1 /****************************************************************************
   2  *
   3  * ftgrays.c
   4  *
   5  *   A new `perfect' anti-aliasing renderer (body).
   6  *
   7  * Copyright (C) 2000-2019 by
   8  * David Turner, Robert Wilhelm, and Werner Lemberg.
   9  *
  10  * This file is part of the FreeType project, and may only be used,
  11  * modified, and distributed under the terms of the FreeType project
  12  * license, LICENSE.TXT.  By continuing to use, modify, or distribute
  13  * this file you indicate that you have read the license and
  14  * understand and accept it fully.
  15  *
  16  */
  17 
  18   /**************************************************************************
  19    *
  20    * This file can be compiled without the rest of the FreeType engine, by
  21    * defining the STANDALONE_ macro when compiling it.  You also need to
  22    * put the files `ftgrays.h' and `ftimage.h' into the current
  23    * compilation directory.  Typically, you could do something like
  24    *
  25    * - copy `src/smooth/ftgrays.c' (this file) to your current directory
  26    *
  27    * - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the
  28    *   same directory
  29    *
  30    * - compile `ftgrays' with the STANDALONE_ macro defined, as in
  31    *
  32    *     cc -c -DSTANDALONE_ ftgrays.c
  33    *
  34    * The renderer can be initialized with a call to
  35    * `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated
  36    * with a call to `ft_gray_raster.raster_render'.
  37    *
  38    * See the comments and documentation in the file `ftimage.h' for more
  39    * details on how the raster works.
  40    *
  41    */
  42 
  43   /**************************************************************************
  44    *
  45    * This is a new anti-aliasing scan-converter for FreeType 2.  The
  46    * algorithm used here is _very_ different from the one in the standard
  47    * `ftraster' module.  Actually, `ftgrays' computes the _exact_
  48    * coverage of the outline on each pixel cell.
  49    *
  50    * It is based on ideas that I initially found in Raph Levien's
  51    * excellent LibArt graphics library (see https://www.levien.com/libart
  52    * for more information, though the web pages do not tell anything
  53    * about the renderer; you'll have to dive into the source code to
  54    * understand how it works).
  55    *
  56    * Note, however, that this is a _very_ different implementation
  57    * compared to Raph's.  Coverage information is stored in a very
  58    * different way, and I don't use sorted vector paths.  Also, it doesn't
  59    * use floating point values.
  60    *
  61    * This renderer has the following advantages:
  62    *
  63    * - It doesn't need an intermediate bitmap.  Instead, one can supply a
  64    *   callback function that will be called by the renderer to draw gray
  65    *   spans on any target surface.  You can thus do direct composition on
  66    *   any kind of bitmap, provided that you give the renderer the right
  67    *   callback.
  68    *
  69    * - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on
  70    *   each pixel cell.
  71    *
  72    * - It performs a single pass on the outline (the `standard' FT2
  73    *   renderer makes two passes).
  74    *
  75    * - It can easily be modified to render to _any_ number of gray levels
  76    *   cheaply.
  77    *
  78    * - For small (< 20) pixel sizes, it is faster than the standard
  79    *   renderer.
  80    *
  81    */
  82 
  83 
  84   /**************************************************************************
  85    *
  86    * The macro FT_COMPONENT is used in trace mode.  It is an implicit
  87    * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
  88    * messages during execution.
  89    */
  90 #undef  FT_COMPONENT
  91 #define FT_COMPONENT  smooth
  92 
  93 
  94 #ifdef STANDALONE_
  95 
  96 
  97   /* The size in bytes of the render pool used by the scan-line converter  */
  98   /* to do all of its work.                                                */
  99 #define FT_RENDER_POOL_SIZE  16384L
 100 
 101 
 102   /* Auxiliary macros for token concatenation. */
 103 #define FT_ERR_XCAT( x, y )  x ## y
 104 #define FT_ERR_CAT( x, y )   FT_ERR_XCAT( x, y )
 105 
 106 #define FT_BEGIN_STMNT  do {
 107 #define FT_END_STMNT    } while ( 0 )
 108 
 109 #define FT_MIN( a, b )  ( (a) < (b) ? (a) : (b) )
 110 #define FT_MAX( a, b )  ( (a) > (b) ? (a) : (b) )
 111 #define FT_ABS( a )     ( (a) < 0 ? -(a) : (a) )
 112 
 113 
 114   /*
 115    * Approximate sqrt(x*x+y*y) using the `alpha max plus beta min'
 116    * algorithm.  We use alpha = 1, beta = 3/8, giving us results with a
 117    * largest error less than 7% compared to the exact value.
 118    */
 119 #define FT_HYPOT( x, y )                 \
 120           ( x = FT_ABS( x ),             \
 121             y = FT_ABS( y ),             \
 122             x > y ? x + ( 3 * y >> 3 )   \
 123                   : y + ( 3 * x >> 3 ) )
 124 
 125 
 126   /* define this to dump debugging information */
 127 /* #define FT_DEBUG_LEVEL_TRACE */
 128 
 129 
 130 #ifdef FT_DEBUG_LEVEL_TRACE
 131 #include <stdio.h>
 132 #include <stdarg.h>
 133 #endif
 134 
 135 #include <stddef.h>
 136 #include <string.h>
 137 #include <setjmp.h>
 138 #include <limits.h>
 139 #define FT_CHAR_BIT   CHAR_BIT
 140 #define FT_UINT_MAX   UINT_MAX
 141 #define FT_INT_MAX    INT_MAX
 142 #define FT_ULONG_MAX  ULONG_MAX
 143 
 144 #define ADD_LONG( a, b )                                    \
 145           (long)( (unsigned long)(a) + (unsigned long)(b) )
 146 #define SUB_LONG( a, b )                                    \
 147           (long)( (unsigned long)(a) - (unsigned long)(b) )
 148 #define MUL_LONG( a, b )                                    \
 149           (long)( (unsigned long)(a) * (unsigned long)(b) )
 150 #define NEG_LONG( a )                                       \
 151           (long)( -(unsigned long)(a) )
 152 
 153 
 154 #define ft_memset   memset
 155 
 156 #define ft_setjmp   setjmp
 157 #define ft_longjmp  longjmp
 158 #define ft_jmp_buf  jmp_buf
 159 
 160 typedef ptrdiff_t  FT_PtrDist;
 161 
 162 
 163 #define ErrRaster_Invalid_Mode      -2
 164 #define ErrRaster_Invalid_Outline   -1
 165 #define ErrRaster_Invalid_Argument  -3
 166 #define ErrRaster_Memory_Overflow   -4
 167 
 168 #define FT_BEGIN_HEADER
 169 #define FT_END_HEADER
 170 
 171 #include "ftimage.h"
 172 #include "ftgrays.h"
 173 
 174 
 175   /* This macro is used to indicate that a function parameter is unused. */
 176   /* Its purpose is simply to reduce compiler warnings.  Note also that  */
 177   /* simply defining it as `(void)x' doesn't avoid warnings with certain */
 178   /* ANSI compilers (e.g. LCC).                                          */
 179 #define FT_UNUSED( x )  (x) = (x)
 180 
 181 
 182   /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
 183 
 184 #ifdef FT_DEBUG_LEVEL_TRACE
 185 
 186   void
 187   FT_Message( const char*  fmt,
 188               ... )
 189   {
 190     va_list  ap;
 191 
 192 
 193     va_start( ap, fmt );
 194     vfprintf( stderr, fmt, ap );
 195     va_end( ap );
 196   }
 197 
 198 
 199   /* empty function useful for setting a breakpoint to catch errors */
 200   int
 201   FT_Throw( int          error,
 202             int          line,
 203             const char*  file )
 204   {
 205     FT_UNUSED( error );
 206     FT_UNUSED( line );
 207     FT_UNUSED( file );
 208 
 209     return 0;
 210   }
 211 
 212 
 213   /* we don't handle tracing levels in stand-alone mode; */
 214 #ifndef FT_TRACE5
 215 #define FT_TRACE5( varformat )  FT_Message varformat
 216 #endif
 217 #ifndef FT_TRACE7
 218 #define FT_TRACE7( varformat )  FT_Message varformat
 219 #endif
 220 #ifndef FT_ERROR
 221 #define FT_ERROR( varformat )   FT_Message varformat
 222 #endif
 223 
 224 #define FT_THROW( e )                               \
 225           ( FT_Throw( FT_ERR_CAT( ErrRaster_, e ),  \
 226                       __LINE__,                     \
 227                       __FILE__ )                  | \
 228             FT_ERR_CAT( ErrRaster_, e )           )
 229 
 230 #else /* !FT_DEBUG_LEVEL_TRACE */
 231 
 232 #define FT_TRACE5( x )  do { } while ( 0 )     /* nothing */
 233 #define FT_TRACE7( x )  do { } while ( 0 )     /* nothing */
 234 #define FT_ERROR( x )   do { } while ( 0 )     /* nothing */
 235 #define FT_THROW( e )   FT_ERR_CAT( ErrRaster_, e )
 236 
 237 
 238 #endif /* !FT_DEBUG_LEVEL_TRACE */
 239 
 240 
 241 #define FT_DEFINE_OUTLINE_FUNCS( class_,               \
 242                                  move_to_, line_to_,   \
 243                                  conic_to_, cubic_to_, \
 244                                  shift_, delta_ )      \
 245           static const FT_Outline_Funcs class_ =       \
 246           {                                            \
 247             move_to_,                                  \
 248             line_to_,                                  \
 249             conic_to_,                                 \
 250             cubic_to_,                                 \
 251             shift_,                                    \
 252             delta_                                     \
 253          };
 254 
 255 #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_,            \
 256                                 raster_new_, raster_reset_,       \
 257                                 raster_set_mode_, raster_render_, \
 258                                 raster_done_ )                    \
 259           const FT_Raster_Funcs class_ =                          \
 260           {                                                       \
 261             glyph_format_,                                        \
 262             raster_new_,                                          \
 263             raster_reset_,                                        \
 264             raster_set_mode_,                                     \
 265             raster_render_,                                       \
 266             raster_done_                                          \
 267          };
 268 
 269 
 270 #else /* !STANDALONE_ */
 271 
 272 
 273 #include <ft2build.h>
 274 #include "ftgrays.h"
 275 #include FT_INTERNAL_OBJECTS_H
 276 #include FT_INTERNAL_DEBUG_H
 277 #include FT_INTERNAL_CALC_H
 278 #include FT_OUTLINE_H
 279 
 280 #include "ftsmerrs.h"
 281 
 282 #define Smooth_Err_Invalid_Mode     Smooth_Err_Cannot_Render_Glyph
 283 #define Smooth_Err_Memory_Overflow  Smooth_Err_Out_Of_Memory
 284 #define ErrRaster_Memory_Overflow   Smooth_Err_Out_Of_Memory
 285 
 286 
 287 #endif /* !STANDALONE_ */
 288 
 289 
 290 #ifndef FT_MEM_SET
 291 #define FT_MEM_SET( d, s, c )  ft_memset( d, s, c )
 292 #endif
 293 
 294 #ifndef FT_MEM_ZERO
 295 #define FT_MEM_ZERO( dest, count )  FT_MEM_SET( dest, 0, count )
 296 #endif
 297 
 298 #ifndef FT_ZERO
 299 #define FT_ZERO( p )  FT_MEM_ZERO( p, sizeof ( *(p) ) )
 300 #endif
 301 
 302   /* as usual, for the speed hungry :-) */
 303 
 304 #undef RAS_ARG
 305 #undef RAS_ARG_
 306 #undef RAS_VAR
 307 #undef RAS_VAR_
 308 
 309 #ifndef FT_STATIC_RASTER
 310 
 311 #define RAS_ARG   gray_PWorker  worker
 312 #define RAS_ARG_  gray_PWorker  worker,
 313 
 314 #define RAS_VAR   worker
 315 #define RAS_VAR_  worker,
 316 
 317 #else /* FT_STATIC_RASTER */
 318 
 319 #define RAS_ARG   void
 320 #define RAS_ARG_  /* empty */
 321 #define RAS_VAR   /* empty */
 322 #define RAS_VAR_  /* empty */
 323 
 324 #endif /* FT_STATIC_RASTER */
 325 
 326 
 327   /* must be at least 6 bits! */
 328 #define PIXEL_BITS  8
 329 
 330 #undef FLOOR
 331 #undef CEILING
 332 #undef TRUNC
 333 #undef SCALED
 334 
 335 #define ONE_PIXEL       ( 1 << PIXEL_BITS )
 336 #define TRUNC( x )      ( (TCoord)( (x) >> PIXEL_BITS ) )
 337 #define SUBPIXELS( x )  ( (TPos)(x) * ONE_PIXEL )
 338 #define FLOOR( x )      ( (x) & -ONE_PIXEL )
 339 #define CEILING( x )    ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
 340 #define ROUND( x )      ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
 341 
 342 #if PIXEL_BITS >= 6
 343 #define UPSCALE( x )    ( (x) * ( ONE_PIXEL >> 6 ) )
 344 #define DOWNSCALE( x )  ( (x) >> ( PIXEL_BITS - 6 ) )
 345 #else
 346 #define UPSCALE( x )    ( (x) >> ( 6 - PIXEL_BITS ) )
 347 #define DOWNSCALE( x )  ( (x) * ( 64 >> PIXEL_BITS ) )
 348 #endif
 349 
 350 
 351   /* Compute `dividend / divisor' and return both its quotient and     */
 352   /* remainder, cast to a specific type.  This macro also ensures that */
 353   /* the remainder is always positive.  We use the remainder to keep   */
 354   /* track of accumulating errors and compensate for them.             */
 355 #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
 356   FT_BEGIN_STMNT                                                   \
 357     (quotient)  = (type)( (dividend) / (divisor) );                \
 358     (remainder) = (type)( (dividend) % (divisor) );                \
 359     if ( (remainder) < 0 )                                         \
 360     {                                                              \
 361       (quotient)--;                                                \
 362       (remainder) += (type)(divisor);                              \
 363     }                                                              \
 364   FT_END_STMNT
 365 
 366 #ifdef  __arm__
 367   /* Work around a bug specific to GCC which make the compiler fail to */
 368   /* optimize a division and modulo operation on the same parameters   */
 369   /* into a single call to `__aeabi_idivmod'.  See                     */
 370   /*                                                                   */
 371   /*  https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721               */
 372 #undef FT_DIV_MOD
 373 #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
 374   FT_BEGIN_STMNT                                                   \
 375     (quotient)  = (type)( (dividend) / (divisor) );                \
 376     (remainder) = (type)( (dividend) - (quotient) * (divisor) );   \
 377     if ( (remainder) < 0 )                                         \
 378     {                                                              \
 379       (quotient)--;                                                \
 380       (remainder) += (type)(divisor);                              \
 381     }                                                              \
 382   FT_END_STMNT
 383 #endif /* __arm__ */
 384 
 385 
 386   /* These macros speed up repetitive divisions by replacing them */
 387   /* with multiplications and right shifts.                       */
 388 #define FT_UDIVPREP( c, b )                                        \
 389   long  b ## _r = c ? (long)( FT_ULONG_MAX >> PIXEL_BITS ) / ( b ) \
 390                     : 0
 391 #define FT_UDIV( a, b )                                        \
 392   ( ( (unsigned long)( a ) * (unsigned long)( b ## _r ) ) >>   \
 393     ( sizeof( long ) * FT_CHAR_BIT - PIXEL_BITS ) )
 394 
 395 
 396   /**************************************************************************
 397    *
 398    * TYPE DEFINITIONS
 399    */
 400 
 401   /* don't change the following types to FT_Int or FT_Pos, since we might */
 402   /* need to define them to "float" or "double" when experimenting with   */
 403   /* new algorithms                                                       */
 404 
 405   typedef long  TPos;     /* subpixel coordinate               */
 406   typedef int   TCoord;   /* integer scanline/pixel coordinate */
 407   typedef int   TArea;    /* cell areas, coordinate products   */
 408 
 409 
 410   typedef struct TCell_*  PCell;
 411 
 412   typedef struct  TCell_
 413   {
 414     TCoord  x;     /* same with gray_TWorker.ex    */
 415     TCoord  cover; /* same with gray_TWorker.cover */
 416     TArea   area;
 417     PCell   next;
 418 
 419   } TCell;
 420 
 421   typedef struct TPixmap_
 422   {
 423     unsigned char*  origin;  /* pixmap origin at the bottom-left */
 424     int             pitch;   /* pitch to go down one row */
 425 
 426   } TPixmap;
 427 
 428   /* maximum number of gray cells in the buffer */
 429 #if FT_RENDER_POOL_SIZE > 2048
 430 #define FT_MAX_GRAY_POOL  ( FT_RENDER_POOL_SIZE / sizeof ( TCell ) )
 431 #else
 432 #define FT_MAX_GRAY_POOL  ( 2048 / sizeof ( TCell ) )
 433 #endif
 434 
 435 
 436 #if defined( _MSC_VER )      /* Visual C++ (and Intel C++) */
 437   /* We disable the warning `structure was padded due to   */
 438   /* __declspec(align())' in order to compile cleanly with */
 439   /* the maximum level of warnings.                        */
 440 #pragma warning( push )
 441 #pragma warning( disable : 4324 )
 442 #endif /* _MSC_VER */
 443 
 444   typedef struct  gray_TWorker_
 445   {
 446     ft_jmp_buf  jump_buffer;
 447 
 448     TCoord  ex, ey;
 449     TCoord  min_ex, max_ex;
 450     TCoord  min_ey, max_ey;
 451 
 452     TArea   area;
 453     TCoord  cover;
 454     int     invalid;
 455 
 456     PCell*      ycells;
 457     PCell       cells;
 458     FT_PtrDist  max_cells;
 459     FT_PtrDist  num_cells;
 460 
 461     TPos    x,  y;
 462 
 463     FT_Outline  outline;
 464     TPixmap     target;
 465 
 466     FT_Raster_Span_Func  render_span;
 467     void*                render_span_data;
 468 
 469   } gray_TWorker, *gray_PWorker;
 470 
 471 #if defined( _MSC_VER )
 472 #pragma warning( pop )
 473 #endif
 474 
 475 
 476 #ifndef FT_STATIC_RASTER
 477 #define ras  (*worker)
 478 #else
 479   static gray_TWorker  ras;
 480 #endif
 481 
 482 
 483   typedef struct gray_TRaster_
 484   {
 485     void*         memory;
 486 
 487   } gray_TRaster, *gray_PRaster;
 488 
 489 
 490 #ifdef FT_DEBUG_LEVEL_TRACE
 491 
 492   /* to be called while in the debugger --                                */
 493   /* this function causes a compiler warning since it is unused otherwise */
 494   static void
 495   gray_dump_cells( RAS_ARG )
 496   {
 497     int  y;
 498 
 499 
 500     for ( y = ras.min_ey; y < ras.max_ey; y++ )
 501     {
 502       PCell  cell = ras.ycells[y - ras.min_ey];
 503 
 504 
 505       printf( "%3d:", y );
 506 
 507       for ( ; cell != NULL; cell = cell->next )
 508         printf( " (%3d, c:%4d, a:%6d)",
 509                 cell->x, cell->cover, cell->area );
 510       printf( "\n" );
 511     }
 512   }
 513 
 514 #endif /* FT_DEBUG_LEVEL_TRACE */
 515 
 516 
 517   /**************************************************************************
 518    *
 519    * Record the current cell in the table.
 520    */
 521   static void
 522   gray_record_cell( RAS_ARG )
 523   {
 524     PCell  *pcell, cell;
 525     TCoord  x = ras.ex;
 526 
 527 
 528     pcell = &ras.ycells[ras.ey - ras.min_ey];
 529     for (;;)
 530     {
 531       cell = *pcell;
 532       if ( !cell || cell->x > x )
 533         break;
 534 
 535       if ( cell->x == x )
 536         goto Found;
 537 
 538       pcell = &cell->next;
 539     }
 540 
 541     if ( ras.num_cells >= ras.max_cells )
 542       ft_longjmp( ras.jump_buffer, 1 );
 543 
 544     /* insert new cell */
 545     cell        = ras.cells + ras.num_cells++;
 546     cell->x     = x;
 547     cell->area  = ras.area;
 548     cell->cover = ras.cover;
 549 
 550     cell->next  = *pcell;
 551     *pcell      = cell;
 552 
 553     return;
 554 
 555   Found:
 556     /* update old cell */
 557     cell->area  += ras.area;
 558     cell->cover += ras.cover;
 559   }
 560 
 561 
 562   /**************************************************************************
 563    *
 564    * Set the current cell to a new position.
 565    */
 566   static void
 567   gray_set_cell( RAS_ARG_ TCoord  ex,
 568                           TCoord  ey )
 569   {
 570     /* Move the cell pointer to a new position.  We set the `invalid'      */
 571     /* flag to indicate that the cell isn't part of those we're interested */
 572     /* in during the render phase.  This means that:                       */
 573     /*                                                                     */
 574     /* . the new vertical position must be within min_ey..max_ey-1.        */
 575     /* . the new horizontal position must be strictly less than max_ex     */
 576     /*                                                                     */
 577     /* Note that if a cell is to the left of the clipping region, it is    */
 578     /* actually set to the (min_ex-1) horizontal position.                 */
 579 
 580     if ( ex < ras.min_ex )
 581       ex = ras.min_ex - 1;
 582 
 583     /* record the current one if it is valid and substantial */
 584     if ( !ras.invalid && ( ras.area || ras.cover ) )
 585       gray_record_cell( RAS_VAR );
 586 
 587     ras.area  = 0;
 588     ras.cover = 0;
 589     ras.ex    = ex;
 590     ras.ey    = ey;
 591 
 592     ras.invalid = ( ey >= ras.max_ey || ey < ras.min_ey ||
 593                     ex >= ras.max_ex );
 594   }
 595 
 596 
 597 #ifndef FT_LONG64
 598 
 599   /**************************************************************************
 600    *
 601    * Render a scanline as one or more cells.
 602    */
 603   static void
 604   gray_render_scanline( RAS_ARG_ TCoord  ey,
 605                                  TPos    x1,
 606                                  TCoord  y1,
 607                                  TPos    x2,
 608                                  TCoord  y2 )
 609   {
 610     TCoord  ex1, ex2, fx1, fx2, first, dy, delta, mod;
 611     TPos    p, dx;
 612     int     incr;
 613 
 614 
 615     ex1 = TRUNC( x1 );
 616     ex2 = TRUNC( x2 );
 617 
 618     /* trivial case.  Happens often */
 619     if ( y1 == y2 )
 620     {
 621       gray_set_cell( RAS_VAR_ ex2, ey );
 622       return;
 623     }
 624 
 625     fx1   = (TCoord)( x1 - SUBPIXELS( ex1 ) );
 626     fx2   = (TCoord)( x2 - SUBPIXELS( ex2 ) );
 627 
 628     /* everything is located in a single cell.  That is easy! */
 629     /*                                                        */
 630     if ( ex1 == ex2 )
 631       goto End;
 632 
 633     /* ok, we'll have to render a run of adjacent cells on the same */
 634     /* scanline...                                                  */
 635     /*                                                              */
 636     dx = x2 - x1;
 637     dy = y2 - y1;
 638 
 639     if ( dx > 0 )
 640     {
 641       p     = ( ONE_PIXEL - fx1 ) * dy;
 642       first = ONE_PIXEL;
 643       incr  = 1;
 644     }
 645     else
 646     {
 647       p     = fx1 * dy;
 648       first = 0;
 649       incr  = -1;
 650       dx    = -dx;
 651     }
 652 
 653     FT_DIV_MOD( TCoord, p, dx, delta, mod );
 654 
 655     ras.area  += (TArea)( ( fx1 + first ) * delta );
 656     ras.cover += delta;
 657     y1        += delta;
 658     ex1       += incr;
 659     gray_set_cell( RAS_VAR_ ex1, ey );
 660 
 661     if ( ex1 != ex2 )
 662     {
 663       TCoord  lift, rem;
 664 
 665 
 666       p = ONE_PIXEL * dy;
 667       FT_DIV_MOD( TCoord, p, dx, lift, rem );
 668 
 669       do
 670       {
 671         delta = lift;
 672         mod  += rem;
 673         if ( mod >= (TCoord)dx )
 674         {
 675           mod -= (TCoord)dx;
 676           delta++;
 677         }
 678 
 679         ras.area  += (TArea)( ONE_PIXEL * delta );
 680         ras.cover += delta;
 681         y1        += delta;
 682         ex1       += incr;
 683         gray_set_cell( RAS_VAR_ ex1, ey );
 684       } while ( ex1 != ex2 );
 685     }
 686 
 687     fx1 = ONE_PIXEL - first;
 688 
 689   End:
 690     dy = y2 - y1;
 691 
 692     ras.area  += (TArea)( ( fx1 + fx2 ) * dy );
 693     ras.cover += dy;
 694   }
 695 
 696 
 697   /**************************************************************************
 698    *
 699    * Render a given line as a series of scanlines.
 700    */
 701   static void
 702   gray_render_line( RAS_ARG_ TPos  to_x,
 703                              TPos  to_y )
 704   {
 705     TCoord  ey1, ey2, fy1, fy2, first, delta, mod;
 706     TPos    p, dx, dy, x, x2;
 707     int     incr;
 708 
 709 
 710     ey1 = TRUNC( ras.y );
 711     ey2 = TRUNC( to_y );     /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
 712 
 713     /* perform vertical clipping */
 714     if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
 715          ( ey1 <  ras.min_ey && ey2 <  ras.min_ey ) )
 716       goto End;
 717 
 718     fy1 = (TCoord)( ras.y - SUBPIXELS( ey1 ) );
 719     fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
 720 
 721     /* everything is on a single scanline */
 722     if ( ey1 == ey2 )
 723     {
 724       gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
 725       goto End;
 726     }
 727 
 728     dx = to_x - ras.x;
 729     dy = to_y - ras.y;
 730 
 731     /* vertical line - avoid calling gray_render_scanline */
 732     if ( dx == 0 )
 733     {
 734       TCoord  ex     = TRUNC( ras.x );
 735       TCoord  two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
 736       TArea   area;
 737 
 738 
 739       if ( dy > 0)
 740       {
 741         first = ONE_PIXEL;
 742         incr  = 1;
 743       }
 744       else
 745       {
 746         first = 0;
 747         incr  = -1;
 748       }
 749 
 750       delta      = first - fy1;
 751       ras.area  += (TArea)two_fx * delta;
 752       ras.cover += delta;
 753       ey1       += incr;
 754 
 755       gray_set_cell( RAS_VAR_ ex, ey1 );
 756 
 757       delta = first + first - ONE_PIXEL;
 758       area  = (TArea)two_fx * delta;
 759       while ( ey1 != ey2 )
 760       {
 761         ras.area  += area;
 762         ras.cover += delta;
 763         ey1       += incr;
 764 
 765         gray_set_cell( RAS_VAR_ ex, ey1 );
 766       }
 767 
 768       delta      = fy2 - ONE_PIXEL + first;
 769       ras.area  += (TArea)two_fx * delta;
 770       ras.cover += delta;
 771 
 772       goto End;
 773     }
 774 
 775     /* ok, we have to render several scanlines */
 776     if ( dy > 0)
 777     {
 778       p     = ( ONE_PIXEL - fy1 ) * dx;
 779       first = ONE_PIXEL;
 780       incr  = 1;
 781     }
 782     else
 783     {
 784       p     = fy1 * dx;
 785       first = 0;
 786       incr  = -1;
 787       dy    = -dy;
 788     }
 789 
 790     FT_DIV_MOD( TCoord, p, dy, delta, mod );
 791 
 792     x = ras.x + delta;
 793     gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first );
 794 
 795     ey1 += incr;
 796     gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
 797 
 798     if ( ey1 != ey2 )
 799     {
 800       TCoord  lift, rem;
 801 
 802 
 803       p    = ONE_PIXEL * dx;
 804       FT_DIV_MOD( TCoord, p, dy, lift, rem );
 805 
 806       do
 807       {
 808         delta = lift;
 809         mod  += rem;
 810         if ( mod >= (TCoord)dy )
 811         {
 812           mod -= (TCoord)dy;
 813           delta++;
 814         }
 815 
 816         x2 = x + delta;
 817         gray_render_scanline( RAS_VAR_ ey1,
 818                                        x, ONE_PIXEL - first,
 819                                        x2, first );
 820         x = x2;
 821 
 822         ey1 += incr;
 823         gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
 824       } while ( ey1 != ey2 );
 825     }
 826 
 827     gray_render_scanline( RAS_VAR_ ey1,
 828                                    x, ONE_PIXEL - first,
 829                                    to_x, fy2 );
 830 
 831   End:
 832     ras.x       = to_x;
 833     ras.y       = to_y;
 834   }
 835 
 836 #else
 837 
 838   /**************************************************************************
 839    *
 840    * Render a straight line across multiple cells in any direction.
 841    */
 842   static void
 843   gray_render_line( RAS_ARG_ TPos  to_x,
 844                              TPos  to_y )
 845   {
 846     TPos    dx, dy, fx1, fy1, fx2, fy2;
 847     TCoord  ex1, ex2, ey1, ey2;
 848 
 849 
 850     ey1 = TRUNC( ras.y );
 851     ey2 = TRUNC( to_y );
 852 
 853     /* perform vertical clipping */
 854     if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
 855          ( ey1 <  ras.min_ey && ey2 <  ras.min_ey ) )
 856       goto End;
 857 
 858     ex1 = TRUNC( ras.x );
 859     ex2 = TRUNC( to_x );
 860 
 861     fx1 = ras.x - SUBPIXELS( ex1 );
 862     fy1 = ras.y - SUBPIXELS( ey1 );
 863 
 864     dx = to_x - ras.x;
 865     dy = to_y - ras.y;
 866 
 867     if ( ex1 == ex2 && ey1 == ey2 )       /* inside one cell */
 868       ;
 869     else if ( dy == 0 ) /* ex1 != ex2 */  /* any horizontal line */
 870     {
 871       ex1 = ex2;
 872       gray_set_cell( RAS_VAR_ ex1, ey1 );
 873     }
 874     else if ( dx == 0 )
 875     {
 876       if ( dy > 0 )                       /* vertical line up */
 877         do
 878         {
 879           fy2 = ONE_PIXEL;
 880           ras.cover += ( fy2 - fy1 );
 881           ras.area  += ( fy2 - fy1 ) * fx1 * 2;
 882           fy1 = 0;
 883           ey1++;
 884           gray_set_cell( RAS_VAR_ ex1, ey1 );
 885         } while ( ey1 != ey2 );
 886       else                                /* vertical line down */
 887         do
 888         {
 889           fy2 = 0;
 890           ras.cover += ( fy2 - fy1 );
 891           ras.area  += ( fy2 - fy1 ) * fx1 * 2;
 892           fy1 = ONE_PIXEL;
 893           ey1--;
 894           gray_set_cell( RAS_VAR_ ex1, ey1 );
 895         } while ( ey1 != ey2 );
 896     }
 897     else                                  /* any other line */
 898     {
 899       TPos  prod = dx * fy1 - dy * fx1;
 900       FT_UDIVPREP( ex1 != ex2, dx );
 901       FT_UDIVPREP( ey1 != ey2, dy );
 902 
 903 
 904       /* The fundamental value `prod' determines which side and the  */
 905       /* exact coordinate where the line exits current cell.  It is  */
 906       /* also easily updated when moving from one cell to the next.  */
 907       do
 908       {
 909         if      ( prod                                   <= 0 &&
 910                   prod - dx * ONE_PIXEL                  >  0 ) /* left */
 911         {
 912           fx2 = 0;
 913           fy2 = (TPos)FT_UDIV( -prod, -dx );
 914           prod -= dy * ONE_PIXEL;
 915           ras.cover += ( fy2 - fy1 );
 916           ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
 917           fx1 = ONE_PIXEL;
 918           fy1 = fy2;
 919           ex1--;
 920         }
 921         else if ( prod - dx * ONE_PIXEL                  <= 0 &&
 922                   prod - dx * ONE_PIXEL + dy * ONE_PIXEL >  0 ) /* up */
 923         {
 924           prod -= dx * ONE_PIXEL;
 925           fx2 = (TPos)FT_UDIV( -prod, dy );
 926           fy2 = ONE_PIXEL;
 927           ras.cover += ( fy2 - fy1 );
 928           ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
 929           fx1 = fx2;
 930           fy1 = 0;
 931           ey1++;
 932         }
 933         else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 &&
 934                   prod                  + dy * ONE_PIXEL >= 0 ) /* right */
 935         {
 936           prod += dy * ONE_PIXEL;
 937           fx2 = ONE_PIXEL;
 938           fy2 = (TPos)FT_UDIV( prod, dx );
 939           ras.cover += ( fy2 - fy1 );
 940           ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
 941           fx1 = 0;
 942           fy1 = fy2;
 943           ex1++;
 944         }
 945         else /* ( prod                  + dy * ONE_PIXEL <  0 &&
 946                   prod                                   >  0 )    down */
 947         {
 948           fx2 = (TPos)FT_UDIV( prod, -dy );
 949           fy2 = 0;
 950           prod += dx * ONE_PIXEL;
 951           ras.cover += ( fy2 - fy1 );
 952           ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
 953           fx1 = fx2;
 954           fy1 = ONE_PIXEL;
 955           ey1--;
 956         }
 957 
 958         gray_set_cell( RAS_VAR_ ex1, ey1 );
 959       } while ( ex1 != ex2 || ey1 != ey2 );
 960     }
 961 
 962     fx2 = to_x - SUBPIXELS( ex2 );
 963     fy2 = to_y - SUBPIXELS( ey2 );
 964 
 965     ras.cover += ( fy2 - fy1 );
 966     ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
 967 
 968   End:
 969     ras.x       = to_x;
 970     ras.y       = to_y;
 971   }
 972 
 973 #endif
 974 
 975   static void
 976   gray_split_conic( FT_Vector*  base )
 977   {
 978     TPos  a, b;
 979 
 980 
 981     base[4].x = base[2].x;
 982     b = base[1].x;
 983     a = base[3].x = ( base[2].x + b ) / 2;
 984     b = base[1].x = ( base[0].x + b ) / 2;
 985     base[2].x = ( a + b ) / 2;
 986 
 987     base[4].y = base[2].y;
 988     b = base[1].y;
 989     a = base[3].y = ( base[2].y + b ) / 2;
 990     b = base[1].y = ( base[0].y + b ) / 2;
 991     base[2].y = ( a + b ) / 2;
 992   }
 993 
 994 
 995   static void
 996   gray_render_conic( RAS_ARG_ const FT_Vector*  control,
 997                               const FT_Vector*  to )
 998   {
 999     FT_Vector   bez_stack[16 * 2 + 1];  /* enough to accommodate bisections */
1000     FT_Vector*  arc = bez_stack;
1001     TPos        dx, dy;
1002     int         draw, split;
1003 
1004 
1005     arc[0].x = UPSCALE( to->x );
1006     arc[0].y = UPSCALE( to->y );
1007     arc[1].x = UPSCALE( control->x );
1008     arc[1].y = UPSCALE( control->y );
1009     arc[2].x = ras.x;
1010     arc[2].y = ras.y;
1011 
1012     /* short-cut the arc that crosses the current band */
1013     if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
1014            TRUNC( arc[1].y ) >= ras.max_ey &&
1015            TRUNC( arc[2].y ) >= ras.max_ey ) ||
1016          ( TRUNC( arc[0].y ) <  ras.min_ey &&
1017            TRUNC( arc[1].y ) <  ras.min_ey &&
1018            TRUNC( arc[2].y ) <  ras.min_ey ) )
1019     {
1020       ras.x = arc[0].x;
1021       ras.y = arc[0].y;
1022       return;
1023     }
1024 
1025     dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
1026     dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
1027     if ( dx < dy )
1028       dx = dy;
1029 
1030     /* We can calculate the number of necessary bisections because  */
1031     /* each bisection predictably reduces deviation exactly 4-fold. */
1032     /* Even 32-bit deviation would vanish after 16 bisections.      */
1033     draw = 1;
1034     while ( dx > ONE_PIXEL / 4 )
1035     {
1036       dx   >>= 2;
1037       draw <<= 1;
1038     }
1039 
1040     /* We use decrement counter to count the total number of segments */
1041     /* to draw starting from 2^level. Before each draw we split as    */
1042     /* many times as there are trailing zeros in the counter.         */
1043     do
1044     {
1045       split = 1;
1046       while ( ( draw & split ) == 0 )
1047       {
1048         gray_split_conic( arc );
1049         arc += 2;
1050         split <<= 1;
1051       }
1052 
1053       gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
1054       arc -= 2;
1055 
1056     } while ( --draw );
1057   }
1058 
1059 
1060   static void
1061   gray_split_cubic( FT_Vector*  base )
1062   {
1063     TPos  a, b, c, d;
1064 
1065 
1066     base[6].x = base[3].x;
1067     c = base[1].x;
1068     d = base[2].x;
1069     base[1].x = a = ( base[0].x + c ) / 2;
1070     base[5].x = b = ( base[3].x + d ) / 2;
1071     c = ( c + d ) / 2;
1072     base[2].x = a = ( a + c ) / 2;
1073     base[4].x = b = ( b + c ) / 2;
1074     base[3].x = ( a + b ) / 2;
1075 
1076     base[6].y = base[3].y;
1077     c = base[1].y;
1078     d = base[2].y;
1079     base[1].y = a = ( base[0].y + c ) / 2;
1080     base[5].y = b = ( base[3].y + d ) / 2;
1081     c = ( c + d ) / 2;
1082     base[2].y = a = ( a + c ) / 2;
1083     base[4].y = b = ( b + c ) / 2;
1084     base[3].y = ( a + b ) / 2;
1085   }
1086 
1087 
1088   static void
1089   gray_render_cubic( RAS_ARG_ const FT_Vector*  control1,
1090                               const FT_Vector*  control2,
1091                               const FT_Vector*  to )
1092   {
1093     FT_Vector   bez_stack[16 * 3 + 1];  /* enough to accommodate bisections */
1094     FT_Vector*  arc = bez_stack;
1095     TPos        dx, dy, dx_, dy_;
1096     TPos        dx1, dy1, dx2, dy2;
1097     TPos        L, s, s_limit;
1098 
1099 
1100     arc[0].x = UPSCALE( to->x );
1101     arc[0].y = UPSCALE( to->y );
1102     arc[1].x = UPSCALE( control2->x );
1103     arc[1].y = UPSCALE( control2->y );
1104     arc[2].x = UPSCALE( control1->x );
1105     arc[2].y = UPSCALE( control1->y );
1106     arc[3].x = ras.x;
1107     arc[3].y = ras.y;
1108 
1109     /* short-cut the arc that crosses the current band */
1110     if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
1111            TRUNC( arc[1].y ) >= ras.max_ey &&
1112            TRUNC( arc[2].y ) >= ras.max_ey &&
1113            TRUNC( arc[3].y ) >= ras.max_ey ) ||
1114          ( TRUNC( arc[0].y ) <  ras.min_ey &&
1115            TRUNC( arc[1].y ) <  ras.min_ey &&
1116            TRUNC( arc[2].y ) <  ras.min_ey &&
1117            TRUNC( arc[3].y ) <  ras.min_ey ) )
1118     {
1119       ras.x = arc[0].x;
1120       ras.y = arc[0].y;
1121       return;
1122     }
1123 
1124     for (;;)
1125     {
1126       /* Decide whether to split or draw. See `Rapid Termination          */
1127       /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */
1128       /* F. Hain, at                                                      */
1129       /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */
1130 
1131       /* dx and dy are x and y components of the P0-P3 chord vector. */
1132       dx = dx_ = arc[3].x - arc[0].x;
1133       dy = dy_ = arc[3].y - arc[0].y;
1134 
1135       L = FT_HYPOT( dx_, dy_ );
1136 
1137       /* Avoid possible arithmetic overflow below by splitting. */
1138       if ( L > 32767 )
1139         goto Split;
1140 
1141       /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */
1142       s_limit = L * (TPos)( ONE_PIXEL / 6 );
1143 
1144       /* s is L * the perpendicular distance from P1 to the line P0-P3. */
1145       dx1 = arc[1].x - arc[0].x;
1146       dy1 = arc[1].y - arc[0].y;
1147       s = FT_ABS( SUB_LONG( MUL_LONG( dy, dx1 ), MUL_LONG( dx, dy1 ) ) );
1148 
1149       if ( s > s_limit )
1150         goto Split;
1151 
1152       /* s is L * the perpendicular distance from P2 to the line P0-P3. */
1153       dx2 = arc[2].x - arc[0].x;
1154       dy2 = arc[2].y - arc[0].y;
1155       s = FT_ABS( SUB_LONG( MUL_LONG( dy, dx2 ), MUL_LONG( dx, dy2 ) ) );
1156 
1157       if ( s > s_limit )
1158         goto Split;
1159 
1160       /* Split super curvy segments where the off points are so far
1161          from the chord that the angles P0-P1-P3 or P0-P2-P3 become
1162          acute as detected by appropriate dot products. */
1163       if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 ||
1164            dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 )
1165         goto Split;
1166 
1167       gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
1168 
1169       if ( arc == bez_stack )
1170         return;
1171 
1172       arc -= 3;
1173       continue;
1174 
1175     Split:
1176       gray_split_cubic( arc );
1177       arc += 3;
1178     }
1179   }
1180 
1181 
1182   static int
1183   gray_move_to( const FT_Vector*  to,
1184                 gray_PWorker      worker )
1185   {
1186     TPos  x, y;
1187 
1188 
1189     /* start to a new position */
1190     x = UPSCALE( to->x );
1191     y = UPSCALE( to->y );
1192 
1193     gray_set_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
1194 
1195     ras.x = x;
1196     ras.y = y;
1197     return 0;
1198   }
1199 
1200 
1201   static int
1202   gray_line_to( const FT_Vector*  to,
1203                 gray_PWorker      worker )
1204   {
1205     gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
1206     return 0;
1207   }
1208 
1209 
1210   static int
1211   gray_conic_to( const FT_Vector*  control,
1212                  const FT_Vector*  to,
1213                  gray_PWorker      worker )
1214   {
1215     gray_render_conic( RAS_VAR_ control, to );
1216     return 0;
1217   }
1218 
1219 
1220   static int
1221   gray_cubic_to( const FT_Vector*  control1,
1222                  const FT_Vector*  control2,
1223                  const FT_Vector*  to,
1224                  gray_PWorker      worker )
1225   {
1226     gray_render_cubic( RAS_VAR_ control1, control2, to );
1227     return 0;
1228   }
1229 
1230 
1231   static void
1232   gray_hline( RAS_ARG_ TCoord  x,
1233                        TCoord  y,
1234                        TArea   coverage,
1235                        TCoord  acount )
1236   {
1237     /* scale the coverage from 0..(ONE_PIXEL*ONE_PIXEL*2) to 0..256  */
1238     coverage >>= PIXEL_BITS * 2 + 1 - 8;
1239     if ( coverage < 0 )
1240       coverage = -coverage - 1;
1241 
1242     /* compute the line's coverage depending on the outline fill rule */
1243     if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
1244     {
1245       coverage &= 511;
1246 
1247       if ( coverage >= 256 )
1248         coverage = 511 - coverage;
1249     }
1250     else
1251     {
1252       /* normal non-zero winding rule */
1253       if ( coverage >= 256 )
1254         coverage = 255;
1255     }
1256 
1257     if ( ras.render_span )  /* for FT_RASTER_FLAG_DIRECT only */
1258     {
1259       FT_Span  span;
1260 
1261 
1262       span.x        = (short)x;
1263       span.len      = (unsigned short)acount;
1264       span.coverage = (unsigned char)coverage;
1265 
1266       ras.render_span( y, 1, &span, ras.render_span_data );
1267     }
1268     else
1269     {
1270       unsigned char*  q = ras.target.origin - ras.target.pitch * y + x;
1271       unsigned char   c = (unsigned char)coverage;
1272 
1273 
1274       /* For small-spans it is faster to do it by ourselves than
1275        * calling `memset'.  This is mainly due to the cost of the
1276        * function call.
1277        */
1278       switch ( acount )
1279       {
1280       case 7: *q++ = c;
1281       case 6: *q++ = c;
1282       case 5: *q++ = c;
1283       case 4: *q++ = c;
1284       case 3: *q++ = c;
1285       case 2: *q++ = c;
1286       case 1: *q   = c;
1287       case 0: break;
1288       default:
1289         FT_MEM_SET( q, c, acount );
1290       }
1291     }
1292   }
1293 
1294 
1295   static void
1296   gray_sweep( RAS_ARG )
1297   {
1298     int  y;
1299 
1300 
1301     for ( y = ras.min_ey; y < ras.max_ey; y++ )
1302     {
1303       PCell   cell  = ras.ycells[y - ras.min_ey];
1304       TCoord  x     = ras.min_ex;
1305       TArea   cover = 0;
1306       TArea   area;
1307 
1308 
1309       for ( ; cell != NULL; cell = cell->next )
1310       {
1311         if ( cover != 0 && cell->x > x )
1312           gray_hline( RAS_VAR_ x, y, cover, cell->x - x );
1313 
1314         cover += (TArea)cell->cover * ( ONE_PIXEL * 2 );
1315         area   = cover - cell->area;
1316 
1317         if ( area != 0 && cell->x >= ras.min_ex )
1318           gray_hline( RAS_VAR_ cell->x, y, area, 1 );
1319 
1320         x = cell->x + 1;
1321       }
1322 
1323       if ( cover != 0 )
1324         gray_hline( RAS_VAR_ x, y, cover, ras.max_ex - x );
1325     }
1326   }
1327 
1328 
1329 #ifdef STANDALONE_
1330 
1331   /**************************************************************************
1332    *
1333    * The following functions should only compile in stand-alone mode,
1334    * i.e., when building this component without the rest of FreeType.
1335    *
1336    */
1337 
1338   /**************************************************************************
1339    *
1340    * @Function:
1341    *   FT_Outline_Decompose
1342    *
1343    * @Description:
1344    *   Walk over an outline's structure to decompose it into individual
1345    *   segments and Bézier arcs.  This function is also able to emit
1346    *   `move to' and `close to' operations to indicate the start and end
1347    *   of new contours in the outline.
1348    *
1349    * @Input:
1350    *   outline ::
1351    *     A pointer to the source target.
1352    *
1353    *   func_interface ::
1354    *     A table of `emitters', i.e., function pointers
1355    *     called during decomposition to indicate path
1356    *     operations.
1357    *
1358    * @InOut:
1359    *   user ::
1360    *     A typeless pointer which is passed to each
1361    *     emitter during the decomposition.  It can be
1362    *     used to store the state during the
1363    *     decomposition.
1364    *
1365    * @Return:
1366    *   Error code.  0 means success.
1367    */
1368   static int
1369   FT_Outline_Decompose( const FT_Outline*        outline,
1370                         const FT_Outline_Funcs*  func_interface,
1371                         void*                    user )
1372   {
1373 #undef SCALED
1374 #define SCALED( x )  ( ( (x) << shift ) - delta )
1375 
1376     FT_Vector   v_last;
1377     FT_Vector   v_control;
1378     FT_Vector   v_start;
1379 
1380     FT_Vector*  point;
1381     FT_Vector*  limit;
1382     char*       tags;
1383 
1384     int         error;
1385 
1386     int   n;         /* index of contour in outline     */
1387     int   first;     /* index of first point in contour */
1388     char  tag;       /* current point's state           */
1389 
1390     int   shift;
1391     TPos  delta;
1392 
1393 
1394     if ( !outline )
1395       return FT_THROW( Invalid_Outline );
1396 
1397     if ( !func_interface )
1398       return FT_THROW( Invalid_Argument );
1399 
1400     shift = func_interface->shift;
1401     delta = func_interface->delta;
1402     first = 0;
1403 
1404     for ( n = 0; n < outline->n_contours; n++ )
1405     {
1406       int  last;  /* index of last point in contour */
1407 
1408 
1409       FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
1410 
1411       last  = outline->contours[n];
1412       if ( last < 0 )
1413         goto Invalid_Outline;
1414       limit = outline->points + last;
1415 
1416       v_start   = outline->points[first];
1417       v_start.x = SCALED( v_start.x );
1418       v_start.y = SCALED( v_start.y );
1419 
1420       v_last   = outline->points[last];
1421       v_last.x = SCALED( v_last.x );
1422       v_last.y = SCALED( v_last.y );
1423 
1424       v_control = v_start;
1425 
1426       point = outline->points + first;
1427       tags  = outline->tags   + first;
1428       tag   = FT_CURVE_TAG( tags[0] );
1429 
1430       /* A contour cannot start with a cubic control point! */
1431       if ( tag == FT_CURVE_TAG_CUBIC )
1432         goto Invalid_Outline;
1433 
1434       /* check first point to determine origin */
1435       if ( tag == FT_CURVE_TAG_CONIC )
1436       {
1437         /* first point is conic control.  Yes, this happens. */
1438         if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
1439         {
1440           /* start at last point if it is on the curve */
1441           v_start = v_last;
1442           limit--;
1443         }
1444         else
1445         {
1446           /* if both first and last points are conic,         */
1447           /* start at their middle and record its position    */
1448           /* for closure                                      */
1449           v_start.x = ( v_start.x + v_last.x ) / 2;
1450           v_start.y = ( v_start.y + v_last.y ) / 2;
1451 
1452           v_last = v_start;
1453         }
1454         point--;
1455         tags--;
1456       }
1457 
1458       FT_TRACE5(( "  move to (%.2f, %.2f)\n",
1459                   v_start.x / 64.0, v_start.y / 64.0 ));
1460       error = func_interface->move_to( &v_start, user );
1461       if ( error )
1462         goto Exit;
1463 
1464       while ( point < limit )
1465       {
1466         point++;
1467         tags++;
1468 
1469         tag = FT_CURVE_TAG( tags[0] );
1470         switch ( tag )
1471         {
1472         case FT_CURVE_TAG_ON:  /* emit a single line_to */
1473           {
1474             FT_Vector  vec;
1475 
1476 
1477             vec.x = SCALED( point->x );
1478             vec.y = SCALED( point->y );
1479 
1480             FT_TRACE5(( "  line to (%.2f, %.2f)\n",
1481                         vec.x / 64.0, vec.y / 64.0 ));
1482             error = func_interface->line_to( &vec, user );
1483             if ( error )
1484               goto Exit;
1485             continue;
1486           }
1487 
1488         case FT_CURVE_TAG_CONIC:  /* consume conic arcs */
1489           v_control.x = SCALED( point->x );
1490           v_control.y = SCALED( point->y );
1491 
1492         Do_Conic:
1493           if ( point < limit )
1494           {
1495             FT_Vector  vec;
1496             FT_Vector  v_middle;
1497 
1498 
1499             point++;
1500             tags++;
1501             tag = FT_CURVE_TAG( tags[0] );
1502 
1503             vec.x = SCALED( point->x );
1504             vec.y = SCALED( point->y );
1505 
1506             if ( tag == FT_CURVE_TAG_ON )
1507             {
1508               FT_TRACE5(( "  conic to (%.2f, %.2f)"
1509                           " with control (%.2f, %.2f)\n",
1510                           vec.x / 64.0, vec.y / 64.0,
1511                           v_control.x / 64.0, v_control.y / 64.0 ));
1512               error = func_interface->conic_to( &v_control, &vec, user );
1513               if ( error )
1514                 goto Exit;
1515               continue;
1516             }
1517 
1518             if ( tag != FT_CURVE_TAG_CONIC )
1519               goto Invalid_Outline;
1520 
1521             v_middle.x = ( v_control.x + vec.x ) / 2;
1522             v_middle.y = ( v_control.y + vec.y ) / 2;
1523 
1524             FT_TRACE5(( "  conic to (%.2f, %.2f)"
1525                         " with control (%.2f, %.2f)\n",
1526                         v_middle.x / 64.0, v_middle.y / 64.0,
1527                         v_control.x / 64.0, v_control.y / 64.0 ));
1528             error = func_interface->conic_to( &v_control, &v_middle, user );
1529             if ( error )
1530               goto Exit;
1531 
1532             v_control = vec;
1533             goto Do_Conic;
1534           }
1535 
1536           FT_TRACE5(( "  conic to (%.2f, %.2f)"
1537                       " with control (%.2f, %.2f)\n",
1538                       v_start.x / 64.0, v_start.y / 64.0,
1539                       v_control.x / 64.0, v_control.y / 64.0 ));
1540           error = func_interface->conic_to( &v_control, &v_start, user );
1541           goto Close;
1542 
1543         default:  /* FT_CURVE_TAG_CUBIC */
1544           {
1545             FT_Vector  vec1, vec2;
1546 
1547 
1548             if ( point + 1 > limit                             ||
1549                  FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
1550               goto Invalid_Outline;
1551 
1552             point += 2;
1553             tags  += 2;
1554 
1555             vec1.x = SCALED( point[-2].x );
1556             vec1.y = SCALED( point[-2].y );
1557 
1558             vec2.x = SCALED( point[-1].x );
1559             vec2.y = SCALED( point[-1].y );
1560 
1561             if ( point <= limit )
1562             {
1563               FT_Vector  vec;
1564 
1565 
1566               vec.x = SCALED( point->x );
1567               vec.y = SCALED( point->y );
1568 
1569               FT_TRACE5(( "  cubic to (%.2f, %.2f)"
1570                           " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
1571                           vec.x / 64.0, vec.y / 64.0,
1572                           vec1.x / 64.0, vec1.y / 64.0,
1573                           vec2.x / 64.0, vec2.y / 64.0 ));
1574               error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
1575               if ( error )
1576                 goto Exit;
1577               continue;
1578             }
1579 
1580             FT_TRACE5(( "  cubic to (%.2f, %.2f)"
1581                         " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
1582                         v_start.x / 64.0, v_start.y / 64.0,
1583                         vec1.x / 64.0, vec1.y / 64.0,
1584                         vec2.x / 64.0, vec2.y / 64.0 ));
1585             error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
1586             goto Close;
1587           }
1588         }
1589       }
1590 
1591       /* close the contour with a line segment */
1592       FT_TRACE5(( "  line to (%.2f, %.2f)\n",
1593                   v_start.x / 64.0, v_start.y / 64.0 ));
1594       error = func_interface->line_to( &v_start, user );
1595 
1596    Close:
1597       if ( error )
1598         goto Exit;
1599 
1600       first = last + 1;
1601     }
1602 
1603     FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
1604     return 0;
1605 
1606   Exit:
1607     FT_TRACE5(( "FT_Outline_Decompose: Error 0x%x\n", error ));
1608     return error;
1609 
1610   Invalid_Outline:
1611     return FT_THROW( Invalid_Outline );
1612   }
1613 
1614 #endif /* STANDALONE_ */
1615 
1616 
1617   FT_DEFINE_OUTLINE_FUNCS(
1618     func_interface,
1619 
1620     (FT_Outline_MoveTo_Func) gray_move_to,   /* move_to  */
1621     (FT_Outline_LineTo_Func) gray_line_to,   /* line_to  */
1622     (FT_Outline_ConicTo_Func)gray_conic_to,  /* conic_to */
1623     (FT_Outline_CubicTo_Func)gray_cubic_to,  /* cubic_to */
1624 
1625     0,                                       /* shift    */
1626     0                                        /* delta    */
1627   )
1628 
1629 
1630   static int
1631   gray_convert_glyph_inner( RAS_ARG,
1632                             int  continued )
1633   {
1634     volatile int  error = 0;
1635 
1636 
1637     if ( ft_setjmp( ras.jump_buffer ) == 0 )
1638     {
1639       if ( continued )
1640         FT_Trace_Disable();
1641       error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
1642       if ( continued )
1643         FT_Trace_Enable();
1644 
1645       if ( !ras.invalid )
1646         gray_record_cell( RAS_VAR );
1647 
1648       FT_TRACE7(( "band [%d..%d]: %d cell%s\n",
1649                   ras.min_ey,
1650                   ras.max_ey,
1651                   ras.num_cells,
1652                   ras.num_cells == 1 ? "" : "s" ));
1653     }
1654     else
1655     {
1656       error = FT_THROW( Memory_Overflow );
1657 
1658       FT_TRACE7(( "band [%d..%d]: to be bisected\n",
1659                   ras.min_ey, ras.max_ey ));
1660     }
1661 
1662     return error;
1663   }
1664 
1665 
1666   static int
1667   gray_convert_glyph( RAS_ARG )
1668   {
1669     const TCoord  yMin = ras.min_ey;
1670     const TCoord  yMax = ras.max_ey;
1671 
1672     TCell    buffer[FT_MAX_GRAY_POOL];
1673     size_t   height = (size_t)( yMax - yMin );
1674     size_t   n = FT_MAX_GRAY_POOL / 8;
1675     TCoord   y;
1676     TCoord   bands[32];  /* enough to accommodate bisections */
1677     TCoord*  band;
1678 
1679     int  continued = 0;
1680 
1681 
1682     /* set up vertical bands */
1683     if ( height > n )
1684     {
1685       /* two divisions rounded up */
1686       n       = ( height + n - 1 ) / n;
1687       height  = ( height + n - 1 ) / n;
1688     }
1689 
1690     /* memory management */
1691     n = ( height * sizeof ( PCell ) + sizeof ( TCell ) - 1 ) / sizeof ( TCell );
1692 
1693     ras.cells     = buffer + n;
1694     ras.max_cells = (FT_PtrDist)( FT_MAX_GRAY_POOL - n );
1695     ras.ycells    = (PCell*)buffer;
1696 
1697     for ( y = yMin; y < yMax; )
1698     {
1699       ras.min_ey = y;
1700       y         += height;
1701       ras.max_ey = FT_MIN( y, yMax );
1702 
1703       band    = bands;
1704       band[1] = ras.min_ey;
1705       band[0] = ras.max_ey;
1706 
1707       do
1708       {
1709         TCoord  width = band[0] - band[1];
1710         int     error;
1711 
1712 
1713         FT_MEM_ZERO( ras.ycells, height * sizeof ( PCell ) );
1714 
1715         ras.num_cells = 0;
1716         ras.invalid   = 1;
1717         ras.min_ey    = band[1];
1718         ras.max_ey    = band[0];
1719 
1720         error     = gray_convert_glyph_inner( RAS_VAR, continued );
1721         continued = 1;
1722 
1723         if ( !error )
1724         {
1725           gray_sweep( RAS_VAR );
1726           band--;
1727           continue;
1728         }
1729         else if ( error != ErrRaster_Memory_Overflow )
1730           return 1;
1731 
1732         /* render pool overflow; we will reduce the render band by half */
1733         width >>= 1;
1734 
1735         /* this should never happen even with tiny rendering pool */
1736         if ( width == 0 )
1737         {
1738           FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
1739           return 1;
1740         }
1741 
1742         band++;
1743         band[1]  = band[0];
1744         band[0] += width;
1745       } while ( band >= bands );
1746     }
1747 
1748     return 0;
1749   }
1750 
1751 
1752   static int
1753   gray_raster_render( FT_Raster                raster,
1754                       const FT_Raster_Params*  params )
1755   {
1756     const FT_Outline*  outline    = (const FT_Outline*)params->source;
1757     const FT_Bitmap*   target_map = params->target;
1758     FT_BBox            clip;
1759 
1760 #ifndef FT_STATIC_RASTER
1761     gray_TWorker  worker[1];
1762 #endif
1763 
1764 
1765     if ( !raster )
1766       return FT_THROW( Invalid_Argument );
1767 
1768     /* this version does not support monochrome rendering */
1769     if ( !( params->flags & FT_RASTER_FLAG_AA ) )
1770       return FT_THROW( Invalid_Mode );
1771 
1772     if ( !outline )
1773       return FT_THROW( Invalid_Outline );
1774 
1775     /* return immediately if the outline is empty */
1776     if ( outline->n_points == 0 || outline->n_contours <= 0 )
1777       return 0;
1778 
1779     if ( !outline->contours || !outline->points )
1780       return FT_THROW( Invalid_Outline );
1781 
1782     if ( outline->n_points !=
1783            outline->contours[outline->n_contours - 1] + 1 )
1784       return FT_THROW( Invalid_Outline );
1785 
1786     ras.outline = *outline;
1787 
1788     if ( params->flags & FT_RASTER_FLAG_DIRECT )
1789     {
1790       if ( !params->gray_spans )
1791         return 0;
1792 
1793       ras.render_span      = (FT_Raster_Span_Func)params->gray_spans;
1794       ras.render_span_data = params->user;
1795     }
1796     else
1797     {
1798       /* if direct mode is not set, we must have a target bitmap */
1799       if ( !target_map )
1800         return FT_THROW( Invalid_Argument );
1801 
1802       /* nothing to do */
1803       if ( !target_map->width || !target_map->rows )
1804         return 0;
1805 
1806       if ( !target_map->buffer )
1807         return FT_THROW( Invalid_Argument );
1808 
1809       if ( target_map->pitch < 0 )
1810         ras.target.origin = target_map->buffer;
1811       else
1812         ras.target.origin = target_map->buffer
1813               + ( target_map->rows - 1 ) * (unsigned int)target_map->pitch;
1814 
1815       ras.target.pitch = target_map->pitch;
1816 
1817       ras.render_span      = (FT_Raster_Span_Func)NULL;
1818       ras.render_span_data = NULL;
1819     }
1820 
1821     /* compute clipping box */
1822     if ( params->flags & FT_RASTER_FLAG_DIRECT &&
1823          params->flags & FT_RASTER_FLAG_CLIP   )
1824       clip = params->clip_box;
1825     else
1826     {
1827       /* compute clip box from target pixmap */
1828       clip.xMin = 0;
1829       clip.yMin = 0;
1830       clip.xMax = (FT_Pos)target_map->width;
1831       clip.yMax = (FT_Pos)target_map->rows;
1832     }
1833 
1834     /* clip to target bitmap, exit if nothing to do */
1835     ras.min_ex = clip.xMin;
1836     ras.min_ey = clip.yMin;
1837     ras.max_ex = clip.xMax;
1838     ras.max_ey = clip.yMax;
1839 
1840     if ( ras.max_ex <= ras.min_ex || ras.max_ey <= ras.min_ey )
1841       return 0;
1842 
1843     return gray_convert_glyph( RAS_VAR );
1844   }
1845 
1846 
1847   /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
1848   /****                         a static object.                   *****/
1849 
1850 #ifdef STANDALONE_
1851 
1852   static int
1853   gray_raster_new( void*       memory,
1854                    FT_Raster*  araster )
1855   {
1856     static gray_TRaster  the_raster;
1857 
1858     FT_UNUSED( memory );
1859 
1860 
1861     *araster = (FT_Raster)&the_raster;
1862     FT_ZERO( &the_raster );
1863 
1864     return 0;
1865   }
1866 
1867 
1868   static void
1869   gray_raster_done( FT_Raster  raster )
1870   {
1871     /* nothing */
1872     FT_UNUSED( raster );
1873   }
1874 
1875 #else /* !STANDALONE_ */
1876 
1877   static int
1878   gray_raster_new( FT_Memory   memory,
1879                    FT_Raster*  araster )
1880   {
1881     FT_Error      error;
1882     gray_PRaster  raster = NULL;
1883 
1884 
1885     *araster = 0;
1886     if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) )
1887     {
1888       raster->memory = memory;
1889       *araster       = (FT_Raster)raster;
1890     }
1891 
1892     return error;
1893   }
1894 
1895 
1896   static void
1897   gray_raster_done( FT_Raster  raster )
1898   {
1899     FT_Memory  memory = (FT_Memory)((gray_PRaster)raster)->memory;
1900 
1901 
1902     FT_FREE( raster );
1903   }
1904 
1905 #endif /* !STANDALONE_ */
1906 
1907 
1908   static void
1909   gray_raster_reset( FT_Raster       raster,
1910                      unsigned char*  pool_base,
1911                      unsigned long   pool_size )
1912   {
1913     FT_UNUSED( raster );
1914     FT_UNUSED( pool_base );
1915     FT_UNUSED( pool_size );
1916   }
1917 
1918 
1919   static int
1920   gray_raster_set_mode( FT_Raster      raster,
1921                         unsigned long  mode,
1922                         void*          args )
1923   {
1924     FT_UNUSED( raster );
1925     FT_UNUSED( mode );
1926     FT_UNUSED( args );
1927 
1928 
1929     return 0; /* nothing to do */
1930   }
1931 
1932 
1933   FT_DEFINE_RASTER_FUNCS(
1934     ft_grays_raster,
1935 
1936     FT_GLYPH_FORMAT_OUTLINE,
1937 
1938     (FT_Raster_New_Func)     gray_raster_new,       /* raster_new      */
1939     (FT_Raster_Reset_Func)   gray_raster_reset,     /* raster_reset    */
1940     (FT_Raster_Set_Mode_Func)gray_raster_set_mode,  /* raster_set_mode */
1941     (FT_Raster_Render_Func)  gray_raster_render,    /* raster_render   */
1942     (FT_Raster_Done_Func)    gray_raster_done       /* raster_done     */
1943   )
1944 
1945 
1946 /* END */
1947 
1948 
1949 /* Local Variables: */
1950 /* coding: utf-8    */
1951 /* End:             */