1 /*
   2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_psYoungGen.cpp.incl"
  27 
  28 PSYoungGen::PSYoungGen(size_t        initial_size,
  29                        size_t        min_size,
  30                        size_t        max_size) :
  31   _init_gen_size(initial_size),
  32   _min_gen_size(min_size),
  33   _max_gen_size(max_size)
  34 {}
  35 
  36 void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
  37   assert(_init_gen_size != 0, "Should have a finite size");
  38   _virtual_space = new PSVirtualSpace(rs, alignment);
  39   if (!virtual_space()->expand_by(_init_gen_size)) {
  40     vm_exit_during_initialization("Could not reserve enough space for "
  41                                   "object heap");
  42   }
  43 }
  44 
  45 void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
  46   initialize_virtual_space(rs, alignment);
  47   initialize_work();
  48 }
  49 
  50 void PSYoungGen::initialize_work() {
  51 
  52   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
  53                         (HeapWord*)virtual_space()->high_boundary());
  54 
  55   MemRegion cmr((HeapWord*)virtual_space()->low(),
  56                 (HeapWord*)virtual_space()->high());
  57   Universe::heap()->barrier_set()->resize_covered_region(cmr);
  58 
  59   if (ZapUnusedHeapArea) {
  60     // Mangle newly committed space immediately because it
  61     // can be done here more simply that after the new
  62     // spaces have been computed.
  63     SpaceMangler::mangle_region(cmr);
  64   }
  65 
  66   if (UseNUMA) {
  67     _eden_space = new MutableNUMASpace(virtual_space()->alignment());
  68   } else {
  69     _eden_space = new MutableSpace(virtual_space()->alignment());
  70   }
  71   _from_space = new MutableSpace(virtual_space()->alignment());
  72   _to_space   = new MutableSpace(virtual_space()->alignment());
  73 
  74   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
  75     vm_exit_during_initialization("Could not allocate a young gen space");
  76   }
  77 
  78   // Allocate the mark sweep views of spaces
  79   _eden_mark_sweep =
  80       new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
  81   _from_mark_sweep =
  82       new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
  83   _to_mark_sweep =
  84       new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
  85 
  86   if (_eden_mark_sweep == NULL ||
  87       _from_mark_sweep == NULL ||
  88       _to_mark_sweep == NULL) {
  89     vm_exit_during_initialization("Could not complete allocation"
  90                                   " of the young generation");
  91   }
  92 
  93   // Generation Counters - generation 0, 3 subspaces
  94   _gen_counters = new PSGenerationCounters("new", 0, 3, _virtual_space);
  95 
  96   // Compute maximum space sizes for performance counters
  97   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  98   size_t alignment = heap->intra_heap_alignment();
  99   size_t size = virtual_space()->reserved_size();
 100 
 101   size_t max_survivor_size;
 102   size_t max_eden_size;
 103 
 104   if (UseAdaptiveSizePolicy) {
 105     max_survivor_size = size / MinSurvivorRatio;
 106 
 107     // round the survivor space size down to the nearest alignment
 108     // and make sure its size is greater than 0.
 109     max_survivor_size = align_size_down(max_survivor_size, alignment);
 110     max_survivor_size = MAX2(max_survivor_size, alignment);
 111 
 112     // set the maximum size of eden to be the size of the young gen
 113     // less two times the minimum survivor size. The minimum survivor
 114     // size for UseAdaptiveSizePolicy is one alignment.
 115     max_eden_size = size - 2 * alignment;
 116   } else {
 117     max_survivor_size = size / InitialSurvivorRatio;
 118 
 119     // round the survivor space size down to the nearest alignment
 120     // and make sure its size is greater than 0.
 121     max_survivor_size = align_size_down(max_survivor_size, alignment);
 122     max_survivor_size = MAX2(max_survivor_size, alignment);
 123 
 124     // set the maximum size of eden to be the size of the young gen
 125     // less two times the survivor size when the generation is 100%
 126     // committed. The minimum survivor size for -UseAdaptiveSizePolicy
 127     // is dependent on the committed portion (current capacity) of the
 128     // generation - the less space committed, the smaller the survivor
 129     // space, possibly as small as an alignment. However, we are interested
 130     // in the case where the young generation is 100% committed, as this
 131     // is the point where eden reachs its maximum size. At this point,
 132     // the size of a survivor space is max_survivor_size.
 133     max_eden_size = size - 2 * max_survivor_size;
 134   }
 135 
 136   _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
 137                                      _gen_counters);
 138   _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
 139                                      _gen_counters);
 140   _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
 141                                    _gen_counters);
 142 
 143   compute_initial_space_boundaries();
 144 }
 145 
 146 void PSYoungGen::compute_initial_space_boundaries() {
 147   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 148   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 149 
 150   // Compute sizes
 151   size_t alignment = heap->intra_heap_alignment();
 152   size_t size = virtual_space()->committed_size();
 153 
 154   size_t survivor_size = size / InitialSurvivorRatio;
 155   survivor_size = align_size_down(survivor_size, alignment);
 156   // ... but never less than an alignment
 157   survivor_size = MAX2(survivor_size, alignment);
 158 
 159   // Young generation is eden + 2 survivor spaces
 160   size_t eden_size = size - (2 * survivor_size);
 161 
 162   // Now go ahead and set 'em.
 163   set_space_boundaries(eden_size, survivor_size);
 164   space_invariants();
 165 
 166   _init_survivor_size = survivor_size;
 167   _init_eden_size = eden_size;
 168 
 169   if (UsePerfData) {
 170     _eden_counters->update_capacity();
 171     _from_counters->update_capacity();
 172     _to_counters->update_capacity();
 173   }
 174 }
 175 
 176 void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
 177   assert(eden_size < virtual_space()->committed_size(), "just checking");
 178   assert(eden_size > 0  && survivor_size > 0, "just checking");
 179 
 180   // Initial layout is Eden, to, from. After swapping survivor spaces,
 181   // that leaves us with Eden, from, to, which is step one in our two
 182   // step resize-with-live-data procedure.
 183   char *eden_start = virtual_space()->low();
 184   char *to_start   = eden_start + eden_size;
 185   char *from_start = to_start   + survivor_size;
 186   char *from_end   = from_start + survivor_size;
 187 
 188   assert(from_end == virtual_space()->high(), "just checking");
 189   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
 190   assert(is_object_aligned((intptr_t)to_start),   "checking alignment");
 191   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
 192 
 193   MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
 194   MemRegion to_mr  ((HeapWord*)to_start, (HeapWord*)from_start);
 195   MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
 196 
 197   eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
 198     to_space()->initialize(to_mr  , true, ZapUnusedHeapArea);
 199   from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
 200 }
 201 
 202 #ifndef PRODUCT
 203 void PSYoungGen::space_invariants() {
 204   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 205   const size_t alignment = heap->intra_heap_alignment();
 206 
 207   // Currently, our eden size cannot shrink to zero
 208   guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
 209   guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
 210   guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");
 211 
 212   // Relationship of spaces to each other
 213   char* eden_start = (char*)eden_space()->bottom();
 214   char* eden_end   = (char*)eden_space()->end();
 215   char* from_start = (char*)from_space()->bottom();
 216   char* from_end   = (char*)from_space()->end();
 217   char* to_start   = (char*)to_space()->bottom();
 218   char* to_end     = (char*)to_space()->end();
 219 
 220   guarantee(eden_start >= virtual_space()->low(), "eden bottom");
 221   guarantee(eden_start < eden_end, "eden space consistency");
 222   guarantee(from_start < from_end, "from space consistency");
 223   guarantee(to_start < to_end, "to space consistency");
 224 
 225   // Check whether from space is below to space
 226   if (from_start < to_start) {
 227     // Eden, from, to
 228     guarantee(eden_end <= from_start, "eden/from boundary");
 229     guarantee(from_end <= to_start,   "from/to boundary");
 230     guarantee(to_end <= virtual_space()->high(), "to end");
 231   } else {
 232     // Eden, to, from
 233     guarantee(eden_end <= to_start, "eden/to boundary");
 234     guarantee(to_end <= from_start, "to/from boundary");
 235     guarantee(from_end <= virtual_space()->high(), "from end");
 236   }
 237 
 238   // More checks that the virtual space is consistent with the spaces
 239   assert(virtual_space()->committed_size() >=
 240     (eden_space()->capacity_in_bytes() +
 241      to_space()->capacity_in_bytes() +
 242      from_space()->capacity_in_bytes()), "Committed size is inconsistent");
 243   assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
 244     "Space invariant");
 245   char* eden_top = (char*)eden_space()->top();
 246   char* from_top = (char*)from_space()->top();
 247   char* to_top = (char*)to_space()->top();
 248   assert(eden_top <= virtual_space()->high(), "eden top");
 249   assert(from_top <= virtual_space()->high(), "from top");
 250   assert(to_top <= virtual_space()->high(), "to top");
 251 
 252   virtual_space()->verify();
 253 }
 254 #endif
 255 
 256 void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
 257   // Resize the generation if needed. If the generation resize
 258   // reports false, do not attempt to resize the spaces.
 259   if (resize_generation(eden_size, survivor_size)) {
 260     // Then we lay out the spaces inside the generation
 261     resize_spaces(eden_size, survivor_size);
 262 
 263     space_invariants();
 264 
 265     if (PrintAdaptiveSizePolicy && Verbose) {
 266       gclog_or_tty->print_cr("Young generation size: "
 267         "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
 268         " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
 269         " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
 270         eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
 271         _max_gen_size, min_gen_size());
 272     }
 273   }
 274 }
 275 
 276 
 277 bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
 278   const size_t alignment = virtual_space()->alignment();
 279   size_t orig_size = virtual_space()->committed_size();
 280   bool size_changed = false;
 281 
 282   // There used to be this guarantee there.
 283   // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
 284   // Code below forces this requirement.  In addition the desired eden
 285   // size and disired survivor sizes are desired goals and may
 286   // exceed the total generation size.
 287 
 288   assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
 289 
 290   // Adjust new generation size
 291   const size_t eden_plus_survivors =
 292           align_size_up(eden_size + 2 * survivor_size, alignment);
 293   size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
 294                              min_gen_size());
 295   assert(desired_size <= max_size(), "just checking");
 296 
 297   if (desired_size > orig_size) {
 298     // Grow the generation
 299     size_t change = desired_size - orig_size;
 300     assert(change % alignment == 0, "just checking");
 301     HeapWord* prev_high = (HeapWord*) virtual_space()->high();
 302     if (!virtual_space()->expand_by(change)) {
 303       return false; // Error if we fail to resize!
 304     }
 305     if (ZapUnusedHeapArea) {
 306       // Mangle newly committed space immediately because it
 307       // can be done here more simply that after the new
 308       // spaces have been computed.
 309       HeapWord* new_high = (HeapWord*) virtual_space()->high();
 310       MemRegion mangle_region(prev_high, new_high);
 311       SpaceMangler::mangle_region(mangle_region);
 312     }
 313     size_changed = true;
 314   } else if (desired_size < orig_size) {
 315     size_t desired_change = orig_size - desired_size;
 316     assert(desired_change % alignment == 0, "just checking");
 317 
 318     desired_change = limit_gen_shrink(desired_change);
 319 
 320     if (desired_change > 0) {
 321       virtual_space()->shrink_by(desired_change);
 322       reset_survivors_after_shrink();
 323 
 324       size_changed = true;
 325     }
 326   } else {
 327     if (Verbose && PrintGC) {
 328       if (orig_size == gen_size_limit()) {
 329         gclog_or_tty->print_cr("PSYoung generation size at maximum: "
 330           SIZE_FORMAT "K", orig_size/K);
 331       } else if (orig_size == min_gen_size()) {
 332         gclog_or_tty->print_cr("PSYoung generation size at minium: "
 333           SIZE_FORMAT "K", orig_size/K);
 334       }
 335     }
 336   }
 337 
 338   if (size_changed) {
 339     post_resize();
 340 
 341     if (Verbose && PrintGC) {
 342       size_t current_size  = virtual_space()->committed_size();
 343       gclog_or_tty->print_cr("PSYoung generation size changed: "
 344                              SIZE_FORMAT "K->" SIZE_FORMAT "K",
 345                              orig_size/K, current_size/K);
 346     }
 347   }
 348 
 349   guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
 350             virtual_space()->committed_size() == max_size(), "Sanity");
 351 
 352   return true;
 353 }
 354 
 355 #ifndef PRODUCT
 356 // In the numa case eden is not mangled so a survivor space
 357 // moving into a region previously occupied by a survivor
 358 // may find an unmangled region.  Also in the PS case eden
 359 // to-space and from-space may not touch (i.e., there may be
 360 // gaps between them due to movement while resizing the
 361 // spaces).  Those gaps must be mangled.
 362 void PSYoungGen::mangle_survivors(MutableSpace* s1,
 363                                   MemRegion s1MR,
 364                                   MutableSpace* s2,
 365                                   MemRegion s2MR) {
 366   // Check eden and gap between eden and from-space, in deciding
 367   // what to mangle in from-space.  Check the gap between from-space
 368   // and to-space when deciding what to mangle.
 369   //
 370   //      +--------+   +----+    +---+
 371   //      | eden   |   |s1  |    |s2 |
 372   //      +--------+   +----+    +---+
 373   //                 +-------+ +-----+
 374   //                 |s1MR   | |s2MR |
 375   //                 +-------+ +-----+
 376   // All of survivor-space is properly mangled so find the
 377   // upper bound on the mangling for any portion above current s1.
 378   HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
 379   MemRegion delta1_left;
 380   if (s1MR.start() < delta_end) {
 381     delta1_left = MemRegion(s1MR.start(), delta_end);
 382     s1->mangle_region(delta1_left);
 383   }
 384   // Find any portion to the right of the current s1.
 385   HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
 386   MemRegion delta1_right;
 387   if (delta_start < s1MR.end()) {
 388     delta1_right = MemRegion(delta_start, s1MR.end());
 389     s1->mangle_region(delta1_right);
 390   }
 391 
 392   // Similarly for the second survivor space except that
 393   // any of the new region that overlaps with the current
 394   // region of the first survivor space has already been
 395   // mangled.
 396   delta_end = MIN2(s2->bottom(), s2MR.end());
 397   delta_start = MAX2(s2MR.start(), s1->end());
 398   MemRegion delta2_left;
 399   if (s2MR.start() < delta_end) {
 400     delta2_left = MemRegion(s2MR.start(), delta_end);
 401     s2->mangle_region(delta2_left);
 402   }
 403   delta_start = MAX2(s2->end(), s2MR.start());
 404   MemRegion delta2_right;
 405   if (delta_start < s2MR.end()) {
 406     s2->mangle_region(delta2_right);
 407   }
 408 
 409   if (TraceZapUnusedHeapArea) {
 410     // s1
 411     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
 412       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
 413       s1->bottom(), s1->end(), s1MR.start(), s1MR.end());
 414     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
 415       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
 416       delta1_left.start(), delta1_left.end(), delta1_right.start(),
 417       delta1_right.end());
 418 
 419     // s2
 420     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
 421       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
 422       s2->bottom(), s2->end(), s2MR.start(), s2MR.end());
 423     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
 424       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
 425       delta2_left.start(), delta2_left.end(), delta2_right.start(),
 426       delta2_right.end());
 427   }
 428 
 429 }
 430 #endif // NOT PRODUCT
 431 
 432 void PSYoungGen::resize_spaces(size_t requested_eden_size,
 433                                size_t requested_survivor_size) {
 434   assert(UseAdaptiveSizePolicy, "sanity check");
 435   assert(requested_eden_size > 0  && requested_survivor_size > 0,
 436          "just checking");
 437 
 438   // We require eden and to space to be empty
 439   if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
 440     return;
 441   }
 442 
 443   if (PrintAdaptiveSizePolicy && Verbose) {
 444     gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: "
 445                   SIZE_FORMAT
 446                   ", requested_survivor_size: " SIZE_FORMAT ")",
 447                   requested_eden_size, requested_survivor_size);
 448     gclog_or_tty->print_cr("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
 449                   SIZE_FORMAT,
 450                   eden_space()->bottom(),
 451                   eden_space()->end(),
 452                   pointer_delta(eden_space()->end(),
 453                                 eden_space()->bottom(),
 454                                 sizeof(char)));
 455     gclog_or_tty->print_cr("    from: [" PTR_FORMAT ".." PTR_FORMAT ") "
 456                   SIZE_FORMAT,
 457                   from_space()->bottom(),
 458                   from_space()->end(),
 459                   pointer_delta(from_space()->end(),
 460                                 from_space()->bottom(),
 461                                 sizeof(char)));
 462     gclog_or_tty->print_cr("      to: [" PTR_FORMAT ".." PTR_FORMAT ") "
 463                   SIZE_FORMAT,
 464                   to_space()->bottom(),
 465                   to_space()->end(),
 466                   pointer_delta(  to_space()->end(),
 467                                   to_space()->bottom(),
 468                                   sizeof(char)));
 469   }
 470 
 471   // There's nothing to do if the new sizes are the same as the current
 472   if (requested_survivor_size == to_space()->capacity_in_bytes() &&
 473       requested_survivor_size == from_space()->capacity_in_bytes() &&
 474       requested_eden_size == eden_space()->capacity_in_bytes()) {
 475     if (PrintAdaptiveSizePolicy && Verbose) {
 476       gclog_or_tty->print_cr("    capacities are the right sizes, returning");
 477     }
 478     return;
 479   }
 480 
 481   char* eden_start = (char*)eden_space()->bottom();
 482   char* eden_end   = (char*)eden_space()->end();
 483   char* from_start = (char*)from_space()->bottom();
 484   char* from_end   = (char*)from_space()->end();
 485   char* to_start   = (char*)to_space()->bottom();
 486   char* to_end     = (char*)to_space()->end();
 487 
 488   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 489   const size_t alignment = heap->intra_heap_alignment();
 490   const bool maintain_minimum =
 491     (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
 492 
 493   bool eden_from_to_order = from_start < to_start;
 494   // Check whether from space is below to space
 495   if (eden_from_to_order) {
 496     // Eden, from, to
 497     eden_from_to_order = true;
 498     if (PrintAdaptiveSizePolicy && Verbose) {
 499       gclog_or_tty->print_cr("  Eden, from, to:");
 500     }
 501 
 502     // Set eden
 503     // "requested_eden_size" is a goal for the size of eden
 504     // and may not be attainable.  "eden_size" below is
 505     // calculated based on the location of from-space and
 506     // the goal for the size of eden.  from-space is
 507     // fixed in place because it contains live data.
 508     // The calculation is done this way to avoid 32bit
 509     // overflow (i.e., eden_start + requested_eden_size
 510     // may too large for representation in 32bits).
 511     size_t eden_size;
 512     if (maintain_minimum) {
 513       // Only make eden larger than the requested size if
 514       // the minimum size of the generation has to be maintained.
 515       // This could be done in general but policy at a higher
 516       // level is determining a requested size for eden and that
 517       // should be honored unless there is a fundamental reason.
 518       eden_size = pointer_delta(from_start,
 519                                 eden_start,
 520                                 sizeof(char));
 521     } else {
 522       eden_size = MIN2(requested_eden_size,
 523                        pointer_delta(from_start, eden_start, sizeof(char)));
 524     }
 525 
 526     eden_end = eden_start + eden_size;
 527     assert(eden_end >= eden_start, "addition overflowed")
 528 
 529     // To may resize into from space as long as it is clear of live data.
 530     // From space must remain page aligned, though, so we need to do some
 531     // extra calculations.
 532 
 533     // First calculate an optimal to-space
 534     to_end   = (char*)virtual_space()->high();
 535     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
 536                                     sizeof(char));
 537 
 538     // Does the optimal to-space overlap from-space?
 539     if (to_start < (char*)from_space()->end()) {
 540       assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 541 
 542       // Calculate the minimum offset possible for from_end
 543       size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
 544 
 545       // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
 546       if (from_size == 0) {
 547         from_size = alignment;
 548       } else {
 549         from_size = align_size_up(from_size, alignment);
 550       }
 551 
 552       from_end = from_start + from_size;
 553       assert(from_end > from_start, "addition overflow or from_size problem");
 554 
 555       guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
 556 
 557       // Now update to_start with the new from_end
 558       to_start = MAX2(from_end, to_start);
 559     }
 560 
 561     guarantee(to_start != to_end, "to space is zero sized");
 562 
 563     if (PrintAdaptiveSizePolicy && Verbose) {
 564       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
 565                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 566                     eden_start,
 567                     eden_end,
 568                     pointer_delta(eden_end, eden_start, sizeof(char)));
 569       gclog_or_tty->print_cr("    [from_start .. from_end): "
 570                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 571                     from_start,
 572                     from_end,
 573                     pointer_delta(from_end, from_start, sizeof(char)));
 574       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
 575                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 576                     to_start,
 577                     to_end,
 578                     pointer_delta(  to_end,   to_start, sizeof(char)));
 579     }
 580   } else {
 581     // Eden, to, from
 582     if (PrintAdaptiveSizePolicy && Verbose) {
 583       gclog_or_tty->print_cr("  Eden, to, from:");
 584     }
 585 
 586     // To space gets priority over eden resizing. Note that we position
 587     // to space as if we were able to resize from space, even though from
 588     // space is not modified.
 589     // Giving eden priority was tried and gave poorer performance.
 590     to_end   = (char*)pointer_delta(virtual_space()->high(),
 591                                     (char*)requested_survivor_size,
 592                                     sizeof(char));
 593     to_end   = MIN2(to_end, from_start);
 594     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
 595                                     sizeof(char));
 596     // if the space sizes are to be increased by several times then
 597     // 'to_start' will point beyond the young generation. In this case
 598     // 'to_start' should be adjusted.
 599     to_start = MAX2(to_start, eden_start + alignment);
 600 
 601     // Compute how big eden can be, then adjust end.
 602     // See  comments above on calculating eden_end.
 603     size_t eden_size;
 604     if (maintain_minimum) {
 605       eden_size = pointer_delta(to_start, eden_start, sizeof(char));
 606     } else {
 607       eden_size = MIN2(requested_eden_size,
 608                        pointer_delta(to_start, eden_start, sizeof(char)));
 609     }
 610     eden_end = eden_start + eden_size;
 611     assert(eden_end >= eden_start, "addition overflowed")
 612 
 613     // Could choose to not let eden shrink
 614     // to_start = MAX2(to_start, eden_end);
 615 
 616     // Don't let eden shrink down to 0 or less.
 617     eden_end = MAX2(eden_end, eden_start + alignment);
 618     to_start = MAX2(to_start, eden_end);
 619 
 620     if (PrintAdaptiveSizePolicy && Verbose) {
 621       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
 622                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 623                     eden_start,
 624                     eden_end,
 625                     pointer_delta(eden_end, eden_start, sizeof(char)));
 626       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
 627                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 628                     to_start,
 629                     to_end,
 630                     pointer_delta(  to_end,   to_start, sizeof(char)));
 631       gclog_or_tty->print_cr("    [from_start .. from_end): "
 632                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 633                     from_start,
 634                     from_end,
 635                     pointer_delta(from_end, from_start, sizeof(char)));
 636     }
 637   }
 638 
 639 
 640   guarantee((HeapWord*)from_start <= from_space()->bottom(),
 641             "from start moved to the right");
 642   guarantee((HeapWord*)from_end >= from_space()->top(),
 643             "from end moved into live data");
 644   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
 645   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
 646   assert(is_object_aligned((intptr_t)to_start), "checking alignment");
 647 
 648   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
 649   MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
 650   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
 651 
 652   // Let's make sure the call to initialize doesn't reset "top"!
 653   HeapWord* old_from_top = from_space()->top();
 654 
 655   // For PrintAdaptiveSizePolicy block  below
 656   size_t old_from = from_space()->capacity_in_bytes();
 657   size_t old_to   = to_space()->capacity_in_bytes();
 658 
 659   if (ZapUnusedHeapArea) {
 660     // NUMA is a special case because a numa space is not mangled
 661     // in order to not prematurely bind its address to memory to
 662     // the wrong memory (i.e., don't want the GC thread to first
 663     // touch the memory).  The survivor spaces are not numa
 664     // spaces and are mangled.
 665     if (UseNUMA) {
 666       if (eden_from_to_order) {
 667         mangle_survivors(from_space(), fromMR, to_space(), toMR);
 668       } else {
 669         mangle_survivors(to_space(), toMR, from_space(), fromMR);
 670       }
 671     }
 672 
 673     // If not mangling the spaces, do some checking to verify that
 674     // the spaces are already mangled.
 675     // The spaces should be correctly mangled at this point so
 676     // do some checking here. Note that they are not being mangled
 677     // in the calls to initialize().
 678     // Must check mangling before the spaces are reshaped.  Otherwise,
 679     // the bottom or end of one space may have moved into an area
 680     // covered by another space and a failure of the check may
 681     // not correctly indicate which space is not properly mangled.
 682     HeapWord* limit = (HeapWord*) virtual_space()->high();
 683     eden_space()->check_mangled_unused_area(limit);
 684     from_space()->check_mangled_unused_area(limit);
 685       to_space()->check_mangled_unused_area(limit);
 686   }
 687   // When an existing space is being initialized, it is not
 688   // mangled because the space has been previously mangled.
 689   eden_space()->initialize(edenMR,
 690                            SpaceDecorator::Clear,
 691                            SpaceDecorator::DontMangle);
 692     to_space()->initialize(toMR,
 693                            SpaceDecorator::Clear,
 694                            SpaceDecorator::DontMangle);
 695   from_space()->initialize(fromMR,
 696                            SpaceDecorator::DontClear,
 697                            SpaceDecorator::DontMangle);
 698 
 699   assert(from_space()->top() == old_from_top, "from top changed!");
 700 
 701   if (PrintAdaptiveSizePolicy) {
 702     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 703     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 704 
 705     gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
 706                   "collection: %d "
 707                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
 708                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
 709                   heap->total_collections(),
 710                   old_from, old_to,
 711                   from_space()->capacity_in_bytes(),
 712                   to_space()->capacity_in_bytes());
 713     gclog_or_tty->cr();
 714   }
 715 }
 716 
 717 void PSYoungGen::swap_spaces() {
 718   MutableSpace* s    = from_space();
 719   _from_space        = to_space();
 720   _to_space          = s;
 721 
 722   // Now update the decorators.
 723   PSMarkSweepDecorator* md = from_mark_sweep();
 724   _from_mark_sweep           = to_mark_sweep();
 725   _to_mark_sweep             = md;
 726 
 727   assert(from_mark_sweep()->space() == from_space(), "Sanity");
 728   assert(to_mark_sweep()->space() == to_space(), "Sanity");
 729 }
 730 
 731 size_t PSYoungGen::capacity_in_bytes() const {
 732   return eden_space()->capacity_in_bytes()
 733        + from_space()->capacity_in_bytes();  // to_space() is only used during scavenge
 734 }
 735 
 736 
 737 size_t PSYoungGen::used_in_bytes() const {
 738   return eden_space()->used_in_bytes()
 739        + from_space()->used_in_bytes();      // to_space() is only used during scavenge
 740 }
 741 
 742 
 743 size_t PSYoungGen::free_in_bytes() const {
 744   return eden_space()->free_in_bytes()
 745        + from_space()->free_in_bytes();      // to_space() is only used during scavenge
 746 }
 747 
 748 size_t PSYoungGen::capacity_in_words() const {
 749   return eden_space()->capacity_in_words()
 750        + from_space()->capacity_in_words();  // to_space() is only used during scavenge
 751 }
 752 
 753 
 754 size_t PSYoungGen::used_in_words() const {
 755   return eden_space()->used_in_words()
 756        + from_space()->used_in_words();      // to_space() is only used during scavenge
 757 }
 758 
 759 
 760 size_t PSYoungGen::free_in_words() const {
 761   return eden_space()->free_in_words()
 762        + from_space()->free_in_words();      // to_space() is only used during scavenge
 763 }
 764 
 765 void PSYoungGen::object_iterate(ObjectClosure* blk) {
 766   eden_space()->object_iterate(blk);
 767   from_space()->object_iterate(blk);
 768   to_space()->object_iterate(blk);
 769 }
 770 
 771 void PSYoungGen::precompact() {
 772   eden_mark_sweep()->precompact();
 773   from_mark_sweep()->precompact();
 774   to_mark_sweep()->precompact();
 775 }
 776 
 777 void PSYoungGen::adjust_pointers() {
 778   eden_mark_sweep()->adjust_pointers();
 779   from_mark_sweep()->adjust_pointers();
 780   to_mark_sweep()->adjust_pointers();
 781 }
 782 
 783 void PSYoungGen::compact() {
 784   eden_mark_sweep()->compact(ZapUnusedHeapArea);
 785   from_mark_sweep()->compact(ZapUnusedHeapArea);
 786   // Mark sweep stores preserved markOops in to space, don't disturb!
 787   to_mark_sweep()->compact(false);
 788 }
 789 
 790 void PSYoungGen::move_and_update(ParCompactionManager* cm) {
 791   PSParallelCompact::move_and_update(cm, PSParallelCompact::eden_space_id);
 792   PSParallelCompact::move_and_update(cm, PSParallelCompact::from_space_id);
 793   PSParallelCompact::move_and_update(cm, PSParallelCompact::to_space_id);
 794 }
 795 
 796 void PSYoungGen::print() const { print_on(tty); }
 797 void PSYoungGen::print_on(outputStream* st) const {
 798   st->print(" %-15s", "PSYoungGen");
 799   if (PrintGCDetails && Verbose) {
 800     st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
 801                capacity_in_bytes(), used_in_bytes());
 802   } else {
 803     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
 804                capacity_in_bytes()/K, used_in_bytes()/K);
 805   }
 806   virtual_space()->print_space_boundaries_on(st);
 807   st->print("  eden"); eden_space()->print_on(st);
 808   st->print("  from"); from_space()->print_on(st);
 809   st->print("  to  "); to_space()->print_on(st);
 810 }
 811 
 812 void PSYoungGen::print_used_change(size_t prev_used) const {
 813   gclog_or_tty->print(" [%s:", name());
 814   gclog_or_tty->print(" "  SIZE_FORMAT "K"
 815                       "->" SIZE_FORMAT "K"
 816                       "("  SIZE_FORMAT "K)",
 817                       prev_used / K, used_in_bytes() / K,
 818                       capacity_in_bytes() / K);
 819   gclog_or_tty->print("]");
 820 }
 821 
 822 size_t PSYoungGen::available_for_expansion() {
 823   ShouldNotReachHere();
 824   return 0;
 825 }
 826 
 827 size_t PSYoungGen::available_for_contraction() {
 828   ShouldNotReachHere();
 829   return 0;
 830 }
 831 
 832 size_t PSYoungGen::available_to_min_gen() {
 833   assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
 834   return virtual_space()->committed_size() - min_gen_size();
 835 }
 836 
 837 // This method assumes that from-space has live data and that
 838 // any shrinkage of the young gen is limited by location of
 839 // from-space.
 840 size_t PSYoungGen::available_to_live() {
 841   size_t delta_in_survivor = 0;
 842   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 843   const size_t space_alignment = heap->intra_heap_alignment();
 844   const size_t gen_alignment = heap->young_gen_alignment();
 845 
 846   MutableSpace* space_shrinking = NULL;
 847   if (from_space()->end() > to_space()->end()) {
 848     space_shrinking = from_space();
 849   } else {
 850     space_shrinking = to_space();
 851   }
 852 
 853   // Include any space that is committed but not included in
 854   // the survivor spaces.
 855   assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
 856     "Survivor space beyond high end");
 857   size_t unused_committed = pointer_delta(virtual_space()->high(),
 858     space_shrinking->end(), sizeof(char));
 859 
 860   if (space_shrinking->is_empty()) {
 861     // Don't let the space shrink to 0
 862     assert(space_shrinking->capacity_in_bytes() >= space_alignment,
 863       "Space is too small");
 864     delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
 865   } else {
 866     delta_in_survivor = pointer_delta(space_shrinking->end(),
 867                                       space_shrinking->top(),
 868                                       sizeof(char));
 869   }
 870 
 871   size_t delta_in_bytes = unused_committed + delta_in_survivor;
 872   delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
 873   return delta_in_bytes;
 874 }
 875 
 876 // Return the number of bytes available for resizing down the young
 877 // generation.  This is the minimum of
 878 //      input "bytes"
 879 //      bytes to the minimum young gen size
 880 //      bytes to the size currently being used + some small extra
 881 size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
 882   // Allow shrinkage into the current eden but keep eden large enough
 883   // to maintain the minimum young gen size
 884   bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
 885   return align_size_down(bytes, virtual_space()->alignment());
 886 }
 887 
 888 void PSYoungGen::reset_after_change() {
 889   ShouldNotReachHere();
 890 }
 891 
 892 void PSYoungGen::reset_survivors_after_shrink() {
 893   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
 894                         (HeapWord*)virtual_space()->high_boundary());
 895   PSScavenge::reference_processor()->set_span(_reserved);
 896 
 897   MutableSpace* space_shrinking = NULL;
 898   if (from_space()->end() > to_space()->end()) {
 899     space_shrinking = from_space();
 900   } else {
 901     space_shrinking = to_space();
 902   }
 903 
 904   HeapWord* new_end = (HeapWord*)virtual_space()->high();
 905   assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
 906   // Was there a shrink of the survivor space?
 907   if (new_end < space_shrinking->end()) {
 908     MemRegion mr(space_shrinking->bottom(), new_end);
 909     space_shrinking->initialize(mr,
 910                                 SpaceDecorator::DontClear,
 911                                 SpaceDecorator::Mangle);
 912   }
 913 }
 914 
 915 // This method currently does not expect to expand into eden (i.e.,
 916 // the virtual space boundaries is expected to be consistent
 917 // with the eden boundaries..
 918 void PSYoungGen::post_resize() {
 919   assert_locked_or_safepoint(Heap_lock);
 920   assert((eden_space()->bottom() < to_space()->bottom()) &&
 921          (eden_space()->bottom() < from_space()->bottom()),
 922          "Eden is assumed to be below the survivor spaces");
 923 
 924   MemRegion cmr((HeapWord*)virtual_space()->low(),
 925                 (HeapWord*)virtual_space()->high());
 926   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 927   space_invariants();
 928 }
 929 
 930 
 931 
 932 void PSYoungGen::update_counters() {
 933   if (UsePerfData) {
 934     _eden_counters->update_all();
 935     _from_counters->update_all();
 936     _to_counters->update_all();
 937     _gen_counters->update_all();
 938   }
 939 }
 940 
 941 void PSYoungGen::verify(bool allow_dirty) {
 942   eden_space()->verify(allow_dirty);
 943   from_space()->verify(allow_dirty);
 944   to_space()->verify(allow_dirty);
 945 }
 946 
 947 #ifndef PRODUCT
 948 void PSYoungGen::record_spaces_top() {
 949   assert(ZapUnusedHeapArea, "Not mangling unused space");
 950   eden_space()->set_top_for_allocations();
 951   from_space()->set_top_for_allocations();
 952   to_space()->set_top_for_allocations();
 953 }
 954 #endif
 955 
 956 void PSYoungGen::try_to_shrink_by(size_t shrink_bytes) {
 957   size_t free_bytes = capacity_in_bytes() - used_in_bytes();
 958   if (free_bytes == 0) {
 959     // cannot shrink
 960     return;
 961   }
 962   size_t eden_free_bytes = eden_space()->capacity_in_bytes() - eden_space()->used_in_bytes();
 963   size_t survivor_free_bytes = from_space()->capacity_in_bytes() - from_space()->used_in_bytes();
 964   size_t eden_shrink_bytes =
 965       (size_t) (shrink_bytes * ((double) eden_free_bytes / free_bytes));
 966   size_t survivor_shrink_bytes =
 967       (size_t) (shrink_bytes * ((double) survivor_free_bytes / free_bytes));
 968 
 969   // Don't shrink unless it's significant
 970   if (eden_shrink_bytes < MinHeapDeltaBytes) {
 971     eden_shrink_bytes = 0;
 972   }
 973   if (survivor_shrink_bytes < MinHeapDeltaBytes) {
 974     survivor_shrink_bytes = 0;
 975   }
 976 
 977   if (eden_shrink_bytes == 0 && survivor_shrink_bytes == 0) {
 978     return; // no change, so return now
 979   }
 980 
 981   size_t eden_desired_capacity =
 982       eden_space()->capacity_in_bytes() - eden_shrink_bytes;
 983   eden_desired_capacity = MAX2(eden_desired_capacity, _init_eden_size);
 984   assert(eden_space()->used_in_bytes() <= eden_desired_capacity, "sanity check");
 985   eden_desired_capacity = align_size_down(eden_desired_capacity,
 986                                           virtual_space()->alignment());
 987 
 988   size_t survivor_desired_capacity =
 989       from_space()->capacity_in_bytes() - survivor_shrink_bytes;
 990   survivor_desired_capacity = MAX2(survivor_desired_capacity, _init_survivor_size);
 991   assert(from_space()->used_in_bytes() <= survivor_desired_capacity, "sanity check");
 992   survivor_desired_capacity = align_size_down(survivor_desired_capacity,
 993                                               virtual_space()->alignment());
 994 
 995   if (eden_desired_capacity == eden_space()->capacity_in_bytes()
 996       && survivor_desired_capacity == from_space()->capacity_in_bytes()) {
 997     return; // no change, so return now
 998   }
 999 
1000   if (PrintGC) {
1001     gclog_or_tty->print_cr(" Resizing young gen. shrink_bytes=%d,%d",
1002                            eden_shrink_bytes, survivor_shrink_bytes);
1003     gclog_or_tty->print("BEFORE: Young Gen: ");
1004     gclog_or_tty->print("eden capacity : " SIZE_FORMAT ", ",
1005                         eden_space()->capacity_in_bytes());
1006     gclog_or_tty->print("eden used : " SIZE_FORMAT ", " ,
1007                         eden_space()->used_in_bytes());
1008     gclog_or_tty->print("survivor capacity : " SIZE_FORMAT ", ",
1009                         from_space()->capacity_in_bytes());
1010     gclog_or_tty->print_cr("survivor used : " SIZE_FORMAT ", " ,
1011                            from_space()->used_in_bytes());
1012   }
1013 
1014   resize(eden_desired_capacity, survivor_desired_capacity);
1015 
1016   if (PrintGC) {
1017     gclog_or_tty->print("AFTER: Young Gen: ");
1018     gclog_or_tty->print("eden capacity : " SIZE_FORMAT ", ",
1019                         eden_space()->capacity_in_bytes());
1020     gclog_or_tty->print("eden used : " SIZE_FORMAT ", " ,
1021                         eden_space()->used_in_bytes());
1022     gclog_or_tty->print("survivor capacity : " SIZE_FORMAT ", ",
1023                         from_space()->capacity_in_bytes());
1024     gclog_or_tty->print_cr("survivor used : " SIZE_FORMAT ", " ,
1025                            from_space()->used_in_bytes());
1026   }
1027 }