1 /*
   2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_psYoungGen.cpp.incl"
  27 
  28 PSYoungGen::PSYoungGen(size_t        initial_size,
  29                        size_t        min_size,
  30                        size_t        max_size) :
  31   _init_gen_size(initial_size),
  32   _min_gen_size(min_size),
  33   _max_gen_size(max_size)
  34 {}
  35 
  36 void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
  37   assert(_init_gen_size != 0, "Should have a finite size");
  38   _virtual_space = new PSVirtualSpace(rs, alignment);
  39   if (!virtual_space()->expand_by(_init_gen_size)) {
  40     vm_exit_during_initialization("Could not reserve enough space for "
  41                                   "object heap");
  42   }
  43 }
  44 
  45 void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
  46   initialize_virtual_space(rs, alignment);
  47   initialize_work();
  48 }
  49 
  50 void PSYoungGen::initialize_work() {
  51 
  52   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
  53                         (HeapWord*)virtual_space()->high_boundary());
  54 
  55   MemRegion cmr((HeapWord*)virtual_space()->low(),
  56                 (HeapWord*)virtual_space()->high());
  57   Universe::heap()->barrier_set()->resize_covered_region(cmr);
  58 
  59   if (ZapUnusedHeapArea) {
  60     // Mangle newly committed space immediately because it
  61     // can be done here more simply that after the new
  62     // spaces have been computed.
  63     SpaceMangler::mangle_region(cmr);
  64   }
  65 
  66   if (UseNUMA) {
  67     _eden_space = new MutableNUMASpace(virtual_space()->alignment());
  68   } else {
  69     _eden_space = new MutableSpace(virtual_space()->alignment());
  70   }
  71   _from_space = new MutableSpace(virtual_space()->alignment());
  72   _to_space   = new MutableSpace(virtual_space()->alignment());
  73 
  74   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
  75     vm_exit_during_initialization("Could not allocate a young gen space");
  76   }
  77 
  78   // Allocate the mark sweep views of spaces
  79   _eden_mark_sweep =
  80       new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
  81   _from_mark_sweep =
  82       new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
  83   _to_mark_sweep =
  84       new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
  85 
  86   if (_eden_mark_sweep == NULL ||
  87       _from_mark_sweep == NULL ||
  88       _to_mark_sweep == NULL) {
  89     vm_exit_during_initialization("Could not complete allocation"
  90                                   " of the young generation");
  91   }
  92 
  93   // Generation Counters - generation 0, 3 subspaces
  94   _gen_counters = new PSGenerationCounters("new", 0, 3, _virtual_space);
  95 
  96   // Compute maximum space sizes for performance counters
  97   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  98   size_t alignment = heap->intra_heap_alignment();
  99   size_t size = virtual_space()->reserved_size();
 100 
 101   size_t max_survivor_size;
 102   size_t max_eden_size;
 103 
 104   if (UseAdaptiveSizePolicy) {
 105     max_survivor_size = size / MinSurvivorRatio;
 106 
 107     // round the survivor space size down to the nearest alignment
 108     // and make sure its size is greater than 0.
 109     max_survivor_size = align_size_down(max_survivor_size, alignment);
 110     max_survivor_size = MAX2(max_survivor_size, alignment);
 111 
 112     // set the maximum size of eden to be the size of the young gen
 113     // less two times the minimum survivor size. The minimum survivor
 114     // size for UseAdaptiveSizePolicy is one alignment.
 115     max_eden_size = size - 2 * alignment;
 116   } else {
 117     max_survivor_size = size / InitialSurvivorRatio;
 118 
 119     // round the survivor space size down to the nearest alignment
 120     // and make sure its size is greater than 0.
 121     max_survivor_size = align_size_down(max_survivor_size, alignment);
 122     max_survivor_size = MAX2(max_survivor_size, alignment);
 123 
 124     // set the maximum size of eden to be the size of the young gen
 125     // less two times the survivor size when the generation is 100%
 126     // committed. The minimum survivor size for -UseAdaptiveSizePolicy
 127     // is dependent on the committed portion (current capacity) of the
 128     // generation - the less space committed, the smaller the survivor
 129     // space, possibly as small as an alignment. However, we are interested
 130     // in the case where the young generation is 100% committed, as this
 131     // is the point where eden reachs its maximum size. At this point,
 132     // the size of a survivor space is max_survivor_size.
 133     max_eden_size = size - 2 * max_survivor_size;
 134   }
 135 
 136   _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
 137                                      _gen_counters);
 138   _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
 139                                      _gen_counters);
 140   _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
 141                                    _gen_counters);
 142 
 143   compute_initial_space_boundaries();
 144 }
 145 
 146 void PSYoungGen::compute_initial_space_boundaries() {
 147   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 148   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 149 
 150   // Compute sizes
 151   size_t alignment = heap->intra_heap_alignment();
 152   size_t size = virtual_space()->committed_size();
 153 
 154   size_t survivor_size = size / InitialSurvivorRatio;
 155   survivor_size = align_size_down(survivor_size, alignment);
 156   // ... but never less than an alignment
 157   survivor_size = MAX2(survivor_size, alignment);
 158 
 159   // Young generation is eden + 2 survivor spaces
 160   size_t eden_size = size - (2 * survivor_size);
 161 
 162   // Now go ahead and set 'em.
 163   set_space_boundaries(eden_size, survivor_size);
 164   space_invariants();
 165 
 166   if (UsePerfData) {
 167     _eden_counters->update_capacity();
 168     _from_counters->update_capacity();
 169     _to_counters->update_capacity();
 170   }
 171 }
 172 
 173 void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
 174   assert(eden_size < virtual_space()->committed_size(), "just checking");
 175   assert(eden_size > 0  && survivor_size > 0, "just checking");
 176 
 177   // Initial layout is Eden, to, from. After swapping survivor spaces,
 178   // that leaves us with Eden, from, to, which is step one in our two
 179   // step resize-with-live-data procedure.
 180   char *eden_start = virtual_space()->low();
 181   char *to_start   = eden_start + eden_size;
 182   char *from_start = to_start   + survivor_size;
 183   char *from_end   = from_start + survivor_size;
 184 
 185   assert(from_end == virtual_space()->high(), "just checking");
 186   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
 187   assert(is_object_aligned((intptr_t)to_start),   "checking alignment");
 188   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
 189 
 190   MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
 191   MemRegion to_mr  ((HeapWord*)to_start, (HeapWord*)from_start);
 192   MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
 193 
 194   eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
 195     to_space()->initialize(to_mr  , true, ZapUnusedHeapArea);
 196   from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
 197 }
 198 
 199 #ifndef PRODUCT
 200 void PSYoungGen::space_invariants() {
 201   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 202   const size_t alignment = heap->intra_heap_alignment();
 203 
 204   // Currently, our eden size cannot shrink to zero
 205   guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
 206   guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
 207   guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");
 208 
 209   // Relationship of spaces to each other
 210   char* eden_start = (char*)eden_space()->bottom();
 211   char* eden_end   = (char*)eden_space()->end();
 212   char* from_start = (char*)from_space()->bottom();
 213   char* from_end   = (char*)from_space()->end();
 214   char* to_start   = (char*)to_space()->bottom();
 215   char* to_end     = (char*)to_space()->end();
 216 
 217   guarantee(eden_start >= virtual_space()->low(), "eden bottom");
 218   guarantee(eden_start < eden_end, "eden space consistency");
 219   guarantee(from_start < from_end, "from space consistency");
 220   guarantee(to_start < to_end, "to space consistency");
 221 
 222   // Check whether from space is below to space
 223   if (from_start < to_start) {
 224     // Eden, from, to
 225     guarantee(eden_end <= from_start, "eden/from boundary");
 226     guarantee(from_end <= to_start,   "from/to boundary");
 227     guarantee(to_end <= virtual_space()->high(), "to end");
 228   } else {
 229     // Eden, to, from
 230     guarantee(eden_end <= to_start, "eden/to boundary");
 231     guarantee(to_end <= from_start, "to/from boundary");
 232     guarantee(from_end <= virtual_space()->high(), "from end");
 233   }
 234 
 235   // More checks that the virtual space is consistent with the spaces
 236   assert(virtual_space()->committed_size() >=
 237     (eden_space()->capacity_in_bytes() +
 238      to_space()->capacity_in_bytes() +
 239      from_space()->capacity_in_bytes()), "Committed size is inconsistent");
 240   assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
 241     "Space invariant");
 242   char* eden_top = (char*)eden_space()->top();
 243   char* from_top = (char*)from_space()->top();
 244   char* to_top = (char*)to_space()->top();
 245   assert(eden_top <= virtual_space()->high(), "eden top");
 246   assert(from_top <= virtual_space()->high(), "from top");
 247   assert(to_top <= virtual_space()->high(), "to top");
 248 
 249   virtual_space()->verify();
 250 }
 251 #endif
 252 
 253 void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
 254   // Resize the generation if needed. If the generation resize
 255   // reports false, do not attempt to resize the spaces.
 256   if (resize_generation(eden_size, survivor_size)) {
 257     // Then we lay out the spaces inside the generation
 258     resize_spaces(eden_size, survivor_size);
 259 
 260     space_invariants();
 261 
 262     if (PrintAdaptiveSizePolicy && Verbose) {
 263       gclog_or_tty->print_cr("Young generation size: "
 264         "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
 265         " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
 266         " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
 267         eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
 268         _max_gen_size, min_gen_size());
 269     }
 270   }
 271 }
 272 
 273 
 274 bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
 275   const size_t alignment = virtual_space()->alignment();
 276   size_t orig_size = virtual_space()->committed_size();
 277   bool size_changed = false;
 278 
 279   // There used to be this guarantee there.
 280   // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
 281   // Code below forces this requirement.  In addition the desired eden
 282   // size and disired survivor sizes are desired goals and may
 283   // exceed the total generation size.
 284 
 285   assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
 286 
 287   // Adjust new generation size
 288   const size_t eden_plus_survivors =
 289           align_size_up(eden_size + 2 * survivor_size, alignment);
 290   size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
 291                              min_gen_size());
 292   assert(desired_size <= max_size(), "just checking");
 293 
 294   if (desired_size > orig_size) {
 295     // Grow the generation
 296     size_t change = desired_size - orig_size;
 297     assert(change % alignment == 0, "just checking");
 298     HeapWord* prev_high = (HeapWord*) virtual_space()->high();
 299     if (!virtual_space()->expand_by(change)) {
 300       return false; // Error if we fail to resize!
 301     }
 302     if (ZapUnusedHeapArea) {
 303       // Mangle newly committed space immediately because it
 304       // can be done here more simply that after the new
 305       // spaces have been computed.
 306       HeapWord* new_high = (HeapWord*) virtual_space()->high();
 307       MemRegion mangle_region(prev_high, new_high);
 308       SpaceMangler::mangle_region(mangle_region);
 309     }
 310     size_changed = true;
 311   } else if (desired_size < orig_size) {
 312     size_t desired_change = orig_size - desired_size;
 313     assert(desired_change % alignment == 0, "just checking");
 314 
 315     desired_change = limit_gen_shrink(desired_change);
 316 
 317     if (desired_change > 0) {
 318       virtual_space()->shrink_by(desired_change);
 319       reset_survivors_after_shrink();
 320 
 321       size_changed = true;
 322     }
 323   } else {
 324     if (Verbose && PrintGC) {
 325       if (orig_size == gen_size_limit()) {
 326         gclog_or_tty->print_cr("PSYoung generation size at maximum: "
 327           SIZE_FORMAT "K", orig_size/K);
 328       } else if (orig_size == min_gen_size()) {
 329         gclog_or_tty->print_cr("PSYoung generation size at minium: "
 330           SIZE_FORMAT "K", orig_size/K);
 331       }
 332     }
 333   }
 334 
 335   if (size_changed) {
 336     post_resize();
 337 
 338     if (Verbose && PrintGC) {
 339       size_t current_size  = virtual_space()->committed_size();
 340       gclog_or_tty->print_cr("PSYoung generation size changed: "
 341                              SIZE_FORMAT "K->" SIZE_FORMAT "K",
 342                              orig_size/K, current_size/K);
 343     }
 344   }
 345 
 346   guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
 347             virtual_space()->committed_size() == max_size(), "Sanity");
 348 
 349   return true;
 350 }
 351 
 352 #ifndef PRODUCT
 353 // In the numa case eden is not mangled so a survivor space
 354 // moving into a region previously occupied by a survivor
 355 // may find an unmangled region.  Also in the PS case eden
 356 // to-space and from-space may not touch (i.e., there may be
 357 // gaps between them due to movement while resizing the
 358 // spaces).  Those gaps must be mangled.
 359 void PSYoungGen::mangle_survivors(MutableSpace* s1,
 360                                   MemRegion s1MR,
 361                                   MutableSpace* s2,
 362                                   MemRegion s2MR) {
 363   // Check eden and gap between eden and from-space, in deciding
 364   // what to mangle in from-space.  Check the gap between from-space
 365   // and to-space when deciding what to mangle.
 366   //
 367   //      +--------+   +----+    +---+
 368   //      | eden   |   |s1  |    |s2 |
 369   //      +--------+   +----+    +---+
 370   //                 +-------+ +-----+
 371   //                 |s1MR   | |s2MR |
 372   //                 +-------+ +-----+
 373   // All of survivor-space is properly mangled so find the
 374   // upper bound on the mangling for any portion above current s1.
 375   HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
 376   MemRegion delta1_left;
 377   if (s1MR.start() < delta_end) {
 378     delta1_left = MemRegion(s1MR.start(), delta_end);
 379     s1->mangle_region(delta1_left);
 380   }
 381   // Find any portion to the right of the current s1.
 382   HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
 383   MemRegion delta1_right;
 384   if (delta_start < s1MR.end()) {
 385     delta1_right = MemRegion(delta_start, s1MR.end());
 386     s1->mangle_region(delta1_right);
 387   }
 388 
 389   // Similarly for the second survivor space except that
 390   // any of the new region that overlaps with the current
 391   // region of the first survivor space has already been
 392   // mangled.
 393   delta_end = MIN2(s2->bottom(), s2MR.end());
 394   delta_start = MAX2(s2MR.start(), s1->end());
 395   MemRegion delta2_left;
 396   if (s2MR.start() < delta_end) {
 397     delta2_left = MemRegion(s2MR.start(), delta_end);
 398     s2->mangle_region(delta2_left);
 399   }
 400   delta_start = MAX2(s2->end(), s2MR.start());
 401   MemRegion delta2_right;
 402   if (delta_start < s2MR.end()) {
 403     s2->mangle_region(delta2_right);
 404   }
 405 
 406   if (TraceZapUnusedHeapArea) {
 407     // s1
 408     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
 409       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
 410       s1->bottom(), s1->end(), s1MR.start(), s1MR.end());
 411     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
 412       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
 413       delta1_left.start(), delta1_left.end(), delta1_right.start(),
 414       delta1_right.end());
 415 
 416     // s2
 417     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
 418       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
 419       s2->bottom(), s2->end(), s2MR.start(), s2MR.end());
 420     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
 421       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
 422       delta2_left.start(), delta2_left.end(), delta2_right.start(),
 423       delta2_right.end());
 424   }
 425 
 426 }
 427 #endif // NOT PRODUCT
 428 
 429 void PSYoungGen::resize_spaces(size_t requested_eden_size,
 430                                size_t requested_survivor_size) {
 431   assert(UseAdaptiveSizePolicy, "sanity check");
 432   assert(requested_eden_size > 0  && requested_survivor_size > 0,
 433          "just checking");
 434 
 435   // We require eden and to space to be empty
 436   if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
 437     return;
 438   }
 439 
 440   if (PrintAdaptiveSizePolicy && Verbose) {
 441     gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: "
 442                   SIZE_FORMAT
 443                   ", requested_survivor_size: " SIZE_FORMAT ")",
 444                   requested_eden_size, requested_survivor_size);
 445     gclog_or_tty->print_cr("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
 446                   SIZE_FORMAT,
 447                   eden_space()->bottom(),
 448                   eden_space()->end(),
 449                   pointer_delta(eden_space()->end(),
 450                                 eden_space()->bottom(),
 451                                 sizeof(char)));
 452     gclog_or_tty->print_cr("    from: [" PTR_FORMAT ".." PTR_FORMAT ") "
 453                   SIZE_FORMAT,
 454                   from_space()->bottom(),
 455                   from_space()->end(),
 456                   pointer_delta(from_space()->end(),
 457                                 from_space()->bottom(),
 458                                 sizeof(char)));
 459     gclog_or_tty->print_cr("      to: [" PTR_FORMAT ".." PTR_FORMAT ") "
 460                   SIZE_FORMAT,
 461                   to_space()->bottom(),
 462                   to_space()->end(),
 463                   pointer_delta(  to_space()->end(),
 464                                   to_space()->bottom(),
 465                                   sizeof(char)));
 466   }
 467 
 468   // There's nothing to do if the new sizes are the same as the current
 469   if (requested_survivor_size == to_space()->capacity_in_bytes() &&
 470       requested_survivor_size == from_space()->capacity_in_bytes() &&
 471       requested_eden_size == eden_space()->capacity_in_bytes()) {
 472     if (PrintAdaptiveSizePolicy && Verbose) {
 473       gclog_or_tty->print_cr("    capacities are the right sizes, returning");
 474     }
 475     return;
 476   }
 477 
 478   char* eden_start = (char*)eden_space()->bottom();
 479   char* eden_end   = (char*)eden_space()->end();
 480   char* from_start = (char*)from_space()->bottom();
 481   char* from_end   = (char*)from_space()->end();
 482   char* to_start   = (char*)to_space()->bottom();
 483   char* to_end     = (char*)to_space()->end();
 484 
 485   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 486   const size_t alignment = heap->intra_heap_alignment();
 487   const bool maintain_minimum =
 488     (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
 489 
 490   bool eden_from_to_order = from_start < to_start;
 491   // Check whether from space is below to space
 492   if (eden_from_to_order) {
 493     // Eden, from, to
 494     eden_from_to_order = true;
 495     if (PrintAdaptiveSizePolicy && Verbose) {
 496       gclog_or_tty->print_cr("  Eden, from, to:");
 497     }
 498 
 499     // Set eden
 500     // "requested_eden_size" is a goal for the size of eden
 501     // and may not be attainable.  "eden_size" below is
 502     // calculated based on the location of from-space and
 503     // the goal for the size of eden.  from-space is
 504     // fixed in place because it contains live data.
 505     // The calculation is done this way to avoid 32bit
 506     // overflow (i.e., eden_start + requested_eden_size
 507     // may too large for representation in 32bits).
 508     size_t eden_size;
 509     if (maintain_minimum) {
 510       // Only make eden larger than the requested size if
 511       // the minimum size of the generation has to be maintained.
 512       // This could be done in general but policy at a higher
 513       // level is determining a requested size for eden and that
 514       // should be honored unless there is a fundamental reason.
 515       eden_size = pointer_delta(from_start,
 516                                 eden_start,
 517                                 sizeof(char));
 518     } else {
 519       eden_size = MIN2(requested_eden_size,
 520                        pointer_delta(from_start, eden_start, sizeof(char)));
 521     }
 522 
 523     eden_end = eden_start + eden_size;
 524     assert(eden_end >= eden_start, "addition overflowed")
 525 
 526     // To may resize into from space as long as it is clear of live data.
 527     // From space must remain page aligned, though, so we need to do some
 528     // extra calculations.
 529 
 530     // First calculate an optimal to-space
 531     to_end   = (char*)virtual_space()->high();
 532     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
 533                                     sizeof(char));
 534 
 535     // Does the optimal to-space overlap from-space?
 536     if (to_start < (char*)from_space()->end()) {
 537       assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 538 
 539       // Calculate the minimum offset possible for from_end
 540       size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
 541 
 542       // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
 543       if (from_size == 0) {
 544         from_size = alignment;
 545       } else {
 546         from_size = align_size_up(from_size, alignment);
 547       }
 548 
 549       from_end = from_start + from_size;
 550       assert(from_end > from_start, "addition overflow or from_size problem");
 551 
 552       guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
 553 
 554       // Now update to_start with the new from_end
 555       to_start = MAX2(from_end, to_start);
 556     }
 557 
 558     guarantee(to_start != to_end, "to space is zero sized");
 559 
 560     if (PrintAdaptiveSizePolicy && Verbose) {
 561       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
 562                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 563                     eden_start,
 564                     eden_end,
 565                     pointer_delta(eden_end, eden_start, sizeof(char)));
 566       gclog_or_tty->print_cr("    [from_start .. from_end): "
 567                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 568                     from_start,
 569                     from_end,
 570                     pointer_delta(from_end, from_start, sizeof(char)));
 571       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
 572                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 573                     to_start,
 574                     to_end,
 575                     pointer_delta(  to_end,   to_start, sizeof(char)));
 576     }
 577   } else {
 578     // Eden, to, from
 579     if (PrintAdaptiveSizePolicy && Verbose) {
 580       gclog_or_tty->print_cr("  Eden, to, from:");
 581     }
 582 
 583     // To space gets priority over eden resizing. Note that we position
 584     // to space as if we were able to resize from space, even though from
 585     // space is not modified.
 586     // Giving eden priority was tried and gave poorer performance.
 587     to_end   = (char*)pointer_delta(virtual_space()->high(),
 588                                     (char*)requested_survivor_size,
 589                                     sizeof(char));
 590     to_end   = MIN2(to_end, from_start);
 591     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
 592                                     sizeof(char));
 593     // if the space sizes are to be increased by several times then
 594     // 'to_start' will point beyond the young generation. In this case
 595     // 'to_start' should be adjusted.
 596     to_start = MAX2(to_start, eden_start + alignment);
 597 
 598     // Compute how big eden can be, then adjust end.
 599     // See  comments above on calculating eden_end.
 600     size_t eden_size;
 601     if (maintain_minimum) {
 602       eden_size = pointer_delta(to_start, eden_start, sizeof(char));
 603     } else {
 604       eden_size = MIN2(requested_eden_size,
 605                        pointer_delta(to_start, eden_start, sizeof(char)));
 606     }
 607     eden_end = eden_start + eden_size;
 608     assert(eden_end >= eden_start, "addition overflowed")
 609 
 610     // Could choose to not let eden shrink
 611     // to_start = MAX2(to_start, eden_end);
 612 
 613     // Don't let eden shrink down to 0 or less.
 614     eden_end = MAX2(eden_end, eden_start + alignment);
 615     to_start = MAX2(to_start, eden_end);
 616 
 617     if (PrintAdaptiveSizePolicy && Verbose) {
 618       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
 619                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 620                     eden_start,
 621                     eden_end,
 622                     pointer_delta(eden_end, eden_start, sizeof(char)));
 623       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
 624                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 625                     to_start,
 626                     to_end,
 627                     pointer_delta(  to_end,   to_start, sizeof(char)));
 628       gclog_or_tty->print_cr("    [from_start .. from_end): "
 629                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 630                     from_start,
 631                     from_end,
 632                     pointer_delta(from_end, from_start, sizeof(char)));
 633     }
 634   }
 635 
 636 
 637   guarantee((HeapWord*)from_start <= from_space()->bottom(),
 638             "from start moved to the right");
 639   guarantee((HeapWord*)from_end >= from_space()->top(),
 640             "from end moved into live data");
 641   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
 642   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
 643   assert(is_object_aligned((intptr_t)to_start), "checking alignment");
 644 
 645   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
 646   MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
 647   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
 648 
 649   // Let's make sure the call to initialize doesn't reset "top"!
 650   HeapWord* old_from_top = from_space()->top();
 651 
 652   // For PrintAdaptiveSizePolicy block  below
 653   size_t old_from = from_space()->capacity_in_bytes();
 654   size_t old_to   = to_space()->capacity_in_bytes();
 655 
 656   if (ZapUnusedHeapArea) {
 657     // NUMA is a special case because a numa space is not mangled
 658     // in order to not prematurely bind its address to memory to
 659     // the wrong memory (i.e., don't want the GC thread to first
 660     // touch the memory).  The survivor spaces are not numa
 661     // spaces and are mangled.
 662     if (UseNUMA) {
 663       if (eden_from_to_order) {
 664         mangle_survivors(from_space(), fromMR, to_space(), toMR);
 665       } else {
 666         mangle_survivors(to_space(), toMR, from_space(), fromMR);
 667       }
 668     }
 669 
 670     // If not mangling the spaces, do some checking to verify that
 671     // the spaces are already mangled.
 672     // The spaces should be correctly mangled at this point so
 673     // do some checking here. Note that they are not being mangled
 674     // in the calls to initialize().
 675     // Must check mangling before the spaces are reshaped.  Otherwise,
 676     // the bottom or end of one space may have moved into an area
 677     // covered by another space and a failure of the check may
 678     // not correctly indicate which space is not properly mangled.
 679     HeapWord* limit = (HeapWord*) virtual_space()->high();
 680     eden_space()->check_mangled_unused_area(limit);
 681     from_space()->check_mangled_unused_area(limit);
 682       to_space()->check_mangled_unused_area(limit);
 683   }
 684   // When an existing space is being initialized, it is not
 685   // mangled because the space has been previously mangled.
 686   eden_space()->initialize(edenMR,
 687                            SpaceDecorator::Clear,
 688                            SpaceDecorator::DontMangle);
 689     to_space()->initialize(toMR,
 690                            SpaceDecorator::Clear,
 691                            SpaceDecorator::DontMangle);
 692   from_space()->initialize(fromMR,
 693                            SpaceDecorator::DontClear,
 694                            SpaceDecorator::DontMangle);
 695 
 696   assert(from_space()->top() == old_from_top, "from top changed!");
 697 
 698   if (PrintAdaptiveSizePolicy) {
 699     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 700     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 701 
 702     gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
 703                   "collection: %d "
 704                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
 705                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
 706                   heap->total_collections(),
 707                   old_from, old_to,
 708                   from_space()->capacity_in_bytes(),
 709                   to_space()->capacity_in_bytes());
 710     gclog_or_tty->cr();
 711   }
 712 }
 713 
 714 void PSYoungGen::swap_spaces() {
 715   MutableSpace* s    = from_space();
 716   _from_space        = to_space();
 717   _to_space          = s;
 718 
 719   // Now update the decorators.
 720   PSMarkSweepDecorator* md = from_mark_sweep();
 721   _from_mark_sweep           = to_mark_sweep();
 722   _to_mark_sweep             = md;
 723 
 724   assert(from_mark_sweep()->space() == from_space(), "Sanity");
 725   assert(to_mark_sweep()->space() == to_space(), "Sanity");
 726 }
 727 
 728 size_t PSYoungGen::capacity_in_bytes() const {
 729   return eden_space()->capacity_in_bytes()
 730        + from_space()->capacity_in_bytes();  // to_space() is only used during scavenge
 731 }
 732 
 733 
 734 size_t PSYoungGen::used_in_bytes() const {
 735   return eden_space()->used_in_bytes()
 736        + from_space()->used_in_bytes();      // to_space() is only used during scavenge
 737 }
 738 
 739 
 740 size_t PSYoungGen::free_in_bytes() const {
 741   return eden_space()->free_in_bytes()
 742        + from_space()->free_in_bytes();      // to_space() is only used during scavenge
 743 }
 744 
 745 size_t PSYoungGen::capacity_in_words() const {
 746   return eden_space()->capacity_in_words()
 747        + from_space()->capacity_in_words();  // to_space() is only used during scavenge
 748 }
 749 
 750 
 751 size_t PSYoungGen::used_in_words() const {
 752   return eden_space()->used_in_words()
 753        + from_space()->used_in_words();      // to_space() is only used during scavenge
 754 }
 755 
 756 
 757 size_t PSYoungGen::free_in_words() const {
 758   return eden_space()->free_in_words()
 759        + from_space()->free_in_words();      // to_space() is only used during scavenge
 760 }
 761 
 762 void PSYoungGen::object_iterate(ObjectClosure* blk) {
 763   eden_space()->object_iterate(blk);
 764   from_space()->object_iterate(blk);
 765   to_space()->object_iterate(blk);
 766 }
 767 
 768 void PSYoungGen::precompact() {
 769   eden_mark_sweep()->precompact();
 770   from_mark_sweep()->precompact();
 771   to_mark_sweep()->precompact();
 772 }
 773 
 774 void PSYoungGen::adjust_pointers() {
 775   eden_mark_sweep()->adjust_pointers();
 776   from_mark_sweep()->adjust_pointers();
 777   to_mark_sweep()->adjust_pointers();
 778 }
 779 
 780 void PSYoungGen::compact() {
 781   eden_mark_sweep()->compact(ZapUnusedHeapArea);
 782   from_mark_sweep()->compact(ZapUnusedHeapArea);
 783   // Mark sweep stores preserved markOops in to space, don't disturb!
 784   to_mark_sweep()->compact(false);
 785 }
 786 
 787 void PSYoungGen::move_and_update(ParCompactionManager* cm) {
 788   PSParallelCompact::move_and_update(cm, PSParallelCompact::eden_space_id);
 789   PSParallelCompact::move_and_update(cm, PSParallelCompact::from_space_id);
 790   PSParallelCompact::move_and_update(cm, PSParallelCompact::to_space_id);
 791 }
 792 
 793 void PSYoungGen::print() const { print_on(tty); }
 794 void PSYoungGen::print_on(outputStream* st) const {
 795   st->print(" %-15s", "PSYoungGen");
 796   if (PrintGCDetails && Verbose) {
 797     st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
 798                capacity_in_bytes(), used_in_bytes());
 799   } else {
 800     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
 801                capacity_in_bytes()/K, used_in_bytes()/K);
 802   }
 803   virtual_space()->print_space_boundaries_on(st);
 804   st->print("  eden"); eden_space()->print_on(st);
 805   st->print("  from"); from_space()->print_on(st);
 806   st->print("  to  "); to_space()->print_on(st);
 807 }
 808 
 809 void PSYoungGen::print_used_change(size_t prev_used) const {
 810   gclog_or_tty->print(" [%s:", name());
 811   gclog_or_tty->print(" "  SIZE_FORMAT "K"
 812                       "->" SIZE_FORMAT "K"
 813                       "("  SIZE_FORMAT "K)",
 814                       prev_used / K, used_in_bytes() / K,
 815                       capacity_in_bytes() / K);
 816   gclog_or_tty->print("]");
 817 }
 818 
 819 size_t PSYoungGen::available_for_expansion() {
 820   ShouldNotReachHere();
 821   return 0;
 822 }
 823 
 824 size_t PSYoungGen::available_for_contraction() {
 825   ShouldNotReachHere();
 826   return 0;
 827 }
 828 
 829 size_t PSYoungGen::available_to_min_gen() {
 830   assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
 831   return virtual_space()->committed_size() - min_gen_size();
 832 }
 833 
 834 // This method assumes that from-space has live data and that
 835 // any shrinkage of the young gen is limited by location of
 836 // from-space.
 837 size_t PSYoungGen::available_to_live() {
 838   size_t delta_in_survivor = 0;
 839   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 840   const size_t space_alignment = heap->intra_heap_alignment();
 841   const size_t gen_alignment = heap->young_gen_alignment();
 842 
 843   MutableSpace* space_shrinking = NULL;
 844   if (from_space()->end() > to_space()->end()) {
 845     space_shrinking = from_space();
 846   } else {
 847     space_shrinking = to_space();
 848   }
 849 
 850   // Include any space that is committed but not included in
 851   // the survivor spaces.
 852   assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
 853     "Survivor space beyond high end");
 854   size_t unused_committed = pointer_delta(virtual_space()->high(),
 855     space_shrinking->end(), sizeof(char));
 856 
 857   if (space_shrinking->is_empty()) {
 858     // Don't let the space shrink to 0
 859     assert(space_shrinking->capacity_in_bytes() >= space_alignment,
 860       "Space is too small");
 861     delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
 862   } else {
 863     delta_in_survivor = pointer_delta(space_shrinking->end(),
 864                                       space_shrinking->top(),
 865                                       sizeof(char));
 866   }
 867 
 868   size_t delta_in_bytes = unused_committed + delta_in_survivor;
 869   delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
 870   return delta_in_bytes;
 871 }
 872 
 873 // Return the number of bytes available for resizing down the young
 874 // generation.  This is the minimum of
 875 //      input "bytes"
 876 //      bytes to the minimum young gen size
 877 //      bytes to the size currently being used + some small extra
 878 size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
 879   // Allow shrinkage into the current eden but keep eden large enough
 880   // to maintain the minimum young gen size
 881   bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
 882   return align_size_down(bytes, virtual_space()->alignment());
 883 }
 884 
 885 void PSYoungGen::reset_after_change() {
 886   ShouldNotReachHere();
 887 }
 888 
 889 void PSYoungGen::reset_survivors_after_shrink() {
 890   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
 891                         (HeapWord*)virtual_space()->high_boundary());
 892   PSScavenge::reference_processor()->set_span(_reserved);
 893 
 894   MutableSpace* space_shrinking = NULL;
 895   if (from_space()->end() > to_space()->end()) {
 896     space_shrinking = from_space();
 897   } else {
 898     space_shrinking = to_space();
 899   }
 900 
 901   HeapWord* new_end = (HeapWord*)virtual_space()->high();
 902   assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
 903   // Was there a shrink of the survivor space?
 904   if (new_end < space_shrinking->end()) {
 905     MemRegion mr(space_shrinking->bottom(), new_end);
 906     space_shrinking->initialize(mr,
 907                                 SpaceDecorator::DontClear,
 908                                 SpaceDecorator::Mangle);
 909   }
 910 }
 911 
 912 // This method currently does not expect to expand into eden (i.e.,
 913 // the virtual space boundaries is expected to be consistent
 914 // with the eden boundaries..
 915 void PSYoungGen::post_resize() {
 916   assert_locked_or_safepoint(Heap_lock);
 917   assert((eden_space()->bottom() < to_space()->bottom()) &&
 918          (eden_space()->bottom() < from_space()->bottom()),
 919          "Eden is assumed to be below the survivor spaces");
 920 
 921   MemRegion cmr((HeapWord*)virtual_space()->low(),
 922                 (HeapWord*)virtual_space()->high());
 923   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 924   space_invariants();
 925 }
 926 
 927 
 928 
 929 void PSYoungGen::update_counters() {
 930   if (UsePerfData) {
 931     _eden_counters->update_all();
 932     _from_counters->update_all();
 933     _to_counters->update_all();
 934     _gen_counters->update_all();
 935   }
 936 }
 937 
 938 void PSYoungGen::verify(bool allow_dirty) {
 939   eden_space()->verify(allow_dirty);
 940   from_space()->verify(allow_dirty);
 941   to_space()->verify(allow_dirty);
 942 }
 943 
 944 #ifndef PRODUCT
 945 void PSYoungGen::record_spaces_top() {
 946   assert(ZapUnusedHeapArea, "Not mangling unused space");
 947   eden_space()->set_top_for_allocations();
 948   from_space()->set_top_for_allocations();
 949   to_space()->set_top_for_allocations();
 950 }
 951 #endif