/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ // This file is available under and governed by the GNU General Public // License version 2 only, as published by the Free Software Foundation. // However, the following notice accompanied the original version of this // file: // //--------------------------------------------------------------------------------- // // Little Color Management System // Copyright (c) 1998-2016 Marti Maria Saguer // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // //--------------------------------------------------------------------------------- // #include "lcms2_internal.h" // Auxiliary: append a Lab identity after the given sequence of profiles // and return the transform. Lab profile is closed, rest of profiles are kept open. cmsHTRANSFORM _cmsChain2Lab(cmsContext ContextID, cmsUInt32Number nProfiles, cmsUInt32Number InputFormat, cmsUInt32Number OutputFormat, const cmsUInt32Number Intents[], const cmsHPROFILE hProfiles[], const cmsBool BPC[], const cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags) { cmsHTRANSFORM xform; cmsHPROFILE hLab; cmsHPROFILE ProfileList[256]; cmsBool BPCList[256]; cmsFloat64Number AdaptationList[256]; cmsUInt32Number IntentList[256]; cmsUInt32Number i; // This is a rather big number and there is no need of dynamic memory // since we are adding a profile, 254 + 1 = 255 and this is the limit if (nProfiles > 254) return NULL; // The output space hLab = cmsCreateLab4ProfileTHR(ContextID, NULL); if (hLab == NULL) return NULL; // Create a copy of parameters for (i=0; i < nProfiles; i++) { ProfileList[i] = hProfiles[i]; BPCList[i] = BPC[i]; AdaptationList[i] = AdaptationStates[i]; IntentList[i] = Intents[i]; } // Place Lab identity at chain's end. ProfileList[nProfiles] = hLab; BPCList[nProfiles] = 0; AdaptationList[nProfiles] = 1.0; IntentList[nProfiles] = INTENT_RELATIVE_COLORIMETRIC; // Create the transform xform = cmsCreateExtendedTransform(ContextID, nProfiles + 1, ProfileList, BPCList, IntentList, AdaptationList, NULL, 0, InputFormat, OutputFormat, dwFlags); cmsCloseProfile(hLab); return xform; } // Compute K -> L* relationship. Flags may include black point compensation. In this case, // the relationship is assumed from the profile with BPC to a black point zero. static cmsToneCurve* ComputeKToLstar(cmsContext ContextID, cmsUInt32Number nPoints, cmsUInt32Number nProfiles, const cmsUInt32Number Intents[], const cmsHPROFILE hProfiles[], const cmsBool BPC[], const cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags) { cmsToneCurve* out = NULL; cmsUInt32Number i; cmsHTRANSFORM xform; cmsCIELab Lab; cmsFloat32Number cmyk[4]; cmsFloat32Number* SampledPoints; xform = _cmsChain2Lab(ContextID, nProfiles, TYPE_CMYK_FLT, TYPE_Lab_DBL, Intents, hProfiles, BPC, AdaptationStates, dwFlags); if (xform == NULL) return NULL; SampledPoints = (cmsFloat32Number*) _cmsCalloc(ContextID, nPoints, sizeof(cmsFloat32Number)); if (SampledPoints == NULL) goto Error; for (i=0; i < nPoints; i++) { cmyk[0] = 0; cmyk[1] = 0; cmyk[2] = 0; cmyk[3] = (cmsFloat32Number) ((i * 100.0) / (nPoints-1)); cmsDoTransform(xform, cmyk, &Lab, 1); SampledPoints[i]= (cmsFloat32Number) (1.0 - Lab.L / 100.0); // Negate K for easier operation } out = cmsBuildTabulatedToneCurveFloat(ContextID, nPoints, SampledPoints); Error: cmsDeleteTransform(xform); if (SampledPoints) _cmsFree(ContextID, SampledPoints); return out; } // Compute Black tone curve on a CMYK -> CMYK transform. This is done by // using the proof direction on both profiles to find K->L* relationship // then joining both curves. dwFlags may include black point compensation. cmsToneCurve* _cmsBuildKToneCurve(cmsContext ContextID, cmsUInt32Number nPoints, cmsUInt32Number nProfiles, const cmsUInt32Number Intents[], const cmsHPROFILE hProfiles[], const cmsBool BPC[], const cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags) { cmsToneCurve *in, *out, *KTone; // Make sure CMYK -> CMYK if (cmsGetColorSpace(hProfiles[0]) != cmsSigCmykData || cmsGetColorSpace(hProfiles[nProfiles-1])!= cmsSigCmykData) return NULL; // Make sure last is an output profile if (cmsGetDeviceClass(hProfiles[nProfiles - 1]) != cmsSigOutputClass) return NULL; // Create individual curves. BPC works also as each K to L* is // computed as a BPC to zero black point in case of L* in = ComputeKToLstar(ContextID, nPoints, nProfiles - 1, Intents, hProfiles, BPC, AdaptationStates, dwFlags); if (in == NULL) return NULL; out = ComputeKToLstar(ContextID, nPoints, 1, Intents + (nProfiles - 1), &hProfiles [nProfiles - 1], BPC + (nProfiles - 1), AdaptationStates + (nProfiles - 1), dwFlags); if (out == NULL) { cmsFreeToneCurve(in); return NULL; } // Build the relationship. This effectively limits the maximum accuracy to 16 bits, but // since this is used on black-preserving LUTs, we are not losing accuracy in any case KTone = cmsJoinToneCurve(ContextID, in, out, nPoints); // Get rid of components cmsFreeToneCurve(in); cmsFreeToneCurve(out); // Something went wrong... if (KTone == NULL) return NULL; // Make sure it is monotonic if (!cmsIsToneCurveMonotonic(KTone)) { cmsFreeToneCurve(KTone); return NULL; } return KTone; } // Gamut LUT Creation ----------------------------------------------------------------------------------------- // Used by gamut & softproofing typedef struct { cmsHTRANSFORM hInput; // From whatever input color space. 16 bits to DBL cmsHTRANSFORM hForward, hReverse; // Transforms going from Lab to colorant and back cmsFloat64Number Thereshold; // The thereshold after which is considered out of gamut } GAMUTCHAIN; // This sampler does compute gamut boundaries by comparing original // values with a transform going back and forth. Values above ERR_THERESHOLD // of maximum are considered out of gamut. #define ERR_THERESHOLD 5 static int GamutSampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo) { GAMUTCHAIN* t = (GAMUTCHAIN* ) Cargo; cmsCIELab LabIn1, LabOut1; cmsCIELab LabIn2, LabOut2; cmsUInt16Number Proof[cmsMAXCHANNELS], Proof2[cmsMAXCHANNELS]; cmsFloat64Number dE1, dE2, ErrorRatio; // Assume in-gamut by default. ErrorRatio = 1.0; // Convert input to Lab cmsDoTransform(t -> hInput, In, &LabIn1, 1); // converts from PCS to colorant. This always // does return in-gamut values, cmsDoTransform(t -> hForward, &LabIn1, Proof, 1); // Now, do the inverse, from colorant to PCS. cmsDoTransform(t -> hReverse, Proof, &LabOut1, 1); memmove(&LabIn2, &LabOut1, sizeof(cmsCIELab)); // Try again, but this time taking Check as input cmsDoTransform(t -> hForward, &LabOut1, Proof2, 1); cmsDoTransform(t -> hReverse, Proof2, &LabOut2, 1); // Take difference of direct value dE1 = cmsDeltaE(&LabIn1, &LabOut1); // Take difference of converted value dE2 = cmsDeltaE(&LabIn2, &LabOut2); // if dE1 is small and dE2 is small, value is likely to be in gamut if (dE1 < t->Thereshold && dE2 < t->Thereshold) Out[0] = 0; else { // if dE1 is small and dE2 is big, undefined. Assume in gamut if (dE1 < t->Thereshold && dE2 > t->Thereshold) Out[0] = 0; else // dE1 is big and dE2 is small, clearly out of gamut if (dE1 > t->Thereshold && dE2 < t->Thereshold) Out[0] = (cmsUInt16Number) _cmsQuickFloor((dE1 - t->Thereshold) + .5); else { // dE1 is big and dE2 is also big, could be due to perceptual mapping // so take error ratio if (dE2 == 0.0) ErrorRatio = dE1; else ErrorRatio = dE1 / dE2; if (ErrorRatio > t->Thereshold) Out[0] = (cmsUInt16Number) _cmsQuickFloor((ErrorRatio - t->Thereshold) + .5); else Out[0] = 0; } } return TRUE; } // Does compute a gamut LUT going back and forth across pcs -> relativ. colorimetric intent -> pcs // the dE obtained is then annotated on the LUT. Values truly out of gamut are clipped to dE = 0xFFFE // and values changed are supposed to be handled by any gamut remapping, so, are out of gamut as well. // // **WARNING: This algorithm does assume that gamut remapping algorithms does NOT move in-gamut colors, // of course, many perceptual and saturation intents does not work in such way, but relativ. ones should. cmsPipeline* _cmsCreateGamutCheckPipeline(cmsContext ContextID, cmsHPROFILE hProfiles[], cmsBool BPC[], cmsUInt32Number Intents[], cmsFloat64Number AdaptationStates[], cmsUInt32Number nGamutPCSposition, cmsHPROFILE hGamut) { cmsHPROFILE hLab; cmsPipeline* Gamut; cmsStage* CLUT; cmsUInt32Number dwFormat; GAMUTCHAIN Chain; int nChannels, nGridpoints; cmsColorSpaceSignature ColorSpace; cmsUInt32Number i; cmsHPROFILE ProfileList[256]; cmsBool BPCList[256]; cmsFloat64Number AdaptationList[256]; cmsUInt32Number IntentList[256]; memset(&Chain, 0, sizeof(GAMUTCHAIN)); if (nGamutPCSposition <= 0 || nGamutPCSposition > 255) { cmsSignalError(ContextID, cmsERROR_RANGE, "Wrong position of PCS. 1..255 expected, %d found.", nGamutPCSposition); return NULL; } hLab = cmsCreateLab4ProfileTHR(ContextID, NULL); if (hLab == NULL) return NULL; // The figure of merit. On matrix-shaper profiles, should be almost zero as // the conversion is pretty exact. On LUT based profiles, different resolutions // of input and output CLUT may result in differences. if (cmsIsMatrixShaper(hGamut)) { Chain.Thereshold = 1.0; } else { Chain.Thereshold = ERR_THERESHOLD; } // Create a copy of parameters for (i=0; i < nGamutPCSposition; i++) { ProfileList[i] = hProfiles[i]; BPCList[i] = BPC[i]; AdaptationList[i] = AdaptationStates[i]; IntentList[i] = Intents[i]; } // Fill Lab identity ProfileList[nGamutPCSposition] = hLab; BPCList[nGamutPCSposition] = 0; AdaptationList[nGamutPCSposition] = 1.0; IntentList[nGamutPCSposition] = INTENT_RELATIVE_COLORIMETRIC; ColorSpace = cmsGetColorSpace(hGamut); nChannels = cmsChannelsOf(ColorSpace); nGridpoints = _cmsReasonableGridpointsByColorspace(ColorSpace, cmsFLAGS_HIGHRESPRECALC); dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2)); // 16 bits to Lab double Chain.hInput = cmsCreateExtendedTransform(ContextID, nGamutPCSposition + 1, ProfileList, BPCList, IntentList, AdaptationList, NULL, 0, dwFormat, TYPE_Lab_DBL, cmsFLAGS_NOCACHE); // Does create the forward step. Lab double to device dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2)); Chain.hForward = cmsCreateTransformTHR(ContextID, hLab, TYPE_Lab_DBL, hGamut, dwFormat, INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOCACHE); // Does create the backwards step Chain.hReverse = cmsCreateTransformTHR(ContextID, hGamut, dwFormat, hLab, TYPE_Lab_DBL, INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOCACHE); // All ok? if (Chain.hInput && Chain.hForward && Chain.hReverse) { // Go on, try to compute gamut LUT from PCS. This consist on a single channel containing // dE when doing a transform back and forth on the colorimetric intent. Gamut = cmsPipelineAlloc(ContextID, 3, 1); if (Gamut != NULL) { CLUT = cmsStageAllocCLut16bit(ContextID, nGridpoints, nChannels, 1, NULL); if (!cmsPipelineInsertStage(Gamut, cmsAT_BEGIN, CLUT)) { cmsPipelineFree(Gamut); Gamut = NULL; } else { cmsStageSampleCLut16bit(CLUT, GamutSampler, (void*) &Chain, 0); } } } else Gamut = NULL; // Didn't work... // Free all needed stuff. if (Chain.hInput) cmsDeleteTransform(Chain.hInput); if (Chain.hForward) cmsDeleteTransform(Chain.hForward); if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse); if (hLab) cmsCloseProfile(hLab); // And return computed hull return Gamut; } // Total Area Coverage estimation ---------------------------------------------------------------- typedef struct { cmsUInt32Number nOutputChans; cmsHTRANSFORM hRoundTrip; cmsFloat32Number MaxTAC; cmsFloat32Number MaxInput[cmsMAXCHANNELS]; } cmsTACestimator; // This callback just accounts the maximum ink dropped in the given node. It does not populate any // memory, as the destination table is NULL. Its only purpose it to know the global maximum. static int EstimateTAC(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo) { cmsTACestimator* bp = (cmsTACestimator*) Cargo; cmsFloat32Number RoundTrip[cmsMAXCHANNELS]; cmsUInt32Number i; cmsFloat32Number Sum; // Evaluate the xform cmsDoTransform(bp->hRoundTrip, In, RoundTrip, 1); // All all amounts of ink for (Sum=0, i=0; i < bp ->nOutputChans; i++) Sum += RoundTrip[i]; // If above maximum, keep track of input values if (Sum > bp ->MaxTAC) { bp ->MaxTAC = Sum; for (i=0; i < bp ->nOutputChans; i++) { bp ->MaxInput[i] = In[i]; } } return TRUE; cmsUNUSED_PARAMETER(Out); } // Detect Total area coverage of the profile cmsFloat64Number CMSEXPORT cmsDetectTAC(cmsHPROFILE hProfile) { cmsTACestimator bp; cmsUInt32Number dwFormatter; cmsUInt32Number GridPoints[MAX_INPUT_DIMENSIONS]; cmsHPROFILE hLab; cmsContext ContextID = cmsGetProfileContextID(hProfile); // TAC only works on output profiles if (cmsGetDeviceClass(hProfile) != cmsSigOutputClass) { return 0; } // Create a fake formatter for result dwFormatter = cmsFormatterForColorspaceOfProfile(hProfile, 4, TRUE); bp.nOutputChans = T_CHANNELS(dwFormatter); bp.MaxTAC = 0; // Initial TAC is 0 // for safety if (bp.nOutputChans >= cmsMAXCHANNELS) return 0; hLab = cmsCreateLab4ProfileTHR(ContextID, NULL); if (hLab == NULL) return 0; // Setup a roundtrip on perceptual intent in output profile for TAC estimation bp.hRoundTrip = cmsCreateTransformTHR(ContextID, hLab, TYPE_Lab_16, hProfile, dwFormatter, INTENT_PERCEPTUAL, cmsFLAGS_NOOPTIMIZE|cmsFLAGS_NOCACHE); cmsCloseProfile(hLab); if (bp.hRoundTrip == NULL) return 0; // For L* we only need black and white. For C* we need many points GridPoints[0] = 6; GridPoints[1] = 74; GridPoints[2] = 74; if (!cmsSliceSpace16(3, GridPoints, EstimateTAC, &bp)) { bp.MaxTAC = 0; } cmsDeleteTransform(bp.hRoundTrip); // Results in % return bp.MaxTAC; } // Carefully, clamp on CIELab space. cmsBool CMSEXPORT cmsDesaturateLab(cmsCIELab* Lab, double amax, double amin, double bmax, double bmin) { // Whole Luma surface to zero if (Lab -> L < 0) { Lab-> L = Lab->a = Lab-> b = 0.0; return FALSE; } // Clamp white, DISCARD HIGHLIGHTS. This is done // in such way because icc spec doesn't allow the // use of L>100 as a highlight means. if (Lab->L > 100) Lab -> L = 100; // Check out gamut prism, on a, b faces if (Lab -> a < amin || Lab->a > amax|| Lab -> b < bmin || Lab->b > bmax) { cmsCIELCh LCh; double h, slope; // Falls outside a, b limits. Transports to LCh space, // and then do the clipping if (Lab -> a == 0.0) { // Is hue exactly 90? // atan will not work, so clamp here Lab -> b = Lab->b < 0 ? bmin : bmax; return TRUE; } cmsLab2LCh(&LCh, Lab); slope = Lab -> b / Lab -> a; h = LCh.h; // There are 4 zones if ((h >= 0. && h < 45.) || (h >= 315 && h <= 360.)) { // clip by amax Lab -> a = amax; Lab -> b = amax * slope; } else if (h >= 45. && h < 135.) { // clip by bmax Lab -> b = bmax; Lab -> a = bmax / slope; } else if (h >= 135. && h < 225.) { // clip by amin Lab -> a = amin; Lab -> b = amin * slope; } else if (h >= 225. && h < 315.) { // clip by bmin Lab -> b = bmin; Lab -> a = bmin / slope; } else { cmsSignalError(0, cmsERROR_RANGE, "Invalid angle"); return FALSE; } } return TRUE; }