1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 // This file is available under and governed by the GNU General Public
  26 // License version 2 only, as published by the Free Software Foundation.
  27 // However, the following notice accompanied the original version of this
  28 // file:
  29 //
  30 //---------------------------------------------------------------------------------
  31 //
  32 //  Little Color Management System
  33 //  Copyright (c) 1998-2016 Marti Maria Saguer
  34 //
  35 // Permission is hereby granted, free of charge, to any person obtaining
  36 // a copy of this software and associated documentation files (the "Software"),
  37 // to deal in the Software without restriction, including without limitation
  38 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
  39 // and/or sell copies of the Software, and to permit persons to whom the Software
  40 // is furnished to do so, subject to the following conditions:
  41 //
  42 // The above copyright notice and this permission notice shall be included in
  43 // all copies or substantial portions of the Software.
  44 //
  45 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  46 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
  47 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  48 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
  49 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  50 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  51 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  52 //
  53 //---------------------------------------------------------------------------------
  54 //
  55 
  56 #include "lcms2_internal.h"
  57 
  58 
  59 //----------------------------------------------------------------------------------
  60 
  61 // Optimization for 8 bits, Shaper-CLUT (3 inputs only)
  62 typedef struct {
  63 
  64     cmsContext ContextID;
  65 
  66     const cmsInterpParams* p;   // Tetrahedrical interpolation parameters. This is a not-owned pointer.
  67 
  68     cmsUInt16Number rx[256], ry[256], rz[256];
  69     cmsUInt32Number X0[256], Y0[256], Z0[256];  // Precomputed nodes and offsets for 8-bit input data
  70 
  71 
  72 } Prelin8Data;
  73 
  74 
  75 // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
  76 typedef struct {
  77 
  78     cmsContext ContextID;
  79 
  80     // Number of channels
  81     int nInputs;
  82     int nOutputs;
  83 
  84     _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS];       // The maximum number of input channels is known in advance
  85     cmsInterpParams*  ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
  86 
  87     _cmsInterpFn16 EvalCLUT;            // The evaluator for 3D grid
  88     const cmsInterpParams* CLUTparams;  // (not-owned pointer)
  89 
  90 
  91     _cmsInterpFn16* EvalCurveOut16;       // Points to an array of curve evaluators in 16 bits (not-owned pointer)
  92     cmsInterpParams**  ParamsCurveOut16;  // Points to an array of references to interpolation params (not-owned pointer)
  93 
  94 
  95 } Prelin16Data;
  96 
  97 
  98 // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
  99 
 100 typedef cmsInt32Number cmsS1Fixed14Number;   // Note that this may hold more than 16 bits!
 101 
 102 #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
 103 
 104 typedef struct {
 105 
 106     cmsContext ContextID;
 107 
 108     cmsS1Fixed14Number Shaper1R[256];  // from 0..255 to 1.14  (0.0...1.0)
 109     cmsS1Fixed14Number Shaper1G[256];
 110     cmsS1Fixed14Number Shaper1B[256];
 111 
 112     cmsS1Fixed14Number Mat[3][3];     // n.14 to n.14 (needs a saturation after that)
 113     cmsS1Fixed14Number Off[3];
 114 
 115     cmsUInt16Number Shaper2R[16385];    // 1.14 to 0..255
 116     cmsUInt16Number Shaper2G[16385];
 117     cmsUInt16Number Shaper2B[16385];
 118 
 119 } MatShaper8Data;
 120 
 121 // Curves, optimization is shared between 8 and 16 bits
 122 typedef struct {
 123 
 124     cmsContext ContextID;
 125 
 126     int nCurves;                  // Number of curves
 127     int nElements;                // Elements in curves
 128     cmsUInt16Number** Curves;     // Points to a dynamically  allocated array
 129 
 130 } Curves16Data;
 131 
 132 
 133 // Simple optimizations ----------------------------------------------------------------------------------------------------------
 134 
 135 
 136 // Remove an element in linked chain
 137 static
 138 void _RemoveElement(cmsStage** head)
 139 {
 140     cmsStage* mpe = *head;
 141     cmsStage* next = mpe ->Next;
 142     *head = next;
 143     cmsStageFree(mpe);
 144 }
 145 
 146 // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
 147 static
 148 cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
 149 {
 150     cmsStage** pt = &Lut ->Elements;
 151     cmsBool AnyOpt = FALSE;
 152 
 153     while (*pt != NULL) {
 154 
 155         if ((*pt) ->Implements == UnaryOp) {
 156             _RemoveElement(pt);
 157             AnyOpt = TRUE;
 158         }
 159         else
 160             pt = &((*pt) -> Next);
 161     }
 162 
 163     return AnyOpt;
 164 }
 165 
 166 // Same, but only if two adjacent elements are found
 167 static
 168 cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
 169 {
 170     cmsStage** pt1;
 171     cmsStage** pt2;
 172     cmsBool AnyOpt = FALSE;
 173 
 174     pt1 = &Lut ->Elements;
 175     if (*pt1 == NULL) return AnyOpt;
 176 
 177     while (*pt1 != NULL) {
 178 
 179         pt2 = &((*pt1) -> Next);
 180         if (*pt2 == NULL) return AnyOpt;
 181 
 182         if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
 183             _RemoveElement(pt2);
 184             _RemoveElement(pt1);
 185             AnyOpt = TRUE;
 186         }
 187         else
 188             pt1 = &((*pt1) -> Next);
 189     }
 190 
 191     return AnyOpt;
 192 }
 193 
 194 
 195 static
 196 cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
 197 {
 198        return fabs(b - a) < 0.00001f;
 199 }
 200 
 201 static
 202 cmsBool  isFloatMatrixIdentity(const cmsMAT3* a)
 203 {
 204        cmsMAT3 Identity;
 205        int i, j;
 206 
 207        _cmsMAT3identity(&Identity);
 208 
 209        for (i = 0; i < 3; i++)
 210               for (j = 0; j < 3; j++)
 211                      if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
 212 
 213        return TRUE;
 214 }
 215 // if two adjacent matrices are found, multiply them.
 216 static
 217 cmsBool _MultiplyMatrix(cmsPipeline* Lut)
 218 {
 219        cmsStage** pt1;
 220        cmsStage** pt2;
 221        cmsStage*  chain;
 222        cmsBool AnyOpt = FALSE;
 223 
 224        pt1 = &Lut->Elements;
 225        if (*pt1 == NULL) return AnyOpt;
 226 
 227        while (*pt1 != NULL) {
 228 
 229               pt2 = &((*pt1)->Next);
 230               if (*pt2 == NULL) return AnyOpt;
 231 
 232               if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
 233 
 234                      // Get both matrices
 235                      _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
 236                      _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
 237                      cmsMAT3 res;
 238 
 239                      // Input offset and output offset should be zero to use this optimization
 240                      if (m1->Offset != NULL || m2 ->Offset != NULL ||
 241                             cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
 242                             cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
 243                             return FALSE;
 244 
 245                      // Multiply both matrices to get the result
 246                      _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
 247 
 248                      // Get the next in chain afer the matrices
 249                      chain = (*pt2)->Next;
 250 
 251                      // Remove both matrices
 252                      _RemoveElement(pt2);
 253                      _RemoveElement(pt1);
 254 
 255                      // Now what if the result is a plain identity?
 256                      if (!isFloatMatrixIdentity(&res)) {
 257 
 258                             // We can not get rid of full matrix
 259                             cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
 260                             if (Multmat == NULL) return FALSE;  // Should never happen
 261 
 262                             // Recover the chain
 263                             Multmat->Next = chain;
 264                             *pt1 = Multmat;
 265                      }
 266 
 267                      AnyOpt = TRUE;
 268               }
 269               else
 270                      pt1 = &((*pt1)->Next);
 271        }
 272 
 273        return AnyOpt;
 274 }
 275 
 276 
 277 // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
 278 // by a v4 to v2 and vice-versa. The elements are then discarded.
 279 static
 280 cmsBool PreOptimize(cmsPipeline* Lut)
 281 {
 282     cmsBool AnyOpt = FALSE, Opt;
 283 
 284     do {
 285 
 286         Opt = FALSE;
 287 
 288         // Remove all identities
 289         Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
 290 
 291         // Remove XYZ2Lab followed by Lab2XYZ
 292         Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
 293 
 294         // Remove Lab2XYZ followed by XYZ2Lab
 295         Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
 296 
 297         // Remove V4 to V2 followed by V2 to V4
 298         Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
 299 
 300         // Remove V2 to V4 followed by V4 to V2
 301         Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
 302 
 303         // Remove float pcs Lab conversions
 304         Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
 305 
 306         // Remove float pcs Lab conversions
 307         Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
 308 
 309         // Simplify matrix.
 310         Opt |= _MultiplyMatrix(Lut);
 311 
 312         if (Opt) AnyOpt = TRUE;
 313 
 314     } while (Opt);
 315 
 316     return AnyOpt;
 317 }
 318 
 319 static
 320 void Eval16nop1D(register const cmsUInt16Number Input[],
 321                  register cmsUInt16Number Output[],
 322                  register const struct _cms_interp_struc* p)
 323 {
 324     Output[0] = Input[0];
 325 
 326     cmsUNUSED_PARAMETER(p);
 327 }
 328 
 329 static
 330 void PrelinEval16(register const cmsUInt16Number Input[],
 331                   register cmsUInt16Number Output[],
 332                   register const void* D)
 333 {
 334     Prelin16Data* p16 = (Prelin16Data*) D;
 335     cmsUInt16Number  StageABC[MAX_INPUT_DIMENSIONS];
 336     cmsUInt16Number  StageDEF[cmsMAXCHANNELS];
 337     int i;
 338 
 339     for (i=0; i < p16 ->nInputs; i++) {
 340 
 341         p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
 342     }
 343 
 344     p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
 345 
 346     for (i=0; i < p16 ->nOutputs; i++) {
 347 
 348         p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
 349     }
 350 }
 351 
 352 
 353 static
 354 void PrelinOpt16free(cmsContext ContextID, void* ptr)
 355 {
 356     Prelin16Data* p16 = (Prelin16Data*) ptr;
 357 
 358     _cmsFree(ContextID, p16 ->EvalCurveOut16);
 359     _cmsFree(ContextID, p16 ->ParamsCurveOut16);
 360 
 361     _cmsFree(ContextID, p16);
 362 }
 363 
 364 static
 365 void* Prelin16dup(cmsContext ContextID, const void* ptr)
 366 {
 367     Prelin16Data* p16 = (Prelin16Data*) ptr;
 368     Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
 369 
 370     if (Duped == NULL) return NULL;
 371 
 372     Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
 373     Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
 374 
 375     return Duped;
 376 }
 377 
 378 
 379 static
 380 Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
 381                                const cmsInterpParams* ColorMap,
 382                                int nInputs, cmsToneCurve** In,
 383                                int nOutputs, cmsToneCurve** Out )
 384 {
 385     int i;
 386     Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
 387     if (p16 == NULL) return NULL;
 388 
 389     p16 ->nInputs = nInputs;
 390     p16 -> nOutputs = nOutputs;
 391 
 392 
 393     for (i=0; i < nInputs; i++) {
 394 
 395         if (In == NULL) {
 396             p16 -> ParamsCurveIn16[i] = NULL;
 397             p16 -> EvalCurveIn16[i] = Eval16nop1D;
 398 
 399         }
 400         else {
 401             p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
 402             p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
 403         }
 404     }
 405 
 406     p16 ->CLUTparams = ColorMap;
 407     p16 ->EvalCLUT   = ColorMap ->Interpolation.Lerp16;
 408 
 409 
 410     p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
 411     p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
 412 
 413     for (i=0; i < nOutputs; i++) {
 414 
 415         if (Out == NULL) {
 416             p16 ->ParamsCurveOut16[i] = NULL;
 417             p16 -> EvalCurveOut16[i] = Eval16nop1D;
 418         }
 419         else {
 420 
 421             p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
 422             p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
 423         }
 424     }
 425 
 426     return p16;
 427 }
 428 
 429 
 430 
 431 // Resampling ---------------------------------------------------------------------------------
 432 
 433 #define PRELINEARIZATION_POINTS 4096
 434 
 435 // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
 436 // almost any transform. We use floating point precision and then convert from floating point to 16 bits.
 437 static
 438 int XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
 439 {
 440     cmsPipeline* Lut = (cmsPipeline*) Cargo;
 441     cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
 442     cmsUInt32Number i;
 443 
 444     _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
 445     _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
 446 
 447     // From 16 bit to floating point
 448     for (i=0; i < Lut ->InputChannels; i++)
 449         InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
 450 
 451     // Evaluate in floating point
 452     cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
 453 
 454     // Back to 16 bits representation
 455     for (i=0; i < Lut ->OutputChannels; i++)
 456         Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
 457 
 458     // Always succeed
 459     return TRUE;
 460 }
 461 
 462 // Try to see if the curves of a given MPE are linear
 463 static
 464 cmsBool AllCurvesAreLinear(cmsStage* mpe)
 465 {
 466     cmsToneCurve** Curves;
 467     cmsUInt32Number i, n;
 468 
 469     Curves = _cmsStageGetPtrToCurveSet(mpe);
 470     if (Curves == NULL) return FALSE;
 471 
 472     n = cmsStageOutputChannels(mpe);
 473 
 474     for (i=0; i < n; i++) {
 475         if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
 476     }
 477 
 478     return TRUE;
 479 }
 480 
 481 // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
 482 // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
 483 static
 484 cmsBool  PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
 485                   int nChannelsOut, int nChannelsIn)
 486 {
 487     _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
 488     cmsInterpParams* p16  = Grid ->Params;
 489     cmsFloat64Number px, py, pz, pw;
 490     int        x0, y0, z0, w0;
 491     int        i, index;
 492 
 493     if (CLUT -> Type != cmsSigCLutElemType) {
 494         cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
 495         return FALSE;
 496     }
 497 
 498     if (nChannelsIn == 4) {
 499 
 500         px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
 501         py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
 502         pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
 503         pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
 504 
 505         x0 = (int) floor(px);
 506         y0 = (int) floor(py);
 507         z0 = (int) floor(pz);
 508         w0 = (int) floor(pw);
 509 
 510         if (((px - x0) != 0) ||
 511             ((py - y0) != 0) ||
 512             ((pz - z0) != 0) ||
 513             ((pw - w0) != 0)) return FALSE; // Not on exact node
 514 
 515         index = p16 -> opta[3] * x0 +
 516                 p16 -> opta[2] * y0 +
 517                 p16 -> opta[1] * z0 +
 518                 p16 -> opta[0] * w0;
 519     }
 520     else
 521         if (nChannelsIn == 3) {
 522 
 523             px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
 524             py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
 525             pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
 526 
 527             x0 = (int) floor(px);
 528             y0 = (int) floor(py);
 529             z0 = (int) floor(pz);
 530 
 531             if (((px - x0) != 0) ||
 532                 ((py - y0) != 0) ||
 533                 ((pz - z0) != 0)) return FALSE;  // Not on exact node
 534 
 535             index = p16 -> opta[2] * x0 +
 536                     p16 -> opta[1] * y0 +
 537                     p16 -> opta[0] * z0;
 538         }
 539         else
 540             if (nChannelsIn == 1) {
 541 
 542                 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
 543 
 544                 x0 = (int) floor(px);
 545 
 546                 if (((px - x0) != 0)) return FALSE; // Not on exact node
 547 
 548                 index = p16 -> opta[0] * x0;
 549             }
 550             else {
 551                 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
 552                 return FALSE;
 553             }
 554 
 555             for (i=0; i < nChannelsOut; i++)
 556                 Grid -> Tab.T[index + i] = Value[i];
 557 
 558             return TRUE;
 559 }
 560 
 561 // Auxiliary, to see if two values are equal or very different
 562 static
 563 cmsBool WhitesAreEqual(int n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
 564 {
 565     int i;
 566 
 567     for (i=0; i < n; i++) {
 568 
 569         if (abs(White1[i] - White2[i]) > 0xf000) return TRUE;  // Values are so extremely different that the fixup should be avoided
 570         if (White1[i] != White2[i]) return FALSE;
 571     }
 572     return TRUE;
 573 }
 574 
 575 
 576 // Locate the node for the white point and fix it to pure white in order to avoid scum dot.
 577 static
 578 cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
 579 {
 580     cmsUInt16Number *WhitePointIn, *WhitePointOut;
 581     cmsUInt16Number  WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
 582     cmsUInt32Number i, nOuts, nIns;
 583     cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
 584 
 585     if (!_cmsEndPointsBySpace(EntryColorSpace,
 586         &WhitePointIn, NULL, &nIns)) return FALSE;
 587 
 588     if (!_cmsEndPointsBySpace(ExitColorSpace,
 589         &WhitePointOut, NULL, &nOuts)) return FALSE;
 590 
 591     // It needs to be fixed?
 592     if (Lut ->InputChannels != nIns) return FALSE;
 593     if (Lut ->OutputChannels != nOuts) return FALSE;
 594 
 595     cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
 596 
 597     if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
 598 
 599     // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
 600     if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
 601         if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
 602             if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
 603                 if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
 604                     return FALSE;
 605 
 606     // We need to interpolate white points of both, pre and post curves
 607     if (PreLin) {
 608 
 609         cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
 610 
 611         for (i=0; i < nIns; i++) {
 612             WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
 613         }
 614     }
 615     else {
 616         for (i=0; i < nIns; i++)
 617             WhiteIn[i] = WhitePointIn[i];
 618     }
 619 
 620     // If any post-linearization, we need to find how is represented white before the curve, do
 621     // a reverse interpolation in this case.
 622     if (PostLin) {
 623 
 624         cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
 625 
 626         for (i=0; i < nOuts; i++) {
 627 
 628             cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
 629             if (InversePostLin == NULL) {
 630                 WhiteOut[i] = WhitePointOut[i];
 631 
 632             } else {
 633 
 634                 WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
 635                 cmsFreeToneCurve(InversePostLin);
 636             }
 637         }
 638     }
 639     else {
 640         for (i=0; i < nOuts; i++)
 641             WhiteOut[i] = WhitePointOut[i];
 642     }
 643 
 644     // Ok, proceed with patching. May fail and we don't care if it fails
 645     PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
 646 
 647     return TRUE;
 648 }
 649 
 650 // -----------------------------------------------------------------------------------------------------------------------------------------------
 651 // This function creates simple LUT from complex ones. The generated LUT has an optional set of
 652 // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
 653 // These curves have to exist in the original LUT in order to be used in the simplified output.
 654 // Caller may also use the flags to allow this feature.
 655 // LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
 656 // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
 657 // -----------------------------------------------------------------------------------------------------------------------------------------------
 658 
 659 static
 660 cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
 661 {
 662     cmsPipeline* Src = NULL;
 663     cmsPipeline* Dest = NULL;
 664     cmsStage* mpe;
 665     cmsStage* CLUT;
 666     cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
 667     int nGridPoints;
 668     cmsColorSpaceSignature ColorSpace, OutputColorSpace;
 669     cmsStage *NewPreLin = NULL;
 670     cmsStage *NewPostLin = NULL;
 671     _cmsStageCLutData* DataCLUT;
 672     cmsToneCurve** DataSetIn;
 673     cmsToneCurve** DataSetOut;
 674     Prelin16Data* p16;
 675 
 676     // This is a loosy optimization! does not apply in floating-point cases
 677     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
 678 
 679     ColorSpace       = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
 680     OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
 681     nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
 682 
 683     // For empty LUTs, 2 points are enough
 684     if (cmsPipelineStageCount(*Lut) == 0)
 685         nGridPoints = 2;
 686 
 687     Src = *Lut;
 688 
 689     // Named color pipelines cannot be optimized either
 690     for (mpe = cmsPipelineGetPtrToFirstStage(Src);
 691         mpe != NULL;
 692         mpe = cmsStageNext(mpe)) {
 693             if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
 694     }
 695 
 696     // Allocate an empty LUT
 697     Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
 698     if (!Dest) return FALSE;
 699 
 700     // Prelinearization tables are kept unless indicated by flags
 701     if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
 702 
 703         // Get a pointer to the prelinearization element
 704         cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
 705 
 706         // Check if suitable
 707         if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
 708 
 709             // Maybe this is a linear tram, so we can avoid the whole stuff
 710             if (!AllCurvesAreLinear(PreLin)) {
 711 
 712                 // All seems ok, proceed.
 713                 NewPreLin = cmsStageDup(PreLin);
 714                 if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
 715                     goto Error;
 716 
 717                 // Remove prelinearization. Since we have duplicated the curve
 718                 // in destination LUT, the sampling shoud be applied after this stage.
 719                 cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
 720             }
 721         }
 722     }
 723 
 724     // Allocate the CLUT
 725     CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
 726     if (CLUT == NULL) return FALSE;
 727 
 728     // Add the CLUT to the destination LUT
 729     if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
 730         goto Error;
 731     }
 732 
 733     // Postlinearization tables are kept unless indicated by flags
 734     if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
 735 
 736         // Get a pointer to the postlinearization if present
 737         cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
 738 
 739         // Check if suitable
 740         if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
 741 
 742             // Maybe this is a linear tram, so we can avoid the whole stuff
 743             if (!AllCurvesAreLinear(PostLin)) {
 744 
 745                 // All seems ok, proceed.
 746                 NewPostLin = cmsStageDup(PostLin);
 747                 if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
 748                     goto Error;
 749 
 750                 // In destination LUT, the sampling shoud be applied after this stage.
 751                 cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
 752             }
 753         }
 754     }
 755 
 756     // Now its time to do the sampling. We have to ignore pre/post linearization
 757     // The source LUT whithout pre/post curves is passed as parameter.
 758     if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
 759 Error:
 760         // Ops, something went wrong, Restore stages
 761         if (KeepPreLin != NULL) {
 762             if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
 763                 _cmsAssert(0); // This never happens
 764             }
 765         }
 766         if (KeepPostLin != NULL) {
 767             if (!cmsPipelineInsertStage(Src, cmsAT_END,   KeepPostLin)) {
 768                 _cmsAssert(0); // This never happens
 769             }
 770         }
 771         cmsPipelineFree(Dest);
 772         return FALSE;
 773     }
 774 
 775     // Done.
 776 
 777     if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
 778     if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
 779     cmsPipelineFree(Src);
 780 
 781     DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
 782 
 783     if (NewPreLin == NULL) DataSetIn = NULL;
 784     else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
 785 
 786     if (NewPostLin == NULL) DataSetOut = NULL;
 787     else  DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
 788 
 789 
 790     if (DataSetIn == NULL && DataSetOut == NULL) {
 791 
 792         _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
 793     }
 794     else {
 795 
 796         p16 = PrelinOpt16alloc(Dest ->ContextID,
 797             DataCLUT ->Params,
 798             Dest ->InputChannels,
 799             DataSetIn,
 800             Dest ->OutputChannels,
 801             DataSetOut);
 802 
 803         _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
 804     }
 805 
 806 
 807     // Don't fix white on absolute colorimetric
 808     if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
 809         *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
 810 
 811     if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
 812 
 813         FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
 814     }
 815 
 816     *Lut = Dest;
 817     return TRUE;
 818 
 819     cmsUNUSED_PARAMETER(Intent);
 820 }
 821 
 822 
 823 // -----------------------------------------------------------------------------------------------------------------------------------------------
 824 // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
 825 // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
 826 // for RGB transforms. See the paper for more details
 827 // -----------------------------------------------------------------------------------------------------------------------------------------------
 828 
 829 
 830 // Normalize endpoints by slope limiting max and min. This assures endpoints as well.
 831 // Descending curves are handled as well.
 832 static
 833 void SlopeLimiting(cmsToneCurve* g)
 834 {
 835     int BeginVal, EndVal;
 836     int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5);   // Cutoff at 2%
 837     int AtEnd   = g ->nEntries - AtBegin - 1;                                  // And 98%
 838     cmsFloat64Number Val, Slope, beta;
 839     int i;
 840 
 841     if (cmsIsToneCurveDescending(g)) {
 842         BeginVal = 0xffff; EndVal = 0;
 843     }
 844     else {
 845         BeginVal = 0; EndVal = 0xffff;
 846     }
 847 
 848     // Compute slope and offset for begin of curve
 849     Val   = g ->Table16[AtBegin];
 850     Slope = (Val - BeginVal) / AtBegin;
 851     beta  = Val - Slope * AtBegin;
 852 
 853     for (i=0; i < AtBegin; i++)
 854         g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
 855 
 856     // Compute slope and offset for the end
 857     Val   = g ->Table16[AtEnd];
 858     Slope = (EndVal - Val) / AtBegin;   // AtBegin holds the X interval, which is same in both cases
 859     beta  = Val - Slope * AtEnd;
 860 
 861     for (i = AtEnd; i < (int) g ->nEntries; i++)
 862         g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
 863 }
 864 
 865 
 866 // Precomputes tables for 8-bit on input devicelink.
 867 static
 868 Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
 869 {
 870     int i;
 871     cmsUInt16Number Input[3];
 872     cmsS15Fixed16Number v1, v2, v3;
 873     Prelin8Data* p8;
 874 
 875     p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
 876     if (p8 == NULL) return NULL;
 877 
 878     // Since this only works for 8 bit input, values comes always as x * 257,
 879     // we can safely take msb byte (x << 8 + x)
 880 
 881     for (i=0; i < 256; i++) {
 882 
 883         if (G != NULL) {
 884 
 885             // Get 16-bit representation
 886             Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
 887             Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
 888             Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
 889         }
 890         else {
 891             Input[0] = FROM_8_TO_16(i);
 892             Input[1] = FROM_8_TO_16(i);
 893             Input[2] = FROM_8_TO_16(i);
 894         }
 895 
 896 
 897         // Move to 0..1.0 in fixed domain
 898         v1 = _cmsToFixedDomain(Input[0] * p -> Domain[0]);
 899         v2 = _cmsToFixedDomain(Input[1] * p -> Domain[1]);
 900         v3 = _cmsToFixedDomain(Input[2] * p -> Domain[2]);
 901 
 902         // Store the precalculated table of nodes
 903         p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
 904         p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
 905         p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
 906 
 907         // Store the precalculated table of offsets
 908         p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
 909         p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
 910         p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
 911     }
 912 
 913     p8 ->ContextID = ContextID;
 914     p8 ->p = p;
 915 
 916     return p8;
 917 }
 918 
 919 static
 920 void Prelin8free(cmsContext ContextID, void* ptr)
 921 {
 922     _cmsFree(ContextID, ptr);
 923 }
 924 
 925 static
 926 void* Prelin8dup(cmsContext ContextID, const void* ptr)
 927 {
 928     return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
 929 }
 930 
 931 
 932 
 933 // A optimized interpolation for 8-bit input.
 934 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
 935 static
 936 void PrelinEval8(register const cmsUInt16Number Input[],
 937                   register cmsUInt16Number Output[],
 938                   register const void* D)
 939 {
 940 
 941     cmsUInt8Number         r, g, b;
 942     cmsS15Fixed16Number    rx, ry, rz;
 943     cmsS15Fixed16Number    c0, c1, c2, c3, Rest;
 944     int                    OutChan;
 945     register cmsS15Fixed16Number    X0, X1, Y0, Y1, Z0, Z1;
 946     Prelin8Data* p8 = (Prelin8Data*) D;
 947     register const cmsInterpParams* p = p8 ->p;
 948     int                    TotalOut = p -> nOutputs;
 949     const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
 950 
 951     r = Input[0] >> 8;
 952     g = Input[1] >> 8;
 953     b = Input[2] >> 8;
 954 
 955     X0 = X1 = p8->X0[r];
 956     Y0 = Y1 = p8->Y0[g];
 957     Z0 = Z1 = p8->Z0[b];
 958 
 959     rx = p8 ->rx[r];
 960     ry = p8 ->ry[g];
 961     rz = p8 ->rz[b];
 962 
 963     X1 = X0 + ((rx == 0) ? 0 : p ->opta[2]);
 964     Y1 = Y0 + ((ry == 0) ? 0 : p ->opta[1]);
 965     Z1 = Z0 + ((rz == 0) ? 0 : p ->opta[0]);
 966 
 967 
 968     // These are the 6 Tetrahedral
 969     for (OutChan=0; OutChan < TotalOut; OutChan++) {
 970 
 971         c0 = DENS(X0, Y0, Z0);
 972 
 973         if (rx >= ry && ry >= rz)
 974         {
 975             c1 = DENS(X1, Y0, Z0) - c0;
 976             c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
 977             c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
 978         }
 979         else
 980             if (rx >= rz && rz >= ry)
 981             {
 982                 c1 = DENS(X1, Y0, Z0) - c0;
 983                 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
 984                 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
 985             }
 986             else
 987                 if (rz >= rx && rx >= ry)
 988                 {
 989                     c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
 990                     c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
 991                     c3 = DENS(X0, Y0, Z1) - c0;
 992                 }
 993                 else
 994                     if (ry >= rx && rx >= rz)
 995                     {
 996                         c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
 997                         c2 = DENS(X0, Y1, Z0) - c0;
 998                         c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
 999                     }
1000                     else
1001                         if (ry >= rz && rz >= rx)
1002                         {
1003                             c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1004                             c2 = DENS(X0, Y1, Z0) - c0;
1005                             c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
1006                         }
1007                         else
1008                             if (rz >= ry && ry >= rx)
1009                             {
1010                                 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1011                                 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
1012                                 c3 = DENS(X0, Y0, Z1) - c0;
1013                             }
1014                             else  {
1015                                 c1 = c2 = c3 = 0;
1016                             }
1017 
1018 
1019                             Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
1020                             Output[OutChan] = (cmsUInt16Number)c0 + ((Rest + (Rest>>16))>>16);
1021 
1022     }
1023 }
1024 
1025 #undef DENS
1026 
1027 
1028 // Curves that contain wide empty areas are not optimizeable
1029 static
1030 cmsBool IsDegenerated(const cmsToneCurve* g)
1031 {
1032     int i, Zeros = 0, Poles = 0;
1033     int nEntries = g ->nEntries;
1034 
1035     for (i=0; i < nEntries; i++) {
1036 
1037         if (g ->Table16[i] == 0x0000) Zeros++;
1038         if (g ->Table16[i] == 0xffff) Poles++;
1039     }
1040 
1041     if (Zeros == 1 && Poles == 1) return FALSE;  // For linear tables
1042     if (Zeros > (nEntries / 20)) return TRUE;  // Degenerated, many zeros
1043     if (Poles > (nEntries / 20)) return TRUE;  // Degenerated, many poles
1044 
1045     return FALSE;
1046 }
1047 
1048 // --------------------------------------------------------------------------------------------------------------
1049 // We need xput over here
1050 
1051 static
1052 cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1053 {
1054     cmsPipeline* OriginalLut;
1055     int nGridPoints;
1056     cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1057     cmsUInt32Number t, i;
1058     cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1059     cmsBool lIsSuitable, lIsLinear;
1060     cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1061     cmsStage* OptimizedCLUTmpe;
1062     cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1063     cmsStage* OptimizedPrelinMpe;
1064     cmsStage* mpe;
1065     cmsToneCurve** OptimizedPrelinCurves;
1066     _cmsStageCLutData* OptimizedPrelinCLUT;
1067 
1068 
1069     // This is a loosy optimization! does not apply in floating-point cases
1070     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1071 
1072     // Only on chunky RGB
1073     if (T_COLORSPACE(*InputFormat)  != PT_RGB) return FALSE;
1074     if (T_PLANAR(*InputFormat)) return FALSE;
1075 
1076     if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1077     if (T_PLANAR(*OutputFormat)) return FALSE;
1078 
1079     // On 16 bits, user has to specify the feature
1080     if (!_cmsFormatterIs8bit(*InputFormat)) {
1081         if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1082     }
1083 
1084     OriginalLut = *Lut;
1085 
1086    // Named color pipelines cannot be optimized either
1087    for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
1088          mpe != NULL;
1089          mpe = cmsStageNext(mpe)) {
1090             if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1091     }
1092 
1093     ColorSpace       = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
1094     OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
1095     nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1096 
1097     // Empty gamma containers
1098     memset(Trans, 0, sizeof(Trans));
1099     memset(TransReverse, 0, sizeof(TransReverse));
1100 
1101     // If the last stage of the original lut are curves, and those curves are
1102     // degenerated, it is likely the transform is squeezing and clipping
1103     // the output from previous CLUT. We cannot optimize this case
1104     {
1105         cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1106 
1107         if (cmsStageType(last) == cmsSigCurveSetElemType) {
1108 
1109             _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1110             for (i = 0; i < Data->nCurves; i++) {
1111                 if (IsDegenerated(Data->TheCurves[i]))
1112                     goto Error;
1113             }
1114         }
1115     }
1116 
1117     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1118         Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1119         if (Trans[t] == NULL) goto Error;
1120     }
1121 
1122     // Populate the curves
1123     for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1124 
1125         v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1126 
1127         // Feed input with a gray ramp
1128         for (t=0; t < OriginalLut ->InputChannels; t++)
1129             In[t] = v;
1130 
1131         // Evaluate the gray value
1132         cmsPipelineEvalFloat(In, Out, OriginalLut);
1133 
1134         // Store result in curve
1135         for (t=0; t < OriginalLut ->InputChannels; t++)
1136             Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1137     }
1138 
1139     // Slope-limit the obtained curves
1140     for (t = 0; t < OriginalLut ->InputChannels; t++)
1141         SlopeLimiting(Trans[t]);
1142 
1143     // Check for validity
1144     lIsSuitable = TRUE;
1145     lIsLinear   = TRUE;
1146     for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1147 
1148         // Exclude if already linear
1149         if (!cmsIsToneCurveLinear(Trans[t]))
1150             lIsLinear = FALSE;
1151 
1152         // Exclude if non-monotonic
1153         if (!cmsIsToneCurveMonotonic(Trans[t]))
1154             lIsSuitable = FALSE;
1155 
1156         if (IsDegenerated(Trans[t]))
1157             lIsSuitable = FALSE;
1158     }
1159 
1160     // If it is not suitable, just quit
1161     if (!lIsSuitable) goto Error;
1162 
1163     // Invert curves if possible
1164     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1165         TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1166         if (TransReverse[t] == NULL) goto Error;
1167     }
1168 
1169     // Now inset the reversed curves at the begin of transform
1170     LutPlusCurves = cmsPipelineDup(OriginalLut);
1171     if (LutPlusCurves == NULL) goto Error;
1172 
1173     if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1174         goto Error;
1175 
1176     // Create the result LUT
1177     OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1178     if (OptimizedLUT == NULL) goto Error;
1179 
1180     OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1181 
1182     // Create and insert the curves at the beginning
1183     if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1184         goto Error;
1185 
1186     // Allocate the CLUT for result
1187     OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1188 
1189     // Add the CLUT to the destination LUT
1190     if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1191         goto Error;
1192 
1193     // Resample the LUT
1194     if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1195 
1196     // Free resources
1197     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1198 
1199         if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1200         if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1201     }
1202 
1203     cmsPipelineFree(LutPlusCurves);
1204 
1205 
1206     OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1207     OptimizedPrelinCLUT   = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1208 
1209     // Set the evaluator if 8-bit
1210     if (_cmsFormatterIs8bit(*InputFormat)) {
1211 
1212         Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1213                                                 OptimizedPrelinCLUT ->Params,
1214                                                 OptimizedPrelinCurves);
1215         if (p8 == NULL) return FALSE;
1216 
1217         _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1218 
1219     }
1220     else
1221     {
1222         Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1223             OptimizedPrelinCLUT ->Params,
1224             3, OptimizedPrelinCurves, 3, NULL);
1225         if (p16 == NULL) return FALSE;
1226 
1227         _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1228 
1229     }
1230 
1231     // Don't fix white on absolute colorimetric
1232     if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1233         *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1234 
1235     if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1236 
1237         if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1238 
1239             return FALSE;
1240         }
1241     }
1242 
1243     // And return the obtained LUT
1244 
1245     cmsPipelineFree(OriginalLut);
1246     *Lut = OptimizedLUT;
1247     return TRUE;
1248 
1249 Error:
1250 
1251     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1252 
1253         if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1254         if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1255     }
1256 
1257     if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1258     if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1259 
1260     return FALSE;
1261 
1262     cmsUNUSED_PARAMETER(Intent);
1263 }
1264 
1265 
1266 // Curves optimizer ------------------------------------------------------------------------------------------------------------------
1267 
1268 static
1269 void CurvesFree(cmsContext ContextID, void* ptr)
1270 {
1271      Curves16Data* Data = (Curves16Data*) ptr;
1272      int i;
1273 
1274      for (i=0; i < Data -> nCurves; i++) {
1275 
1276          _cmsFree(ContextID, Data ->Curves[i]);
1277      }
1278 
1279      _cmsFree(ContextID, Data ->Curves);
1280      _cmsFree(ContextID, ptr);
1281 }
1282 
1283 static
1284 void* CurvesDup(cmsContext ContextID, const void* ptr)
1285 {
1286     Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1287     int i;
1288 
1289     if (Data == NULL) return NULL;
1290 
1291     Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1292 
1293     for (i=0; i < Data -> nCurves; i++) {
1294         Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1295     }
1296 
1297     return (void*) Data;
1298 }
1299 
1300 // Precomputes tables for 8-bit on input devicelink.
1301 static
1302 Curves16Data* CurvesAlloc(cmsContext ContextID, int nCurves, int nElements, cmsToneCurve** G)
1303 {
1304     int i, j;
1305     Curves16Data* c16;
1306 
1307     c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1308     if (c16 == NULL) return NULL;
1309 
1310     c16 ->nCurves = nCurves;
1311     c16 ->nElements = nElements;
1312 
1313     c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1314     if (c16 ->Curves == NULL) return NULL;
1315 
1316     for (i=0; i < nCurves; i++) {
1317 
1318         c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1319 
1320         if (c16->Curves[i] == NULL) {
1321 
1322             for (j=0; j < i; j++) {
1323                 _cmsFree(ContextID, c16->Curves[j]);
1324             }
1325             _cmsFree(ContextID, c16->Curves);
1326             _cmsFree(ContextID, c16);
1327             return NULL;
1328         }
1329 
1330         if (nElements == 256) {
1331 
1332             for (j=0; j < nElements; j++) {
1333 
1334                 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1335             }
1336         }
1337         else {
1338 
1339             for (j=0; j < nElements; j++) {
1340                 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1341             }
1342         }
1343     }
1344 
1345     return c16;
1346 }
1347 
1348 static
1349 void FastEvaluateCurves8(register const cmsUInt16Number In[],
1350                           register cmsUInt16Number Out[],
1351                           register const void* D)
1352 {
1353     Curves16Data* Data = (Curves16Data*) D;
1354     cmsUInt8Number x;
1355     int i;
1356 
1357     for (i=0; i < Data ->nCurves; i++) {
1358 
1359          x = (In[i] >> 8);
1360          Out[i] = Data -> Curves[i][x];
1361     }
1362 }
1363 
1364 
1365 static
1366 void FastEvaluateCurves16(register const cmsUInt16Number In[],
1367                           register cmsUInt16Number Out[],
1368                           register const void* D)
1369 {
1370     Curves16Data* Data = (Curves16Data*) D;
1371     int i;
1372 
1373     for (i=0; i < Data ->nCurves; i++) {
1374          Out[i] = Data -> Curves[i][In[i]];
1375     }
1376 }
1377 
1378 
1379 static
1380 void FastIdentity16(register const cmsUInt16Number In[],
1381                     register cmsUInt16Number Out[],
1382                     register const void* D)
1383 {
1384     cmsPipeline* Lut = (cmsPipeline*) D;
1385     cmsUInt32Number i;
1386 
1387     for (i=0; i < Lut ->InputChannels; i++) {
1388          Out[i] = In[i];
1389     }
1390 }
1391 
1392 
1393 // If the target LUT holds only curves, the optimization procedure is to join all those
1394 // curves together. That only works on curves and does not work on matrices.
1395 static
1396 cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1397 {
1398     cmsToneCurve** GammaTables = NULL;
1399     cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1400     cmsUInt32Number i, j;
1401     cmsPipeline* Src = *Lut;
1402     cmsPipeline* Dest = NULL;
1403     cmsStage* mpe;
1404     cmsStage* ObtainedCurves = NULL;
1405 
1406 
1407     // This is a loosy optimization! does not apply in floating-point cases
1408     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1409 
1410     //  Only curves in this LUT?
1411     for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1412          mpe != NULL;
1413          mpe = cmsStageNext(mpe)) {
1414             if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1415     }
1416 
1417     // Allocate an empty LUT
1418     Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1419     if (Dest == NULL) return FALSE;
1420 
1421     // Create target curves
1422     GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1423     if (GammaTables == NULL) goto Error;
1424 
1425     for (i=0; i < Src ->InputChannels; i++) {
1426         GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1427         if (GammaTables[i] == NULL) goto Error;
1428     }
1429 
1430     // Compute 16 bit result by using floating point
1431     for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1432 
1433         for (j=0; j < Src ->InputChannels; j++)
1434             InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1435 
1436         cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1437 
1438         for (j=0; j < Src ->InputChannels; j++)
1439             GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1440     }
1441 
1442     ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1443     if (ObtainedCurves == NULL) goto Error;
1444 
1445     for (i=0; i < Src ->InputChannels; i++) {
1446         cmsFreeToneCurve(GammaTables[i]);
1447         GammaTables[i] = NULL;
1448     }
1449 
1450     if (GammaTables != NULL) {
1451         _cmsFree(Src->ContextID, GammaTables);
1452         GammaTables = NULL;
1453     }
1454 
1455     // Maybe the curves are linear at the end
1456     if (!AllCurvesAreLinear(ObtainedCurves)) {
1457 
1458         if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1459             goto Error;
1460 
1461         // If the curves are to be applied in 8 bits, we can save memory
1462         if (_cmsFormatterIs8bit(*InputFormat)) {
1463 
1464             _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data;
1465              Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1466 
1467              if (c16 == NULL) goto Error;
1468              *dwFlags |= cmsFLAGS_NOCACHE;
1469             _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1470 
1471         }
1472         else {
1473 
1474             _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1475              Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1476 
1477              if (c16 == NULL) goto Error;
1478              *dwFlags |= cmsFLAGS_NOCACHE;
1479             _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1480         }
1481     }
1482     else {
1483 
1484         // LUT optimizes to nothing. Set the identity LUT
1485         cmsStageFree(ObtainedCurves);
1486 
1487         if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1488             goto Error;
1489 
1490         *dwFlags |= cmsFLAGS_NOCACHE;
1491         _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1492     }
1493 
1494     // We are done.
1495     cmsPipelineFree(Src);
1496     *Lut = Dest;
1497     return TRUE;
1498 
1499 Error:
1500 
1501     if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1502     if (GammaTables != NULL) {
1503         for (i=0; i < Src ->InputChannels; i++) {
1504             if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1505         }
1506 
1507         _cmsFree(Src ->ContextID, GammaTables);
1508     }
1509 
1510     if (Dest != NULL) cmsPipelineFree(Dest);
1511     return FALSE;
1512 
1513     cmsUNUSED_PARAMETER(Intent);
1514     cmsUNUSED_PARAMETER(InputFormat);
1515     cmsUNUSED_PARAMETER(OutputFormat);
1516     cmsUNUSED_PARAMETER(dwFlags);
1517 }
1518 
1519 // -------------------------------------------------------------------------------------------------------------------------------------
1520 // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1521 
1522 
1523 static
1524 void  FreeMatShaper(cmsContext ContextID, void* Data)
1525 {
1526     if (Data != NULL) _cmsFree(ContextID, Data);
1527 }
1528 
1529 static
1530 void* DupMatShaper(cmsContext ContextID, const void* Data)
1531 {
1532     return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1533 }
1534 
1535 
1536 // A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
1537 // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1538 // in total about 50K, and the performance boost is huge!
1539 static
1540 void MatShaperEval16(register const cmsUInt16Number In[],
1541                      register cmsUInt16Number Out[],
1542                      register const void* D)
1543 {
1544     MatShaper8Data* p = (MatShaper8Data*) D;
1545     cmsS1Fixed14Number l1, l2, l3, r, g, b;
1546     cmsUInt32Number ri, gi, bi;
1547 
1548     // In this case (and only in this case!) we can use this simplification since
1549     // In[] is assured to come from a 8 bit number. (a << 8 | a)
1550     ri = In[0] & 0xFF;
1551     gi = In[1] & 0xFF;
1552     bi = In[2] & 0xFF;
1553 
1554     // Across first shaper, which also converts to 1.14 fixed point
1555     r = p->Shaper1R[ri];
1556     g = p->Shaper1G[gi];
1557     b = p->Shaper1B[bi];
1558 
1559     // Evaluate the matrix in 1.14 fixed point
1560     l1 =  (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1561     l2 =  (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1562     l3 =  (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1563 
1564     // Now we have to clip to 0..1.0 range
1565     ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384 : l1);
1566     gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384 : l2);
1567     bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384 : l3);
1568 
1569     // And across second shaper,
1570     Out[0] = p->Shaper2R[ri];
1571     Out[1] = p->Shaper2G[gi];
1572     Out[2] = p->Shaper2B[bi];
1573 
1574 }
1575 
1576 // This table converts from 8 bits to 1.14 after applying the curve
1577 static
1578 void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1579 {
1580     int i;
1581     cmsFloat32Number R, y;
1582 
1583     for (i=0; i < 256; i++) {
1584 
1585         R   = (cmsFloat32Number) (i / 255.0);
1586         y   = cmsEvalToneCurveFloat(Curve, R);
1587 
1588         Table[i] = DOUBLE_TO_1FIXED14(y);
1589     }
1590 }
1591 
1592 // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1593 static
1594 void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1595 {
1596     int i;
1597     cmsFloat32Number R, Val;
1598 
1599     for (i=0; i < 16385; i++) {
1600 
1601         R   = (cmsFloat32Number) (i / 16384.0);
1602         Val = cmsEvalToneCurveFloat(Curve, R);    // Val comes 0..1.0
1603 
1604         if (Is8BitsOutput) {
1605 
1606             // If 8 bits output, we can optimize further by computing the / 257 part.
1607             // first we compute the resulting byte and then we store the byte times
1608             // 257. This quantization allows to round very quick by doing a >> 8, but
1609             // since the low byte is always equal to msb, we can do a & 0xff and this works!
1610             cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1611             cmsUInt8Number  b = FROM_16_TO_8(w);
1612 
1613             Table[i] = FROM_8_TO_16(b);
1614         }
1615         else Table[i]  = _cmsQuickSaturateWord(Val * 65535.0);
1616     }
1617 }
1618 
1619 // Compute the matrix-shaper structure
1620 static
1621 cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1622 {
1623     MatShaper8Data* p;
1624     int i, j;
1625     cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1626 
1627     // Allocate a big chuck of memory to store precomputed tables
1628     p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1629     if (p == NULL) return FALSE;
1630 
1631     p -> ContextID = Dest -> ContextID;
1632 
1633     // Precompute tables
1634     FillFirstShaper(p ->Shaper1R, Curve1[0]);
1635     FillFirstShaper(p ->Shaper1G, Curve1[1]);
1636     FillFirstShaper(p ->Shaper1B, Curve1[2]);
1637 
1638     FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1639     FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1640     FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1641 
1642     // Convert matrix to nFixed14. Note that those values may take more than 16 bits as
1643     for (i=0; i < 3; i++) {
1644         for (j=0; j < 3; j++) {
1645             p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1646         }
1647     }
1648 
1649     for (i=0; i < 3; i++) {
1650 
1651         if (Off == NULL) {
1652             p ->Off[i] = 0;
1653         }
1654         else {
1655             p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1656         }
1657     }
1658 
1659     // Mark as optimized for faster formatter
1660     if (Is8Bits)
1661         *OutputFormat |= OPTIMIZED_SH(1);
1662 
1663     // Fill function pointers
1664     _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1665     return TRUE;
1666 }
1667 
1668 //  8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1669 static
1670 cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1671 {
1672        cmsStage* Curve1, *Curve2;
1673        cmsStage* Matrix1, *Matrix2;
1674        cmsMAT3 res;
1675        cmsBool IdentityMat;
1676        cmsPipeline* Dest, *Src;
1677        cmsFloat64Number* Offset;
1678 
1679        // Only works on RGB to RGB
1680        if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1681 
1682        // Only works on 8 bit input
1683        if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1684 
1685        // Seems suitable, proceed
1686        Src = *Lut;
1687 
1688        // Check for:
1689        //
1690        //    shaper-matrix-matrix-shaper
1691        //    shaper-matrix-shaper
1692        //
1693        // Both of those constructs are possible (first because abs. colorimetric).
1694        // additionally, In the first case, the input matrix offset should be zero.
1695 
1696        IdentityMat = FALSE;
1697        if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1698               cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1699               &Curve1, &Matrix1, &Matrix2, &Curve2)) {
1700 
1701               // Get both matrices
1702               _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1703               _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1704 
1705               // Input offset should be zero
1706               if (Data1->Offset != NULL) return FALSE;
1707 
1708               // Multiply both matrices to get the result
1709               _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1710 
1711               // Only 2nd matrix has offset, or it is zero
1712               Offset = Data2->Offset;
1713 
1714               // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1715               if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1716 
1717                      // We can get rid of full matrix
1718                      IdentityMat = TRUE;
1719               }
1720 
1721        }
1722        else {
1723 
1724               if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1725                      cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1726                      &Curve1, &Matrix1, &Curve2)) {
1727 
1728                      _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1729 
1730                      // Copy the matrix to our result
1731                      memcpy(&res, Data->Double, sizeof(res));
1732 
1733                      // Preserve the Odffset (may be NULL as a zero offset)
1734                      Offset = Data->Offset;
1735 
1736                      if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1737 
1738                             // We can get rid of full matrix
1739                             IdentityMat = TRUE;
1740                      }
1741               }
1742               else
1743                      return FALSE; // Not optimizeable this time
1744 
1745        }
1746 
1747       // Allocate an empty LUT
1748     Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1749     if (!Dest) return FALSE;
1750 
1751     // Assamble the new LUT
1752     if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1753         goto Error;
1754 
1755     if (!IdentityMat) {
1756 
1757            if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1758                   goto Error;
1759     }
1760 
1761     if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1762         goto Error;
1763 
1764     // If identity on matrix, we can further optimize the curves, so call the join curves routine
1765     if (IdentityMat) {
1766 
1767         OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1768     }
1769     else {
1770         _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1771         _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1772 
1773         // In this particular optimization, caché does not help as it takes more time to deal with
1774         // the caché that with the pixel handling
1775         *dwFlags |= cmsFLAGS_NOCACHE;
1776 
1777         // Setup the optimizarion routines
1778         SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1779     }
1780 
1781     cmsPipelineFree(Src);
1782     *Lut = Dest;
1783     return TRUE;
1784 Error:
1785     // Leave Src unchanged
1786     cmsPipelineFree(Dest);
1787     return FALSE;
1788 }
1789 
1790 
1791 // -------------------------------------------------------------------------------------------------------------------------------------
1792 // Optimization plug-ins
1793 
1794 // List of optimizations
1795 typedef struct _cmsOptimizationCollection_st {
1796 
1797     _cmsOPToptimizeFn  OptimizePtr;
1798 
1799     struct _cmsOptimizationCollection_st *Next;
1800 
1801 } _cmsOptimizationCollection;
1802 
1803 
1804 // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1805 static _cmsOptimizationCollection DefaultOptimization[] = {
1806 
1807     { OptimizeByJoiningCurves,            &DefaultOptimization[1] },
1808     { OptimizeMatrixShaper,               &DefaultOptimization[2] },
1809     { OptimizeByComputingLinearization,   &DefaultOptimization[3] },
1810     { OptimizeByResampling,               NULL }
1811 };
1812 
1813 // The linked list head
1814 _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1815 
1816 
1817 // Duplicates the zone of memory used by the plug-in in the new context
1818 static
1819 void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1820                                const struct _cmsContext_struct* src)
1821 {
1822    _cmsOptimizationPluginChunkType newHead = { NULL };
1823    _cmsOptimizationCollection*  entry;
1824    _cmsOptimizationCollection*  Anterior = NULL;
1825    _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1826 
1827     _cmsAssert(ctx != NULL);
1828     _cmsAssert(head != NULL);
1829 
1830     // Walk the list copying all nodes
1831    for (entry = head->OptimizationCollection;
1832         entry != NULL;
1833         entry = entry ->Next) {
1834 
1835             _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1836 
1837             if (newEntry == NULL)
1838                 return;
1839 
1840             // We want to keep the linked list order, so this is a little bit tricky
1841             newEntry -> Next = NULL;
1842             if (Anterior)
1843                 Anterior -> Next = newEntry;
1844 
1845             Anterior = newEntry;
1846 
1847             if (newHead.OptimizationCollection == NULL)
1848                 newHead.OptimizationCollection = newEntry;
1849     }
1850 
1851   ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1852 }
1853 
1854 void  _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1855                                          const struct _cmsContext_struct* src)
1856 {
1857   if (src != NULL) {
1858 
1859         // Copy all linked list
1860        DupPluginOptimizationList(ctx, src);
1861     }
1862     else {
1863         static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1864         ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1865     }
1866 }
1867 
1868 
1869 // Register new ways to optimize
1870 cmsBool  _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1871 {
1872     cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1873     _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1874     _cmsOptimizationCollection* fl;
1875 
1876     if (Data == NULL) {
1877 
1878         ctx->OptimizationCollection = NULL;
1879         return TRUE;
1880     }
1881 
1882     // Optimizer callback is required
1883     if (Plugin ->OptimizePtr == NULL) return FALSE;
1884 
1885     fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1886     if (fl == NULL) return FALSE;
1887 
1888     // Copy the parameters
1889     fl ->OptimizePtr = Plugin ->OptimizePtr;
1890 
1891     // Keep linked list
1892     fl ->Next = ctx->OptimizationCollection;
1893 
1894     // Set the head
1895     ctx ->OptimizationCollection = fl;
1896 
1897     // All is ok
1898     return TRUE;
1899 }
1900 
1901 // The entry point for LUT optimization
1902 cmsBool _cmsOptimizePipeline(cmsContext ContextID,
1903                              cmsPipeline**    PtrLut,
1904                              int              Intent,
1905                              cmsUInt32Number* InputFormat,
1906                              cmsUInt32Number* OutputFormat,
1907                              cmsUInt32Number* dwFlags)
1908 {
1909     _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1910     _cmsOptimizationCollection* Opts;
1911     cmsBool AnySuccess = FALSE;
1912 
1913     // A CLUT is being asked, so force this specific optimization
1914     if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1915 
1916         PreOptimize(*PtrLut);
1917         return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1918     }
1919 
1920     // Anything to optimize?
1921     if ((*PtrLut) ->Elements == NULL) {
1922         _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1923         return TRUE;
1924     }
1925 
1926     // Try to get rid of identities and trivial conversions.
1927     AnySuccess = PreOptimize(*PtrLut);
1928 
1929     // After removal do we end with an identity?
1930     if ((*PtrLut) ->Elements == NULL) {
1931         _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1932         return TRUE;
1933     }
1934 
1935     // Do not optimize, keep all precision
1936     if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1937         return FALSE;
1938 
1939     // Try plug-in optimizations
1940     for (Opts = ctx->OptimizationCollection;
1941          Opts != NULL;
1942          Opts = Opts ->Next) {
1943 
1944             // If one schema succeeded, we are done
1945             if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1946 
1947                 return TRUE;    // Optimized!
1948             }
1949     }
1950 
1951    // Try built-in optimizations
1952     for (Opts = DefaultOptimization;
1953          Opts != NULL;
1954          Opts = Opts ->Next) {
1955 
1956             if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1957 
1958                 return TRUE;
1959             }
1960     }
1961 
1962     // Only simple optimizations succeeded
1963     return AnySuccess;
1964 }
1965 
1966 
1967