3141 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3142   assert(_task != NULL, "Error");
3143   return _task->yielding();
3144   // Note that we do not need the disjunct || _task->should_yield() above
3145   // because we want terminating threads to yield only if the task
3146   // is already in the midst of yielding, which happens only after at least one
3147   // thread has yielded.
3148 }
3149 
3150 void CMSConcMarkingParallelTerminator::yield() {
3151   if (_task->should_yield()) {
3152     _task->yield();
3153   } else {
3154     ParallelTaskTerminator::yield();
3155   }
3156 }
3157 
3158 void CMSConcMarkingOWSTTerminator::yield() {
3159   if (_task->should_yield()) {
3160     _task->yield();
3161   } else {
3162     OWSTTaskTerminator::yield();
3163   }
3164 }
3165 
3166 void CMSConcMarkingTaskTerminator::set_task(CMSConcMarkingTask* task) {
3167   if (UseOWSTTaskTerminator) {
3168     ((CMSConcMarkingOWSTTerminator*)_term)->set_task(task);
3169   } else {
3170     ((CMSConcMarkingParallelTerminator*)_term)->set_task(task);
3171   }
3172 }
3173 
3174 ////////////////////////////////////////////////////////////////
3175 // Concurrent Marking Algorithm Sketch
3176 ////////////////////////////////////////////////////////////////
3177 // Until all tasks exhausted (both spaces):
3178 // -- claim next available chunk
3179 // -- bump global finger via CAS
3180 // -- find first object that starts in this chunk
3181 //    and start scanning bitmap from that position
3182 // -- scan marked objects for oops
3183 // -- CAS-mark target, and if successful:
3184 //    . if target oop is above global finger (volatile read)
3185 //      nothing to do
3186 //    . if target oop is in chunk and above local finger
3187 //        then nothing to do
3188 //    . else push on work-queue
3189 // -- Deal with possible overflow issues:
3190 //    . local work-queue overflow causes stuff to be pushed on
3191 //      global (common) overflow queue
3192 //    . always first empty local work queue
3193 //    . then get a batch of oops from global work queue if any
3194 //    . then do work stealing
3195 // -- When all tasks claimed (both spaces)
3196 //    and local work queue empty,
3197 //    then in a loop do:
3198 //    . check global overflow stack; steal a batch of oops and trace
3199 //    . try to steal from other threads oif GOS is empty
3200 //    . if neither is available, offer termination
3201 // -- Terminate and return result
3202 //
3203 void CMSConcMarkingTask::work(uint worker_id) {
3204   elapsedTimer _timer;
3205   ResourceMark rm;
3206   HandleMark hm;
3207 
3208   DEBUG_ONLY(_collector->verify_overflow_empty();)
3209 
3210   // Before we begin work, our work queue should be empty
3211   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3212   // Scan the bitmap covering _cms_space, tracing through grey objects.
3213   _timer.start();
3214   do_scan_and_mark(worker_id, _cms_space);
3215   _timer.stop();
3216   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3217 
3218   // ... do work stealing
3219   _timer.reset();
3220   _timer.start();
3221   do_work_steal(worker_id);
3222   _timer.stop();
3223   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3224   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3225   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3226   // Note that under the current task protocol, the
3227   // following assertion is true even of the spaces
3228   // expanded since the completion of the concurrent
3229   // marking. XXX This will likely change under a strict
3230   // ABORT semantics.
3231   // After perm removal the comparison was changed to
3232   // greater than or equal to from strictly greater than.
3233   // Before perm removal the highest address sweep would
3234   // have been at the end of perm gen but now is at the
3235   // end of the tenured gen.
3236   assert(_global_finger >=  _cms_space->end(),
3237          "All tasks have been completed");
3238   DEBUG_ONLY(_collector->verify_overflow_empty();)
3239 }
3240 
3241 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3242   HeapWord* read = _global_finger;
3243   HeapWord* cur  = read;
3244   while (f > read) {
3245     cur = read;
3246     read = Atomic::cmpxchg(f, &_global_finger, cur);
3247     if (cur == read) {
3248       // our cas succeeded
3249       assert(_global_finger >= f, "protocol consistency");
3250       break;
3251     }
3252   }
3253 }
3254 
3255 // This is really inefficient, and should be redone by
3256 // using (not yet available) block-read and -write interfaces to the
3257 // stack and the work_queue. XXX FIX ME !!!
3258 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3259                                                       OopTaskQueue* work_q) {
3260   // Fast lock-free check
3261   if (ovflw_stk->length() == 0) {
3262     return false;
3263   }
3264   assert(work_q->size() == 0, "Shouldn't steal");
3265   MutexLocker ml(ovflw_stk->par_lock(),
3266                  Mutex::_no_safepoint_check_flag);
3267   // Grab up to 1/4 the size of the work queue
3268   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3269                     (size_t)ParGCDesiredObjsFromOverflowList);
3270   num = MIN2(num, ovflw_stk->length());
3271   for (int i = (int) num; i > 0; i--) {
3272     oop cur = ovflw_stk->pop();
3273     assert(cur != NULL, "Counted wrong?");
3274     work_q->push(cur);
3275   }
3276   return num > 0;
3277 }
3278 
3279 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3280   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3281   int n_tasks = pst->n_tasks();
3282   // We allow that there may be no tasks to do here because
3283   // we are restarting after a stack overflow.
3284   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3285   uint nth_task = 0;
3286 
3287   HeapWord* aligned_start = sp->bottom();
3288   if (sp->used_region().contains(_restart_addr)) {
3289     // Align down to a card boundary for the start of 0th task
3290     // for this space.
3291     aligned_start = align_down(_restart_addr, CardTable::card_size);
3292   }
3293 
3294   size_t chunk_size = sp->marking_task_size();
3295   while (pst->try_claim_task(/* reference */ nth_task)) {
3296     // Having claimed the nth task in this space,
3297     // compute the chunk that it corresponds to:
3298     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3299                                aligned_start + (nth_task+1)*chunk_size);
3300     // Try and bump the global finger via a CAS;
3301     // note that we need to do the global finger bump
3302     // _before_ taking the intersection below, because
3303     // the task corresponding to that region will be
3304     // deemed done even if the used_region() expands
3305     // because of allocation -- as it almost certainly will
3306     // during start-up while the threads yield in the
3307     // closure below.
3308     HeapWord* finger = span.end();
3309     bump_global_finger(finger);   // atomically
3310     // There are null tasks here corresponding to chunks
3311     // beyond the "top" address of the space.
3312     span = span.intersection(sp->used_region());
3313     if (!span.is_empty()) {  // Non-null task
3314       HeapWord* prev_obj;
3315       assert(!span.contains(_restart_addr) || nth_task == 0,
3316              "Inconsistency");
3317       if (nth_task == 0) {
3318         // For the 0th task, we'll not need to compute a block_start.
3319         if (span.contains(_restart_addr)) {
3320           // In the case of a restart because of stack overflow,
3321           // we might additionally skip a chunk prefix.
3322           prev_obj = _restart_addr;
3323         } else {
3324           prev_obj = span.start();
3325         }
3326       } else {
3327         // We want to skip the first object because
3328         // the protocol is to scan any object in its entirety
3329         // that _starts_ in this span; a fortiori, any
3330         // object starting in an earlier span is scanned
3331         // as part of an earlier claimed task.
3332         // Below we use the "careful" version of block_start
3333         // so we do not try to navigate uninitialized objects.
3334         prev_obj = sp->block_start_careful(span.start());
3335         // Below we use a variant of block_size that uses the
3336         // Printezis bits to avoid waiting for allocated
3337         // objects to become initialized/parsable.
3338         while (prev_obj < span.start()) {
3339           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3340           if (sz > 0) {
3341             prev_obj += sz;
3342           } else {
3343             // In this case we may end up doing a bit of redundant
3344             // scanning, but that appears unavoidable, short of
3345             // locking the free list locks; see bug 6324141.
3346             break;
3347           }
3348         }
3349       }
3350       if (prev_obj < span.end()) {
3351         MemRegion my_span = MemRegion(prev_obj, span.end());
3352         // Do the marking work within a non-empty span --
3353         // the last argument to the constructor indicates whether the
3354         // iteration should be incremental with periodic yields.
3355         ParMarkFromRootsClosure cl(this, _collector, my_span,
3356                                    &_collector->_markBitMap,
3357                                    work_queue(i),
3358                                    &_collector->_markStack);
3359         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3360       } // else nothing to do for this task
3361     }   // else nothing to do for this task
3362   }
3363   // We'd be tempted to assert here that since there are no
3364   // more tasks left to claim in this space, the global_finger
3365   // must exceed space->top() and a fortiori space->end(). However,
3366   // that would not quite be correct because the bumping of
3367   // global_finger occurs strictly after the claiming of a task,
3368   // so by the time we reach here the global finger may not yet
3369   // have been bumped up by the thread that claimed the last
3370   // task.
3371   pst->all_tasks_completed();
3372 }
3373 
3374 class ParConcMarkingClosure: public MetadataVisitingOopIterateClosure {
3375  private:
3376   CMSCollector* _collector;
3377   CMSConcMarkingTask* _task;
3378   MemRegion     _span;
3379   CMSBitMap*    _bit_map;
3380   CMSMarkStack* _overflow_stack;
3381   OopTaskQueue* _work_queue;
3382  protected:
3383   DO_OOP_WORK_DEFN
3384  public:
3385   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3386                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3387     MetadataVisitingOopIterateClosure(collector->ref_processor()),
3388     _collector(collector),
3389     _task(task),
3390     _span(collector->_span),
3391     _bit_map(bit_map),
3392     _overflow_stack(overflow_stack),
3393     _work_queue(work_queue)
3394   { }
3395   virtual void do_oop(oop* p);
3396   virtual void do_oop(narrowOop* p);
3397 
3398   void trim_queue(size_t max);
3399   void handle_stack_overflow(HeapWord* lost);
3400   void do_yield_check() {
3401     if (_task->should_yield()) {
3402       _task->yield();
3403     }
3404   }
3405 };
3406 
3407 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3408 
3409 // Grey object scanning during work stealing phase --
3410 // the salient assumption here is that any references
3411 // that are in these stolen objects being scanned must
3412 // already have been initialized (else they would not have
3413 // been published), so we do not need to check for
3414 // uninitialized objects before pushing here.
3415 void ParConcMarkingClosure::do_oop(oop obj) {
3416   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3417   HeapWord* addr = (HeapWord*)obj;
3418   // Check if oop points into the CMS generation
3419   // and is not marked
3420   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3421     // a white object ...
3422     // If we manage to "claim" the object, by being the
3423     // first thread to mark it, then we push it on our
3424     // marking stack
3425     if (_bit_map->par_mark(addr)) {     // ... now grey
3426       // push on work queue (grey set)
3427       bool simulate_overflow = false;
3428       NOT_PRODUCT(
3429         if (CMSMarkStackOverflowALot &&
3430             _collector->simulate_overflow()) {
3431           // simulate a stack overflow
3432           simulate_overflow = true;
3433         }
3434       )
3435       if (simulate_overflow ||
3436           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3437         // stack overflow
3438         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3439         // We cannot assert that the overflow stack is full because
3440         // it may have been emptied since.
3441         assert(simulate_overflow ||
3442                _work_queue->size() == _work_queue->max_elems(),
3443               "Else push should have succeeded");
3444         handle_stack_overflow(addr);
3445       }
3446     } // Else, some other thread got there first
3447     do_yield_check();
3448   }
3449 }
3450 
3451 void ParConcMarkingClosure::trim_queue(size_t max) {
3452   while (_work_queue->size() > max) {
3453     oop new_oop;
3454     if (_work_queue->pop_local(new_oop)) {
3455       assert(oopDesc::is_oop(new_oop), "Should be an oop");
3456       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3457       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3458       new_oop->oop_iterate(this);  // do_oop() above
3459       do_yield_check();
3460     }
3461   }
3462 }
3463 
3464 // Upon stack overflow, we discard (part of) the stack,
3465 // remembering the least address amongst those discarded
3466 // in CMSCollector's _restart_address.
3467 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3468   // We need to do this under a mutex to prevent other
3469   // workers from interfering with the work done below.
3470   MutexLocker ml(_overflow_stack->par_lock(),
3471                  Mutex::_no_safepoint_check_flag);
3472   // Remember the least grey address discarded
3473   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3474   _collector->lower_restart_addr(ra);
3475   _overflow_stack->reset();  // discard stack contents
3476   _overflow_stack->expand(); // expand the stack if possible
3477 }
3478 
3479 
3480 void CMSConcMarkingTask::do_work_steal(int i) {
3481   OopTaskQueue* work_q = work_queue(i);
3482   oop obj_to_scan;
3483   CMSBitMap* bm = &(_collector->_markBitMap);
3484   CMSMarkStack* ovflw = &(_collector->_markStack);
3485   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3486   while (true) {
3487     cl.trim_queue(0);
3488     assert(work_q->size() == 0, "Should have been emptied above");
3489     if (get_work_from_overflow_stack(ovflw, work_q)) {
3490       // Can't assert below because the work obtained from the
3491       // overflow stack may already have been stolen from us.
3492       // assert(work_q->size() > 0, "Work from overflow stack");
3493       continue;
3494     } else if (task_queues()->steal(i, /* reference */ obj_to_scan)) {
3495       assert(oopDesc::is_oop(obj_to_scan), "Should be an oop");
3496       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3497       obj_to_scan->oop_iterate(&cl);
3498     } else if (terminator()->offer_termination(&_term_term)) {
3499       assert(work_q->size() == 0, "Impossible!");
3500       break;
3501     } else if (yielding() || should_yield()) {
3502       yield();
3503     }
3504   }
3505 }
3506 
3507 // This is run by the CMS (coordinator) thread.
3508 void CMSConcMarkingTask::coordinator_yield() {
3509   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3510          "CMS thread should hold CMS token");
3511   // First give up the locks, then yield, then re-lock
3512   // We should probably use a constructor/destructor idiom to
3513   // do this unlock/lock or modify the MutexUnlocker class to
3514   // serve our purpose. XXX
3515   assert_lock_strong(_bit_map_lock);
3516   _bit_map_lock->unlock();
3517   ConcurrentMarkSweepThread::desynchronize(true);
3518   _collector->stopTimer();
3519   _collector->incrementYields();
3520 
3521   // It is possible for whichever thread initiated the yield request
3522   // not to get a chance to wake up and take the bitmap lock between
3523   // this thread releasing it and reacquiring it. So, while the
3524   // should_yield() flag is on, let's sleep for a bit to give the
3525   // other thread a chance to wake up. The limit imposed on the number
3526   // of iterations is defensive, to avoid any unforseen circumstances
3527   // putting us into an infinite loop. Since it's always been this
3528   // (coordinator_yield()) method that was observed to cause the
3529   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3530   // which is by default non-zero. For the other seven methods that
3531   // also perform the yield operation, as are using a different
3532   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3533   // can enable the sleeping for those methods too, if necessary.
3534   // See 6442774.
3535   //
3536   // We really need to reconsider the synchronization between the GC
3537   // thread and the yield-requesting threads in the future and we
3538   // should really use wait/notify, which is the recommended
3539   // way of doing this type of interaction. Additionally, we should
3540   // consolidate the eight methods that do the yield operation and they
3541   // are almost identical into one for better maintainability and
3542   // readability. See 6445193.
3543   //
3544   // Tony 2006.06.29
3545   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3546                    ConcurrentMarkSweepThread::should_yield() &&
3547                    !CMSCollector::foregroundGCIsActive(); ++i) {
3548     os::sleep(Thread::current(), 1, false);
3549   }
3550 
3551   ConcurrentMarkSweepThread::synchronize(true);
3552   _bit_map_lock->lock_without_safepoint_check();
3553   _collector->startTimer();
3554 }
3555 
3556 bool CMSCollector::do_marking_mt() {
3557   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3558   uint num_workers = WorkerPolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3559                                                             conc_workers()->active_workers(),
3560                                                             Threads::number_of_non_daemon_threads());
3561   num_workers = conc_workers()->update_active_workers(num_workers);
3562   log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers());
3563 
3564   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3565 
3566   CMSConcMarkingTask tsk(this,
3567                          cms_space,
3568                          conc_workers(),
3569                          task_queues());
3570 
3571   // Since the actual number of workers we get may be different
3572   // from the number we requested above, do we need to do anything different
3573   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3574   // class?? XXX
3575   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3576 
3577   // Refs discovery is already non-atomic.
3578   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3579   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3580   conc_workers()->start_task(&tsk);
3581   while (tsk.yielded()) {
3582     tsk.coordinator_yield();
3583     conc_workers()->continue_task(&tsk);
3584   }
3585   // If the task was aborted, _restart_addr will be non-NULL
3586   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3587   while (_restart_addr != NULL) {
3588     // XXX For now we do not make use of ABORTED state and have not
3589     // yet implemented the right abort semantics (even in the original
3590     // single-threaded CMS case). That needs some more investigation
3591     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3592     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3593     // If _restart_addr is non-NULL, a marking stack overflow
3594     // occurred; we need to do a fresh marking iteration from the
3595     // indicated restart address.
3596     if (_foregroundGCIsActive) {
3597       // We may be running into repeated stack overflows, having
3598       // reached the limit of the stack size, while making very
3599       // slow forward progress. It may be best to bail out and
3600       // let the foreground collector do its job.
3601       // Clear _restart_addr, so that foreground GC
3602       // works from scratch. This avoids the headache of
3603       // a "rescan" which would otherwise be needed because
3604       // of the dirty mod union table & card table.
3605       _restart_addr = NULL;
3606       return false;
3607     }
3608     // Adjust the task to restart from _restart_addr
3609     tsk.reset(_restart_addr);
3610     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3611                   _restart_addr);
3612     _restart_addr = NULL;
3613     // Get the workers going again
3614     conc_workers()->start_task(&tsk);
3615     while (tsk.yielded()) {
3616       tsk.coordinator_yield();
3617       conc_workers()->continue_task(&tsk);
3618     }
3619   }
3620   assert(tsk.completed(), "Inconsistency");
3621   assert(tsk.result() == true, "Inconsistency");
3622   return true;
3623 }
3624 
3625 bool CMSCollector::do_marking_st() {
3626   ResourceMark rm;
3627   HandleMark   hm;
3628 
3629   // Temporarily make refs discovery single threaded (non-MT)
3630   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3631   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3632     &_markStack, CMSYield);
3633   // the last argument to iterate indicates whether the iteration
3634   // should be incremental with periodic yields.
3635   _markBitMap.iterate(&markFromRootsClosure);
3636   // If _restart_addr is non-NULL, a marking stack overflow
3637   // occurred; we need to do a fresh iteration from the
3638   // indicated restart address.
3639   while (_restart_addr != NULL) {
3640     if (_foregroundGCIsActive) {
3641       // We may be running into repeated stack overflows, having
3642       // reached the limit of the stack size, while making very
3643       // slow forward progress. It may be best to bail out and
3644       // let the foreground collector do its job.
3645       // Clear _restart_addr, so that foreground GC
3646       // works from scratch. This avoids the headache of
3647       // a "rescan" which would otherwise be needed because
3648       // of the dirty mod union table & card table.
3649       _restart_addr = NULL;
3650       return false;  // indicating failure to complete marking
3651     }
3652     // Deal with stack overflow:
3653     // we restart marking from _restart_addr
3654     HeapWord* ra = _restart_addr;
3655     markFromRootsClosure.reset(ra);
3656     _restart_addr = NULL;
3657     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3658   }
3659   return true;
3660 }
3661 
3662 void CMSCollector::preclean() {
3663   check_correct_thread_executing();
3664   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3665   verify_work_stacks_empty();
3666   verify_overflow_empty();
3667   _abort_preclean = false;
3668   if (CMSPrecleaningEnabled) {
3669     if (!CMSEdenChunksRecordAlways) {
3670       _eden_chunk_index = 0;
3671     }
3672     size_t used = get_eden_used();
3673     size_t capacity = get_eden_capacity();
3674     // Don't start sampling unless we will get sufficiently
3675     // many samples.
3676     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3677                 * CMSScheduleRemarkEdenPenetration)) {
3678       _start_sampling = true;
3679     } else {
3680       _start_sampling = false;
3681     }
3682     GCTraceCPUTime tcpu;
3683     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3684     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3685   }
3686   CMSTokenSync x(true); // is cms thread
3687   if (CMSPrecleaningEnabled) {
3688     sample_eden();
3689     _collectorState = AbortablePreclean;
3690   } else {
3691     _collectorState = FinalMarking;
3692   }
3693   verify_work_stacks_empty();
3694   verify_overflow_empty();
3695 }
3696 
3697 // Try and schedule the remark such that young gen
3698 // occupancy is CMSScheduleRemarkEdenPenetration %.
3699 void CMSCollector::abortable_preclean() {
3700   check_correct_thread_executing();
3701   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3702   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3703 
3704   // If Eden's current occupancy is below this threshold,
3705   // immediately schedule the remark; else preclean
3706   // past the next scavenge in an effort to
3707   // schedule the pause as described above. By choosing
3708   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3709   // we will never do an actual abortable preclean cycle.
3710   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3711     GCTraceCPUTime tcpu;
3712     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3713     // We need more smarts in the abortable preclean
3714     // loop below to deal with cases where allocation
3715     // in young gen is very very slow, and our precleaning
3716     // is running a losing race against a horde of
3717     // mutators intent on flooding us with CMS updates
3718     // (dirty cards).
3719     // One, admittedly dumb, strategy is to give up
3720     // after a certain number of abortable precleaning loops
3721     // or after a certain maximum time. We want to make
3722     // this smarter in the next iteration.
3723     // XXX FIX ME!!! YSR
3724     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3725     while (!(should_abort_preclean() ||
3726              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3727       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3728       cumworkdone += workdone;
3729       loops++;
3730       // Voluntarily terminate abortable preclean phase if we have
3731       // been at it for too long.
3732       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3733           loops >= CMSMaxAbortablePrecleanLoops) {
3734         log_debug(gc)(" CMS: abort preclean due to loops ");
3735         break;
3736       }
3737       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3738         log_debug(gc)(" CMS: abort preclean due to time ");
3739         break;
3740       }
3741       // If we are doing little work each iteration, we should
3742       // take a short break.
3743       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3744         // Sleep for some time, waiting for work to accumulate
3745         stopTimer();
3746         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3747         startTimer();
3748         waited++;
3749       }
3750     }
3751     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3752                                loops, waited, cumworkdone);
3753   }
3754   CMSTokenSync x(true); // is cms thread
3755   if (_collectorState != Idling) {
3756     assert(_collectorState == AbortablePreclean,
3757            "Spontaneous state transition?");
3758     _collectorState = FinalMarking;
3759   } // Else, a foreground collection completed this CMS cycle.
3760   return;
3761 }
3762 
3763 // Respond to an Eden sampling opportunity
3764 void CMSCollector::sample_eden() {
3765   // Make sure a young gc cannot sneak in between our
3766   // reading and recording of a sample.
3767   assert(Thread::current()->is_ConcurrentGC_thread(),
3768          "Only the cms thread may collect Eden samples");
3769   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3770          "Should collect samples while holding CMS token");
3771   if (!_start_sampling) {
3772     return;
3773   }
3774   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3775   // is populated by the young generation.
3776   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3777     if (_eden_chunk_index < _eden_chunk_capacity) {
3778       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3779       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3780              "Unexpected state of Eden");
3781       // We'd like to check that what we just sampled is an oop-start address;
3782       // however, we cannot do that here since the object may not yet have been
3783       // initialized. So we'll instead do the check when we _use_ this sample
3784       // later.
3785       if (_eden_chunk_index == 0 ||
3786           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3787                          _eden_chunk_array[_eden_chunk_index-1])
3788            >= CMSSamplingGrain)) {
3789         _eden_chunk_index++;  // commit sample
3790       }
3791     }
3792   }
3793   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3794     size_t used = get_eden_used();
3795     size_t capacity = get_eden_capacity();
3796     assert(used <= capacity, "Unexpected state of Eden");
3797     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3798       _abort_preclean = true;
3799     }
3800   }
3801 }
3802 
3803 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3804   assert(_collectorState == Precleaning ||
3805          _collectorState == AbortablePreclean, "incorrect state");
3806   ResourceMark rm;
3807   HandleMark   hm;
3808 
3809   // Precleaning is currently not MT but the reference processor
3810   // may be set for MT.  Disable it temporarily here.
3811   ReferenceProcessor* rp = ref_processor();
3812   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3813 
3814   // Do one pass of scrubbing the discovered reference lists
3815   // to remove any reference objects with strongly-reachable
3816   // referents.
3817   if (clean_refs) {
3818     CMSPrecleanRefsYieldClosure yield_cl(this);
3819     assert(_span_based_discoverer.span().equals(_span), "Spans should be equal");
3820     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3821                                    &_markStack, true /* preclean */);
3822     CMSDrainMarkingStackClosure complete_trace(this,
3823                                    _span, &_markBitMap, &_markStack,
3824                                    &keep_alive, true /* preclean */);
3825 
3826     // We don't want this step to interfere with a young
3827     // collection because we don't want to take CPU
3828     // or memory bandwidth away from the young GC threads
3829     // (which may be as many as there are CPUs).
3830     // Note that we don't need to protect ourselves from
3831     // interference with mutators because they can't
3832     // manipulate the discovered reference lists nor affect
3833     // the computed reachability of the referents, the
3834     // only properties manipulated by the precleaning
3835     // of these reference lists.
3836     stopTimer();
3837     CMSTokenSyncWithLocks x(true /* is cms thread */,
3838                             bitMapLock());
3839     startTimer();
3840     sample_eden();
3841 
3842     // The following will yield to allow foreground
3843     // collection to proceed promptly. XXX YSR:
3844     // The code in this method may need further
3845     // tweaking for better performance and some restructuring
3846     // for cleaner interfaces.
3847     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3848     rp->preclean_discovered_references(
3849           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3850           gc_timer);
3851   }
3852 
3853   if (clean_survivor) {  // preclean the active survivor space(s)
3854     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3855                              &_markBitMap, &_modUnionTable,
3856                              &_markStack, true /* precleaning phase */);
3857     stopTimer();
3858     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3859                              bitMapLock());
3860     startTimer();
3861     unsigned int before_count =
3862       CMSHeap::heap()->total_collections();
3863     SurvivorSpacePrecleanClosure
3864       sss_cl(this, _span, &_markBitMap, &_markStack,
3865              &pam_cl, before_count, CMSYield);
3866     _young_gen->from()->object_iterate_careful(&sss_cl);
3867     _young_gen->to()->object_iterate_careful(&sss_cl);
3868   }
3869   MarkRefsIntoAndScanClosure
3870     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3871              &_markStack, this, CMSYield,
3872              true /* precleaning phase */);
3873   // CAUTION: The following closure has persistent state that may need to
3874   // be reset upon a decrease in the sequence of addresses it
3875   // processes.
3876   ScanMarkedObjectsAgainCarefullyClosure
3877     smoac_cl(this, _span,
3878       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3879 
3880   // Preclean dirty cards in ModUnionTable and CardTable using
3881   // appropriate convergence criterion;
3882   // repeat CMSPrecleanIter times unless we find that
3883   // we are losing.
3884   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3885   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3886          "Bad convergence multiplier");
3887   assert(CMSPrecleanThreshold >= 100,
3888          "Unreasonably low CMSPrecleanThreshold");
3889 
3890   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3891   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3892        numIter < CMSPrecleanIter;
3893        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3894     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3895     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3896     // Either there are very few dirty cards, so re-mark
3897     // pause will be small anyway, or our pre-cleaning isn't
3898     // that much faster than the rate at which cards are being
3899     // dirtied, so we might as well stop and re-mark since
3900     // precleaning won't improve our re-mark time by much.
3901     if (curNumCards <= CMSPrecleanThreshold ||
3902         (numIter > 0 &&
3903          (curNumCards * CMSPrecleanDenominator >
3904          lastNumCards * CMSPrecleanNumerator))) {
3905       numIter++;
3906       cumNumCards += curNumCards;
3907       break;
3908     }
3909   }
3910 
3911   preclean_cld(&mrias_cl, _cmsGen->freelistLock());
3912 
3913   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3914   cumNumCards += curNumCards;
3915   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3916                              curNumCards, cumNumCards, numIter);
3917   return cumNumCards;   // as a measure of useful work done
3918 }
3919 
3920 // PRECLEANING NOTES:
3921 // Precleaning involves:
3922 // . reading the bits of the modUnionTable and clearing the set bits.
3923 // . For the cards corresponding to the set bits, we scan the
3924 //   objects on those cards. This means we need the free_list_lock
3925 //   so that we can safely iterate over the CMS space when scanning
3926 //   for oops.
3927 // . When we scan the objects, we'll be both reading and setting
3928 //   marks in the marking bit map, so we'll need the marking bit map.
3929 // . For protecting _collector_state transitions, we take the CGC_lock.
3930 //   Note that any races in the reading of of card table entries by the
3931 //   CMS thread on the one hand and the clearing of those entries by the
3932 //   VM thread or the setting of those entries by the mutator threads on the
3933 //   other are quite benign. However, for efficiency it makes sense to keep
3934 //   the VM thread from racing with the CMS thread while the latter is
3935 //   dirty card info to the modUnionTable. We therefore also use the
3936 //   CGC_lock to protect the reading of the card table and the mod union
3937 //   table by the CM thread.
3938 // . We run concurrently with mutator updates, so scanning
3939 //   needs to be done carefully  -- we should not try to scan
3940 //   potentially uninitialized objects.
3941 //
3942 // Locking strategy: While holding the CGC_lock, we scan over and
3943 // reset a maximal dirty range of the mod union / card tables, then lock
3944 // the free_list_lock and bitmap lock to do a full marking, then
3945 // release these locks; and repeat the cycle. This allows for a
3946 // certain amount of fairness in the sharing of these locks between
3947 // the CMS collector on the one hand, and the VM thread and the
3948 // mutators on the other.
3949 
3950 // NOTE: preclean_mod_union_table() and preclean_card_table()
3951 // further below are largely identical; if you need to modify
3952 // one of these methods, please check the other method too.
3953 
3954 size_t CMSCollector::preclean_mod_union_table(
3955   ConcurrentMarkSweepGeneration* old_gen,
3956   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3957   verify_work_stacks_empty();
3958   verify_overflow_empty();
3959 
3960   // strategy: starting with the first card, accumulate contiguous
3961   // ranges of dirty cards; clear these cards, then scan the region
3962   // covered by these cards.
3963 
3964   // Since all of the MUT is committed ahead, we can just use
3965   // that, in case the generations expand while we are precleaning.
3966   // It might also be fine to just use the committed part of the
3967   // generation, but we might potentially miss cards when the
3968   // generation is rapidly expanding while we are in the midst
3969   // of precleaning.
3970   HeapWord* startAddr = old_gen->reserved().start();
3971   HeapWord* endAddr   = old_gen->reserved().end();
3972 
3973   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3974 
3975   size_t numDirtyCards, cumNumDirtyCards;
3976   HeapWord *nextAddr, *lastAddr;
3977   for (cumNumDirtyCards = numDirtyCards = 0,
3978        nextAddr = lastAddr = startAddr;
3979        nextAddr < endAddr;
3980        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3981 
3982     ResourceMark rm;
3983     HandleMark   hm;
3984 
3985     MemRegion dirtyRegion;
3986     {
3987       stopTimer();
3988       // Potential yield point
3989       CMSTokenSync ts(true);
3990       startTimer();
3991       sample_eden();
3992       // Get dirty region starting at nextOffset (inclusive),
3993       // simultaneously clearing it.
3994       dirtyRegion =
3995         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3996       assert(dirtyRegion.start() >= nextAddr,
3997              "returned region inconsistent?");
3998     }
3999     // Remember where the next search should begin.
4000     // The returned region (if non-empty) is a right open interval,
4001     // so lastOffset is obtained from the right end of that
4002     // interval.
4003     lastAddr = dirtyRegion.end();
4004     // Should do something more transparent and less hacky XXX
4005     numDirtyCards =
4006       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4007 
4008     // We'll scan the cards in the dirty region (with periodic
4009     // yields for foreground GC as needed).
4010     if (!dirtyRegion.is_empty()) {
4011       assert(numDirtyCards > 0, "consistency check");
4012       HeapWord* stop_point = NULL;
4013       stopTimer();
4014       // Potential yield point
4015       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
4016                                bitMapLock());
4017       startTimer();
4018       {
4019         verify_work_stacks_empty();
4020         verify_overflow_empty();
4021         sample_eden();
4022         stop_point =
4023           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4024       }
4025       if (stop_point != NULL) {
4026         // The careful iteration stopped early either because it found an
4027         // uninitialized object, or because we were in the midst of an
4028         // "abortable preclean", which should now be aborted. Redirty
4029         // the bits corresponding to the partially-scanned or unscanned
4030         // cards. We'll either restart at the next block boundary or
4031         // abort the preclean.
4032         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4033                "Should only be AbortablePreclean.");
4034         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4035         if (should_abort_preclean()) {
4036           break; // out of preclean loop
4037         } else {
4038           // Compute the next address at which preclean should pick up;
4039           // might need bitMapLock in order to read P-bits.
4040           lastAddr = next_card_start_after_block(stop_point);
4041         }
4042       }
4043     } else {
4044       assert(lastAddr == endAddr, "consistency check");
4045       assert(numDirtyCards == 0, "consistency check");
4046       break;
4047     }
4048   }
4049   verify_work_stacks_empty();
4050   verify_overflow_empty();
4051   return cumNumDirtyCards;
4052 }
4053 
4054 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4055 // below are largely identical; if you need to modify
4056 // one of these methods, please check the other method too.
4057 
4058 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4059   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4060   // strategy: it's similar to precleamModUnionTable above, in that
4061   // we accumulate contiguous ranges of dirty cards, mark these cards
4062   // precleaned, then scan the region covered by these cards.
4063   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4064   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4065 
4066   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4067 
4068   size_t numDirtyCards, cumNumDirtyCards;
4069   HeapWord *lastAddr, *nextAddr;
4070 
4071   for (cumNumDirtyCards = numDirtyCards = 0,
4072        nextAddr = lastAddr = startAddr;
4073        nextAddr < endAddr;
4074        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4075 
4076     ResourceMark rm;
4077     HandleMark   hm;
4078 
4079     MemRegion dirtyRegion;
4080     {
4081       // See comments in "Precleaning notes" above on why we
4082       // do this locking. XXX Could the locking overheads be
4083       // too high when dirty cards are sparse? [I don't think so.]
4084       stopTimer();
4085       CMSTokenSync x(true); // is cms thread
4086       startTimer();
4087       sample_eden();
4088       // Get and clear dirty region from card table
4089       dirtyRegion = _ct->dirty_card_range_after_reset(MemRegion(nextAddr, endAddr),
4090                                                       true,
4091                                                       CardTable::precleaned_card_val());
4092 
4093       assert(dirtyRegion.start() >= nextAddr,
4094              "returned region inconsistent?");
4095     }
4096     lastAddr = dirtyRegion.end();
4097     numDirtyCards =
4098       dirtyRegion.word_size()/CardTable::card_size_in_words;
4099 
4100     if (!dirtyRegion.is_empty()) {
4101       stopTimer();
4102       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4103       startTimer();
4104       sample_eden();
4105       verify_work_stacks_empty();
4106       verify_overflow_empty();
4107       HeapWord* stop_point =
4108         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4109       if (stop_point != NULL) {
4110         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4111                "Should only be AbortablePreclean.");
4112         _ct->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4113         if (should_abort_preclean()) {
4114           break; // out of preclean loop
4115         } else {
4116           // Compute the next address at which preclean should pick up.
4117           lastAddr = next_card_start_after_block(stop_point);
4118         }
4119       }
4120     } else {
4121       break;
4122     }
4123   }
4124   verify_work_stacks_empty();
4125   verify_overflow_empty();
4126   return cumNumDirtyCards;
4127 }
4128 
4129 class PrecleanCLDClosure : public CLDClosure {
4130   MetadataVisitingOopsInGenClosure* _cm_closure;
4131  public:
4132   PrecleanCLDClosure(MetadataVisitingOopsInGenClosure* oop_closure) : _cm_closure(oop_closure) {}
4133   void do_cld(ClassLoaderData* cld) {
4134     if (cld->has_accumulated_modified_oops()) {
4135       cld->clear_accumulated_modified_oops();
4136 
4137       _cm_closure->do_cld(cld);
4138     }
4139   }
4140 };
4141 
4142 // The freelist lock is needed to prevent asserts, is it really needed?
4143 void CMSCollector::preclean_cld(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4144   // Needed to walk CLDG
4145   MutexLocker ml(ClassLoaderDataGraph_lock);
4146 
4147   cl->set_freelistLock(freelistLock);
4148 
4149   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4150 
4151   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4152   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4153   PrecleanCLDClosure preclean_closure(cl);
4154   ClassLoaderDataGraph::cld_do(&preclean_closure);
4155 
4156   verify_work_stacks_empty();
4157   verify_overflow_empty();
4158 }
4159 
4160 void CMSCollector::checkpointRootsFinal() {
4161   assert(_collectorState == FinalMarking, "incorrect state transition?");
4162   check_correct_thread_executing();
4163   // world is stopped at this checkpoint
4164   assert(SafepointSynchronize::is_at_safepoint(),
4165          "world should be stopped");
4166   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
4167 
4168   verify_work_stacks_empty();
4169   verify_overflow_empty();
4170 
4171   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4172                 _young_gen->used() / K, _young_gen->capacity() / K);
4173   {
4174     if (CMSScavengeBeforeRemark) {
4175       CMSHeap* heap = CMSHeap::heap();
4176       // Temporarily set flag to false, GCH->do_collection will
4177       // expect it to be false and set to true
4178       FlagSetting fl(heap->_is_gc_active, false);
4179 
4180       heap->do_collection(true,                      // full (i.e. force, see below)
4181                           false,                     // !clear_all_soft_refs
4182                           0,                         // size
4183                           false,                     // is_tlab
4184                           GenCollectedHeap::YoungGen // type
4185         );
4186     }
4187     FreelistLocker x(this);
4188     MutexLocker y(bitMapLock(),
4189                   Mutex::_no_safepoint_check_flag);
4190     checkpointRootsFinalWork();
4191     _cmsGen->cmsSpace()->recalculate_used_stable();
4192   }
4193   verify_work_stacks_empty();
4194   verify_overflow_empty();
4195 }
4196 
4197 void CMSCollector::checkpointRootsFinalWork() {
4198   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4199 
4200   assert(haveFreelistLocks(), "must have free list locks");
4201   assert_lock_strong(bitMapLock());
4202 
4203   ResourceMark rm;
4204   HandleMark   hm;
4205 
4206   CMSHeap* heap = CMSHeap::heap();
4207 
4208   assert(haveFreelistLocks(), "must have free list locks");
4209   assert_lock_strong(bitMapLock());
4210 
4211   // We might assume that we need not fill TLAB's when
4212   // CMSScavengeBeforeRemark is set, because we may have just done
4213   // a scavenge which would have filled all TLAB's -- and besides
4214   // Eden would be empty. This however may not always be the case --
4215   // for instance although we asked for a scavenge, it may not have
4216   // happened because of a JNI critical section. We probably need
4217   // a policy for deciding whether we can in that case wait until
4218   // the critical section releases and then do the remark following
4219   // the scavenge, and skip it here. In the absence of that policy,
4220   // or of an indication of whether the scavenge did indeed occur,
4221   // we cannot rely on TLAB's having been filled and must do
4222   // so here just in case a scavenge did not happen.
4223   heap->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4224   // Update the saved marks which may affect the root scans.
4225   heap->save_marks();
4226 
4227   print_eden_and_survivor_chunk_arrays();
4228 
4229   {
4230 #if COMPILER2_OR_JVMCI
4231     DerivedPointerTableDeactivate dpt_deact;
4232 #endif
4233 
4234     // Note on the role of the mod union table:
4235     // Since the marker in "markFromRoots" marks concurrently with
4236     // mutators, it is possible for some reachable objects not to have been
4237     // scanned. For instance, an only reference to an object A was
4238     // placed in object B after the marker scanned B. Unless B is rescanned,
4239     // A would be collected. Such updates to references in marked objects
4240     // are detected via the mod union table which is the set of all cards
4241     // dirtied since the first checkpoint in this GC cycle and prior to
4242     // the most recent young generation GC, minus those cleaned up by the
4243     // concurrent precleaning.
4244     if (CMSParallelRemarkEnabled) {
4245       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4246       do_remark_parallel();
4247     } else {
4248       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4249       do_remark_non_parallel();
4250     }
4251   }
4252   verify_work_stacks_empty();
4253   verify_overflow_empty();
4254 
4255   {
4256     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4257     refProcessingWork();
4258   }
4259   verify_work_stacks_empty();
4260   verify_overflow_empty();
4261 
4262   if (should_unload_classes()) {
4263     heap->prune_scavengable_nmethods();
4264   }
4265   JvmtiExport::gc_epilogue();
4266 
4267   // If we encountered any (marking stack / work queue) overflow
4268   // events during the current CMS cycle, take appropriate
4269   // remedial measures, where possible, so as to try and avoid
4270   // recurrence of that condition.
4271   assert(_markStack.isEmpty(), "No grey objects");
4272   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4273                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4274   if (ser_ovflw > 0) {
4275     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4276                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4277     _markStack.expand();
4278     _ser_pmc_remark_ovflw = 0;
4279     _ser_pmc_preclean_ovflw = 0;
4280     _ser_kac_preclean_ovflw = 0;
4281     _ser_kac_ovflw = 0;
4282   }
4283   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4284      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4285                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4286      _par_pmc_remark_ovflw = 0;
4287     _par_kac_ovflw = 0;
4288   }
4289    if (_markStack._hit_limit > 0) {
4290      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4291                           _markStack._hit_limit);
4292    }
4293    if (_markStack._failed_double > 0) {
4294      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4295                           _markStack._failed_double, _markStack.capacity());
4296    }
4297   _markStack._hit_limit = 0;
4298   _markStack._failed_double = 0;
4299 
4300   if ((VerifyAfterGC || VerifyDuringGC) &&
4301       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4302     verify_after_remark();
4303   }
4304 
4305   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4306 
4307   // Change under the freelistLocks.
4308   _collectorState = Sweeping;
4309   // Call isAllClear() under bitMapLock
4310   assert(_modUnionTable.isAllClear(),
4311       "Should be clear by end of the final marking");
4312   assert(_ct->cld_rem_set()->mod_union_is_clear(),
4313       "Should be clear by end of the final marking");
4314 }
4315 
4316 void CMSParInitialMarkTask::work(uint worker_id) {
4317   elapsedTimer _timer;
4318   ResourceMark rm;
4319   HandleMark   hm;
4320 
4321   // ---------- scan from roots --------------
4322   _timer.start();
4323   CMSHeap* heap = CMSHeap::heap();
4324   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4325 
4326   // ---------- young gen roots --------------
4327   {
4328     work_on_young_gen_roots(&par_mri_cl);
4329     _timer.stop();
4330     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4331   }
4332 
4333   // ---------- remaining roots --------------
4334   _timer.reset();
4335   _timer.start();
4336 
4337   CLDToOopClosure cld_closure(&par_mri_cl, ClassLoaderData::_claim_strong);
4338 
4339   heap->cms_process_roots(_strong_roots_scope,
4340                           false,     // yg was scanned above
4341                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4342                           _collector->should_unload_classes(),
4343                           &par_mri_cl,
4344                           &cld_closure);
4345 
4346   assert(_collector->should_unload_classes()
4347          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4348          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4349   _timer.stop();
4350   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4351 }
4352 
4353 // Parallel remark task
4354 class CMSParRemarkTask: public CMSParMarkTask {
4355   CompactibleFreeListSpace* _cms_space;
4356 
4357   // The per-thread work queues, available here for stealing.
4358   OopTaskQueueSet*       _task_queues;
4359   TaskTerminator         _term;
4360   StrongRootsScope*      _strong_roots_scope;
4361 
4362  public:
4363   // A value of 0 passed to n_workers will cause the number of
4364   // workers to be taken from the active workers in the work gang.
4365   CMSParRemarkTask(CMSCollector* collector,
4366                    CompactibleFreeListSpace* cms_space,
4367                    uint n_workers, WorkGang* workers,
4368                    OopTaskQueueSet* task_queues,
4369                    StrongRootsScope* strong_roots_scope):
4370     CMSParMarkTask("Rescan roots and grey objects in parallel",
4371                    collector, n_workers),
4372     _cms_space(cms_space),
4373     _task_queues(task_queues),
4374     _term(n_workers, task_queues),
4375     _strong_roots_scope(strong_roots_scope) { }
4376 
4377   OopTaskQueueSet* task_queues() { return _task_queues; }
4378 
4379   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4380 
4381   ParallelTaskTerminator* terminator() { return _term.terminator(); }
4382   uint n_workers() { return _n_workers; }
4383 
4384   void work(uint worker_id);
4385 
4386  private:
4387   // ... of  dirty cards in old space
4388   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4389                                   ParMarkRefsIntoAndScanClosure* cl);
4390 
4391   // ... work stealing for the above
4392   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl);
4393 };
4394 
4395 class RemarkCLDClosure : public CLDClosure {
4396   CLDToOopClosure _cm_closure;
4397  public:
4398   RemarkCLDClosure(OopClosure* oop_closure) : _cm_closure(oop_closure, ClassLoaderData::_claim_strong) {}
4399   void do_cld(ClassLoaderData* cld) {
4400     // Check if we have modified any oops in the CLD during the concurrent marking.
4401     if (cld->has_accumulated_modified_oops()) {
4402       cld->clear_accumulated_modified_oops();
4403 
4404       // We could have transfered the current modified marks to the accumulated marks,
4405       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4406     } else if (cld->has_modified_oops()) {
4407       // Don't clear anything, this info is needed by the next young collection.
4408     } else {
4409       // No modified oops in the ClassLoaderData.
4410       return;
4411     }
4412 
4413     // The klass has modified fields, need to scan the klass.
4414     _cm_closure.do_cld(cld);
4415   }
4416 };
4417 
4418 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4419   ParNewGeneration* young_gen = _collector->_young_gen;
4420   ContiguousSpace* eden_space = young_gen->eden();
4421   ContiguousSpace* from_space = young_gen->from();
4422   ContiguousSpace* to_space   = young_gen->to();
4423 
4424   HeapWord** eca = _collector->_eden_chunk_array;
4425   size_t     ect = _collector->_eden_chunk_index;
4426   HeapWord** sca = _collector->_survivor_chunk_array;
4427   size_t     sct = _collector->_survivor_chunk_index;
4428 
4429   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4430   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4431 
4432   do_young_space_rescan(cl, to_space, NULL, 0);
4433   do_young_space_rescan(cl, from_space, sca, sct);
4434   do_young_space_rescan(cl, eden_space, eca, ect);
4435 }
4436 
4437 // work_queue(i) is passed to the closure
4438 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4439 // also is passed to do_dirty_card_rescan_tasks() and to
4440 // do_work_steal() to select the i-th task_queue.
4441 
4442 void CMSParRemarkTask::work(uint worker_id) {
4443   elapsedTimer _timer;
4444   ResourceMark rm;
4445   HandleMark   hm;
4446 
4447   // ---------- rescan from roots --------------
4448   _timer.start();
4449   CMSHeap* heap = CMSHeap::heap();
4450   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4451     _collector->_span, _collector->ref_processor(),
4452     &(_collector->_markBitMap),
4453     work_queue(worker_id));
4454 
4455   // Rescan young gen roots first since these are likely
4456   // coarsely partitioned and may, on that account, constitute
4457   // the critical path; thus, it's best to start off that
4458   // work first.
4459   // ---------- young gen roots --------------
4460   {
4461     work_on_young_gen_roots(&par_mrias_cl);
4462     _timer.stop();
4463     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4464   }
4465 
4466   // ---------- remaining roots --------------
4467   _timer.reset();
4468   _timer.start();
4469   heap->cms_process_roots(_strong_roots_scope,
4470                           false,     // yg was scanned above
4471                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4472                           _collector->should_unload_classes(),
4473                           &par_mrias_cl,
4474                           NULL);     // The dirty klasses will be handled below
4475 
4476   assert(_collector->should_unload_classes()
4477          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4478          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4479   _timer.stop();
4480   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4481 
4482   // ---------- unhandled CLD scanning ----------
4483   if (worker_id == 0) { // Single threaded at the moment.
4484     _timer.reset();
4485     _timer.start();
4486 
4487     // Scan all new class loader data objects and new dependencies that were
4488     // introduced during concurrent marking.
4489     ResourceMark rm;
4490     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4491     for (int i = 0; i < array->length(); i++) {
4492       Devirtualizer::do_cld(&par_mrias_cl, array->at(i));
4493     }
4494 
4495     // We don't need to keep track of new CLDs anymore.
4496     ClassLoaderDataGraph::remember_new_clds(false);
4497 
4498     _timer.stop();
4499     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4500   }
4501 
4502   // We might have added oops to ClassLoaderData::_handles during the
4503   // concurrent marking phase. These oops do not always point to newly allocated objects
4504   // that are guaranteed to be kept alive.  Hence,
4505   // we do have to revisit the _handles block during the remark phase.
4506 
4507   // ---------- dirty CLD scanning ----------
4508   if (worker_id == 0) { // Single threaded at the moment.
4509     _timer.reset();
4510     _timer.start();
4511 
4512     // Scan all classes that was dirtied during the concurrent marking phase.
4513     RemarkCLDClosure remark_closure(&par_mrias_cl);
4514     ClassLoaderDataGraph::cld_do(&remark_closure);
4515 
4516     _timer.stop();
4517     log_trace(gc, task)("Finished dirty CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4518   }
4519 
4520 
4521   // ---------- rescan dirty cards ------------
4522   _timer.reset();
4523   _timer.start();
4524 
4525   // Do the rescan tasks for each of the two spaces
4526   // (cms_space) in turn.
4527   // "worker_id" is passed to select the task_queue for "worker_id"
4528   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4529   _timer.stop();
4530   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4531 
4532   // ---------- steal work from other threads ...
4533   // ---------- ... and drain overflow list.
4534   _timer.reset();
4535   _timer.start();
4536   do_work_steal(worker_id, &par_mrias_cl);
4537   _timer.stop();
4538   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4539 }
4540 
4541 void
4542 CMSParMarkTask::do_young_space_rescan(
4543   OopsInGenClosure* cl, ContiguousSpace* space,
4544   HeapWord** chunk_array, size_t chunk_top) {
4545   // Until all tasks completed:
4546   // . claim an unclaimed task
4547   // . compute region boundaries corresponding to task claimed
4548   //   using chunk_array
4549   // . par_oop_iterate(cl) over that region
4550 
4551   ResourceMark rm;
4552   HandleMark   hm;
4553 
4554   SequentialSubTasksDone* pst = space->par_seq_tasks();
4555 
4556   uint nth_task = 0;
4557   uint n_tasks  = pst->n_tasks();
4558 
4559   if (n_tasks > 0) {
4560     assert(pst->valid(), "Uninitialized use?");
4561     HeapWord *start, *end;
4562     while (pst->try_claim_task(/* reference */ nth_task)) {
4563       // We claimed task # nth_task; compute its boundaries.
4564       if (chunk_top == 0) {  // no samples were taken
4565         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4566         start = space->bottom();
4567         end   = space->top();
4568       } else if (nth_task == 0) {
4569         start = space->bottom();
4570         end   = chunk_array[nth_task];
4571       } else if (nth_task < (uint)chunk_top) {
4572         assert(nth_task >= 1, "Control point invariant");
4573         start = chunk_array[nth_task - 1];
4574         end   = chunk_array[nth_task];
4575       } else {
4576         assert(nth_task == (uint)chunk_top, "Control point invariant");
4577         start = chunk_array[chunk_top - 1];
4578         end   = space->top();
4579       }
4580       MemRegion mr(start, end);
4581       // Verify that mr is in space
4582       assert(mr.is_empty() || space->used_region().contains(mr),
4583              "Should be in space");
4584       // Verify that "start" is an object boundary
4585       assert(mr.is_empty() || oopDesc::is_oop(oop(mr.start())),
4586              "Should be an oop");
4587       space->par_oop_iterate(mr, cl);
4588     }
4589     pst->all_tasks_completed();
4590   }
4591 }
4592 
4593 void
4594 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4595   CompactibleFreeListSpace* sp, int i,
4596   ParMarkRefsIntoAndScanClosure* cl) {
4597   // Until all tasks completed:
4598   // . claim an unclaimed task
4599   // . compute region boundaries corresponding to task claimed
4600   // . transfer dirty bits ct->mut for that region
4601   // . apply rescanclosure to dirty mut bits for that region
4602 
4603   ResourceMark rm;
4604   HandleMark   hm;
4605 
4606   OopTaskQueue* work_q = work_queue(i);
4607   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4608   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4609   // CAUTION: This closure has state that persists across calls to
4610   // the work method dirty_range_iterate_clear() in that it has
4611   // embedded in it a (subtype of) UpwardsObjectClosure. The
4612   // use of that state in the embedded UpwardsObjectClosure instance
4613   // assumes that the cards are always iterated (even if in parallel
4614   // by several threads) in monotonically increasing order per each
4615   // thread. This is true of the implementation below which picks
4616   // card ranges (chunks) in monotonically increasing order globally
4617   // and, a-fortiori, in monotonically increasing order per thread
4618   // (the latter order being a subsequence of the former).
4619   // If the work code below is ever reorganized into a more chaotic
4620   // work-partitioning form than the current "sequential tasks"
4621   // paradigm, the use of that persistent state will have to be
4622   // revisited and modified appropriately. See also related
4623   // bug 4756801 work on which should examine this code to make
4624   // sure that the changes there do not run counter to the
4625   // assumptions made here and necessary for correctness and
4626   // efficiency. Note also that this code might yield inefficient
4627   // behavior in the case of very large objects that span one or
4628   // more work chunks. Such objects would potentially be scanned
4629   // several times redundantly. Work on 4756801 should try and
4630   // address that performance anomaly if at all possible. XXX
4631   MemRegion  full_span  = _collector->_span;
4632   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4633   MarkFromDirtyCardsClosure
4634     greyRescanClosure(_collector, full_span, // entire span of interest
4635                       sp, bm, work_q, cl);
4636 
4637   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4638   assert(pst->valid(), "Uninitialized use?");
4639   uint nth_task = 0;
4640   const int alignment = CardTable::card_size * BitsPerWord;
4641   MemRegion span = sp->used_region();
4642   HeapWord* start_addr = span.start();
4643   HeapWord* end_addr = align_up(span.end(), alignment);
4644   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4645   assert(is_aligned(start_addr, alignment), "Check alignment");
4646   assert(is_aligned(chunk_size, alignment), "Check alignment");
4647 
4648   while (pst->try_claim_task(/* reference */ nth_task)) {
4649     // Having claimed the nth_task, compute corresponding mem-region,
4650     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4651     // The alignment restriction ensures that we do not need any
4652     // synchronization with other gang-workers while setting or
4653     // clearing bits in thus chunk of the MUT.
4654     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4655                                     start_addr + (nth_task+1)*chunk_size);
4656     // The last chunk's end might be way beyond end of the
4657     // used region. In that case pull back appropriately.
4658     if (this_span.end() > end_addr) {
4659       this_span.set_end(end_addr);
4660       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4661     }
4662     // Iterate over the dirty cards covering this chunk, marking them
4663     // precleaned, and setting the corresponding bits in the mod union
4664     // table. Since we have been careful to partition at Card and MUT-word
4665     // boundaries no synchronization is needed between parallel threads.
4666     _collector->_ct->dirty_card_iterate(this_span,
4667                                                  &modUnionClosure);
4668 
4669     // Having transferred these marks into the modUnionTable,
4670     // rescan the marked objects on the dirty cards in the modUnionTable.
4671     // Even if this is at a synchronous collection, the initial marking
4672     // may have been done during an asynchronous collection so there
4673     // may be dirty bits in the mod-union table.
4674     _collector->_modUnionTable.dirty_range_iterate_clear(
4675                   this_span, &greyRescanClosure);
4676     _collector->_modUnionTable.verifyNoOneBitsInRange(
4677                                  this_span.start(),
4678                                  this_span.end());
4679   }
4680   pst->all_tasks_completed();  // declare that i am done
4681 }
4682 
4683 // . see if we can share work_queues with ParNew? XXX
4684 void
4685 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl) {
4686   OopTaskQueue* work_q = work_queue(i);
4687   NOT_PRODUCT(int num_steals = 0;)
4688   oop obj_to_scan;
4689   CMSBitMap* bm = &(_collector->_markBitMap);
4690 
4691   while (true) {
4692     // Completely finish any left over work from (an) earlier round(s)
4693     cl->trim_queue(0);
4694     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4695                                          (size_t)ParGCDesiredObjsFromOverflowList);
4696     // Now check if there's any work in the overflow list
4697     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4698     // only affects the number of attempts made to get work from the
4699     // overflow list and does not affect the number of workers.  Just
4700     // pass ParallelGCThreads so this behavior is unchanged.
4701     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4702                                                 work_q,
4703                                                 ParallelGCThreads)) {
4704       // found something in global overflow list;
4705       // not yet ready to go stealing work from others.
4706       // We'd like to assert(work_q->size() != 0, ...)
4707       // because we just took work from the overflow list,
4708       // but of course we can't since all of that could have
4709       // been already stolen from us.
4710       // "He giveth and He taketh away."
4711       continue;
4712     }
4713     // Verify that we have no work before we resort to stealing
4714     assert(work_q->size() == 0, "Have work, shouldn't steal");
4715     // Try to steal from other queues that have work
4716     if (task_queues()->steal(i, /* reference */ obj_to_scan)) {
4717       NOT_PRODUCT(num_steals++;)
4718       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
4719       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4720       // Do scanning work
4721       obj_to_scan->oop_iterate(cl);
4722       // Loop around, finish this work, and try to steal some more
4723     } else if (terminator()->offer_termination()) {
4724         break;  // nirvana from the infinite cycle
4725     }
4726   }
4727   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4728   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4729          "Else our work is not yet done");
4730 }
4731 
4732 // Record object boundaries in _eden_chunk_array by sampling the eden
4733 // top in the slow-path eden object allocation code path and record
4734 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4735 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4736 // sampling in sample_eden() that activates during the part of the
4737 // preclean phase.
4738 void CMSCollector::sample_eden_chunk() {
4739   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4740     if (_eden_chunk_lock->try_lock()) {
4741       // Record a sample. This is the critical section. The contents
4742       // of the _eden_chunk_array have to be non-decreasing in the
4743       // address order.
4744       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4745       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4746              "Unexpected state of Eden");
4747       if (_eden_chunk_index == 0 ||
4748           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4749            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4750                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4751         _eden_chunk_index++;  // commit sample
4752       }
4753       _eden_chunk_lock->unlock();
4754     }
4755   }
4756 }
4757 
4758 // Return a thread-local PLAB recording array, as appropriate.
4759 void* CMSCollector::get_data_recorder(int thr_num) {
4760   if (_survivor_plab_array != NULL &&
4761       (CMSPLABRecordAlways ||
4762        (_collectorState > Marking && _collectorState < FinalMarking))) {
4763     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4764     ChunkArray* ca = &_survivor_plab_array[thr_num];
4765     ca->reset();   // clear it so that fresh data is recorded
4766     return (void*) ca;
4767   } else {
4768     return NULL;
4769   }
4770 }
4771 
4772 // Reset all the thread-local PLAB recording arrays
4773 void CMSCollector::reset_survivor_plab_arrays() {
4774   for (uint i = 0; i < ParallelGCThreads; i++) {
4775     _survivor_plab_array[i].reset();
4776   }
4777 }
4778 
4779 // Merge the per-thread plab arrays into the global survivor chunk
4780 // array which will provide the partitioning of the survivor space
4781 // for CMS initial scan and rescan.
4782 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4783                                               int no_of_gc_threads) {
4784   assert(_survivor_plab_array  != NULL, "Error");
4785   assert(_survivor_chunk_array != NULL, "Error");
4786   assert(_collectorState == FinalMarking ||
4787          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4788   for (int j = 0; j < no_of_gc_threads; j++) {
4789     _cursor[j] = 0;
4790   }
4791   HeapWord* top = surv->top();
4792   size_t i;
4793   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4794     HeapWord* min_val = top;          // Higher than any PLAB address
4795     uint      min_tid = 0;            // position of min_val this round
4796     for (int j = 0; j < no_of_gc_threads; j++) {
4797       ChunkArray* cur_sca = &_survivor_plab_array[j];
4798       if (_cursor[j] == cur_sca->end()) {
4799         continue;
4800       }
4801       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4802       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4803       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4804       if (cur_val < min_val) {
4805         min_tid = j;
4806         min_val = cur_val;
4807       } else {
4808         assert(cur_val < top, "All recorded addresses should be less");
4809       }
4810     }
4811     // At this point min_val and min_tid are respectively
4812     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4813     // and the thread (j) that witnesses that address.
4814     // We record this address in the _survivor_chunk_array[i]
4815     // and increment _cursor[min_tid] prior to the next round i.
4816     if (min_val == top) {
4817       break;
4818     }
4819     _survivor_chunk_array[i] = min_val;
4820     _cursor[min_tid]++;
4821   }
4822   // We are all done; record the size of the _survivor_chunk_array
4823   _survivor_chunk_index = i; // exclusive: [0, i)
4824   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4825   // Verify that we used up all the recorded entries
4826   #ifdef ASSERT
4827     size_t total = 0;
4828     for (int j = 0; j < no_of_gc_threads; j++) {
4829       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4830       total += _cursor[j];
4831     }
4832     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4833     // Check that the merged array is in sorted order
4834     if (total > 0) {
4835       for (size_t i = 0; i < total - 1; i++) {
4836         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4837                                      i, p2i(_survivor_chunk_array[i]));
4838         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4839                "Not sorted");
4840       }
4841     }
4842   #endif // ASSERT
4843 }
4844 
4845 // Set up the space's par_seq_tasks structure for work claiming
4846 // for parallel initial scan and rescan of young gen.
4847 // See ParRescanTask where this is currently used.
4848 void
4849 CMSCollector::
4850 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4851   assert(n_threads > 0, "Unexpected n_threads argument");
4852 
4853   // Eden space
4854   if (!_young_gen->eden()->is_empty()) {
4855     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4856     assert(!pst->valid(), "Clobbering existing data?");
4857     // Each valid entry in [0, _eden_chunk_index) represents a task.
4858     size_t n_tasks = _eden_chunk_index + 1;
4859     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4860     // Sets the condition for completion of the subtask (how many threads
4861     // need to finish in order to be done).
4862     pst->set_n_threads(n_threads);
4863     pst->set_n_tasks((int)n_tasks);
4864   }
4865 
4866   // Merge the survivor plab arrays into _survivor_chunk_array
4867   if (_survivor_plab_array != NULL) {
4868     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4869   } else {
4870     assert(_survivor_chunk_index == 0, "Error");
4871   }
4872 
4873   // To space
4874   {
4875     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4876     assert(!pst->valid(), "Clobbering existing data?");
4877     // Sets the condition for completion of the subtask (how many threads
4878     // need to finish in order to be done).
4879     pst->set_n_threads(n_threads);
4880     pst->set_n_tasks(1);
4881     assert(pst->valid(), "Error");
4882   }
4883 
4884   // From space
4885   {
4886     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4887     assert(!pst->valid(), "Clobbering existing data?");
4888     size_t n_tasks = _survivor_chunk_index + 1;
4889     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4890     // Sets the condition for completion of the subtask (how many threads
4891     // need to finish in order to be done).
4892     pst->set_n_threads(n_threads);
4893     pst->set_n_tasks((int)n_tasks);
4894     assert(pst->valid(), "Error");
4895   }
4896 }
4897 
4898 // Parallel version of remark
4899 void CMSCollector::do_remark_parallel() {
4900   CMSHeap* heap = CMSHeap::heap();
4901   WorkGang* workers = heap->workers();
4902   assert(workers != NULL, "Need parallel worker threads.");
4903   // Choose to use the number of GC workers most recently set
4904   // into "active_workers".
4905   uint n_workers = workers->active_workers();
4906 
4907   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4908 
4909   StrongRootsScope srs(n_workers);
4910 
4911   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4912 
4913   // We won't be iterating over the cards in the card table updating
4914   // the younger_gen cards, so we shouldn't call the following else
4915   // the verification code as well as subsequent younger_refs_iterate
4916   // code would get confused. XXX
4917   // heap->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4918 
4919   // The young gen rescan work will not be done as part of
4920   // process_roots (which currently doesn't know how to
4921   // parallelize such a scan), but rather will be broken up into
4922   // a set of parallel tasks (via the sampling that the [abortable]
4923   // preclean phase did of eden, plus the [two] tasks of
4924   // scanning the [two] survivor spaces. Further fine-grain
4925   // parallelization of the scanning of the survivor spaces
4926   // themselves, and of precleaning of the young gen itself
4927   // is deferred to the future.
4928   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4929 
4930   // The dirty card rescan work is broken up into a "sequence"
4931   // of parallel tasks (per constituent space) that are dynamically
4932   // claimed by the parallel threads.
4933   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4934 
4935   // It turns out that even when we're using 1 thread, doing the work in a
4936   // separate thread causes wide variance in run times.  We can't help this
4937   // in the multi-threaded case, but we special-case n=1 here to get
4938   // repeatable measurements of the 1-thread overhead of the parallel code.
4939   if (n_workers > 1) {
4940     // Make refs discovery MT-safe, if it isn't already: it may not
4941     // necessarily be so, since it's possible that we are doing
4942     // ST marking.
4943     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4944     workers->run_task(&tsk);
4945   } else {
4946     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4947     tsk.work(0);
4948   }
4949 
4950   // restore, single-threaded for now, any preserved marks
4951   // as a result of work_q overflow
4952   restore_preserved_marks_if_any();
4953 }
4954 
4955 // Non-parallel version of remark
4956 void CMSCollector::do_remark_non_parallel() {
4957   ResourceMark rm;
4958   HandleMark   hm;
4959   CMSHeap* heap = CMSHeap::heap();
4960   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4961 
4962   MarkRefsIntoAndScanClosure
4963     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4964              &_markStack, this,
4965              false /* should_yield */, false /* not precleaning */);
4966   MarkFromDirtyCardsClosure
4967     markFromDirtyCardsClosure(this, _span,
4968                               NULL,  // space is set further below
4969                               &_markBitMap, &_markStack, &mrias_cl);
4970   {
4971     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4972     // Iterate over the dirty cards, setting the corresponding bits in the
4973     // mod union table.
4974     {
4975       ModUnionClosure modUnionClosure(&_modUnionTable);
4976       _ct->dirty_card_iterate(_cmsGen->used_region(),
4977                               &modUnionClosure);
4978     }
4979     // Having transferred these marks into the modUnionTable, we just need
4980     // to rescan the marked objects on the dirty cards in the modUnionTable.
4981     // The initial marking may have been done during an asynchronous
4982     // collection so there may be dirty bits in the mod-union table.
4983     const int alignment = CardTable::card_size * BitsPerWord;
4984     {
4985       // ... First handle dirty cards in CMS gen
4986       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4987       MemRegion ur = _cmsGen->used_region();
4988       HeapWord* lb = ur.start();
4989       HeapWord* ub = align_up(ur.end(), alignment);
4990       MemRegion cms_span(lb, ub);
4991       _modUnionTable.dirty_range_iterate_clear(cms_span,
4992                                                &markFromDirtyCardsClosure);
4993       verify_work_stacks_empty();
4994       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4995     }
4996   }
4997   if (VerifyDuringGC &&
4998       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4999     HandleMark hm;  // Discard invalid handles created during verification
5000     Universe::verify();
5001   }
5002   {
5003     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
5004 
5005     verify_work_stacks_empty();
5006 
5007     heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5008     StrongRootsScope srs(1);
5009 
5010     heap->cms_process_roots(&srs,
5011                             true,  // young gen as roots
5012                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
5013                             should_unload_classes(),
5014                             &mrias_cl,
5015                             NULL); // The dirty klasses will be handled below
5016 
5017     assert(should_unload_classes()
5018            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5019            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5020   }
5021 
5022   {
5023     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
5024 
5025     verify_work_stacks_empty();
5026 
5027     // Scan all class loader data objects that might have been introduced
5028     // during concurrent marking.
5029     ResourceMark rm;
5030     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5031     for (int i = 0; i < array->length(); i++) {
5032       Devirtualizer::do_cld(&mrias_cl, array->at(i));
5033     }
5034 
5035     // We don't need to keep track of new CLDs anymore.
5036     ClassLoaderDataGraph::remember_new_clds(false);
5037 
5038     verify_work_stacks_empty();
5039   }
5040 
5041   // We might have added oops to ClassLoaderData::_handles during the
5042   // concurrent marking phase. These oops do not point to newly allocated objects
5043   // that are guaranteed to be kept alive.  Hence,
5044   // we do have to revisit the _handles block during the remark phase.
5045   {
5046     GCTraceTime(Trace, gc, phases) t("Dirty CLD Scan", _gc_timer_cm);
5047 
5048     verify_work_stacks_empty();
5049 
5050     RemarkCLDClosure remark_closure(&mrias_cl);
5051     ClassLoaderDataGraph::cld_do(&remark_closure);
5052 
5053     verify_work_stacks_empty();
5054   }
5055 
5056   verify_work_stacks_empty();
5057   // Restore evacuated mark words, if any, used for overflow list links
5058   restore_preserved_marks_if_any();
5059 
5060   verify_overflow_empty();
5061 }
5062 
5063 ////////////////////////////////////////////////////////
5064 // Parallel Reference Processing Task Proxy Class
5065 ////////////////////////////////////////////////////////
5066 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5067   OopTaskQueueSet*       _queues;
5068   TaskTerminator         _terminator;
5069  public:
5070   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5071     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5072   ParallelTaskTerminator* terminator() { return _terminator.terminator(); }
5073   OopTaskQueueSet* queues() { return _queues; }
5074 };
5075 
5076 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5077   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5078   CMSCollector*          _collector;
5079   CMSBitMap*             _mark_bit_map;
5080   const MemRegion        _span;
5081   ProcessTask&           _task;
5082 
5083 public:
5084   CMSRefProcTaskProxy(ProcessTask&     task,
5085                       CMSCollector*    collector,
5086                       const MemRegion& span,
5087                       CMSBitMap*       mark_bit_map,
5088                       AbstractWorkGang* workers,
5089                       OopTaskQueueSet* task_queues):
5090     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5091       task_queues,
5092       workers->active_workers()),
5093     _collector(collector),
5094     _mark_bit_map(mark_bit_map),
5095     _span(span),
5096     _task(task)
5097   {
5098     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5099            "Inconsistency in _span");
5100   }
5101 
5102   OopTaskQueueSet* task_queues() { return queues(); }
5103 
5104   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5105 
5106   void do_work_steal(int i,
5107                      CMSParDrainMarkingStackClosure* drain,
5108                      CMSParKeepAliveClosure* keep_alive);
5109 
5110   virtual void work(uint worker_id);
5111 };
5112 
5113 void CMSRefProcTaskProxy::work(uint worker_id) {
5114   ResourceMark rm;
5115   HandleMark hm;
5116   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5117   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5118                                         _mark_bit_map,
5119                                         work_queue(worker_id));
5120   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5121                                                  _mark_bit_map,
5122                                                  work_queue(worker_id));
5123   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5124   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5125   if (_task.marks_oops_alive()) {
5126     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive);
5127   }
5128   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5129   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5130 }
5131 
5132 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5133   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5134    _span(span),
5135    _work_queue(work_queue),
5136    _bit_map(bit_map),
5137    _mark_and_push(collector, span, bit_map, work_queue),
5138    _low_water_mark(MIN2((work_queue->max_elems()/4),
5139                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5140 { }
5141 
5142 // . see if we can share work_queues with ParNew? XXX
5143 void CMSRefProcTaskProxy::do_work_steal(int i,
5144   CMSParDrainMarkingStackClosure* drain,
5145   CMSParKeepAliveClosure* keep_alive) {
5146   OopTaskQueue* work_q = work_queue(i);
5147   NOT_PRODUCT(int num_steals = 0;)
5148   oop obj_to_scan;
5149 
5150   while (true) {
5151     // Completely finish any left over work from (an) earlier round(s)
5152     drain->trim_queue(0);
5153     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5154                                          (size_t)ParGCDesiredObjsFromOverflowList);
5155     // Now check if there's any work in the overflow list
5156     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5157     // only affects the number of attempts made to get work from the
5158     // overflow list and does not affect the number of workers.  Just
5159     // pass ParallelGCThreads so this behavior is unchanged.
5160     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5161                                                 work_q,
5162                                                 ParallelGCThreads)) {
5163       // Found something in global overflow list;
5164       // not yet ready to go stealing work from others.
5165       // We'd like to assert(work_q->size() != 0, ...)
5166       // because we just took work from the overflow list,
5167       // but of course we can't, since all of that might have
5168       // been already stolen from us.
5169       continue;
5170     }
5171     // Verify that we have no work before we resort to stealing
5172     assert(work_q->size() == 0, "Have work, shouldn't steal");
5173     // Try to steal from other queues that have work
5174     if (task_queues()->steal(i, /* reference */ obj_to_scan)) {
5175       NOT_PRODUCT(num_steals++;)
5176       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
5177       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5178       // Do scanning work
5179       obj_to_scan->oop_iterate(keep_alive);
5180       // Loop around, finish this work, and try to steal some more
5181     } else if (terminator()->offer_termination()) {
5182       break;  // nirvana from the infinite cycle
5183     }
5184   }
5185   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5186 }
5187 
5188 void CMSRefProcTaskExecutor::execute(ProcessTask& task, uint ergo_workers) {
5189   CMSHeap* heap = CMSHeap::heap();
5190   WorkGang* workers = heap->workers();
5191   assert(workers != NULL, "Need parallel worker threads.");
5192   assert(workers->active_workers() == ergo_workers,
5193          "Ergonomically chosen workers (%u) must be equal to active workers (%u)",
5194          ergo_workers, workers->active_workers());
5195   CMSRefProcTaskProxy rp_task(task, &_collector,
5196                               _collector.ref_processor_span(),
5197                               _collector.markBitMap(),
5198                               workers, _collector.task_queues());
5199   workers->run_task(&rp_task, workers->active_workers());
5200 }
5201 
5202 void CMSCollector::refProcessingWork() {
5203   ResourceMark rm;
5204   HandleMark   hm;
5205 
5206   ReferenceProcessor* rp = ref_processor();
5207   assert(_span_based_discoverer.span().equals(_span), "Spans should be equal");
5208   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5209   // Process weak references.
5210   rp->setup_policy(false);
5211   verify_work_stacks_empty();
5212 
5213   ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
5214   {
5215     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5216 
5217     // Setup keep_alive and complete closures.
5218     CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5219                                             &_markStack, false /* !preclean */);
5220     CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5221                                   _span, &_markBitMap, &_markStack,
5222                                   &cmsKeepAliveClosure, false /* !preclean */);
5223 
5224     ReferenceProcessorStats stats;
5225     if (rp->processing_is_mt()) {
5226       // Set the degree of MT here.  If the discovery is done MT, there
5227       // may have been a different number of threads doing the discovery
5228       // and a different number of discovered lists may have Ref objects.
5229       // That is OK as long as the Reference lists are balanced (see
5230       // balance_all_queues() and balance_queues()).
5231       CMSHeap* heap = CMSHeap::heap();
5232       uint active_workers = ParallelGCThreads;
5233       WorkGang* workers = heap->workers();
5234       if (workers != NULL) {
5235         active_workers = workers->active_workers();
5236         // The expectation is that active_workers will have already
5237         // been set to a reasonable value.  If it has not been set,
5238         // investigate.
5239         assert(active_workers > 0, "Should have been set during scavenge");
5240       }
5241       rp->set_active_mt_degree(active_workers);
5242       CMSRefProcTaskExecutor task_executor(*this);
5243       stats = rp->process_discovered_references(&_is_alive_closure,
5244                                         &cmsKeepAliveClosure,
5245                                         &cmsDrainMarkingStackClosure,
5246                                         &task_executor,
5247                                         &pt);
5248     } else {
5249       stats = rp->process_discovered_references(&_is_alive_closure,
5250                                         &cmsKeepAliveClosure,
5251                                         &cmsDrainMarkingStackClosure,
5252                                         NULL,
5253                                         &pt);
5254     }
5255     _gc_tracer_cm->report_gc_reference_stats(stats);
5256     pt.print_all_references();
5257   }
5258 
5259   // This is the point where the entire marking should have completed.
5260   verify_work_stacks_empty();
5261 
5262   {
5263     GCTraceTime(Debug, gc, phases) t("Weak Processing", _gc_timer_cm);
5264     WeakProcessor::weak_oops_do(&_is_alive_closure, &do_nothing_cl);
5265   }
5266 
5267   if (should_unload_classes()) {
5268     {
5269       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5270 
5271       // Unload classes and purge the SystemDictionary.
5272       bool purged_class = SystemDictionary::do_unloading(_gc_timer_cm);
5273 
5274       // Unload nmethods.
5275       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5276 
5277       // Prune dead klasses from subklass/sibling/implementor lists.
5278       Klass::clean_weak_klass_links(purged_class);
5279 
5280       // Clean JVMCI metadata handles.
5281       JVMCI_ONLY(JVMCI::do_unloading(purged_class));
5282     }
5283   }
5284 
5285   // Restore any preserved marks as a result of mark stack or
5286   // work queue overflow
5287   restore_preserved_marks_if_any();  // done single-threaded for now
5288 
5289   rp->set_enqueuing_is_done(true);
5290   rp->verify_no_references_recorded();
5291 }
5292 
5293 #ifndef PRODUCT
5294 void CMSCollector::check_correct_thread_executing() {
5295   Thread* t = Thread::current();
5296   // Only the VM thread or the CMS thread should be here.
5297   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5298          "Unexpected thread type");
5299   // If this is the vm thread, the foreground process
5300   // should not be waiting.  Note that _foregroundGCIsActive is
5301   // true while the foreground collector is waiting.
5302   if (_foregroundGCShouldWait) {
5303     // We cannot be the VM thread
5304     assert(t->is_ConcurrentGC_thread(),
5305            "Should be CMS thread");
5306   } else {
5307     // We can be the CMS thread only if we are in a stop-world
5308     // phase of CMS collection.
5309     if (t->is_ConcurrentGC_thread()) {
5310       assert(_collectorState == InitialMarking ||
5311              _collectorState == FinalMarking,
5312              "Should be a stop-world phase");
5313       // The CMS thread should be holding the CMS_token.
5314       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5315              "Potential interference with concurrently "
5316              "executing VM thread");
5317     }
5318   }
5319 }
5320 #endif
5321 
5322 void CMSCollector::sweep() {
5323   assert(_collectorState == Sweeping, "just checking");
5324   check_correct_thread_executing();
5325   verify_work_stacks_empty();
5326   verify_overflow_empty();
5327   increment_sweep_count();
5328   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
5329 
5330   _inter_sweep_timer.stop();
5331   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5332 
5333   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5334   _intra_sweep_timer.reset();
5335   _intra_sweep_timer.start();
5336   {
5337     GCTraceCPUTime tcpu;
5338     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5339     // First sweep the old gen
5340     {
5341       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5342                                bitMapLock());
5343       sweepWork(_cmsGen);
5344     }
5345 
5346     // Update Universe::_heap_*_at_gc figures.
5347     // We need all the free list locks to make the abstract state
5348     // transition from Sweeping to Resetting. See detailed note
5349     // further below.
5350     {
5351       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5352       
5353       // Update heap occupancy information which is used as
5354       // input to soft ref clearing policy at the next gc.
5355       Universe::update_heap_info_at_gc();
5356    
5357       // recalculate CMS used space after CMS collection
5358       _cmsGen->cmsSpace()->recalculate_used_stable();
5359  
5360       _collectorState = Resizing;
5361     }
5362   }
5363   verify_work_stacks_empty();
5364   verify_overflow_empty();
5365 
5366   if (should_unload_classes()) {
5367     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5368     // requires that the virtual spaces are stable and not deleted.
5369     ClassLoaderDataGraph::set_should_purge(true);
5370   }
5371 
5372   _intra_sweep_timer.stop();
5373   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5374 
5375   _inter_sweep_timer.reset();
5376   _inter_sweep_timer.start();
5377 
5378   // We need to use a monotonically non-decreasing time in ms
5379   // or we will see time-warp warnings and os::javaTimeMillis()
5380   // does not guarantee monotonicity.
5381   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5382   update_time_of_last_gc(now);
5383 
5384   // NOTE on abstract state transitions:
5385   // Mutators allocate-live and/or mark the mod-union table dirty
5386   // based on the state of the collection.  The former is done in
5387   // the interval [Marking, Sweeping] and the latter in the interval
5388   // [Marking, Sweeping).  Thus the transitions into the Marking state
5389   // and out of the Sweeping state must be synchronously visible
5390   // globally to the mutators.
5391   // The transition into the Marking state happens with the world
5392   // stopped so the mutators will globally see it.  Sweeping is
5393   // done asynchronously by the background collector so the transition
5394   // from the Sweeping state to the Resizing state must be done
5395   // under the freelistLock (as is the check for whether to
5396   // allocate-live and whether to dirty the mod-union table).
5397   assert(_collectorState == Resizing, "Change of collector state to"
5398     " Resizing must be done under the freelistLocks (plural)");
5399 
5400   // Now that sweeping has been completed, we clear
5401   // the incremental_collection_failed flag,
5402   // thus inviting a younger gen collection to promote into
5403   // this generation. If such a promotion may still fail,
5404   // the flag will be set again when a young collection is
5405   // attempted.
5406   CMSHeap* heap = CMSHeap::heap();
5407   heap->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5408   heap->update_full_collections_completed(_collection_count_start);
5409 }
5410 
5411 // FIX ME!!! Looks like this belongs in CFLSpace, with
5412 // CMSGen merely delegating to it.
5413 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5414   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5415   HeapWord*  minAddr        = _cmsSpace->bottom();
5416   HeapWord*  largestAddr    =
5417     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5418   if (largestAddr == NULL) {
5419     // The dictionary appears to be empty.  In this case
5420     // try to coalesce at the end of the heap.
5421     largestAddr = _cmsSpace->end();
5422   }
5423   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5424   size_t nearLargestOffset =
5425     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5426   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5427                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5428   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5429 }
5430 
5431 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5432   return addr >= _cmsSpace->nearLargestChunk();
5433 }
5434 
5435 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5436   return _cmsSpace->find_chunk_at_end();
5437 }
5438 
5439 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5440                                                     bool full) {
5441   // If the young generation has been collected, gather any statistics
5442   // that are of interest at this point.
5443   bool current_is_young = CMSHeap::heap()->is_young_gen(current_generation);
5444   if (!full && current_is_young) {
5445     // Gather statistics on the young generation collection.
5446     collector()->stats().record_gc0_end(used());
5447   }
5448   _cmsSpace->recalculate_used_stable();
5449 }
5450 
5451 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5452   // We iterate over the space(s) underlying this generation,
5453   // checking the mark bit map to see if the bits corresponding
5454   // to specific blocks are marked or not. Blocks that are
5455   // marked are live and are not swept up. All remaining blocks
5456   // are swept up, with coalescing on-the-fly as we sweep up
5457   // contiguous free and/or garbage blocks:
5458   // We need to ensure that the sweeper synchronizes with allocators
5459   // and stop-the-world collectors. In particular, the following
5460   // locks are used:
5461   // . CMS token: if this is held, a stop the world collection cannot occur
5462   // . freelistLock: if this is held no allocation can occur from this
5463   //                 generation by another thread
5464   // . bitMapLock: if this is held, no other thread can access or update
5465   //
5466 
5467   // Note that we need to hold the freelistLock if we use
5468   // block iterate below; else the iterator might go awry if
5469   // a mutator (or promotion) causes block contents to change
5470   // (for instance if the allocator divvies up a block).
5471   // If we hold the free list lock, for all practical purposes
5472   // young generation GC's can't occur (they'll usually need to
5473   // promote), so we might as well prevent all young generation
5474   // GC's while we do a sweeping step. For the same reason, we might
5475   // as well take the bit map lock for the entire duration
5476 
5477   // check that we hold the requisite locks
5478   assert(have_cms_token(), "Should hold cms token");
5479   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5480   assert_lock_strong(old_gen->freelistLock());
5481   assert_lock_strong(bitMapLock());
5482 
5483   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5484   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5485   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5486                                           _inter_sweep_estimate.padded_average(),
5487                                           _intra_sweep_estimate.padded_average());
5488   old_gen->setNearLargestChunk();
5489 
5490   {
5491     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5492     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5493     // We need to free-up/coalesce garbage/blocks from a
5494     // co-terminal free run. This is done in the SweepClosure
5495     // destructor; so, do not remove this scope, else the
5496     // end-of-sweep-census below will be off by a little bit.
5497   }
5498   old_gen->cmsSpace()->sweep_completed();
5499   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5500   if (should_unload_classes()) {                // unloaded classes this cycle,
5501     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5502   } else {                                      // did not unload classes,
5503     _concurrent_cycles_since_last_unload++;     // ... increment count
5504   }
5505 }
5506 
5507 // Reset CMS data structures (for now just the marking bit map)
5508 // preparatory for the next cycle.
5509 void CMSCollector::reset_concurrent() {
5510   CMSTokenSyncWithLocks ts(true, bitMapLock());
5511 
5512   // If the state is not "Resetting", the foreground  thread
5513   // has done a collection and the resetting.
5514   if (_collectorState != Resetting) {
5515     assert(_collectorState == Idling, "The state should only change"
5516       " because the foreground collector has finished the collection");
5517     return;
5518   }
5519 
5520   {
5521     // Clear the mark bitmap (no grey objects to start with)
5522     // for the next cycle.
5523     GCTraceCPUTime tcpu;
5524     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5525 
5526     HeapWord* curAddr = _markBitMap.startWord();
5527     while (curAddr < _markBitMap.endWord()) {
5528       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5529       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5530       _markBitMap.clear_large_range(chunk);
5531       if (ConcurrentMarkSweepThread::should_yield() &&
5532           !foregroundGCIsActive() &&
5533           CMSYield) {
5534         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5535                "CMS thread should hold CMS token");
5536         assert_lock_strong(bitMapLock());
5537         bitMapLock()->unlock();
5538         ConcurrentMarkSweepThread::desynchronize(true);
5539         stopTimer();
5540         incrementYields();
5541 
5542         // See the comment in coordinator_yield()
5543         for (unsigned i = 0; i < CMSYieldSleepCount &&
5544                          ConcurrentMarkSweepThread::should_yield() &&
5545                          !CMSCollector::foregroundGCIsActive(); ++i) {
5546           os::sleep(Thread::current(), 1, false);
5547         }
5548 
5549         ConcurrentMarkSweepThread::synchronize(true);
5550         bitMapLock()->lock_without_safepoint_check();
5551         startTimer();
5552       }
5553       curAddr = chunk.end();
5554     }
5555     // A successful mostly concurrent collection has been done.
5556     // Because only the full (i.e., concurrent mode failure) collections
5557     // are being measured for gc overhead limits, clean the "near" flag
5558     // and count.
5559     size_policy()->reset_gc_overhead_limit_count();
5560     _collectorState = Idling;
5561   }
5562 
5563   register_gc_end();
5564 }
5565 
5566 // Same as above but for STW paths
5567 void CMSCollector::reset_stw() {
5568   // already have the lock
5569   assert(_collectorState == Resetting, "just checking");
5570   assert_lock_strong(bitMapLock());
5571   GCIdMark gc_id_mark(_cmsThread->gc_id());
5572   _markBitMap.clear_all();
5573   _collectorState = Idling;
5574   register_gc_end();
5575 }
5576 
5577 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5578   GCTraceCPUTime tcpu;
5579   TraceCollectorStats tcs_cgc(cgc_counters());
5580 
5581   switch (op) {
5582     case CMS_op_checkpointRootsInitial: {
5583       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5584       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5585       checkpointRootsInitial();
5586       break;
5587     }
5588     case CMS_op_checkpointRootsFinal: {
5589       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5590       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5591       checkpointRootsFinal();
5592       break;
5593     }
5594     default:
5595       fatal("No such CMS_op");
5596   }
5597 }
5598 
5599 #ifndef PRODUCT
5600 size_t const CMSCollector::skip_header_HeapWords() {
5601   return FreeChunk::header_size();
5602 }
5603 
5604 // Try and collect here conditions that should hold when
5605 // CMS thread is exiting. The idea is that the foreground GC
5606 // thread should not be blocked if it wants to terminate
5607 // the CMS thread and yet continue to run the VM for a while
5608 // after that.
5609 void CMSCollector::verify_ok_to_terminate() const {
5610   assert(Thread::current()->is_ConcurrentGC_thread(),
5611          "should be called by CMS thread");
5612   assert(!_foregroundGCShouldWait, "should be false");
5613   // We could check here that all the various low-level locks
5614   // are not held by the CMS thread, but that is overkill; see
5615   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5616   // is checked.
5617 }
5618 #endif
5619 
5620 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5621    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5622           "missing Printezis mark?");
5623   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5624   size_t size = pointer_delta(nextOneAddr + 1, addr);
5625   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5626          "alignment problem");
5627   assert(size >= 3, "Necessary for Printezis marks to work");
5628   return size;
5629 }
5630 
5631 // A variant of the above (block_size_using_printezis_bits()) except
5632 // that we return 0 if the P-bits are not yet set.
5633 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5634   if (_markBitMap.isMarked(addr + 1)) {
5635     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5636     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5637     size_t size = pointer_delta(nextOneAddr + 1, addr);
5638     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5639            "alignment problem");
5640     assert(size >= 3, "Necessary for Printezis marks to work");
5641     return size;
5642   }
5643   return 0;
5644 }
5645 
5646 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5647   size_t sz = 0;
5648   oop p = (oop)addr;
5649   if (p->klass_or_null_acquire() != NULL) {
5650     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5651   } else {
5652     sz = block_size_using_printezis_bits(addr);
5653   }
5654   assert(sz > 0, "size must be nonzero");
5655   HeapWord* next_block = addr + sz;
5656   HeapWord* next_card  = align_up(next_block, CardTable::card_size);
5657   assert(align_down((uintptr_t)addr,      CardTable::card_size) <
5658          align_down((uintptr_t)next_card, CardTable::card_size),
5659          "must be different cards");
5660   return next_card;
5661 }
5662 
5663 
5664 // CMS Bit Map Wrapper /////////////////////////////////////////
5665 
5666 // Construct a CMS bit map infrastructure, but don't create the
5667 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5668 // further below.
5669 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5670   _shifter(shifter),
5671   _bm(),
5672   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5673                                     Monitor::_safepoint_check_never) : NULL)
5674 {
5675   _bmStartWord = 0;
5676   _bmWordSize  = 0;
5677 }
5678 
5679 bool CMSBitMap::allocate(MemRegion mr) {
5680   _bmStartWord = mr.start();
5681   _bmWordSize  = mr.word_size();
5682   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5683                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5684   if (!brs.is_reserved()) {
5685     log_warning(gc)("CMS bit map allocation failure");
5686     return false;
5687   }
5688   // For now we'll just commit all of the bit map up front.
5689   // Later on we'll try to be more parsimonious with swap.
5690   if (!_virtual_space.initialize(brs, brs.size())) {
5691     log_warning(gc)("CMS bit map backing store failure");
5692     return false;
5693   }
5694   assert(_virtual_space.committed_size() == brs.size(),
5695          "didn't reserve backing store for all of CMS bit map?");
5696   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5697          _bmWordSize, "inconsistency in bit map sizing");
5698   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5699 
5700   // bm.clear(); // can we rely on getting zero'd memory? verify below
5701   assert(isAllClear(),
5702          "Expected zero'd memory from ReservedSpace constructor");
5703   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5704          "consistency check");
5705   return true;
5706 }
5707 
5708 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5709   HeapWord *next_addr, *end_addr, *last_addr;
5710   assert_locked();
5711   assert(covers(mr), "out-of-range error");
5712   // XXX assert that start and end are appropriately aligned
5713   for (next_addr = mr.start(), end_addr = mr.end();
5714        next_addr < end_addr; next_addr = last_addr) {
5715     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5716     last_addr = dirty_region.end();
5717     if (!dirty_region.is_empty()) {
5718       cl->do_MemRegion(dirty_region);
5719     } else {
5720       assert(last_addr == end_addr, "program logic");
5721       return;
5722     }
5723   }
5724 }
5725 
5726 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5727   _bm.print_on_error(st, prefix);
5728 }
5729 
5730 #ifndef PRODUCT
5731 void CMSBitMap::assert_locked() const {
5732   CMSLockVerifier::assert_locked(lock());
5733 }
5734 
5735 bool CMSBitMap::covers(MemRegion mr) const {
5736   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5737   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5738          "size inconsistency");
5739   return (mr.start() >= _bmStartWord) &&
5740          (mr.end()   <= endWord());
5741 }
5742 
5743 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5744     return (start >= _bmStartWord && (start + size) <= endWord());
5745 }
5746 
5747 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5748   // verify that there are no 1 bits in the interval [left, right)
5749   FalseBitMapClosure falseBitMapClosure;
5750   iterate(&falseBitMapClosure, left, right);
5751 }
5752 
5753 void CMSBitMap::region_invariant(MemRegion mr)
5754 {
5755   assert_locked();
5756   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5757   assert(!mr.is_empty(), "unexpected empty region");
5758   assert(covers(mr), "mr should be covered by bit map");
5759   // convert address range into offset range
5760   size_t start_ofs = heapWordToOffset(mr.start());
5761   // Make sure that end() is appropriately aligned
5762   assert(mr.end() == align_up(mr.end(), (1 << (_shifter+LogHeapWordSize))),
5763          "Misaligned mr.end()");
5764   size_t end_ofs   = heapWordToOffset(mr.end());
5765   assert(end_ofs > start_ofs, "Should mark at least one bit");
5766 }
5767 
5768 #endif
5769 
5770 bool CMSMarkStack::allocate(size_t size) {
5771   // allocate a stack of the requisite depth
5772   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5773                    size * sizeof(oop)));
5774   if (!rs.is_reserved()) {
5775     log_warning(gc)("CMSMarkStack allocation failure");
5776     return false;
5777   }
5778   if (!_virtual_space.initialize(rs, rs.size())) {
5779     log_warning(gc)("CMSMarkStack backing store failure");
5780     return false;
5781   }
5782   assert(_virtual_space.committed_size() == rs.size(),
5783          "didn't reserve backing store for all of CMS stack?");
5784   _base = (oop*)(_virtual_space.low());
5785   _index = 0;
5786   _capacity = size;
5787   NOT_PRODUCT(_max_depth = 0);
5788   return true;
5789 }
5790 
5791 // XXX FIX ME !!! In the MT case we come in here holding a
5792 // leaf lock. For printing we need to take a further lock
5793 // which has lower rank. We need to recalibrate the two
5794 // lock-ranks involved in order to be able to print the
5795 // messages below. (Or defer the printing to the caller.
5796 // For now we take the expedient path of just disabling the
5797 // messages for the problematic case.)
5798 void CMSMarkStack::expand() {
5799   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5800   if (_capacity == MarkStackSizeMax) {
5801     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5802       // We print a warning message only once per CMS cycle.
5803       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5804     }
5805     return;
5806   }
5807   // Double capacity if possible
5808   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5809   // Do not give up existing stack until we have managed to
5810   // get the double capacity that we desired.
5811   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5812                    new_capacity * sizeof(oop)));
5813   if (rs.is_reserved()) {
5814     // Release the backing store associated with old stack
5815     _virtual_space.release();
5816     // Reinitialize virtual space for new stack
5817     if (!_virtual_space.initialize(rs, rs.size())) {
5818       fatal("Not enough swap for expanded marking stack");
5819     }
5820     _base = (oop*)(_virtual_space.low());
5821     _index = 0;
5822     _capacity = new_capacity;
5823   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5824     // Failed to double capacity, continue;
5825     // we print a detail message only once per CMS cycle.
5826     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5827                         _capacity / K, new_capacity / K);
5828   }
5829 }
5830 
5831 
5832 // Closures
5833 // XXX: there seems to be a lot of code  duplication here;
5834 // should refactor and consolidate common code.
5835 
5836 // This closure is used to mark refs into the CMS generation in
5837 // the CMS bit map. Called at the first checkpoint. This closure
5838 // assumes that we do not need to re-mark dirty cards; if the CMS
5839 // generation on which this is used is not an oldest
5840 // generation then this will lose younger_gen cards!
5841 
5842 MarkRefsIntoClosure::MarkRefsIntoClosure(
5843   MemRegion span, CMSBitMap* bitMap):
5844     _span(span),
5845     _bitMap(bitMap)
5846 {
5847   assert(ref_discoverer() == NULL, "deliberately left NULL");
5848   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5849 }
5850 
5851 void MarkRefsIntoClosure::do_oop(oop obj) {
5852   // if p points into _span, then mark corresponding bit in _markBitMap
5853   assert(oopDesc::is_oop(obj), "expected an oop");
5854   HeapWord* addr = (HeapWord*)obj;
5855   if (_span.contains(addr)) {
5856     // this should be made more efficient
5857     _bitMap->mark(addr);
5858   }
5859 }
5860 
5861 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5862   MemRegion span, CMSBitMap* bitMap):
5863     _span(span),
5864     _bitMap(bitMap)
5865 {
5866   assert(ref_discoverer() == NULL, "deliberately left NULL");
5867   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5868 }
5869 
5870 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5871   // if p points into _span, then mark corresponding bit in _markBitMap
5872   assert(oopDesc::is_oop(obj), "expected an oop");
5873   HeapWord* addr = (HeapWord*)obj;
5874   if (_span.contains(addr)) {
5875     // this should be made more efficient
5876     _bitMap->par_mark(addr);
5877   }
5878 }
5879 
5880 // A variant of the above, used for CMS marking verification.
5881 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5882   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5883     _span(span),
5884     _verification_bm(verification_bm),
5885     _cms_bm(cms_bm)
5886 {
5887   assert(ref_discoverer() == NULL, "deliberately left NULL");
5888   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5889 }
5890 
5891 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5892   // if p points into _span, then mark corresponding bit in _markBitMap
5893   assert(oopDesc::is_oop(obj), "expected an oop");
5894   HeapWord* addr = (HeapWord*)obj;
5895   if (_span.contains(addr)) {
5896     _verification_bm->mark(addr);
5897     if (!_cms_bm->isMarked(addr)) {
5898       Log(gc, verify) log;
5899       ResourceMark rm;
5900       LogStream ls(log.error());
5901       oop(addr)->print_on(&ls);
5902       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5903       fatal("... aborting");
5904     }
5905   }
5906 }
5907 
5908 //////////////////////////////////////////////////
5909 // MarkRefsIntoAndScanClosure
5910 //////////////////////////////////////////////////
5911 
5912 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5913                                                        ReferenceDiscoverer* rd,
5914                                                        CMSBitMap* bit_map,
5915                                                        CMSBitMap* mod_union_table,
5916                                                        CMSMarkStack*  mark_stack,
5917                                                        CMSCollector* collector,
5918                                                        bool should_yield,
5919                                                        bool concurrent_precleaning):
5920   _span(span),
5921   _bit_map(bit_map),
5922   _mark_stack(mark_stack),
5923   _pushAndMarkClosure(collector, span, rd, bit_map, mod_union_table,
5924                       mark_stack, concurrent_precleaning),
5925   _collector(collector),
5926   _freelistLock(NULL),
5927   _yield(should_yield),
5928   _concurrent_precleaning(concurrent_precleaning)
5929 {
5930   // FIXME: Should initialize in base class constructor.
5931   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
5932   set_ref_discoverer_internal(rd);
5933 }
5934 
5935 // This closure is used to mark refs into the CMS generation at the
5936 // second (final) checkpoint, and to scan and transitively follow
5937 // the unmarked oops. It is also used during the concurrent precleaning
5938 // phase while scanning objects on dirty cards in the CMS generation.
5939 // The marks are made in the marking bit map and the marking stack is
5940 // used for keeping the (newly) grey objects during the scan.
5941 // The parallel version (Par_...) appears further below.
5942 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5943   if (obj != NULL) {
5944     assert(oopDesc::is_oop(obj), "expected an oop");
5945     HeapWord* addr = (HeapWord*)obj;
5946     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5947     assert(_collector->overflow_list_is_empty(),
5948            "overflow list should be empty");
5949     if (_span.contains(addr) &&
5950         !_bit_map->isMarked(addr)) {
5951       // mark bit map (object is now grey)
5952       _bit_map->mark(addr);
5953       // push on marking stack (stack should be empty), and drain the
5954       // stack by applying this closure to the oops in the oops popped
5955       // from the stack (i.e. blacken the grey objects)
5956       bool res = _mark_stack->push(obj);
5957       assert(res, "Should have space to push on empty stack");
5958       do {
5959         oop new_oop = _mark_stack->pop();
5960         assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
5961         assert(_bit_map->isMarked((HeapWord*)new_oop),
5962                "only grey objects on this stack");
5963         // iterate over the oops in this oop, marking and pushing
5964         // the ones in CMS heap (i.e. in _span).
5965         new_oop->oop_iterate(&_pushAndMarkClosure);
5966         // check if it's time to yield
5967         do_yield_check();
5968       } while (!_mark_stack->isEmpty() ||
5969                (!_concurrent_precleaning && take_from_overflow_list()));
5970         // if marking stack is empty, and we are not doing this
5971         // during precleaning, then check the overflow list
5972     }
5973     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5974     assert(_collector->overflow_list_is_empty(),
5975            "overflow list was drained above");
5976 
5977     assert(_collector->no_preserved_marks(),
5978            "All preserved marks should have been restored above");
5979   }
5980 }
5981 
5982 void MarkRefsIntoAndScanClosure::do_yield_work() {
5983   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5984          "CMS thread should hold CMS token");
5985   assert_lock_strong(_freelistLock);
5986   assert_lock_strong(_bit_map->lock());
5987   // relinquish the free_list_lock and bitMaplock()
5988   _bit_map->lock()->unlock();
5989   _freelistLock->unlock();
5990   ConcurrentMarkSweepThread::desynchronize(true);
5991   _collector->stopTimer();
5992   _collector->incrementYields();
5993 
5994   // See the comment in coordinator_yield()
5995   for (unsigned i = 0;
5996        i < CMSYieldSleepCount &&
5997        ConcurrentMarkSweepThread::should_yield() &&
5998        !CMSCollector::foregroundGCIsActive();
5999        ++i) {
6000     os::sleep(Thread::current(), 1, false);
6001   }
6002 
6003   ConcurrentMarkSweepThread::synchronize(true);
6004   _freelistLock->lock_without_safepoint_check();
6005   _bit_map->lock()->lock_without_safepoint_check();
6006   _collector->startTimer();
6007 }
6008 
6009 ///////////////////////////////////////////////////////////
6010 // ParMarkRefsIntoAndScanClosure: a parallel version of
6011 //                                MarkRefsIntoAndScanClosure
6012 ///////////////////////////////////////////////////////////
6013 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6014   CMSCollector* collector, MemRegion span, ReferenceDiscoverer* rd,
6015   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6016   _span(span),
6017   _bit_map(bit_map),
6018   _work_queue(work_queue),
6019   _low_water_mark(MIN2((work_queue->max_elems()/4),
6020                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6021   _parPushAndMarkClosure(collector, span, rd, bit_map, work_queue)
6022 {
6023   // FIXME: Should initialize in base class constructor.
6024   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
6025   set_ref_discoverer_internal(rd);
6026 }
6027 
6028 // This closure is used to mark refs into the CMS generation at the
6029 // second (final) checkpoint, and to scan and transitively follow
6030 // the unmarked oops. The marks are made in the marking bit map and
6031 // the work_queue is used for keeping the (newly) grey objects during
6032 // the scan phase whence they are also available for stealing by parallel
6033 // threads. Since the marking bit map is shared, updates are
6034 // synchronized (via CAS).
6035 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6036   if (obj != NULL) {
6037     // Ignore mark word because this could be an already marked oop
6038     // that may be chained at the end of the overflow list.
6039     assert(oopDesc::is_oop(obj, true), "expected an oop");
6040     HeapWord* addr = (HeapWord*)obj;
6041     if (_span.contains(addr) &&
6042         !_bit_map->isMarked(addr)) {
6043       // mark bit map (object will become grey):
6044       // It is possible for several threads to be
6045       // trying to "claim" this object concurrently;
6046       // the unique thread that succeeds in marking the
6047       // object first will do the subsequent push on
6048       // to the work queue (or overflow list).
6049       if (_bit_map->par_mark(addr)) {
6050         // push on work_queue (which may not be empty), and trim the
6051         // queue to an appropriate length by applying this closure to
6052         // the oops in the oops popped from the stack (i.e. blacken the
6053         // grey objects)
6054         bool res = _work_queue->push(obj);
6055         assert(res, "Low water mark should be less than capacity?");
6056         trim_queue(_low_water_mark);
6057       } // Else, another thread claimed the object
6058     }
6059   }
6060 }
6061 
6062 // This closure is used to rescan the marked objects on the dirty cards
6063 // in the mod union table and the card table proper.
6064 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6065   oop p, MemRegion mr) {
6066 
6067   size_t size = 0;
6068   HeapWord* addr = (HeapWord*)p;
6069   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6070   assert(_span.contains(addr), "we are scanning the CMS generation");
6071   // check if it's time to yield
6072   if (do_yield_check()) {
6073     // We yielded for some foreground stop-world work,
6074     // and we have been asked to abort this ongoing preclean cycle.
6075     return 0;
6076   }
6077   if (_bitMap->isMarked(addr)) {
6078     // it's marked; is it potentially uninitialized?
6079     if (p->klass_or_null_acquire() != NULL) {
6080         // an initialized object; ignore mark word in verification below
6081         // since we are running concurrent with mutators
6082         assert(oopDesc::is_oop(p, true), "should be an oop");
6083         if (p->is_objArray()) {
6084           // objArrays are precisely marked; restrict scanning
6085           // to dirty cards only.
6086           size = CompactibleFreeListSpace::adjustObjectSize(
6087                    p->oop_iterate_size(_scanningClosure, mr));
6088         } else {
6089           // A non-array may have been imprecisely marked; we need
6090           // to scan object in its entirety.
6091           size = CompactibleFreeListSpace::adjustObjectSize(
6092                    p->oop_iterate_size(_scanningClosure));
6093         }
6094       #ifdef ASSERT
6095         size_t direct_size =
6096           CompactibleFreeListSpace::adjustObjectSize(p->size());
6097         assert(size == direct_size, "Inconsistency in size");
6098         assert(size >= 3, "Necessary for Printezis marks to work");
6099         HeapWord* start_pbit = addr + 1;
6100         HeapWord* end_pbit = addr + size - 1;
6101         assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6102                "inconsistent Printezis mark");
6103         // Verify inner mark bits (between Printezis bits) are clear,
6104         // but don't repeat if there are multiple dirty regions for
6105         // the same object, to avoid potential O(N^2) performance.
6106         if (addr != _last_scanned_object) {
6107           _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6108           _last_scanned_object = addr;
6109         }
6110       #endif // ASSERT
6111     } else {
6112       // An uninitialized object.
6113       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6114       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6115       size = pointer_delta(nextOneAddr + 1, addr);
6116       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6117              "alignment problem");
6118       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6119       // will dirty the card when the klass pointer is installed in the
6120       // object (signaling the completion of initialization).
6121     }
6122   } else {
6123     // Either a not yet marked object or an uninitialized object
6124     if (p->klass_or_null_acquire() == NULL) {
6125       // An uninitialized object, skip to the next card, since
6126       // we may not be able to read its P-bits yet.
6127       assert(size == 0, "Initial value");
6128     } else {
6129       // An object not (yet) reached by marking: we merely need to
6130       // compute its size so as to go look at the next block.
6131       assert(oopDesc::is_oop(p, true), "should be an oop");
6132       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6133     }
6134   }
6135   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6136   return size;
6137 }
6138 
6139 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6140   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6141          "CMS thread should hold CMS token");
6142   assert_lock_strong(_freelistLock);
6143   assert_lock_strong(_bitMap->lock());
6144   // relinquish the free_list_lock and bitMaplock()
6145   _bitMap->lock()->unlock();
6146   _freelistLock->unlock();
6147   ConcurrentMarkSweepThread::desynchronize(true);
6148   _collector->stopTimer();
6149   _collector->incrementYields();
6150 
6151   // See the comment in coordinator_yield()
6152   for (unsigned i = 0; i < CMSYieldSleepCount &&
6153                    ConcurrentMarkSweepThread::should_yield() &&
6154                    !CMSCollector::foregroundGCIsActive(); ++i) {
6155     os::sleep(Thread::current(), 1, false);
6156   }
6157 
6158   ConcurrentMarkSweepThread::synchronize(true);
6159   _freelistLock->lock_without_safepoint_check();
6160   _bitMap->lock()->lock_without_safepoint_check();
6161   _collector->startTimer();
6162 }
6163 
6164 
6165 //////////////////////////////////////////////////////////////////
6166 // SurvivorSpacePrecleanClosure
6167 //////////////////////////////////////////////////////////////////
6168 // This (single-threaded) closure is used to preclean the oops in
6169 // the survivor spaces.
6170 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6171 
6172   HeapWord* addr = (HeapWord*)p;
6173   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6174   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6175   assert(p->klass_or_null() != NULL, "object should be initialized");
6176   // an initialized object; ignore mark word in verification below
6177   // since we are running concurrent with mutators
6178   assert(oopDesc::is_oop(p, true), "should be an oop");
6179   // Note that we do not yield while we iterate over
6180   // the interior oops of p, pushing the relevant ones
6181   // on our marking stack.
6182   size_t size = p->oop_iterate_size(_scanning_closure);
6183   do_yield_check();
6184   // Observe that below, we do not abandon the preclean
6185   // phase as soon as we should; rather we empty the
6186   // marking stack before returning. This is to satisfy
6187   // some existing assertions. In general, it may be a
6188   // good idea to abort immediately and complete the marking
6189   // from the grey objects at a later time.
6190   while (!_mark_stack->isEmpty()) {
6191     oop new_oop = _mark_stack->pop();
6192     assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
6193     assert(_bit_map->isMarked((HeapWord*)new_oop),
6194            "only grey objects on this stack");
6195     // iterate over the oops in this oop, marking and pushing
6196     // the ones in CMS heap (i.e. in _span).
6197     new_oop->oop_iterate(_scanning_closure);
6198     // check if it's time to yield
6199     do_yield_check();
6200   }
6201   unsigned int after_count =
6202     CMSHeap::heap()->total_collections();
6203   bool abort = (_before_count != after_count) ||
6204                _collector->should_abort_preclean();
6205   return abort ? 0 : size;
6206 }
6207 
6208 void SurvivorSpacePrecleanClosure::do_yield_work() {
6209   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6210          "CMS thread should hold CMS token");
6211   assert_lock_strong(_bit_map->lock());
6212   // Relinquish the bit map lock
6213   _bit_map->lock()->unlock();
6214   ConcurrentMarkSweepThread::desynchronize(true);
6215   _collector->stopTimer();
6216   _collector->incrementYields();
6217 
6218   // See the comment in coordinator_yield()
6219   for (unsigned i = 0; i < CMSYieldSleepCount &&
6220                        ConcurrentMarkSweepThread::should_yield() &&
6221                        !CMSCollector::foregroundGCIsActive(); ++i) {
6222     os::sleep(Thread::current(), 1, false);
6223   }
6224 
6225   ConcurrentMarkSweepThread::synchronize(true);
6226   _bit_map->lock()->lock_without_safepoint_check();
6227   _collector->startTimer();
6228 }
6229 
6230 // This closure is used to rescan the marked objects on the dirty cards
6231 // in the mod union table and the card table proper. In the parallel
6232 // case, although the bitMap is shared, we do a single read so the
6233 // isMarked() query is "safe".
6234 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6235   // Ignore mark word because we are running concurrent with mutators
6236   assert(oopDesc::is_oop_or_null(p, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6237   HeapWord* addr = (HeapWord*)p;
6238   assert(_span.contains(addr), "we are scanning the CMS generation");
6239   bool is_obj_array = false;
6240   #ifdef ASSERT
6241     if (!_parallel) {
6242       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6243       assert(_collector->overflow_list_is_empty(),
6244              "overflow list should be empty");
6245 
6246     }
6247   #endif // ASSERT
6248   if (_bit_map->isMarked(addr)) {
6249     // Obj arrays are precisely marked, non-arrays are not;
6250     // so we scan objArrays precisely and non-arrays in their
6251     // entirety.
6252     if (p->is_objArray()) {
6253       is_obj_array = true;
6254       if (_parallel) {
6255         p->oop_iterate(_par_scan_closure, mr);
6256       } else {
6257         p->oop_iterate(_scan_closure, mr);
6258       }
6259     } else {
6260       if (_parallel) {
6261         p->oop_iterate(_par_scan_closure);
6262       } else {
6263         p->oop_iterate(_scan_closure);
6264       }
6265     }
6266   }
6267   #ifdef ASSERT
6268     if (!_parallel) {
6269       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6270       assert(_collector->overflow_list_is_empty(),
6271              "overflow list should be empty");
6272 
6273     }
6274   #endif // ASSERT
6275   return is_obj_array;
6276 }
6277 
6278 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6279                         MemRegion span,
6280                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6281                         bool should_yield, bool verifying):
6282   _collector(collector),
6283   _span(span),
6284   _bitMap(bitMap),
6285   _mut(&collector->_modUnionTable),
6286   _markStack(markStack),
6287   _yield(should_yield),
6288   _skipBits(0)
6289 {
6290   assert(_markStack->isEmpty(), "stack should be empty");
6291   _finger = _bitMap->startWord();
6292   _threshold = _finger;
6293   assert(_collector->_restart_addr == NULL, "Sanity check");
6294   assert(_span.contains(_finger), "Out of bounds _finger?");
6295   DEBUG_ONLY(_verifying = verifying;)
6296 }
6297 
6298 void MarkFromRootsClosure::reset(HeapWord* addr) {
6299   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6300   assert(_span.contains(addr), "Out of bounds _finger?");
6301   _finger = addr;
6302   _threshold = align_up(_finger, CardTable::card_size);
6303 }
6304 
6305 // Should revisit to see if this should be restructured for
6306 // greater efficiency.
6307 bool MarkFromRootsClosure::do_bit(size_t offset) {
6308   if (_skipBits > 0) {
6309     _skipBits--;
6310     return true;
6311   }
6312   // convert offset into a HeapWord*
6313   HeapWord* addr = _bitMap->startWord() + offset;
6314   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6315          "address out of range");
6316   assert(_bitMap->isMarked(addr), "tautology");
6317   if (_bitMap->isMarked(addr+1)) {
6318     // this is an allocated but not yet initialized object
6319     assert(_skipBits == 0, "tautology");
6320     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6321     oop p = oop(addr);
6322     if (p->klass_or_null_acquire() == NULL) {
6323       DEBUG_ONLY(if (!_verifying) {)
6324         // We re-dirty the cards on which this object lies and increase
6325         // the _threshold so that we'll come back to scan this object
6326         // during the preclean or remark phase. (CMSCleanOnEnter)
6327         if (CMSCleanOnEnter) {
6328           size_t sz = _collector->block_size_using_printezis_bits(addr);
6329           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
6330           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6331           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6332           // Bump _threshold to end_card_addr; note that
6333           // _threshold cannot possibly exceed end_card_addr, anyhow.
6334           // This prevents future clearing of the card as the scan proceeds
6335           // to the right.
6336           assert(_threshold <= end_card_addr,
6337                  "Because we are just scanning into this object");
6338           if (_threshold < end_card_addr) {
6339             _threshold = end_card_addr;
6340           }
6341           if (p->klass_or_null_acquire() != NULL) {
6342             // Redirty the range of cards...
6343             _mut->mark_range(redirty_range);
6344           } // ...else the setting of klass will dirty the card anyway.
6345         }
6346       DEBUG_ONLY(})
6347       return true;
6348     }
6349   }
6350   scanOopsInOop(addr);
6351   return true;
6352 }
6353 
6354 // We take a break if we've been at this for a while,
6355 // so as to avoid monopolizing the locks involved.
6356 void MarkFromRootsClosure::do_yield_work() {
6357   // First give up the locks, then yield, then re-lock
6358   // We should probably use a constructor/destructor idiom to
6359   // do this unlock/lock or modify the MutexUnlocker class to
6360   // serve our purpose. XXX
6361   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6362          "CMS thread should hold CMS token");
6363   assert_lock_strong(_bitMap->lock());
6364   _bitMap->lock()->unlock();
6365   ConcurrentMarkSweepThread::desynchronize(true);
6366   _collector->stopTimer();
6367   _collector->incrementYields();
6368 
6369   // See the comment in coordinator_yield()
6370   for (unsigned i = 0; i < CMSYieldSleepCount &&
6371                        ConcurrentMarkSweepThread::should_yield() &&
6372                        !CMSCollector::foregroundGCIsActive(); ++i) {
6373     os::sleep(Thread::current(), 1, false);
6374   }
6375 
6376   ConcurrentMarkSweepThread::synchronize(true);
6377   _bitMap->lock()->lock_without_safepoint_check();
6378   _collector->startTimer();
6379 }
6380 
6381 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6382   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6383   assert(_markStack->isEmpty(),
6384          "should drain stack to limit stack usage");
6385   // convert ptr to an oop preparatory to scanning
6386   oop obj = oop(ptr);
6387   // Ignore mark word in verification below, since we
6388   // may be running concurrent with mutators.
6389   assert(oopDesc::is_oop(obj, true), "should be an oop");
6390   assert(_finger <= ptr, "_finger runneth ahead");
6391   // advance the finger to right end of this object
6392   _finger = ptr + obj->size();
6393   assert(_finger > ptr, "we just incremented it above");
6394   // On large heaps, it may take us some time to get through
6395   // the marking phase. During
6396   // this time it's possible that a lot of mutations have
6397   // accumulated in the card table and the mod union table --
6398   // these mutation records are redundant until we have
6399   // actually traced into the corresponding card.
6400   // Here, we check whether advancing the finger would make
6401   // us cross into a new card, and if so clear corresponding
6402   // cards in the MUT (preclean them in the card-table in the
6403   // future).
6404 
6405   DEBUG_ONLY(if (!_verifying) {)
6406     // The clean-on-enter optimization is disabled by default,
6407     // until we fix 6178663.
6408     if (CMSCleanOnEnter && (_finger > _threshold)) {
6409       // [_threshold, _finger) represents the interval
6410       // of cards to be cleared  in MUT (or precleaned in card table).
6411       // The set of cards to be cleared is all those that overlap
6412       // with the interval [_threshold, _finger); note that
6413       // _threshold is always kept card-aligned but _finger isn't
6414       // always card-aligned.
6415       HeapWord* old_threshold = _threshold;
6416       assert(is_aligned(old_threshold, CardTable::card_size),
6417              "_threshold should always be card-aligned");
6418       _threshold = align_up(_finger, CardTable::card_size);
6419       MemRegion mr(old_threshold, _threshold);
6420       assert(!mr.is_empty(), "Control point invariant");
6421       assert(_span.contains(mr), "Should clear within span");
6422       _mut->clear_range(mr);
6423     }
6424   DEBUG_ONLY(})
6425   // Note: the finger doesn't advance while we drain
6426   // the stack below.
6427   PushOrMarkClosure pushOrMarkClosure(_collector,
6428                                       _span, _bitMap, _markStack,
6429                                       _finger, this);
6430   bool res = _markStack->push(obj);
6431   assert(res, "Empty non-zero size stack should have space for single push");
6432   while (!_markStack->isEmpty()) {
6433     oop new_oop = _markStack->pop();
6434     // Skip verifying header mark word below because we are
6435     // running concurrent with mutators.
6436     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6437     // now scan this oop's oops
6438     new_oop->oop_iterate(&pushOrMarkClosure);
6439     do_yield_check();
6440   }
6441   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6442 }
6443 
6444 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6445                        CMSCollector* collector, MemRegion span,
6446                        CMSBitMap* bit_map,
6447                        OopTaskQueue* work_queue,
6448                        CMSMarkStack*  overflow_stack):
6449   _collector(collector),
6450   _whole_span(collector->_span),
6451   _span(span),
6452   _bit_map(bit_map),
6453   _mut(&collector->_modUnionTable),
6454   _work_queue(work_queue),
6455   _overflow_stack(overflow_stack),
6456   _skip_bits(0),
6457   _task(task)
6458 {
6459   assert(_work_queue->size() == 0, "work_queue should be empty");
6460   _finger = span.start();
6461   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6462   assert(_span.contains(_finger), "Out of bounds _finger?");
6463 }
6464 
6465 // Should revisit to see if this should be restructured for
6466 // greater efficiency.
6467 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6468   if (_skip_bits > 0) {
6469     _skip_bits--;
6470     return true;
6471   }
6472   // convert offset into a HeapWord*
6473   HeapWord* addr = _bit_map->startWord() + offset;
6474   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6475          "address out of range");
6476   assert(_bit_map->isMarked(addr), "tautology");
6477   if (_bit_map->isMarked(addr+1)) {
6478     // this is an allocated object that might not yet be initialized
6479     assert(_skip_bits == 0, "tautology");
6480     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6481     oop p = oop(addr);
6482     if (p->klass_or_null_acquire() == NULL) {
6483       // in the case of Clean-on-Enter optimization, redirty card
6484       // and avoid clearing card by increasing  the threshold.
6485       return true;
6486     }
6487   }
6488   scan_oops_in_oop(addr);
6489   return true;
6490 }
6491 
6492 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6493   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6494   // Should we assert that our work queue is empty or
6495   // below some drain limit?
6496   assert(_work_queue->size() == 0,
6497          "should drain stack to limit stack usage");
6498   // convert ptr to an oop preparatory to scanning
6499   oop obj = oop(ptr);
6500   // Ignore mark word in verification below, since we
6501   // may be running concurrent with mutators.
6502   assert(oopDesc::is_oop(obj, true), "should be an oop");
6503   assert(_finger <= ptr, "_finger runneth ahead");
6504   // advance the finger to right end of this object
6505   _finger = ptr + obj->size();
6506   assert(_finger > ptr, "we just incremented it above");
6507   // On large heaps, it may take us some time to get through
6508   // the marking phase. During
6509   // this time it's possible that a lot of mutations have
6510   // accumulated in the card table and the mod union table --
6511   // these mutation records are redundant until we have
6512   // actually traced into the corresponding card.
6513   // Here, we check whether advancing the finger would make
6514   // us cross into a new card, and if so clear corresponding
6515   // cards in the MUT (preclean them in the card-table in the
6516   // future).
6517 
6518   // The clean-on-enter optimization is disabled by default,
6519   // until we fix 6178663.
6520   if (CMSCleanOnEnter && (_finger > _threshold)) {
6521     // [_threshold, _finger) represents the interval
6522     // of cards to be cleared  in MUT (or precleaned in card table).
6523     // The set of cards to be cleared is all those that overlap
6524     // with the interval [_threshold, _finger); note that
6525     // _threshold is always kept card-aligned but _finger isn't
6526     // always card-aligned.
6527     HeapWord* old_threshold = _threshold;
6528     assert(is_aligned(old_threshold, CardTable::card_size),
6529            "_threshold should always be card-aligned");
6530     _threshold = align_up(_finger, CardTable::card_size);
6531     MemRegion mr(old_threshold, _threshold);
6532     assert(!mr.is_empty(), "Control point invariant");
6533     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6534     _mut->clear_range(mr);
6535   }
6536 
6537   // Note: the local finger doesn't advance while we drain
6538   // the stack below, but the global finger sure can and will.
6539   HeapWord* volatile* gfa = _task->global_finger_addr();
6540   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6541                                          _span, _bit_map,
6542                                          _work_queue,
6543                                          _overflow_stack,
6544                                          _finger,
6545                                          gfa, this);
6546   bool res = _work_queue->push(obj);   // overflow could occur here
6547   assert(res, "Will hold once we use workqueues");
6548   while (true) {
6549     oop new_oop;
6550     if (!_work_queue->pop_local(new_oop)) {
6551       // We emptied our work_queue; check if there's stuff that can
6552       // be gotten from the overflow stack.
6553       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6554             _overflow_stack, _work_queue)) {
6555         do_yield_check();
6556         continue;
6557       } else {  // done
6558         break;
6559       }
6560     }
6561     // Skip verifying header mark word below because we are
6562     // running concurrent with mutators.
6563     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6564     // now scan this oop's oops
6565     new_oop->oop_iterate(&pushOrMarkClosure);
6566     do_yield_check();
6567   }
6568   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6569 }
6570 
6571 // Yield in response to a request from VM Thread or
6572 // from mutators.
6573 void ParMarkFromRootsClosure::do_yield_work() {
6574   assert(_task != NULL, "sanity");
6575   _task->yield();
6576 }
6577 
6578 // A variant of the above used for verifying CMS marking work.
6579 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6580                         MemRegion span,
6581                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6582                         CMSMarkStack*  mark_stack):
6583   _collector(collector),
6584   _span(span),
6585   _verification_bm(verification_bm),
6586   _cms_bm(cms_bm),
6587   _mark_stack(mark_stack),
6588   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6589                       mark_stack)
6590 {
6591   assert(_mark_stack->isEmpty(), "stack should be empty");
6592   _finger = _verification_bm->startWord();
6593   assert(_collector->_restart_addr == NULL, "Sanity check");
6594   assert(_span.contains(_finger), "Out of bounds _finger?");
6595 }
6596 
6597 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6598   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6599   assert(_span.contains(addr), "Out of bounds _finger?");
6600   _finger = addr;
6601 }
6602 
6603 // Should revisit to see if this should be restructured for
6604 // greater efficiency.
6605 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6606   // convert offset into a HeapWord*
6607   HeapWord* addr = _verification_bm->startWord() + offset;
6608   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6609          "address out of range");
6610   assert(_verification_bm->isMarked(addr), "tautology");
6611   assert(_cms_bm->isMarked(addr), "tautology");
6612 
6613   assert(_mark_stack->isEmpty(),
6614          "should drain stack to limit stack usage");
6615   // convert addr to an oop preparatory to scanning
6616   oop obj = oop(addr);
6617   assert(oopDesc::is_oop(obj), "should be an oop");
6618   assert(_finger <= addr, "_finger runneth ahead");
6619   // advance the finger to right end of this object
6620   _finger = addr + obj->size();
6621   assert(_finger > addr, "we just incremented it above");
6622   // Note: the finger doesn't advance while we drain
6623   // the stack below.
6624   bool res = _mark_stack->push(obj);
6625   assert(res, "Empty non-zero size stack should have space for single push");
6626   while (!_mark_stack->isEmpty()) {
6627     oop new_oop = _mark_stack->pop();
6628     assert(oopDesc::is_oop(new_oop), "Oops! expected to pop an oop");
6629     // now scan this oop's oops
6630     new_oop->oop_iterate(&_pam_verify_closure);
6631   }
6632   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6633   return true;
6634 }
6635 
6636 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6637   CMSCollector* collector, MemRegion span,
6638   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6639   CMSMarkStack*  mark_stack):
6640   MetadataVisitingOopIterateClosure(collector->ref_processor()),
6641   _collector(collector),
6642   _span(span),
6643   _verification_bm(verification_bm),
6644   _cms_bm(cms_bm),
6645   _mark_stack(mark_stack)
6646 { }
6647 
6648 template <class T> void PushAndMarkVerifyClosure::do_oop_work(T *p) {
6649   oop obj = RawAccess<>::oop_load(p);
6650   do_oop(obj);
6651 }
6652 
6653 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6654 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6655 
6656 // Upon stack overflow, we discard (part of) the stack,
6657 // remembering the least address amongst those discarded
6658 // in CMSCollector's _restart_address.
6659 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6660   // Remember the least grey address discarded
6661   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6662   _collector->lower_restart_addr(ra);
6663   _mark_stack->reset();  // discard stack contents
6664   _mark_stack->expand(); // expand the stack if possible
6665 }
6666 
6667 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6668   assert(oopDesc::is_oop_or_null(obj), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6669   HeapWord* addr = (HeapWord*)obj;
6670   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6671     // Oop lies in _span and isn't yet grey or black
6672     _verification_bm->mark(addr);            // now grey
6673     if (!_cms_bm->isMarked(addr)) {
6674       Log(gc, verify) log;
6675       ResourceMark rm;
6676       LogStream ls(log.error());
6677       oop(addr)->print_on(&ls);
6678       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6679       fatal("... aborting");
6680     }
6681 
6682     if (!_mark_stack->push(obj)) { // stack overflow
6683       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6684       assert(_mark_stack->isFull(), "Else push should have succeeded");
6685       handle_stack_overflow(addr);
6686     }
6687     // anything including and to the right of _finger
6688     // will be scanned as we iterate over the remainder of the
6689     // bit map
6690   }
6691 }
6692 
6693 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6694                      MemRegion span,
6695                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6696                      HeapWord* finger, MarkFromRootsClosure* parent) :
6697   MetadataVisitingOopIterateClosure(collector->ref_processor()),
6698   _collector(collector),
6699   _span(span),
6700   _bitMap(bitMap),
6701   _markStack(markStack),
6702   _finger(finger),
6703   _parent(parent)
6704 { }
6705 
6706 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6707                                            MemRegion span,
6708                                            CMSBitMap* bit_map,
6709                                            OopTaskQueue* work_queue,
6710                                            CMSMarkStack*  overflow_stack,
6711                                            HeapWord* finger,
6712                                            HeapWord* volatile* global_finger_addr,
6713                                            ParMarkFromRootsClosure* parent) :
6714   MetadataVisitingOopIterateClosure(collector->ref_processor()),
6715   _collector(collector),
6716   _whole_span(collector->_span),
6717   _span(span),
6718   _bit_map(bit_map),
6719   _work_queue(work_queue),
6720   _overflow_stack(overflow_stack),
6721   _finger(finger),
6722   _global_finger_addr(global_finger_addr),
6723   _parent(parent)
6724 { }
6725 
6726 // Assumes thread-safe access by callers, who are
6727 // responsible for mutual exclusion.
6728 void CMSCollector::lower_restart_addr(HeapWord* low) {
6729   assert(_span.contains(low), "Out of bounds addr");
6730   if (_restart_addr == NULL) {
6731     _restart_addr = low;
6732   } else {
6733     _restart_addr = MIN2(_restart_addr, low);
6734   }
6735 }
6736 
6737 // Upon stack overflow, we discard (part of) the stack,
6738 // remembering the least address amongst those discarded
6739 // in CMSCollector's _restart_address.
6740 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6741   // Remember the least grey address discarded
6742   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6743   _collector->lower_restart_addr(ra);
6744   _markStack->reset();  // discard stack contents
6745   _markStack->expand(); // expand the stack if possible
6746 }
6747 
6748 // Upon stack overflow, we discard (part of) the stack,
6749 // remembering the least address amongst those discarded
6750 // in CMSCollector's _restart_address.
6751 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6752   // We need to do this under a mutex to prevent other
6753   // workers from interfering with the work done below.
6754   MutexLocker ml(_overflow_stack->par_lock(),
6755                  Mutex::_no_safepoint_check_flag);
6756   // Remember the least grey address discarded
6757   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6758   _collector->lower_restart_addr(ra);
6759   _overflow_stack->reset();  // discard stack contents
6760   _overflow_stack->expand(); // expand the stack if possible
6761 }
6762 
6763 void PushOrMarkClosure::do_oop(oop obj) {
6764   // Ignore mark word because we are running concurrent with mutators.
6765   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6766   HeapWord* addr = (HeapWord*)obj;
6767   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6768     // Oop lies in _span and isn't yet grey or black
6769     _bitMap->mark(addr);            // now grey
6770     if (addr < _finger) {
6771       // the bit map iteration has already either passed, or
6772       // sampled, this bit in the bit map; we'll need to
6773       // use the marking stack to scan this oop's oops.
6774       bool simulate_overflow = false;
6775       NOT_PRODUCT(
6776         if (CMSMarkStackOverflowALot &&
6777             _collector->simulate_overflow()) {
6778           // simulate a stack overflow
6779           simulate_overflow = true;
6780         }
6781       )
6782       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6783         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6784         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6785         handle_stack_overflow(addr);
6786       }
6787     }
6788     // anything including and to the right of _finger
6789     // will be scanned as we iterate over the remainder of the
6790     // bit map
6791     do_yield_check();
6792   }
6793 }
6794 
6795 void ParPushOrMarkClosure::do_oop(oop obj) {
6796   // Ignore mark word because we are running concurrent with mutators.
6797   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6798   HeapWord* addr = (HeapWord*)obj;
6799   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6800     // Oop lies in _span and isn't yet grey or black
6801     // We read the global_finger (volatile read) strictly after marking oop
6802     bool res = _bit_map->par_mark(addr);    // now grey
6803     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6804     // Should we push this marked oop on our stack?
6805     // -- if someone else marked it, nothing to do
6806     // -- if target oop is above global finger nothing to do
6807     // -- if target oop is in chunk and above local finger
6808     //      then nothing to do
6809     // -- else push on work queue
6810     if (   !res       // someone else marked it, they will deal with it
6811         || (addr >= *gfa)  // will be scanned in a later task
6812         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6813       return;
6814     }
6815     // the bit map iteration has already either passed, or
6816     // sampled, this bit in the bit map; we'll need to
6817     // use the marking stack to scan this oop's oops.
6818     bool simulate_overflow = false;
6819     NOT_PRODUCT(
6820       if (CMSMarkStackOverflowALot &&
6821           _collector->simulate_overflow()) {
6822         // simulate a stack overflow
6823         simulate_overflow = true;
6824       }
6825     )
6826     if (simulate_overflow ||
6827         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6828       // stack overflow
6829       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6830       // We cannot assert that the overflow stack is full because
6831       // it may have been emptied since.
6832       assert(simulate_overflow ||
6833              _work_queue->size() == _work_queue->max_elems(),
6834             "Else push should have succeeded");
6835       handle_stack_overflow(addr);
6836     }
6837     do_yield_check();
6838   }
6839 }
6840 
6841 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6842                                        MemRegion span,
6843                                        ReferenceDiscoverer* rd,
6844                                        CMSBitMap* bit_map,
6845                                        CMSBitMap* mod_union_table,
6846                                        CMSMarkStack*  mark_stack,
6847                                        bool           concurrent_precleaning):
6848   MetadataVisitingOopIterateClosure(rd),
6849   _collector(collector),
6850   _span(span),
6851   _bit_map(bit_map),
6852   _mod_union_table(mod_union_table),
6853   _mark_stack(mark_stack),
6854   _concurrent_precleaning(concurrent_precleaning)
6855 {
6856   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
6857 }
6858 
6859 // Grey object rescan during pre-cleaning and second checkpoint phases --
6860 // the non-parallel version (the parallel version appears further below.)
6861 void PushAndMarkClosure::do_oop(oop obj) {
6862   // Ignore mark word verification. If during concurrent precleaning,
6863   // the object monitor may be locked. If during the checkpoint
6864   // phases, the object may already have been reached by a  different
6865   // path and may be at the end of the global overflow list (so
6866   // the mark word may be NULL).
6867   assert(oopDesc::is_oop_or_null(obj, true /* ignore mark word */),
6868          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6869   HeapWord* addr = (HeapWord*)obj;
6870   // Check if oop points into the CMS generation
6871   // and is not marked
6872   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6873     // a white object ...
6874     _bit_map->mark(addr);         // ... now grey
6875     // push on the marking stack (grey set)
6876     bool simulate_overflow = false;
6877     NOT_PRODUCT(
6878       if (CMSMarkStackOverflowALot &&
6879           _collector->simulate_overflow()) {
6880         // simulate a stack overflow
6881         simulate_overflow = true;
6882       }
6883     )
6884     if (simulate_overflow || !_mark_stack->push(obj)) {
6885       if (_concurrent_precleaning) {
6886          // During precleaning we can just dirty the appropriate card(s)
6887          // in the mod union table, thus ensuring that the object remains
6888          // in the grey set  and continue. In the case of object arrays
6889          // we need to dirty all of the cards that the object spans,
6890          // since the rescan of object arrays will be limited to the
6891          // dirty cards.
6892          // Note that no one can be interfering with us in this action
6893          // of dirtying the mod union table, so no locking or atomics
6894          // are required.
6895          if (obj->is_objArray()) {
6896            size_t sz = obj->size();
6897            HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
6898            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6899            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6900            _mod_union_table->mark_range(redirty_range);
6901          } else {
6902            _mod_union_table->mark(addr);
6903          }
6904          _collector->_ser_pmc_preclean_ovflw++;
6905       } else {
6906          // During the remark phase, we need to remember this oop
6907          // in the overflow list.
6908          _collector->push_on_overflow_list(obj);
6909          _collector->_ser_pmc_remark_ovflw++;
6910       }
6911     }
6912   }
6913 }
6914 
6915 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6916                                              MemRegion span,
6917                                              ReferenceDiscoverer* rd,
6918                                              CMSBitMap* bit_map,
6919                                              OopTaskQueue* work_queue):
6920   MetadataVisitingOopIterateClosure(rd),
6921   _collector(collector),
6922   _span(span),
6923   _bit_map(bit_map),
6924   _work_queue(work_queue)
6925 {
6926   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
6927 }
6928 
6929 // Grey object rescan during second checkpoint phase --
6930 // the parallel version.
6931 void ParPushAndMarkClosure::do_oop(oop obj) {
6932   // In the assert below, we ignore the mark word because
6933   // this oop may point to an already visited object that is
6934   // on the overflow stack (in which case the mark word has
6935   // been hijacked for chaining into the overflow stack --
6936   // if this is the last object in the overflow stack then
6937   // its mark word will be NULL). Because this object may
6938   // have been subsequently popped off the global overflow
6939   // stack, and the mark word possibly restored to the prototypical
6940   // value, by the time we get to examined this failing assert in
6941   // the debugger, is_oop_or_null(false) may subsequently start
6942   // to hold.
6943   assert(oopDesc::is_oop_or_null(obj, true),
6944          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6945   HeapWord* addr = (HeapWord*)obj;
6946   // Check if oop points into the CMS generation
6947   // and is not marked
6948   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6949     // a white object ...
6950     // If we manage to "claim" the object, by being the
6951     // first thread to mark it, then we push it on our
6952     // marking stack
6953     if (_bit_map->par_mark(addr)) {     // ... now grey
6954       // push on work queue (grey set)
6955       bool simulate_overflow = false;
6956       NOT_PRODUCT(
6957         if (CMSMarkStackOverflowALot &&
6958             _collector->par_simulate_overflow()) {
6959           // simulate a stack overflow
6960           simulate_overflow = true;
6961         }
6962       )
6963       if (simulate_overflow || !_work_queue->push(obj)) {
6964         _collector->par_push_on_overflow_list(obj);
6965         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6966       }
6967     } // Else, some other thread got there first
6968   }
6969 }
6970 
6971 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6972   Mutex* bml = _collector->bitMapLock();
6973   assert_lock_strong(bml);
6974   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6975          "CMS thread should hold CMS token");
6976 
6977   bml->unlock();
6978   ConcurrentMarkSweepThread::desynchronize(true);
6979 
6980   _collector->stopTimer();
6981   _collector->incrementYields();
6982 
6983   // See the comment in coordinator_yield()
6984   for (unsigned i = 0; i < CMSYieldSleepCount &&
6985                        ConcurrentMarkSweepThread::should_yield() &&
6986                        !CMSCollector::foregroundGCIsActive(); ++i) {
6987     os::sleep(Thread::current(), 1, false);
6988   }
6989 
6990   ConcurrentMarkSweepThread::synchronize(true);
6991   bml->lock();
6992 
6993   _collector->startTimer();
6994 }
6995 
6996 bool CMSPrecleanRefsYieldClosure::should_return() {
6997   if (ConcurrentMarkSweepThread::should_yield()) {
6998     do_yield_work();
6999   }
7000   return _collector->foregroundGCIsActive();
7001 }
7002 
7003 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7004   assert(((size_t)mr.start())%CardTable::card_size_in_words == 0,
7005          "mr should be aligned to start at a card boundary");
7006   // We'd like to assert:
7007   // assert(mr.word_size()%CardTable::card_size_in_words == 0,
7008   //        "mr should be a range of cards");
7009   // However, that would be too strong in one case -- the last
7010   // partition ends at _unallocated_block which, in general, can be
7011   // an arbitrary boundary, not necessarily card aligned.
7012   _num_dirty_cards += mr.word_size()/CardTable::card_size_in_words;
7013   _space->object_iterate_mem(mr, &_scan_cl);
7014 }
7015 
7016 SweepClosure::SweepClosure(CMSCollector* collector,
7017                            ConcurrentMarkSweepGeneration* g,
7018                            CMSBitMap* bitMap, bool should_yield) :
7019   _collector(collector),
7020   _g(g),
7021   _sp(g->cmsSpace()),
7022   _limit(_sp->sweep_limit()),
7023   _freelistLock(_sp->freelistLock()),
7024   _bitMap(bitMap),
7025   _inFreeRange(false),           // No free range at beginning of sweep
7026   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7027   _lastFreeRangeCoalesced(false),
7028   _yield(should_yield),
7029   _freeFinger(g->used_region().start())
7030 {
7031   NOT_PRODUCT(
7032     _numObjectsFreed = 0;
7033     _numWordsFreed   = 0;
7034     _numObjectsLive = 0;
7035     _numWordsLive = 0;
7036     _numObjectsAlreadyFree = 0;
7037     _numWordsAlreadyFree = 0;
7038     _last_fc = NULL;
7039 
7040     _sp->initializeIndexedFreeListArrayReturnedBytes();
7041     _sp->dictionary()->initialize_dict_returned_bytes();
7042   )
7043   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7044          "sweep _limit out of bounds");
7045   log_develop_trace(gc, sweep)("====================");
7046   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7047 }
7048 
7049 void SweepClosure::print_on(outputStream* st) const {
7050   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7051                p2i(_sp->bottom()), p2i(_sp->end()));
7052   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7053   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7054   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7055   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7056                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7057 }
7058 
7059 #ifndef PRODUCT
7060 // Assertion checking only:  no useful work in product mode --
7061 // however, if any of the flags below become product flags,
7062 // you may need to review this code to see if it needs to be
7063 // enabled in product mode.
7064 SweepClosure::~SweepClosure() {
7065   assert_lock_strong(_freelistLock);
7066   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7067          "sweep _limit out of bounds");
7068   if (inFreeRange()) {
7069     Log(gc, sweep) log;
7070     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7071     ResourceMark rm;
7072     LogStream ls(log.error());
7073     print_on(&ls);
7074     ShouldNotReachHere();
7075   }
7076 
7077   if (log_is_enabled(Debug, gc, sweep)) {
7078     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7079                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7080     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7081                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7082     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7083     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7084   }
7085 
7086   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7087     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7088     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7089     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7090     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7091                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7092   }
7093   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7094   log_develop_trace(gc, sweep)("================");
7095 }
7096 #endif  // PRODUCT
7097 
7098 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7099     bool freeRangeInFreeLists) {
7100   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7101                                p2i(freeFinger), freeRangeInFreeLists);
7102   assert(!inFreeRange(), "Trampling existing free range");
7103   set_inFreeRange(true);
7104   set_lastFreeRangeCoalesced(false);
7105 
7106   set_freeFinger(freeFinger);
7107   set_freeRangeInFreeLists(freeRangeInFreeLists);
7108   if (CMSTestInFreeList) {
7109     if (freeRangeInFreeLists) {
7110       FreeChunk* fc = (FreeChunk*) freeFinger;
7111       assert(fc->is_free(), "A chunk on the free list should be free.");
7112       assert(fc->size() > 0, "Free range should have a size");
7113       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7114     }
7115   }
7116 }
7117 
7118 // Note that the sweeper runs concurrently with mutators. Thus,
7119 // it is possible for direct allocation in this generation to happen
7120 // in the middle of the sweep. Note that the sweeper also coalesces
7121 // contiguous free blocks. Thus, unless the sweeper and the allocator
7122 // synchronize appropriately freshly allocated blocks may get swept up.
7123 // This is accomplished by the sweeper locking the free lists while
7124 // it is sweeping. Thus blocks that are determined to be free are
7125 // indeed free. There is however one additional complication:
7126 // blocks that have been allocated since the final checkpoint and
7127 // mark, will not have been marked and so would be treated as
7128 // unreachable and swept up. To prevent this, the allocator marks
7129 // the bit map when allocating during the sweep phase. This leads,
7130 // however, to a further complication -- objects may have been allocated
7131 // but not yet initialized -- in the sense that the header isn't yet
7132 // installed. The sweeper can not then determine the size of the block
7133 // in order to skip over it. To deal with this case, we use a technique
7134 // (due to Printezis) to encode such uninitialized block sizes in the
7135 // bit map. Since the bit map uses a bit per every HeapWord, but the
7136 // CMS generation has a minimum object size of 3 HeapWords, it follows
7137 // that "normal marks" won't be adjacent in the bit map (there will
7138 // always be at least two 0 bits between successive 1 bits). We make use
7139 // of these "unused" bits to represent uninitialized blocks -- the bit
7140 // corresponding to the start of the uninitialized object and the next
7141 // bit are both set. Finally, a 1 bit marks the end of the object that
7142 // started with the two consecutive 1 bits to indicate its potentially
7143 // uninitialized state.
7144 
7145 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7146   FreeChunk* fc = (FreeChunk*)addr;
7147   size_t res;
7148 
7149   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7150   // than "addr == _limit" because although _limit was a block boundary when
7151   // we started the sweep, it may no longer be one because heap expansion
7152   // may have caused us to coalesce the block ending at the address _limit
7153   // with a newly expanded chunk (this happens when _limit was set to the
7154   // previous _end of the space), so we may have stepped past _limit:
7155   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7156   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7157     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7158            "sweep _limit out of bounds");
7159     assert(addr < _sp->end(), "addr out of bounds");
7160     // Flush any free range we might be holding as a single
7161     // coalesced chunk to the appropriate free list.
7162     if (inFreeRange()) {
7163       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7164              "freeFinger() " PTR_FORMAT " is out of bounds", p2i(freeFinger()));
7165       flush_cur_free_chunk(freeFinger(),
7166                            pointer_delta(addr, freeFinger()));
7167       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7168                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7169                                    lastFreeRangeCoalesced() ? 1 : 0);
7170     }
7171 
7172     // help the iterator loop finish
7173     return pointer_delta(_sp->end(), addr);
7174   }
7175 
7176   assert(addr < _limit, "sweep invariant");
7177   // check if we should yield
7178   do_yield_check(addr);
7179   if (fc->is_free()) {
7180     // Chunk that is already free
7181     res = fc->size();
7182     do_already_free_chunk(fc);
7183     debug_only(_sp->verifyFreeLists());
7184     // If we flush the chunk at hand in lookahead_and_flush()
7185     // and it's coalesced with a preceding chunk, then the
7186     // process of "mangling" the payload of the coalesced block
7187     // will cause erasure of the size information from the
7188     // (erstwhile) header of all the coalesced blocks but the
7189     // first, so the first disjunct in the assert will not hold
7190     // in that specific case (in which case the second disjunct
7191     // will hold).
7192     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7193            "Otherwise the size info doesn't change at this step");
7194     NOT_PRODUCT(
7195       _numObjectsAlreadyFree++;
7196       _numWordsAlreadyFree += res;
7197     )
7198     NOT_PRODUCT(_last_fc = fc;)
7199   } else if (!_bitMap->isMarked(addr)) {
7200     // Chunk is fresh garbage
7201     res = do_garbage_chunk(fc);
7202     debug_only(_sp->verifyFreeLists());
7203     NOT_PRODUCT(
7204       _numObjectsFreed++;
7205       _numWordsFreed += res;
7206     )
7207   } else {
7208     // Chunk that is alive.
7209     res = do_live_chunk(fc);
7210     debug_only(_sp->verifyFreeLists());
7211     NOT_PRODUCT(
7212         _numObjectsLive++;
7213         _numWordsLive += res;
7214     )
7215   }
7216   return res;
7217 }
7218 
7219 // For the smart allocation, record following
7220 //  split deaths - a free chunk is removed from its free list because
7221 //      it is being split into two or more chunks.
7222 //  split birth - a free chunk is being added to its free list because
7223 //      a larger free chunk has been split and resulted in this free chunk.
7224 //  coal death - a free chunk is being removed from its free list because
7225 //      it is being coalesced into a large free chunk.
7226 //  coal birth - a free chunk is being added to its free list because
7227 //      it was created when two or more free chunks where coalesced into
7228 //      this free chunk.
7229 //
7230 // These statistics are used to determine the desired number of free
7231 // chunks of a given size.  The desired number is chosen to be relative
7232 // to the end of a CMS sweep.  The desired number at the end of a sweep
7233 // is the
7234 //      count-at-end-of-previous-sweep (an amount that was enough)
7235 //              - count-at-beginning-of-current-sweep  (the excess)
7236 //              + split-births  (gains in this size during interval)
7237 //              - split-deaths  (demands on this size during interval)
7238 // where the interval is from the end of one sweep to the end of the
7239 // next.
7240 //
7241 // When sweeping the sweeper maintains an accumulated chunk which is
7242 // the chunk that is made up of chunks that have been coalesced.  That
7243 // will be termed the left-hand chunk.  A new chunk of garbage that
7244 // is being considered for coalescing will be referred to as the
7245 // right-hand chunk.
7246 //
7247 // When making a decision on whether to coalesce a right-hand chunk with
7248 // the current left-hand chunk, the current count vs. the desired count
7249 // of the left-hand chunk is considered.  Also if the right-hand chunk
7250 // is near the large chunk at the end of the heap (see
7251 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7252 // left-hand chunk is coalesced.
7253 //
7254 // When making a decision about whether to split a chunk, the desired count
7255 // vs. the current count of the candidate to be split is also considered.
7256 // If the candidate is underpopulated (currently fewer chunks than desired)
7257 // a chunk of an overpopulated (currently more chunks than desired) size may
7258 // be chosen.  The "hint" associated with a free list, if non-null, points
7259 // to a free list which may be overpopulated.
7260 //
7261 
7262 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7263   const size_t size = fc->size();
7264   // Chunks that cannot be coalesced are not in the
7265   // free lists.
7266   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7267     assert(_sp->verify_chunk_in_free_list(fc),
7268            "free chunk should be in free lists");
7269   }
7270   // a chunk that is already free, should not have been
7271   // marked in the bit map
7272   HeapWord* const addr = (HeapWord*) fc;
7273   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7274   // Verify that the bit map has no bits marked between
7275   // addr and purported end of this block.
7276   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7277 
7278   // Some chunks cannot be coalesced under any circumstances.
7279   // See the definition of cantCoalesce().
7280   if (!fc->cantCoalesce()) {
7281     // This chunk can potentially be coalesced.
7282     // All the work is done in
7283     do_post_free_or_garbage_chunk(fc, size);
7284     // Note that if the chunk is not coalescable (the else arm
7285     // below), we unconditionally flush, without needing to do
7286     // a "lookahead," as we do below.
7287     if (inFreeRange()) lookahead_and_flush(fc, size);
7288   } else {
7289     // Code path common to both original and adaptive free lists.
7290 
7291     // cant coalesce with previous block; this should be treated
7292     // as the end of a free run if any
7293     if (inFreeRange()) {
7294       // we kicked some butt; time to pick up the garbage
7295       assert(freeFinger() < addr, "freeFinger points too high");
7296       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7297     }
7298     // else, nothing to do, just continue
7299   }
7300 }
7301 
7302 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7303   // This is a chunk of garbage.  It is not in any free list.
7304   // Add it to a free list or let it possibly be coalesced into
7305   // a larger chunk.
7306   HeapWord* const addr = (HeapWord*) fc;
7307   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7308 
7309   // Verify that the bit map has no bits marked between
7310   // addr and purported end of just dead object.
7311   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7312   do_post_free_or_garbage_chunk(fc, size);
7313 
7314   assert(_limit >= addr + size,
7315          "A freshly garbage chunk can't possibly straddle over _limit");
7316   if (inFreeRange()) lookahead_and_flush(fc, size);
7317   return size;
7318 }
7319 
7320 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7321   HeapWord* addr = (HeapWord*) fc;
7322   // The sweeper has just found a live object. Return any accumulated
7323   // left hand chunk to the free lists.
7324   if (inFreeRange()) {
7325     assert(freeFinger() < addr, "freeFinger points too high");
7326     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7327   }
7328 
7329   // This object is live: we'd normally expect this to be
7330   // an oop, and like to assert the following:
7331   // assert(oopDesc::is_oop(oop(addr)), "live block should be an oop");
7332   // However, as we commented above, this may be an object whose
7333   // header hasn't yet been initialized.
7334   size_t size;
7335   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7336   if (_bitMap->isMarked(addr + 1)) {
7337     // Determine the size from the bit map, rather than trying to
7338     // compute it from the object header.
7339     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7340     size = pointer_delta(nextOneAddr + 1, addr);
7341     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7342            "alignment problem");
7343 
7344 #ifdef ASSERT
7345       if (oop(addr)->klass_or_null_acquire() != NULL) {
7346         // Ignore mark word because we are running concurrent with mutators
7347         assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7348         assert(size ==
7349                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7350                "P-mark and computed size do not agree");
7351       }
7352 #endif
7353 
7354   } else {
7355     // This should be an initialized object that's alive.
7356     assert(oop(addr)->klass_or_null_acquire() != NULL,
7357            "Should be an initialized object");
7358     // Ignore mark word because we are running concurrent with mutators
7359     assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7360     // Verify that the bit map has no bits marked between
7361     // addr and purported end of this block.
7362     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7363     assert(size >= 3, "Necessary for Printezis marks to work");
7364     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7365     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7366   }
7367   return size;
7368 }
7369 
7370 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7371                                                  size_t chunkSize) {
7372   // do_post_free_or_garbage_chunk() should only be called in the case
7373   // of the adaptive free list allocator.
7374   const bool fcInFreeLists = fc->is_free();
7375   assert((HeapWord*)fc <= _limit, "sweep invariant");
7376   if (CMSTestInFreeList && fcInFreeLists) {
7377     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7378   }
7379 
7380   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7381 
7382   HeapWord* const fc_addr = (HeapWord*) fc;
7383 
7384   bool coalesce = false;
7385   const size_t left  = pointer_delta(fc_addr, freeFinger());
7386   const size_t right = chunkSize;
7387   switch (FLSCoalescePolicy) {
7388     // numeric value forms a coalition aggressiveness metric
7389     case 0:  { // never coalesce
7390       coalesce = false;
7391       break;
7392     }
7393     case 1: { // coalesce if left & right chunks on overpopulated lists
7394       coalesce = _sp->coalOverPopulated(left) &&
7395                  _sp->coalOverPopulated(right);
7396       break;
7397     }
7398     case 2: { // coalesce if left chunk on overpopulated list (default)
7399       coalesce = _sp->coalOverPopulated(left);
7400       break;
7401     }
7402     case 3: { // coalesce if left OR right chunk on overpopulated list
7403       coalesce = _sp->coalOverPopulated(left) ||
7404                  _sp->coalOverPopulated(right);
7405       break;
7406     }
7407     case 4: { // always coalesce
7408       coalesce = true;
7409       break;
7410     }
7411     default:
7412      ShouldNotReachHere();
7413   }
7414 
7415   // Should the current free range be coalesced?
7416   // If the chunk is in a free range and either we decided to coalesce above
7417   // or the chunk is near the large block at the end of the heap
7418   // (isNearLargestChunk() returns true), then coalesce this chunk.
7419   const bool doCoalesce = inFreeRange()
7420                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7421   if (doCoalesce) {
7422     // Coalesce the current free range on the left with the new
7423     // chunk on the right.  If either is on a free list,
7424     // it must be removed from the list and stashed in the closure.
7425     if (freeRangeInFreeLists()) {
7426       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7427       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7428              "Size of free range is inconsistent with chunk size.");
7429       if (CMSTestInFreeList) {
7430         assert(_sp->verify_chunk_in_free_list(ffc),
7431                "Chunk is not in free lists");
7432       }
7433       _sp->coalDeath(ffc->size());
7434       _sp->removeFreeChunkFromFreeLists(ffc);
7435       set_freeRangeInFreeLists(false);
7436     }
7437     if (fcInFreeLists) {
7438       _sp->coalDeath(chunkSize);
7439       assert(fc->size() == chunkSize,
7440         "The chunk has the wrong size or is not in the free lists");
7441       _sp->removeFreeChunkFromFreeLists(fc);
7442     }
7443     set_lastFreeRangeCoalesced(true);
7444     print_free_block_coalesced(fc);
7445   } else {  // not in a free range and/or should not coalesce
7446     // Return the current free range and start a new one.
7447     if (inFreeRange()) {
7448       // In a free range but cannot coalesce with the right hand chunk.
7449       // Put the current free range into the free lists.
7450       flush_cur_free_chunk(freeFinger(),
7451                            pointer_delta(fc_addr, freeFinger()));
7452     }
7453     // Set up for new free range.  Pass along whether the right hand
7454     // chunk is in the free lists.
7455     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7456   }
7457 }
7458 
7459 // Lookahead flush:
7460 // If we are tracking a free range, and this is the last chunk that
7461 // we'll look at because its end crosses past _limit, we'll preemptively
7462 // flush it along with any free range we may be holding on to. Note that
7463 // this can be the case only for an already free or freshly garbage
7464 // chunk. If this block is an object, it can never straddle
7465 // over _limit. The "straddling" occurs when _limit is set at
7466 // the previous end of the space when this cycle started, and
7467 // a subsequent heap expansion caused the previously co-terminal
7468 // free block to be coalesced with the newly expanded portion,
7469 // thus rendering _limit a non-block-boundary making it dangerous
7470 // for the sweeper to step over and examine.
7471 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7472   assert(inFreeRange(), "Should only be called if currently in a free range.");
7473   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7474   assert(_sp->used_region().contains(eob - 1),
7475          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7476          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7477          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7478          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7479   if (eob >= _limit) {
7480     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7481     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7482                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7483                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7484                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7485     // Return the storage we are tracking back into the free lists.
7486     log_develop_trace(gc, sweep)("Flushing ... ");
7487     assert(freeFinger() < eob, "Error");
7488     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7489   }
7490 }
7491 
7492 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7493   assert(inFreeRange(), "Should only be called if currently in a free range.");
7494   assert(size > 0,
7495     "A zero sized chunk cannot be added to the free lists.");
7496   if (!freeRangeInFreeLists()) {
7497     if (CMSTestInFreeList) {
7498       FreeChunk* fc = (FreeChunk*) chunk;
7499       fc->set_size(size);
7500       assert(!_sp->verify_chunk_in_free_list(fc),
7501              "chunk should not be in free lists yet");
7502     }
7503     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7504     // A new free range is going to be starting.  The current
7505     // free range has not been added to the free lists yet or
7506     // was removed so add it back.
7507     // If the current free range was coalesced, then the death
7508     // of the free range was recorded.  Record a birth now.
7509     if (lastFreeRangeCoalesced()) {
7510       _sp->coalBirth(size);
7511     }
7512     _sp->addChunkAndRepairOffsetTable(chunk, size,
7513             lastFreeRangeCoalesced());
7514   } else {
7515     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7516   }
7517   set_inFreeRange(false);
7518   set_freeRangeInFreeLists(false);
7519 }
7520 
7521 // We take a break if we've been at this for a while,
7522 // so as to avoid monopolizing the locks involved.
7523 void SweepClosure::do_yield_work(HeapWord* addr) {
7524   // Return current free chunk being used for coalescing (if any)
7525   // to the appropriate freelist.  After yielding, the next
7526   // free block encountered will start a coalescing range of
7527   // free blocks.  If the next free block is adjacent to the
7528   // chunk just flushed, they will need to wait for the next
7529   // sweep to be coalesced.
7530   if (inFreeRange()) {
7531     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7532   }
7533 
7534   // First give up the locks, then yield, then re-lock.
7535   // We should probably use a constructor/destructor idiom to
7536   // do this unlock/lock or modify the MutexUnlocker class to
7537   // serve our purpose. XXX
7538   assert_lock_strong(_bitMap->lock());
7539   assert_lock_strong(_freelistLock);
7540   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7541          "CMS thread should hold CMS token");
7542   _bitMap->lock()->unlock();
7543   _freelistLock->unlock();
7544   ConcurrentMarkSweepThread::desynchronize(true);
7545   _collector->stopTimer();
7546   _collector->incrementYields();
7547 
7548   // See the comment in coordinator_yield()
7549   for (unsigned i = 0; i < CMSYieldSleepCount &&
7550                        ConcurrentMarkSweepThread::should_yield() &&
7551                        !CMSCollector::foregroundGCIsActive(); ++i) {
7552     os::sleep(Thread::current(), 1, false);
7553   }
7554 
7555   ConcurrentMarkSweepThread::synchronize(true);
7556   _freelistLock->lock_without_safepoint_check();
7557   _bitMap->lock()->lock_without_safepoint_check();
7558   _collector->startTimer();
7559 }
7560 
7561 #ifndef PRODUCT
7562 // This is actually very useful in a product build if it can
7563 // be called from the debugger.  Compile it into the product
7564 // as needed.
7565 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7566   return debug_cms_space->verify_chunk_in_free_list(fc);
7567 }
7568 #endif
7569 
7570 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7571   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7572                                p2i(fc), fc->size());
7573 }
7574 
7575 // CMSIsAliveClosure
7576 bool CMSIsAliveClosure::do_object_b(oop obj) {
7577   HeapWord* addr = (HeapWord*)obj;
7578   return addr != NULL &&
7579          (!_span.contains(addr) || _bit_map->isMarked(addr));
7580 }
7581 
7582 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7583                       MemRegion span,
7584                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7585                       bool cpc):
7586   _collector(collector),
7587   _span(span),
7588   _mark_stack(mark_stack),
7589   _bit_map(bit_map),
7590   _concurrent_precleaning(cpc) {
7591   assert(!_span.is_empty(), "Empty span could spell trouble");
7592 }
7593 
7594 
7595 // CMSKeepAliveClosure: the serial version
7596 void CMSKeepAliveClosure::do_oop(oop obj) {
7597   HeapWord* addr = (HeapWord*)obj;
7598   if (_span.contains(addr) &&
7599       !_bit_map->isMarked(addr)) {
7600     _bit_map->mark(addr);
7601     bool simulate_overflow = false;
7602     NOT_PRODUCT(
7603       if (CMSMarkStackOverflowALot &&
7604           _collector->simulate_overflow()) {
7605         // simulate a stack overflow
7606         simulate_overflow = true;
7607       }
7608     )
7609     if (simulate_overflow || !_mark_stack->push(obj)) {
7610       if (_concurrent_precleaning) {
7611         // We dirty the overflown object and let the remark
7612         // phase deal with it.
7613         assert(_collector->overflow_list_is_empty(), "Error");
7614         // In the case of object arrays, we need to dirty all of
7615         // the cards that the object spans. No locking or atomics
7616         // are needed since no one else can be mutating the mod union
7617         // table.
7618         if (obj->is_objArray()) {
7619           size_t sz = obj->size();
7620           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
7621           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7622           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7623           _collector->_modUnionTable.mark_range(redirty_range);
7624         } else {
7625           _collector->_modUnionTable.mark(addr);
7626         }
7627         _collector->_ser_kac_preclean_ovflw++;
7628       } else {
7629         _collector->push_on_overflow_list(obj);
7630         _collector->_ser_kac_ovflw++;
7631       }
7632     }
7633   }
7634 }
7635 
7636 // CMSParKeepAliveClosure: a parallel version of the above.
7637 // The work queues are private to each closure (thread),
7638 // but (may be) available for stealing by other threads.
7639 void CMSParKeepAliveClosure::do_oop(oop obj) {
7640   HeapWord* addr = (HeapWord*)obj;
7641   if (_span.contains(addr) &&
7642       !_bit_map->isMarked(addr)) {
7643     // In general, during recursive tracing, several threads
7644     // may be concurrently getting here; the first one to
7645     // "tag" it, claims it.
7646     if (_bit_map->par_mark(addr)) {
7647       bool res = _work_queue->push(obj);
7648       assert(res, "Low water mark should be much less than capacity");
7649       // Do a recursive trim in the hope that this will keep
7650       // stack usage lower, but leave some oops for potential stealers
7651       trim_queue(_low_water_mark);
7652     } // Else, another thread got there first
7653   }
7654 }
7655 
7656 void CMSParKeepAliveClosure::trim_queue(uint max) {
7657   while (_work_queue->size() > max) {
7658     oop new_oop;
7659     if (_work_queue->pop_local(new_oop)) {
7660       assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
7661       assert(_bit_map->isMarked((HeapWord*)new_oop),
7662              "no white objects on this stack!");
7663       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7664       // iterate over the oops in this oop, marking and pushing
7665       // the ones in CMS heap (i.e. in _span).
7666       new_oop->oop_iterate(&_mark_and_push);
7667     }
7668   }
7669 }
7670 
7671 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7672                                 CMSCollector* collector,
7673                                 MemRegion span, CMSBitMap* bit_map,
7674                                 OopTaskQueue* work_queue):
7675   _collector(collector),
7676   _span(span),
7677   _work_queue(work_queue),
7678   _bit_map(bit_map) { }
7679 
7680 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7681   HeapWord* addr = (HeapWord*)obj;
7682   if (_span.contains(addr) &&
7683       !_bit_map->isMarked(addr)) {
7684     if (_bit_map->par_mark(addr)) {
7685       bool simulate_overflow = false;
7686       NOT_PRODUCT(
7687         if (CMSMarkStackOverflowALot &&
7688             _collector->par_simulate_overflow()) {
7689           // simulate a stack overflow
7690           simulate_overflow = true;
7691         }
7692       )
7693       if (simulate_overflow || !_work_queue->push(obj)) {
7694         _collector->par_push_on_overflow_list(obj);
7695         _collector->_par_kac_ovflw++;
7696       }
7697     } // Else another thread got there already
7698   }
7699 }
7700 
7701 //////////////////////////////////////////////////////////////////
7702 //  CMSExpansionCause                /////////////////////////////
7703 //////////////////////////////////////////////////////////////////
7704 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7705   switch (cause) {
7706     case _no_expansion:
7707       return "No expansion";
7708     case _satisfy_free_ratio:
7709       return "Free ratio";
7710     case _satisfy_promotion:
7711       return "Satisfy promotion";
7712     case _satisfy_allocation:
7713       return "allocation";
7714     case _allocate_par_lab:
7715       return "Par LAB";
7716     case _allocate_par_spooling_space:
7717       return "Par Spooling Space";
7718     case _adaptive_size_policy:
7719       return "Ergonomics";
7720     default:
7721       return "unknown";
7722   }
7723 }
7724 
7725 void CMSDrainMarkingStackClosure::do_void() {
7726   // the max number to take from overflow list at a time
7727   const size_t num = _mark_stack->capacity()/4;
7728   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7729          "Overflow list should be NULL during concurrent phases");
7730   while (!_mark_stack->isEmpty() ||
7731          // if stack is empty, check the overflow list
7732          _collector->take_from_overflow_list(num, _mark_stack)) {
7733     oop obj = _mark_stack->pop();
7734     HeapWord* addr = (HeapWord*)obj;
7735     assert(_span.contains(addr), "Should be within span");
7736     assert(_bit_map->isMarked(addr), "Should be marked");
7737     assert(oopDesc::is_oop(obj), "Should be an oop");
7738     obj->oop_iterate(_keep_alive);
7739   }
7740 }
7741 
7742 void CMSParDrainMarkingStackClosure::do_void() {
7743   // drain queue
7744   trim_queue(0);
7745 }
7746 
7747 // Trim our work_queue so its length is below max at return
7748 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7749   while (_work_queue->size() > max) {
7750     oop new_oop;
7751     if (_work_queue->pop_local(new_oop)) {
7752       assert(oopDesc::is_oop(new_oop), "Expected an oop");
7753       assert(_bit_map->isMarked((HeapWord*)new_oop),
7754              "no white objects on this stack!");
7755       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7756       // iterate over the oops in this oop, marking and pushing
7757       // the ones in CMS heap (i.e. in _span).
7758       new_oop->oop_iterate(&_mark_and_push);
7759     }
7760   }
7761 }
7762 
7763 ////////////////////////////////////////////////////////////////////
7764 // Support for Marking Stack Overflow list handling and related code
7765 ////////////////////////////////////////////////////////////////////
7766 // Much of the following code is similar in shape and spirit to the
7767 // code used in ParNewGC. We should try and share that code
7768 // as much as possible in the future.
7769 
7770 #ifndef PRODUCT
7771 // Debugging support for CMSStackOverflowALot
7772 
7773 // It's OK to call this multi-threaded;  the worst thing
7774 // that can happen is that we'll get a bunch of closely
7775 // spaced simulated overflows, but that's OK, in fact
7776 // probably good as it would exercise the overflow code
7777 // under contention.
7778 bool CMSCollector::simulate_overflow() {
7779   if (_overflow_counter-- <= 0) { // just being defensive
7780     _overflow_counter = CMSMarkStackOverflowInterval;
7781     return true;
7782   } else {
7783     return false;
7784   }
7785 }
7786 
7787 bool CMSCollector::par_simulate_overflow() {
7788   return simulate_overflow();
7789 }
7790 #endif
7791 
7792 // Single-threaded
7793 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7794   assert(stack->isEmpty(), "Expected precondition");
7795   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7796   size_t i = num;
7797   oop  cur = _overflow_list;
7798   const markOop proto = markOopDesc::prototype();
7799   NOT_PRODUCT(ssize_t n = 0;)
7800   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7801     next = oop(cur->mark_raw());
7802     cur->set_mark_raw(proto);   // until proven otherwise
7803     assert(oopDesc::is_oop(cur), "Should be an oop");
7804     bool res = stack->push(cur);
7805     assert(res, "Bit off more than can chew?");
7806     NOT_PRODUCT(n++;)
7807   }
7808   _overflow_list = cur;
7809 #ifndef PRODUCT
7810   assert(_num_par_pushes >= n, "Too many pops?");
7811   _num_par_pushes -=n;
7812 #endif
7813   return !stack->isEmpty();
7814 }
7815 
7816 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7817 // (MT-safe) Get a prefix of at most "num" from the list.
7818 // The overflow list is chained through the mark word of
7819 // each object in the list. We fetch the entire list,
7820 // break off a prefix of the right size and return the
7821 // remainder. If other threads try to take objects from
7822 // the overflow list at that time, they will wait for
7823 // some time to see if data becomes available. If (and
7824 // only if) another thread places one or more object(s)
7825 // on the global list before we have returned the suffix
7826 // to the global list, we will walk down our local list
7827 // to find its end and append the global list to
7828 // our suffix before returning it. This suffix walk can
7829 // prove to be expensive (quadratic in the amount of traffic)
7830 // when there are many objects in the overflow list and
7831 // there is much producer-consumer contention on the list.
7832 // *NOTE*: The overflow list manipulation code here and
7833 // in ParNewGeneration:: are very similar in shape,
7834 // except that in the ParNew case we use the old (from/eden)
7835 // copy of the object to thread the list via its klass word.
7836 // Because of the common code, if you make any changes in
7837 // the code below, please check the ParNew version to see if
7838 // similar changes might be needed.
7839 // CR 6797058 has been filed to consolidate the common code.
7840 bool CMSCollector::par_take_from_overflow_list(size_t num,
7841                                                OopTaskQueue* work_q,
7842                                                int no_of_gc_threads) {
7843   assert(work_q->size() == 0, "First empty local work queue");
7844   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7845   if (_overflow_list == NULL) {
7846     return false;
7847   }
7848   // Grab the entire list; we'll put back a suffix
7849   oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7850   Thread* tid = Thread::current();
7851   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7852   // set to ParallelGCThreads.
7853   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7854   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7855   // If the list is busy, we spin for a short while,
7856   // sleeping between attempts to get the list.
7857   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7858     os::sleep(tid, sleep_time_millis, false);
7859     if (_overflow_list == NULL) {
7860       // Nothing left to take
7861       return false;
7862     } else if (_overflow_list != BUSY) {
7863       // Try and grab the prefix
7864       prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7865     }
7866   }
7867   // If the list was found to be empty, or we spun long
7868   // enough, we give up and return empty-handed. If we leave
7869   // the list in the BUSY state below, it must be the case that
7870   // some other thread holds the overflow list and will set it
7871   // to a non-BUSY state in the future.
7872   if (prefix == NULL || prefix == BUSY) {
7873      // Nothing to take or waited long enough
7874      if (prefix == NULL) {
7875        // Write back the NULL in case we overwrote it with BUSY above
7876        // and it is still the same value.
7877        Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7878      }
7879      return false;
7880   }
7881   assert(prefix != NULL && prefix != BUSY, "Error");
7882   size_t i = num;
7883   oop cur = prefix;
7884   // Walk down the first "num" objects, unless we reach the end.
7885   for (; i > 1 && cur->mark_raw() != NULL; cur = oop(cur->mark_raw()), i--);
7886   if (cur->mark_raw() == NULL) {
7887     // We have "num" or fewer elements in the list, so there
7888     // is nothing to return to the global list.
7889     // Write back the NULL in lieu of the BUSY we wrote
7890     // above, if it is still the same value.
7891     if (_overflow_list == BUSY) {
7892       Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7893     }
7894   } else {
7895     // Chop off the suffix and return it to the global list.
7896     assert(cur->mark_raw() != BUSY, "Error");
7897     oop suffix_head = cur->mark_raw(); // suffix will be put back on global list
7898     cur->set_mark_raw(NULL);           // break off suffix
7899     // It's possible that the list is still in the empty(busy) state
7900     // we left it in a short while ago; in that case we may be
7901     // able to place back the suffix without incurring the cost
7902     // of a walk down the list.
7903     oop observed_overflow_list = _overflow_list;
7904     oop cur_overflow_list = observed_overflow_list;
7905     bool attached = false;
7906     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7907       observed_overflow_list =
7908         Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7909       if (cur_overflow_list == observed_overflow_list) {
7910         attached = true;
7911         break;
7912       } else cur_overflow_list = observed_overflow_list;
7913     }
7914     if (!attached) {
7915       // Too bad, someone else sneaked in (at least) an element; we'll need
7916       // to do a splice. Find tail of suffix so we can prepend suffix to global
7917       // list.
7918       for (cur = suffix_head; cur->mark_raw() != NULL; cur = (oop)(cur->mark_raw()));
7919       oop suffix_tail = cur;
7920       assert(suffix_tail != NULL && suffix_tail->mark_raw() == NULL,
7921              "Tautology");
7922       observed_overflow_list = _overflow_list;
7923       do {
7924         cur_overflow_list = observed_overflow_list;
7925         if (cur_overflow_list != BUSY) {
7926           // Do the splice ...
7927           suffix_tail->set_mark_raw(markOop(cur_overflow_list));
7928         } else { // cur_overflow_list == BUSY
7929           suffix_tail->set_mark_raw(NULL);
7930         }
7931         // ... and try to place spliced list back on overflow_list ...
7932         observed_overflow_list =
7933           Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7934       } while (cur_overflow_list != observed_overflow_list);
7935       // ... until we have succeeded in doing so.
7936     }
7937   }
7938 
7939   // Push the prefix elements on work_q
7940   assert(prefix != NULL, "control point invariant");
7941   const markOop proto = markOopDesc::prototype();
7942   oop next;
7943   NOT_PRODUCT(ssize_t n = 0;)
7944   for (cur = prefix; cur != NULL; cur = next) {
7945     next = oop(cur->mark_raw());
7946     cur->set_mark_raw(proto);   // until proven otherwise
7947     assert(oopDesc::is_oop(cur), "Should be an oop");
7948     bool res = work_q->push(cur);
7949     assert(res, "Bit off more than we can chew?");
7950     NOT_PRODUCT(n++;)
7951   }
7952 #ifndef PRODUCT
7953   assert(_num_par_pushes >= n, "Too many pops?");
7954   Atomic::sub(n, &_num_par_pushes);
7955 #endif
7956   return true;
7957 }
7958 
7959 // Single-threaded
7960 void CMSCollector::push_on_overflow_list(oop p) {
7961   NOT_PRODUCT(_num_par_pushes++;)
7962   assert(oopDesc::is_oop(p), "Not an oop");
7963   preserve_mark_if_necessary(p);
7964   p->set_mark_raw((markOop)_overflow_list);
7965   _overflow_list = p;
7966 }
7967 
7968 // Multi-threaded; use CAS to prepend to overflow list
7969 void CMSCollector::par_push_on_overflow_list(oop p) {
7970   NOT_PRODUCT(Atomic::inc(&_num_par_pushes);)
7971   assert(oopDesc::is_oop(p), "Not an oop");
7972   par_preserve_mark_if_necessary(p);
7973   oop observed_overflow_list = _overflow_list;
7974   oop cur_overflow_list;
7975   do {
7976     cur_overflow_list = observed_overflow_list;
7977     if (cur_overflow_list != BUSY) {
7978       p->set_mark_raw(markOop(cur_overflow_list));
7979     } else {
7980       p->set_mark_raw(NULL);
7981     }
7982     observed_overflow_list =
7983       Atomic::cmpxchg((oopDesc*)p, &_overflow_list, (oopDesc*)cur_overflow_list);
7984   } while (cur_overflow_list != observed_overflow_list);
7985 }
7986 #undef BUSY
7987 
7988 // Single threaded
7989 // General Note on GrowableArray: pushes may silently fail
7990 // because we are (temporarily) out of C-heap for expanding
7991 // the stack. The problem is quite ubiquitous and affects
7992 // a lot of code in the JVM. The prudent thing for GrowableArray
7993 // to do (for now) is to exit with an error. However, that may
7994 // be too draconian in some cases because the caller may be
7995 // able to recover without much harm. For such cases, we
7996 // should probably introduce a "soft_push" method which returns
7997 // an indication of success or failure with the assumption that
7998 // the caller may be able to recover from a failure; code in
7999 // the VM can then be changed, incrementally, to deal with such
8000 // failures where possible, thus, incrementally hardening the VM
8001 // in such low resource situations.
8002 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8003   _preserved_oop_stack.push(p);
8004   _preserved_mark_stack.push(m);
8005   assert(m == p->mark_raw(), "Mark word changed");
8006   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8007          "bijection");
8008 }
8009 
8010 // Single threaded
8011 void CMSCollector::preserve_mark_if_necessary(oop p) {
8012   markOop m = p->mark_raw();
8013   if (m->must_be_preserved(p)) {
8014     preserve_mark_work(p, m);
8015   }
8016 }
8017 
8018 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8019   markOop m = p->mark_raw();
8020   if (m->must_be_preserved(p)) {
8021     MutexLocker x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8022     // Even though we read the mark word without holding
8023     // the lock, we are assured that it will not change
8024     // because we "own" this oop, so no other thread can
8025     // be trying to push it on the overflow list; see
8026     // the assertion in preserve_mark_work() that checks
8027     // that m == p->mark_raw().
8028     preserve_mark_work(p, m);
8029   }
8030 }
8031 
8032 // We should be able to do this multi-threaded,
8033 // a chunk of stack being a task (this is
8034 // correct because each oop only ever appears
8035 // once in the overflow list. However, it's
8036 // not very easy to completely overlap this with
8037 // other operations, so will generally not be done
8038 // until all work's been completed. Because we
8039 // expect the preserved oop stack (set) to be small,
8040 // it's probably fine to do this single-threaded.
8041 // We can explore cleverer concurrent/overlapped/parallel
8042 // processing of preserved marks if we feel the
8043 // need for this in the future. Stack overflow should
8044 // be so rare in practice and, when it happens, its
8045 // effect on performance so great that this will
8046 // likely just be in the noise anyway.
8047 void CMSCollector::restore_preserved_marks_if_any() {
8048   assert(SafepointSynchronize::is_at_safepoint(),
8049          "world should be stopped");
8050   assert(Thread::current()->is_ConcurrentGC_thread() ||
8051          Thread::current()->is_VM_thread(),
8052          "should be single-threaded");
8053   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8054          "bijection");
8055 
8056   while (!_preserved_oop_stack.is_empty()) {
8057     oop p = _preserved_oop_stack.pop();
8058     assert(oopDesc::is_oop(p), "Should be an oop");
8059     assert(_span.contains(p), "oop should be in _span");
8060     assert(p->mark_raw() == markOopDesc::prototype(),
8061            "Set when taken from overflow list");
8062     markOop m = _preserved_mark_stack.pop();
8063     p->set_mark_raw(m);
8064   }
8065   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8066          "stacks were cleared above");
8067 }
8068 
8069 #ifndef PRODUCT
8070 bool CMSCollector::no_preserved_marks() const {
8071   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8072 }
8073 #endif
8074 
8075 // Transfer some number of overflown objects to usual marking
8076 // stack. Return true if some objects were transferred.
8077 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8078   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8079                     (size_t)ParGCDesiredObjsFromOverflowList);
8080 
8081   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8082   assert(_collector->overflow_list_is_empty() || res,
8083          "If list is not empty, we should have taken something");
8084   assert(!res || !_mark_stack->isEmpty(),
8085          "If we took something, it should now be on our stack");
8086   return res;
8087 }
8088 
8089 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8090   size_t res = _sp->block_size_no_stall(addr, _collector);
8091   if (_sp->block_is_obj(addr)) {
8092     if (_live_bit_map->isMarked(addr)) {
8093       // It can't have been dead in a previous cycle
8094       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8095     } else {
8096       _dead_bit_map->mark(addr);      // mark the dead object
8097     }
8098   }
8099   // Could be 0, if the block size could not be computed without stalling.
8100   return res;
8101 }
8102 
8103 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8104   GCMemoryManager* manager = CMSHeap::heap()->old_manager();
8105   switch (phase) {
8106     case CMSCollector::InitialMarking:
8107       initialize(manager /* GC manager */ ,
8108                  cause   /* cause of the GC */,
8109                  true    /* allMemoryPoolsAffected */,
8110                  true    /* recordGCBeginTime */,
8111                  true    /* recordPreGCUsage */,
8112                  false   /* recordPeakUsage */,
8113                  false   /* recordPostGCusage */,
8114                  true    /* recordAccumulatedGCTime */,
8115                  false   /* recordGCEndTime */,
8116                  false   /* countCollection */  );
8117       break;
8118 
8119     case CMSCollector::FinalMarking:
8120       initialize(manager /* GC manager */ ,
8121                  cause   /* cause of the GC */,
8122                  true    /* allMemoryPoolsAffected */,
8123                  false   /* recordGCBeginTime */,
8124                  false   /* recordPreGCUsage */,
8125                  false   /* recordPeakUsage */,
8126                  false   /* recordPostGCusage */,
8127                  true    /* recordAccumulatedGCTime */,
8128                  false   /* recordGCEndTime */,
8129                  false   /* countCollection */  );
8130       break;
8131 
8132     case CMSCollector::Sweeping:
8133       initialize(manager /* GC manager */ ,
8134                  cause   /* cause of the GC */,
8135                  true    /* allMemoryPoolsAffected */,
8136                  false   /* recordGCBeginTime */,
8137                  false   /* recordPreGCUsage */,
8138                  true    /* recordPeakUsage */,
8139                  true    /* recordPostGCusage */,
8140                  false   /* recordAccumulatedGCTime */,
8141                  true    /* recordGCEndTime */,
8142                  true    /* countCollection */  );
8143       break;
8144 
8145     default:
8146       ShouldNotReachHere();
8147   }
8148 }