1 /*
   2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // ReferenceProcessor class encapsulates the per-"collector" processing
  26 // of java.lang.Reference objects for GC. The interface is useful for supporting
  27 // a generational abstraction, in particular when there are multiple
  28 // generations that are being independently collected -- possibly
  29 // concurrently and/or incrementally.  Note, however, that the
  30 // ReferenceProcessor class abstracts away from a generational setting
  31 // by using only a heap interval (called "span" below), thus allowing
  32 // its use in a straightforward manner in a general, non-generational
  33 // setting.
  34 //
  35 // The basic idea is that each ReferenceProcessor object concerns
  36 // itself with ("weak") reference processing in a specific "span"
  37 // of the heap of interest to a specific collector. Currently,
  38 // the span is a convex interval of the heap, but, efficiency
  39 // apart, there seems to be no reason it couldn't be extended
  40 // (with appropriate modifications) to any "non-convex interval".
  41 
  42 // forward references
  43 class ReferencePolicy;
  44 class AbstractRefProcTaskExecutor;
  45 class DiscoveredList;
  46 
  47 class ReferenceProcessor : public CHeapObj {
  48  protected:
  49   // End of list marker
  50   static oop  _sentinelRef;
  51   MemRegion   _span; // (right-open) interval of heap
  52                      // subject to wkref discovery
  53   bool        _discovering_refs;      // true when discovery enabled
  54   bool        _discovery_is_atomic;   // if discovery is atomic wrt
  55                                       // other collectors in configuration
  56   bool        _discovery_is_mt;       // true if reference discovery is MT.
  57   // If true, setting "next" field of a discovered refs list requires
  58   // write barrier(s).  (Must be true if used in a collector in which
  59   // elements of a discovered list may be moved during discovery: for
  60   // example, a collector like Garbage-First that moves objects during a
  61   // long-term concurrent marking phase that does weak reference
  62   // discovery.)
  63   bool        _discovered_list_needs_barrier;
  64   BarrierSet* _bs;                    // Cached copy of BarrierSet.
  65   bool        _enqueuing_is_done;     // true if all weak references enqueued
  66   bool        _processing_is_mt;      // true during phases when
  67                                       // reference processing is MT.
  68   int         _next_id;               // round-robin counter in
  69                                       // support of work distribution
  70 
  71   // For collectors that do not keep GC marking information
  72   // in the object header, this field holds a closure that
  73   // helps the reference processor determine the reachability
  74   // of an oop (the field is currently initialized to NULL for
  75   // all collectors but the CMS collector).
  76   BoolObjectClosure* _is_alive_non_header;
  77 
  78   // Soft ref clearing policies
  79   // . the default policy
  80   static ReferencePolicy*   _default_soft_ref_policy;
  81   // . the "clear all" policy
  82   static ReferencePolicy*   _always_clear_soft_ref_policy;
  83   // . the current policy below is either one of the above
  84   ReferencePolicy*          _current_soft_ref_policy;
  85 
  86   // The discovered ref lists themselves
  87 
  88   // The MT'ness degree of the queues below
  89   int             _num_q;
  90   // Arrays of lists of oops, one per thread
  91   DiscoveredList* _discoveredSoftRefs;
  92   DiscoveredList* _discoveredWeakRefs;
  93   DiscoveredList* _discoveredFinalRefs;
  94   DiscoveredList* _discoveredPhantomRefs;
  95 
  96  public:
  97   int num_q()                            { return _num_q; }
  98   DiscoveredList* discovered_soft_refs() { return _discoveredSoftRefs; }
  99   static oop  sentinel_ref()             { return _sentinelRef; }
 100   static oop* adr_sentinel_ref()         { return &_sentinelRef; }
 101   ReferencePolicy* setup_policy(bool always_clear) {
 102     _current_soft_ref_policy = always_clear ?
 103       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 104     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 105     return _current_soft_ref_policy;
 106   }
 107 
 108  public:
 109   // Process references with a certain reachability level.
 110   void process_discovered_reflist(DiscoveredList               refs_lists[],
 111                                   ReferencePolicy*             policy,
 112                                   bool                         clear_referent,
 113                                   BoolObjectClosure*           is_alive,
 114                                   OopClosure*                  keep_alive,
 115                                   VoidClosure*                 complete_gc,
 116                                   AbstractRefProcTaskExecutor* task_executor);
 117 
 118   void process_phaseJNI(BoolObjectClosure* is_alive,
 119                         OopClosure*        keep_alive,
 120                         VoidClosure*       complete_gc);
 121 
 122   // Work methods used by the method process_discovered_reflist
 123   // Phase1: keep alive all those referents that are otherwise
 124   // dead but which must be kept alive by policy (and their closure).
 125   void process_phase1(DiscoveredList&     refs_list,
 126                       ReferencePolicy*    policy,
 127                       BoolObjectClosure*  is_alive,
 128                       OopClosure*         keep_alive,
 129                       VoidClosure*        complete_gc);
 130   // Phase2: remove all those references whose referents are
 131   // reachable.
 132   inline void process_phase2(DiscoveredList&    refs_list,
 133                              BoolObjectClosure* is_alive,
 134                              OopClosure*        keep_alive,
 135                              VoidClosure*       complete_gc) {
 136     if (discovery_is_atomic()) {
 137       // complete_gc is ignored in this case for this phase
 138       pp2_work(refs_list, is_alive, keep_alive);
 139     } else {
 140       assert(complete_gc != NULL, "Error");
 141       pp2_work_concurrent_discovery(refs_list, is_alive,
 142                                     keep_alive, complete_gc);
 143     }
 144   }
 145   // Work methods in support of process_phase2
 146   void pp2_work(DiscoveredList&    refs_list,
 147                 BoolObjectClosure* is_alive,
 148                 OopClosure*        keep_alive);
 149   void pp2_work_concurrent_discovery(
 150                 DiscoveredList&    refs_list,
 151                 BoolObjectClosure* is_alive,
 152                 OopClosure*        keep_alive,
 153                 VoidClosure*       complete_gc);
 154   // Phase3: process the referents by either clearing them
 155   // or keeping them alive (and their closure)
 156   void process_phase3(DiscoveredList&    refs_list,
 157                       bool               clear_referent,
 158                       BoolObjectClosure* is_alive,
 159                       OopClosure*        keep_alive,
 160                       VoidClosure*       complete_gc);
 161 
 162   // Enqueue references with a certain reachability level
 163   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
 164 
 165   // "Preclean" all the discovered reference lists
 166   // by removing references with strongly reachable referents.
 167   // The first argument is a predicate on an oop that indicates
 168   // its (strong) reachability and the second is a closure that
 169   // may be used to incrementalize or abort the precleaning process.
 170   // The caller is responsible for taking care of potential
 171   // interference with concurrent operations on these lists
 172   // (or predicates involved) by other threads. Currently
 173   // only used by the CMS collector.
 174   void preclean_discovered_references(BoolObjectClosure* is_alive,
 175                                       OopClosure*        keep_alive,
 176                                       VoidClosure*       complete_gc,
 177                                       YieldClosure*      yield);
 178 
 179   // Delete entries in the discovered lists that have
 180   // either a null referent or are not active. Such
 181   // Reference objects can result from the clearing
 182   // or enqueueing of Reference objects concurrent
 183   // with their discovery by a (concurrent) collector.
 184   // For a definition of "active" see java.lang.ref.Reference;
 185   // Refs are born active, become inactive when enqueued,
 186   // and never become active again. The state of being
 187   // active is encoded as follows: A Ref is active
 188   // if and only if its "next" field is NULL.
 189   void clean_up_discovered_references();
 190   void clean_up_discovered_reflist(DiscoveredList& refs_list);
 191 
 192   // Returns the name of the discovered reference list
 193   // occupying the i / _num_q slot.
 194   const char* list_name(int i);
 195 
 196   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
 197 
 198  protected:
 199   // "Preclean" the given discovered reference list
 200   // by removing references with strongly reachable referents.
 201   // Currently used in support of CMS only.
 202   void preclean_discovered_reflist(DiscoveredList&    refs_list,
 203                                    BoolObjectClosure* is_alive,
 204                                    OopClosure*        keep_alive,
 205                                    VoidClosure*       complete_gc,
 206                                    YieldClosure*      yield);
 207 
 208   int next_id() {
 209     int id = _next_id;
 210     if (++_next_id == _num_q) {
 211       _next_id = 0;
 212     }
 213     return id;
 214   }
 215   DiscoveredList* get_discovered_list(ReferenceType rt);
 216   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 217                                         HeapWord* discovered_addr);
 218   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
 219 
 220   void abandon_partial_discovered_list(DiscoveredList& refs_list);
 221 
 222   // Calculate the number of jni handles.
 223   unsigned int count_jni_refs();
 224 
 225   // Balances reference queues.
 226   void balance_queues(DiscoveredList ref_lists[]);
 227 
 228   // Update (advance) the soft ref master clock field.
 229   void update_soft_ref_master_clock();
 230 
 231  public:
 232   // constructor
 233   ReferenceProcessor():
 234     _span((HeapWord*)NULL, (HeapWord*)NULL),
 235     _discoveredSoftRefs(NULL),  _discoveredWeakRefs(NULL),
 236     _discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL),
 237     _discovering_refs(false),
 238     _discovery_is_atomic(true),
 239     _enqueuing_is_done(false),
 240     _discovery_is_mt(false),
 241     _discovered_list_needs_barrier(false),
 242     _bs(NULL),
 243     _is_alive_non_header(NULL),
 244     _num_q(0),
 245     _processing_is_mt(false),
 246     _next_id(0)
 247   {}
 248 
 249   ReferenceProcessor(MemRegion span, bool atomic_discovery,
 250                      bool mt_discovery,
 251                      int mt_degree = 1,
 252                      bool mt_processing = false,
 253                      bool discovered_list_needs_barrier = false);
 254 
 255   // Allocates and initializes a reference processor.
 256   static ReferenceProcessor* create_ref_processor(
 257     MemRegion          span,
 258     bool               atomic_discovery,
 259     bool               mt_discovery,
 260     BoolObjectClosure* is_alive_non_header = NULL,
 261     int                parallel_gc_threads = 1,
 262     bool               mt_processing = false,
 263     bool               discovered_list_needs_barrier = false);
 264   // RefDiscoveryPolicy values
 265   enum {
 266     ReferenceBasedDiscovery = 0,
 267     ReferentBasedDiscovery  = 1
 268   };
 269 
 270   static void init_statics();
 271 
 272  public:
 273   // get and set "is_alive_non_header" field
 274   BoolObjectClosure* is_alive_non_header() {
 275     return _is_alive_non_header;
 276   }
 277   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 278     _is_alive_non_header = is_alive_non_header;
 279   }
 280 
 281   // get and set span
 282   MemRegion span()                   { return _span; }
 283   void      set_span(MemRegion span) { _span = span; }
 284 
 285   // start and stop weak ref discovery
 286   void enable_discovery()   { _discovering_refs = true;  }
 287   void disable_discovery()  { _discovering_refs = false; }
 288   bool discovery_enabled()  { return _discovering_refs;  }
 289 
 290   // whether discovery is atomic wrt other collectors
 291   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 292   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 293 
 294   // whether discovery is done by multiple threads same-old-timeously
 295   bool discovery_is_mt() const { return _discovery_is_mt; }
 296   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 297 
 298   // Whether we are in a phase when _processing_ is MT.
 299   bool processing_is_mt() const { return _processing_is_mt; }
 300   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 301 
 302   // whether all enqueuing of weak references is complete
 303   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 304   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 305 
 306   // iterate over oops
 307   void weak_oops_do(OopClosure* f);       // weak roots
 308   static void oops_do(OopClosure* f);     // strong root(s)
 309 
 310   // Discover a Reference object, using appropriate discovery criteria
 311   bool discover_reference(oop obj, ReferenceType rt);
 312 
 313   // Process references found during GC (called by the garbage collector)
 314   void process_discovered_references(BoolObjectClosure*           is_alive,
 315                                      OopClosure*                  keep_alive,
 316                                      VoidClosure*                 complete_gc,
 317                                      AbstractRefProcTaskExecutor* task_executor);
 318 
 319  public:
 320   // Enqueue references at end of GC (called by the garbage collector)
 321   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
 322 
 323   // If a discovery is in process that is being superceded, abandon it: all
 324   // the discovered lists will be empty, and all the objects on them will
 325   // have NULL discovered fields.  Must be called only at a safepoint.
 326   void abandon_partial_discovery();
 327 
 328   // debugging
 329   void verify_no_references_recorded() PRODUCT_RETURN;
 330   static void verify();
 331 
 332   // clear the discovered lists (unlinking each entry).
 333   void clear_discovered_references() PRODUCT_RETURN;
 334 };
 335 
 336 // A utility class to disable reference discovery in
 337 // the scope which contains it, for given ReferenceProcessor.
 338 class NoRefDiscovery: StackObj {
 339  private:
 340   ReferenceProcessor* _rp;
 341   bool _was_discovering_refs;
 342  public:
 343   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 344     if ((_was_discovering_refs = _rp->discovery_enabled())) {
 345       _rp->disable_discovery();
 346     }
 347   }
 348 
 349   ~NoRefDiscovery() {
 350     if (_was_discovering_refs) {
 351       _rp->enable_discovery();
 352     }
 353   }
 354 };
 355 
 356 
 357 // A utility class to temporarily mutate the span of the
 358 // given ReferenceProcessor in the scope that contains it.
 359 class ReferenceProcessorSpanMutator: StackObj {
 360  private:
 361   ReferenceProcessor* _rp;
 362   MemRegion           _saved_span;
 363 
 364  public:
 365   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
 366                                 MemRegion span):
 367     _rp(rp) {
 368     _saved_span = _rp->span();
 369     _rp->set_span(span);
 370   }
 371 
 372   ~ReferenceProcessorSpanMutator() {
 373     _rp->set_span(_saved_span);
 374   }
 375 };
 376 
 377 // A utility class to temporarily change the MT'ness of
 378 // reference discovery for the given ReferenceProcessor
 379 // in the scope that contains it.
 380 class ReferenceProcessorMTMutator: StackObj {
 381  private:
 382   ReferenceProcessor* _rp;
 383   bool                _saved_mt;
 384 
 385  public:
 386   ReferenceProcessorMTMutator(ReferenceProcessor* rp,
 387                               bool mt):
 388     _rp(rp) {
 389     _saved_mt = _rp->discovery_is_mt();
 390     _rp->set_mt_discovery(mt);
 391   }
 392 
 393   ~ReferenceProcessorMTMutator() {
 394     _rp->set_mt_discovery(_saved_mt);
 395   }
 396 };
 397 
 398 
 399 // A utility class to temporarily change the disposition
 400 // of the "is_alive_non_header" closure field of the
 401 // given ReferenceProcessor in the scope that contains it.
 402 class ReferenceProcessorIsAliveMutator: StackObj {
 403  private:
 404   ReferenceProcessor* _rp;
 405   BoolObjectClosure*  _saved_cl;
 406 
 407  public:
 408   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 409                                    BoolObjectClosure*  cl):
 410     _rp(rp) {
 411     _saved_cl = _rp->is_alive_non_header();
 412     _rp->set_is_alive_non_header(cl);
 413   }
 414 
 415   ~ReferenceProcessorIsAliveMutator() {
 416     _rp->set_is_alive_non_header(_saved_cl);
 417   }
 418 };
 419 
 420 // A utility class to temporarily change the disposition
 421 // of the "discovery_is_atomic" field of the
 422 // given ReferenceProcessor in the scope that contains it.
 423 class ReferenceProcessorAtomicMutator: StackObj {
 424  private:
 425   ReferenceProcessor* _rp;
 426   bool                _saved_atomic_discovery;
 427 
 428  public:
 429   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 430                                   bool atomic):
 431     _rp(rp) {
 432     _saved_atomic_discovery = _rp->discovery_is_atomic();
 433     _rp->set_atomic_discovery(atomic);
 434   }
 435 
 436   ~ReferenceProcessorAtomicMutator() {
 437     _rp->set_atomic_discovery(_saved_atomic_discovery);
 438   }
 439 };
 440 
 441 
 442 // A utility class to temporarily change the MT processing
 443 // disposition of the given ReferenceProcessor instance
 444 // in the scope that contains it.
 445 class ReferenceProcessorMTProcMutator: StackObj {
 446  private:
 447   ReferenceProcessor* _rp;
 448   bool  _saved_mt;
 449 
 450  public:
 451   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 452                                   bool mt):
 453     _rp(rp) {
 454     _saved_mt = _rp->processing_is_mt();
 455     _rp->set_mt_processing(mt);
 456   }
 457 
 458   ~ReferenceProcessorMTProcMutator() {
 459     _rp->set_mt_processing(_saved_mt);
 460   }
 461 };
 462 
 463 
 464 // This class is an interface used to implement task execution for the
 465 // reference processing.
 466 class AbstractRefProcTaskExecutor {
 467 public:
 468 
 469   // Abstract tasks to execute.
 470   class ProcessTask;
 471   class EnqueueTask;
 472 
 473   // Executes a task using worker threads.
 474   virtual void execute(ProcessTask& task) = 0;
 475   virtual void execute(EnqueueTask& task) = 0;
 476 
 477   // Switch to single threaded mode.
 478   virtual void set_single_threaded_mode() { };
 479 };
 480 
 481 // Abstract reference processing task to execute.
 482 class AbstractRefProcTaskExecutor::ProcessTask {
 483 protected:
 484   ProcessTask(ReferenceProcessor& ref_processor,
 485               DiscoveredList      refs_lists[],
 486               bool                marks_oops_alive)
 487     : _ref_processor(ref_processor),
 488       _refs_lists(refs_lists),
 489       _marks_oops_alive(marks_oops_alive)
 490   { }
 491 
 492 public:
 493   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 494                     OopClosure& keep_alive,
 495                     VoidClosure& complete_gc) = 0;
 496 
 497   // Returns true if a task marks some oops as alive.
 498   bool marks_oops_alive() const
 499   { return _marks_oops_alive; }
 500 
 501 protected:
 502   ReferenceProcessor& _ref_processor;
 503   DiscoveredList*     _refs_lists;
 504   const bool          _marks_oops_alive;
 505 };
 506 
 507 // Abstract reference processing task to execute.
 508 class AbstractRefProcTaskExecutor::EnqueueTask {
 509 protected:
 510   EnqueueTask(ReferenceProcessor& ref_processor,
 511               DiscoveredList      refs_lists[],
 512               HeapWord*           pending_list_addr,
 513               oop                 sentinel_ref,
 514               int                 n_queues)
 515     : _ref_processor(ref_processor),
 516       _refs_lists(refs_lists),
 517       _pending_list_addr(pending_list_addr),
 518       _sentinel_ref(sentinel_ref),
 519       _n_queues(n_queues)
 520   { }
 521 
 522 public:
 523   virtual void work(unsigned int work_id) = 0;
 524 
 525 protected:
 526   ReferenceProcessor& _ref_processor;
 527   DiscoveredList*     _refs_lists;
 528   HeapWord*           _pending_list_addr;
 529   oop                 _sentinel_ref;
 530   int                 _n_queues;
 531 };