1 /*
   2  * Copyright 2002-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 
  26 # include "incls/_precompiled.incl"
  27 # include "incls/_psScavenge.cpp.incl"
  28 
  29 HeapWord*                  PSScavenge::_to_space_top_before_gc = NULL;
  30 int                        PSScavenge::_consecutive_skipped_scavenges = 0;
  31 ReferenceProcessor*        PSScavenge::_ref_processor = NULL;
  32 CardTableExtension*        PSScavenge::_card_table = NULL;
  33 bool                       PSScavenge::_survivor_overflow = false;
  34 int                        PSScavenge::_tenuring_threshold = 0;
  35 HeapWord*                  PSScavenge::_young_generation_boundary = NULL;
  36 elapsedTimer               PSScavenge::_accumulated_time;
  37 GrowableArray<markOop>*    PSScavenge::_preserved_mark_stack = NULL;
  38 GrowableArray<oop>*        PSScavenge::_preserved_oop_stack = NULL;
  39 CollectorCounters*         PSScavenge::_counters = NULL;
  40 
  41 // Define before use
  42 class PSIsAliveClosure: public BoolObjectClosure {
  43 public:
  44   void do_object(oop p) {
  45     assert(false, "Do not call.");
  46   }
  47   bool do_object_b(oop p) {
  48     return (!PSScavenge::is_obj_in_young((HeapWord*) p)) || p->is_forwarded();
  49   }
  50 };
  51 
  52 PSIsAliveClosure PSScavenge::_is_alive_closure;
  53 
  54 class PSKeepAliveClosure: public OopClosure {
  55 protected:
  56   MutableSpace* _to_space;
  57   PSPromotionManager* _promotion_manager;
  58 
  59 public:
  60   PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
  61     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  62     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  63     _to_space = heap->young_gen()->to_space();
  64 
  65     assert(_promotion_manager != NULL, "Sanity");
  66   }
  67 
  68   template <class T> void do_oop_work(T* p) {
  69     assert (!oopDesc::is_null(*p), "expected non-null ref");
  70     assert ((oopDesc::load_decode_heap_oop_not_null(p))->is_oop(),
  71             "expected an oop while scanning weak refs");
  72 
  73     // Weak refs may be visited more than once.
  74     if (PSScavenge::should_scavenge(p, _to_space)) {
  75       PSScavenge::copy_and_push_safe_barrier(_promotion_manager, p);
  76     }
  77   }
  78   virtual void do_oop(oop* p)       { PSKeepAliveClosure::do_oop_work(p); }
  79   virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
  80 };
  81 
  82 class PSEvacuateFollowersClosure: public VoidClosure {
  83  private:
  84   PSPromotionManager* _promotion_manager;
  85  public:
  86   PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
  87 
  88   virtual void do_void() {
  89     assert(_promotion_manager != NULL, "Sanity");
  90     _promotion_manager->drain_stacks(true);
  91     guarantee(_promotion_manager->stacks_empty(),
  92               "stacks should be empty at this point");
  93   }
  94 };
  95 
  96 class PSPromotionFailedClosure : public ObjectClosure {
  97   virtual void do_object(oop obj) {
  98     if (obj->is_forwarded()) {
  99       obj->init_mark();
 100     }
 101   }
 102 };
 103 
 104 class PSRefProcTaskProxy: public GCTask {
 105   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 106   ProcessTask & _rp_task;
 107   uint          _work_id;
 108 public:
 109   PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id)
 110     : _rp_task(rp_task),
 111       _work_id(work_id)
 112   { }
 113 
 114 private:
 115   virtual char* name() { return (char *)"Process referents by policy in parallel"; }
 116   virtual void do_it(GCTaskManager* manager, uint which);
 117 };
 118 
 119 void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
 120 {
 121   PSPromotionManager* promotion_manager =
 122     PSPromotionManager::gc_thread_promotion_manager(which);
 123   assert(promotion_manager != NULL, "sanity check");
 124   PSKeepAliveClosure keep_alive(promotion_manager);
 125   PSEvacuateFollowersClosure evac_followers(promotion_manager);
 126   PSIsAliveClosure is_alive;
 127   _rp_task.work(_work_id, is_alive, keep_alive, evac_followers);
 128 }
 129 
 130 class PSRefEnqueueTaskProxy: public GCTask {
 131   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 132   EnqueueTask& _enq_task;
 133   uint         _work_id;
 134 
 135 public:
 136   PSRefEnqueueTaskProxy(EnqueueTask& enq_task, uint work_id)
 137     : _enq_task(enq_task),
 138       _work_id(work_id)
 139   { }
 140 
 141   virtual char* name() { return (char *)"Enqueue reference objects in parallel"; }
 142   virtual void do_it(GCTaskManager* manager, uint which)
 143   {
 144     _enq_task.work(_work_id);
 145   }
 146 };
 147 
 148 class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 149   virtual void execute(ProcessTask& task);
 150   virtual void execute(EnqueueTask& task);
 151 };
 152 
 153 void PSRefProcTaskExecutor::execute(ProcessTask& task)
 154 {
 155   GCTaskQueue* q = GCTaskQueue::create();
 156   for(uint i=0; i<ParallelGCThreads; i++) {
 157     q->enqueue(new PSRefProcTaskProxy(task, i));
 158   }
 159   ParallelTaskTerminator terminator(
 160     ParallelScavengeHeap::gc_task_manager()->workers(),
 161     UseDepthFirstScavengeOrder ?
 162         (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth()
 163       : (TaskQueueSetSuper*) PSPromotionManager::stack_array_breadth());
 164   if (task.marks_oops_alive() && ParallelGCThreads > 1) {
 165     for (uint j=0; j<ParallelGCThreads; j++) {
 166       q->enqueue(new StealTask(&terminator));
 167     }
 168   }
 169   ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
 170 }
 171 
 172 
 173 void PSRefProcTaskExecutor::execute(EnqueueTask& task)
 174 {
 175   GCTaskQueue* q = GCTaskQueue::create();
 176   for(uint i=0; i<ParallelGCThreads; i++) {
 177     q->enqueue(new PSRefEnqueueTaskProxy(task, i));
 178   }
 179   ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
 180 }
 181 
 182 // This method contains all heap specific policy for invoking scavenge.
 183 // PSScavenge::invoke_no_policy() will do nothing but attempt to
 184 // scavenge. It will not clean up after failed promotions, bail out if
 185 // we've exceeded policy time limits, or any other special behavior.
 186 // All such policy should be placed here.
 187 //
 188 // Note that this method should only be called from the vm_thread while
 189 // at a safepoint!
 190 void PSScavenge::invoke()
 191 {
 192   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 193   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 194   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 195 
 196   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 197   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 198 
 199   PSAdaptiveSizePolicy* policy = heap->size_policy();
 200 
 201   // Before each allocation/collection attempt, find out from the
 202   // policy object if GCs are, on the whole, taking too long. If so,
 203   // bail out without attempting a collection.
 204   if (!policy->gc_time_limit_exceeded()) {
 205     IsGCActiveMark mark;
 206 
 207     bool scavenge_was_done = PSScavenge::invoke_no_policy();
 208 
 209     PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 210     if (UsePerfData)
 211       counters->update_full_follows_scavenge(0);
 212     if (!scavenge_was_done ||
 213         policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
 214       if (UsePerfData)
 215         counters->update_full_follows_scavenge(full_follows_scavenge);
 216 
 217       GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
 218       if (UseParallelOldGC) {
 219         PSParallelCompact::invoke_no_policy(false);
 220       } else {
 221         PSMarkSweep::invoke_no_policy(false);
 222       }
 223     }
 224   }
 225 }
 226 
 227 // This method contains no policy. You should probably
 228 // be calling invoke() instead.
 229 bool PSScavenge::invoke_no_policy() {
 230   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 231   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 232 
 233   TimeStamp scavenge_entry;
 234   TimeStamp scavenge_midpoint;
 235   TimeStamp scavenge_exit;
 236 
 237   scavenge_entry.update();
 238 
 239   if (GC_locker::check_active_before_gc()) {
 240     return false;
 241   }
 242 
 243   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 244   GCCause::Cause gc_cause = heap->gc_cause();
 245   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 246 
 247   // Check for potential problems.
 248   if (!should_attempt_scavenge()) {
 249     return false;
 250   }
 251 
 252   bool promotion_failure_occurred = false;
 253 
 254   PSYoungGen* young_gen = heap->young_gen();
 255   PSOldGen* old_gen = heap->old_gen();
 256   PSPermGen* perm_gen = heap->perm_gen();
 257   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 258   heap->increment_total_collections();
 259 
 260   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
 261 
 262   if ((gc_cause != GCCause::_java_lang_system_gc) ||
 263        UseAdaptiveSizePolicyWithSystemGC) {
 264     // Gather the feedback data for eden occupancy.
 265     young_gen->eden_space()->accumulate_statistics();
 266   }
 267 
 268   if (ZapUnusedHeapArea) {
 269     // Save information needed to minimize mangling
 270     heap->record_gen_tops_before_GC();
 271   }
 272 
 273   if (PrintHeapAtGC) {
 274     Universe::print_heap_before_gc();
 275   }
 276 
 277   assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
 278   assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
 279 
 280   size_t prev_used = heap->used();
 281   assert(promotion_failed() == false, "Sanity");
 282 
 283   // Fill in TLABs
 284   heap->accumulate_statistics_all_tlabs();
 285   heap->ensure_parsability(true);  // retire TLABs
 286 
 287   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 288     HandleMark hm;  // Discard invalid handles created during verification
 289     gclog_or_tty->print(" VerifyBeforeGC:");
 290     Universe::verify(true);
 291   }
 292 
 293   {
 294     ResourceMark rm;
 295     HandleMark hm;
 296 
 297     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 298     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 299     TraceTime t1("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
 300     TraceCollectorStats tcs(counters());
 301     TraceMemoryManagerStats tms(false /* not full GC */);
 302 
 303     if (TraceGen0Time) accumulated_time()->start();
 304 
 305     // Let the size policy know we're starting
 306     size_policy->minor_collection_begin();
 307 
 308     // Verify the object start arrays.
 309     if (VerifyObjectStartArray &&
 310         VerifyBeforeGC) {
 311       old_gen->verify_object_start_array();
 312       perm_gen->verify_object_start_array();
 313     }
 314 
 315     // Verify no unmarked old->young roots
 316     if (VerifyRememberedSets) {
 317       CardTableExtension::verify_all_young_refs_imprecise();
 318     }
 319 
 320     if (!ScavengeWithObjectsInToSpace) {
 321       assert(young_gen->to_space()->is_empty(),
 322              "Attempt to scavenge with live objects in to_space");
 323       young_gen->to_space()->clear(SpaceDecorator::Mangle);
 324     } else if (ZapUnusedHeapArea) {
 325       young_gen->to_space()->mangle_unused_area();
 326     }
 327     save_to_space_top_before_gc();
 328 
 329     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
 330     COMPILER2_PRESENT(DerivedPointerTable::clear());
 331 
 332     reference_processor()->enable_discovery();
 333     reference_processor()->setup_policy(false);
 334 
 335     // We track how much was promoted to the next generation for
 336     // the AdaptiveSizePolicy.
 337     size_t old_gen_used_before = old_gen->used_in_bytes();
 338 
 339     // For PrintGCDetails
 340     size_t young_gen_used_before = young_gen->used_in_bytes();
 341 
 342     // Reset our survivor overflow.
 343     set_survivor_overflow(false);
 344 
 345     // We need to save the old/perm top values before
 346     // creating the promotion_manager. We pass the top
 347     // values to the card_table, to prevent it from
 348     // straying into the promotion labs.
 349     HeapWord* old_top = old_gen->object_space()->top();
 350     HeapWord* perm_top = perm_gen->object_space()->top();
 351 
 352     // Release all previously held resources
 353     gc_task_manager()->release_all_resources();
 354 
 355     PSPromotionManager::pre_scavenge();
 356 
 357     // We'll use the promotion manager again later.
 358     PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
 359     {
 360       // TraceTime("Roots");
 361       ParallelScavengeHeap::ParStrongRootsScope psrs;
 362 
 363       GCTaskQueue* q = GCTaskQueue::create();
 364 
 365       for(uint i=0; i<ParallelGCThreads; i++) {
 366         q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i));
 367       }
 368 
 369       q->enqueue(new SerialOldToYoungRootsTask(perm_gen, perm_top));
 370 
 371       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe));
 372       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles));
 373       // We scan the thread roots in parallel
 374       Threads::create_thread_roots_tasks(q);
 375       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer));
 376       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::flat_profiler));
 377       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management));
 378       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary));
 379       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti));
 380       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
 381 
 382       ParallelTaskTerminator terminator(
 383         gc_task_manager()->workers(),
 384         promotion_manager->depth_first() ?
 385             (TaskQueueSetSuper*) promotion_manager->stack_array_depth()
 386           : (TaskQueueSetSuper*) promotion_manager->stack_array_breadth());
 387       if (ParallelGCThreads>1) {
 388         for (uint j=0; j<ParallelGCThreads; j++) {
 389           q->enqueue(new StealTask(&terminator));
 390         }
 391       }
 392 
 393       gc_task_manager()->execute_and_wait(q);
 394     }
 395 
 396     scavenge_midpoint.update();
 397 
 398     // Process reference objects discovered during scavenge
 399     {
 400       reference_processor()->setup_policy(false); // not always_clear
 401       PSKeepAliveClosure keep_alive(promotion_manager);
 402       PSEvacuateFollowersClosure evac_followers(promotion_manager);
 403       if (reference_processor()->processing_is_mt()) {
 404         PSRefProcTaskExecutor task_executor;
 405         reference_processor()->process_discovered_references(
 406           &_is_alive_closure, &keep_alive, &evac_followers, &task_executor);
 407       } else {
 408         reference_processor()->process_discovered_references(
 409           &_is_alive_closure, &keep_alive, &evac_followers, NULL);
 410       }
 411     }
 412 
 413     // Enqueue reference objects discovered during scavenge.
 414     if (reference_processor()->processing_is_mt()) {
 415       PSRefProcTaskExecutor task_executor;
 416       reference_processor()->enqueue_discovered_references(&task_executor);
 417     } else {
 418       reference_processor()->enqueue_discovered_references(NULL);
 419     }
 420 
 421     // Finally, flush the promotion_manager's labs, and deallocate its stacks.
 422     assert(promotion_manager->claimed_stack_empty(), "Sanity");
 423     PSPromotionManager::post_scavenge();
 424 
 425     promotion_failure_occurred = promotion_failed();
 426     if (promotion_failure_occurred) {
 427       clean_up_failed_promotion();
 428       if (PrintGC) {
 429         gclog_or_tty->print("--");
 430       }
 431     }
 432 
 433     // Let the size policy know we're done.  Note that we count promotion
 434     // failure cleanup time as part of the collection (otherwise, we're
 435     // implicitly saying it's mutator time).
 436     size_policy->minor_collection_end(gc_cause);
 437 
 438     if (!promotion_failure_occurred) {
 439       // Swap the survivor spaces.
 440 
 441 
 442       young_gen->eden_space()->clear(SpaceDecorator::Mangle);
 443       young_gen->from_space()->clear(SpaceDecorator::Mangle);
 444       young_gen->swap_spaces();
 445 
 446       size_t survived = young_gen->from_space()->used_in_bytes();
 447       size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
 448       size_policy->update_averages(_survivor_overflow, survived, promoted);
 449 
 450       if (UseAdaptiveSizePolicy) {
 451         // Calculate the new survivor size and tenuring threshold
 452 
 453         if (PrintAdaptiveSizePolicy) {
 454           gclog_or_tty->print("AdaptiveSizeStart: ");
 455           gclog_or_tty->stamp();
 456           gclog_or_tty->print_cr(" collection: %d ",
 457                          heap->total_collections());
 458 
 459           if (Verbose) {
 460             gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
 461               " perm_gen_capacity: %d ",
 462               old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
 463               perm_gen->capacity_in_bytes());
 464           }
 465         }
 466 
 467 
 468         if (UsePerfData) {
 469           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 470           counters->update_old_eden_size(
 471             size_policy->calculated_eden_size_in_bytes());
 472           counters->update_old_promo_size(
 473             size_policy->calculated_promo_size_in_bytes());
 474           counters->update_old_capacity(old_gen->capacity_in_bytes());
 475           counters->update_young_capacity(young_gen->capacity_in_bytes());
 476           counters->update_survived(survived);
 477           counters->update_promoted(promoted);
 478           counters->update_survivor_overflowed(_survivor_overflow);
 479         }
 480 
 481         size_t survivor_limit =
 482           size_policy->max_survivor_size(young_gen->max_size());
 483         _tenuring_threshold =
 484           size_policy->compute_survivor_space_size_and_threshold(
 485                                                            _survivor_overflow,
 486                                                            _tenuring_threshold,
 487                                                            survivor_limit);
 488 
 489        if (PrintTenuringDistribution) {
 490          gclog_or_tty->cr();
 491          gclog_or_tty->print_cr("Desired survivor size %ld bytes, new threshold %d (max %d)",
 492                                 size_policy->calculated_survivor_size_in_bytes(),
 493                                 _tenuring_threshold, MaxTenuringThreshold);
 494        }
 495 
 496         if (UsePerfData) {
 497           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 498           counters->update_tenuring_threshold(_tenuring_threshold);
 499           counters->update_survivor_size_counters();
 500         }
 501 
 502         // Do call at minor collections?
 503         // Don't check if the size_policy is ready at this
 504         // level.  Let the size_policy check that internally.
 505         if (UseAdaptiveSizePolicy &&
 506             UseAdaptiveGenerationSizePolicyAtMinorCollection &&
 507             ((gc_cause != GCCause::_java_lang_system_gc) ||
 508               UseAdaptiveSizePolicyWithSystemGC)) {
 509 
 510           // Calculate optimial free space amounts
 511           assert(young_gen->max_size() >
 512             young_gen->from_space()->capacity_in_bytes() +
 513             young_gen->to_space()->capacity_in_bytes(),
 514             "Sizes of space in young gen are out-of-bounds");
 515           size_t max_eden_size = young_gen->max_size() -
 516             young_gen->from_space()->capacity_in_bytes() -
 517             young_gen->to_space()->capacity_in_bytes();
 518           size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
 519                                    young_gen->eden_space()->used_in_bytes(),
 520                                    old_gen->used_in_bytes(),
 521                                    perm_gen->used_in_bytes(),
 522                                    young_gen->eden_space()->capacity_in_bytes(),
 523                                    old_gen->max_gen_size(),
 524                                    max_eden_size,
 525                                    false  /* full gc*/,
 526                                    gc_cause);
 527 
 528         }
 529         // Resize the young generation at every collection
 530         // even if new sizes have not been calculated.  This is
 531         // to allow resizes that may have been inhibited by the
 532         // relative location of the "to" and "from" spaces.
 533 
 534         // Resizing the old gen at minor collects can cause increases
 535         // that don't feed back to the generation sizing policy until
 536         // a major collection.  Don't resize the old gen here.
 537 
 538         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 539                         size_policy->calculated_survivor_size_in_bytes());
 540 
 541         if (PrintAdaptiveSizePolicy) {
 542           gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
 543                          heap->total_collections());
 544         }
 545       }
 546 
 547       // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
 548       // cause the change of the heap layout. Make sure eden is reshaped if that's the case.
 549       // Also update() will case adaptive NUMA chunk resizing.
 550       assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
 551       young_gen->eden_space()->update();
 552 
 553       heap->gc_policy_counters()->update_counters();
 554 
 555       heap->resize_all_tlabs();
 556 
 557       assert(young_gen->to_space()->is_empty(), "to space should be empty now");
 558     }
 559 
 560     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 561 
 562     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
 563 
 564     // Re-verify object start arrays
 565     if (VerifyObjectStartArray &&
 566         VerifyAfterGC) {
 567       old_gen->verify_object_start_array();
 568       perm_gen->verify_object_start_array();
 569     }
 570 
 571     // Verify all old -> young cards are now precise
 572     if (VerifyRememberedSets) {
 573       // Precise verification will give false positives. Until this is fixed,
 574       // use imprecise verification.
 575       // CardTableExtension::verify_all_young_refs_precise();
 576       CardTableExtension::verify_all_young_refs_imprecise();
 577     }
 578 
 579     if (TraceGen0Time) accumulated_time()->stop();
 580 
 581     if (PrintGC) {
 582       if (PrintGCDetails) {
 583         // Don't print a GC timestamp here.  This is after the GC so
 584         // would be confusing.
 585         young_gen->print_used_change(young_gen_used_before);
 586       }
 587       heap->print_heap_change(prev_used);
 588     }
 589 
 590     // Track memory usage and detect low memory
 591     MemoryService::track_memory_usage();
 592     heap->update_counters();
 593   }
 594 
 595   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 596     HandleMark hm;  // Discard invalid handles created during verification
 597     gclog_or_tty->print(" VerifyAfterGC:");
 598     Universe::verify(false);
 599   }
 600 
 601   if (PrintHeapAtGC) {
 602     Universe::print_heap_after_gc();
 603   }
 604 
 605   if (ZapUnusedHeapArea) {
 606     young_gen->eden_space()->check_mangled_unused_area_complete();
 607     young_gen->from_space()->check_mangled_unused_area_complete();
 608     young_gen->to_space()->check_mangled_unused_area_complete();
 609   }
 610 
 611   scavenge_exit.update();
 612 
 613   if (PrintGCTaskTimeStamps) {
 614     tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " INT64_FORMAT,
 615                   scavenge_entry.ticks(), scavenge_midpoint.ticks(),
 616                   scavenge_exit.ticks());
 617     gc_task_manager()->print_task_time_stamps();
 618   }
 619 
 620 #ifdef TRACESPINNING
 621   ParallelTaskTerminator::print_termination_counts();
 622 #endif
 623 
 624   return !promotion_failure_occurred;
 625 }
 626 
 627 // This method iterates over all objects in the young generation,
 628 // unforwarding markOops. It then restores any preserved mark oops,
 629 // and clears the _preserved_mark_stack.
 630 void PSScavenge::clean_up_failed_promotion() {
 631   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 632   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 633   assert(promotion_failed(), "Sanity");
 634 
 635   PSYoungGen* young_gen = heap->young_gen();
 636 
 637   {
 638     ResourceMark rm;
 639 
 640     // Unforward all pointers in the young gen.
 641     PSPromotionFailedClosure unforward_closure;
 642     young_gen->object_iterate(&unforward_closure);
 643 
 644     if (PrintGC && Verbose) {
 645       gclog_or_tty->print_cr("Restoring %d marks",
 646                               _preserved_oop_stack->length());
 647     }
 648 
 649     // Restore any saved marks.
 650     for (int i=0; i < _preserved_oop_stack->length(); i++) {
 651       oop obj       = _preserved_oop_stack->at(i);
 652       markOop mark  = _preserved_mark_stack->at(i);
 653       obj->set_mark(mark);
 654     }
 655 
 656     // Deallocate the preserved mark and oop stacks.
 657     // The stacks were allocated as CHeap objects, so
 658     // we must call delete to prevent mem leaks.
 659     delete _preserved_mark_stack;
 660     _preserved_mark_stack = NULL;
 661     delete _preserved_oop_stack;
 662     _preserved_oop_stack = NULL;
 663   }
 664 
 665   // Reset the PromotionFailureALot counters.
 666   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 667 }
 668 
 669 // This method is called whenever an attempt to promote an object
 670 // fails. Some markOops will need preserving, some will not. Note
 671 // that the entire eden is traversed after a failed promotion, with
 672 // all forwarded headers replaced by the default markOop. This means
 673 // it is not neccessary to preserve most markOops.
 674 void PSScavenge::oop_promotion_failed(oop obj, markOop obj_mark) {
 675   if (_preserved_mark_stack == NULL) {
 676     ThreadCritical tc; // Lock and retest
 677     if (_preserved_mark_stack == NULL) {
 678       assert(_preserved_oop_stack == NULL, "Sanity");
 679       _preserved_mark_stack = new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
 680       _preserved_oop_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
 681     }
 682   }
 683 
 684   // Because we must hold the ThreadCritical lock before using
 685   // the stacks, we should be safe from observing partial allocations,
 686   // which are also guarded by the ThreadCritical lock.
 687   if (obj_mark->must_be_preserved_for_promotion_failure(obj)) {
 688     ThreadCritical tc;
 689     _preserved_oop_stack->push(obj);
 690     _preserved_mark_stack->push(obj_mark);
 691   }
 692 }
 693 
 694 bool PSScavenge::should_attempt_scavenge() {
 695   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 696   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 697   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 698 
 699   if (UsePerfData) {
 700     counters->update_scavenge_skipped(not_skipped);
 701   }
 702 
 703   PSYoungGen* young_gen = heap->young_gen();
 704   PSOldGen* old_gen = heap->old_gen();
 705 
 706   if (!ScavengeWithObjectsInToSpace) {
 707     // Do not attempt to promote unless to_space is empty
 708     if (!young_gen->to_space()->is_empty()) {
 709       _consecutive_skipped_scavenges++;
 710       if (UsePerfData) {
 711         counters->update_scavenge_skipped(to_space_not_empty);
 712       }
 713       return false;
 714     }
 715   }
 716 
 717   // Test to see if the scavenge will likely fail.
 718   PSAdaptiveSizePolicy* policy = heap->size_policy();
 719 
 720   // A similar test is done in the policy's should_full_GC().  If this is
 721   // changed, decide if that test should also be changed.
 722   size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
 723   size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
 724   bool result = promotion_estimate < old_gen->free_in_bytes();
 725 
 726   if (PrintGCDetails && Verbose) {
 727     gclog_or_tty->print(result ? "  do scavenge: " : "  skip scavenge: ");
 728     gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
 729       " padded_average_promoted " SIZE_FORMAT
 730       " free in old gen " SIZE_FORMAT,
 731       (size_t) policy->average_promoted_in_bytes(),
 732       (size_t) policy->padded_average_promoted_in_bytes(),
 733       old_gen->free_in_bytes());
 734     if (young_gen->used_in_bytes() <
 735         (size_t) policy->padded_average_promoted_in_bytes()) {
 736       gclog_or_tty->print_cr(" padded_promoted_average is greater"
 737         " than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
 738     }
 739   }
 740 
 741   if (result) {
 742     _consecutive_skipped_scavenges = 0;
 743   } else {
 744     _consecutive_skipped_scavenges++;
 745     if (UsePerfData) {
 746       counters->update_scavenge_skipped(promoted_too_large);
 747     }
 748   }
 749   return result;
 750 }
 751 
 752   // Used to add tasks
 753 GCTaskManager* const PSScavenge::gc_task_manager() {
 754   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
 755    "shouldn't return NULL");
 756   return ParallelScavengeHeap::gc_task_manager();
 757 }
 758 
 759 void PSScavenge::initialize() {
 760   // Arguments must have been parsed
 761 
 762   if (AlwaysTenure) {
 763     _tenuring_threshold = 0;
 764   } else if (NeverTenure) {
 765     _tenuring_threshold = markOopDesc::max_age + 1;
 766   } else {
 767     // We want to smooth out our startup times for the AdaptiveSizePolicy
 768     _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
 769                                                     MaxTenuringThreshold;
 770   }
 771 
 772   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 773   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 774 
 775   PSYoungGen* young_gen = heap->young_gen();
 776   PSOldGen* old_gen = heap->old_gen();
 777   PSPermGen* perm_gen = heap->perm_gen();
 778 
 779   // Set boundary between young_gen and old_gen
 780   assert(perm_gen->reserved().end() <= old_gen->object_space()->bottom(),
 781          "perm above old");
 782   assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
 783          "old above young");
 784   _young_generation_boundary = young_gen->eden_space()->bottom();
 785 
 786   // Initialize ref handling object for scavenging.
 787   MemRegion mr = young_gen->reserved();
 788   _ref_processor = ReferenceProcessor::create_ref_processor(
 789     mr,                         // span
 790     true,                       // atomic_discovery
 791     true,                       // mt_discovery
 792     NULL,                       // is_alive_non_header
 793     ParallelGCThreads,
 794     ParallelRefProcEnabled);
 795 
 796   // Cache the cardtable
 797   BarrierSet* bs = Universe::heap()->barrier_set();
 798   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
 799   _card_table = (CardTableExtension*)bs;
 800 
 801   _counters = new CollectorCounters("PSScavenge", 0);
 802 }