1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.net;
  27 
  28 import java.io.IOException;
  29 import java.io.InvalidObjectException;
  30 import java.io.ObjectInputStream;
  31 import java.io.ObjectOutputStream;
  32 import java.io.Serializable;
  33 import java.nio.ByteBuffer;
  34 import java.nio.CharBuffer;
  35 import java.nio.charset.CharsetDecoder;
  36 import java.nio.charset.CoderResult;
  37 import java.nio.charset.CodingErrorAction;
  38 import java.nio.charset.CharacterCodingException;
  39 import java.text.Normalizer;
  40 import jdk.internal.access.JavaNetUriAccess;
  41 import jdk.internal.access.SharedSecrets;
  42 import sun.nio.cs.ThreadLocalCoders;
  43 
  44 import java.lang.Character;             // for javadoc
  45 import java.lang.NullPointerException;  // for javadoc
  46 
  47 
  48 /**
  49  * Represents a Uniform Resource Identifier (URI) reference.
  50  *
  51  * <p> Aside from some minor deviations noted below, an instance of this
  52  * class represents a URI reference as defined by
  53  * <a href="http://www.ietf.org/rfc/rfc2396.txt"><i>RFC&nbsp;2396: Uniform
  54  * Resource Identifiers (URI): Generic Syntax</i></a>, amended by <a
  55  * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC&nbsp;2732: Format for
  56  * Literal IPv6 Addresses in URLs</i></a>. The Literal IPv6 address format
  57  * also supports scope_ids. The syntax and usage of scope_ids is described
  58  * <a href="Inet6Address.html#scoped">here</a>.
  59  * This class provides constructors for creating URI instances from
  60  * their components or by parsing their string forms, methods for accessing the
  61  * various components of an instance, and methods for normalizing, resolving,
  62  * and relativizing URI instances.  Instances of this class are immutable.
  63  *
  64  *
  65  * <h3> URI syntax and components </h3>
  66  *
  67  * At the highest level a URI reference (hereinafter simply "URI") in string
  68  * form has the syntax
  69  *
  70  * <blockquote>
  71  * [<i>scheme</i><b>{@code :}</b>]<i>scheme-specific-part</i>[<b>{@code #}</b><i>fragment</i>]
  72  * </blockquote>
  73  *
  74  * where square brackets [...] delineate optional components and the characters
  75  * <b>{@code :}</b> and <b>{@code #}</b> stand for themselves.
  76  *
  77  * <p> An <i>absolute</i> URI specifies a scheme; a URI that is not absolute is
  78  * said to be <i>relative</i>.  URIs are also classified according to whether
  79  * they are <i>opaque</i> or <i>hierarchical</i>.
  80  *
  81  * <p> An <i>opaque</i> URI is an absolute URI whose scheme-specific part does
  82  * not begin with a slash character ({@code '/'}).  Opaque URIs are not
  83  * subject to further parsing.  Some examples of opaque URIs are:
  84  *
  85  * <blockquote><ul style="list-style-type:none">
  86  * <li>{@code mailto:java-net@java.sun.com}</li>
  87  * <li>{@code news:comp.lang.java}</li>
  88  * <li>{@code urn:isbn:096139210x}</li>
  89  * </ul></blockquote>
  90  *
  91  * <p> A <i>hierarchical</i> URI is either an absolute URI whose
  92  * scheme-specific part begins with a slash character, or a relative URI, that
  93  * is, a URI that does not specify a scheme.  Some examples of hierarchical
  94  * URIs are:
  95  *
  96  * <blockquote>
  97  * {@code http://example.com/languages/java/}<br>
  98  * {@code sample/a/index.html#28}<br>
  99  * {@code ../../demo/b/index.html}<br>
 100  * {@code file:///~/calendar}
 101  * </blockquote>
 102  *
 103  * <p> A hierarchical URI is subject to further parsing according to the syntax
 104  *
 105  * <blockquote>
 106  * [<i>scheme</i><b>{@code :}</b>][<b>{@code //}</b><i>authority</i>][<i>path</i>][<b>{@code ?}</b><i>query</i>][<b>{@code #}</b><i>fragment</i>]
 107  * </blockquote>
 108  *
 109  * where the characters <b>{@code :}</b>, <b>{@code /}</b>,
 110  * <b>{@code ?}</b>, and <b>{@code #}</b> stand for themselves.  The
 111  * scheme-specific part of a hierarchical URI consists of the characters
 112  * between the scheme and fragment components.
 113  *
 114  * <p> The authority component of a hierarchical URI is, if specified, either
 115  * <i>server-based</i> or <i>registry-based</i>.  A server-based authority
 116  * parses according to the familiar syntax
 117  *
 118  * <blockquote>
 119  * [<i>user-info</i><b>{@code @}</b>]<i>host</i>[<b>{@code :}</b><i>port</i>]
 120  * </blockquote>
 121  *
 122  * where the characters <b>{@code @}</b> and <b>{@code :}</b> stand for
 123  * themselves.  Nearly all URI schemes currently in use are server-based.  An
 124  * authority component that does not parse in this way is considered to be
 125  * registry-based.
 126  *
 127  * <p> The path component of a hierarchical URI is itself said to be absolute
 128  * if it begins with a slash character ({@code '/'}); otherwise it is
 129  * relative.  The path of a hierarchical URI that is either absolute or
 130  * specifies an authority is always absolute.
 131  *
 132  * <p> All told, then, a URI instance has the following nine components:
 133  *
 134  * <table class="striped" style="margin-left:2em">
 135  * <caption style="display:none">Describes the components of a URI:scheme,scheme-specific-part,authority,user-info,host,port,path,query,fragment</caption>
 136  * <thead>
 137  * <tr><th scope="col">Component</th><th scope="col">Type</th></tr>
 138  * </thead>
 139  * <tbody style="text-align:left">
 140  * <tr><th scope="row">scheme</th><td>{@code String}</td></tr>
 141  * <tr><th scope="row">scheme-specific-part</th><td>{@code String}</td></tr>
 142  * <tr><th scope="row">authority</th><td>{@code String}</td></tr>
 143  * <tr><th scope="row">user-info</th><td>{@code String}</td></tr>
 144  * <tr><th scope="row">host</th><td>{@code String}</td></tr>
 145  * <tr><th scope="row">port</th><td>{@code int}</td></tr>
 146  * <tr><th scope="row">path</th><td>{@code String}</td></tr>
 147  * <tr><th scope="row">query</th><td>{@code String}</td></tr>
 148  * <tr><th scope="row">fragment</th><td>{@code String}</td></tr>
 149  * </tbody>
 150  * </table>
 151  *
 152  * In a given instance any particular component is either <i>undefined</i> or
 153  * <i>defined</i> with a distinct value.  Undefined string components are
 154  * represented by {@code null}, while undefined integer components are
 155  * represented by {@code -1}.  A string component may be defined to have the
 156  * empty string as its value; this is not equivalent to that component being
 157  * undefined.
 158  *
 159  * <p> Whether a particular component is or is not defined in an instance
 160  * depends upon the type of the URI being represented.  An absolute URI has a
 161  * scheme component.  An opaque URI has a scheme, a scheme-specific part, and
 162  * possibly a fragment, but has no other components.  A hierarchical URI always
 163  * has a path (though it may be empty) and a scheme-specific-part (which at
 164  * least contains the path), and may have any of the other components.  If the
 165  * authority component is present and is server-based then the host component
 166  * will be defined and the user-information and port components may be defined.
 167  *
 168  *
 169  * <h4> Operations on URI instances </h4>
 170  *
 171  * The key operations supported by this class are those of
 172  * <i>normalization</i>, <i>resolution</i>, and <i>relativization</i>.
 173  *
 174  * <p> <i>Normalization</i> is the process of removing unnecessary {@code "."}
 175  * and {@code ".."} segments from the path component of a hierarchical URI.
 176  * Each {@code "."} segment is simply removed.  A {@code ".."} segment is
 177  * removed only if it is preceded by a non-{@code ".."} segment.
 178  * Normalization has no effect upon opaque URIs.
 179  *
 180  * <p> <i>Resolution</i> is the process of resolving one URI against another,
 181  * <i>base</i> URI.  The resulting URI is constructed from components of both
 182  * URIs in the manner specified by RFC&nbsp;2396, taking components from the
 183  * base URI for those not specified in the original.  For hierarchical URIs,
 184  * the path of the original is resolved against the path of the base and then
 185  * normalized.  The result, for example, of resolving
 186  *
 187  * <blockquote>
 188  * {@code sample/a/index.html#28}
 189  * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 190  * &nbsp;&nbsp;&nbsp;&nbsp;(1)
 191  * </blockquote>
 192  *
 193  * against the base URI {@code http://example.com/languages/java/} is the result
 194  * URI
 195  *
 196  * <blockquote>
 197  * {@code http://example.com/languages/java/sample/a/index.html#28}
 198  * </blockquote>
 199  *
 200  * Resolving the relative URI
 201  *
 202  * <blockquote>
 203  * {@code ../../demo/b/index.html}&nbsp;&nbsp;&nbsp;&nbsp;(2)
 204  * </blockquote>
 205  *
 206  * against this result yields, in turn,
 207  *
 208  * <blockquote>
 209  * {@code http://example.com/languages/java/demo/b/index.html}
 210  * </blockquote>
 211  *
 212  * Resolution of both absolute and relative URIs, and of both absolute and
 213  * relative paths in the case of hierarchical URIs, is supported.  Resolving
 214  * the URI {@code file:///~calendar} against any other URI simply yields the
 215  * original URI, since it is absolute.  Resolving the relative URI (2) above
 216  * against the relative base URI (1) yields the normalized, but still relative,
 217  * URI
 218  *
 219  * <blockquote>
 220  * {@code demo/b/index.html}
 221  * </blockquote>
 222  *
 223  * <p> <i>Relativization</i>, finally, is the inverse of resolution: For any
 224  * two normalized URIs <i>u</i> and&nbsp;<i>v</i>,
 225  *
 226  * <blockquote>
 227  *   <i>u</i>{@code .relativize(}<i>u</i>{@code .resolve(}<i>v</i>{@code )).equals(}<i>v</i>{@code )}&nbsp;&nbsp;and<br>
 228  *   <i>u</i>{@code .resolve(}<i>u</i>{@code .relativize(}<i>v</i>{@code )).equals(}<i>v</i>{@code )}&nbsp;&nbsp;.<br>
 229  * </blockquote>
 230  *
 231  * This operation is often useful when constructing a document containing URIs
 232  * that must be made relative to the base URI of the document wherever
 233  * possible.  For example, relativizing the URI
 234  *
 235  * <blockquote>
 236  * {@code http://example.com/languages/java/sample/a/index.html#28}
 237  * </blockquote>
 238  *
 239  * against the base URI
 240  *
 241  * <blockquote>
 242  * {@code http://example.com/languages/java/}
 243  * </blockquote>
 244  *
 245  * yields the relative URI {@code sample/a/index.html#28}.
 246  *
 247  *
 248  * <h4> Character categories </h4>
 249  *
 250  * RFC&nbsp;2396 specifies precisely which characters are permitted in the
 251  * various components of a URI reference.  The following categories, most of
 252  * which are taken from that specification, are used below to describe these
 253  * constraints:
 254  *
 255  * <table class="striped" style="margin-left:2em">
 256  * <caption style="display:none">Describes categories alpha,digit,alphanum,unreserved,punct,reserved,escaped,and other</caption>
 257  *   <thead>
 258  *   <tr><th scope="col">Category</th><th scope="col">Description</th></tr>
 259  *   </thead>
 260  *   <tbody style="text-align:left">
 261  *   <tr><th scope="row" style="vertical-align:top">alpha</th>
 262  *       <td>The US-ASCII alphabetic characters,
 263  *        {@code 'A'}&nbsp;through&nbsp;{@code 'Z'}
 264  *        and {@code 'a'}&nbsp;through&nbsp;{@code 'z'}</td></tr>
 265  *   <tr><th scope="row" style="vertical-align:top">digit</th>
 266  *       <td>The US-ASCII decimal digit characters,
 267  *       {@code '0'}&nbsp;through&nbsp;{@code '9'}</td></tr>
 268  *   <tr><th scope="row" style="vertical-align:top">alphanum</th>
 269  *       <td>All <i>alpha</i> and <i>digit</i> characters</td></tr>
 270  *   <tr><th scope="row" style="vertical-align:top">unreserved</th>
 271  *       <td>All <i>alphanum</i> characters together with those in the string
 272  *        {@code "_-!.~'()*"}</td></tr>
 273  *   <tr><th scope="row" style="vertical-align:top">punct</th>
 274  *       <td>The characters in the string {@code ",;:$&+="}</td></tr>
 275  *   <tr><th scope="row" style="vertical-align:top">reserved</th>
 276  *       <td>All <i>punct</i> characters together with those in the string
 277  *        {@code "?/[]@"}</td></tr>
 278  *   <tr><th scope="row" style="vertical-align:top">escaped</th>
 279  *       <td>Escaped octets, that is, triplets consisting of the percent
 280  *           character ({@code '%'}) followed by two hexadecimal digits
 281  *           ({@code '0'}-{@code '9'}, {@code 'A'}-{@code 'F'}, and
 282  *           {@code 'a'}-{@code 'f'})</td></tr>
 283  *   <tr><th scope="row" style="vertical-align:top">other</th>
 284  *       <td>The Unicode characters that are not in the US-ASCII character set,
 285  *           are not control characters (according to the {@link
 286  *           java.lang.Character#isISOControl(char) Character.isISOControl}
 287  *           method), and are not space characters (according to the {@link
 288  *           java.lang.Character#isSpaceChar(char) Character.isSpaceChar}
 289  *           method)&nbsp;&nbsp;<i>(<b>Deviation from RFC 2396</b>, which is
 290  *           limited to US-ASCII)</i></td></tr>
 291  * </tbody>
 292  * </table>
 293  *
 294  * <p><a id="legal-chars"></a> The set of all legal URI characters consists of
 295  * the <i>unreserved</i>, <i>reserved</i>, <i>escaped</i>, and <i>other</i>
 296  * characters.
 297  *
 298  *
 299  * <h4> Escaped octets, quotation, encoding, and decoding </h4>
 300  *
 301  * RFC 2396 allows escaped octets to appear in the user-info, path, query, and
 302  * fragment components.  Escaping serves two purposes in URIs:
 303  *
 304  * <ul>
 305  *
 306  *   <li><p> To <i>encode</i> non-US-ASCII characters when a URI is required to
 307  *   conform strictly to RFC&nbsp;2396 by not containing any <i>other</i>
 308  *   characters.  </p></li>
 309  *
 310  *   <li><p> To <i>quote</i> characters that are otherwise illegal in a
 311  *   component.  The user-info, path, query, and fragment components differ
 312  *   slightly in terms of which characters are considered legal and illegal.
 313  *   </p></li>
 314  *
 315  * </ul>
 316  *
 317  * These purposes are served in this class by three related operations:
 318  *
 319  * <ul>
 320  *
 321  *   <li><p><a id="encode"></a> A character is <i>encoded</i> by replacing it
 322  *   with the sequence of escaped octets that represent that character in the
 323  *   UTF-8 character set.  The Euro currency symbol ({@code '\u005Cu20AC'}),
 324  *   for example, is encoded as {@code "%E2%82%AC"}.  <i>(<b>Deviation from
 325  *   RFC&nbsp;2396</b>, which does not specify any particular character
 326  *   set.)</i> </p></li>
 327  *
 328  *   <li><p><a id="quote"></a> An illegal character is <i>quoted</i> simply by
 329  *   encoding it.  The space character, for example, is quoted by replacing it
 330  *   with {@code "%20"}.  UTF-8 contains US-ASCII, hence for US-ASCII
 331  *   characters this transformation has exactly the effect required by
 332  *   RFC&nbsp;2396. </p></li>
 333  *
 334  *   <li><p><a id="decode"></a>
 335  *   A sequence of escaped octets is <i>decoded</i> by
 336  *   replacing it with the sequence of characters that it represents in the
 337  *   UTF-8 character set.  UTF-8 contains US-ASCII, hence decoding has the
 338  *   effect of de-quoting any quoted US-ASCII characters as well as that of
 339  *   decoding any encoded non-US-ASCII characters.  If a <a
 340  *   href="../nio/charset/CharsetDecoder.html#ce">decoding error</a> occurs
 341  *   when decoding the escaped octets then the erroneous octets are replaced by
 342  *   {@code '\u005CuFFFD'}, the Unicode replacement character.  </p></li>
 343  *
 344  * </ul>
 345  *
 346  * These operations are exposed in the constructors and methods of this class
 347  * as follows:
 348  *
 349  * <ul>
 350  *
 351  *   <li><p> The {@linkplain #URI(java.lang.String) single-argument
 352  *   constructor} requires any illegal characters in its argument to be
 353  *   quoted and preserves any escaped octets and <i>other</i> characters that
 354  *   are present.  </p></li>
 355  *
 356  *   <li><p> The {@linkplain
 357  *   #URI(java.lang.String,java.lang.String,java.lang.String,int,java.lang.String,java.lang.String,java.lang.String)
 358  *   multi-argument constructors} quote illegal characters as
 359  *   required by the components in which they appear.  The percent character
 360  *   ({@code '%'}) is always quoted by these constructors.  Any <i>other</i>
 361  *   characters are preserved.  </p></li>
 362  *
 363  *   <li><p> The {@link #getRawUserInfo() getRawUserInfo}, {@link #getRawPath()
 364  *   getRawPath}, {@link #getRawQuery() getRawQuery}, {@link #getRawFragment()
 365  *   getRawFragment}, {@link #getRawAuthority() getRawAuthority}, and {@link
 366  *   #getRawSchemeSpecificPart() getRawSchemeSpecificPart} methods return the
 367  *   values of their corresponding components in raw form, without interpreting
 368  *   any escaped octets.  The strings returned by these methods may contain
 369  *   both escaped octets and <i>other</i> characters, and will not contain any
 370  *   illegal characters.  </p></li>
 371  *
 372  *   <li><p> The {@link #getUserInfo() getUserInfo}, {@link #getPath()
 373  *   getPath}, {@link #getQuery() getQuery}, {@link #getFragment()
 374  *   getFragment}, {@link #getAuthority() getAuthority}, and {@link
 375  *   #getSchemeSpecificPart() getSchemeSpecificPart} methods decode any escaped
 376  *   octets in their corresponding components.  The strings returned by these
 377  *   methods may contain both <i>other</i> characters and illegal characters,
 378  *   and will not contain any escaped octets.  </p></li>
 379  *
 380  *   <li><p> The {@link #toString() toString} method returns a URI string with
 381  *   all necessary quotation but which may contain <i>other</i> characters.
 382  *   </p></li>
 383  *
 384  *   <li><p> The {@link #toASCIIString() toASCIIString} method returns a fully
 385  *   quoted and encoded URI string that does not contain any <i>other</i>
 386  *   characters.  </p></li>
 387  *
 388  * </ul>
 389  *
 390  *
 391  * <h4> Identities </h4>
 392  *
 393  * For any URI <i>u</i>, it is always the case that
 394  *
 395  * <blockquote>
 396  * {@code new URI(}<i>u</i>{@code .toString()).equals(}<i>u</i>{@code )}&nbsp;.
 397  * </blockquote>
 398  *
 399  * For any URI <i>u</i> that does not contain redundant syntax such as two
 400  * slashes before an empty authority (as in {@code file:///tmp/}&nbsp;) or a
 401  * colon following a host name but no port (as in
 402  * {@code http://java.sun.com:}&nbsp;), and that does not encode characters
 403  * except those that must be quoted, the following identities also hold:
 404  * <pre>
 405  *     new URI(<i>u</i>.getScheme(),
 406  *             <i>u</i>.getSchemeSpecificPart(),
 407  *             <i>u</i>.getFragment())
 408  *     .equals(<i>u</i>)</pre>
 409  * in all cases,
 410  * <pre>
 411  *     new URI(<i>u</i>.getScheme(),
 412  *             <i>u</i>.getAuthority(),
 413  *             <i>u</i>.getPath(), <i>u</i>.getQuery(),
 414  *             <i>u</i>.getFragment())
 415  *     .equals(<i>u</i>)</pre>
 416  * if <i>u</i> is hierarchical, and
 417  * <pre>
 418  *     new URI(<i>u</i>.getScheme(),
 419  *             <i>u</i>.getUserInfo(), <i>u</i>.getHost(), <i>u</i>.getPort(),
 420  *             <i>u</i>.getPath(), <i>u</i>.getQuery(),
 421  *             <i>u</i>.getFragment())
 422  *     .equals(<i>u</i>)</pre>
 423  * if <i>u</i> is hierarchical and has either no authority or a server-based
 424  * authority.
 425  *
 426  *
 427  * <h4> URIs, URLs, and URNs </h4>
 428  *
 429  * A URI is a uniform resource <i>identifier</i> while a URL is a uniform
 430  * resource <i>locator</i>.  Hence every URL is a URI, abstractly speaking, but
 431  * not every URI is a URL.  This is because there is another subcategory of
 432  * URIs, uniform resource <i>names</i> (URNs), which name resources but do not
 433  * specify how to locate them.  The {@code mailto}, {@code news}, and
 434  * {@code isbn} URIs shown above are examples of URNs.
 435  *
 436  * <p> The conceptual distinction between URIs and URLs is reflected in the
 437  * differences between this class and the {@link URL} class.
 438  *
 439  * <p> An instance of this class represents a URI reference in the syntactic
 440  * sense defined by RFC&nbsp;2396.  A URI may be either absolute or relative.
 441  * A URI string is parsed according to the generic syntax without regard to the
 442  * scheme, if any, that it specifies.  No lookup of the host, if any, is
 443  * performed, and no scheme-dependent stream handler is constructed.  Equality,
 444  * hashing, and comparison are defined strictly in terms of the character
 445  * content of the instance.  In other words, a URI instance is little more than
 446  * a structured string that supports the syntactic, scheme-independent
 447  * operations of comparison, normalization, resolution, and relativization.
 448  *
 449  * <p> An instance of the {@link URL} class, by contrast, represents the
 450  * syntactic components of a URL together with some of the information required
 451  * to access the resource that it describes.  A URL must be absolute, that is,
 452  * it must always specify a scheme.  A URL string is parsed according to its
 453  * scheme.  A stream handler is always established for a URL, and in fact it is
 454  * impossible to create a URL instance for a scheme for which no handler is
 455  * available.  Equality and hashing depend upon both the scheme and the
 456  * Internet address of the host, if any; comparison is not defined.  In other
 457  * words, a URL is a structured string that supports the syntactic operation of
 458  * resolution as well as the network I/O operations of looking up the host and
 459  * opening a connection to the specified resource.
 460  *
 461  *
 462  * @author Mark Reinhold
 463  * @since 1.4
 464  *
 465  * @see <a href="http://www.ietf.org/rfc/rfc2279.txt"><i>RFC&nbsp;2279: UTF-8, a
 466  * transformation format of ISO 10646</i></a>, <br><a
 467  * href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC&nbsp;2373: IPv6 Addressing
 468  * Architecture</i></a>, <br><a
 469  * href="http://www.ietf.org/rfc/rfc2396.txt"><i>RFC&nbsp;2396: Uniform
 470  * Resource Identifiers (URI): Generic Syntax</i></a>, <br><a
 471  * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC&nbsp;2732: Format for
 472  * Literal IPv6 Addresses in URLs</i></a>, <br><a
 473  * href="URISyntaxException.html">URISyntaxException</a>
 474  */
 475 
 476 public final class URI
 477     implements Comparable<URI>, Serializable
 478 {
 479 
 480     // Note: Comments containing the word "ASSERT" indicate places where a
 481     // throw of an InternalError should be replaced by an appropriate assertion
 482     // statement once asserts are enabled in the build.
 483 
 484     static final long serialVersionUID = -6052424284110960213L;
 485 
 486 
 487     // -- Properties and components of this instance --
 488 
 489     // Components of all URIs: [<scheme>:]<scheme-specific-part>[#<fragment>]
 490     private transient String scheme;            // null ==> relative URI
 491     private transient String fragment;
 492 
 493     // Hierarchical URI components: [//<authority>]<path>[?<query>]
 494     private transient String authority;         // Registry or server
 495 
 496     // Server-based authority: [<userInfo>@]<host>[:<port>]
 497     private transient String userInfo;
 498     private transient String host;              // null ==> registry-based
 499     private transient int port = -1;            // -1 ==> undefined
 500 
 501     // Remaining components of hierarchical URIs
 502     private transient String path;              // null ==> opaque
 503     private transient String query;
 504 
 505     // The remaining fields may be computed on demand, which is safe even in
 506     // the face of multiple threads racing to initialize them
 507     private transient String schemeSpecificPart;
 508     private transient int hash;        // Zero ==> undefined
 509 
 510     private transient String decodedUserInfo;
 511     private transient String decodedAuthority;
 512     private transient String decodedPath;
 513     private transient String decodedQuery;
 514     private transient String decodedFragment;
 515     private transient String decodedSchemeSpecificPart;
 516 
 517     /**
 518      * The string form of this URI.
 519      *
 520      * @serial
 521      */
 522     private volatile String string;             // The only serializable field
 523 
 524 
 525 
 526     // -- Constructors and factories --
 527 
 528     private URI() { }                           // Used internally
 529 
 530     /**
 531      * Constructs a URI by parsing the given string.
 532      *
 533      * <p> This constructor parses the given string exactly as specified by the
 534      * grammar in <a
 535      * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
 536      * Appendix&nbsp;A, <b><i>except for the following deviations:</i></b> </p>
 537      *
 538      * <ul>
 539      *
 540      *   <li><p> An empty authority component is permitted as long as it is
 541      *   followed by a non-empty path, a query component, or a fragment
 542      *   component.  This allows the parsing of URIs such as
 543      *   {@code "file:///foo/bar"}, which seems to be the intent of
 544      *   RFC&nbsp;2396 although the grammar does not permit it.  If the
 545      *   authority component is empty then the user-information, host, and port
 546      *   components are undefined. </p></li>
 547      *
 548      *   <li><p> Empty relative paths are permitted; this seems to be the
 549      *   intent of RFC&nbsp;2396 although the grammar does not permit it.  The
 550      *   primary consequence of this deviation is that a standalone fragment
 551      *   such as {@code "#foo"} parses as a relative URI with an empty path
 552      *   and the given fragment, and can be usefully <a
 553      *   href="#resolve-frag">resolved</a> against a base URI.
 554      *
 555      *   <li><p> IPv4 addresses in host components are parsed rigorously, as
 556      *   specified by <a
 557      *   href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732</a>: Each
 558      *   element of a dotted-quad address must contain no more than three
 559      *   decimal digits.  Each element is further constrained to have a value
 560      *   no greater than 255. </p></li>
 561      *
 562      *   <li> <p> Hostnames in host components that comprise only a single
 563      *   domain label are permitted to start with an <i>alphanum</i>
 564      *   character. This seems to be the intent of <a
 565      *   href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>
 566      *   section&nbsp;3.2.2 although the grammar does not permit it. The
 567      *   consequence of this deviation is that the authority component of a
 568      *   hierarchical URI such as {@code s://123}, will parse as a server-based
 569      *   authority. </p></li>
 570      *
 571      *   <li><p> IPv6 addresses are permitted for the host component.  An IPv6
 572      *   address must be enclosed in square brackets ({@code '['} and
 573      *   {@code ']'}) as specified by <a
 574      *   href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732</a>.  The
 575      *   IPv6 address itself must parse according to <a
 576      *   href="http://www.ietf.org/rfc/rfc2373.txt">RFC&nbsp;2373</a>.  IPv6
 577      *   addresses are further constrained to describe no more than sixteen
 578      *   bytes of address information, a constraint implicit in RFC&nbsp;2373
 579      *   but not expressible in the grammar. </p></li>
 580      *
 581      *   <li><p> Characters in the <i>other</i> category are permitted wherever
 582      *   RFC&nbsp;2396 permits <i>escaped</i> octets, that is, in the
 583      *   user-information, path, query, and fragment components, as well as in
 584      *   the authority component if the authority is registry-based.  This
 585      *   allows URIs to contain Unicode characters beyond those in the US-ASCII
 586      *   character set. </p></li>
 587      *
 588      * </ul>
 589      *
 590      * @param  str   The string to be parsed into a URI
 591      *
 592      * @throws  NullPointerException
 593      *          If {@code str} is {@code null}
 594      *
 595      * @throws  URISyntaxException
 596      *          If the given string violates RFC&nbsp;2396, as augmented
 597      *          by the above deviations
 598      */
 599     public URI(String str) throws URISyntaxException {
 600         new Parser(str).parse(false);
 601     }
 602 
 603     /**
 604      * Constructs a hierarchical URI from the given components.
 605      *
 606      * <p> If a scheme is given then the path, if also given, must either be
 607      * empty or begin with a slash character ({@code '/'}).  Otherwise a
 608      * component of the new URI may be left undefined by passing {@code null}
 609      * for the corresponding parameter or, in the case of the {@code port}
 610      * parameter, by passing {@code -1}.
 611      *
 612      * <p> This constructor first builds a URI string from the given components
 613      * according to the rules specified in <a
 614      * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
 615      * section&nbsp;5.2, step&nbsp;7: </p>
 616      *
 617      * <ol>
 618      *
 619      *   <li><p> Initially, the result string is empty. </p></li>
 620      *
 621      *   <li><p> If a scheme is given then it is appended to the result,
 622      *   followed by a colon character ({@code ':'}).  </p></li>
 623      *
 624      *   <li><p> If user information, a host, or a port are given then the
 625      *   string {@code "//"} is appended.  </p></li>
 626      *
 627      *   <li><p> If user information is given then it is appended, followed by
 628      *   a commercial-at character ({@code '@'}).  Any character not in the
 629      *   <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
 630      *   categories is <a href="#quote">quoted</a>.  </p></li>
 631      *
 632      *   <li><p> If a host is given then it is appended.  If the host is a
 633      *   literal IPv6 address but is not enclosed in square brackets
 634      *   ({@code '['} and {@code ']'}) then the square brackets are added.
 635      *   </p></li>
 636      *
 637      *   <li><p> If a port number is given then a colon character
 638      *   ({@code ':'}) is appended, followed by the port number in decimal.
 639      *   </p></li>
 640      *
 641      *   <li><p> If a path is given then it is appended.  Any character not in
 642      *   the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
 643      *   categories, and not equal to the slash character ({@code '/'}) or the
 644      *   commercial-at character ({@code '@'}), is quoted.  </p></li>
 645      *
 646      *   <li><p> If a query is given then a question-mark character
 647      *   ({@code '?'}) is appended, followed by the query.  Any character that
 648      *   is not a <a href="#legal-chars">legal URI character</a> is quoted.
 649      *   </p></li>
 650      *
 651      *   <li><p> Finally, if a fragment is given then a hash character
 652      *   ({@code '#'}) is appended, followed by the fragment.  Any character
 653      *   that is not a legal URI character is quoted.  </p></li>
 654      *
 655      * </ol>
 656      *
 657      * <p> The resulting URI string is then parsed as if by invoking the {@link
 658      * #URI(String)} constructor and then invoking the {@link
 659      * #parseServerAuthority()} method upon the result; this may cause a {@link
 660      * URISyntaxException} to be thrown.  </p>
 661      *
 662      * @param   scheme    Scheme name
 663      * @param   userInfo  User name and authorization information
 664      * @param   host      Host name
 665      * @param   port      Port number
 666      * @param   path      Path
 667      * @param   query     Query
 668      * @param   fragment  Fragment
 669      *
 670      * @throws URISyntaxException
 671      *         If both a scheme and a path are given but the path is relative,
 672      *         if the URI string constructed from the given components violates
 673      *         RFC&nbsp;2396, or if the authority component of the string is
 674      *         present but cannot be parsed as a server-based authority
 675      */
 676     public URI(String scheme,
 677                String userInfo, String host, int port,
 678                String path, String query, String fragment)
 679         throws URISyntaxException
 680     {
 681         String s = toString(scheme, null,
 682                             null, userInfo, host, port,
 683                             path, query, fragment);
 684         checkPath(s, scheme, path);
 685         new Parser(s).parse(true);
 686     }
 687 
 688     /**
 689      * Constructs a hierarchical URI from the given components.
 690      *
 691      * <p> If a scheme is given then the path, if also given, must either be
 692      * empty or begin with a slash character ({@code '/'}).  Otherwise a
 693      * component of the new URI may be left undefined by passing {@code null}
 694      * for the corresponding parameter.
 695      *
 696      * <p> This constructor first builds a URI string from the given components
 697      * according to the rules specified in <a
 698      * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
 699      * section&nbsp;5.2, step&nbsp;7: </p>
 700      *
 701      * <ol>
 702      *
 703      *   <li><p> Initially, the result string is empty.  </p></li>
 704      *
 705      *   <li><p> If a scheme is given then it is appended to the result,
 706      *   followed by a colon character ({@code ':'}).  </p></li>
 707      *
 708      *   <li><p> If an authority is given then the string {@code "//"} is
 709      *   appended, followed by the authority.  If the authority contains a
 710      *   literal IPv6 address then the address must be enclosed in square
 711      *   brackets ({@code '['} and {@code ']'}).  Any character not in the
 712      *   <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
 713      *   categories, and not equal to the commercial-at character
 714      *   ({@code '@'}), is <a href="#quote">quoted</a>.  </p></li>
 715      *
 716      *   <li><p> If a path is given then it is appended.  Any character not in
 717      *   the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
 718      *   categories, and not equal to the slash character ({@code '/'}) or the
 719      *   commercial-at character ({@code '@'}), is quoted.  </p></li>
 720      *
 721      *   <li><p> If a query is given then a question-mark character
 722      *   ({@code '?'}) is appended, followed by the query.  Any character that
 723      *   is not a <a href="#legal-chars">legal URI character</a> is quoted.
 724      *   </p></li>
 725      *
 726      *   <li><p> Finally, if a fragment is given then a hash character
 727      *   ({@code '#'}) is appended, followed by the fragment.  Any character
 728      *   that is not a legal URI character is quoted.  </p></li>
 729      *
 730      * </ol>
 731      *
 732      * <p> The resulting URI string is then parsed as if by invoking the {@link
 733      * #URI(String)} constructor and then invoking the {@link
 734      * #parseServerAuthority()} method upon the result; this may cause a {@link
 735      * URISyntaxException} to be thrown.  </p>
 736      *
 737      * @param   scheme     Scheme name
 738      * @param   authority  Authority
 739      * @param   path       Path
 740      * @param   query      Query
 741      * @param   fragment   Fragment
 742      *
 743      * @throws URISyntaxException
 744      *         If both a scheme and a path are given but the path is relative,
 745      *         if the URI string constructed from the given components violates
 746      *         RFC&nbsp;2396, or if the authority component of the string is
 747      *         present but cannot be parsed as a server-based authority
 748      */
 749     public URI(String scheme,
 750                String authority,
 751                String path, String query, String fragment)
 752         throws URISyntaxException
 753     {
 754         String s = toString(scheme, null,
 755                             authority, null, null, -1,
 756                             path, query, fragment);
 757         checkPath(s, scheme, path);
 758         new Parser(s).parse(false);
 759     }
 760 
 761     /**
 762      * Constructs a hierarchical URI from the given components.
 763      *
 764      * <p> A component may be left undefined by passing {@code null}.
 765      *
 766      * <p> This convenience constructor works as if by invoking the
 767      * seven-argument constructor as follows:
 768      *
 769      * <blockquote>
 770      * {@code new} {@link #URI(String, String, String, int, String, String, String)
 771      * URI}{@code (scheme, null, host, -1, path, null, fragment);}
 772      * </blockquote>
 773      *
 774      * @param   scheme    Scheme name
 775      * @param   host      Host name
 776      * @param   path      Path
 777      * @param   fragment  Fragment
 778      *
 779      * @throws  URISyntaxException
 780      *          If the URI string constructed from the given components
 781      *          violates RFC&nbsp;2396
 782      */
 783     public URI(String scheme, String host, String path, String fragment)
 784         throws URISyntaxException
 785     {
 786         this(scheme, null, host, -1, path, null, fragment);
 787     }
 788 
 789     /**
 790      * Constructs a URI from the given components.
 791      *
 792      * <p> A component may be left undefined by passing {@code null}.
 793      *
 794      * <p> This constructor first builds a URI in string form using the given
 795      * components as follows:  </p>
 796      *
 797      * <ol>
 798      *
 799      *   <li><p> Initially, the result string is empty.  </p></li>
 800      *
 801      *   <li><p> If a scheme is given then it is appended to the result,
 802      *   followed by a colon character ({@code ':'}).  </p></li>
 803      *
 804      *   <li><p> If a scheme-specific part is given then it is appended.  Any
 805      *   character that is not a <a href="#legal-chars">legal URI character</a>
 806      *   is <a href="#quote">quoted</a>.  </p></li>
 807      *
 808      *   <li><p> Finally, if a fragment is given then a hash character
 809      *   ({@code '#'}) is appended to the string, followed by the fragment.
 810      *   Any character that is not a legal URI character is quoted.  </p></li>
 811      *
 812      * </ol>
 813      *
 814      * <p> The resulting URI string is then parsed in order to create the new
 815      * URI instance as if by invoking the {@link #URI(String)} constructor;
 816      * this may cause a {@link URISyntaxException} to be thrown.  </p>
 817      *
 818      * @param   scheme    Scheme name
 819      * @param   ssp       Scheme-specific part
 820      * @param   fragment  Fragment
 821      *
 822      * @throws  URISyntaxException
 823      *          If the URI string constructed from the given components
 824      *          violates RFC&nbsp;2396
 825      */
 826     public URI(String scheme, String ssp, String fragment)
 827         throws URISyntaxException
 828     {
 829         new Parser(toString(scheme, ssp,
 830                             null, null, null, -1,
 831                             null, null, fragment))
 832             .parse(false);
 833     }
 834 
 835     /**
 836      * Constructs a simple URI consisting of only a scheme and a pre-validated
 837      * path. Provides a fast-path for some internal cases.
 838      */
 839     URI(String scheme, String path) {
 840         assert validSchemeAndPath(scheme, path);
 841         this.scheme = scheme;
 842         this.path = path;
 843     }
 844 
 845     private static boolean validSchemeAndPath(String scheme, String path) {
 846         try {
 847             URI u = new URI(scheme + ":" + path);
 848             return scheme.equals(u.scheme) && path.equals(u.path);
 849         } catch (URISyntaxException e) {
 850             return false;
 851         }
 852     }
 853 
 854     /**
 855      * Creates a URI by parsing the given string.
 856      *
 857      * <p> This convenience factory method works as if by invoking the {@link
 858      * #URI(String)} constructor; any {@link URISyntaxException} thrown by the
 859      * constructor is caught and wrapped in a new {@link
 860      * IllegalArgumentException} object, which is then thrown.
 861      *
 862      * <p> This method is provided for use in situations where it is known that
 863      * the given string is a legal URI, for example for URI constants declared
 864      * within a program, and so it would be considered a programming error
 865      * for the string not to parse as such.  The constructors, which throw
 866      * {@link URISyntaxException} directly, should be used in situations where a
 867      * URI is being constructed from user input or from some other source that
 868      * may be prone to errors.  </p>
 869      *
 870      * @param  str   The string to be parsed into a URI
 871      * @return The new URI
 872      *
 873      * @throws  NullPointerException
 874      *          If {@code str} is {@code null}
 875      *
 876      * @throws  IllegalArgumentException
 877      *          If the given string violates RFC&nbsp;2396
 878      */
 879     public static URI create(String str) {
 880         try {
 881             return new URI(str);
 882         } catch (URISyntaxException x) {
 883             throw new IllegalArgumentException(x.getMessage(), x);
 884         }
 885     }
 886 
 887 
 888     // -- Operations --
 889 
 890     /**
 891      * Attempts to parse this URI's authority component, if defined, into
 892      * user-information, host, and port components.
 893      *
 894      * <p> If this URI's authority component has already been recognized as
 895      * being server-based then it will already have been parsed into
 896      * user-information, host, and port components.  In this case, or if this
 897      * URI has no authority component, this method simply returns this URI.
 898      *
 899      * <p> Otherwise this method attempts once more to parse the authority
 900      * component into user-information, host, and port components, and throws
 901      * an exception describing why the authority component could not be parsed
 902      * in that way.
 903      *
 904      * <p> This method is provided because the generic URI syntax specified in
 905      * <a href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>
 906      * cannot always distinguish a malformed server-based authority from a
 907      * legitimate registry-based authority.  It must therefore treat some
 908      * instances of the former as instances of the latter.  The authority
 909      * component in the URI string {@code "//foo:bar"}, for example, is not a
 910      * legal server-based authority but it is legal as a registry-based
 911      * authority.
 912      *
 913      * <p> In many common situations, for example when working URIs that are
 914      * known to be either URNs or URLs, the hierarchical URIs being used will
 915      * always be server-based.  They therefore must either be parsed as such or
 916      * treated as an error.  In these cases a statement such as
 917      *
 918      * <blockquote>
 919      * {@code URI }<i>u</i>{@code  = new URI(str).parseServerAuthority();}
 920      * </blockquote>
 921      *
 922      * <p> can be used to ensure that <i>u</i> always refers to a URI that, if
 923      * it has an authority component, has a server-based authority with proper
 924      * user-information, host, and port components.  Invoking this method also
 925      * ensures that if the authority could not be parsed in that way then an
 926      * appropriate diagnostic message can be issued based upon the exception
 927      * that is thrown. </p>
 928      *
 929      * @return  A URI whose authority field has been parsed
 930      *          as a server-based authority
 931      *
 932      * @throws  URISyntaxException
 933      *          If the authority component of this URI is defined
 934      *          but cannot be parsed as a server-based authority
 935      *          according to RFC&nbsp;2396
 936      */
 937     public URI parseServerAuthority()
 938         throws URISyntaxException
 939     {
 940         // We could be clever and cache the error message and index from the
 941         // exception thrown during the original parse, but that would require
 942         // either more fields or a more-obscure representation.
 943         if ((host != null) || (authority == null))
 944             return this;
 945         new Parser(toString()).parse(true);
 946         return this;
 947     }
 948 
 949     /**
 950      * Normalizes this URI's path.
 951      *
 952      * <p> If this URI is opaque, or if its path is already in normal form,
 953      * then this URI is returned.  Otherwise a new URI is constructed that is
 954      * identical to this URI except that its path is computed by normalizing
 955      * this URI's path in a manner consistent with <a
 956      * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
 957      * section&nbsp;5.2, step&nbsp;6, sub-steps&nbsp;c through&nbsp;f; that is:
 958      * </p>
 959      *
 960      * <ol>
 961      *
 962      *   <li><p> All {@code "."} segments are removed. </p></li>
 963      *
 964      *   <li><p> If a {@code ".."} segment is preceded by a non-{@code ".."}
 965      *   segment then both of these segments are removed.  This step is
 966      *   repeated until it is no longer applicable. </p></li>
 967      *
 968      *   <li><p> If the path is relative, and if its first segment contains a
 969      *   colon character ({@code ':'}), then a {@code "."} segment is
 970      *   prepended.  This prevents a relative URI with a path such as
 971      *   {@code "a:b/c/d"} from later being re-parsed as an opaque URI with a
 972      *   scheme of {@code "a"} and a scheme-specific part of {@code "b/c/d"}.
 973      *   <b><i>(Deviation from RFC&nbsp;2396)</i></b> </p></li>
 974      *
 975      * </ol>
 976      *
 977      * <p> A normalized path will begin with one or more {@code ".."} segments
 978      * if there were insufficient non-{@code ".."} segments preceding them to
 979      * allow their removal.  A normalized path will begin with a {@code "."}
 980      * segment if one was inserted by step 3 above.  Otherwise, a normalized
 981      * path will not contain any {@code "."} or {@code ".."} segments. </p>
 982      *
 983      * @return  A URI equivalent to this URI,
 984      *          but whose path is in normal form
 985      */
 986     public URI normalize() {
 987         return normalize(this);
 988     }
 989 
 990     /**
 991      * Resolves the given URI against this URI.
 992      *
 993      * <p> If the given URI is already absolute, or if this URI is opaque, then
 994      * the given URI is returned.
 995      *
 996      * <p><a id="resolve-frag"></a> If the given URI's fragment component is
 997      * defined, its path component is empty, and its scheme, authority, and
 998      * query components are undefined, then a URI with the given fragment but
 999      * with all other components equal to those of this URI is returned.  This
1000      * allows a URI representing a standalone fragment reference, such as
1001      * {@code "#foo"}, to be usefully resolved against a base URI.
1002      *
1003      * <p> Otherwise this method constructs a new hierarchical URI in a manner
1004      * consistent with <a
1005      * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
1006      * section&nbsp;5.2; that is: </p>
1007      *
1008      * <ol>
1009      *
1010      *   <li><p> A new URI is constructed with this URI's scheme and the given
1011      *   URI's query and fragment components. </p></li>
1012      *
1013      *   <li><p> If the given URI has an authority component then the new URI's
1014      *   authority and path are taken from the given URI. </p></li>
1015      *
1016      *   <li><p> Otherwise the new URI's authority component is copied from
1017      *   this URI, and its path is computed as follows: </p>
1018      *
1019      *   <ol>
1020      *
1021      *     <li><p> If the given URI's path is absolute then the new URI's path
1022      *     is taken from the given URI. </p></li>
1023      *
1024      *     <li><p> Otherwise the given URI's path is relative, and so the new
1025      *     URI's path is computed by resolving the path of the given URI
1026      *     against the path of this URI.  This is done by concatenating all but
1027      *     the last segment of this URI's path, if any, with the given URI's
1028      *     path and then normalizing the result as if by invoking the {@link
1029      *     #normalize() normalize} method. </p></li>
1030      *
1031      *   </ol></li>
1032      *
1033      * </ol>
1034      *
1035      * <p> The result of this method is absolute if, and only if, either this
1036      * URI is absolute or the given URI is absolute.  </p>
1037      *
1038      * @param  uri  The URI to be resolved against this URI
1039      * @return The resulting URI
1040      *
1041      * @throws  NullPointerException
1042      *          If {@code uri} is {@code null}
1043      */
1044     public URI resolve(URI uri) {
1045         return resolve(this, uri);
1046     }
1047 
1048     /**
1049      * Constructs a new URI by parsing the given string and then resolving it
1050      * against this URI.
1051      *
1052      * <p> This convenience method works as if invoking it were equivalent to
1053      * evaluating the expression {@link #resolve(java.net.URI)
1054      * resolve}{@code (URI.}{@link #create(String) create}{@code (str))}. </p>
1055      *
1056      * @param  str   The string to be parsed into a URI
1057      * @return The resulting URI
1058      *
1059      * @throws  NullPointerException
1060      *          If {@code str} is {@code null}
1061      *
1062      * @throws  IllegalArgumentException
1063      *          If the given string violates RFC&nbsp;2396
1064      */
1065     public URI resolve(String str) {
1066         return resolve(URI.create(str));
1067     }
1068 
1069     /**
1070      * Relativizes the given URI against this URI.
1071      *
1072      * <p> The relativization of the given URI against this URI is computed as
1073      * follows: </p>
1074      *
1075      * <ol>
1076      *
1077      *   <li><p> If either this URI or the given URI are opaque, or if the
1078      *   scheme and authority components of the two URIs are not identical, or
1079      *   if the path of this URI is not a prefix of the path of the given URI,
1080      *   then the given URI is returned. </p></li>
1081      *
1082      *   <li><p> Otherwise a new relative hierarchical URI is constructed with
1083      *   query and fragment components taken from the given URI and with a path
1084      *   component computed by removing this URI's path from the beginning of
1085      *   the given URI's path. </p></li>
1086      *
1087      * </ol>
1088      *
1089      * @param  uri  The URI to be relativized against this URI
1090      * @return The resulting URI
1091      *
1092      * @throws  NullPointerException
1093      *          If {@code uri} is {@code null}
1094      */
1095     public URI relativize(URI uri) {
1096         return relativize(this, uri);
1097     }
1098 
1099     /**
1100      * Constructs a URL from this URI.
1101      *
1102      * <p> This convenience method works as if invoking it were equivalent to
1103      * evaluating the expression {@code new URL(this.toString())} after
1104      * first checking that this URI is absolute. </p>
1105      *
1106      * @return  A URL constructed from this URI
1107      *
1108      * @throws  IllegalArgumentException
1109      *          If this URL is not absolute
1110      *
1111      * @throws  MalformedURLException
1112      *          If a protocol handler for the URL could not be found,
1113      *          or if some other error occurred while constructing the URL
1114      */
1115     public URL toURL() throws MalformedURLException {
1116         return URL.fromURI(this);
1117     }
1118 
1119     // -- Component access methods --
1120 
1121     /**
1122      * Returns the scheme component of this URI.
1123      *
1124      * <p> The scheme component of a URI, if defined, only contains characters
1125      * in the <i>alphanum</i> category and in the string {@code "-.+"}.  A
1126      * scheme always starts with an <i>alpha</i> character. <p>
1127      *
1128      * The scheme component of a URI cannot contain escaped octets, hence this
1129      * method does not perform any decoding.
1130      *
1131      * @return  The scheme component of this URI,
1132      *          or {@code null} if the scheme is undefined
1133      */
1134     public String getScheme() {
1135         return scheme;
1136     }
1137 
1138     /**
1139      * Tells whether or not this URI is absolute.
1140      *
1141      * <p> A URI is absolute if, and only if, it has a scheme component. </p>
1142      *
1143      * @return  {@code true} if, and only if, this URI is absolute
1144      */
1145     public boolean isAbsolute() {
1146         return scheme != null;
1147     }
1148 
1149     /**
1150      * Tells whether or not this URI is opaque.
1151      *
1152      * <p> A URI is opaque if, and only if, it is absolute and its
1153      * scheme-specific part does not begin with a slash character ('/').
1154      * An opaque URI has a scheme, a scheme-specific part, and possibly
1155      * a fragment; all other components are undefined. </p>
1156      *
1157      * @return  {@code true} if, and only if, this URI is opaque
1158      */
1159     public boolean isOpaque() {
1160         return path == null;
1161     }
1162 
1163     /**
1164      * Returns the raw scheme-specific part of this URI.  The scheme-specific
1165      * part is never undefined, though it may be empty.
1166      *
1167      * <p> The scheme-specific part of a URI only contains legal URI
1168      * characters. </p>
1169      *
1170      * @return  The raw scheme-specific part of this URI
1171      *          (never {@code null})
1172      */
1173     public String getRawSchemeSpecificPart() {
1174         String part = schemeSpecificPart;
1175         if (part != null) {
1176             return part;
1177         }
1178 
1179         String s = string;
1180         if (s != null) {
1181             // if string is defined, components will have been parsed
1182             int start = 0;
1183             int end = s.length();
1184             if (scheme != null) {
1185                 start = scheme.length() + 1;
1186             }
1187             if (fragment != null) {
1188                 end -= fragment.length() + 1;
1189             }
1190             if (path != null && path.length() == end - start) {
1191                 part = path;
1192             } else {
1193                 part = s.substring(start, end);
1194             }
1195         } else {
1196             StringBuilder sb = new StringBuilder();
1197             appendSchemeSpecificPart(sb, null, getAuthority(), getUserInfo(),
1198                                  host, port, getPath(), getQuery());
1199             part = sb.toString();
1200         }
1201         return schemeSpecificPart = part;
1202     }
1203 
1204     /**
1205      * Returns the decoded scheme-specific part of this URI.
1206      *
1207      * <p> The string returned by this method is equal to that returned by the
1208      * {@link #getRawSchemeSpecificPart() getRawSchemeSpecificPart} method
1209      * except that all sequences of escaped octets are <a
1210      * href="#decode">decoded</a>.  </p>
1211      *
1212      * @return  The decoded scheme-specific part of this URI
1213      *          (never {@code null})
1214      */
1215     public String getSchemeSpecificPart() {
1216         String part = decodedSchemeSpecificPart;
1217         if (part == null) {
1218             decodedSchemeSpecificPart = part = decode(getRawSchemeSpecificPart());
1219         }
1220         return part;
1221     }
1222 
1223     /**
1224      * Returns the raw authority component of this URI.
1225      *
1226      * <p> The authority component of a URI, if defined, only contains the
1227      * commercial-at character ({@code '@'}) and characters in the
1228      * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and <i>other</i>
1229      * categories.  If the authority is server-based then it is further
1230      * constrained to have valid user-information, host, and port
1231      * components. </p>
1232      *
1233      * @return  The raw authority component of this URI,
1234      *          or {@code null} if the authority is undefined
1235      */
1236     public String getRawAuthority() {
1237         return authority;
1238     }
1239 
1240     /**
1241      * Returns the decoded authority component of this URI.
1242      *
1243      * <p> The string returned by this method is equal to that returned by the
1244      * {@link #getRawAuthority() getRawAuthority} method except that all
1245      * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1246      *
1247      * @return  The decoded authority component of this URI,
1248      *          or {@code null} if the authority is undefined
1249      */
1250     public String getAuthority() {
1251         String auth = decodedAuthority;
1252         if ((auth == null) && (authority != null)) {
1253             decodedAuthority = auth = decode(authority);
1254         }
1255         return auth;
1256     }
1257 
1258     /**
1259      * Returns the raw user-information component of this URI.
1260      *
1261      * <p> The user-information component of a URI, if defined, only contains
1262      * characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and
1263      * <i>other</i> categories. </p>
1264      *
1265      * @return  The raw user-information component of this URI,
1266      *          or {@code null} if the user information is undefined
1267      */
1268     public String getRawUserInfo() {
1269         return userInfo;
1270     }
1271 
1272     /**
1273      * Returns the decoded user-information component of this URI.
1274      *
1275      * <p> The string returned by this method is equal to that returned by the
1276      * {@link #getRawUserInfo() getRawUserInfo} method except that all
1277      * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1278      *
1279      * @return  The decoded user-information component of this URI,
1280      *          or {@code null} if the user information is undefined
1281      */
1282     public String getUserInfo() {
1283         String user = decodedUserInfo;
1284         if ((user == null) && (userInfo != null)) {
1285             decodedUserInfo = user = decode(userInfo);
1286         }
1287         return user;
1288     }
1289 
1290     /**
1291      * Returns the host component of this URI.
1292      *
1293      * <p> The host component of a URI, if defined, will have one of the
1294      * following forms: </p>
1295      *
1296      * <ul>
1297      *
1298      *   <li><p> A domain name consisting of one or more <i>labels</i>
1299      *   separated by period characters ({@code '.'}), optionally followed by
1300      *   a period character.  Each label consists of <i>alphanum</i> characters
1301      *   as well as hyphen characters ({@code '-'}), though hyphens never
1302      *   occur as the first or last characters in a label. The rightmost
1303      *   label of a domain name consisting of two or more labels, begins
1304      *   with an <i>alpha</i> character. </li>
1305      *
1306      *   <li><p> A dotted-quad IPv4 address of the form
1307      *   <i>digit</i>{@code +.}<i>digit</i>{@code +.}<i>digit</i>{@code +.}<i>digit</i>{@code +},
1308      *   where no <i>digit</i> sequence is longer than three characters and no
1309      *   sequence has a value larger than 255. </p></li>
1310      *
1311      *   <li><p> An IPv6 address enclosed in square brackets ({@code '['} and
1312      *   {@code ']'}) and consisting of hexadecimal digits, colon characters
1313      *   ({@code ':'}), and possibly an embedded IPv4 address.  The full
1314      *   syntax of IPv6 addresses is specified in <a
1315      *   href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC&nbsp;2373: IPv6
1316      *   Addressing Architecture</i></a>.  </p></li>
1317      *
1318      * </ul>
1319      *
1320      * The host component of a URI cannot contain escaped octets, hence this
1321      * method does not perform any decoding.
1322      *
1323      * @return  The host component of this URI,
1324      *          or {@code null} if the host is undefined
1325      */
1326     public String getHost() {
1327         return host;
1328     }
1329 
1330     /**
1331      * Returns the port number of this URI.
1332      *
1333      * <p> The port component of a URI, if defined, is a non-negative
1334      * integer. </p>
1335      *
1336      * @return  The port component of this URI,
1337      *          or {@code -1} if the port is undefined
1338      */
1339     public int getPort() {
1340         return port;
1341     }
1342 
1343     /**
1344      * Returns the raw path component of this URI.
1345      *
1346      * <p> The path component of a URI, if defined, only contains the slash
1347      * character ({@code '/'}), the commercial-at character ({@code '@'}),
1348      * and characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>,
1349      * and <i>other</i> categories. </p>
1350      *
1351      * @return  The path component of this URI,
1352      *          or {@code null} if the path is undefined
1353      */
1354     public String getRawPath() {
1355         return path;
1356     }
1357 
1358     /**
1359      * Returns the decoded path component of this URI.
1360      *
1361      * <p> The string returned by this method is equal to that returned by the
1362      * {@link #getRawPath() getRawPath} method except that all sequences of
1363      * escaped octets are <a href="#decode">decoded</a>.  </p>
1364      *
1365      * @return  The decoded path component of this URI,
1366      *          or {@code null} if the path is undefined
1367      */
1368     public String getPath() {
1369         String decoded = decodedPath;
1370         if ((decoded == null) && (path != null)) {
1371             decodedPath = decoded = decode(path);
1372         }
1373         return decoded;
1374     }
1375 
1376     /**
1377      * Returns the raw query component of this URI.
1378      *
1379      * <p> The query component of a URI, if defined, only contains legal URI
1380      * characters. </p>
1381      *
1382      * @return  The raw query component of this URI,
1383      *          or {@code null} if the query is undefined
1384      */
1385     public String getRawQuery() {
1386         return query;
1387     }
1388 
1389     /**
1390      * Returns the decoded query component of this URI.
1391      *
1392      * <p> The string returned by this method is equal to that returned by the
1393      * {@link #getRawQuery() getRawQuery} method except that all sequences of
1394      * escaped octets are <a href="#decode">decoded</a>.  </p>
1395      *
1396      * @return  The decoded query component of this URI,
1397      *          or {@code null} if the query is undefined
1398      */
1399     public String getQuery() {
1400         String decoded = decodedQuery;
1401         if ((decoded == null) && (query != null)) {
1402             decodedQuery = decoded = decode(query, false);
1403         }
1404         return decoded;
1405     }
1406 
1407     /**
1408      * Returns the raw fragment component of this URI.
1409      *
1410      * <p> The fragment component of a URI, if defined, only contains legal URI
1411      * characters. </p>
1412      *
1413      * @return  The raw fragment component of this URI,
1414      *          or {@code null} if the fragment is undefined
1415      */
1416     public String getRawFragment() {
1417         return fragment;
1418     }
1419 
1420     /**
1421      * Returns the decoded fragment component of this URI.
1422      *
1423      * <p> The string returned by this method is equal to that returned by the
1424      * {@link #getRawFragment() getRawFragment} method except that all
1425      * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1426      *
1427      * @return  The decoded fragment component of this URI,
1428      *          or {@code null} if the fragment is undefined
1429      */
1430     public String getFragment() {
1431         String decoded = decodedFragment;
1432         if ((decoded == null) && (fragment != null)) {
1433             decodedFragment = decoded = decode(fragment, false);
1434         }
1435         return decoded;
1436     }
1437 
1438 
1439     // -- Equality, comparison, hash code, toString, and serialization --
1440 
1441     /**
1442      * Tests this URI for equality with another object.
1443      *
1444      * <p> If the given object is not a URI then this method immediately
1445      * returns {@code false}.
1446      *
1447      * <p> For two URIs to be considered equal requires that either both are
1448      * opaque or both are hierarchical.  Their schemes must either both be
1449      * undefined or else be equal without regard to case. Their fragments
1450      * must either both be undefined or else be equal.
1451      *
1452      * <p> For two opaque URIs to be considered equal, their scheme-specific
1453      * parts must be equal.
1454      *
1455      * <p> For two hierarchical URIs to be considered equal, their paths must
1456      * be equal and their queries must either both be undefined or else be
1457      * equal.  Their authorities must either both be undefined, or both be
1458      * registry-based, or both be server-based.  If their authorities are
1459      * defined and are registry-based, then they must be equal.  If their
1460      * authorities are defined and are server-based, then their hosts must be
1461      * equal without regard to case, their port numbers must be equal, and
1462      * their user-information components must be equal.
1463      *
1464      * <p> When testing the user-information, path, query, fragment, authority,
1465      * or scheme-specific parts of two URIs for equality, the raw forms rather
1466      * than the encoded forms of these components are compared and the
1467      * hexadecimal digits of escaped octets are compared without regard to
1468      * case.
1469      *
1470      * <p> This method satisfies the general contract of the {@link
1471      * java.lang.Object#equals(Object) Object.equals} method. </p>
1472      *
1473      * @param   ob   The object to which this object is to be compared
1474      *
1475      * @return  {@code true} if, and only if, the given object is a URI that
1476      *          is identical to this URI
1477      */
1478     public boolean equals(Object ob) {
1479         if (ob == this)
1480             return true;
1481         if (!(ob instanceof URI))
1482             return false;
1483         URI that = (URI)ob;
1484         if (this.isOpaque() != that.isOpaque()) return false;
1485         if (!equalIgnoringCase(this.scheme, that.scheme)) return false;
1486         if (!equal(this.fragment, that.fragment)) return false;
1487 
1488         // Opaque
1489         if (this.isOpaque())
1490             return equal(this.schemeSpecificPart, that.schemeSpecificPart);
1491 
1492         // Hierarchical
1493         if (!equal(this.path, that.path)) return false;
1494         if (!equal(this.query, that.query)) return false;
1495 
1496         // Authorities
1497         if (this.authority == that.authority) return true;
1498         if (this.host != null) {
1499             // Server-based
1500             if (!equal(this.userInfo, that.userInfo)) return false;
1501             if (!equalIgnoringCase(this.host, that.host)) return false;
1502             if (this.port != that.port) return false;
1503         } else if (this.authority != null) {
1504             // Registry-based
1505             if (!equal(this.authority, that.authority)) return false;
1506         } else if (this.authority != that.authority) {
1507             return false;
1508         }
1509 
1510         return true;
1511     }
1512 
1513     /**
1514      * Returns a hash-code value for this URI.  The hash code is based upon all
1515      * of the URI's components, and satisfies the general contract of the
1516      * {@link java.lang.Object#hashCode() Object.hashCode} method.
1517      *
1518      * @return  A hash-code value for this URI
1519      */
1520     public int hashCode() {
1521         int h = hash;
1522         if (h == 0) {
1523             h = hashIgnoringCase(0, scheme);
1524             h = hash(h, fragment);
1525             if (isOpaque()) {
1526                 h = hash(h, schemeSpecificPart);
1527             } else {
1528                 h = hash(h, path);
1529                 h = hash(h, query);
1530                 if (host != null) {
1531                     h = hash(h, userInfo);
1532                     h = hashIgnoringCase(h, host);
1533                     h += 1949 * port;
1534                 } else {
1535                     h = hash(h, authority);
1536                 }
1537             }
1538             if (h != 0) {
1539                 hash = h;
1540             }
1541         }
1542         return h;
1543     }
1544 
1545     /**
1546      * Compares this URI to another object, which must be a URI.
1547      *
1548      * <p> When comparing corresponding components of two URIs, if one
1549      * component is undefined but the other is defined then the first is
1550      * considered to be less than the second.  Unless otherwise noted, string
1551      * components are ordered according to their natural, case-sensitive
1552      * ordering as defined by the {@link java.lang.String#compareTo(Object)
1553      * String.compareTo} method.  String components that are subject to
1554      * encoding are compared by comparing their raw forms rather than their
1555      * encoded forms.
1556      *
1557      * <p> The ordering of URIs is defined as follows: </p>
1558      *
1559      * <ul>
1560      *
1561      *   <li><p> Two URIs with different schemes are ordered according the
1562      *   ordering of their schemes, without regard to case. </p></li>
1563      *
1564      *   <li><p> A hierarchical URI is considered to be less than an opaque URI
1565      *   with an identical scheme. </p></li>
1566      *
1567      *   <li><p> Two opaque URIs with identical schemes are ordered according
1568      *   to the ordering of their scheme-specific parts. </p></li>
1569      *
1570      *   <li><p> Two opaque URIs with identical schemes and scheme-specific
1571      *   parts are ordered according to the ordering of their
1572      *   fragments. </p></li>
1573      *
1574      *   <li><p> Two hierarchical URIs with identical schemes are ordered
1575      *   according to the ordering of their authority components: </p>
1576      *
1577      *   <ul>
1578      *
1579      *     <li><p> If both authority components are server-based then the URIs
1580      *     are ordered according to their user-information components; if these
1581      *     components are identical then the URIs are ordered according to the
1582      *     ordering of their hosts, without regard to case; if the hosts are
1583      *     identical then the URIs are ordered according to the ordering of
1584      *     their ports. </p></li>
1585      *
1586      *     <li><p> If one or both authority components are registry-based then
1587      *     the URIs are ordered according to the ordering of their authority
1588      *     components. </p></li>
1589      *
1590      *   </ul></li>
1591      *
1592      *   <li><p> Finally, two hierarchical URIs with identical schemes and
1593      *   authority components are ordered according to the ordering of their
1594      *   paths; if their paths are identical then they are ordered according to
1595      *   the ordering of their queries; if the queries are identical then they
1596      *   are ordered according to the order of their fragments. </p></li>
1597      *
1598      * </ul>
1599      *
1600      * <p> This method satisfies the general contract of the {@link
1601      * java.lang.Comparable#compareTo(Object) Comparable.compareTo}
1602      * method. </p>
1603      *
1604      * @param   that
1605      *          The object to which this URI is to be compared
1606      *
1607      * @return  A negative integer, zero, or a positive integer as this URI is
1608      *          less than, equal to, or greater than the given URI
1609      *
1610      * @throws  ClassCastException
1611      *          If the given object is not a URI
1612      */
1613     public int compareTo(URI that) {
1614         int c;
1615 
1616         if ((c = compareIgnoringCase(this.scheme, that.scheme)) != 0)
1617             return c;
1618 
1619         if (this.isOpaque()) {
1620             if (that.isOpaque()) {
1621                 // Both opaque
1622                 if ((c = compare(this.schemeSpecificPart,
1623                                  that.schemeSpecificPart)) != 0)
1624                     return c;
1625                 return compare(this.fragment, that.fragment);
1626             }
1627             return +1;                  // Opaque > hierarchical
1628         } else if (that.isOpaque()) {
1629             return -1;                  // Hierarchical < opaque
1630         }
1631 
1632         // Hierarchical
1633         if ((this.host != null) && (that.host != null)) {
1634             // Both server-based
1635             if ((c = compare(this.userInfo, that.userInfo)) != 0)
1636                 return c;
1637             if ((c = compareIgnoringCase(this.host, that.host)) != 0)
1638                 return c;
1639             if ((c = this.port - that.port) != 0)
1640                 return c;
1641         } else {
1642             // If one or both authorities are registry-based then we simply
1643             // compare them in the usual, case-sensitive way.  If one is
1644             // registry-based and one is server-based then the strings are
1645             // guaranteed to be unequal, hence the comparison will never return
1646             // zero and the compareTo and equals methods will remain
1647             // consistent.
1648             if ((c = compare(this.authority, that.authority)) != 0) return c;
1649         }
1650 
1651         if ((c = compare(this.path, that.path)) != 0) return c;
1652         if ((c = compare(this.query, that.query)) != 0) return c;
1653         return compare(this.fragment, that.fragment);
1654     }
1655 
1656     /**
1657      * Returns the content of this URI as a string.
1658      *
1659      * <p> If this URI was created by invoking one of the constructors in this
1660      * class then a string equivalent to the original input string, or to the
1661      * string computed from the originally-given components, as appropriate, is
1662      * returned.  Otherwise this URI was created by normalization, resolution,
1663      * or relativization, and so a string is constructed from this URI's
1664      * components according to the rules specified in <a
1665      * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
1666      * section&nbsp;5.2, step&nbsp;7. </p>
1667      *
1668      * @return  The string form of this URI
1669      */
1670     public String toString() {
1671         String s = string;
1672         if (s == null) {
1673             s = defineString();
1674         }
1675         return s;
1676     }
1677 
1678     private String defineString() {
1679         String s = string;
1680         if (s != null) {
1681             return s;
1682         }
1683 
1684         StringBuilder sb = new StringBuilder();
1685         if (scheme != null) {
1686             sb.append(scheme);
1687             sb.append(':');
1688         }
1689         if (isOpaque()) {
1690             sb.append(schemeSpecificPart);
1691         } else {
1692             if (host != null) {
1693                 sb.append("//");
1694                 if (userInfo != null) {
1695                     sb.append(userInfo);
1696                     sb.append('@');
1697                 }
1698                 boolean needBrackets = ((host.indexOf(':') >= 0)
1699                         && !host.startsWith("[")
1700                         && !host.endsWith("]"));
1701                 if (needBrackets) sb.append('[');
1702                 sb.append(host);
1703                 if (needBrackets) sb.append(']');
1704                 if (port != -1) {
1705                     sb.append(':');
1706                     sb.append(port);
1707                 }
1708             } else if (authority != null) {
1709                 sb.append("//");
1710                 sb.append(authority);
1711             }
1712             if (path != null)
1713                 sb.append(path);
1714             if (query != null) {
1715                 sb.append('?');
1716                 sb.append(query);
1717             }
1718         }
1719         if (fragment != null) {
1720             sb.append('#');
1721             sb.append(fragment);
1722         }
1723         return string = sb.toString();
1724     }
1725 
1726     /**
1727      * Returns the content of this URI as a US-ASCII string.
1728      *
1729      * <p> If this URI does not contain any characters in the <i>other</i>
1730      * category then an invocation of this method will return the same value as
1731      * an invocation of the {@link #toString() toString} method.  Otherwise
1732      * this method works as if by invoking that method and then <a
1733      * href="#encode">encoding</a> the result.  </p>
1734      *
1735      * @return  The string form of this URI, encoded as needed
1736      *          so that it only contains characters in the US-ASCII
1737      *          charset
1738      */
1739     public String toASCIIString() {
1740         return encode(toString());
1741     }
1742 
1743 
1744     // -- Serialization support --
1745 
1746     /**
1747      * Saves the content of this URI to the given serial stream.
1748      *
1749      * <p> The only serializable field of a URI instance is its {@code string}
1750      * field.  That field is given a value, if it does not have one already,
1751      * and then the {@link java.io.ObjectOutputStream#defaultWriteObject()}
1752      * method of the given object-output stream is invoked. </p>
1753      *
1754      * @param  os  The object-output stream to which this object
1755      *             is to be written
1756      */
1757     private void writeObject(ObjectOutputStream os)
1758         throws IOException
1759     {
1760         defineString();
1761         os.defaultWriteObject();        // Writes the string field only
1762     }
1763 
1764     /**
1765      * Reconstitutes a URI from the given serial stream.
1766      *
1767      * <p> The {@link java.io.ObjectInputStream#defaultReadObject()} method is
1768      * invoked to read the value of the {@code string} field.  The result is
1769      * then parsed in the usual way.
1770      *
1771      * @param  is  The object-input stream from which this object
1772      *             is being read
1773      */
1774     private void readObject(ObjectInputStream is)
1775         throws ClassNotFoundException, IOException
1776     {
1777         port = -1;                      // Argh
1778         is.defaultReadObject();
1779         try {
1780             new Parser(string).parse(false);
1781         } catch (URISyntaxException x) {
1782             IOException y = new InvalidObjectException("Invalid URI");
1783             y.initCause(x);
1784             throw y;
1785         }
1786     }
1787 
1788 
1789     // -- End of public methods --
1790 
1791 
1792     // -- Utility methods for string-field comparison and hashing --
1793 
1794     // These methods return appropriate values for null string arguments,
1795     // thereby simplifying the equals, hashCode, and compareTo methods.
1796     //
1797     // The case-ignoring methods should only be applied to strings whose
1798     // characters are all known to be US-ASCII.  Because of this restriction,
1799     // these methods are faster than the similar methods in the String class.
1800 
1801     // US-ASCII only
1802     private static int toLower(char c) {
1803         if ((c >= 'A') && (c <= 'Z'))
1804             return c + ('a' - 'A');
1805         return c;
1806     }
1807 
1808     // US-ASCII only
1809     private static int toUpper(char c) {
1810         if ((c >= 'a') && (c <= 'z'))
1811             return c - ('a' - 'A');
1812         return c;
1813     }
1814 
1815     private static boolean equal(String s, String t) {
1816         if (s == t) return true;
1817         if ((s != null) && (t != null)) {
1818             if (s.length() != t.length())
1819                 return false;
1820             if (s.indexOf('%') < 0)
1821                 return s.equals(t);
1822             int n = s.length();
1823             for (int i = 0; i < n;) {
1824                 char c = s.charAt(i);
1825                 char d = t.charAt(i);
1826                 if (c != '%') {
1827                     if (c != d)
1828                         return false;
1829                     i++;
1830                     continue;
1831                 }
1832                 if (d != '%')
1833                     return false;
1834                 i++;
1835                 if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1836                     return false;
1837                 i++;
1838                 if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1839                     return false;
1840                 i++;
1841             }
1842             return true;
1843         }
1844         return false;
1845     }
1846 
1847     // US-ASCII only
1848     private static boolean equalIgnoringCase(String s, String t) {
1849         if (s == t) return true;
1850         if ((s != null) && (t != null)) {
1851             int n = s.length();
1852             if (t.length() != n)
1853                 return false;
1854             for (int i = 0; i < n; i++) {
1855                 if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1856                     return false;
1857             }
1858             return true;
1859         }
1860         return false;
1861     }
1862 
1863     private static int hash(int hash, String s) {
1864         if (s == null) return hash;
1865         return s.indexOf('%') < 0 ? hash * 127 + s.hashCode()
1866                                   : normalizedHash(hash, s);
1867     }
1868 
1869 
1870     private static int normalizedHash(int hash, String s) {
1871         int h = 0;
1872         for (int index = 0; index < s.length(); index++) {
1873             char ch = s.charAt(index);
1874             h = 31 * h + ch;
1875             if (ch == '%') {
1876                 /*
1877                  * Process the next two encoded characters
1878                  */
1879                 for (int i = index + 1; i < index + 3; i++)
1880                     h = 31 * h + toUpper(s.charAt(i));
1881                 index += 2;
1882             }
1883         }
1884         return hash * 127 + h;
1885     }
1886 
1887     // US-ASCII only
1888     private static int hashIgnoringCase(int hash, String s) {
1889         if (s == null) return hash;
1890         int h = hash;
1891         int n = s.length();
1892         for (int i = 0; i < n; i++)
1893             h = 31 * h + toLower(s.charAt(i));
1894         return h;
1895     }
1896 
1897     private static int compare(String s, String t) {
1898         if (s == t) return 0;
1899         if (s != null) {
1900             if (t != null)
1901                 return s.compareTo(t);
1902             else
1903                 return +1;
1904         } else {
1905             return -1;
1906         }
1907     }
1908 
1909     // US-ASCII only
1910     private static int compareIgnoringCase(String s, String t) {
1911         if (s == t) return 0;
1912         if (s != null) {
1913             if (t != null) {
1914                 int sn = s.length();
1915                 int tn = t.length();
1916                 int n = sn < tn ? sn : tn;
1917                 for (int i = 0; i < n; i++) {
1918                     int c = toLower(s.charAt(i)) - toLower(t.charAt(i));
1919                     if (c != 0)
1920                         return c;
1921                 }
1922                 return sn - tn;
1923             }
1924             return +1;
1925         } else {
1926             return -1;
1927         }
1928     }
1929 
1930 
1931     // -- String construction --
1932 
1933     // If a scheme is given then the path, if given, must be absolute
1934     //
1935     private static void checkPath(String s, String scheme, String path)
1936         throws URISyntaxException
1937     {
1938         if (scheme != null) {
1939             if ((path != null)
1940                 && ((path.length() > 0) && (path.charAt(0) != '/')))
1941                 throw new URISyntaxException(s,
1942                                              "Relative path in absolute URI");
1943         }
1944     }
1945 
1946     private void appendAuthority(StringBuilder sb,
1947                                  String authority,
1948                                  String userInfo,
1949                                  String host,
1950                                  int port)
1951     {
1952         if (host != null) {
1953             sb.append("//");
1954             if (userInfo != null) {
1955                 sb.append(quote(userInfo, L_USERINFO, H_USERINFO));
1956                 sb.append('@');
1957             }
1958             boolean needBrackets = ((host.indexOf(':') >= 0)
1959                                     && !host.startsWith("[")
1960                                     && !host.endsWith("]"));
1961             if (needBrackets) sb.append('[');
1962             sb.append(host);
1963             if (needBrackets) sb.append(']');
1964             if (port != -1) {
1965                 sb.append(':');
1966                 sb.append(port);
1967             }
1968         } else if (authority != null) {
1969             sb.append("//");
1970             if (authority.startsWith("[")) {
1971                 // authority should (but may not) contain an embedded IPv6 address
1972                 int end = authority.indexOf(']');
1973                 String doquote = authority, dontquote = "";
1974                 if (end != -1 && authority.indexOf(':') != -1) {
1975                     // the authority contains an IPv6 address
1976                     if (end == authority.length()) {
1977                         dontquote = authority;
1978                         doquote = "";
1979                     } else {
1980                         dontquote = authority.substring(0 , end + 1);
1981                         doquote = authority.substring(end + 1);
1982                     }
1983                 }
1984                 sb.append(dontquote);
1985                 sb.append(quote(doquote,
1986                             L_REG_NAME | L_SERVER,
1987                             H_REG_NAME | H_SERVER));
1988             } else {
1989                 sb.append(quote(authority,
1990                             L_REG_NAME | L_SERVER,
1991                             H_REG_NAME | H_SERVER));
1992             }
1993         }
1994     }
1995 
1996     private void appendSchemeSpecificPart(StringBuilder sb,
1997                                           String opaquePart,
1998                                           String authority,
1999                                           String userInfo,
2000                                           String host,
2001                                           int port,
2002                                           String path,
2003                                           String query)
2004     {
2005         if (opaquePart != null) {
2006             /* check if SSP begins with an IPv6 address
2007              * because we must not quote a literal IPv6 address
2008              */
2009             if (opaquePart.startsWith("//[")) {
2010                 int end =  opaquePart.indexOf(']');
2011                 if (end != -1 && opaquePart.indexOf(':')!=-1) {
2012                     String doquote, dontquote;
2013                     if (end == opaquePart.length()) {
2014                         dontquote = opaquePart;
2015                         doquote = "";
2016                     } else {
2017                         dontquote = opaquePart.substring(0,end+1);
2018                         doquote = opaquePart.substring(end+1);
2019                     }
2020                     sb.append (dontquote);
2021                     sb.append(quote(doquote, L_URIC, H_URIC));
2022                 }
2023             } else {
2024                 sb.append(quote(opaquePart, L_URIC, H_URIC));
2025             }
2026         } else {
2027             appendAuthority(sb, authority, userInfo, host, port);
2028             if (path != null)
2029                 sb.append(quote(path, L_PATH, H_PATH));
2030             if (query != null) {
2031                 sb.append('?');
2032                 sb.append(quote(query, L_URIC, H_URIC));
2033             }
2034         }
2035     }
2036 
2037     private void appendFragment(StringBuilder sb, String fragment) {
2038         if (fragment != null) {
2039             sb.append('#');
2040             sb.append(quote(fragment, L_URIC, H_URIC));
2041         }
2042     }
2043 
2044     private String toString(String scheme,
2045                             String opaquePart,
2046                             String authority,
2047                             String userInfo,
2048                             String host,
2049                             int port,
2050                             String path,
2051                             String query,
2052                             String fragment)
2053     {
2054         StringBuilder sb = new StringBuilder();
2055         if (scheme != null) {
2056             sb.append(scheme);
2057             sb.append(':');
2058         }
2059         appendSchemeSpecificPart(sb, opaquePart,
2060                                  authority, userInfo, host, port,
2061                                  path, query);
2062         appendFragment(sb, fragment);
2063         return sb.toString();
2064     }
2065 
2066     // -- Normalization, resolution, and relativization --
2067 
2068     // RFC2396 5.2 (6)
2069     private static String resolvePath(String base, String child,
2070                                       boolean absolute)
2071     {
2072         int i = base.lastIndexOf('/');
2073         int cn = child.length();
2074         String path = "";
2075 
2076         if (cn == 0) {
2077             // 5.2 (6a)
2078             if (i >= 0)
2079                 path = base.substring(0, i + 1);
2080         } else {
2081             StringBuilder sb = new StringBuilder(base.length() + cn);
2082             // 5.2 (6a)
2083             if (i >= 0)
2084                 sb.append(base, 0, i + 1);
2085             // 5.2 (6b)
2086             sb.append(child);
2087             path = sb.toString();
2088         }
2089 
2090         // 5.2 (6c-f)
2091         String np = normalize(path);
2092 
2093         // 5.2 (6g): If the result is absolute but the path begins with "../",
2094         // then we simply leave the path as-is
2095 
2096         return np;
2097     }
2098 
2099     // RFC2396 5.2
2100     private static URI resolve(URI base, URI child) {
2101         // check if child if opaque first so that NPE is thrown
2102         // if child is null.
2103         if (child.isOpaque() || base.isOpaque())
2104             return child;
2105 
2106         // 5.2 (2): Reference to current document (lone fragment)
2107         if ((child.scheme == null) && (child.authority == null)
2108             && child.path.isEmpty() && (child.fragment != null)
2109             && (child.query == null)) {
2110             if ((base.fragment != null)
2111                 && child.fragment.equals(base.fragment)) {
2112                 return base;
2113             }
2114             URI ru = new URI();
2115             ru.scheme = base.scheme;
2116             ru.authority = base.authority;
2117             ru.userInfo = base.userInfo;
2118             ru.host = base.host;
2119             ru.port = base.port;
2120             ru.path = base.path;
2121             ru.fragment = child.fragment;
2122             ru.query = base.query;
2123             return ru;
2124         }
2125 
2126         // 5.2 (3): Child is absolute
2127         if (child.scheme != null)
2128             return child;
2129 
2130         URI ru = new URI();             // Resolved URI
2131         ru.scheme = base.scheme;
2132         ru.query = child.query;
2133         ru.fragment = child.fragment;
2134 
2135         // 5.2 (4): Authority
2136         if (child.authority == null) {
2137             ru.authority = base.authority;
2138             ru.host = base.host;
2139             ru.userInfo = base.userInfo;
2140             ru.port = base.port;
2141 
2142             String cp = (child.path == null) ? "" : child.path;
2143             if ((cp.length() > 0) && (cp.charAt(0) == '/')) {
2144                 // 5.2 (5): Child path is absolute
2145                 ru.path = child.path;
2146             } else {
2147                 // 5.2 (6): Resolve relative path
2148                 ru.path = resolvePath(base.path, cp, base.isAbsolute());
2149             }
2150         } else {
2151             ru.authority = child.authority;
2152             ru.host = child.host;
2153             ru.userInfo = child.userInfo;
2154             ru.host = child.host;
2155             ru.port = child.port;
2156             ru.path = child.path;
2157         }
2158 
2159         // 5.2 (7): Recombine (nothing to do here)
2160         return ru;
2161     }
2162 
2163     // If the given URI's path is normal then return the URI;
2164     // o.w., return a new URI containing the normalized path.
2165     //
2166     private static URI normalize(URI u) {
2167         if (u.isOpaque() || (u.path == null) || (u.path.length() == 0))
2168             return u;
2169 
2170         String np = normalize(u.path);
2171         if (np == u.path)
2172             return u;
2173 
2174         URI v = new URI();
2175         v.scheme = u.scheme;
2176         v.fragment = u.fragment;
2177         v.authority = u.authority;
2178         v.userInfo = u.userInfo;
2179         v.host = u.host;
2180         v.port = u.port;
2181         v.path = np;
2182         v.query = u.query;
2183         return v;
2184     }
2185 
2186     // If both URIs are hierarchical, their scheme and authority components are
2187     // identical, and the base path is a prefix of the child's path, then
2188     // return a relative URI that, when resolved against the base, yields the
2189     // child; otherwise, return the child.
2190     //
2191     private static URI relativize(URI base, URI child) {
2192         // check if child if opaque first so that NPE is thrown
2193         // if child is null.
2194         if (child.isOpaque() || base.isOpaque())
2195             return child;
2196         if (!equalIgnoringCase(base.scheme, child.scheme)
2197             || !equal(base.authority, child.authority))
2198             return child;
2199 
2200         String bp = normalize(base.path);
2201         String cp = normalize(child.path);
2202         if (!bp.equals(cp)) {
2203             if (!bp.endsWith("/"))
2204                 bp = bp + "/";
2205             if (!cp.startsWith(bp))
2206                 return child;
2207         }
2208 
2209         URI v = new URI();
2210         v.path = cp.substring(bp.length());
2211         v.query = child.query;
2212         v.fragment = child.fragment;
2213         return v;
2214     }
2215 
2216 
2217 
2218     // -- Path normalization --
2219 
2220     // The following algorithm for path normalization avoids the creation of a
2221     // string object for each segment, as well as the use of a string buffer to
2222     // compute the final result, by using a single char array and editing it in
2223     // place.  The array is first split into segments, replacing each slash
2224     // with '\0' and creating a segment-index array, each element of which is
2225     // the index of the first char in the corresponding segment.  We then walk
2226     // through both arrays, removing ".", "..", and other segments as necessary
2227     // by setting their entries in the index array to -1.  Finally, the two
2228     // arrays are used to rejoin the segments and compute the final result.
2229     //
2230     // This code is based upon src/solaris/native/java/io/canonicalize_md.c
2231 
2232 
2233     // Check the given path to see if it might need normalization.  A path
2234     // might need normalization if it contains duplicate slashes, a "."
2235     // segment, or a ".." segment.  Return -1 if no further normalization is
2236     // possible, otherwise return the number of segments found.
2237     //
2238     // This method takes a string argument rather than a char array so that
2239     // this test can be performed without invoking path.toCharArray().
2240     //
2241     private static int needsNormalization(String path) {
2242         boolean normal = true;
2243         int ns = 0;                     // Number of segments
2244         int end = path.length() - 1;    // Index of last char in path
2245         int p = 0;                      // Index of next char in path
2246 
2247         // Skip initial slashes
2248         while (p <= end) {
2249             if (path.charAt(p) != '/') break;
2250             p++;
2251         }
2252         if (p > 1) normal = false;
2253 
2254         // Scan segments
2255         while (p <= end) {
2256 
2257             // Looking at "." or ".." ?
2258             if ((path.charAt(p) == '.')
2259                 && ((p == end)
2260                     || ((path.charAt(p + 1) == '/')
2261                         || ((path.charAt(p + 1) == '.')
2262                             && ((p + 1 == end)
2263                                 || (path.charAt(p + 2) == '/')))))) {
2264                 normal = false;
2265             }
2266             ns++;
2267 
2268             // Find beginning of next segment
2269             while (p <= end) {
2270                 if (path.charAt(p++) != '/')
2271                     continue;
2272 
2273                 // Skip redundant slashes
2274                 while (p <= end) {
2275                     if (path.charAt(p) != '/') break;
2276                     normal = false;
2277                     p++;
2278                 }
2279 
2280                 break;
2281             }
2282         }
2283 
2284         return normal ? -1 : ns;
2285     }
2286 
2287 
2288     // Split the given path into segments, replacing slashes with nulls and
2289     // filling in the given segment-index array.
2290     //
2291     // Preconditions:
2292     //   segs.length == Number of segments in path
2293     //
2294     // Postconditions:
2295     //   All slashes in path replaced by '\0'
2296     //   segs[i] == Index of first char in segment i (0 <= i < segs.length)
2297     //
2298     private static void split(char[] path, int[] segs) {
2299         int end = path.length - 1;      // Index of last char in path
2300         int p = 0;                      // Index of next char in path
2301         int i = 0;                      // Index of current segment
2302 
2303         // Skip initial slashes
2304         while (p <= end) {
2305             if (path[p] != '/') break;
2306             path[p] = '\0';
2307             p++;
2308         }
2309 
2310         while (p <= end) {
2311 
2312             // Note start of segment
2313             segs[i++] = p++;
2314 
2315             // Find beginning of next segment
2316             while (p <= end) {
2317                 if (path[p++] != '/')
2318                     continue;
2319                 path[p - 1] = '\0';
2320 
2321                 // Skip redundant slashes
2322                 while (p <= end) {
2323                     if (path[p] != '/') break;
2324                     path[p++] = '\0';
2325                 }
2326                 break;
2327             }
2328         }
2329 
2330         if (i != segs.length)
2331             throw new InternalError();  // ASSERT
2332     }
2333 
2334 
2335     // Join the segments in the given path according to the given segment-index
2336     // array, ignoring those segments whose index entries have been set to -1,
2337     // and inserting slashes as needed.  Return the length of the resulting
2338     // path.
2339     //
2340     // Preconditions:
2341     //   segs[i] == -1 implies segment i is to be ignored
2342     //   path computed by split, as above, with '\0' having replaced '/'
2343     //
2344     // Postconditions:
2345     //   path[0] .. path[return value] == Resulting path
2346     //
2347     private static int join(char[] path, int[] segs) {
2348         int ns = segs.length;           // Number of segments
2349         int end = path.length - 1;      // Index of last char in path
2350         int p = 0;                      // Index of next path char to write
2351 
2352         if (path[p] == '\0') {
2353             // Restore initial slash for absolute paths
2354             path[p++] = '/';
2355         }
2356 
2357         for (int i = 0; i < ns; i++) {
2358             int q = segs[i];            // Current segment
2359             if (q == -1)
2360                 // Ignore this segment
2361                 continue;
2362 
2363             if (p == q) {
2364                 // We're already at this segment, so just skip to its end
2365                 while ((p <= end) && (path[p] != '\0'))
2366                     p++;
2367                 if (p <= end) {
2368                     // Preserve trailing slash
2369                     path[p++] = '/';
2370                 }
2371             } else if (p < q) {
2372                 // Copy q down to p
2373                 while ((q <= end) && (path[q] != '\0'))
2374                     path[p++] = path[q++];
2375                 if (q <= end) {
2376                     // Preserve trailing slash
2377                     path[p++] = '/';
2378                 }
2379             } else
2380                 throw new InternalError(); // ASSERT false
2381         }
2382 
2383         return p;
2384     }
2385 
2386 
2387     // Remove "." segments from the given path, and remove segment pairs
2388     // consisting of a non-".." segment followed by a ".." segment.
2389     //
2390     private static void removeDots(char[] path, int[] segs) {
2391         int ns = segs.length;
2392         int end = path.length - 1;
2393 
2394         for (int i = 0; i < ns; i++) {
2395             int dots = 0;               // Number of dots found (0, 1, or 2)
2396 
2397             // Find next occurrence of "." or ".."
2398             do {
2399                 int p = segs[i];
2400                 if (path[p] == '.') {
2401                     if (p == end) {
2402                         dots = 1;
2403                         break;
2404                     } else if (path[p + 1] == '\0') {
2405                         dots = 1;
2406                         break;
2407                     } else if ((path[p + 1] == '.')
2408                                && ((p + 1 == end)
2409                                    || (path[p + 2] == '\0'))) {
2410                         dots = 2;
2411                         break;
2412                     }
2413                 }
2414                 i++;
2415             } while (i < ns);
2416             if ((i > ns) || (dots == 0))
2417                 break;
2418 
2419             if (dots == 1) {
2420                 // Remove this occurrence of "."
2421                 segs[i] = -1;
2422             } else {
2423                 // If there is a preceding non-".." segment, remove both that
2424                 // segment and this occurrence of ".."; otherwise, leave this
2425                 // ".." segment as-is.
2426                 int j;
2427                 for (j = i - 1; j >= 0; j--) {
2428                     if (segs[j] != -1) break;
2429                 }
2430                 if (j >= 0) {
2431                     int q = segs[j];
2432                     if (!((path[q] == '.')
2433                           && (path[q + 1] == '.')
2434                           && (path[q + 2] == '\0'))) {
2435                         segs[i] = -1;
2436                         segs[j] = -1;
2437                     }
2438                 }
2439             }
2440         }
2441     }
2442 
2443 
2444     // DEVIATION: If the normalized path is relative, and if the first
2445     // segment could be parsed as a scheme name, then prepend a "." segment
2446     //
2447     private static void maybeAddLeadingDot(char[] path, int[] segs) {
2448 
2449         if (path[0] == '\0')
2450             // The path is absolute
2451             return;
2452 
2453         int ns = segs.length;
2454         int f = 0;                      // Index of first segment
2455         while (f < ns) {
2456             if (segs[f] >= 0)
2457                 break;
2458             f++;
2459         }
2460         if ((f >= ns) || (f == 0))
2461             // The path is empty, or else the original first segment survived,
2462             // in which case we already know that no leading "." is needed
2463             return;
2464 
2465         int p = segs[f];
2466         while ((p < path.length) && (path[p] != ':') && (path[p] != '\0')) p++;
2467         if (p >= path.length || path[p] == '\0')
2468             // No colon in first segment, so no "." needed
2469             return;
2470 
2471         // At this point we know that the first segment is unused,
2472         // hence we can insert a "." segment at that position
2473         path[0] = '.';
2474         path[1] = '\0';
2475         segs[0] = 0;
2476     }
2477 
2478 
2479     // Normalize the given path string.  A normal path string has no empty
2480     // segments (i.e., occurrences of "//"), no segments equal to ".", and no
2481     // segments equal to ".." that are preceded by a segment not equal to "..".
2482     // In contrast to Unix-style pathname normalization, for URI paths we
2483     // always retain trailing slashes.
2484     //
2485     private static String normalize(String ps) {
2486 
2487         // Does this path need normalization?
2488         int ns = needsNormalization(ps);        // Number of segments
2489         if (ns < 0)
2490             // Nope -- just return it
2491             return ps;
2492 
2493         char[] path = ps.toCharArray();         // Path in char-array form
2494 
2495         // Split path into segments
2496         int[] segs = new int[ns];               // Segment-index array
2497         split(path, segs);
2498 
2499         // Remove dots
2500         removeDots(path, segs);
2501 
2502         // Prevent scheme-name confusion
2503         maybeAddLeadingDot(path, segs);
2504 
2505         // Join the remaining segments and return the result
2506         String s = new String(path, 0, join(path, segs));
2507         if (s.equals(ps)) {
2508             // string was already normalized
2509             return ps;
2510         }
2511         return s;
2512     }
2513 
2514 
2515 
2516     // -- Character classes for parsing --
2517 
2518     // RFC2396 precisely specifies which characters in the US-ASCII charset are
2519     // permissible in the various components of a URI reference.  We here
2520     // define a set of mask pairs to aid in enforcing these restrictions.  Each
2521     // mask pair consists of two longs, a low mask and a high mask.  Taken
2522     // together they represent a 128-bit mask, where bit i is set iff the
2523     // character with value i is permitted.
2524     //
2525     // This approach is more efficient than sequentially searching arrays of
2526     // permitted characters.  It could be made still more efficient by
2527     // precompiling the mask information so that a character's presence in a
2528     // given mask could be determined by a single table lookup.
2529 
2530     // To save startup time, we manually calculate the low-/highMask constants.
2531     // For reference, the following methods were used to calculate the values:
2532 
2533     // Compute the low-order mask for the characters in the given string
2534     //     private static long lowMask(String chars) {
2535     //        int n = chars.length();
2536     //        long m = 0;
2537     //        for (int i = 0; i < n; i++) {
2538     //            char c = chars.charAt(i);
2539     //            if (c < 64)
2540     //                m |= (1L << c);
2541     //        }
2542     //        return m;
2543     //    }
2544 
2545     // Compute the high-order mask for the characters in the given string
2546     //    private static long highMask(String chars) {
2547     //        int n = chars.length();
2548     //        long m = 0;
2549     //        for (int i = 0; i < n; i++) {
2550     //            char c = chars.charAt(i);
2551     //            if ((c >= 64) && (c < 128))
2552     //                m |= (1L << (c - 64));
2553     //        }
2554     //        return m;
2555     //    }
2556 
2557     // Compute a low-order mask for the characters
2558     // between first and last, inclusive
2559     //    private static long lowMask(char first, char last) {
2560     //        long m = 0;
2561     //        int f = Math.max(Math.min(first, 63), 0);
2562     //        int l = Math.max(Math.min(last, 63), 0);
2563     //        for (int i = f; i <= l; i++)
2564     //            m |= 1L << i;
2565     //        return m;
2566     //    }
2567 
2568     // Compute a high-order mask for the characters
2569     // between first and last, inclusive
2570     //    private static long highMask(char first, char last) {
2571     //        long m = 0;
2572     //        int f = Math.max(Math.min(first, 127), 64) - 64;
2573     //        int l = Math.max(Math.min(last, 127), 64) - 64;
2574     //        for (int i = f; i <= l; i++)
2575     //            m |= 1L << i;
2576     //        return m;
2577     //    }
2578 
2579     // Tell whether the given character is permitted by the given mask pair
2580     private static boolean match(char c, long lowMask, long highMask) {
2581         if (c == 0) // 0 doesn't have a slot in the mask. So, it never matches.
2582             return false;
2583         if (c < 64)
2584             return ((1L << c) & lowMask) != 0;
2585         if (c < 128)
2586             return ((1L << (c - 64)) & highMask) != 0;
2587         return false;
2588     }
2589 
2590     // Character-class masks, in reverse order from RFC2396 because
2591     // initializers for static fields cannot make forward references.
2592 
2593     // digit    = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
2594     //            "8" | "9"
2595     private static final long L_DIGIT = 0x3FF000000000000L; // lowMask('0', '9');
2596     private static final long H_DIGIT = 0L;
2597 
2598     // upalpha  = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
2599     //            "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
2600     //            "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
2601     private static final long L_UPALPHA = 0L;
2602     private static final long H_UPALPHA = 0x7FFFFFEL; // highMask('A', 'Z');
2603 
2604     // lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
2605     //            "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
2606     //            "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
2607     private static final long L_LOWALPHA = 0L;
2608     private static final long H_LOWALPHA = 0x7FFFFFE00000000L; // highMask('a', 'z');
2609 
2610     // alpha         = lowalpha | upalpha
2611     private static final long L_ALPHA = L_LOWALPHA | L_UPALPHA;
2612     private static final long H_ALPHA = H_LOWALPHA | H_UPALPHA;
2613 
2614     // alphanum      = alpha | digit
2615     private static final long L_ALPHANUM = L_DIGIT | L_ALPHA;
2616     private static final long H_ALPHANUM = H_DIGIT | H_ALPHA;
2617 
2618     // hex           = digit | "A" | "B" | "C" | "D" | "E" | "F" |
2619     //                         "a" | "b" | "c" | "d" | "e" | "f"
2620     private static final long L_HEX = L_DIGIT;
2621     private static final long H_HEX = 0x7E0000007EL; // highMask('A', 'F') | highMask('a', 'f');
2622 
2623     // mark          = "-" | "_" | "." | "!" | "~" | "*" | "'" |
2624     //                 "(" | ")"
2625     private static final long L_MARK = 0x678200000000L; // lowMask("-_.!~*'()");
2626     private static final long H_MARK = 0x4000000080000000L; // highMask("-_.!~*'()");
2627 
2628     // unreserved    = alphanum | mark
2629     private static final long L_UNRESERVED = L_ALPHANUM | L_MARK;
2630     private static final long H_UNRESERVED = H_ALPHANUM | H_MARK;
2631 
2632     // reserved      = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
2633     //                 "$" | "," | "[" | "]"
2634     // Added per RFC2732: "[", "]"
2635     private static final long L_RESERVED = 0xAC00985000000000L; // lowMask(";/?:@&=+$,[]");
2636     private static final long H_RESERVED = 0x28000001L; // highMask(";/?:@&=+$,[]");
2637 
2638     // The zero'th bit is used to indicate that escape pairs and non-US-ASCII
2639     // characters are allowed; this is handled by the scanEscape method below.
2640     private static final long L_ESCAPED = 1L;
2641     private static final long H_ESCAPED = 0L;
2642 
2643     // uric          = reserved | unreserved | escaped
2644     private static final long L_URIC = L_RESERVED | L_UNRESERVED | L_ESCAPED;
2645     private static final long H_URIC = H_RESERVED | H_UNRESERVED | H_ESCAPED;
2646 
2647     // pchar         = unreserved | escaped |
2648     //                 ":" | "@" | "&" | "=" | "+" | "$" | ","
2649     private static final long L_PCHAR
2650         = L_UNRESERVED | L_ESCAPED | 0x2400185000000000L; // lowMask(":@&=+$,");
2651     private static final long H_PCHAR
2652         = H_UNRESERVED | H_ESCAPED | 0x1L; // highMask(":@&=+$,");
2653 
2654     // All valid path characters
2655     private static final long L_PATH = L_PCHAR | 0x800800000000000L; // lowMask(";/");
2656     private static final long H_PATH = H_PCHAR; // highMask(";/") == 0x0L;
2657 
2658     // Dash, for use in domainlabel and toplabel
2659     private static final long L_DASH = 0x200000000000L; // lowMask("-");
2660     private static final long H_DASH = 0x0L; // highMask("-");
2661 
2662     // Dot, for use in hostnames
2663     private static final long L_DOT = 0x400000000000L; // lowMask(".");
2664     private static final long H_DOT = 0x0L; // highMask(".");
2665 
2666     // userinfo      = *( unreserved | escaped |
2667     //                    ";" | ":" | "&" | "=" | "+" | "$" | "," )
2668     private static final long L_USERINFO
2669         = L_UNRESERVED | L_ESCAPED | 0x2C00185000000000L; // lowMask(";:&=+$,");
2670     private static final long H_USERINFO
2671         = H_UNRESERVED | H_ESCAPED; // | highMask(";:&=+$,") == 0L;
2672 
2673     // reg_name      = 1*( unreserved | escaped | "$" | "," |
2674     //                     ";" | ":" | "@" | "&" | "=" | "+" )
2675     private static final long L_REG_NAME
2676         = L_UNRESERVED | L_ESCAPED | 0x2C00185000000000L; // lowMask("$,;:@&=+");
2677     private static final long H_REG_NAME
2678         = H_UNRESERVED | H_ESCAPED | 0x1L; // highMask("$,;:@&=+");
2679 
2680     // All valid characters for server-based authorities
2681     private static final long L_SERVER
2682         = L_USERINFO | L_ALPHANUM | L_DASH | 0x400400000000000L; // lowMask(".:@[]");
2683     private static final long H_SERVER
2684         = H_USERINFO | H_ALPHANUM | H_DASH | 0x28000001L; // highMask(".:@[]");
2685 
2686     // Special case of server authority that represents an IPv6 address
2687     // In this case, a % does not signify an escape sequence
2688     private static final long L_SERVER_PERCENT
2689         = L_SERVER | 0x2000000000L; // lowMask("%");
2690     private static final long H_SERVER_PERCENT
2691         = H_SERVER; // | highMask("%") == 0L;
2692 
2693     // scheme        = alpha *( alpha | digit | "+" | "-" | "." )
2694     private static final long L_SCHEME = L_ALPHA | L_DIGIT | 0x680000000000L; // lowMask("+-.");
2695     private static final long H_SCHEME = H_ALPHA | H_DIGIT; // | highMask("+-.") == 0L
2696 
2697     // scope_id = alpha | digit | "_" | "."
2698     private static final long L_SCOPE_ID
2699         = L_ALPHANUM | 0x400000000000L; // lowMask("_.");
2700     private static final long H_SCOPE_ID
2701         = H_ALPHANUM | 0x80000000L; // highMask("_.");
2702 
2703     // -- Escaping and encoding --
2704 
2705     private static final char[] hexDigits = {
2706         '0', '1', '2', '3', '4', '5', '6', '7',
2707         '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
2708     };
2709 
2710     private static void appendEscape(StringBuilder sb, byte b) {
2711         sb.append('%');
2712         sb.append(hexDigits[(b >> 4) & 0x0f]);
2713         sb.append(hexDigits[(b >> 0) & 0x0f]);
2714     }
2715 
2716     private static void appendEncoded(StringBuilder sb, char c) {
2717         ByteBuffer bb = null;
2718         try {
2719             bb = ThreadLocalCoders.encoderFor("UTF-8")
2720                 .encode(CharBuffer.wrap("" + c));
2721         } catch (CharacterCodingException x) {
2722             assert false;
2723         }
2724         while (bb.hasRemaining()) {
2725             int b = bb.get() & 0xff;
2726             if (b >= 0x80)
2727                 appendEscape(sb, (byte)b);
2728             else
2729                 sb.append((char)b);
2730         }
2731     }
2732 
2733     // Quote any characters in s that are not permitted
2734     // by the given mask pair
2735     //
2736     private static String quote(String s, long lowMask, long highMask) {
2737         StringBuilder sb = null;
2738         boolean allowNonASCII = ((lowMask & L_ESCAPED) != 0);
2739         for (int i = 0; i < s.length(); i++) {
2740             char c = s.charAt(i);
2741             if (c < '\u0080') {
2742                 if (!match(c, lowMask, highMask)) {
2743                     if (sb == null) {
2744                         sb = new StringBuilder();
2745                         sb.append(s, 0, i);
2746                     }
2747                     appendEscape(sb, (byte)c);
2748                 } else {
2749                     if (sb != null)
2750                         sb.append(c);
2751                 }
2752             } else if (allowNonASCII
2753                        && (Character.isSpaceChar(c)
2754                            || Character.isISOControl(c))) {
2755                 if (sb == null) {
2756                     sb = new StringBuilder();
2757                     sb.append(s, 0, i);
2758                 }
2759                 appendEncoded(sb, c);
2760             } else {
2761                 if (sb != null)
2762                     sb.append(c);
2763             }
2764         }
2765         return (sb == null) ? s : sb.toString();
2766     }
2767 
2768     // Encodes all characters >= \u0080 into escaped, normalized UTF-8 octets,
2769     // assuming that s is otherwise legal
2770     //
2771     private static String encode(String s) {
2772         int n = s.length();
2773         if (n == 0)
2774             return s;
2775 
2776         // First check whether we actually need to encode
2777         for (int i = 0;;) {
2778             if (s.charAt(i) >= '\u0080')
2779                 break;
2780             if (++i >= n)
2781                 return s;
2782         }
2783 
2784         String ns = Normalizer.normalize(s, Normalizer.Form.NFC);
2785         ByteBuffer bb = null;
2786         try {
2787             bb = ThreadLocalCoders.encoderFor("UTF-8")
2788                 .encode(CharBuffer.wrap(ns));
2789         } catch (CharacterCodingException x) {
2790             assert false;
2791         }
2792 
2793         StringBuilder sb = new StringBuilder();
2794         while (bb.hasRemaining()) {
2795             int b = bb.get() & 0xff;
2796             if (b >= 0x80)
2797                 appendEscape(sb, (byte)b);
2798             else
2799                 sb.append((char)b);
2800         }
2801         return sb.toString();
2802     }
2803 
2804     private static int decode(char c) {
2805         if ((c >= '0') && (c <= '9'))
2806             return c - '0';
2807         if ((c >= 'a') && (c <= 'f'))
2808             return c - 'a' + 10;
2809         if ((c >= 'A') && (c <= 'F'))
2810             return c - 'A' + 10;
2811         assert false;
2812         return -1;
2813     }
2814 
2815     private static byte decode(char c1, char c2) {
2816         return (byte)(  ((decode(c1) & 0xf) << 4)
2817                       | ((decode(c2) & 0xf) << 0));
2818     }
2819 
2820     // Evaluates all escapes in s, applying UTF-8 decoding if needed.  Assumes
2821     // that escapes are well-formed syntactically, i.e., of the form %XX.  If a
2822     // sequence of escaped octets is not valid UTF-8 then the erroneous octets
2823     // are replaced with '\uFFFD'.
2824     // Exception: any "%" found between "[]" is left alone. It is an IPv6 literal
2825     //            with a scope_id
2826     //
2827     private static String decode(String s) {
2828         return decode(s, true);
2829     }
2830 
2831     // This method was introduced as a generalization of URI.decode method
2832     // to provide a fix for JDK-8037396
2833     private static String decode(String s, boolean ignorePercentInBrackets) {
2834         if (s == null)
2835             return s;
2836         int n = s.length();
2837         if (n == 0)
2838             return s;
2839         if (s.indexOf('%') < 0)
2840             return s;
2841 
2842         StringBuilder sb = new StringBuilder(n);
2843         ByteBuffer bb = ByteBuffer.allocate(n);
2844         CharBuffer cb = CharBuffer.allocate(n);
2845         CharsetDecoder dec = ThreadLocalCoders.decoderFor("UTF-8")
2846                 .onMalformedInput(CodingErrorAction.REPLACE)
2847                 .onUnmappableCharacter(CodingErrorAction.REPLACE);
2848 
2849         // This is not horribly efficient, but it will do for now
2850         char c = s.charAt(0);
2851         boolean betweenBrackets = false;
2852 
2853         for (int i = 0; i < n;) {
2854             assert c == s.charAt(i);    // Loop invariant
2855             if (c == '[') {
2856                 betweenBrackets = true;
2857             } else if (betweenBrackets && c == ']') {
2858                 betweenBrackets = false;
2859             }
2860             if (c != '%' || (betweenBrackets && ignorePercentInBrackets)) {
2861                 sb.append(c);
2862                 if (++i >= n)
2863                     break;
2864                 c = s.charAt(i);
2865                 continue;
2866             }
2867             bb.clear();
2868             int ui = i;
2869             for (;;) {
2870                 assert (n - i >= 2);
2871                 bb.put(decode(s.charAt(++i), s.charAt(++i)));
2872                 if (++i >= n)
2873                     break;
2874                 c = s.charAt(i);
2875                 if (c != '%')
2876                     break;
2877             }
2878             bb.flip();
2879             cb.clear();
2880             dec.reset();
2881             CoderResult cr = dec.decode(bb, cb, true);
2882             assert cr.isUnderflow();
2883             cr = dec.flush(cb);
2884             assert cr.isUnderflow();
2885             sb.append(cb.flip().toString());
2886         }
2887 
2888         return sb.toString();
2889     }
2890 
2891 
2892     // -- Parsing --
2893 
2894     // For convenience we wrap the input URI string in a new instance of the
2895     // following internal class.  This saves always having to pass the input
2896     // string as an argument to each internal scan/parse method.
2897 
2898     private class Parser {
2899 
2900         private String input;           // URI input string
2901         private boolean requireServerAuthority = false;
2902 
2903         Parser(String s) {
2904             input = s;
2905             string = s;
2906         }
2907 
2908         // -- Methods for throwing URISyntaxException in various ways --
2909 
2910         private void fail(String reason) throws URISyntaxException {
2911             throw new URISyntaxException(input, reason);
2912         }
2913 
2914         private void fail(String reason, int p) throws URISyntaxException {
2915             throw new URISyntaxException(input, reason, p);
2916         }
2917 
2918         private void failExpecting(String expected, int p)
2919             throws URISyntaxException
2920         {
2921             fail("Expected " + expected, p);
2922         }
2923 
2924 
2925         // -- Simple access to the input string --
2926 
2927         // Tells whether start < end and, if so, whether charAt(start) == c
2928         //
2929         private boolean at(int start, int end, char c) {
2930             return (start < end) && (input.charAt(start) == c);
2931         }
2932 
2933         // Tells whether start + s.length() < end and, if so,
2934         // whether the chars at the start position match s exactly
2935         //
2936         private boolean at(int start, int end, String s) {
2937             int p = start;
2938             int sn = s.length();
2939             if (sn > end - p)
2940                 return false;
2941             int i = 0;
2942             while (i < sn) {
2943                 if (input.charAt(p++) != s.charAt(i)) {
2944                     break;
2945                 }
2946                 i++;
2947             }
2948             return (i == sn);
2949         }
2950 
2951 
2952         // -- Scanning --
2953 
2954         // The various scan and parse methods that follow use a uniform
2955         // convention of taking the current start position and end index as
2956         // their first two arguments.  The start is inclusive while the end is
2957         // exclusive, just as in the String class, i.e., a start/end pair
2958         // denotes the left-open interval [start, end) of the input string.
2959         //
2960         // These methods never proceed past the end position.  They may return
2961         // -1 to indicate outright failure, but more often they simply return
2962         // the position of the first char after the last char scanned.  Thus
2963         // a typical idiom is
2964         //
2965         //     int p = start;
2966         //     int q = scan(p, end, ...);
2967         //     if (q > p)
2968         //         // We scanned something
2969         //         ...;
2970         //     else if (q == p)
2971         //         // We scanned nothing
2972         //         ...;
2973         //     else if (q == -1)
2974         //         // Something went wrong
2975         //         ...;
2976 
2977 
2978         // Scan a specific char: If the char at the given start position is
2979         // equal to c, return the index of the next char; otherwise, return the
2980         // start position.
2981         //
2982         private int scan(int start, int end, char c) {
2983             if ((start < end) && (input.charAt(start) == c))
2984                 return start + 1;
2985             return start;
2986         }
2987 
2988         // Scan forward from the given start position.  Stop at the first char
2989         // in the err string (in which case -1 is returned), or the first char
2990         // in the stop string (in which case the index of the preceding char is
2991         // returned), or the end of the input string (in which case the length
2992         // of the input string is returned).  May return the start position if
2993         // nothing matches.
2994         //
2995         private int scan(int start, int end, String err, String stop) {
2996             int p = start;
2997             while (p < end) {
2998                 char c = input.charAt(p);
2999                 if (err.indexOf(c) >= 0)
3000                     return -1;
3001                 if (stop.indexOf(c) >= 0)
3002                     break;
3003                 p++;
3004             }
3005             return p;
3006         }
3007 
3008         // Scan forward from the given start position.  Stop at the first char
3009         // in the stop string (in which case the index of the preceding char is
3010         // returned), or the end of the input string (in which case the length
3011         // of the input string is returned).  May return the start position if
3012         // nothing matches.
3013         //
3014         private int scan(int start, int end, String stop) {
3015             int p = start;
3016             while (p < end) {
3017                 char c = input.charAt(p);
3018                 if (stop.indexOf(c) >= 0)
3019                     break;
3020                 p++;
3021             }
3022             return p;
3023         }
3024 
3025         // Scan a potential escape sequence, starting at the given position,
3026         // with the given first char (i.e., charAt(start) == c).
3027         //
3028         // This method assumes that if escapes are allowed then visible
3029         // non-US-ASCII chars are also allowed.
3030         //
3031         private int scanEscape(int start, int n, char first)
3032             throws URISyntaxException
3033         {
3034             int p = start;
3035             char c = first;
3036             if (c == '%') {
3037                 // Process escape pair
3038                 if ((p + 3 <= n)
3039                     && match(input.charAt(p + 1), L_HEX, H_HEX)
3040                     && match(input.charAt(p + 2), L_HEX, H_HEX)) {
3041                     return p + 3;
3042                 }
3043                 fail("Malformed escape pair", p);
3044             } else if ((c > 128)
3045                        && !Character.isSpaceChar(c)
3046                        && !Character.isISOControl(c)) {
3047                 // Allow unescaped but visible non-US-ASCII chars
3048                 return p + 1;
3049             }
3050             return p;
3051         }
3052 
3053         // Scan chars that match the given mask pair
3054         //
3055         private int scan(int start, int n, long lowMask, long highMask)
3056             throws URISyntaxException
3057         {
3058             int p = start;
3059             while (p < n) {
3060                 char c = input.charAt(p);
3061                 if (match(c, lowMask, highMask)) {
3062                     p++;
3063                     continue;
3064                 }
3065                 if ((lowMask & L_ESCAPED) != 0) {
3066                     int q = scanEscape(p, n, c);
3067                     if (q > p) {
3068                         p = q;
3069                         continue;
3070                     }
3071                 }
3072                 break;
3073             }
3074             return p;
3075         }
3076 
3077         // Check that each of the chars in [start, end) matches the given mask
3078         //
3079         private void checkChars(int start, int end,
3080                                 long lowMask, long highMask,
3081                                 String what)
3082             throws URISyntaxException
3083         {
3084             int p = scan(start, end, lowMask, highMask);
3085             if (p < end)
3086                 fail("Illegal character in " + what, p);
3087         }
3088 
3089         // Check that the char at position p matches the given mask
3090         //
3091         private void checkChar(int p,
3092                                long lowMask, long highMask,
3093                                String what)
3094             throws URISyntaxException
3095         {
3096             checkChars(p, p + 1, lowMask, highMask, what);
3097         }
3098 
3099 
3100         // -- Parsing --
3101 
3102         // [<scheme>:]<scheme-specific-part>[#<fragment>]
3103         //
3104         void parse(boolean rsa) throws URISyntaxException {
3105             requireServerAuthority = rsa;
3106             int n = input.length();
3107             int p = scan(0, n, "/?#", ":");
3108             if ((p >= 0) && at(p, n, ':')) {
3109                 if (p == 0)
3110                     failExpecting("scheme name", 0);
3111                 checkChar(0, L_ALPHA, H_ALPHA, "scheme name");
3112                 checkChars(1, p, L_SCHEME, H_SCHEME, "scheme name");
3113                 scheme = input.substring(0, p);
3114                 p++;                    // Skip ':'
3115                 if (at(p, n, '/')) {
3116                     p = parseHierarchical(p, n);
3117                 } else {
3118                     // opaque; need to create the schemeSpecificPart
3119                     int q = scan(p, n, "#");
3120                     if (q <= p)
3121                         failExpecting("scheme-specific part", p);
3122                     checkChars(p, q, L_URIC, H_URIC, "opaque part");
3123                     schemeSpecificPart = input.substring(p, q);
3124                     p = q;
3125                 }
3126             } else {
3127                 p = parseHierarchical(0, n);
3128             }
3129             if (at(p, n, '#')) {
3130                 checkChars(p + 1, n, L_URIC, H_URIC, "fragment");
3131                 fragment = input.substring(p + 1, n);
3132                 p = n;
3133             }
3134             if (p < n)
3135                 fail("end of URI", p);
3136         }
3137 
3138         // [//authority]<path>[?<query>]
3139         //
3140         // DEVIATION from RFC2396: We allow an empty authority component as
3141         // long as it's followed by a non-empty path, query component, or
3142         // fragment component.  This is so that URIs such as "file:///foo/bar"
3143         // will parse.  This seems to be the intent of RFC2396, though the
3144         // grammar does not permit it.  If the authority is empty then the
3145         // userInfo, host, and port components are undefined.
3146         //
3147         // DEVIATION from RFC2396: We allow empty relative paths.  This seems
3148         // to be the intent of RFC2396, but the grammar does not permit it.
3149         // The primary consequence of this deviation is that "#f" parses as a
3150         // relative URI with an empty path.
3151         //
3152         private int parseHierarchical(int start, int n)
3153             throws URISyntaxException
3154         {
3155             int p = start;
3156             if (at(p, n, '/') && at(p + 1, n, '/')) {
3157                 p += 2;
3158                 int q = scan(p, n, "/?#");
3159                 if (q > p) {
3160                     p = parseAuthority(p, q);
3161                 } else if (q < n) {
3162                     // DEVIATION: Allow empty authority prior to non-empty
3163                     // path, query component or fragment identifier
3164                 } else
3165                     failExpecting("authority", p);
3166             }
3167             int q = scan(p, n, "?#"); // DEVIATION: May be empty
3168             checkChars(p, q, L_PATH, H_PATH, "path");
3169             path = input.substring(p, q);
3170             p = q;
3171             if (at(p, n, '?')) {
3172                 p++;
3173                 q = scan(p, n, "#");
3174                 checkChars(p, q, L_URIC, H_URIC, "query");
3175                 query = input.substring(p, q);
3176                 p = q;
3177             }
3178             return p;
3179         }
3180 
3181         // authority     = server | reg_name
3182         //
3183         // Ambiguity: An authority that is a registry name rather than a server
3184         // might have a prefix that parses as a server.  We use the fact that
3185         // the authority component is always followed by '/' or the end of the
3186         // input string to resolve this: If the complete authority did not
3187         // parse as a server then we try to parse it as a registry name.
3188         //
3189         private int parseAuthority(int start, int n)
3190             throws URISyntaxException
3191         {
3192             int p = start;
3193             int q = p;
3194             URISyntaxException ex = null;
3195 
3196             boolean serverChars;
3197             boolean regChars;
3198 
3199             if (scan(p, n, "]") > p) {
3200                 // contains a literal IPv6 address, therefore % is allowed
3201                 serverChars = (scan(p, n, L_SERVER_PERCENT, H_SERVER_PERCENT) == n);
3202             } else {
3203                 serverChars = (scan(p, n, L_SERVER, H_SERVER) == n);
3204             }
3205             regChars = (scan(p, n, L_REG_NAME, H_REG_NAME) == n);
3206 
3207             if (regChars && !serverChars) {
3208                 // Must be a registry-based authority
3209                 authority = input.substring(p, n);
3210                 return n;
3211             }
3212 
3213             if (serverChars) {
3214                 // Might be (probably is) a server-based authority, so attempt
3215                 // to parse it as such.  If the attempt fails, try to treat it
3216                 // as a registry-based authority.
3217                 try {
3218                     q = parseServer(p, n);
3219                     if (q < n)
3220                         failExpecting("end of authority", q);
3221                     authority = input.substring(p, n);
3222                 } catch (URISyntaxException x) {
3223                     // Undo results of failed parse
3224                     userInfo = null;
3225                     host = null;
3226                     port = -1;
3227                     if (requireServerAuthority) {
3228                         // If we're insisting upon a server-based authority,
3229                         // then just re-throw the exception
3230                         throw x;
3231                     } else {
3232                         // Save the exception in case it doesn't parse as a
3233                         // registry either
3234                         ex = x;
3235                         q = p;
3236                     }
3237                 }
3238             }
3239 
3240             if (q < n) {
3241                 if (regChars) {
3242                     // Registry-based authority
3243                     authority = input.substring(p, n);
3244                 } else if (ex != null) {
3245                     // Re-throw exception; it was probably due to
3246                     // a malformed IPv6 address
3247                     throw ex;
3248                 } else {
3249                     fail("Illegal character in authority", q);
3250                 }
3251             }
3252 
3253             return n;
3254         }
3255 
3256 
3257         // [<userinfo>@]<host>[:<port>]
3258         //
3259         private int parseServer(int start, int n)
3260             throws URISyntaxException
3261         {
3262             int p = start;
3263             int q;
3264 
3265             // userinfo
3266             q = scan(p, n, "/?#", "@");
3267             if ((q >= p) && at(q, n, '@')) {
3268                 checkChars(p, q, L_USERINFO, H_USERINFO, "user info");
3269                 userInfo = input.substring(p, q);
3270                 p = q + 1;              // Skip '@'
3271             }
3272 
3273             // hostname, IPv4 address, or IPv6 address
3274             if (at(p, n, '[')) {
3275                 // DEVIATION from RFC2396: Support IPv6 addresses, per RFC2732
3276                 p++;
3277                 q = scan(p, n, "/?#", "]");
3278                 if ((q > p) && at(q, n, ']')) {
3279                     // look for a "%" scope id
3280                     int r = scan (p, q, "%");
3281                     if (r > p) {
3282                         parseIPv6Reference(p, r);
3283                         if (r+1 == q) {
3284                             fail ("scope id expected");
3285                         }
3286                         checkChars (r+1, q, L_SCOPE_ID, H_SCOPE_ID,
3287                                                 "scope id");
3288                     } else {
3289                         parseIPv6Reference(p, q);
3290                     }
3291                     host = input.substring(p-1, q+1);
3292                     p = q + 1;
3293                 } else {
3294                     failExpecting("closing bracket for IPv6 address", q);
3295                 }
3296             } else {
3297                 q = parseIPv4Address(p, n);
3298                 if (q <= p)
3299                     q = parseHostname(p, n);
3300                 p = q;
3301             }
3302 
3303             // port
3304             if (at(p, n, ':')) {
3305                 p++;
3306                 q = scan(p, n, "/");
3307                 if (q > p) {
3308                     checkChars(p, q, L_DIGIT, H_DIGIT, "port number");
3309                     try {
3310                         port = Integer.parseInt(input, p, q, 10);
3311                     } catch (NumberFormatException x) {
3312                         fail("Malformed port number", p);
3313                     }
3314                     p = q;
3315                 }
3316             }
3317             if (p < n)
3318                 failExpecting("port number", p);
3319 
3320             return p;
3321         }
3322 
3323         // Scan a string of decimal digits whose value fits in a byte
3324         //
3325         private int scanByte(int start, int n)
3326             throws URISyntaxException
3327         {
3328             int p = start;
3329             int q = scan(p, n, L_DIGIT, H_DIGIT);
3330             if (q <= p) return q;
3331             if (Integer.parseInt(input, p, q, 10) > 255) return p;
3332             return q;
3333         }
3334 
3335         // Scan an IPv4 address.
3336         //
3337         // If the strict argument is true then we require that the given
3338         // interval contain nothing besides an IPv4 address; if it is false
3339         // then we only require that it start with an IPv4 address.
3340         //
3341         // If the interval does not contain or start with (depending upon the
3342         // strict argument) a legal IPv4 address characters then we return -1
3343         // immediately; otherwise we insist that these characters parse as a
3344         // legal IPv4 address and throw an exception on failure.
3345         //
3346         // We assume that any string of decimal digits and dots must be an IPv4
3347         // address.  It won't parse as a hostname anyway, so making that
3348         // assumption here allows more meaningful exceptions to be thrown.
3349         //
3350         private int scanIPv4Address(int start, int n, boolean strict)
3351             throws URISyntaxException
3352         {
3353             int p = start;
3354             int q;
3355             int m = scan(p, n, L_DIGIT | L_DOT, H_DIGIT | H_DOT);
3356             if ((m <= p) || (strict && (m != n)))
3357                 return -1;
3358             for (;;) {
3359                 // Per RFC2732: At most three digits per byte
3360                 // Further constraint: Each element fits in a byte
3361                 if ((q = scanByte(p, m)) <= p) break;   p = q;
3362                 if ((q = scan(p, m, '.')) <= p) break;  p = q;
3363                 if ((q = scanByte(p, m)) <= p) break;   p = q;
3364                 if ((q = scan(p, m, '.')) <= p) break;  p = q;
3365                 if ((q = scanByte(p, m)) <= p) break;   p = q;
3366                 if ((q = scan(p, m, '.')) <= p) break;  p = q;
3367                 if ((q = scanByte(p, m)) <= p) break;   p = q;
3368                 if (q < m) break;
3369                 return q;
3370             }
3371             fail("Malformed IPv4 address", q);
3372             return -1;
3373         }
3374 
3375         // Take an IPv4 address: Throw an exception if the given interval
3376         // contains anything except an IPv4 address
3377         //
3378         private int takeIPv4Address(int start, int n, String expected)
3379             throws URISyntaxException
3380         {
3381             int p = scanIPv4Address(start, n, true);
3382             if (p <= start)
3383                 failExpecting(expected, start);
3384             return p;
3385         }
3386 
3387         // Attempt to parse an IPv4 address, returning -1 on failure but
3388         // allowing the given interval to contain [:<characters>] after
3389         // the IPv4 address.
3390         //
3391         private int parseIPv4Address(int start, int n) {
3392             int p;
3393 
3394             try {
3395                 p = scanIPv4Address(start, n, false);
3396             } catch (URISyntaxException x) {
3397                 return -1;
3398             } catch (NumberFormatException nfe) {
3399                 return -1;
3400             }
3401 
3402             if (p > start && p < n) {
3403                 // IPv4 address is followed by something - check that
3404                 // it's a ":" as this is the only valid character to
3405                 // follow an address.
3406                 if (input.charAt(p) != ':') {
3407                     p = -1;
3408                 }
3409             }
3410 
3411             if (p > start)
3412                 host = input.substring(start, p);
3413 
3414             return p;
3415         }
3416 
3417         // hostname      = domainlabel [ "." ] | 1*( domainlabel "." ) toplabel [ "." ]
3418         // domainlabel   = alphanum | alphanum *( alphanum | "-" ) alphanum
3419         // toplabel      = alpha | alpha *( alphanum | "-" ) alphanum
3420         //
3421         private int parseHostname(int start, int n)
3422             throws URISyntaxException
3423         {
3424             int p = start;
3425             int q;
3426             int l = -1;                 // Start of last parsed label
3427 
3428             do {
3429                 // domainlabel = alphanum [ *( alphanum | "-" ) alphanum ]
3430                 q = scan(p, n, L_ALPHANUM, H_ALPHANUM);
3431                 if (q <= p)
3432                     break;
3433                 l = p;
3434                 if (q > p) {
3435                     p = q;
3436                     q = scan(p, n, L_ALPHANUM | L_DASH, H_ALPHANUM | H_DASH);
3437                     if (q > p) {
3438                         if (input.charAt(q - 1) == '-')
3439                             fail("Illegal character in hostname", q - 1);
3440                         p = q;
3441                     }
3442                 }
3443                 q = scan(p, n, '.');
3444                 if (q <= p)
3445                     break;
3446                 p = q;
3447             } while (p < n);
3448 
3449             if ((p < n) && !at(p, n, ':'))
3450                 fail("Illegal character in hostname", p);
3451 
3452             if (l < 0)
3453                 failExpecting("hostname", start);
3454 
3455             // for a fully qualified hostname check that the rightmost
3456             // label starts with an alpha character.
3457             if (l > start && !match(input.charAt(l), L_ALPHA, H_ALPHA)) {
3458                 fail("Illegal character in hostname", l);
3459             }
3460 
3461             host = input.substring(start, p);
3462             return p;
3463         }
3464 
3465 
3466         // IPv6 address parsing, from RFC2373: IPv6 Addressing Architecture
3467         //
3468         // Bug: The grammar in RFC2373 Appendix B does not allow addresses of
3469         // the form ::12.34.56.78, which are clearly shown in the examples
3470         // earlier in the document.  Here is the original grammar:
3471         //
3472         //   IPv6address = hexpart [ ":" IPv4address ]
3473         //   hexpart     = hexseq | hexseq "::" [ hexseq ] | "::" [ hexseq ]
3474         //   hexseq      = hex4 *( ":" hex4)
3475         //   hex4        = 1*4HEXDIG
3476         //
3477         // We therefore use the following revised grammar:
3478         //
3479         //   IPv6address = hexseq [ ":" IPv4address ]
3480         //                 | hexseq [ "::" [ hexpost ] ]
3481         //                 | "::" [ hexpost ]
3482         //   hexpost     = hexseq | hexseq ":" IPv4address | IPv4address
3483         //   hexseq      = hex4 *( ":" hex4)
3484         //   hex4        = 1*4HEXDIG
3485         //
3486         // This covers all and only the following cases:
3487         //
3488         //   hexseq
3489         //   hexseq : IPv4address
3490         //   hexseq ::
3491         //   hexseq :: hexseq
3492         //   hexseq :: hexseq : IPv4address
3493         //   hexseq :: IPv4address
3494         //   :: hexseq
3495         //   :: hexseq : IPv4address
3496         //   :: IPv4address
3497         //   ::
3498         //
3499         // Additionally we constrain the IPv6 address as follows :-
3500         //
3501         //  i.  IPv6 addresses without compressed zeros should contain
3502         //      exactly 16 bytes.
3503         //
3504         //  ii. IPv6 addresses with compressed zeros should contain
3505         //      less than 16 bytes.
3506 
3507         private int ipv6byteCount = 0;
3508 
3509         private int parseIPv6Reference(int start, int n)
3510             throws URISyntaxException
3511         {
3512             int p = start;
3513             int q;
3514             boolean compressedZeros = false;
3515 
3516             q = scanHexSeq(p, n);
3517 
3518             if (q > p) {
3519                 p = q;
3520                 if (at(p, n, "::")) {
3521                     compressedZeros = true;
3522                     p = scanHexPost(p + 2, n);
3523                 } else if (at(p, n, ':')) {
3524                     p = takeIPv4Address(p + 1,  n, "IPv4 address");
3525                     ipv6byteCount += 4;
3526                 }
3527             } else if (at(p, n, "::")) {
3528                 compressedZeros = true;
3529                 p = scanHexPost(p + 2, n);
3530             }
3531             if (p < n)
3532                 fail("Malformed IPv6 address", start);
3533             if (ipv6byteCount > 16)
3534                 fail("IPv6 address too long", start);
3535             if (!compressedZeros && ipv6byteCount < 16)
3536                 fail("IPv6 address too short", start);
3537             if (compressedZeros && ipv6byteCount == 16)
3538                 fail("Malformed IPv6 address", start);
3539 
3540             return p;
3541         }
3542 
3543         private int scanHexPost(int start, int n)
3544             throws URISyntaxException
3545         {
3546             int p = start;
3547             int q;
3548 
3549             if (p == n)
3550                 return p;
3551 
3552             q = scanHexSeq(p, n);
3553             if (q > p) {
3554                 p = q;
3555                 if (at(p, n, ':')) {
3556                     p++;
3557                     p = takeIPv4Address(p, n, "hex digits or IPv4 address");
3558                     ipv6byteCount += 4;
3559                 }
3560             } else {
3561                 p = takeIPv4Address(p, n, "hex digits or IPv4 address");
3562                 ipv6byteCount += 4;
3563             }
3564             return p;
3565         }
3566 
3567         // Scan a hex sequence; return -1 if one could not be scanned
3568         //
3569         private int scanHexSeq(int start, int n)
3570             throws URISyntaxException
3571         {
3572             int p = start;
3573             int q;
3574 
3575             q = scan(p, n, L_HEX, H_HEX);
3576             if (q <= p)
3577                 return -1;
3578             if (at(q, n, '.'))          // Beginning of IPv4 address
3579                 return -1;
3580             if (q > p + 4)
3581                 fail("IPv6 hexadecimal digit sequence too long", p);
3582             ipv6byteCount += 2;
3583             p = q;
3584             while (p < n) {
3585                 if (!at(p, n, ':'))
3586                     break;
3587                 if (at(p + 1, n, ':'))
3588                     break;              // "::"
3589                 p++;
3590                 q = scan(p, n, L_HEX, H_HEX);
3591                 if (q <= p)
3592                     failExpecting("digits for an IPv6 address", p);
3593                 if (at(q, n, '.')) {    // Beginning of IPv4 address
3594                     p--;
3595                     break;
3596                 }
3597                 if (q > p + 4)
3598                     fail("IPv6 hexadecimal digit sequence too long", p);
3599                 ipv6byteCount += 2;
3600                 p = q;
3601             }
3602 
3603             return p;
3604         }
3605 
3606     }
3607     static {
3608         SharedSecrets.setJavaNetUriAccess(
3609             new JavaNetUriAccess() {
3610                 public URI create(String scheme, String path) {
3611                     return new URI(scheme, path);
3612                 }
3613             }
3614         );
3615     }
3616 }