1 /****************************************************************************
   2  *
   3  * ftcalc.c
   4  *
   5  *   Arithmetic computations (body).
   6  *
   7  * Copyright (C) 1996-2019 by
   8  * David Turner, Robert Wilhelm, and Werner Lemberg.
   9  *
  10  * This file is part of the FreeType project, and may only be used,
  11  * modified, and distributed under the terms of the FreeType project
  12  * license, LICENSE.TXT.  By continuing to use, modify, or distribute
  13  * this file you indicate that you have read the license and
  14  * understand and accept it fully.
  15  *
  16  */
  17 
  18   /**************************************************************************
  19    *
  20    * Support for 1-complement arithmetic has been totally dropped in this
  21    * release.  You can still write your own code if you need it.
  22    *
  23    */
  24 
  25   /**************************************************************************
  26    *
  27    * Implementing basic computation routines.
  28    *
  29    * FT_MulDiv(), FT_MulFix(), FT_DivFix(), FT_RoundFix(), FT_CeilFix(),
  30    * and FT_FloorFix() are declared in freetype.h.
  31    *
  32    */
  33 
  34 
  35 #include <ft2build.h>
  36 #include FT_GLYPH_H
  37 #include FT_TRIGONOMETRY_H
  38 #include FT_INTERNAL_CALC_H
  39 #include FT_INTERNAL_DEBUG_H
  40 #include FT_INTERNAL_OBJECTS_H
  41 
  42 
  43 #ifdef FT_MULFIX_ASSEMBLER
  44 #undef FT_MulFix
  45 #endif
  46 
  47 /* we need to emulate a 64-bit data type if a real one isn't available */
  48 
  49 #ifndef FT_LONG64
  50 
  51   typedef struct  FT_Int64_
  52   {
  53     FT_UInt32  lo;
  54     FT_UInt32  hi;
  55 
  56   } FT_Int64;
  57 
  58 #endif /* !FT_LONG64 */
  59 
  60 
  61   /**************************************************************************
  62    *
  63    * The macro FT_COMPONENT is used in trace mode.  It is an implicit
  64    * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
  65    * messages during execution.
  66    */
  67 #undef  FT_COMPONENT
  68 #define FT_COMPONENT  calc
  69 
  70 
  71   /* transfer sign, leaving a positive number;                        */
  72   /* we need an unsigned value to safely negate INT_MIN (or LONG_MIN) */
  73 #define FT_MOVE_SIGN( x, x_unsigned, s ) \
  74   FT_BEGIN_STMNT                         \
  75     if ( x < 0 )                         \
  76     {                                    \
  77       x_unsigned = 0U - (x_unsigned);    \
  78       s          = -s;                   \
  79     }                                    \
  80   FT_END_STMNT
  81 
  82   /* The following three functions are available regardless of whether */
  83   /* FT_LONG64 is defined.                                             */
  84 
  85   /* documentation is in freetype.h */
  86 
  87   FT_EXPORT_DEF( FT_Fixed )
  88   FT_RoundFix( FT_Fixed  a )
  89   {
  90     return ( ADD_LONG( a, 0x8000L - ( a < 0 ) ) ) & ~0xFFFFL;
  91   }
  92 
  93 
  94   /* documentation is in freetype.h */
  95 
  96   FT_EXPORT_DEF( FT_Fixed )
  97   FT_CeilFix( FT_Fixed  a )
  98   {
  99     return ( ADD_LONG( a, 0xFFFFL ) ) & ~0xFFFFL;
 100   }
 101 
 102 
 103   /* documentation is in freetype.h */
 104 
 105   FT_EXPORT_DEF( FT_Fixed )
 106   FT_FloorFix( FT_Fixed  a )
 107   {
 108     return a & ~0xFFFFL;
 109   }
 110 
 111 #ifndef FT_MSB
 112 
 113   FT_BASE_DEF ( FT_Int )
 114   FT_MSB( FT_UInt32 z )
 115   {
 116     FT_Int  shift = 0;
 117 
 118 
 119     /* determine msb bit index in `shift' */
 120     if ( z & 0xFFFF0000UL )
 121     {
 122       z     >>= 16;
 123       shift  += 16;
 124     }
 125     if ( z & 0x0000FF00UL )
 126     {
 127       z     >>= 8;
 128       shift  += 8;
 129     }
 130     if ( z & 0x000000F0UL )
 131     {
 132       z     >>= 4;
 133       shift  += 4;
 134     }
 135     if ( z & 0x0000000CUL )
 136     {
 137       z     >>= 2;
 138       shift  += 2;
 139     }
 140     if ( z & 0x00000002UL )
 141     {
 142    /* z     >>= 1; */
 143       shift  += 1;
 144     }
 145 
 146     return shift;
 147   }
 148 
 149 #endif /* !FT_MSB */
 150 
 151 
 152   /* documentation is in ftcalc.h */
 153 
 154   FT_BASE_DEF( FT_Fixed )
 155   FT_Hypot( FT_Fixed  x,
 156             FT_Fixed  y )
 157   {
 158     FT_Vector  v;
 159 
 160 
 161     v.x = x;
 162     v.y = y;
 163 
 164     return FT_Vector_Length( &v );
 165   }
 166 
 167 
 168 #ifdef FT_LONG64
 169 
 170 
 171   /* documentation is in freetype.h */
 172 
 173   FT_EXPORT_DEF( FT_Long )
 174   FT_MulDiv( FT_Long  a_,
 175              FT_Long  b_,
 176              FT_Long  c_ )
 177   {
 178     FT_Int     s = 1;
 179     FT_UInt64  a, b, c, d;
 180     FT_Long    d_;
 181 
 182 
 183     a = (FT_UInt64)a_;
 184     b = (FT_UInt64)b_;
 185     c = (FT_UInt64)c_;
 186 
 187     FT_MOVE_SIGN( a_, a, s );
 188     FT_MOVE_SIGN( b_, b, s );
 189     FT_MOVE_SIGN( c_, c, s );
 190 
 191     d = c > 0 ? ( a * b + ( c >> 1 ) ) / c
 192               : 0x7FFFFFFFUL;
 193 
 194     d_ = (FT_Long)d;
 195 
 196     return s < 0 ? NEG_LONG( d_ ) : d_;
 197   }
 198 
 199 
 200   /* documentation is in ftcalc.h */
 201 
 202   FT_BASE_DEF( FT_Long )
 203   FT_MulDiv_No_Round( FT_Long  a_,
 204                       FT_Long  b_,
 205                       FT_Long  c_ )
 206   {
 207     FT_Int     s = 1;
 208     FT_UInt64  a, b, c, d;
 209     FT_Long    d_;
 210 
 211 
 212     a = (FT_UInt64)a_;
 213     b = (FT_UInt64)b_;
 214     c = (FT_UInt64)c_;
 215 
 216     FT_MOVE_SIGN( a_, a, s );
 217     FT_MOVE_SIGN( b_, b, s );
 218     FT_MOVE_SIGN( c_, c, s );
 219 
 220     d = c > 0 ? a * b / c
 221               : 0x7FFFFFFFUL;
 222 
 223     d_ = (FT_Long)d;
 224 
 225     return s < 0 ? NEG_LONG( d_ ) : d_;
 226   }
 227 
 228 
 229   /* documentation is in freetype.h */
 230 
 231   FT_EXPORT_DEF( FT_Long )
 232   FT_MulFix( FT_Long  a_,
 233              FT_Long  b_ )
 234   {
 235 #ifdef FT_MULFIX_ASSEMBLER
 236 
 237     return FT_MULFIX_ASSEMBLER( (FT_Int32)a_, (FT_Int32)b_ );
 238 
 239 #else
 240 
 241     FT_Int64  ab = (FT_Int64)a_ * (FT_Int64)b_;
 242 
 243     /* this requires arithmetic right shift of signed numbers */
 244     return (FT_Long)( ( ab + 0x8000L - ( ab < 0 ) ) >> 16 );
 245 
 246 #endif /* FT_MULFIX_ASSEMBLER */
 247   }
 248 
 249 
 250   /* documentation is in freetype.h */
 251 
 252   FT_EXPORT_DEF( FT_Long )
 253   FT_DivFix( FT_Long  a_,
 254              FT_Long  b_ )
 255   {
 256     FT_Int     s = 1;
 257     FT_UInt64  a, b, q;
 258     FT_Long    q_;
 259 
 260 
 261     a = (FT_UInt64)a_;
 262     b = (FT_UInt64)b_;
 263 
 264     FT_MOVE_SIGN( a_, a, s );
 265     FT_MOVE_SIGN( b_, b, s );
 266 
 267     q = b > 0 ? ( ( a << 16 ) + ( b >> 1 ) ) / b
 268               : 0x7FFFFFFFUL;
 269 
 270     q_ = (FT_Long)q;
 271 
 272     return s < 0 ? NEG_LONG( q_ ) : q_;
 273   }
 274 
 275 
 276 #else /* !FT_LONG64 */
 277 
 278 
 279   static void
 280   ft_multo64( FT_UInt32  x,
 281               FT_UInt32  y,
 282               FT_Int64  *z )
 283   {
 284     FT_UInt32  lo1, hi1, lo2, hi2, lo, hi, i1, i2;
 285 
 286 
 287     lo1 = x & 0x0000FFFFU;  hi1 = x >> 16;
 288     lo2 = y & 0x0000FFFFU;  hi2 = y >> 16;
 289 
 290     lo = lo1 * lo2;
 291     i1 = lo1 * hi2;
 292     i2 = lo2 * hi1;
 293     hi = hi1 * hi2;
 294 
 295     /* Check carry overflow of i1 + i2 */
 296     i1 += i2;
 297     hi += (FT_UInt32)( i1 < i2 ) << 16;
 298 
 299     hi += i1 >> 16;
 300     i1  = i1 << 16;
 301 
 302     /* Check carry overflow of i1 + lo */
 303     lo += i1;
 304     hi += ( lo < i1 );
 305 
 306     z->lo = lo;
 307     z->hi = hi;
 308   }
 309 
 310 
 311   static FT_UInt32
 312   ft_div64by32( FT_UInt32  hi,
 313                 FT_UInt32  lo,
 314                 FT_UInt32  y )
 315   {
 316     FT_UInt32  r, q;
 317     FT_Int     i;
 318 
 319 
 320     if ( hi >= y )
 321       return (FT_UInt32)0x7FFFFFFFL;
 322 
 323     /* We shift as many bits as we can into the high register, perform     */
 324     /* 32-bit division with modulo there, then work through the remaining  */
 325     /* bits with long division. This optimization is especially noticeable */
 326     /* for smaller dividends that barely use the high register.            */
 327 
 328     i = 31 - FT_MSB( hi );
 329     r = ( hi << i ) | ( lo >> ( 32 - i ) ); lo <<= i; /* left 64-bit shift */
 330     q = r / y;
 331     r -= q * y;   /* remainder */
 332 
 333     i = 32 - i;   /* bits remaining in low register */
 334     do
 335     {
 336       q <<= 1;
 337       r   = ( r << 1 ) | ( lo >> 31 ); lo <<= 1;
 338 
 339       if ( r >= y )
 340       {
 341         r -= y;
 342         q |= 1;
 343       }
 344     } while ( --i );
 345 
 346     return q;
 347   }
 348 
 349 
 350   static void
 351   FT_Add64( FT_Int64*  x,
 352             FT_Int64*  y,
 353             FT_Int64  *z )
 354   {
 355     FT_UInt32  lo, hi;
 356 
 357 
 358     lo = x->lo + y->lo;
 359     hi = x->hi + y->hi + ( lo < x->lo );
 360 
 361     z->lo = lo;
 362     z->hi = hi;
 363   }
 364 
 365 
 366   /*  The FT_MulDiv function has been optimized thanks to ideas from     */
 367   /*  Graham Asher and Alexei Podtelezhnikov.  The trick is to optimize  */
 368   /*  a rather common case when everything fits within 32-bits.          */
 369   /*                                                                     */
 370   /*  We compute 'a*b+c/2', then divide it by 'c' (all positive values). */
 371   /*                                                                     */
 372   /*  The product of two positive numbers never exceeds the square of    */
 373   /*  its mean values.  Therefore, we always avoid the overflow by       */
 374   /*  imposing                                                           */
 375   /*                                                                     */
 376   /*    (a + b) / 2 <= sqrt(X - c/2)    ,                                */
 377   /*                                                                     */
 378   /*  where X = 2^32 - 1, the maximum unsigned 32-bit value, and using   */
 379   /*  unsigned arithmetic.  Now we replace `sqrt' with a linear function */
 380   /*  that is smaller or equal for all values of c in the interval       */
 381   /*  [0;X/2]; it should be equal to sqrt(X) and sqrt(3X/4) at the       */
 382   /*  endpoints.  Substituting the linear solution and explicit numbers  */
 383   /*  we get                                                             */
 384   /*                                                                     */
 385   /*    a + b <= 131071.99 - c / 122291.84    .                          */
 386   /*                                                                     */
 387   /*  In practice, we should use a faster and even stronger inequality   */
 388   /*                                                                     */
 389   /*    a + b <= 131071 - (c >> 16)                                      */
 390   /*                                                                     */
 391   /*  or, alternatively,                                                 */
 392   /*                                                                     */
 393   /*    a + b <= 129894 - (c >> 17)    .                                 */
 394   /*                                                                     */
 395   /*  FT_MulFix, on the other hand, is optimized for a small value of    */
 396   /*  the first argument, when the second argument can be much larger.   */
 397   /*  This can be achieved by scaling the second argument and the limit  */
 398   /*  in the above inequalities.  For example,                           */
 399   /*                                                                     */
 400   /*    a + (b >> 8) <= (131071 >> 4)                                    */
 401   /*                                                                     */
 402   /*  covers the practical range of use. The actual test below is a bit  */
 403   /*  tighter to avoid the border case overflows.                        */
 404   /*                                                                     */
 405   /*  In the case of FT_DivFix, the exact overflow check                 */
 406   /*                                                                     */
 407   /*    a << 16 <= X - c/2                                               */
 408   /*                                                                     */
 409   /*  is scaled down by 2^16 and we use                                  */
 410   /*                                                                     */
 411   /*    a <= 65535 - (c >> 17)    .                                      */
 412 
 413   /* documentation is in freetype.h */
 414 
 415   FT_EXPORT_DEF( FT_Long )
 416   FT_MulDiv( FT_Long  a_,
 417              FT_Long  b_,
 418              FT_Long  c_ )
 419   {
 420     FT_Int     s = 1;
 421     FT_UInt32  a, b, c;
 422 
 423 
 424     /* XXX: this function does not allow 64-bit arguments */
 425 
 426     a = (FT_UInt32)a_;
 427     b = (FT_UInt32)b_;
 428     c = (FT_UInt32)c_;
 429 
 430     FT_MOVE_SIGN( a_, a, s );
 431     FT_MOVE_SIGN( b_, b, s );
 432     FT_MOVE_SIGN( c_, c, s );
 433 
 434     if ( c == 0 )
 435       a = 0x7FFFFFFFUL;
 436 
 437     else if ( a + b <= 129894UL - ( c >> 17 ) )
 438       a = ( a * b + ( c >> 1 ) ) / c;
 439 
 440     else
 441     {
 442       FT_Int64  temp, temp2;
 443 
 444 
 445       ft_multo64( a, b, &temp );
 446 
 447       temp2.hi = 0;
 448       temp2.lo = c >> 1;
 449 
 450       FT_Add64( &temp, &temp2, &temp );
 451 
 452       /* last attempt to ditch long division */
 453       a = ( temp.hi == 0 ) ? temp.lo / c
 454                            : ft_div64by32( temp.hi, temp.lo, c );
 455     }
 456 
 457     a_ = (FT_Long)a;
 458 
 459     return s < 0 ? NEG_LONG( a_ ) : a_;
 460   }
 461 
 462 
 463   FT_BASE_DEF( FT_Long )
 464   FT_MulDiv_No_Round( FT_Long  a_,
 465                       FT_Long  b_,
 466                       FT_Long  c_ )
 467   {
 468     FT_Int     s = 1;
 469     FT_UInt32  a, b, c;
 470 
 471 
 472     /* XXX: this function does not allow 64-bit arguments */
 473 
 474     a = (FT_UInt32)a_;
 475     b = (FT_UInt32)b_;
 476     c = (FT_UInt32)c_;
 477 
 478     FT_MOVE_SIGN( a_, a, s );
 479     FT_MOVE_SIGN( b_, b, s );
 480     FT_MOVE_SIGN( c_, c, s );
 481 
 482     if ( c == 0 )
 483       a = 0x7FFFFFFFUL;
 484 
 485     else if ( a + b <= 131071UL )
 486       a = a * b / c;
 487 
 488     else
 489     {
 490       FT_Int64  temp;
 491 
 492 
 493       ft_multo64( a, b, &temp );
 494 
 495       /* last attempt to ditch long division */
 496       a = ( temp.hi == 0 ) ? temp.lo / c
 497                            : ft_div64by32( temp.hi, temp.lo, c );
 498     }
 499 
 500     a_ = (FT_Long)a;
 501 
 502     return s < 0 ? NEG_LONG( a_ ) : a_;
 503   }
 504 
 505 
 506   /* documentation is in freetype.h */
 507 
 508   FT_EXPORT_DEF( FT_Long )
 509   FT_MulFix( FT_Long  a_,
 510              FT_Long  b_ )
 511   {
 512 #ifdef FT_MULFIX_ASSEMBLER
 513 
 514     return FT_MULFIX_ASSEMBLER( a_, b_ );
 515 
 516 #elif 0
 517 
 518     /*
 519      * This code is nonportable.  See comment below.
 520      *
 521      * However, on a platform where right-shift of a signed quantity fills
 522      * the leftmost bits by copying the sign bit, it might be faster.
 523      */
 524 
 525     FT_Long    sa, sb;
 526     FT_UInt32  a, b;
 527 
 528 
 529     /*
 530      * This is a clever way of converting a signed number `a' into its
 531      * absolute value (stored back into `a') and its sign.  The sign is
 532      * stored in `sa'; 0 means `a' was positive or zero, and -1 means `a'
 533      * was negative.  (Similarly for `b' and `sb').
 534      *
 535      * Unfortunately, it doesn't work (at least not portably).
 536      *
 537      * It makes the assumption that right-shift on a negative signed value
 538      * fills the leftmost bits by copying the sign bit.  This is wrong.
 539      * According to K&R 2nd ed, section `A7.8 Shift Operators' on page 206,
 540      * the result of right-shift of a negative signed value is
 541      * implementation-defined.  At least one implementation fills the
 542      * leftmost bits with 0s (i.e., it is exactly the same as an unsigned
 543      * right shift).  This means that when `a' is negative, `sa' ends up
 544      * with the value 1 rather than -1.  After that, everything else goes
 545      * wrong.
 546      */
 547     sa = ( a_ >> ( sizeof ( a_ ) * 8 - 1 ) );
 548     a  = ( a_ ^ sa ) - sa;
 549     sb = ( b_ >> ( sizeof ( b_ ) * 8 - 1 ) );
 550     b  = ( b_ ^ sb ) - sb;
 551 
 552     a = (FT_UInt32)a_;
 553     b = (FT_UInt32)b_;
 554 
 555     if ( a + ( b >> 8 ) <= 8190UL )
 556       a = ( a * b + 0x8000U ) >> 16;
 557     else
 558     {
 559       FT_UInt32  al = a & 0xFFFFUL;
 560 
 561 
 562       a = ( a >> 16 ) * b + al * ( b >> 16 ) +
 563           ( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 );
 564     }
 565 
 566     sa ^= sb;
 567     a   = ( a ^ sa ) - sa;
 568 
 569     return (FT_Long)a;
 570 
 571 #else /* 0 */
 572 
 573     FT_Int     s = 1;
 574     FT_UInt32  a, b;
 575 
 576 
 577     /* XXX: this function does not allow 64-bit arguments */
 578 
 579     a = (FT_UInt32)a_;
 580     b = (FT_UInt32)b_;
 581 
 582     FT_MOVE_SIGN( a_, a, s );
 583     FT_MOVE_SIGN( b_, b, s );
 584 
 585     if ( a + ( b >> 8 ) <= 8190UL )
 586       a = ( a * b + 0x8000UL ) >> 16;
 587     else
 588     {
 589       FT_UInt32  al = a & 0xFFFFUL;
 590 
 591 
 592       a = ( a >> 16 ) * b + al * ( b >> 16 ) +
 593           ( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 );
 594     }
 595 
 596     a_ = (FT_Long)a;
 597 
 598     return s < 0 ? NEG_LONG( a_ ) : a_;
 599 
 600 #endif /* 0 */
 601 
 602   }
 603 
 604 
 605   /* documentation is in freetype.h */
 606 
 607   FT_EXPORT_DEF( FT_Long )
 608   FT_DivFix( FT_Long  a_,
 609              FT_Long  b_ )
 610   {
 611     FT_Int     s = 1;
 612     FT_UInt32  a, b, q;
 613     FT_Long    q_;
 614 
 615 
 616     /* XXX: this function does not allow 64-bit arguments */
 617 
 618     a = (FT_UInt32)a_;
 619     b = (FT_UInt32)b_;
 620 
 621     FT_MOVE_SIGN( a_, a, s );
 622     FT_MOVE_SIGN( b_, b, s );
 623 
 624     if ( b == 0 )
 625     {
 626       /* check for division by 0 */
 627       q = 0x7FFFFFFFUL;
 628     }
 629     else if ( a <= 65535UL - ( b >> 17 ) )
 630     {
 631       /* compute result directly */
 632       q = ( ( a << 16 ) + ( b >> 1 ) ) / b;
 633     }
 634     else
 635     {
 636       /* we need more bits; we have to do it by hand */
 637       FT_Int64  temp, temp2;
 638 
 639 
 640       temp.hi  = a >> 16;
 641       temp.lo  = a << 16;
 642       temp2.hi = 0;
 643       temp2.lo = b >> 1;
 644 
 645       FT_Add64( &temp, &temp2, &temp );
 646       q = ft_div64by32( temp.hi, temp.lo, b );
 647     }
 648 
 649     q_ = (FT_Long)q;
 650 
 651     return s < 0 ? NEG_LONG( q_ ) : q_;
 652   }
 653 
 654 
 655 #endif /* !FT_LONG64 */
 656 
 657 
 658   /* documentation is in ftglyph.h */
 659 
 660   FT_EXPORT_DEF( void )
 661   FT_Matrix_Multiply( const FT_Matrix*  a,
 662                       FT_Matrix        *b )
 663   {
 664     FT_Fixed  xx, xy, yx, yy;
 665 
 666 
 667     if ( !a || !b )
 668       return;
 669 
 670     xx = ADD_LONG( FT_MulFix( a->xx, b->xx ),
 671                    FT_MulFix( a->xy, b->yx ) );
 672     xy = ADD_LONG( FT_MulFix( a->xx, b->xy ),
 673                    FT_MulFix( a->xy, b->yy ) );
 674     yx = ADD_LONG( FT_MulFix( a->yx, b->xx ),
 675                    FT_MulFix( a->yy, b->yx ) );
 676     yy = ADD_LONG( FT_MulFix( a->yx, b->xy ),
 677                    FT_MulFix( a->yy, b->yy ) );
 678 
 679     b->xx = xx;
 680     b->xy = xy;
 681     b->yx = yx;
 682     b->yy = yy;
 683   }
 684 
 685 
 686   /* documentation is in ftglyph.h */
 687 
 688   FT_EXPORT_DEF( FT_Error )
 689   FT_Matrix_Invert( FT_Matrix*  matrix )
 690   {
 691     FT_Pos  delta, xx, yy;
 692 
 693 
 694     if ( !matrix )
 695       return FT_THROW( Invalid_Argument );
 696 
 697     /* compute discriminant */
 698     delta = FT_MulFix( matrix->xx, matrix->yy ) -
 699             FT_MulFix( matrix->xy, matrix->yx );
 700 
 701     if ( !delta )
 702       return FT_THROW( Invalid_Argument );  /* matrix can't be inverted */
 703 
 704     matrix->xy = -FT_DivFix( matrix->xy, delta );
 705     matrix->yx = -FT_DivFix( matrix->yx, delta );
 706 
 707     xx = matrix->xx;
 708     yy = matrix->yy;
 709 
 710     matrix->xx = FT_DivFix( yy, delta );
 711     matrix->yy = FT_DivFix( xx, delta );
 712 
 713     return FT_Err_Ok;
 714   }
 715 
 716 
 717   /* documentation is in ftcalc.h */
 718 
 719   FT_BASE_DEF( void )
 720   FT_Matrix_Multiply_Scaled( const FT_Matrix*  a,
 721                              FT_Matrix        *b,
 722                              FT_Long           scaling )
 723   {
 724     FT_Fixed  xx, xy, yx, yy;
 725 
 726     FT_Long   val = 0x10000L * scaling;
 727 
 728 
 729     if ( !a || !b )
 730       return;
 731 
 732     xx = ADD_LONG( FT_MulDiv( a->xx, b->xx, val ),
 733                    FT_MulDiv( a->xy, b->yx, val ) );
 734     xy = ADD_LONG( FT_MulDiv( a->xx, b->xy, val ),
 735                    FT_MulDiv( a->xy, b->yy, val ) );
 736     yx = ADD_LONG( FT_MulDiv( a->yx, b->xx, val ),
 737                    FT_MulDiv( a->yy, b->yx, val ) );
 738     yy = ADD_LONG( FT_MulDiv( a->yx, b->xy, val ),
 739                    FT_MulDiv( a->yy, b->yy, val ) );
 740 
 741     b->xx = xx;
 742     b->xy = xy;
 743     b->yx = yx;
 744     b->yy = yy;
 745   }
 746 
 747 
 748   /* documentation is in ftcalc.h */
 749 
 750   FT_BASE_DEF( FT_Bool )
 751   FT_Matrix_Check( const FT_Matrix*  matrix )
 752   {
 753     FT_Matrix  m;
 754     FT_Fixed   val[4];
 755     FT_Fixed   nonzero_minval, maxval;
 756     FT_Fixed   temp1, temp2;
 757     FT_UInt    i;
 758 
 759 
 760     if ( !matrix )
 761       return 0;
 762 
 763     val[0] = FT_ABS( matrix->xx );
 764     val[1] = FT_ABS( matrix->xy );
 765     val[2] = FT_ABS( matrix->yx );
 766     val[3] = FT_ABS( matrix->yy );
 767 
 768     /*
 769      * To avoid overflow, we ensure that each value is not larger than
 770      *
 771      *   int(sqrt(2^31 / 4)) = 23170  ;
 772      *
 773      * we also check that no value becomes zero if we have to scale.
 774      */
 775 
 776     maxval         = 0;
 777     nonzero_minval = FT_LONG_MAX;
 778 
 779     for ( i = 0; i < 4; i++ )
 780     {
 781       if ( val[i] > maxval )
 782         maxval = val[i];
 783       if ( val[i] && val[i] < nonzero_minval )
 784         nonzero_minval = val[i];
 785     }
 786 
 787     /* we only handle 32bit values */
 788     if ( maxval > 0x7FFFFFFFL )
 789       return 0;
 790 
 791     if ( maxval > 23170 )
 792     {
 793       FT_Fixed  scale = FT_DivFix( maxval, 23170 );
 794 
 795 
 796       if ( !FT_DivFix( nonzero_minval, scale ) )
 797         return 0;    /* value range too large */
 798 
 799       m.xx = FT_DivFix( matrix->xx, scale );
 800       m.xy = FT_DivFix( matrix->xy, scale );
 801       m.yx = FT_DivFix( matrix->yx, scale );
 802       m.yy = FT_DivFix( matrix->yy, scale );
 803     }
 804     else
 805       m = *matrix;
 806 
 807     temp1 = FT_ABS( m.xx * m.yy - m.xy * m.yx );
 808     temp2 = m.xx * m.xx + m.xy * m.xy + m.yx * m.yx + m.yy * m.yy;
 809 
 810     if ( temp1 == 0         ||
 811          temp2 / temp1 > 50 )
 812       return 0;
 813 
 814     return 1;
 815   }
 816 
 817 
 818   /* documentation is in ftcalc.h */
 819 
 820   FT_BASE_DEF( void )
 821   FT_Vector_Transform_Scaled( FT_Vector*        vector,
 822                               const FT_Matrix*  matrix,
 823                               FT_Long           scaling )
 824   {
 825     FT_Pos   xz, yz;
 826 
 827     FT_Long  val = 0x10000L * scaling;
 828 
 829 
 830     if ( !vector || !matrix )
 831       return;
 832 
 833     xz = ADD_LONG( FT_MulDiv( vector->x, matrix->xx, val ),
 834                    FT_MulDiv( vector->y, matrix->xy, val ) );
 835     yz = ADD_LONG( FT_MulDiv( vector->x, matrix->yx, val ),
 836                    FT_MulDiv( vector->y, matrix->yy, val ) );
 837 
 838     vector->x = xz;
 839     vector->y = yz;
 840   }
 841 
 842 
 843   /* documentation is in ftcalc.h */
 844 
 845   FT_BASE_DEF( FT_UInt32 )
 846   FT_Vector_NormLen( FT_Vector*  vector )
 847   {
 848     FT_Int32   x_ = vector->x;
 849     FT_Int32   y_ = vector->y;
 850     FT_Int32   b, z;
 851     FT_UInt32  x, y, u, v, l;
 852     FT_Int     sx = 1, sy = 1, shift;
 853 
 854 
 855     x = (FT_UInt32)x_;
 856     y = (FT_UInt32)y_;
 857 
 858     FT_MOVE_SIGN( x_, x, sx );
 859     FT_MOVE_SIGN( y_, y, sy );
 860 
 861     /* trivial cases */
 862     if ( x == 0 )
 863     {
 864       if ( y > 0 )
 865         vector->y = sy * 0x10000;
 866       return y;
 867     }
 868     else if ( y == 0 )
 869     {
 870       if ( x > 0 )
 871         vector->x = sx * 0x10000;
 872       return x;
 873     }
 874 
 875     /* Estimate length and prenormalize by shifting so that */
 876     /* the new approximate length is between 2/3 and 4/3.   */
 877     /* The magic constant 0xAAAAAAAAUL (2/3 of 2^32) helps  */
 878     /* achieve this in 16.16 fixed-point representation.    */
 879     l = x > y ? x + ( y >> 1 )
 880               : y + ( x >> 1 );
 881 
 882     shift  = 31 - FT_MSB( l );
 883     shift -= 15 + ( l >= ( 0xAAAAAAAAUL >> shift ) );
 884 
 885     if ( shift > 0 )
 886     {
 887       x <<= shift;
 888       y <<= shift;
 889 
 890       /* re-estimate length for tiny vectors */
 891       l = x > y ? x + ( y >> 1 )
 892                 : y + ( x >> 1 );
 893     }
 894     else
 895     {
 896       x >>= -shift;
 897       y >>= -shift;
 898       l >>= -shift;
 899     }
 900 
 901     /* lower linear approximation for reciprocal length minus one */
 902     b = 0x10000 - (FT_Int32)l;
 903 
 904     x_ = (FT_Int32)x;
 905     y_ = (FT_Int32)y;
 906 
 907     /* Newton's iterations */
 908     do
 909     {
 910       u = (FT_UInt32)( x_ + ( x_ * b >> 16 ) );
 911       v = (FT_UInt32)( y_ + ( y_ * b >> 16 ) );
 912 
 913       /* Normalized squared length in the parentheses approaches 2^32. */
 914       /* On two's complement systems, converting to signed gives the   */
 915       /* difference with 2^32 even if the expression wraps around.     */
 916       z = -(FT_Int32)( u * u + v * v ) / 0x200;
 917       z = z * ( ( 0x10000 + b ) >> 8 ) / 0x10000;
 918 
 919       b += z;
 920 
 921     } while ( z > 0 );
 922 
 923     vector->x = sx < 0 ? -(FT_Pos)u : (FT_Pos)u;
 924     vector->y = sy < 0 ? -(FT_Pos)v : (FT_Pos)v;
 925 
 926     /* Conversion to signed helps to recover from likely wrap around */
 927     /* in calculating the prenormalized length, because it gives the */
 928     /* correct difference with 2^32 on two's complement systems.     */
 929     l = (FT_UInt32)( 0x10000 + (FT_Int32)( u * x + v * y ) / 0x10000 );
 930     if ( shift > 0 )
 931       l = ( l + ( 1 << ( shift - 1 ) ) ) >> shift;
 932     else
 933       l <<= -shift;
 934 
 935     return l;
 936   }
 937 
 938 
 939 #if 0
 940 
 941   /* documentation is in ftcalc.h */
 942 
 943   FT_BASE_DEF( FT_Int32 )
 944   FT_SqrtFixed( FT_Int32  x )
 945   {
 946     FT_UInt32  root, rem_hi, rem_lo, test_div;
 947     FT_Int     count;
 948 
 949 
 950     root = 0;
 951 
 952     if ( x > 0 )
 953     {
 954       rem_hi = 0;
 955       rem_lo = (FT_UInt32)x;
 956       count  = 24;
 957       do
 958       {
 959         rem_hi   = ( rem_hi << 2 ) | ( rem_lo >> 30 );
 960         rem_lo <<= 2;
 961         root   <<= 1;
 962         test_div = ( root << 1 ) + 1;
 963 
 964         if ( rem_hi >= test_div )
 965         {
 966           rem_hi -= test_div;
 967           root   += 1;
 968         }
 969       } while ( --count );
 970     }
 971 
 972     return (FT_Int32)root;
 973   }
 974 
 975 #endif /* 0 */
 976 
 977 
 978   /* documentation is in ftcalc.h */
 979 
 980   FT_BASE_DEF( FT_Int )
 981   ft_corner_orientation( FT_Pos  in_x,
 982                          FT_Pos  in_y,
 983                          FT_Pos  out_x,
 984                          FT_Pos  out_y )
 985   {
 986     /* we silently ignore overflow errors since such large values */
 987     /* lead to even more (harmless) rendering errors later on     */
 988 
 989 #ifdef FT_LONG64
 990 
 991     FT_Int64  delta = SUB_INT64( MUL_INT64( in_x, out_y ),
 992                                  MUL_INT64( in_y, out_x ) );
 993 
 994 
 995     return ( delta > 0 ) - ( delta < 0 );
 996 
 997 #else
 998 
 999     FT_Int  result;
1000 
1001 
1002     if ( ADD_LONG( FT_ABS( in_x ), FT_ABS( out_y ) ) <= 131071L &&
1003          ADD_LONG( FT_ABS( in_y ), FT_ABS( out_x ) ) <= 131071L )
1004     {
1005       FT_Long  z1 = MUL_LONG( in_x, out_y );
1006       FT_Long  z2 = MUL_LONG( in_y, out_x );
1007 
1008 
1009       if ( z1 > z2 )
1010         result = +1;
1011       else if ( z1 < z2 )
1012         result = -1;
1013       else
1014         result = 0;
1015     }
1016     else /* products might overflow 32 bits */
1017     {
1018       FT_Int64  z1, z2;
1019 
1020 
1021       /* XXX: this function does not allow 64-bit arguments */
1022       ft_multo64( (FT_UInt32)in_x, (FT_UInt32)out_y, &z1 );
1023       ft_multo64( (FT_UInt32)in_y, (FT_UInt32)out_x, &z2 );
1024 
1025       if ( z1.hi > z2.hi )
1026         result = +1;
1027       else if ( z1.hi < z2.hi )
1028         result = -1;
1029       else if ( z1.lo > z2.lo )
1030         result = +1;
1031       else if ( z1.lo < z2.lo )
1032         result = -1;
1033       else
1034         result = 0;
1035     }
1036 
1037     /* XXX: only the sign of return value, +1/0/-1 must be used */
1038     return result;
1039 
1040 #endif
1041   }
1042 
1043 
1044   /* documentation is in ftcalc.h */
1045 
1046   FT_BASE_DEF( FT_Int )
1047   ft_corner_is_flat( FT_Pos  in_x,
1048                      FT_Pos  in_y,
1049                      FT_Pos  out_x,
1050                      FT_Pos  out_y )
1051   {
1052     FT_Pos  ax = in_x + out_x;
1053     FT_Pos  ay = in_y + out_y;
1054 
1055     FT_Pos  d_in, d_out, d_hypot;
1056 
1057 
1058     /* The idea of this function is to compare the length of the */
1059     /* hypotenuse with the `in' and `out' length.  The `corner'  */
1060     /* represented by `in' and `out' is flat if the hypotenuse's */
1061     /* length isn't too large.                                   */
1062     /*                                                           */
1063     /* This approach has the advantage that the angle between    */
1064     /* `in' and `out' is not checked.  In case one of the two    */
1065     /* vectors is `dominant', this is, much larger than the      */
1066     /* other vector, we thus always have a flat corner.          */
1067     /*                                                           */
1068     /*                hypotenuse                                 */
1069     /*       x---------------------------x                       */
1070     /*        \                      /                           */
1071     /*         \                /                                */
1072     /*      in  \          /  out                                */
1073     /*           \    /                                          */
1074     /*            o                                              */
1075     /*              Point                                        */
1076 
1077     d_in    = FT_HYPOT(  in_x,  in_y );
1078     d_out   = FT_HYPOT( out_x, out_y );
1079     d_hypot = FT_HYPOT(    ax,    ay );
1080 
1081     /* now do a simple length comparison: */
1082     /*                                    */
1083     /*   d_in + d_out < 17/16 d_hypot     */
1084 
1085     return ( d_in + d_out - d_hypot ) < ( d_hypot >> 4 );
1086   }
1087 
1088 
1089 /* END */