1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_thread.cpp.incl"
  27 
  28 #ifdef DTRACE_ENABLED
  29 
  30 // Only bother with this argument setup if dtrace is available
  31 
  32 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
  33 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
  34 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
  35   intptr_t, intptr_t, bool);
  36 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
  37   intptr_t, intptr_t, bool);
  38 
  39 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
  40   {                                                                        \
  41     ResourceMark rm(this);                                                 \
  42     int len = 0;                                                           \
  43     const char* name = (javathread)->get_thread_name();                    \
  44     len = strlen(name);                                                    \
  45     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
  46       name, len,                                                           \
  47       java_lang_Thread::thread_id((javathread)->threadObj()),              \
  48       (javathread)->osthread()->thread_id(),                               \
  49       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
  50   }
  51 
  52 #else //  ndef DTRACE_ENABLED
  53 
  54 #define DTRACE_THREAD_PROBE(probe, javathread)
  55 
  56 #endif // ndef DTRACE_ENABLED
  57 
  58 // Class hierarchy
  59 // - Thread
  60 //   - VMThread
  61 //   - WatcherThread
  62 //   - ConcurrentMarkSweepThread
  63 //   - JavaThread
  64 //     - CompilerThread
  65 
  66 // ======= Thread ========
  67 
  68 // Support for forcing alignment of thread objects for biased locking
  69 void* Thread::operator new(size_t size) {
  70   if (UseBiasedLocking) {
  71     const int alignment = markOopDesc::biased_lock_alignment;
  72     size_t aligned_size = size + (alignment - sizeof(intptr_t));
  73     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
  74     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
  75     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
  76            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
  77            "JavaThread alignment code overflowed allocated storage");
  78     if (TraceBiasedLocking) {
  79       if (aligned_addr != real_malloc_addr)
  80         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
  81                       real_malloc_addr, aligned_addr);
  82     }
  83     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
  84     return aligned_addr;
  85   } else {
  86     return CHeapObj::operator new(size);
  87   }
  88 }
  89 
  90 void Thread::operator delete(void* p) {
  91   if (UseBiasedLocking) {
  92     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
  93     CHeapObj::operator delete(real_malloc_addr);
  94   } else {
  95     CHeapObj::operator delete(p);
  96   }
  97 }
  98 
  99 
 100 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 101 // JavaThread
 102 
 103 
 104 Thread::Thread() {
 105   // stack
 106   _stack_base   = NULL;
 107   _stack_size   = 0;
 108   _self_raw_id  = 0;
 109   _lgrp_id      = -1;
 110   _osthread     = NULL;
 111 
 112   // allocated data structures
 113   set_resource_area(new ResourceArea());
 114   set_handle_area(new HandleArea(NULL));
 115   set_active_handles(NULL);
 116   set_free_handle_block(NULL);
 117   set_last_handle_mark(NULL);
 118   set_osthread(NULL);
 119 
 120   // This initial value ==> never claimed.
 121   _oops_do_parity = 0;
 122 
 123   // the handle mark links itself to last_handle_mark
 124   new HandleMark(this);
 125 
 126   // plain initialization
 127   debug_only(_owned_locks = NULL;)
 128   debug_only(_allow_allocation_count = 0;)
 129   NOT_PRODUCT(_allow_safepoint_count = 0;)
 130   NOT_PRODUCT(_skip_gcalot = false;)
 131   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 132   _jvmti_env_iteration_count = 0;
 133   _vm_operation_started_count = 0;
 134   _vm_operation_completed_count = 0;
 135   _current_pending_monitor = NULL;
 136   _current_pending_monitor_is_from_java = true;
 137   _current_waiting_monitor = NULL;
 138   _num_nested_signal = 0;
 139   omFreeList = NULL ;
 140   omFreeCount = 0 ;
 141   omFreeProvision = 32 ;
 142   omInUseList = NULL ;
 143   omInUseCount = 0 ;
 144 
 145   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 146   _suspend_flags = 0;
 147 
 148   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 149   _hashStateX = os::random() ;
 150   _hashStateY = 842502087 ;
 151   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 152   _hashStateW = 273326509 ;
 153 
 154   _OnTrap   = 0 ;
 155   _schedctl = NULL ;
 156   _Stalled  = 0 ;
 157   _TypeTag  = 0x2BAD ;
 158 
 159   // Many of the following fields are effectively final - immutable
 160   // Note that nascent threads can't use the Native Monitor-Mutex
 161   // construct until the _MutexEvent is initialized ...
 162   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 163   // we might instead use a stack of ParkEvents that we could provision on-demand.
 164   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 165   // and ::Release()
 166   _ParkEvent   = ParkEvent::Allocate (this) ;
 167   _SleepEvent  = ParkEvent::Allocate (this) ;
 168   _MutexEvent  = ParkEvent::Allocate (this) ;
 169   _MuxEvent    = ParkEvent::Allocate (this) ;
 170 
 171 #ifdef CHECK_UNHANDLED_OOPS
 172   if (CheckUnhandledOops) {
 173     _unhandled_oops = new UnhandledOops(this);
 174   }
 175 #endif // CHECK_UNHANDLED_OOPS
 176 #ifdef ASSERT
 177   if (UseBiasedLocking) {
 178     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 179     assert(this == _real_malloc_address ||
 180            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 181            "bug in forced alignment of thread objects");
 182   }
 183 #endif /* ASSERT */
 184 }
 185 
 186 void Thread::initialize_thread_local_storage() {
 187   // Note: Make sure this method only calls
 188   // non-blocking operations. Otherwise, it might not work
 189   // with the thread-startup/safepoint interaction.
 190 
 191   // During Java thread startup, safepoint code should allow this
 192   // method to complete because it may need to allocate memory to
 193   // store information for the new thread.
 194 
 195   // initialize structure dependent on thread local storage
 196   ThreadLocalStorage::set_thread(this);
 197 
 198   // set up any platform-specific state.
 199   os::initialize_thread();
 200 
 201 }
 202 
 203 void Thread::record_stack_base_and_size() {
 204   set_stack_base(os::current_stack_base());
 205   set_stack_size(os::current_stack_size());
 206 }
 207 
 208 
 209 Thread::~Thread() {
 210   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 211   ObjectSynchronizer::omFlush (this) ;
 212 
 213   // deallocate data structures
 214   delete resource_area();
 215   // since the handle marks are using the handle area, we have to deallocated the root
 216   // handle mark before deallocating the thread's handle area,
 217   assert(last_handle_mark() != NULL, "check we have an element");
 218   delete last_handle_mark();
 219   assert(last_handle_mark() == NULL, "check we have reached the end");
 220 
 221   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 222   // We NULL out the fields for good hygiene.
 223   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 224   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 225   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 226   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 227 
 228   delete handle_area();
 229 
 230   // osthread() can be NULL, if creation of thread failed.
 231   if (osthread() != NULL) os::free_thread(osthread());
 232 
 233   delete _SR_lock;
 234 
 235   // clear thread local storage if the Thread is deleting itself
 236   if (this == Thread::current()) {
 237     ThreadLocalStorage::set_thread(NULL);
 238   } else {
 239     // In the case where we're not the current thread, invalidate all the
 240     // caches in case some code tries to get the current thread or the
 241     // thread that was destroyed, and gets stale information.
 242     ThreadLocalStorage::invalidate_all();
 243   }
 244   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 245 }
 246 
 247 // NOTE: dummy function for assertion purpose.
 248 void Thread::run() {
 249   ShouldNotReachHere();
 250 }
 251 
 252 #ifdef ASSERT
 253 // Private method to check for dangling thread pointer
 254 void check_for_dangling_thread_pointer(Thread *thread) {
 255  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 256          "possibility of dangling Thread pointer");
 257 }
 258 #endif
 259 
 260 
 261 #ifndef PRODUCT
 262 // Tracing method for basic thread operations
 263 void Thread::trace(const char* msg, const Thread* const thread) {
 264   if (!TraceThreadEvents) return;
 265   ResourceMark rm;
 266   ThreadCritical tc;
 267   const char *name = "non-Java thread";
 268   int prio = -1;
 269   if (thread->is_Java_thread()
 270       && !thread->is_Compiler_thread()) {
 271     // The Threads_lock must be held to get information about
 272     // this thread but may not be in some situations when
 273     // tracing  thread events.
 274     bool release_Threads_lock = false;
 275     if (!Threads_lock->owned_by_self()) {
 276       Threads_lock->lock();
 277       release_Threads_lock = true;
 278     }
 279     JavaThread* jt = (JavaThread *)thread;
 280     name = (char *)jt->get_thread_name();
 281     oop thread_oop = jt->threadObj();
 282     if (thread_oop != NULL) {
 283       prio = java_lang_Thread::priority(thread_oop);
 284     }
 285     if (release_Threads_lock) {
 286       Threads_lock->unlock();
 287     }
 288   }
 289   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 290 }
 291 #endif
 292 
 293 
 294 ThreadPriority Thread::get_priority(const Thread* const thread) {
 295   trace("get priority", thread);
 296   ThreadPriority priority;
 297   // Can return an error!
 298   (void)os::get_priority(thread, priority);
 299   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 300   return priority;
 301 }
 302 
 303 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 304   trace("set priority", thread);
 305   debug_only(check_for_dangling_thread_pointer(thread);)
 306   // Can return an error!
 307   (void)os::set_priority(thread, priority);
 308 }
 309 
 310 
 311 void Thread::start(Thread* thread) {
 312   trace("start", thread);
 313   // Start is different from resume in that its safety is guaranteed by context or
 314   // being called from a Java method synchronized on the Thread object.
 315   if (!DisableStartThread) {
 316     if (thread->is_Java_thread()) {
 317       // Initialize the thread state to RUNNABLE before starting this thread.
 318       // Can not set it after the thread started because we do not know the
 319       // exact thread state at that time. It could be in MONITOR_WAIT or
 320       // in SLEEPING or some other state.
 321       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 322                                           java_lang_Thread::RUNNABLE);
 323     }
 324     os::start_thread(thread);
 325   }
 326 }
 327 
 328 // Enqueue a VM_Operation to do the job for us - sometime later
 329 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 330   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 331   VMThread::execute(vm_stop);
 332 }
 333 
 334 
 335 //
 336 // Check if an external suspend request has completed (or has been
 337 // cancelled). Returns true if the thread is externally suspended and
 338 // false otherwise.
 339 //
 340 // The bits parameter returns information about the code path through
 341 // the routine. Useful for debugging:
 342 //
 343 // set in is_ext_suspend_completed():
 344 // 0x00000001 - routine was entered
 345 // 0x00000010 - routine return false at end
 346 // 0x00000100 - thread exited (return false)
 347 // 0x00000200 - suspend request cancelled (return false)
 348 // 0x00000400 - thread suspended (return true)
 349 // 0x00001000 - thread is in a suspend equivalent state (return true)
 350 // 0x00002000 - thread is native and walkable (return true)
 351 // 0x00004000 - thread is native_trans and walkable (needed retry)
 352 //
 353 // set in wait_for_ext_suspend_completion():
 354 // 0x00010000 - routine was entered
 355 // 0x00020000 - suspend request cancelled before loop (return false)
 356 // 0x00040000 - thread suspended before loop (return true)
 357 // 0x00080000 - suspend request cancelled in loop (return false)
 358 // 0x00100000 - thread suspended in loop (return true)
 359 // 0x00200000 - suspend not completed during retry loop (return false)
 360 //
 361 
 362 // Helper class for tracing suspend wait debug bits.
 363 //
 364 // 0x00000100 indicates that the target thread exited before it could
 365 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 366 // 0x00080000 each indicate a cancelled suspend request so they don't
 367 // count as wait failures either.
 368 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 369 
 370 class TraceSuspendDebugBits : public StackObj {
 371  private:
 372   JavaThread * jt;
 373   bool         is_wait;
 374   bool         called_by_wait;  // meaningful when !is_wait
 375   uint32_t *   bits;
 376 
 377  public:
 378   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 379                         uint32_t *_bits) {
 380     jt             = _jt;
 381     is_wait        = _is_wait;
 382     called_by_wait = _called_by_wait;
 383     bits           = _bits;
 384   }
 385 
 386   ~TraceSuspendDebugBits() {
 387     if (!is_wait) {
 388 #if 1
 389       // By default, don't trace bits for is_ext_suspend_completed() calls.
 390       // That trace is very chatty.
 391       return;
 392 #else
 393       if (!called_by_wait) {
 394         // If tracing for is_ext_suspend_completed() is enabled, then only
 395         // trace calls to it from wait_for_ext_suspend_completion()
 396         return;
 397       }
 398 #endif
 399     }
 400 
 401     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 402       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 403         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 404         ResourceMark rm;
 405 
 406         tty->print_cr(
 407             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 408             jt->get_thread_name(), *bits);
 409 
 410         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 411       }
 412     }
 413   }
 414 };
 415 #undef DEBUG_FALSE_BITS
 416 
 417 
 418 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 419   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 420 
 421   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 422   bool do_trans_retry;           // flag to force the retry
 423 
 424   *bits |= 0x00000001;
 425 
 426   do {
 427     do_trans_retry = false;
 428 
 429     if (is_exiting()) {
 430       // Thread is in the process of exiting. This is always checked
 431       // first to reduce the risk of dereferencing a freed JavaThread.
 432       *bits |= 0x00000100;
 433       return false;
 434     }
 435 
 436     if (!is_external_suspend()) {
 437       // Suspend request is cancelled. This is always checked before
 438       // is_ext_suspended() to reduce the risk of a rogue resume
 439       // confusing the thread that made the suspend request.
 440       *bits |= 0x00000200;
 441       return false;
 442     }
 443 
 444     if (is_ext_suspended()) {
 445       // thread is suspended
 446       *bits |= 0x00000400;
 447       return true;
 448     }
 449 
 450     // Now that we no longer do hard suspends of threads running
 451     // native code, the target thread can be changing thread state
 452     // while we are in this routine:
 453     //
 454     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 455     //
 456     // We save a copy of the thread state as observed at this moment
 457     // and make our decision about suspend completeness based on the
 458     // copy. This closes the race where the thread state is seen as
 459     // _thread_in_native_trans in the if-thread_blocked check, but is
 460     // seen as _thread_blocked in if-thread_in_native_trans check.
 461     JavaThreadState save_state = thread_state();
 462 
 463     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 464       // If the thread's state is _thread_blocked and this blocking
 465       // condition is known to be equivalent to a suspend, then we can
 466       // consider the thread to be externally suspended. This means that
 467       // the code that sets _thread_blocked has been modified to do
 468       // self-suspension if the blocking condition releases. We also
 469       // used to check for CONDVAR_WAIT here, but that is now covered by
 470       // the _thread_blocked with self-suspension check.
 471       //
 472       // Return true since we wouldn't be here unless there was still an
 473       // external suspend request.
 474       *bits |= 0x00001000;
 475       return true;
 476     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 477       // Threads running native code will self-suspend on native==>VM/Java
 478       // transitions. If its stack is walkable (should always be the case
 479       // unless this function is called before the actual java_suspend()
 480       // call), then the wait is done.
 481       *bits |= 0x00002000;
 482       return true;
 483     } else if (!called_by_wait && !did_trans_retry &&
 484                save_state == _thread_in_native_trans &&
 485                frame_anchor()->walkable()) {
 486       // The thread is transitioning from thread_in_native to another
 487       // thread state. check_safepoint_and_suspend_for_native_trans()
 488       // will force the thread to self-suspend. If it hasn't gotten
 489       // there yet we may have caught the thread in-between the native
 490       // code check above and the self-suspend. Lucky us. If we were
 491       // called by wait_for_ext_suspend_completion(), then it
 492       // will be doing the retries so we don't have to.
 493       //
 494       // Since we use the saved thread state in the if-statement above,
 495       // there is a chance that the thread has already transitioned to
 496       // _thread_blocked by the time we get here. In that case, we will
 497       // make a single unnecessary pass through the logic below. This
 498       // doesn't hurt anything since we still do the trans retry.
 499 
 500       *bits |= 0x00004000;
 501 
 502       // Once the thread leaves thread_in_native_trans for another
 503       // thread state, we break out of this retry loop. We shouldn't
 504       // need this flag to prevent us from getting back here, but
 505       // sometimes paranoia is good.
 506       did_trans_retry = true;
 507 
 508       // We wait for the thread to transition to a more usable state.
 509       for (int i = 1; i <= SuspendRetryCount; i++) {
 510         // We used to do an "os::yield_all(i)" call here with the intention
 511         // that yielding would increase on each retry. However, the parameter
 512         // is ignored on Linux which means the yield didn't scale up. Waiting
 513         // on the SR_lock below provides a much more predictable scale up for
 514         // the delay. It also provides a simple/direct point to check for any
 515         // safepoint requests from the VMThread
 516 
 517         // temporarily drops SR_lock while doing wait with safepoint check
 518         // (if we're a JavaThread - the WatcherThread can also call this)
 519         // and increase delay with each retry
 520         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 521 
 522         // check the actual thread state instead of what we saved above
 523         if (thread_state() != _thread_in_native_trans) {
 524           // the thread has transitioned to another thread state so
 525           // try all the checks (except this one) one more time.
 526           do_trans_retry = true;
 527           break;
 528         }
 529       } // end retry loop
 530 
 531 
 532     }
 533   } while (do_trans_retry);
 534 
 535   *bits |= 0x00000010;
 536   return false;
 537 }
 538 
 539 //
 540 // Wait for an external suspend request to complete (or be cancelled).
 541 // Returns true if the thread is externally suspended and false otherwise.
 542 //
 543 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 544        uint32_t *bits) {
 545   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 546                              false /* !called_by_wait */, bits);
 547 
 548   // local flag copies to minimize SR_lock hold time
 549   bool is_suspended;
 550   bool pending;
 551   uint32_t reset_bits;
 552 
 553   // set a marker so is_ext_suspend_completed() knows we are the caller
 554   *bits |= 0x00010000;
 555 
 556   // We use reset_bits to reinitialize the bits value at the top of
 557   // each retry loop. This allows the caller to make use of any
 558   // unused bits for their own marking purposes.
 559   reset_bits = *bits;
 560 
 561   {
 562     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 563     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 564                                             delay, bits);
 565     pending = is_external_suspend();
 566   }
 567   // must release SR_lock to allow suspension to complete
 568 
 569   if (!pending) {
 570     // A cancelled suspend request is the only false return from
 571     // is_ext_suspend_completed() that keeps us from entering the
 572     // retry loop.
 573     *bits |= 0x00020000;
 574     return false;
 575   }
 576 
 577   if (is_suspended) {
 578     *bits |= 0x00040000;
 579     return true;
 580   }
 581 
 582   for (int i = 1; i <= retries; i++) {
 583     *bits = reset_bits;  // reinit to only track last retry
 584 
 585     // We used to do an "os::yield_all(i)" call here with the intention
 586     // that yielding would increase on each retry. However, the parameter
 587     // is ignored on Linux which means the yield didn't scale up. Waiting
 588     // on the SR_lock below provides a much more predictable scale up for
 589     // the delay. It also provides a simple/direct point to check for any
 590     // safepoint requests from the VMThread
 591 
 592     {
 593       MutexLocker ml(SR_lock());
 594       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 595       // can also call this)  and increase delay with each retry
 596       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 597 
 598       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 599                                               delay, bits);
 600 
 601       // It is possible for the external suspend request to be cancelled
 602       // (by a resume) before the actual suspend operation is completed.
 603       // Refresh our local copy to see if we still need to wait.
 604       pending = is_external_suspend();
 605     }
 606 
 607     if (!pending) {
 608       // A cancelled suspend request is the only false return from
 609       // is_ext_suspend_completed() that keeps us from staying in the
 610       // retry loop.
 611       *bits |= 0x00080000;
 612       return false;
 613     }
 614 
 615     if (is_suspended) {
 616       *bits |= 0x00100000;
 617       return true;
 618     }
 619   } // end retry loop
 620 
 621   // thread did not suspend after all our retries
 622   *bits |= 0x00200000;
 623   return false;
 624 }
 625 
 626 #ifndef PRODUCT
 627 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 628 
 629   // This should not need to be atomic as the only way for simultaneous
 630   // updates is via interrupts. Even then this should be rare or non-existant
 631   // and we don't care that much anyway.
 632 
 633   int index = _jmp_ring_index;
 634   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 635   _jmp_ring[index]._target = (intptr_t) target;
 636   _jmp_ring[index]._instruction = (intptr_t) instr;
 637   _jmp_ring[index]._file = file;
 638   _jmp_ring[index]._line = line;
 639 }
 640 #endif /* PRODUCT */
 641 
 642 // Called by flat profiler
 643 // Callers have already called wait_for_ext_suspend_completion
 644 // The assertion for that is currently too complex to put here:
 645 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 646   bool gotframe = false;
 647   // self suspension saves needed state.
 648   if (has_last_Java_frame() && _anchor.walkable()) {
 649      *_fr = pd_last_frame();
 650      gotframe = true;
 651   }
 652   return gotframe;
 653 }
 654 
 655 void Thread::interrupt(Thread* thread) {
 656   trace("interrupt", thread);
 657   debug_only(check_for_dangling_thread_pointer(thread);)
 658   os::interrupt(thread);
 659 }
 660 
 661 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 662   trace("is_interrupted", thread);
 663   debug_only(check_for_dangling_thread_pointer(thread);)
 664   // Note:  If clear_interrupted==false, this simply fetches and
 665   // returns the value of the field osthread()->interrupted().
 666   return os::is_interrupted(thread, clear_interrupted);
 667 }
 668 
 669 
 670 // GC Support
 671 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 672   jint thread_parity = _oops_do_parity;
 673   if (thread_parity != strong_roots_parity) {
 674     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 675     if (res == thread_parity) return true;
 676     else {
 677       guarantee(res == strong_roots_parity, "Or else what?");
 678       assert(SharedHeap::heap()->n_par_threads() > 0,
 679              "Should only fail when parallel.");
 680       return false;
 681     }
 682   }
 683   assert(SharedHeap::heap()->n_par_threads() > 0,
 684          "Should only fail when parallel.");
 685   return false;
 686 }
 687 
 688 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 689   active_handles()->oops_do(f);
 690   // Do oop for ThreadShadow
 691   f->do_oop((oop*)&_pending_exception);
 692   handle_area()->oops_do(f);
 693 }
 694 
 695 void Thread::nmethods_do(CodeBlobClosure* cf) {
 696   // no nmethods in a generic thread...
 697 }
 698 
 699 void Thread::print_on(outputStream* st) const {
 700   // get_priority assumes osthread initialized
 701   if (osthread() != NULL) {
 702     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 703     osthread()->print_on(st);
 704   }
 705   debug_only(if (WizardMode) print_owned_locks_on(st);)
 706 }
 707 
 708 // Thread::print_on_error() is called by fatal error handler. Don't use
 709 // any lock or allocate memory.
 710 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 711   if      (is_VM_thread())                  st->print("VMThread");
 712   else if (is_Compiler_thread())            st->print("CompilerThread");
 713   else if (is_Java_thread())                st->print("JavaThread");
 714   else if (is_GC_task_thread())             st->print("GCTaskThread");
 715   else if (is_Watcher_thread())             st->print("WatcherThread");
 716   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 717   else st->print("Thread");
 718 
 719   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 720             _stack_base - _stack_size, _stack_base);
 721 
 722   if (osthread()) {
 723     st->print(" [id=%d]", osthread()->thread_id());
 724   }
 725 }
 726 
 727 #ifdef ASSERT
 728 void Thread::print_owned_locks_on(outputStream* st) const {
 729   Monitor *cur = _owned_locks;
 730   if (cur == NULL) {
 731     st->print(" (no locks) ");
 732   } else {
 733     st->print_cr(" Locks owned:");
 734     while(cur) {
 735       cur->print_on(st);
 736       cur = cur->next();
 737     }
 738   }
 739 }
 740 
 741 static int ref_use_count  = 0;
 742 
 743 bool Thread::owns_locks_but_compiled_lock() const {
 744   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 745     if (cur != Compile_lock) return true;
 746   }
 747   return false;
 748 }
 749 
 750 
 751 #endif
 752 
 753 #ifndef PRODUCT
 754 
 755 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 756 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 757 // no threads which allow_vm_block's are held
 758 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 759     // Check if current thread is allowed to block at a safepoint
 760     if (!(_allow_safepoint_count == 0))
 761       fatal("Possible safepoint reached by thread that does not allow it");
 762     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 763       fatal("LEAF method calling lock?");
 764     }
 765 
 766 #ifdef ASSERT
 767     if (potential_vm_operation && is_Java_thread()
 768         && !Universe::is_bootstrapping()) {
 769       // Make sure we do not hold any locks that the VM thread also uses.
 770       // This could potentially lead to deadlocks
 771       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 772         // Threads_lock is special, since the safepoint synchronization will not start before this is
 773         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 774         // since it is used to transfer control between JavaThreads and the VMThread
 775         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 776         if ( (cur->allow_vm_block() &&
 777               cur != Threads_lock &&
 778               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 779               cur != VMOperationRequest_lock &&
 780               cur != VMOperationQueue_lock) ||
 781               cur->rank() == Mutex::special) {
 782           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 783         }
 784       }
 785     }
 786 
 787     if (GCALotAtAllSafepoints) {
 788       // We could enter a safepoint here and thus have a gc
 789       InterfaceSupport::check_gc_alot();
 790     }
 791 #endif
 792 }
 793 #endif
 794 
 795 bool Thread::is_in_stack(address adr) const {
 796   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 797   address end = os::current_stack_pointer();
 798   if (stack_base() >= adr && adr >= end) return true;
 799 
 800   return false;
 801 }
 802 
 803 
 804 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 805 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 806 // used for compilation in the future. If that change is made, the need for these methods
 807 // should be revisited, and they should be removed if possible.
 808 
 809 bool Thread::is_lock_owned(address adr) const {
 810   return (_stack_base >= adr && adr >= (_stack_base - _stack_size));
 811 }
 812 
 813 bool Thread::set_as_starting_thread() {
 814  // NOTE: this must be called inside the main thread.
 815   return os::create_main_thread((JavaThread*)this);
 816 }
 817 
 818 static void initialize_class(symbolHandle class_name, TRAPS) {
 819   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 820   instanceKlass::cast(klass)->initialize(CHECK);
 821 }
 822 
 823 
 824 // Creates the initial ThreadGroup
 825 static Handle create_initial_thread_group(TRAPS) {
 826   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
 827   instanceKlassHandle klass (THREAD, k);
 828 
 829   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 830   {
 831     JavaValue result(T_VOID);
 832     JavaCalls::call_special(&result,
 833                             system_instance,
 834                             klass,
 835                             vmSymbolHandles::object_initializer_name(),
 836                             vmSymbolHandles::void_method_signature(),
 837                             CHECK_NH);
 838   }
 839   Universe::set_system_thread_group(system_instance());
 840 
 841   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 842   {
 843     JavaValue result(T_VOID);
 844     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 845     JavaCalls::call_special(&result,
 846                             main_instance,
 847                             klass,
 848                             vmSymbolHandles::object_initializer_name(),
 849                             vmSymbolHandles::threadgroup_string_void_signature(),
 850                             system_instance,
 851                             string,
 852                             CHECK_NH);
 853   }
 854   return main_instance;
 855 }
 856 
 857 // Creates the initial Thread
 858 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 859   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
 860   instanceKlassHandle klass (THREAD, k);
 861   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 862 
 863   java_lang_Thread::set_thread(thread_oop(), thread);
 864   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 865   thread->set_threadObj(thread_oop());
 866 
 867   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 868 
 869   JavaValue result(T_VOID);
 870   JavaCalls::call_special(&result, thread_oop,
 871                                    klass,
 872                                    vmSymbolHandles::object_initializer_name(),
 873                                    vmSymbolHandles::threadgroup_string_void_signature(),
 874                                    thread_group,
 875                                    string,
 876                                    CHECK_NULL);
 877   return thread_oop();
 878 }
 879 
 880 static void call_initializeSystemClass(TRAPS) {
 881   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 882   instanceKlassHandle klass (THREAD, k);
 883 
 884   JavaValue result(T_VOID);
 885   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
 886                                          vmSymbolHandles::void_method_signature(), CHECK);
 887 }
 888 
 889 #ifdef KERNEL
 890 static void set_jkernel_boot_classloader_hook(TRAPS) {
 891   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
 892   instanceKlassHandle klass (THREAD, k);
 893 
 894   if (k == NULL) {
 895     // sun.jkernel.DownloadManager may not present in the JDK; just return
 896     return;
 897   }
 898 
 899   JavaValue result(T_VOID);
 900   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
 901                                          vmSymbolHandles::void_method_signature(), CHECK);
 902 }
 903 #endif // KERNEL
 904 
 905 static void reset_vm_info_property(TRAPS) {
 906   // the vm info string
 907   ResourceMark rm(THREAD);
 908   const char *vm_info = VM_Version::vm_info_string();
 909 
 910   // java.lang.System class
 911   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 912   instanceKlassHandle klass (THREAD, k);
 913 
 914   // setProperty arguments
 915   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
 916   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
 917 
 918   // return value
 919   JavaValue r(T_OBJECT);
 920 
 921   // public static String setProperty(String key, String value);
 922   JavaCalls::call_static(&r,
 923                          klass,
 924                          vmSymbolHandles::setProperty_name(),
 925                          vmSymbolHandles::string_string_string_signature(),
 926                          key_str,
 927                          value_str,
 928                          CHECK);
 929 }
 930 
 931 
 932 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
 933   assert(thread_group.not_null(), "thread group should be specified");
 934   assert(threadObj() == NULL, "should only create Java thread object once");
 935 
 936   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
 937   instanceKlassHandle klass (THREAD, k);
 938   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 939 
 940   java_lang_Thread::set_thread(thread_oop(), this);
 941   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 942   set_threadObj(thread_oop());
 943 
 944   JavaValue result(T_VOID);
 945   if (thread_name != NULL) {
 946     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
 947     // Thread gets assigned specified name and null target
 948     JavaCalls::call_special(&result,
 949                             thread_oop,
 950                             klass,
 951                             vmSymbolHandles::object_initializer_name(),
 952                             vmSymbolHandles::threadgroup_string_void_signature(),
 953                             thread_group, // Argument 1
 954                             name,         // Argument 2
 955                             THREAD);
 956   } else {
 957     // Thread gets assigned name "Thread-nnn" and null target
 958     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
 959     JavaCalls::call_special(&result,
 960                             thread_oop,
 961                             klass,
 962                             vmSymbolHandles::object_initializer_name(),
 963                             vmSymbolHandles::threadgroup_runnable_void_signature(),
 964                             thread_group, // Argument 1
 965                             Handle(),     // Argument 2
 966                             THREAD);
 967   }
 968 
 969 
 970   if (daemon) {
 971       java_lang_Thread::set_daemon(thread_oop());
 972   }
 973 
 974   if (HAS_PENDING_EXCEPTION) {
 975     return;
 976   }
 977 
 978   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
 979   Handle threadObj(this, this->threadObj());
 980 
 981   JavaCalls::call_special(&result,
 982                          thread_group,
 983                          group,
 984                          vmSymbolHandles::add_method_name(),
 985                          vmSymbolHandles::thread_void_signature(),
 986                          threadObj,          // Arg 1
 987                          THREAD);
 988 
 989 
 990 }
 991 
 992 // NamedThread --  non-JavaThread subclasses with multiple
 993 // uniquely named instances should derive from this.
 994 NamedThread::NamedThread() : Thread() {
 995   _name = NULL;
 996   _processed_thread = NULL;
 997 }
 998 
 999 NamedThread::~NamedThread() {
1000   if (_name != NULL) {
1001     FREE_C_HEAP_ARRAY(char, _name);
1002     _name = NULL;
1003   }
1004 }
1005 
1006 void NamedThread::set_name(const char* format, ...) {
1007   guarantee(_name == NULL, "Only get to set name once.");
1008   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1009   guarantee(_name != NULL, "alloc failure");
1010   va_list ap;
1011   va_start(ap, format);
1012   jio_vsnprintf(_name, max_name_len, format, ap);
1013   va_end(ap);
1014 }
1015 
1016 // ======= WatcherThread ========
1017 
1018 // The watcher thread exists to simulate timer interrupts.  It should
1019 // be replaced by an abstraction over whatever native support for
1020 // timer interrupts exists on the platform.
1021 
1022 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1023 bool           WatcherThread::_should_terminate = false;
1024 
1025 WatcherThread::WatcherThread() : Thread() {
1026   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1027   if (os::create_thread(this, os::watcher_thread)) {
1028     _watcher_thread = this;
1029 
1030     // Set the watcher thread to the highest OS priority which should not be
1031     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1032     // is created. The only normal thread using this priority is the reference
1033     // handler thread, which runs for very short intervals only.
1034     // If the VMThread's priority is not lower than the WatcherThread profiling
1035     // will be inaccurate.
1036     os::set_priority(this, MaxPriority);
1037     if (!DisableStartThread) {
1038       os::start_thread(this);
1039     }
1040   }
1041 }
1042 
1043 void WatcherThread::run() {
1044   assert(this == watcher_thread(), "just checking");
1045 
1046   this->record_stack_base_and_size();
1047   this->initialize_thread_local_storage();
1048   this->set_active_handles(JNIHandleBlock::allocate_block());
1049   while(!_should_terminate) {
1050     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1051     assert(watcher_thread() == this,  "thread consistency check");
1052 
1053     // Calculate how long it'll be until the next PeriodicTask work
1054     // should be done, and sleep that amount of time.
1055     const size_t time_to_wait = PeriodicTask::time_to_wait();
1056     os::sleep(this, time_to_wait, false);
1057 
1058     if (is_error_reported()) {
1059       // A fatal error has happened, the error handler(VMError::report_and_die)
1060       // should abort JVM after creating an error log file. However in some
1061       // rare cases, the error handler itself might deadlock. Here we try to
1062       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1063       //
1064       // This code is in WatcherThread because WatcherThread wakes up
1065       // periodically so the fatal error handler doesn't need to do anything;
1066       // also because the WatcherThread is less likely to crash than other
1067       // threads.
1068 
1069       for (;;) {
1070         if (!ShowMessageBoxOnError
1071          && (OnError == NULL || OnError[0] == '\0')
1072          && Arguments::abort_hook() == NULL) {
1073              os::sleep(this, 2 * 60 * 1000, false);
1074              fdStream err(defaultStream::output_fd());
1075              err.print_raw_cr("# [ timer expired, abort... ]");
1076              // skip atexit/vm_exit/vm_abort hooks
1077              os::die();
1078         }
1079 
1080         // Wake up 5 seconds later, the fatal handler may reset OnError or
1081         // ShowMessageBoxOnError when it is ready to abort.
1082         os::sleep(this, 5 * 1000, false);
1083       }
1084     }
1085 
1086     PeriodicTask::real_time_tick(time_to_wait);
1087 
1088     // If we have no more tasks left due to dynamic disenrollment,
1089     // shut down the thread since we don't currently support dynamic enrollment
1090     if (PeriodicTask::num_tasks() == 0) {
1091       _should_terminate = true;
1092     }
1093   }
1094 
1095   // Signal that it is terminated
1096   {
1097     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1098     _watcher_thread = NULL;
1099     Terminator_lock->notify();
1100   }
1101 
1102   // Thread destructor usually does this..
1103   ThreadLocalStorage::set_thread(NULL);
1104 }
1105 
1106 void WatcherThread::start() {
1107   if (watcher_thread() == NULL) {
1108     _should_terminate = false;
1109     // Create the single instance of WatcherThread
1110     new WatcherThread();
1111   }
1112 }
1113 
1114 void WatcherThread::stop() {
1115   // it is ok to take late safepoints here, if needed
1116   MutexLocker mu(Terminator_lock);
1117   _should_terminate = true;
1118   while(watcher_thread() != NULL) {
1119     // This wait should make safepoint checks, wait without a timeout,
1120     // and wait as a suspend-equivalent condition.
1121     //
1122     // Note: If the FlatProfiler is running, then this thread is waiting
1123     // for the WatcherThread to terminate and the WatcherThread, via the
1124     // FlatProfiler task, is waiting for the external suspend request on
1125     // this thread to complete. wait_for_ext_suspend_completion() will
1126     // eventually timeout, but that takes time. Making this wait a
1127     // suspend-equivalent condition solves that timeout problem.
1128     //
1129     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1130                           Mutex::_as_suspend_equivalent_flag);
1131   }
1132 }
1133 
1134 void WatcherThread::print_on(outputStream* st) const {
1135   st->print("\"%s\" ", name());
1136   Thread::print_on(st);
1137   st->cr();
1138 }
1139 
1140 // ======= JavaThread ========
1141 
1142 // A JavaThread is a normal Java thread
1143 
1144 void JavaThread::initialize() {
1145   // Initialize fields
1146 
1147   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1148   set_claimed_par_id(-1);
1149 
1150   set_saved_exception_pc(NULL);
1151   set_threadObj(NULL);
1152   _anchor.clear();
1153   set_entry_point(NULL);
1154   set_jni_functions(jni_functions());
1155   set_callee_target(NULL);
1156   set_vm_result(NULL);
1157   set_vm_result_2(NULL);
1158   set_vframe_array_head(NULL);
1159   set_vframe_array_last(NULL);
1160   set_deferred_locals(NULL);
1161   set_deopt_mark(NULL);
1162   clear_must_deopt_id();
1163   set_monitor_chunks(NULL);
1164   set_next(NULL);
1165   set_thread_state(_thread_new);
1166   _terminated = _not_terminated;
1167   _privileged_stack_top = NULL;
1168   _array_for_gc = NULL;
1169   _suspend_equivalent = false;
1170   _in_deopt_handler = 0;
1171   _doing_unsafe_access = false;
1172   _stack_guard_state = stack_guard_unused;
1173   _exception_oop = NULL;
1174   _exception_pc  = 0;
1175   _exception_handler_pc = 0;
1176   _exception_stack_size = 0;
1177   _jvmti_thread_state= NULL;
1178   _should_post_on_exceptions_flag = JNI_FALSE;
1179   _jvmti_get_loaded_classes_closure = NULL;
1180   _interp_only_mode    = 0;
1181   _special_runtime_exit_condition = _no_async_condition;
1182   _pending_async_exception = NULL;
1183   _is_compiling = false;
1184   _thread_stat = NULL;
1185   _thread_stat = new ThreadStatistics();
1186   _blocked_on_compilation = false;
1187   _jni_active_critical = 0;
1188   _do_not_unlock_if_synchronized = false;
1189   _cached_monitor_info = NULL;
1190   _parker = Parker::Allocate(this) ;
1191 
1192 #ifndef PRODUCT
1193   _jmp_ring_index = 0;
1194   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1195     record_jump(NULL, NULL, NULL, 0);
1196   }
1197 #endif /* PRODUCT */
1198 
1199   set_thread_profiler(NULL);
1200   if (FlatProfiler::is_active()) {
1201     // This is where we would decide to either give each thread it's own profiler
1202     // or use one global one from FlatProfiler,
1203     // or up to some count of the number of profiled threads, etc.
1204     ThreadProfiler* pp = new ThreadProfiler();
1205     pp->engage();
1206     set_thread_profiler(pp);
1207   }
1208 
1209   // Setup safepoint state info for this thread
1210   ThreadSafepointState::create(this);
1211 
1212   debug_only(_java_call_counter = 0);
1213 
1214   // JVMTI PopFrame support
1215   _popframe_condition = popframe_inactive;
1216   _popframe_preserved_args = NULL;
1217   _popframe_preserved_args_size = 0;
1218 
1219   pd_initialize();
1220 }
1221 
1222 #ifndef SERIALGC
1223 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1224 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1225 #endif // !SERIALGC
1226 
1227 JavaThread::JavaThread(bool is_attaching) :
1228   Thread()
1229 #ifndef SERIALGC
1230   , _satb_mark_queue(&_satb_mark_queue_set),
1231   _dirty_card_queue(&_dirty_card_queue_set)
1232 #endif // !SERIALGC
1233 {
1234   initialize();
1235   _is_attaching = is_attaching;
1236   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1237 }
1238 
1239 bool JavaThread::reguard_stack(address cur_sp) {
1240   if (_stack_guard_state != stack_guard_yellow_disabled) {
1241     return true; // Stack already guarded or guard pages not needed.
1242   }
1243 
1244   if (register_stack_overflow()) {
1245     // For those architectures which have separate register and
1246     // memory stacks, we must check the register stack to see if
1247     // it has overflowed.
1248     return false;
1249   }
1250 
1251   // Java code never executes within the yellow zone: the latter is only
1252   // there to provoke an exception during stack banging.  If java code
1253   // is executing there, either StackShadowPages should be larger, or
1254   // some exception code in c1, c2 or the interpreter isn't unwinding
1255   // when it should.
1256   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1257 
1258   enable_stack_yellow_zone();
1259   return true;
1260 }
1261 
1262 bool JavaThread::reguard_stack(void) {
1263   return reguard_stack(os::current_stack_pointer());
1264 }
1265 
1266 
1267 void JavaThread::block_if_vm_exited() {
1268   if (_terminated == _vm_exited) {
1269     // _vm_exited is set at safepoint, and Threads_lock is never released
1270     // we will block here forever
1271     Threads_lock->lock_without_safepoint_check();
1272     ShouldNotReachHere();
1273   }
1274 }
1275 
1276 
1277 // Remove this ifdef when C1 is ported to the compiler interface.
1278 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1279 
1280 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1281   Thread()
1282 #ifndef SERIALGC
1283   , _satb_mark_queue(&_satb_mark_queue_set),
1284   _dirty_card_queue(&_dirty_card_queue_set)
1285 #endif // !SERIALGC
1286 {
1287   if (TraceThreadEvents) {
1288     tty->print_cr("creating thread %p", this);
1289   }
1290   initialize();
1291   _is_attaching = false;
1292   set_entry_point(entry_point);
1293   // Create the native thread itself.
1294   // %note runtime_23
1295   os::ThreadType thr_type = os::java_thread;
1296   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1297                                                      os::java_thread;
1298   os::create_thread(this, thr_type, stack_sz);
1299 
1300   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1301   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1302   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1303   // the exception consists of creating the exception object & initializing it, initialization
1304   // will leave the VM via a JavaCall and then all locks must be unlocked).
1305   //
1306   // The thread is still suspended when we reach here. Thread must be explicit started
1307   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1308   // by calling Threads:add. The reason why this is not done here, is because the thread
1309   // object must be fully initialized (take a look at JVM_Start)
1310 }
1311 
1312 JavaThread::~JavaThread() {
1313   if (TraceThreadEvents) {
1314       tty->print_cr("terminate thread %p", this);
1315   }
1316 
1317   // JSR166 -- return the parker to the free list
1318   Parker::Release(_parker);
1319   _parker = NULL ;
1320 
1321   // Free any remaining  previous UnrollBlock
1322   vframeArray* old_array = vframe_array_last();
1323 
1324   if (old_array != NULL) {
1325     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1326     old_array->set_unroll_block(NULL);
1327     delete old_info;
1328     delete old_array;
1329   }
1330 
1331   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1332   if (deferred != NULL) {
1333     // This can only happen if thread is destroyed before deoptimization occurs.
1334     assert(deferred->length() != 0, "empty array!");
1335     do {
1336       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1337       deferred->remove_at(0);
1338       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1339       delete dlv;
1340     } while (deferred->length() != 0);
1341     delete deferred;
1342   }
1343 
1344   // All Java related clean up happens in exit
1345   ThreadSafepointState::destroy(this);
1346   if (_thread_profiler != NULL) delete _thread_profiler;
1347   if (_thread_stat != NULL) delete _thread_stat;
1348 }
1349 
1350 
1351 // The first routine called by a new Java thread
1352 void JavaThread::run() {
1353   // initialize thread-local alloc buffer related fields
1354   this->initialize_tlab();
1355 
1356   // used to test validitity of stack trace backs
1357   this->record_base_of_stack_pointer();
1358 
1359   // Record real stack base and size.
1360   this->record_stack_base_and_size();
1361 
1362   // Initialize thread local storage; set before calling MutexLocker
1363   this->initialize_thread_local_storage();
1364 
1365   this->create_stack_guard_pages();
1366 
1367   // Thread is now sufficient initialized to be handled by the safepoint code as being
1368   // in the VM. Change thread state from _thread_new to _thread_in_vm
1369   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1370 
1371   assert(JavaThread::current() == this, "sanity check");
1372   assert(!Thread::current()->owns_locks(), "sanity check");
1373 
1374   DTRACE_THREAD_PROBE(start, this);
1375 
1376   // This operation might block. We call that after all safepoint checks for a new thread has
1377   // been completed.
1378   this->set_active_handles(JNIHandleBlock::allocate_block());
1379 
1380   if (JvmtiExport::should_post_thread_life()) {
1381     JvmtiExport::post_thread_start(this);
1382   }
1383 
1384   // We call another function to do the rest so we are sure that the stack addresses used
1385   // from there will be lower than the stack base just computed
1386   thread_main_inner();
1387 
1388   // Note, thread is no longer valid at this point!
1389 }
1390 
1391 
1392 void JavaThread::thread_main_inner() {
1393   assert(JavaThread::current() == this, "sanity check");
1394   assert(this->threadObj() != NULL, "just checking");
1395 
1396   // Execute thread entry point. If this thread is being asked to restart,
1397   // or has been stopped before starting, do not reexecute entry point.
1398   // Note: Due to JVM_StopThread we can have pending exceptions already!
1399   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1400     // enter the thread's entry point only if we have no pending exceptions
1401     HandleMark hm(this);
1402     this->entry_point()(this, this);
1403   }
1404 
1405   DTRACE_THREAD_PROBE(stop, this);
1406 
1407   this->exit(false);
1408   delete this;
1409 }
1410 
1411 
1412 static void ensure_join(JavaThread* thread) {
1413   // We do not need to grap the Threads_lock, since we are operating on ourself.
1414   Handle threadObj(thread, thread->threadObj());
1415   assert(threadObj.not_null(), "java thread object must exist");
1416   ObjectLocker lock(threadObj, thread);
1417   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1418   thread->clear_pending_exception();
1419   // It is of profound importance that we set the stillborn bit and reset the thread object,
1420   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1421   // false. So in case another thread is doing a join on this thread , it will detect that the thread
1422   // is dead when it gets notified.
1423   java_lang_Thread::set_stillborn(threadObj());
1424   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1425   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1426   java_lang_Thread::set_thread(threadObj(), NULL);
1427   lock.notify_all(thread);
1428   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1429   thread->clear_pending_exception();
1430 }
1431 
1432 
1433 // For any new cleanup additions, please check to see if they need to be applied to
1434 // cleanup_failed_attach_current_thread as well.
1435 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1436   assert(this == JavaThread::current(),  "thread consistency check");
1437   if (!InitializeJavaLangSystem) return;
1438 
1439   HandleMark hm(this);
1440   Handle uncaught_exception(this, this->pending_exception());
1441   this->clear_pending_exception();
1442   Handle threadObj(this, this->threadObj());
1443   assert(threadObj.not_null(), "Java thread object should be created");
1444 
1445   if (get_thread_profiler() != NULL) {
1446     get_thread_profiler()->disengage();
1447     ResourceMark rm;
1448     get_thread_profiler()->print(get_thread_name());
1449   }
1450 
1451 
1452   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1453   {
1454     EXCEPTION_MARK;
1455 
1456     CLEAR_PENDING_EXCEPTION;
1457   }
1458   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1459   // has to be fixed by a runtime query method
1460   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1461     // JSR-166: change call from from ThreadGroup.uncaughtException to
1462     // java.lang.Thread.dispatchUncaughtException
1463     if (uncaught_exception.not_null()) {
1464       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1465       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1466         (address)uncaught_exception(), (address)threadObj(), (address)group());
1467       {
1468         EXCEPTION_MARK;
1469         // Check if the method Thread.dispatchUncaughtException() exists. If so
1470         // call it.  Otherwise we have an older library without the JSR-166 changes,
1471         // so call ThreadGroup.uncaughtException()
1472         KlassHandle recvrKlass(THREAD, threadObj->klass());
1473         CallInfo callinfo;
1474         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1475         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1476                                            vmSymbolHandles::dispatchUncaughtException_name(),
1477                                            vmSymbolHandles::throwable_void_signature(),
1478                                            KlassHandle(), false, false, THREAD);
1479         CLEAR_PENDING_EXCEPTION;
1480         methodHandle method = callinfo.selected_method();
1481         if (method.not_null()) {
1482           JavaValue result(T_VOID);
1483           JavaCalls::call_virtual(&result,
1484                                   threadObj, thread_klass,
1485                                   vmSymbolHandles::dispatchUncaughtException_name(),
1486                                   vmSymbolHandles::throwable_void_signature(),
1487                                   uncaught_exception,
1488                                   THREAD);
1489         } else {
1490           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1491           JavaValue result(T_VOID);
1492           JavaCalls::call_virtual(&result,
1493                                   group, thread_group,
1494                                   vmSymbolHandles::uncaughtException_name(),
1495                                   vmSymbolHandles::thread_throwable_void_signature(),
1496                                   threadObj,           // Arg 1
1497                                   uncaught_exception,  // Arg 2
1498                                   THREAD);
1499         }
1500         CLEAR_PENDING_EXCEPTION;
1501       }
1502     }
1503 
1504     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1505     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1506     // is deprecated anyhow.
1507     { int count = 3;
1508       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1509         EXCEPTION_MARK;
1510         JavaValue result(T_VOID);
1511         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1512         JavaCalls::call_virtual(&result,
1513                               threadObj, thread_klass,
1514                               vmSymbolHandles::exit_method_name(),
1515                               vmSymbolHandles::void_method_signature(),
1516                               THREAD);
1517         CLEAR_PENDING_EXCEPTION;
1518       }
1519     }
1520 
1521     // notify JVMTI
1522     if (JvmtiExport::should_post_thread_life()) {
1523       JvmtiExport::post_thread_end(this);
1524     }
1525 
1526     // We have notified the agents that we are exiting, before we go on,
1527     // we must check for a pending external suspend request and honor it
1528     // in order to not surprise the thread that made the suspend request.
1529     while (true) {
1530       {
1531         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1532         if (!is_external_suspend()) {
1533           set_terminated(_thread_exiting);
1534           ThreadService::current_thread_exiting(this);
1535           break;
1536         }
1537         // Implied else:
1538         // Things get a little tricky here. We have a pending external
1539         // suspend request, but we are holding the SR_lock so we
1540         // can't just self-suspend. So we temporarily drop the lock
1541         // and then self-suspend.
1542       }
1543 
1544       ThreadBlockInVM tbivm(this);
1545       java_suspend_self();
1546 
1547       // We're done with this suspend request, but we have to loop around
1548       // and check again. Eventually we will get SR_lock without a pending
1549       // external suspend request and will be able to mark ourselves as
1550       // exiting.
1551     }
1552     // no more external suspends are allowed at this point
1553   } else {
1554     // before_exit() has already posted JVMTI THREAD_END events
1555   }
1556 
1557   // Notify waiters on thread object. This has to be done after exit() is called
1558   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1559   // group should have the destroyed bit set before waiters are notified).
1560   ensure_join(this);
1561   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1562 
1563   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1564   // held by this thread must be released.  A detach operation must only
1565   // get here if there are no Java frames on the stack.  Therefore, any
1566   // owned monitors at this point MUST be JNI-acquired monitors which are
1567   // pre-inflated and in the monitor cache.
1568   //
1569   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1570   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1571     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1572     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1573     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1574   }
1575 
1576   // These things needs to be done while we are still a Java Thread. Make sure that thread
1577   // is in a consistent state, in case GC happens
1578   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1579 
1580   if (active_handles() != NULL) {
1581     JNIHandleBlock* block = active_handles();
1582     set_active_handles(NULL);
1583     JNIHandleBlock::release_block(block);
1584   }
1585 
1586   if (free_handle_block() != NULL) {
1587     JNIHandleBlock* block = free_handle_block();
1588     set_free_handle_block(NULL);
1589     JNIHandleBlock::release_block(block);
1590   }
1591 
1592   // These have to be removed while this is still a valid thread.
1593   remove_stack_guard_pages();
1594 
1595   if (UseTLAB) {
1596     tlab().make_parsable(true);  // retire TLAB
1597   }
1598 
1599   if (jvmti_thread_state() != NULL) {
1600     JvmtiExport::cleanup_thread(this);
1601   }
1602 
1603 #ifndef SERIALGC
1604   // We must flush G1-related buffers before removing a thread from
1605   // the list of active threads.
1606   if (UseG1GC) {
1607     flush_barrier_queues();
1608   }
1609 #endif
1610 
1611   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1612   Threads::remove(this);
1613 }
1614 
1615 #ifndef SERIALGC
1616 // Flush G1-related queues.
1617 void JavaThread::flush_barrier_queues() {
1618   satb_mark_queue().flush();
1619   dirty_card_queue().flush();
1620 }
1621 #endif
1622 
1623 void JavaThread::cleanup_failed_attach_current_thread() {
1624   if (get_thread_profiler() != NULL) {
1625     get_thread_profiler()->disengage();
1626     ResourceMark rm;
1627     get_thread_profiler()->print(get_thread_name());
1628   }
1629 
1630   if (active_handles() != NULL) {
1631     JNIHandleBlock* block = active_handles();
1632     set_active_handles(NULL);
1633     JNIHandleBlock::release_block(block);
1634   }
1635 
1636   if (free_handle_block() != NULL) {
1637     JNIHandleBlock* block = free_handle_block();
1638     set_free_handle_block(NULL);
1639     JNIHandleBlock::release_block(block);
1640   }
1641 
1642   // These have to be removed while this is still a valid thread.
1643   remove_stack_guard_pages();
1644 
1645   if (UseTLAB) {
1646     tlab().make_parsable(true);  // retire TLAB, if any
1647   }
1648 
1649 #ifndef SERIALGC
1650   if (UseG1GC) {
1651     flush_barrier_queues();
1652   }
1653 #endif
1654 
1655   Threads::remove(this);
1656   delete this;
1657 }
1658 
1659 
1660 
1661 
1662 JavaThread* JavaThread::active() {
1663   Thread* thread = ThreadLocalStorage::thread();
1664   assert(thread != NULL, "just checking");
1665   if (thread->is_Java_thread()) {
1666     return (JavaThread*) thread;
1667   } else {
1668     assert(thread->is_VM_thread(), "this must be a vm thread");
1669     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1670     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1671     assert(ret->is_Java_thread(), "must be a Java thread");
1672     return ret;
1673   }
1674 }
1675 
1676 bool JavaThread::is_lock_owned(address adr) const {
1677   if (Thread::is_lock_owned(adr)) return true;
1678 
1679   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1680     if (chunk->contains(adr)) return true;
1681   }
1682 
1683   return false;
1684 }
1685 
1686 
1687 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1688   chunk->set_next(monitor_chunks());
1689   set_monitor_chunks(chunk);
1690 }
1691 
1692 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1693   guarantee(monitor_chunks() != NULL, "must be non empty");
1694   if (monitor_chunks() == chunk) {
1695     set_monitor_chunks(chunk->next());
1696   } else {
1697     MonitorChunk* prev = monitor_chunks();
1698     while (prev->next() != chunk) prev = prev->next();
1699     prev->set_next(chunk->next());
1700   }
1701 }
1702 
1703 // JVM support.
1704 
1705 // Note: this function shouldn't block if it's called in
1706 // _thread_in_native_trans state (such as from
1707 // check_special_condition_for_native_trans()).
1708 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1709 
1710   if (has_last_Java_frame() && has_async_condition()) {
1711     // If we are at a polling page safepoint (not a poll return)
1712     // then we must defer async exception because live registers
1713     // will be clobbered by the exception path. Poll return is
1714     // ok because the call we a returning from already collides
1715     // with exception handling registers and so there is no issue.
1716     // (The exception handling path kills call result registers but
1717     //  this is ok since the exception kills the result anyway).
1718 
1719     if (is_at_poll_safepoint()) {
1720       // if the code we are returning to has deoptimized we must defer
1721       // the exception otherwise live registers get clobbered on the
1722       // exception path before deoptimization is able to retrieve them.
1723       //
1724       RegisterMap map(this, false);
1725       frame caller_fr = last_frame().sender(&map);
1726       assert(caller_fr.is_compiled_frame(), "what?");
1727       if (caller_fr.is_deoptimized_frame()) {
1728         if (TraceExceptions) {
1729           ResourceMark rm;
1730           tty->print_cr("deferred async exception at compiled safepoint");
1731         }
1732         return;
1733       }
1734     }
1735   }
1736 
1737   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1738   if (condition == _no_async_condition) {
1739     // Conditions have changed since has_special_runtime_exit_condition()
1740     // was called:
1741     // - if we were here only because of an external suspend request,
1742     //   then that was taken care of above (or cancelled) so we are done
1743     // - if we were here because of another async request, then it has
1744     //   been cleared between the has_special_runtime_exit_condition()
1745     //   and now so again we are done
1746     return;
1747   }
1748 
1749   // Check for pending async. exception
1750   if (_pending_async_exception != NULL) {
1751     // Only overwrite an already pending exception, if it is not a threadDeath.
1752     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1753 
1754       // We cannot call Exceptions::_throw(...) here because we cannot block
1755       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1756 
1757       if (TraceExceptions) {
1758         ResourceMark rm;
1759         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1760         if (has_last_Java_frame() ) {
1761           frame f = last_frame();
1762           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1763         }
1764         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1765       }
1766       _pending_async_exception = NULL;
1767       clear_has_async_exception();
1768     }
1769   }
1770 
1771   if (check_unsafe_error &&
1772       condition == _async_unsafe_access_error && !has_pending_exception()) {
1773     condition = _no_async_condition;  // done
1774     switch (thread_state()) {
1775     case _thread_in_vm:
1776       {
1777         JavaThread* THREAD = this;
1778         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1779       }
1780     case _thread_in_native:
1781       {
1782         ThreadInVMfromNative tiv(this);
1783         JavaThread* THREAD = this;
1784         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1785       }
1786     case _thread_in_Java:
1787       {
1788         ThreadInVMfromJava tiv(this);
1789         JavaThread* THREAD = this;
1790         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1791       }
1792     default:
1793       ShouldNotReachHere();
1794     }
1795   }
1796 
1797   assert(condition == _no_async_condition || has_pending_exception() ||
1798          (!check_unsafe_error && condition == _async_unsafe_access_error),
1799          "must have handled the async condition, if no exception");
1800 }
1801 
1802 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1803   //
1804   // Check for pending external suspend. Internal suspend requests do
1805   // not use handle_special_runtime_exit_condition().
1806   // If JNIEnv proxies are allowed, don't self-suspend if the target
1807   // thread is not the current thread. In older versions of jdbx, jdbx
1808   // threads could call into the VM with another thread's JNIEnv so we
1809   // can be here operating on behalf of a suspended thread (4432884).
1810   bool do_self_suspend = is_external_suspend_with_lock();
1811   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1812     //
1813     // Because thread is external suspended the safepoint code will count
1814     // thread as at a safepoint. This can be odd because we can be here
1815     // as _thread_in_Java which would normally transition to _thread_blocked
1816     // at a safepoint. We would like to mark the thread as _thread_blocked
1817     // before calling java_suspend_self like all other callers of it but
1818     // we must then observe proper safepoint protocol. (We can't leave
1819     // _thread_blocked with a safepoint in progress). However we can be
1820     // here as _thread_in_native_trans so we can't use a normal transition
1821     // constructor/destructor pair because they assert on that type of
1822     // transition. We could do something like:
1823     //
1824     // JavaThreadState state = thread_state();
1825     // set_thread_state(_thread_in_vm);
1826     // {
1827     //   ThreadBlockInVM tbivm(this);
1828     //   java_suspend_self()
1829     // }
1830     // set_thread_state(_thread_in_vm_trans);
1831     // if (safepoint) block;
1832     // set_thread_state(state);
1833     //
1834     // but that is pretty messy. Instead we just go with the way the
1835     // code has worked before and note that this is the only path to
1836     // java_suspend_self that doesn't put the thread in _thread_blocked
1837     // mode.
1838 
1839     frame_anchor()->make_walkable(this);
1840     java_suspend_self();
1841 
1842     // We might be here for reasons in addition to the self-suspend request
1843     // so check for other async requests.
1844   }
1845 
1846   if (check_asyncs) {
1847     check_and_handle_async_exceptions();
1848   }
1849 }
1850 
1851 void JavaThread::send_thread_stop(oop java_throwable)  {
1852   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1853   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1854   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1855 
1856   // Do not throw asynchronous exceptions against the compiler thread
1857   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1858   if (is_Compiler_thread()) return;
1859 
1860   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1861   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
1862     java_lang_Thread::set_stillborn(threadObj());
1863   }
1864 
1865   {
1866     // Actually throw the Throwable against the target Thread - however
1867     // only if there is no thread death exception installed already.
1868     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1869       // If the topmost frame is a runtime stub, then we are calling into
1870       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1871       // must deoptimize the caller before continuing, as the compiled  exception handler table
1872       // may not be valid
1873       if (has_last_Java_frame()) {
1874         frame f = last_frame();
1875         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1876           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
1877           RegisterMap reg_map(this, UseBiasedLocking);
1878           frame compiled_frame = f.sender(&reg_map);
1879           if (compiled_frame.can_be_deoptimized()) {
1880             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
1881           }
1882         }
1883       }
1884 
1885       // Set async. pending exception in thread.
1886       set_pending_async_exception(java_throwable);
1887 
1888       if (TraceExceptions) {
1889        ResourceMark rm;
1890        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1891       }
1892       // for AbortVMOnException flag
1893       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
1894     }
1895   }
1896 
1897 
1898   // Interrupt thread so it will wake up from a potential wait()
1899   Thread::interrupt(this);
1900 }
1901 
1902 // External suspension mechanism.
1903 //
1904 // Tell the VM to suspend a thread when ever it knows that it does not hold on
1905 // to any VM_locks and it is at a transition
1906 // Self-suspension will happen on the transition out of the vm.
1907 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
1908 //
1909 // Guarantees on return:
1910 //   + Target thread will not execute any new bytecode (that's why we need to
1911 //     force a safepoint)
1912 //   + Target thread will not enter any new monitors
1913 //
1914 void JavaThread::java_suspend() {
1915   { MutexLocker mu(Threads_lock);
1916     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
1917        return;
1918     }
1919   }
1920 
1921   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1922     if (!is_external_suspend()) {
1923       // a racing resume has cancelled us; bail out now
1924       return;
1925     }
1926 
1927     // suspend is done
1928     uint32_t debug_bits = 0;
1929     // Warning: is_ext_suspend_completed() may temporarily drop the
1930     // SR_lock to allow the thread to reach a stable thread state if
1931     // it is currently in a transient thread state.
1932     if (is_ext_suspend_completed(false /* !called_by_wait */,
1933                                  SuspendRetryDelay, &debug_bits) ) {
1934       return;
1935     }
1936   }
1937 
1938   VM_ForceSafepoint vm_suspend;
1939   VMThread::execute(&vm_suspend);
1940 }
1941 
1942 // Part II of external suspension.
1943 // A JavaThread self suspends when it detects a pending external suspend
1944 // request. This is usually on transitions. It is also done in places
1945 // where continuing to the next transition would surprise the caller,
1946 // e.g., monitor entry.
1947 //
1948 // Returns the number of times that the thread self-suspended.
1949 //
1950 // Note: DO NOT call java_suspend_self() when you just want to block current
1951 //       thread. java_suspend_self() is the second stage of cooperative
1952 //       suspension for external suspend requests and should only be used
1953 //       to complete an external suspend request.
1954 //
1955 int JavaThread::java_suspend_self() {
1956   int ret = 0;
1957 
1958   // we are in the process of exiting so don't suspend
1959   if (is_exiting()) {
1960      clear_external_suspend();
1961      return ret;
1962   }
1963 
1964   assert(_anchor.walkable() ||
1965     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
1966     "must have walkable stack");
1967 
1968   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1969 
1970   assert(!this->is_ext_suspended(),
1971     "a thread trying to self-suspend should not already be suspended");
1972 
1973   if (this->is_suspend_equivalent()) {
1974     // If we are self-suspending as a result of the lifting of a
1975     // suspend equivalent condition, then the suspend_equivalent
1976     // flag is not cleared until we set the ext_suspended flag so
1977     // that wait_for_ext_suspend_completion() returns consistent
1978     // results.
1979     this->clear_suspend_equivalent();
1980   }
1981 
1982   // A racing resume may have cancelled us before we grabbed SR_lock
1983   // above. Or another external suspend request could be waiting for us
1984   // by the time we return from SR_lock()->wait(). The thread
1985   // that requested the suspension may already be trying to walk our
1986   // stack and if we return now, we can change the stack out from under
1987   // it. This would be a "bad thing (TM)" and cause the stack walker
1988   // to crash. We stay self-suspended until there are no more pending
1989   // external suspend requests.
1990   while (is_external_suspend()) {
1991     ret++;
1992     this->set_ext_suspended();
1993 
1994     // _ext_suspended flag is cleared by java_resume()
1995     while (is_ext_suspended()) {
1996       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
1997     }
1998   }
1999 
2000   return ret;
2001 }
2002 
2003 #ifdef ASSERT
2004 // verify the JavaThread has not yet been published in the Threads::list, and
2005 // hence doesn't need protection from concurrent access at this stage
2006 void JavaThread::verify_not_published() {
2007   if (!Threads_lock->owned_by_self()) {
2008    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2009    assert( !Threads::includes(this),
2010            "java thread shouldn't have been published yet!");
2011   }
2012   else {
2013    assert( !Threads::includes(this),
2014            "java thread shouldn't have been published yet!");
2015   }
2016 }
2017 #endif
2018 
2019 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2020 // progress or when _suspend_flags is non-zero.
2021 // Current thread needs to self-suspend if there is a suspend request and/or
2022 // block if a safepoint is in progress.
2023 // Async exception ISN'T checked.
2024 // Note only the ThreadInVMfromNative transition can call this function
2025 // directly and when thread state is _thread_in_native_trans
2026 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2027   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2028 
2029   JavaThread *curJT = JavaThread::current();
2030   bool do_self_suspend = thread->is_external_suspend();
2031 
2032   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2033 
2034   // If JNIEnv proxies are allowed, don't self-suspend if the target
2035   // thread is not the current thread. In older versions of jdbx, jdbx
2036   // threads could call into the VM with another thread's JNIEnv so we
2037   // can be here operating on behalf of a suspended thread (4432884).
2038   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2039     JavaThreadState state = thread->thread_state();
2040 
2041     // We mark this thread_blocked state as a suspend-equivalent so
2042     // that a caller to is_ext_suspend_completed() won't be confused.
2043     // The suspend-equivalent state is cleared by java_suspend_self().
2044     thread->set_suspend_equivalent();
2045 
2046     // If the safepoint code sees the _thread_in_native_trans state, it will
2047     // wait until the thread changes to other thread state. There is no
2048     // guarantee on how soon we can obtain the SR_lock and complete the
2049     // self-suspend request. It would be a bad idea to let safepoint wait for
2050     // too long. Temporarily change the state to _thread_blocked to
2051     // let the VM thread know that this thread is ready for GC. The problem
2052     // of changing thread state is that safepoint could happen just after
2053     // java_suspend_self() returns after being resumed, and VM thread will
2054     // see the _thread_blocked state. We must check for safepoint
2055     // after restoring the state and make sure we won't leave while a safepoint
2056     // is in progress.
2057     thread->set_thread_state(_thread_blocked);
2058     thread->java_suspend_self();
2059     thread->set_thread_state(state);
2060     // Make sure new state is seen by VM thread
2061     if (os::is_MP()) {
2062       if (UseMembar) {
2063         // Force a fence between the write above and read below
2064         OrderAccess::fence();
2065       } else {
2066         // Must use this rather than serialization page in particular on Windows
2067         InterfaceSupport::serialize_memory(thread);
2068       }
2069     }
2070   }
2071 
2072   if (SafepointSynchronize::do_call_back()) {
2073     // If we are safepointing, then block the caller which may not be
2074     // the same as the target thread (see above).
2075     SafepointSynchronize::block(curJT);
2076   }
2077 
2078   if (thread->is_deopt_suspend()) {
2079     thread->clear_deopt_suspend();
2080     RegisterMap map(thread, false);
2081     frame f = thread->last_frame();
2082     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2083       f = f.sender(&map);
2084     }
2085     if (f.id() == thread->must_deopt_id()) {
2086       thread->clear_must_deopt_id();
2087       // Since we know we're safe to deopt the current state is a safe state
2088       f.deoptimize(thread, true);
2089     } else {
2090       fatal("missed deoptimization!");
2091     }
2092   }
2093 }
2094 
2095 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2096 // progress or when _suspend_flags is non-zero.
2097 // Current thread needs to self-suspend if there is a suspend request and/or
2098 // block if a safepoint is in progress.
2099 // Also check for pending async exception (not including unsafe access error).
2100 // Note only the native==>VM/Java barriers can call this function and when
2101 // thread state is _thread_in_native_trans.
2102 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2103   check_safepoint_and_suspend_for_native_trans(thread);
2104 
2105   if (thread->has_async_exception()) {
2106     // We are in _thread_in_native_trans state, don't handle unsafe
2107     // access error since that may block.
2108     thread->check_and_handle_async_exceptions(false);
2109   }
2110 }
2111 
2112 // We need to guarantee the Threads_lock here, since resumes are not
2113 // allowed during safepoint synchronization
2114 // Can only resume from an external suspension
2115 void JavaThread::java_resume() {
2116   assert_locked_or_safepoint(Threads_lock);
2117 
2118   // Sanity check: thread is gone, has started exiting or the thread
2119   // was not externally suspended.
2120   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2121     return;
2122   }
2123 
2124   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2125 
2126   clear_external_suspend();
2127 
2128   if (is_ext_suspended()) {
2129     clear_ext_suspended();
2130     SR_lock()->notify_all();
2131   }
2132 }
2133 
2134 void JavaThread::create_stack_guard_pages() {
2135   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2136   address low_addr = stack_base() - stack_size();
2137   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2138 
2139   int allocate = os::allocate_stack_guard_pages();
2140   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2141 
2142   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2143     warning("Attempt to allocate stack guard pages failed.");
2144     return;
2145   }
2146 
2147   if (os::guard_memory((char *) low_addr, len)) {
2148     _stack_guard_state = stack_guard_enabled;
2149   } else {
2150     warning("Attempt to protect stack guard pages failed.");
2151     if (os::uncommit_memory((char *) low_addr, len)) {
2152       warning("Attempt to deallocate stack guard pages failed.");
2153     }
2154   }
2155 }
2156 
2157 void JavaThread::remove_stack_guard_pages() {
2158   if (_stack_guard_state == stack_guard_unused) return;
2159   address low_addr = stack_base() - stack_size();
2160   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2161 
2162   if (os::allocate_stack_guard_pages()) {
2163     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2164       _stack_guard_state = stack_guard_unused;
2165     } else {
2166       warning("Attempt to deallocate stack guard pages failed.");
2167     }
2168   } else {
2169     if (_stack_guard_state == stack_guard_unused) return;
2170     if (os::unguard_memory((char *) low_addr, len)) {
2171       _stack_guard_state = stack_guard_unused;
2172     } else {
2173         warning("Attempt to unprotect stack guard pages failed.");
2174     }
2175   }
2176 }
2177 
2178 void JavaThread::enable_stack_yellow_zone() {
2179   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2180   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2181 
2182   // The base notation is from the stacks point of view, growing downward.
2183   // We need to adjust it to work correctly with guard_memory()
2184   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2185 
2186   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2187   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2188 
2189   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2190     _stack_guard_state = stack_guard_enabled;
2191   } else {
2192     warning("Attempt to guard stack yellow zone failed.");
2193   }
2194   enable_register_stack_guard();
2195 }
2196 
2197 void JavaThread::disable_stack_yellow_zone() {
2198   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2199   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2200 
2201   // Simply return if called for a thread that does not use guard pages.
2202   if (_stack_guard_state == stack_guard_unused) return;
2203 
2204   // The base notation is from the stacks point of view, growing downward.
2205   // We need to adjust it to work correctly with guard_memory()
2206   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2207 
2208   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2209     _stack_guard_state = stack_guard_yellow_disabled;
2210   } else {
2211     warning("Attempt to unguard stack yellow zone failed.");
2212   }
2213   disable_register_stack_guard();
2214 }
2215 
2216 void JavaThread::enable_stack_red_zone() {
2217   // The base notation is from the stacks point of view, growing downward.
2218   // We need to adjust it to work correctly with guard_memory()
2219   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2220   address base = stack_red_zone_base() - stack_red_zone_size();
2221 
2222   guarantee(base < stack_base(),"Error calculating stack red zone");
2223   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2224 
2225   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2226     warning("Attempt to guard stack red zone failed.");
2227   }
2228 }
2229 
2230 void JavaThread::disable_stack_red_zone() {
2231   // The base notation is from the stacks point of view, growing downward.
2232   // We need to adjust it to work correctly with guard_memory()
2233   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2234   address base = stack_red_zone_base() - stack_red_zone_size();
2235   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2236     warning("Attempt to unguard stack red zone failed.");
2237   }
2238 }
2239 
2240 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2241   // ignore is there is no stack
2242   if (!has_last_Java_frame()) return;
2243   // traverse the stack frames. Starts from top frame.
2244   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2245     frame* fr = fst.current();
2246     f(fr, fst.register_map());
2247   }
2248 }
2249 
2250 
2251 #ifndef PRODUCT
2252 // Deoptimization
2253 // Function for testing deoptimization
2254 void JavaThread::deoptimize() {
2255   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2256   StackFrameStream fst(this, UseBiasedLocking);
2257   bool deopt = false;           // Dump stack only if a deopt actually happens.
2258   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2259   // Iterate over all frames in the thread and deoptimize
2260   for(; !fst.is_done(); fst.next()) {
2261     if(fst.current()->can_be_deoptimized()) {
2262 
2263       if (only_at) {
2264         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2265         // consists of comma or carriage return separated numbers so
2266         // search for the current bci in that string.
2267         address pc = fst.current()->pc();
2268         nmethod* nm =  (nmethod*) fst.current()->cb();
2269         ScopeDesc* sd = nm->scope_desc_at( pc);
2270         char buffer[8];
2271         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2272         size_t len = strlen(buffer);
2273         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2274         while (found != NULL) {
2275           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2276               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2277             // Check that the bci found is bracketed by terminators.
2278             break;
2279           }
2280           found = strstr(found + 1, buffer);
2281         }
2282         if (!found) {
2283           continue;
2284         }
2285       }
2286 
2287       if (DebugDeoptimization && !deopt) {
2288         deopt = true; // One-time only print before deopt
2289         tty->print_cr("[BEFORE Deoptimization]");
2290         trace_frames();
2291         trace_stack();
2292       }
2293       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2294     }
2295   }
2296 
2297   if (DebugDeoptimization && deopt) {
2298     tty->print_cr("[AFTER Deoptimization]");
2299     trace_frames();
2300   }
2301 }
2302 
2303 
2304 // Make zombies
2305 void JavaThread::make_zombies() {
2306   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2307     if (fst.current()->can_be_deoptimized()) {
2308       // it is a Java nmethod
2309       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2310       nm->make_not_entrant();
2311     }
2312   }
2313 }
2314 #endif // PRODUCT
2315 
2316 
2317 void JavaThread::deoptimized_wrt_marked_nmethods() {
2318   if (!has_last_Java_frame()) return;
2319   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2320   StackFrameStream fst(this, UseBiasedLocking);
2321   for(; !fst.is_done(); fst.next()) {
2322     if (fst.current()->should_be_deoptimized()) {
2323       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2324     }
2325   }
2326 }
2327 
2328 
2329 // GC support
2330 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2331 
2332 void JavaThread::gc_epilogue() {
2333   frames_do(frame_gc_epilogue);
2334 }
2335 
2336 
2337 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2338 
2339 void JavaThread::gc_prologue() {
2340   frames_do(frame_gc_prologue);
2341 }
2342 
2343 // If the caller is a NamedThread, then remember, in the current scope,
2344 // the given JavaThread in its _processed_thread field.
2345 class RememberProcessedThread: public StackObj {
2346   NamedThread* _cur_thr;
2347 public:
2348   RememberProcessedThread(JavaThread* jthr) {
2349     Thread* thread = Thread::current();
2350     if (thread->is_Named_thread()) {
2351       _cur_thr = (NamedThread *)thread;
2352       _cur_thr->set_processed_thread(jthr);
2353     } else {
2354       _cur_thr = NULL;
2355     }
2356   }
2357 
2358   ~RememberProcessedThread() {
2359     if (_cur_thr) {
2360       _cur_thr->set_processed_thread(NULL);
2361     }
2362   }
2363 };
2364 
2365 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2366   // Verify that the deferred card marks have been flushed.
2367   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2368 
2369   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2370   // since there may be more than one thread using each ThreadProfiler.
2371 
2372   // Traverse the GCHandles
2373   Thread::oops_do(f, cf);
2374 
2375   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2376           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2377 
2378   if (has_last_Java_frame()) {
2379     // Record JavaThread to GC thread
2380     RememberProcessedThread rpt(this);
2381 
2382     // Traverse the privileged stack
2383     if (_privileged_stack_top != NULL) {
2384       _privileged_stack_top->oops_do(f);
2385     }
2386 
2387     // traverse the registered growable array
2388     if (_array_for_gc != NULL) {
2389       for (int index = 0; index < _array_for_gc->length(); index++) {
2390         f->do_oop(_array_for_gc->adr_at(index));
2391       }
2392     }
2393 
2394     // Traverse the monitor chunks
2395     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2396       chunk->oops_do(f);
2397     }
2398 
2399     // Traverse the execution stack
2400     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2401       fst.current()->oops_do(f, cf, fst.register_map());
2402     }
2403   }
2404 
2405   // callee_target is never live across a gc point so NULL it here should
2406   // it still contain a methdOop.
2407 
2408   set_callee_target(NULL);
2409 
2410   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2411   // If we have deferred set_locals there might be oops waiting to be
2412   // written
2413   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2414   if (list != NULL) {
2415     for (int i = 0; i < list->length(); i++) {
2416       list->at(i)->oops_do(f);
2417     }
2418   }
2419 
2420   // Traverse instance variables at the end since the GC may be moving things
2421   // around using this function
2422   f->do_oop((oop*) &_threadObj);
2423   f->do_oop((oop*) &_vm_result);
2424   f->do_oop((oop*) &_vm_result_2);
2425   f->do_oop((oop*) &_exception_oop);
2426   f->do_oop((oop*) &_pending_async_exception);
2427 
2428   if (jvmti_thread_state() != NULL) {
2429     jvmti_thread_state()->oops_do(f);
2430   }
2431 }
2432 
2433 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2434   Thread::nmethods_do(cf);  // (super method is a no-op)
2435 
2436   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2437           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2438 
2439   if (has_last_Java_frame()) {
2440     // Traverse the execution stack
2441     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2442       fst.current()->nmethods_do(cf);
2443     }
2444   }
2445 }
2446 
2447 // Printing
2448 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2449   switch (_thread_state) {
2450   case _thread_uninitialized:     return "_thread_uninitialized";
2451   case _thread_new:               return "_thread_new";
2452   case _thread_new_trans:         return "_thread_new_trans";
2453   case _thread_in_native:         return "_thread_in_native";
2454   case _thread_in_native_trans:   return "_thread_in_native_trans";
2455   case _thread_in_vm:             return "_thread_in_vm";
2456   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2457   case _thread_in_Java:           return "_thread_in_Java";
2458   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2459   case _thread_blocked:           return "_thread_blocked";
2460   case _thread_blocked_trans:     return "_thread_blocked_trans";
2461   default:                        return "unknown thread state";
2462   }
2463 }
2464 
2465 #ifndef PRODUCT
2466 void JavaThread::print_thread_state_on(outputStream *st) const {
2467   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2468 };
2469 void JavaThread::print_thread_state() const {
2470   print_thread_state_on(tty);
2471 };
2472 #endif // PRODUCT
2473 
2474 // Called by Threads::print() for VM_PrintThreads operation
2475 void JavaThread::print_on(outputStream *st) const {
2476   st->print("\"%s\" ", get_thread_name());
2477   oop thread_oop = threadObj();
2478   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2479   Thread::print_on(st);
2480   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2481   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2482   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2483     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2484   }
2485 #ifndef PRODUCT
2486   print_thread_state_on(st);
2487   _safepoint_state->print_on(st);
2488 #endif // PRODUCT
2489 }
2490 
2491 // Called by fatal error handler. The difference between this and
2492 // JavaThread::print() is that we can't grab lock or allocate memory.
2493 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2494   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2495   oop thread_obj = threadObj();
2496   if (thread_obj != NULL) {
2497      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2498   }
2499   st->print(" [");
2500   st->print("%s", _get_thread_state_name(_thread_state));
2501   if (osthread()) {
2502     st->print(", id=%d", osthread()->thread_id());
2503   }
2504   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2505             _stack_base - _stack_size, _stack_base);
2506   st->print("]");
2507   return;
2508 }
2509 
2510 // Verification
2511 
2512 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2513 
2514 void JavaThread::verify() {
2515   // Verify oops in the thread.
2516   oops_do(&VerifyOopClosure::verify_oop, NULL);
2517 
2518   // Verify the stack frames.
2519   frames_do(frame_verify);
2520 }
2521 
2522 // CR 6300358 (sub-CR 2137150)
2523 // Most callers of this method assume that it can't return NULL but a
2524 // thread may not have a name whilst it is in the process of attaching to
2525 // the VM - see CR 6412693, and there are places where a JavaThread can be
2526 // seen prior to having it's threadObj set (eg JNI attaching threads and
2527 // if vm exit occurs during initialization). These cases can all be accounted
2528 // for such that this method never returns NULL.
2529 const char* JavaThread::get_thread_name() const {
2530 #ifdef ASSERT
2531   // early safepoints can hit while current thread does not yet have TLS
2532   if (!SafepointSynchronize::is_at_safepoint()) {
2533     Thread *cur = Thread::current();
2534     if (!(cur->is_Java_thread() && cur == this)) {
2535       // Current JavaThreads are allowed to get their own name without
2536       // the Threads_lock.
2537       assert_locked_or_safepoint(Threads_lock);
2538     }
2539   }
2540 #endif // ASSERT
2541     return get_thread_name_string();
2542 }
2543 
2544 // Returns a non-NULL representation of this thread's name, or a suitable
2545 // descriptive string if there is no set name
2546 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2547   const char* name_str;
2548   oop thread_obj = threadObj();
2549   if (thread_obj != NULL) {
2550     typeArrayOop name = java_lang_Thread::name(thread_obj);
2551     if (name != NULL) {
2552       if (buf == NULL) {
2553         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2554       }
2555       else {
2556         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2557       }
2558     }
2559     else if (is_attaching()) { // workaround for 6412693 - see 6404306
2560       name_str = "<no-name - thread is attaching>";
2561     }
2562     else {
2563       name_str = Thread::name();
2564     }
2565   }
2566   else {
2567     name_str = Thread::name();
2568   }
2569   assert(name_str != NULL, "unexpected NULL thread name");
2570   return name_str;
2571 }
2572 
2573 
2574 const char* JavaThread::get_threadgroup_name() const {
2575   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2576   oop thread_obj = threadObj();
2577   if (thread_obj != NULL) {
2578     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2579     if (thread_group != NULL) {
2580       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2581       // ThreadGroup.name can be null
2582       if (name != NULL) {
2583         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2584         return str;
2585       }
2586     }
2587   }
2588   return NULL;
2589 }
2590 
2591 const char* JavaThread::get_parent_name() const {
2592   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2593   oop thread_obj = threadObj();
2594   if (thread_obj != NULL) {
2595     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2596     if (thread_group != NULL) {
2597       oop parent = java_lang_ThreadGroup::parent(thread_group);
2598       if (parent != NULL) {
2599         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2600         // ThreadGroup.name can be null
2601         if (name != NULL) {
2602           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2603           return str;
2604         }
2605       }
2606     }
2607   }
2608   return NULL;
2609 }
2610 
2611 ThreadPriority JavaThread::java_priority() const {
2612   oop thr_oop = threadObj();
2613   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2614   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2615   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2616   return priority;
2617 }
2618 
2619 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2620 
2621   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2622   // Link Java Thread object <-> C++ Thread
2623 
2624   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2625   // and put it into a new Handle.  The Handle "thread_oop" can then
2626   // be used to pass the C++ thread object to other methods.
2627 
2628   // Set the Java level thread object (jthread) field of the
2629   // new thread (a JavaThread *) to C++ thread object using the
2630   // "thread_oop" handle.
2631 
2632   // Set the thread field (a JavaThread *) of the
2633   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2634 
2635   Handle thread_oop(Thread::current(),
2636                     JNIHandles::resolve_non_null(jni_thread));
2637   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2638     "must be initialized");
2639   set_threadObj(thread_oop());
2640   java_lang_Thread::set_thread(thread_oop(), this);
2641 
2642   if (prio == NoPriority) {
2643     prio = java_lang_Thread::priority(thread_oop());
2644     assert(prio != NoPriority, "A valid priority should be present");
2645   }
2646 
2647   // Push the Java priority down to the native thread; needs Threads_lock
2648   Thread::set_priority(this, prio);
2649 
2650   // Add the new thread to the Threads list and set it in motion.
2651   // We must have threads lock in order to call Threads::add.
2652   // It is crucial that we do not block before the thread is
2653   // added to the Threads list for if a GC happens, then the java_thread oop
2654   // will not be visited by GC.
2655   Threads::add(this);
2656 }
2657 
2658 oop JavaThread::current_park_blocker() {
2659   // Support for JSR-166 locks
2660   oop thread_oop = threadObj();
2661   if (thread_oop != NULL &&
2662       JDK_Version::current().supports_thread_park_blocker()) {
2663     return java_lang_Thread::park_blocker(thread_oop);
2664   }
2665   return NULL;
2666 }
2667 
2668 
2669 void JavaThread::print_stack_on(outputStream* st) {
2670   if (!has_last_Java_frame()) return;
2671   ResourceMark rm;
2672   HandleMark   hm;
2673 
2674   RegisterMap reg_map(this);
2675   vframe* start_vf = last_java_vframe(&reg_map);
2676   int count = 0;
2677   for (vframe* f = start_vf; f; f = f->sender() ) {
2678     if (f->is_java_frame()) {
2679       javaVFrame* jvf = javaVFrame::cast(f);
2680       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2681 
2682       // Print out lock information
2683       if (JavaMonitorsInStackTrace) {
2684         jvf->print_lock_info_on(st, count);
2685       }
2686     } else {
2687       // Ignore non-Java frames
2688     }
2689 
2690     // Bail-out case for too deep stacks
2691     count++;
2692     if (MaxJavaStackTraceDepth == count) return;
2693   }
2694 }
2695 
2696 
2697 // JVMTI PopFrame support
2698 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2699   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2700   if (in_bytes(size_in_bytes) != 0) {
2701     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2702     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2703     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2704   }
2705 }
2706 
2707 void* JavaThread::popframe_preserved_args() {
2708   return _popframe_preserved_args;
2709 }
2710 
2711 ByteSize JavaThread::popframe_preserved_args_size() {
2712   return in_ByteSize(_popframe_preserved_args_size);
2713 }
2714 
2715 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2716   int sz = in_bytes(popframe_preserved_args_size());
2717   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2718   return in_WordSize(sz / wordSize);
2719 }
2720 
2721 void JavaThread::popframe_free_preserved_args() {
2722   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2723   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2724   _popframe_preserved_args = NULL;
2725   _popframe_preserved_args_size = 0;
2726 }
2727 
2728 #ifndef PRODUCT
2729 
2730 void JavaThread::trace_frames() {
2731   tty->print_cr("[Describe stack]");
2732   int frame_no = 1;
2733   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2734     tty->print("  %d. ", frame_no++);
2735     fst.current()->print_value_on(tty,this);
2736     tty->cr();
2737   }
2738 }
2739 
2740 
2741 void JavaThread::trace_stack_from(vframe* start_vf) {
2742   ResourceMark rm;
2743   int vframe_no = 1;
2744   for (vframe* f = start_vf; f; f = f->sender() ) {
2745     if (f->is_java_frame()) {
2746       javaVFrame::cast(f)->print_activation(vframe_no++);
2747     } else {
2748       f->print();
2749     }
2750     if (vframe_no > StackPrintLimit) {
2751       tty->print_cr("...<more frames>...");
2752       return;
2753     }
2754   }
2755 }
2756 
2757 
2758 void JavaThread::trace_stack() {
2759   if (!has_last_Java_frame()) return;
2760   ResourceMark rm;
2761   HandleMark   hm;
2762   RegisterMap reg_map(this);
2763   trace_stack_from(last_java_vframe(&reg_map));
2764 }
2765 
2766 
2767 #endif // PRODUCT
2768 
2769 
2770 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2771   assert(reg_map != NULL, "a map must be given");
2772   frame f = last_frame();
2773   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2774     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2775   }
2776   return NULL;
2777 }
2778 
2779 
2780 klassOop JavaThread::security_get_caller_class(int depth) {
2781   vframeStream vfst(this);
2782   vfst.security_get_caller_frame(depth);
2783   if (!vfst.at_end()) {
2784     return vfst.method()->method_holder();
2785   }
2786   return NULL;
2787 }
2788 
2789 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2790   assert(thread->is_Compiler_thread(), "must be compiler thread");
2791   CompileBroker::compiler_thread_loop();
2792 }
2793 
2794 // Create a CompilerThread
2795 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2796 : JavaThread(&compiler_thread_entry) {
2797   _env   = NULL;
2798   _log   = NULL;
2799   _task  = NULL;
2800   _queue = queue;
2801   _counters = counters;
2802   _buffer_blob = NULL;
2803 
2804 #ifndef PRODUCT
2805   _ideal_graph_printer = NULL;
2806 #endif
2807 }
2808 
2809 
2810 // ======= Threads ========
2811 
2812 // The Threads class links together all active threads, and provides
2813 // operations over all threads.  It is protected by its own Mutex
2814 // lock, which is also used in other contexts to protect thread
2815 // operations from having the thread being operated on from exiting
2816 // and going away unexpectedly (e.g., safepoint synchronization)
2817 
2818 JavaThread* Threads::_thread_list = NULL;
2819 int         Threads::_number_of_threads = 0;
2820 int         Threads::_number_of_non_daemon_threads = 0;
2821 int         Threads::_return_code = 0;
2822 size_t      JavaThread::_stack_size_at_create = 0;
2823 
2824 // All JavaThreads
2825 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2826 
2827 void os_stream();
2828 
2829 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2830 void Threads::threads_do(ThreadClosure* tc) {
2831   assert_locked_or_safepoint(Threads_lock);
2832   // ALL_JAVA_THREADS iterates through all JavaThreads
2833   ALL_JAVA_THREADS(p) {
2834     tc->do_thread(p);
2835   }
2836   // Someday we could have a table or list of all non-JavaThreads.
2837   // For now, just manually iterate through them.
2838   tc->do_thread(VMThread::vm_thread());
2839   Universe::heap()->gc_threads_do(tc);
2840   WatcherThread *wt = WatcherThread::watcher_thread();
2841   // Strictly speaking, the following NULL check isn't sufficient to make sure
2842   // the data for WatcherThread is still valid upon being examined. However,
2843   // considering that WatchThread terminates when the VM is on the way to
2844   // exit at safepoint, the chance of the above is extremely small. The right
2845   // way to prevent termination of WatcherThread would be to acquire
2846   // Terminator_lock, but we can't do that without violating the lock rank
2847   // checking in some cases.
2848   if (wt != NULL)
2849     tc->do_thread(wt);
2850 
2851   // If CompilerThreads ever become non-JavaThreads, add them here
2852 }
2853 
2854 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2855 
2856   extern void JDK_Version_init();
2857 
2858   // Check version
2859   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2860 
2861   // Initialize the output stream module
2862   ostream_init();
2863 
2864   // Process java launcher properties.
2865   Arguments::process_sun_java_launcher_properties(args);
2866 
2867   // Initialize the os module before using TLS
2868   os::init();
2869 
2870   // Initialize system properties.
2871   Arguments::init_system_properties();
2872 
2873   // So that JDK version can be used as a discrimintor when parsing arguments
2874   JDK_Version_init();
2875 
2876   // Parse arguments
2877   jint parse_result = Arguments::parse(args);
2878   if (parse_result != JNI_OK) return parse_result;
2879 
2880   if (PauseAtStartup) {
2881     os::pause();
2882   }
2883 
2884   HS_DTRACE_PROBE(hotspot, vm__init__begin);
2885 
2886   // Record VM creation timing statistics
2887   TraceVmCreationTime create_vm_timer;
2888   create_vm_timer.start();
2889 
2890   // Timing (must come after argument parsing)
2891   TraceTime timer("Create VM", TraceStartupTime);
2892 
2893   // Initialize the os module after parsing the args
2894   jint os_init_2_result = os::init_2();
2895   if (os_init_2_result != JNI_OK) return os_init_2_result;
2896 
2897   // Initialize output stream logging
2898   ostream_init_log();
2899 
2900   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2901   // Must be before create_vm_init_agents()
2902   if (Arguments::init_libraries_at_startup()) {
2903     convert_vm_init_libraries_to_agents();
2904   }
2905 
2906   // Launch -agentlib/-agentpath and converted -Xrun agents
2907   if (Arguments::init_agents_at_startup()) {
2908     create_vm_init_agents();
2909   }
2910 
2911   // Initialize Threads state
2912   _thread_list = NULL;
2913   _number_of_threads = 0;
2914   _number_of_non_daemon_threads = 0;
2915 
2916   // Initialize TLS
2917   ThreadLocalStorage::init();
2918 
2919   // Initialize global data structures and create system classes in heap
2920   vm_init_globals();
2921 
2922   // Attach the main thread to this os thread
2923   JavaThread* main_thread = new JavaThread();
2924   main_thread->set_thread_state(_thread_in_vm);
2925   // must do this before set_active_handles and initialize_thread_local_storage
2926   // Note: on solaris initialize_thread_local_storage() will (indirectly)
2927   // change the stack size recorded here to one based on the java thread
2928   // stacksize. This adjusted size is what is used to figure the placement
2929   // of the guard pages.
2930   main_thread->record_stack_base_and_size();
2931   main_thread->initialize_thread_local_storage();
2932 
2933   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2934 
2935   if (!main_thread->set_as_starting_thread()) {
2936     vm_shutdown_during_initialization(
2937       "Failed necessary internal allocation. Out of swap space");
2938     delete main_thread;
2939     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2940     return JNI_ENOMEM;
2941   }
2942 
2943   // Enable guard page *after* os::create_main_thread(), otherwise it would
2944   // crash Linux VM, see notes in os_linux.cpp.
2945   main_thread->create_stack_guard_pages();
2946 
2947   // Initialize Java-Leve synchronization subsystem
2948   ObjectSynchronizer::Initialize() ;
2949 
2950   // Initialize global modules
2951   jint status = init_globals();
2952   if (status != JNI_OK) {
2953     delete main_thread;
2954     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2955     return status;
2956   }
2957 
2958   HandleMark hm;
2959 
2960   { MutexLocker mu(Threads_lock);
2961     Threads::add(main_thread);
2962   }
2963 
2964   // Any JVMTI raw monitors entered in onload will transition into
2965   // real raw monitor. VM is setup enough here for raw monitor enter.
2966   JvmtiExport::transition_pending_onload_raw_monitors();
2967 
2968   if (VerifyBeforeGC &&
2969       Universe::heap()->total_collections() >= VerifyGCStartAt) {
2970     Universe::heap()->prepare_for_verify();
2971     Universe::verify();   // make sure we're starting with a clean slate
2972   }
2973 
2974   // Create the VMThread
2975   { TraceTime timer("Start VMThread", TraceStartupTime);
2976     VMThread::create();
2977     Thread* vmthread = VMThread::vm_thread();
2978 
2979     if (!os::create_thread(vmthread, os::vm_thread))
2980       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
2981 
2982     // Wait for the VM thread to become ready, and VMThread::run to initialize
2983     // Monitors can have spurious returns, must always check another state flag
2984     {
2985       MutexLocker ml(Notify_lock);
2986       os::start_thread(vmthread);
2987       while (vmthread->active_handles() == NULL) {
2988         Notify_lock->wait();
2989       }
2990     }
2991   }
2992 
2993   assert (Universe::is_fully_initialized(), "not initialized");
2994   EXCEPTION_MARK;
2995 
2996   // At this point, the Universe is initialized, but we have not executed
2997   // any byte code.  Now is a good time (the only time) to dump out the
2998   // internal state of the JVM for sharing.
2999 
3000   if (DumpSharedSpaces) {
3001     Universe::heap()->preload_and_dump(CHECK_0);
3002     ShouldNotReachHere();
3003   }
3004 
3005   // Always call even when there are not JVMTI environments yet, since environments
3006   // may be attached late and JVMTI must track phases of VM execution
3007   JvmtiExport::enter_start_phase();
3008 
3009   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3010   JvmtiExport::post_vm_start();
3011 
3012   {
3013     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3014 
3015     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3016       create_vm_init_libraries();
3017     }
3018 
3019     if (InitializeJavaLangString) {
3020       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
3021     } else {
3022       warning("java.lang.String not initialized");
3023     }
3024 
3025     if (AggressiveOpts) {
3026       {
3027         // Forcibly initialize java/util/HashMap and mutate the private
3028         // static final "frontCacheEnabled" field before we start creating instances
3029 #ifdef ASSERT
3030         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3031         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3032 #endif
3033         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3034         KlassHandle k = KlassHandle(THREAD, k_o);
3035         guarantee(k.not_null(), "Must find java/util/HashMap");
3036         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3037         ik->initialize(CHECK_0);
3038         fieldDescriptor fd;
3039         // Possible we might not find this field; if so, don't break
3040         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3041           k()->bool_field_put(fd.offset(), true);
3042         }
3043       }
3044 
3045       if (UseStringCache) {
3046         // Forcibly initialize java/lang/StringValue and mutate the private
3047         // static final "stringCacheEnabled" field before we start creating instances
3048         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3049         // Possible that StringValue isn't present: if so, silently don't break
3050         if (k_o != NULL) {
3051           KlassHandle k = KlassHandle(THREAD, k_o);
3052           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3053           ik->initialize(CHECK_0);
3054           fieldDescriptor fd;
3055           // Possible we might not find this field: if so, silently don't break
3056           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3057             k()->bool_field_put(fd.offset(), true);
3058           }
3059         }
3060       }
3061     }
3062 
3063     // Initialize java_lang.System (needed before creating the thread)
3064     if (InitializeJavaLangSystem) {
3065       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3066       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3067       Handle thread_group = create_initial_thread_group(CHECK_0);
3068       Universe::set_main_thread_group(thread_group());
3069       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3070       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3071       main_thread->set_threadObj(thread_object);
3072       // Set thread status to running since main thread has
3073       // been started and running.
3074       java_lang_Thread::set_thread_status(thread_object,
3075                                           java_lang_Thread::RUNNABLE);
3076 
3077       // The VM preresolve methods to these classes. Make sure that get initialized
3078       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3079       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3080       // The VM creates & returns objects of this class. Make sure it's initialized.
3081       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3082       call_initializeSystemClass(CHECK_0);
3083     } else {
3084       warning("java.lang.System not initialized");
3085     }
3086 
3087     // an instance of OutOfMemory exception has been allocated earlier
3088     if (InitializeJavaLangExceptionsErrors) {
3089       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3090       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3091       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3092       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3093       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3094       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3095       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3096     } else {
3097       warning("java.lang.OutOfMemoryError has not been initialized");
3098       warning("java.lang.NullPointerException has not been initialized");
3099       warning("java.lang.ClassCastException has not been initialized");
3100       warning("java.lang.ArrayStoreException has not been initialized");
3101       warning("java.lang.ArithmeticException has not been initialized");
3102       warning("java.lang.StackOverflowError has not been initialized");
3103     }
3104 
3105     if (EnableInvokeDynamic) {
3106       // JSR 292: An intialized java.dyn.InvokeDynamic is required in
3107       // the compiler.
3108       initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
3109     }
3110   }
3111 
3112   // See        : bugid 4211085.
3113   // Background : the static initializer of java.lang.Compiler tries to read
3114   //              property"java.compiler" and read & write property "java.vm.info".
3115   //              When a security manager is installed through the command line
3116   //              option "-Djava.security.manager", the above properties are not
3117   //              readable and the static initializer for java.lang.Compiler fails
3118   //              resulting in a NoClassDefFoundError.  This can happen in any
3119   //              user code which calls methods in java.lang.Compiler.
3120   // Hack :       the hack is to pre-load and initialize this class, so that only
3121   //              system domains are on the stack when the properties are read.
3122   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3123   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3124   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3125   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3126   //              Once that is done, we should remove this hack.
3127   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3128 
3129   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3130   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3131   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3132   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3133   // This should also be taken out as soon as 4211383 gets fixed.
3134   reset_vm_info_property(CHECK_0);
3135 
3136   quicken_jni_functions();
3137 
3138   // Set flag that basic initialization has completed. Used by exceptions and various
3139   // debug stuff, that does not work until all basic classes have been initialized.
3140   set_init_completed();
3141 
3142   HS_DTRACE_PROBE(hotspot, vm__init__end);
3143 
3144   // record VM initialization completion time
3145   Management::record_vm_init_completed();
3146 
3147   // Compute system loader. Note that this has to occur after set_init_completed, since
3148   // valid exceptions may be thrown in the process.
3149   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3150   // set_init_completed has just been called, causing exceptions not to be shortcut
3151   // anymore. We call vm_exit_during_initialization directly instead.
3152   SystemDictionary::compute_java_system_loader(THREAD);
3153   if (HAS_PENDING_EXCEPTION) {
3154     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3155   }
3156 
3157 #ifdef KERNEL
3158   if (JDK_Version::is_gte_jdk17x_version()) {
3159     set_jkernel_boot_classloader_hook(THREAD);
3160   }
3161 #endif // KERNEL
3162 
3163 #ifndef SERIALGC
3164   // Support for ConcurrentMarkSweep. This should be cleaned up
3165   // and better encapsulated. The ugly nested if test would go away
3166   // once things are properly refactored. XXX YSR
3167   if (UseConcMarkSweepGC || UseG1GC) {
3168     if (UseConcMarkSweepGC) {
3169       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3170     } else {
3171       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3172     }
3173     if (HAS_PENDING_EXCEPTION) {
3174       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3175     }
3176   }
3177 #endif // SERIALGC
3178 
3179   // Always call even when there are not JVMTI environments yet, since environments
3180   // may be attached late and JVMTI must track phases of VM execution
3181   JvmtiExport::enter_live_phase();
3182 
3183   // Signal Dispatcher needs to be started before VMInit event is posted
3184   os::signal_init();
3185 
3186   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3187   if (!DisableAttachMechanism) {
3188     if (StartAttachListener || AttachListener::init_at_startup()) {
3189       AttachListener::init();
3190     }
3191   }
3192 
3193   // Launch -Xrun agents
3194   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3195   // back-end can launch with -Xdebug -Xrunjdwp.
3196   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3197     create_vm_init_libraries();
3198   }
3199 
3200   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3201   JvmtiExport::post_vm_initialized();
3202 
3203   Chunk::start_chunk_pool_cleaner_task();
3204 
3205   // initialize compiler(s)
3206   CompileBroker::compilation_init();
3207 
3208   Management::initialize(THREAD);
3209   if (HAS_PENDING_EXCEPTION) {
3210     // management agent fails to start possibly due to
3211     // configuration problem and is responsible for printing
3212     // stack trace if appropriate. Simply exit VM.
3213     vm_exit(1);
3214   }
3215 
3216   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3217   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3218   if (MemProfiling)                   MemProfiler::engage();
3219   StatSampler::engage();
3220   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3221 
3222   BiasedLocking::init();
3223 
3224 
3225   // Start up the WatcherThread if there are any periodic tasks
3226   // NOTE:  All PeriodicTasks should be registered by now. If they
3227   //   aren't, late joiners might appear to start slowly (we might
3228   //   take a while to process their first tick).
3229   if (PeriodicTask::num_tasks() > 0) {
3230     WatcherThread::start();
3231   }
3232 
3233   create_vm_timer.end();
3234   return JNI_OK;
3235 }
3236 
3237 // type for the Agent_OnLoad and JVM_OnLoad entry points
3238 extern "C" {
3239   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3240 }
3241 // Find a command line agent library and return its entry point for
3242 //         -agentlib:  -agentpath:   -Xrun
3243 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3244 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3245   OnLoadEntry_t on_load_entry = NULL;
3246   void *library = agent->os_lib();  // check if we have looked it up before
3247 
3248   if (library == NULL) {
3249     char buffer[JVM_MAXPATHLEN];
3250     char ebuf[1024];
3251     const char *name = agent->name();
3252 
3253     if (agent->is_absolute_path()) {
3254       library = hpi::dll_load(name, ebuf, sizeof ebuf);
3255       if (library == NULL) {
3256         // If we can't find the agent, exit.
3257         vm_exit_during_initialization("Could not find agent library in absolute path", name);
3258       }
3259     } else {
3260       // Try to load the agent from the standard dll directory
3261       hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3262       library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3263 #ifdef KERNEL
3264       // Download instrument dll
3265       if (library == NULL && strcmp(name, "instrument") == 0) {
3266         char *props = Arguments::get_kernel_properties();
3267         char *home  = Arguments::get_java_home();
3268         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3269                       " sun.jkernel.DownloadManager -download client_jvm";
3270         int length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3271         char *cmd = AllocateHeap(length);
3272         jio_snprintf(cmd, length, fmt, home, props);
3273         int status = os::fork_and_exec(cmd);
3274         FreeHeap(props);
3275         FreeHeap(cmd);
3276         if (status == -1) {
3277           warning(cmd);
3278           vm_exit_during_initialization("fork_and_exec failed: %s",
3279                                          strerror(errno));
3280         }
3281         // when this comes back the instrument.dll should be where it belongs.
3282         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3283       }
3284 #endif // KERNEL
3285       if (library == NULL) { // Try the local directory
3286         char ns[1] = {0};
3287         hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
3288         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3289         if (library == NULL) {
3290           // If we can't find the agent, exit.
3291           vm_exit_during_initialization("Could not find agent library on the library path or in the local directory", name);
3292         }
3293       }
3294     }
3295     agent->set_os_lib(library);
3296   }
3297 
3298   // Find the OnLoad function.
3299   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3300     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
3301     if (on_load_entry != NULL) break;
3302   }
3303   return on_load_entry;
3304 }
3305 
3306 // Find the JVM_OnLoad entry point
3307 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3308   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3309   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3310 }
3311 
3312 // Find the Agent_OnLoad entry point
3313 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3314   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3315   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3316 }
3317 
3318 // For backwards compatibility with -Xrun
3319 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3320 // treated like -agentpath:
3321 // Must be called before agent libraries are created
3322 void Threads::convert_vm_init_libraries_to_agents() {
3323   AgentLibrary* agent;
3324   AgentLibrary* next;
3325 
3326   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3327     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3328     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3329 
3330     // If there is an JVM_OnLoad function it will get called later,
3331     // otherwise see if there is an Agent_OnLoad
3332     if (on_load_entry == NULL) {
3333       on_load_entry = lookup_agent_on_load(agent);
3334       if (on_load_entry != NULL) {
3335         // switch it to the agent list -- so that Agent_OnLoad will be called,
3336         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3337         Arguments::convert_library_to_agent(agent);
3338       } else {
3339         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3340       }
3341     }
3342   }
3343 }
3344 
3345 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3346 // Invokes Agent_OnLoad
3347 // Called very early -- before JavaThreads exist
3348 void Threads::create_vm_init_agents() {
3349   extern struct JavaVM_ main_vm;
3350   AgentLibrary* agent;
3351 
3352   JvmtiExport::enter_onload_phase();
3353   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3354     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3355 
3356     if (on_load_entry != NULL) {
3357       // Invoke the Agent_OnLoad function
3358       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3359       if (err != JNI_OK) {
3360         vm_exit_during_initialization("agent library failed to init", agent->name());
3361       }
3362     } else {
3363       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3364     }
3365   }
3366   JvmtiExport::enter_primordial_phase();
3367 }
3368 
3369 extern "C" {
3370   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3371 }
3372 
3373 void Threads::shutdown_vm_agents() {
3374   // Send any Agent_OnUnload notifications
3375   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3376   extern struct JavaVM_ main_vm;
3377   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3378 
3379     // Find the Agent_OnUnload function.
3380     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3381       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3382                hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3383 
3384       // Invoke the Agent_OnUnload function
3385       if (unload_entry != NULL) {
3386         JavaThread* thread = JavaThread::current();
3387         ThreadToNativeFromVM ttn(thread);
3388         HandleMark hm(thread);
3389         (*unload_entry)(&main_vm);
3390         break;
3391       }
3392     }
3393   }
3394 }
3395 
3396 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3397 // Invokes JVM_OnLoad
3398 void Threads::create_vm_init_libraries() {
3399   extern struct JavaVM_ main_vm;
3400   AgentLibrary* agent;
3401 
3402   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3403     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3404 
3405     if (on_load_entry != NULL) {
3406       // Invoke the JVM_OnLoad function
3407       JavaThread* thread = JavaThread::current();
3408       ThreadToNativeFromVM ttn(thread);
3409       HandleMark hm(thread);
3410       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3411       if (err != JNI_OK) {
3412         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3413       }
3414     } else {
3415       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3416     }
3417   }
3418 }
3419 
3420 // Last thread running calls java.lang.Shutdown.shutdown()
3421 void JavaThread::invoke_shutdown_hooks() {
3422   HandleMark hm(this);
3423 
3424   // We could get here with a pending exception, if so clear it now.
3425   if (this->has_pending_exception()) {
3426     this->clear_pending_exception();
3427   }
3428 
3429   EXCEPTION_MARK;
3430   klassOop k =
3431     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3432                                       THREAD);
3433   if (k != NULL) {
3434     // SystemDictionary::resolve_or_null will return null if there was
3435     // an exception.  If we cannot load the Shutdown class, just don't
3436     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3437     // and finalizers (if runFinalizersOnExit is set) won't be run.
3438     // Note that if a shutdown hook was registered or runFinalizersOnExit
3439     // was called, the Shutdown class would have already been loaded
3440     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3441     instanceKlassHandle shutdown_klass (THREAD, k);
3442     JavaValue result(T_VOID);
3443     JavaCalls::call_static(&result,
3444                            shutdown_klass,
3445                            vmSymbolHandles::shutdown_method_name(),
3446                            vmSymbolHandles::void_method_signature(),
3447                            THREAD);
3448   }
3449   CLEAR_PENDING_EXCEPTION;
3450 }
3451 
3452 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3453 // the program falls off the end of main(). Another VM exit path is through
3454 // vm_exit() when the program calls System.exit() to return a value or when
3455 // there is a serious error in VM. The two shutdown paths are not exactly
3456 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3457 // and VM_Exit op at VM level.
3458 //
3459 // Shutdown sequence:
3460 //   + Wait until we are the last non-daemon thread to execute
3461 //     <-- every thing is still working at this moment -->
3462 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3463 //        shutdown hooks, run finalizers if finalization-on-exit
3464 //   + Call before_exit(), prepare for VM exit
3465 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3466 //        currently the only user of this mechanism is File.deleteOnExit())
3467 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3468 //        post thread end and vm death events to JVMTI,
3469 //        stop signal thread
3470 //   + Call JavaThread::exit(), it will:
3471 //      > release JNI handle blocks, remove stack guard pages
3472 //      > remove this thread from Threads list
3473 //     <-- no more Java code from this thread after this point -->
3474 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3475 //     the compiler threads at safepoint
3476 //     <-- do not use anything that could get blocked by Safepoint -->
3477 //   + Disable tracing at JNI/JVM barriers
3478 //   + Set _vm_exited flag for threads that are still running native code
3479 //   + Delete this thread
3480 //   + Call exit_globals()
3481 //      > deletes tty
3482 //      > deletes PerfMemory resources
3483 //   + Return to caller
3484 
3485 bool Threads::destroy_vm() {
3486   JavaThread* thread = JavaThread::current();
3487 
3488   // Wait until we are the last non-daemon thread to execute
3489   { MutexLocker nu(Threads_lock);
3490     while (Threads::number_of_non_daemon_threads() > 1 )
3491       // This wait should make safepoint checks, wait without a timeout,
3492       // and wait as a suspend-equivalent condition.
3493       //
3494       // Note: If the FlatProfiler is running and this thread is waiting
3495       // for another non-daemon thread to finish, then the FlatProfiler
3496       // is waiting for the external suspend request on this thread to
3497       // complete. wait_for_ext_suspend_completion() will eventually
3498       // timeout, but that takes time. Making this wait a suspend-
3499       // equivalent condition solves that timeout problem.
3500       //
3501       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3502                          Mutex::_as_suspend_equivalent_flag);
3503   }
3504 
3505   // Hang forever on exit if we are reporting an error.
3506   if (ShowMessageBoxOnError && is_error_reported()) {
3507     os::infinite_sleep();
3508   }
3509 
3510   if (JDK_Version::is_jdk12x_version()) {
3511     // We are the last thread running, so check if finalizers should be run.
3512     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3513     HandleMark rm(thread);
3514     Universe::run_finalizers_on_exit();
3515   } else {
3516     // run Java level shutdown hooks
3517     thread->invoke_shutdown_hooks();
3518   }
3519 
3520   before_exit(thread);
3521 
3522   thread->exit(true);
3523 
3524   // Stop VM thread.
3525   {
3526     // 4945125 The vm thread comes to a safepoint during exit.
3527     // GC vm_operations can get caught at the safepoint, and the
3528     // heap is unparseable if they are caught. Grab the Heap_lock
3529     // to prevent this. The GC vm_operations will not be able to
3530     // queue until after the vm thread is dead.
3531     MutexLocker ml(Heap_lock);
3532 
3533     VMThread::wait_for_vm_thread_exit();
3534     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3535     VMThread::destroy();
3536   }
3537 
3538   // clean up ideal graph printers
3539 #if defined(COMPILER2) && !defined(PRODUCT)
3540   IdealGraphPrinter::clean_up();
3541 #endif
3542 
3543   // Now, all Java threads are gone except daemon threads. Daemon threads
3544   // running Java code or in VM are stopped by the Safepoint. However,
3545   // daemon threads executing native code are still running.  But they
3546   // will be stopped at native=>Java/VM barriers. Note that we can't
3547   // simply kill or suspend them, as it is inherently deadlock-prone.
3548 
3549 #ifndef PRODUCT
3550   // disable function tracing at JNI/JVM barriers
3551   TraceHPI = false;
3552   TraceJNICalls = false;
3553   TraceJVMCalls = false;
3554   TraceRuntimeCalls = false;
3555 #endif
3556 
3557   VM_Exit::set_vm_exited();
3558 
3559   notify_vm_shutdown();
3560 
3561   delete thread;
3562 
3563   // exit_globals() will delete tty
3564   exit_globals();
3565 
3566   return true;
3567 }
3568 
3569 
3570 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3571   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3572   return is_supported_jni_version(version);
3573 }
3574 
3575 
3576 jboolean Threads::is_supported_jni_version(jint version) {
3577   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3578   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3579   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3580   return JNI_FALSE;
3581 }
3582 
3583 
3584 void Threads::add(JavaThread* p, bool force_daemon) {
3585   // The threads lock must be owned at this point
3586   assert_locked_or_safepoint(Threads_lock);
3587   p->set_next(_thread_list);
3588   _thread_list = p;
3589   _number_of_threads++;
3590   oop threadObj = p->threadObj();
3591   bool daemon = true;
3592   // Bootstrapping problem: threadObj can be null for initial
3593   // JavaThread (or for threads attached via JNI)
3594   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3595     _number_of_non_daemon_threads++;
3596     daemon = false;
3597   }
3598 
3599   ThreadService::add_thread(p, daemon);
3600 
3601   // Possible GC point.
3602   Events::log("Thread added: " INTPTR_FORMAT, p);
3603 }
3604 
3605 void Threads::remove(JavaThread* p) {
3606   // Extra scope needed for Thread_lock, so we can check
3607   // that we do not remove thread without safepoint code notice
3608   { MutexLocker ml(Threads_lock);
3609 
3610     assert(includes(p), "p must be present");
3611 
3612     JavaThread* current = _thread_list;
3613     JavaThread* prev    = NULL;
3614 
3615     while (current != p) {
3616       prev    = current;
3617       current = current->next();
3618     }
3619 
3620     if (prev) {
3621       prev->set_next(current->next());
3622     } else {
3623       _thread_list = p->next();
3624     }
3625     _number_of_threads--;
3626     oop threadObj = p->threadObj();
3627     bool daemon = true;
3628     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3629       _number_of_non_daemon_threads--;
3630       daemon = false;
3631 
3632       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3633       // on destroy_vm will wake up.
3634       if (number_of_non_daemon_threads() == 1)
3635         Threads_lock->notify_all();
3636     }
3637     ThreadService::remove_thread(p, daemon);
3638 
3639     // Make sure that safepoint code disregard this thread. This is needed since
3640     // the thread might mess around with locks after this point. This can cause it
3641     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3642     // of this thread since it is removed from the queue.
3643     p->set_terminated_value();
3644   } // unlock Threads_lock
3645 
3646   // Since Events::log uses a lock, we grab it outside the Threads_lock
3647   Events::log("Thread exited: " INTPTR_FORMAT, p);
3648 }
3649 
3650 // Threads_lock must be held when this is called (or must be called during a safepoint)
3651 bool Threads::includes(JavaThread* p) {
3652   assert(Threads_lock->is_locked(), "sanity check");
3653   ALL_JAVA_THREADS(q) {
3654     if (q == p ) {
3655       return true;
3656     }
3657   }
3658   return false;
3659 }
3660 
3661 // Operations on the Threads list for GC.  These are not explicitly locked,
3662 // but the garbage collector must provide a safe context for them to run.
3663 // In particular, these things should never be called when the Threads_lock
3664 // is held by some other thread. (Note: the Safepoint abstraction also
3665 // uses the Threads_lock to gurantee this property. It also makes sure that
3666 // all threads gets blocked when exiting or starting).
3667 
3668 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3669   ALL_JAVA_THREADS(p) {
3670     p->oops_do(f, cf);
3671   }
3672   VMThread::vm_thread()->oops_do(f, cf);
3673 }
3674 
3675 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3676   // Introduce a mechanism allowing parallel threads to claim threads as
3677   // root groups.  Overhead should be small enough to use all the time,
3678   // even in sequential code.
3679   SharedHeap* sh = SharedHeap::heap();
3680   bool is_par = (sh->n_par_threads() > 0);
3681   int cp = SharedHeap::heap()->strong_roots_parity();
3682   ALL_JAVA_THREADS(p) {
3683     if (p->claim_oops_do(is_par, cp)) {
3684       p->oops_do(f, cf);
3685     }
3686   }
3687   VMThread* vmt = VMThread::vm_thread();
3688   if (vmt->claim_oops_do(is_par, cp))
3689     vmt->oops_do(f, cf);
3690 }
3691 
3692 #ifndef SERIALGC
3693 // Used by ParallelScavenge
3694 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3695   ALL_JAVA_THREADS(p) {
3696     q->enqueue(new ThreadRootsTask(p));
3697   }
3698   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3699 }
3700 
3701 // Used by Parallel Old
3702 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3703   ALL_JAVA_THREADS(p) {
3704     q->enqueue(new ThreadRootsMarkingTask(p));
3705   }
3706   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3707 }
3708 #endif // SERIALGC
3709 
3710 void Threads::nmethods_do(CodeBlobClosure* cf) {
3711   ALL_JAVA_THREADS(p) {
3712     p->nmethods_do(cf);
3713   }
3714   VMThread::vm_thread()->nmethods_do(cf);
3715 }
3716 
3717 void Threads::gc_epilogue() {
3718   ALL_JAVA_THREADS(p) {
3719     p->gc_epilogue();
3720   }
3721 }
3722 
3723 void Threads::gc_prologue() {
3724   ALL_JAVA_THREADS(p) {
3725     p->gc_prologue();
3726   }
3727 }
3728 
3729 void Threads::deoptimized_wrt_marked_nmethods() {
3730   ALL_JAVA_THREADS(p) {
3731     p->deoptimized_wrt_marked_nmethods();
3732   }
3733 }
3734 
3735 
3736 // Get count Java threads that are waiting to enter the specified monitor.
3737 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3738   address monitor, bool doLock) {
3739   assert(doLock || SafepointSynchronize::is_at_safepoint(),
3740     "must grab Threads_lock or be at safepoint");
3741   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3742 
3743   int i = 0;
3744   {
3745     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3746     ALL_JAVA_THREADS(p) {
3747       if (p->is_Compiler_thread()) continue;
3748 
3749       address pending = (address)p->current_pending_monitor();
3750       if (pending == monitor) {             // found a match
3751         if (i < count) result->append(p);   // save the first count matches
3752         i++;
3753       }
3754     }
3755   }
3756   return result;
3757 }
3758 
3759 
3760 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3761   assert(doLock ||
3762          Threads_lock->owned_by_self() ||
3763          SafepointSynchronize::is_at_safepoint(),
3764          "must grab Threads_lock or be at safepoint");
3765 
3766   // NULL owner means not locked so we can skip the search
3767   if (owner == NULL) return NULL;
3768 
3769   {
3770     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3771     ALL_JAVA_THREADS(p) {
3772       // first, see if owner is the address of a Java thread
3773       if (owner == (address)p) return p;
3774     }
3775   }
3776   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3777   if (UseHeavyMonitors) return NULL;
3778 
3779   //
3780   // If we didn't find a matching Java thread and we didn't force use of
3781   // heavyweight monitors, then the owner is the stack address of the
3782   // Lock Word in the owning Java thread's stack.
3783   //
3784   JavaThread* the_owner = NULL;
3785   {
3786     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3787     ALL_JAVA_THREADS(q) {
3788       if (q->is_lock_owned(owner)) {
3789         the_owner = q;
3790         break;
3791       }
3792     }
3793   }
3794   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3795   return the_owner;
3796 }
3797 
3798 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3799 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3800   char buf[32];
3801   st->print_cr(os::local_time_string(buf, sizeof(buf)));
3802 
3803   st->print_cr("Full thread dump %s (%s %s):",
3804                 Abstract_VM_Version::vm_name(),
3805                 Abstract_VM_Version::vm_release(),
3806                 Abstract_VM_Version::vm_info_string()
3807                );
3808   st->cr();
3809 
3810 #ifndef SERIALGC
3811   // Dump concurrent locks
3812   ConcurrentLocksDump concurrent_locks;
3813   if (print_concurrent_locks) {
3814     concurrent_locks.dump_at_safepoint();
3815   }
3816 #endif // SERIALGC
3817 
3818   ALL_JAVA_THREADS(p) {
3819     ResourceMark rm;
3820     p->print_on(st);
3821     if (print_stacks) {
3822       if (internal_format) {
3823         p->trace_stack();
3824       } else {
3825         p->print_stack_on(st);
3826       }
3827     }
3828     st->cr();
3829 #ifndef SERIALGC
3830     if (print_concurrent_locks) {
3831       concurrent_locks.print_locks_on(p, st);
3832     }
3833 #endif // SERIALGC
3834   }
3835 
3836   VMThread::vm_thread()->print_on(st);
3837   st->cr();
3838   Universe::heap()->print_gc_threads_on(st);
3839   WatcherThread* wt = WatcherThread::watcher_thread();
3840   if (wt != NULL) wt->print_on(st);
3841   st->cr();
3842   CompileBroker::print_compiler_threads_on(st);
3843   st->flush();
3844 }
3845 
3846 // Threads::print_on_error() is called by fatal error handler. It's possible
3847 // that VM is not at safepoint and/or current thread is inside signal handler.
3848 // Don't print stack trace, as the stack may not be walkable. Don't allocate
3849 // memory (even in resource area), it might deadlock the error handler.
3850 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3851   bool found_current = false;
3852   st->print_cr("Java Threads: ( => current thread )");
3853   ALL_JAVA_THREADS(thread) {
3854     bool is_current = (current == thread);
3855     found_current = found_current || is_current;
3856 
3857     st->print("%s", is_current ? "=>" : "  ");
3858 
3859     st->print(PTR_FORMAT, thread);
3860     st->print(" ");
3861     thread->print_on_error(st, buf, buflen);
3862     st->cr();
3863   }
3864   st->cr();
3865 
3866   st->print_cr("Other Threads:");
3867   if (VMThread::vm_thread()) {
3868     bool is_current = (current == VMThread::vm_thread());
3869     found_current = found_current || is_current;
3870     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
3871 
3872     st->print(PTR_FORMAT, VMThread::vm_thread());
3873     st->print(" ");
3874     VMThread::vm_thread()->print_on_error(st, buf, buflen);
3875     st->cr();
3876   }
3877   WatcherThread* wt = WatcherThread::watcher_thread();
3878   if (wt != NULL) {
3879     bool is_current = (current == wt);
3880     found_current = found_current || is_current;
3881     st->print("%s", is_current ? "=>" : "  ");
3882 
3883     st->print(PTR_FORMAT, wt);
3884     st->print(" ");
3885     wt->print_on_error(st, buf, buflen);
3886     st->cr();
3887   }
3888   if (!found_current) {
3889     st->cr();
3890     st->print("=>" PTR_FORMAT " (exited) ", current);
3891     current->print_on_error(st, buf, buflen);
3892     st->cr();
3893   }
3894 }
3895 
3896 
3897 // Lifecycle management for TSM ParkEvents.
3898 // ParkEvents are type-stable (TSM).
3899 // In our particular implementation they happen to be immortal.
3900 //
3901 // We manage concurrency on the FreeList with a CAS-based
3902 // detach-modify-reattach idiom that avoids the ABA problems
3903 // that would otherwise be present in a simple CAS-based
3904 // push-pop implementation.   (push-one and pop-all)
3905 //
3906 // Caveat: Allocate() and Release() may be called from threads
3907 // other than the thread associated with the Event!
3908 // If we need to call Allocate() when running as the thread in
3909 // question then look for the PD calls to initialize native TLS.
3910 // Native TLS (Win32/Linux/Solaris) can only be initialized or
3911 // accessed by the associated thread.
3912 // See also pd_initialize().
3913 //
3914 // Note that we could defer associating a ParkEvent with a thread
3915 // until the 1st time the thread calls park().  unpark() calls to
3916 // an unprovisioned thread would be ignored.  The first park() call
3917 // for a thread would allocate and associate a ParkEvent and return
3918 // immediately.
3919 
3920 volatile int ParkEvent::ListLock = 0 ;
3921 ParkEvent * volatile ParkEvent::FreeList = NULL ;
3922 
3923 ParkEvent * ParkEvent::Allocate (Thread * t) {
3924   // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
3925   ParkEvent * ev ;
3926 
3927   // Start by trying to recycle an existing but unassociated
3928   // ParkEvent from the global free list.
3929   for (;;) {
3930     ev = FreeList ;
3931     if (ev == NULL) break ;
3932     // 1: Detach - sequester or privatize the list
3933     // Tantamount to ev = Swap (&FreeList, NULL)
3934     if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
3935        continue ;
3936     }
3937 
3938     // We've detached the list.  The list in-hand is now
3939     // local to this thread.   This thread can operate on the
3940     // list without risk of interference from other threads.
3941     // 2: Extract -- pop the 1st element from the list.
3942     ParkEvent * List = ev->FreeNext ;
3943     if (List == NULL) break ;
3944     for (;;) {
3945         // 3: Try to reattach the residual list
3946         guarantee (List != NULL, "invariant") ;
3947         ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3948         if (Arv == NULL) break ;
3949 
3950         // New nodes arrived.  Try to detach the recent arrivals.
3951         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3952             continue ;
3953         }
3954         guarantee (Arv != NULL, "invariant") ;
3955         // 4: Merge Arv into List
3956         ParkEvent * Tail = List ;
3957         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
3958         Tail->FreeNext = Arv ;
3959     }
3960     break ;
3961   }
3962 
3963   if (ev != NULL) {
3964     guarantee (ev->AssociatedWith == NULL, "invariant") ;
3965   } else {
3966     // Do this the hard way -- materialize a new ParkEvent.
3967     // In rare cases an allocating thread might detach a long list --
3968     // installing null into FreeList -- and then stall or be obstructed.
3969     // A 2nd thread calling Allocate() would see FreeList == null.
3970     // The list held privately by the 1st thread is unavailable to the 2nd thread.
3971     // In that case the 2nd thread would have to materialize a new ParkEvent,
3972     // even though free ParkEvents existed in the system.  In this case we end up
3973     // with more ParkEvents in circulation than we need, but the race is
3974     // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
3975     // is equal to the maximum # of threads that existed at any one time.
3976     // Because of the race mentioned above, segments of the freelist
3977     // can be transiently inaccessible.  At worst we may end up with the
3978     // # of ParkEvents in circulation slightly above the ideal.
3979     // Note that if we didn't have the TSM/immortal constraint, then
3980     // when reattaching, above, we could trim the list.
3981     ev = new ParkEvent () ;
3982     guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
3983   }
3984   ev->reset() ;                     // courtesy to caller
3985   ev->AssociatedWith = t ;          // Associate ev with t
3986   ev->FreeNext       = NULL ;
3987   return ev ;
3988 }
3989 
3990 void ParkEvent::Release (ParkEvent * ev) {
3991   if (ev == NULL) return ;
3992   guarantee (ev->FreeNext == NULL      , "invariant") ;
3993   ev->AssociatedWith = NULL ;
3994   for (;;) {
3995     // Push ev onto FreeList
3996     // The mechanism is "half" lock-free.
3997     ParkEvent * List = FreeList ;
3998     ev->FreeNext = List ;
3999     if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
4000   }
4001 }
4002 
4003 // Override operator new and delete so we can ensure that the
4004 // least significant byte of ParkEvent addresses is 0.
4005 // Beware that excessive address alignment is undesirable
4006 // as it can result in D$ index usage imbalance as
4007 // well as bank access imbalance on Niagara-like platforms,
4008 // although Niagara's hash function should help.
4009 
4010 void * ParkEvent::operator new (size_t sz) {
4011   return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
4012 }
4013 
4014 void ParkEvent::operator delete (void * a) {
4015   // ParkEvents are type-stable and immortal ...
4016   ShouldNotReachHere();
4017 }
4018 
4019 
4020 // 6399321 As a temporary measure we copied & modified the ParkEvent::
4021 // allocate() and release() code for use by Parkers.  The Parker:: forms
4022 // will eventually be removed as we consolide and shift over to ParkEvents
4023 // for both builtin synchronization and JSR166 operations.
4024 
4025 volatile int Parker::ListLock = 0 ;
4026 Parker * volatile Parker::FreeList = NULL ;
4027 
4028 Parker * Parker::Allocate (JavaThread * t) {
4029   guarantee (t != NULL, "invariant") ;
4030   Parker * p ;
4031 
4032   // Start by trying to recycle an existing but unassociated
4033   // Parker from the global free list.
4034   for (;;) {
4035     p = FreeList ;
4036     if (p  == NULL) break ;
4037     // 1: Detach
4038     // Tantamount to p = Swap (&FreeList, NULL)
4039     if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
4040        continue ;
4041     }
4042 
4043     // We've detached the list.  The list in-hand is now
4044     // local to this thread.   This thread can operate on the
4045     // list without risk of interference from other threads.
4046     // 2: Extract -- pop the 1st element from the list.
4047     Parker * List = p->FreeNext ;
4048     if (List == NULL) break ;
4049     for (;;) {
4050         // 3: Try to reattach the residual list
4051         guarantee (List != NULL, "invariant") ;
4052         Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
4053         if (Arv == NULL) break ;
4054 
4055         // New nodes arrived.  Try to detach the recent arrivals.
4056         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
4057             continue ;
4058         }
4059         guarantee (Arv != NULL, "invariant") ;
4060         // 4: Merge Arv into List
4061         Parker * Tail = List ;
4062         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
4063         Tail->FreeNext = Arv ;
4064     }
4065     break ;
4066   }
4067 
4068   if (p != NULL) {
4069     guarantee (p->AssociatedWith == NULL, "invariant") ;
4070   } else {
4071     // Do this the hard way -- materialize a new Parker..
4072     // In rare cases an allocating thread might detach
4073     // a long list -- installing null into FreeList --and
4074     // then stall.  Another thread calling Allocate() would see
4075     // FreeList == null and then invoke the ctor.  In this case we
4076     // end up with more Parkers in circulation than we need, but
4077     // the race is rare and the outcome is benign.
4078     // Ideally, the # of extant Parkers is equal to the
4079     // maximum # of threads that existed at any one time.
4080     // Because of the race mentioned above, segments of the
4081     // freelist can be transiently inaccessible.  At worst
4082     // we may end up with the # of Parkers in circulation
4083     // slightly above the ideal.
4084     p = new Parker() ;
4085   }
4086   p->AssociatedWith = t ;          // Associate p with t
4087   p->FreeNext       = NULL ;
4088   return p ;
4089 }
4090 
4091 
4092 void Parker::Release (Parker * p) {
4093   if (p == NULL) return ;
4094   guarantee (p->AssociatedWith != NULL, "invariant") ;
4095   guarantee (p->FreeNext == NULL      , "invariant") ;
4096   p->AssociatedWith = NULL ;
4097   for (;;) {
4098     // Push p onto FreeList
4099     Parker * List = FreeList ;
4100     p->FreeNext = List ;
4101     if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
4102   }
4103 }
4104 
4105 void Threads::verify() {
4106   ALL_JAVA_THREADS(p) {
4107     p->verify();
4108   }
4109   VMThread* thread = VMThread::vm_thread();
4110   if (thread != NULL) thread->verify();
4111 }