1 /*
   2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_psYoungGen.cpp.incl"
  27 
  28 PSYoungGen::PSYoungGen(size_t        initial_size,
  29                        size_t        min_size,
  30                        size_t        max_size) :
  31   _init_gen_size(initial_size),
  32   _min_gen_size(min_size),
  33   _max_gen_size(max_size)
  34 {}
  35 
  36 void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
  37   assert(_init_gen_size != 0, "Should have a finite size");
  38   _virtual_space = new PSVirtualSpace(rs, alignment);
  39   if (!virtual_space()->expand_by(_init_gen_size)) {
  40     vm_exit_during_initialization("Could not reserve enough space for "
  41                                   "object heap");
  42   }
  43 }
  44 
  45 void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
  46   initialize_virtual_space(rs, alignment);
  47   initialize_work();
  48 }
  49 
  50 void PSYoungGen::initialize_work() {
  51 
  52   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
  53                         (HeapWord*)virtual_space()->high_boundary());
  54 
  55   MemRegion cmr((HeapWord*)virtual_space()->low(),
  56                 (HeapWord*)virtual_space()->high());
  57   Universe::heap()->barrier_set()->resize_covered_region(cmr);
  58 
  59   if (ZapUnusedHeapArea) {
  60     // Mangle newly committed space immediately because it
  61     // can be done here more simply that after the new
  62     // spaces have been computed.
  63     SpaceMangler::mangle_region(cmr);
  64   }
  65 
  66   if (UseNUMA) {
  67     _eden_space = new MutableNUMASpace(virtual_space()->alignment());
  68   } else {
  69     _eden_space = new MutableSpace(virtual_space()->alignment());
  70   }
  71   _from_space = new MutableSpace(virtual_space()->alignment());
  72   _to_space   = new MutableSpace(virtual_space()->alignment());
  73 
  74   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
  75     vm_exit_during_initialization("Could not allocate a young gen space");
  76   }
  77 
  78   // Allocate the mark sweep views of spaces
  79   _eden_mark_sweep =
  80       new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
  81   _from_mark_sweep =
  82       new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
  83   _to_mark_sweep =
  84       new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
  85 
  86   if (_eden_mark_sweep == NULL ||
  87       _from_mark_sweep == NULL ||
  88       _to_mark_sweep == NULL) {
  89     vm_exit_during_initialization("Could not complete allocation"
  90                                   " of the young generation");
  91   }
  92 
  93   // Generation Counters - generation 0, 3 subspaces
  94   _gen_counters = new PSGenerationCounters("new", 0, 3, _virtual_space);
  95 
  96   // Compute maximum space sizes for performance counters
  97   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  98   size_t alignment = heap->intra_heap_alignment();
  99   size_t size = virtual_space()->reserved_size();
 100 
 101   size_t max_survivor_size;
 102   size_t max_eden_size;
 103 
 104   if (UseAdaptiveSizePolicy) {
 105     max_survivor_size = size / MinSurvivorRatio;
 106 
 107     // round the survivor space size down to the nearest alignment
 108     // and make sure its size is greater than 0.
 109     max_survivor_size = align_size_down(max_survivor_size, alignment);
 110     max_survivor_size = MAX2(max_survivor_size, alignment);
 111 
 112     // set the maximum size of eden to be the size of the young gen
 113     // less two times the minimum survivor size. The minimum survivor
 114     // size for UseAdaptiveSizePolicy is one alignment.
 115     max_eden_size = size - 2 * alignment;
 116   } else {
 117     max_survivor_size = size / InitialSurvivorRatio;
 118 
 119     // round the survivor space size down to the nearest alignment
 120     // and make sure its size is greater than 0.
 121     max_survivor_size = align_size_down(max_survivor_size, alignment);
 122     max_survivor_size = MAX2(max_survivor_size, alignment);
 123 
 124     // set the maximum size of eden to be the size of the young gen
 125     // less two times the survivor size when the generation is 100%
 126     // committed. The minimum survivor size for -UseAdaptiveSizePolicy
 127     // is dependent on the committed portion (current capacity) of the
 128     // generation - the less space committed, the smaller the survivor
 129     // space, possibly as small as an alignment. However, we are interested
 130     // in the case where the young generation is 100% committed, as this
 131     // is the point where eden reachs its maximum size. At this point,
 132     // the size of a survivor space is max_survivor_size.
 133     max_eden_size = size - 2 * max_survivor_size;
 134   }
 135 
 136   _max_eden_size = max_eden_size;
 137   _max_survivor_size = max_survivor_size;
 138 
 139   _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
 140                                      _gen_counters);
 141   _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
 142                                      _gen_counters);
 143   _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
 144                                    _gen_counters);
 145 
 146   compute_initial_space_boundaries();
 147 }
 148 
 149 void PSYoungGen::compute_initial_space_boundaries() {
 150   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 151   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 152 
 153   // Compute sizes
 154   size_t alignment = heap->intra_heap_alignment();
 155   size_t size = virtual_space()->committed_size();
 156 
 157   size_t survivor_size = size / InitialSurvivorRatio;
 158   survivor_size = align_size_down(survivor_size, alignment);
 159   // ... but never less than an alignment
 160   survivor_size = MAX2(survivor_size, alignment);
 161 
 162   // Young generation is eden + 2 survivor spaces
 163   size_t eden_size = size - (2 * survivor_size);
 164 
 165   // Now go ahead and set 'em.
 166   set_space_boundaries(eden_size, survivor_size);
 167   space_invariants();
 168 
 169   _init_survivor_size = survivor_size;
 170   _init_eden_size = eden_size;
 171 
 172   if (UsePerfData) {
 173     _eden_counters->update_capacity();
 174     _from_counters->update_capacity();
 175     _to_counters->update_capacity();
 176   }
 177 }
 178 
 179 void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
 180   assert(eden_size < virtual_space()->committed_size(), "just checking");
 181   assert(eden_size > 0  && survivor_size > 0, "just checking");
 182 
 183   // Initial layout is Eden, to, from. After swapping survivor spaces,
 184   // that leaves us with Eden, from, to, which is step one in our two
 185   // step resize-with-live-data procedure.
 186   char *eden_start = virtual_space()->low();
 187   char *to_start   = eden_start + eden_size;
 188   char *from_start = to_start   + survivor_size;
 189   char *from_end   = from_start + survivor_size;
 190 
 191   assert(from_end == virtual_space()->high(), "just checking");
 192   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
 193   assert(is_object_aligned((intptr_t)to_start),   "checking alignment");
 194   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
 195 
 196   MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
 197   MemRegion to_mr  ((HeapWord*)to_start, (HeapWord*)from_start);
 198   MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
 199 
 200   eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
 201     to_space()->initialize(to_mr  , true, ZapUnusedHeapArea);
 202   from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
 203 }
 204 
 205 #ifndef PRODUCT
 206 void PSYoungGen::space_invariants() {
 207   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 208   const size_t alignment = heap->intra_heap_alignment();
 209 
 210   // Currently, our eden size cannot shrink to zero
 211   guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
 212   guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
 213   guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");
 214 
 215   // Relationship of spaces to each other
 216   char* eden_start = (char*)eden_space()->bottom();
 217   char* eden_end   = (char*)eden_space()->end();
 218   char* from_start = (char*)from_space()->bottom();
 219   char* from_end   = (char*)from_space()->end();
 220   char* to_start   = (char*)to_space()->bottom();
 221   char* to_end     = (char*)to_space()->end();
 222 
 223   guarantee(eden_start >= virtual_space()->low(), "eden bottom");
 224   guarantee(eden_start < eden_end, "eden space consistency");
 225   guarantee(from_start < from_end, "from space consistency");
 226   guarantee(to_start < to_end, "to space consistency");
 227 
 228   // Check whether from space is below to space
 229   if (from_start < to_start) {
 230     // Eden, from, to
 231     guarantee(eden_end <= from_start, "eden/from boundary");
 232     guarantee(from_end <= to_start,   "from/to boundary");
 233     guarantee(to_end <= virtual_space()->high(), "to end");
 234   } else {
 235     // Eden, to, from
 236     guarantee(eden_end <= to_start, "eden/to boundary");
 237     guarantee(to_end <= from_start, "to/from boundary");
 238     guarantee(from_end <= virtual_space()->high(), "from end");
 239   }
 240 
 241   // More checks that the virtual space is consistent with the spaces
 242   assert(virtual_space()->committed_size() >=
 243     (eden_space()->capacity_in_bytes() +
 244      to_space()->capacity_in_bytes() +
 245      from_space()->capacity_in_bytes()), "Committed size is inconsistent");
 246   assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
 247     "Space invariant");
 248   char* eden_top = (char*)eden_space()->top();
 249   char* from_top = (char*)from_space()->top();
 250   char* to_top = (char*)to_space()->top();
 251   assert(eden_top <= virtual_space()->high(), "eden top");
 252   assert(from_top <= virtual_space()->high(), "from top");
 253   assert(to_top <= virtual_space()->high(), "to top");
 254 
 255   virtual_space()->verify();
 256 }
 257 #endif
 258 
 259 void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
 260   // Resize the generation if needed. If the generation resize
 261   // reports false, do not attempt to resize the spaces.
 262   if (resize_generation(eden_size, survivor_size)) {
 263     // Then we lay out the spaces inside the generation
 264     resize_spaces(eden_size, survivor_size);
 265 
 266     space_invariants();
 267 
 268     if (PrintAdaptiveSizePolicy && Verbose) {
 269       gclog_or_tty->print_cr("Young generation size: "
 270         "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
 271         " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
 272         " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
 273         eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
 274         _max_gen_size, min_gen_size());
 275     }
 276   }
 277 }
 278 
 279 
 280 bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
 281   const size_t alignment = virtual_space()->alignment();
 282   size_t orig_size = virtual_space()->committed_size();
 283   bool size_changed = false;
 284 
 285   // There used to be this guarantee there.
 286   // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
 287   // Code below forces this requirement.  In addition the desired eden
 288   // size and disired survivor sizes are desired goals and may
 289   // exceed the total generation size.
 290 
 291   assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
 292 
 293   // Adjust new generation size
 294   const size_t eden_plus_survivors =
 295           align_size_up(eden_size + 2 * survivor_size, alignment);
 296   size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
 297                              min_gen_size());
 298   assert(desired_size <= max_size(), "just checking");
 299 
 300   if (desired_size > orig_size) {
 301     // Grow the generation
 302     size_t change = desired_size - orig_size;
 303     assert(change % alignment == 0, "just checking");
 304     HeapWord* prev_high = (HeapWord*) virtual_space()->high();
 305     if (!virtual_space()->expand_by(change)) {
 306       return false; // Error if we fail to resize!
 307     }
 308     if (ZapUnusedHeapArea) {
 309       // Mangle newly committed space immediately because it
 310       // can be done here more simply that after the new
 311       // spaces have been computed.
 312       HeapWord* new_high = (HeapWord*) virtual_space()->high();
 313       MemRegion mangle_region(prev_high, new_high);
 314       SpaceMangler::mangle_region(mangle_region);
 315     }
 316     size_changed = true;
 317   } else if (desired_size < orig_size) {
 318     size_t desired_change = orig_size - desired_size;
 319     assert(desired_change % alignment == 0, "just checking");
 320 
 321     desired_change = limit_gen_shrink(desired_change);
 322 
 323     if (desired_change > 0) {
 324       virtual_space()->shrink_by(desired_change);
 325       reset_survivors_after_shrink();
 326 
 327       size_changed = true;
 328     }
 329   } else {
 330     if (Verbose && PrintGC) {
 331       if (orig_size == gen_size_limit()) {
 332         gclog_or_tty->print_cr("PSYoung generation size at maximum: "
 333           SIZE_FORMAT "K", orig_size/K);
 334       } else if (orig_size == min_gen_size()) {
 335         gclog_or_tty->print_cr("PSYoung generation size at minium: "
 336           SIZE_FORMAT "K", orig_size/K);
 337       }
 338     }
 339   }
 340 
 341   if (size_changed) {
 342     post_resize();
 343 
 344     if (Verbose && PrintGC) {
 345       size_t current_size  = virtual_space()->committed_size();
 346       gclog_or_tty->print_cr("PSYoung generation size changed: "
 347                              SIZE_FORMAT "K->" SIZE_FORMAT "K",
 348                              orig_size/K, current_size/K);
 349     }
 350   }
 351 
 352   guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
 353             virtual_space()->committed_size() == max_size(), "Sanity");
 354 
 355   return true;
 356 }
 357 
 358 #ifndef PRODUCT
 359 // In the numa case eden is not mangled so a survivor space
 360 // moving into a region previously occupied by a survivor
 361 // may find an unmangled region.  Also in the PS case eden
 362 // to-space and from-space may not touch (i.e., there may be
 363 // gaps between them due to movement while resizing the
 364 // spaces).  Those gaps must be mangled.
 365 void PSYoungGen::mangle_survivors(MutableSpace* s1,
 366                                   MemRegion s1MR,
 367                                   MutableSpace* s2,
 368                                   MemRegion s2MR) {
 369   // Check eden and gap between eden and from-space, in deciding
 370   // what to mangle in from-space.  Check the gap between from-space
 371   // and to-space when deciding what to mangle.
 372   //
 373   //      +--------+   +----+    +---+
 374   //      | eden   |   |s1  |    |s2 |
 375   //      +--------+   +----+    +---+
 376   //                 +-------+ +-----+
 377   //                 |s1MR   | |s2MR |
 378   //                 +-------+ +-----+
 379   // All of survivor-space is properly mangled so find the
 380   // upper bound on the mangling for any portion above current s1.
 381   HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
 382   MemRegion delta1_left;
 383   if (s1MR.start() < delta_end) {
 384     delta1_left = MemRegion(s1MR.start(), delta_end);
 385     s1->mangle_region(delta1_left);
 386   }
 387   // Find any portion to the right of the current s1.
 388   HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
 389   MemRegion delta1_right;
 390   if (delta_start < s1MR.end()) {
 391     delta1_right = MemRegion(delta_start, s1MR.end());
 392     s1->mangle_region(delta1_right);
 393   }
 394 
 395   // Similarly for the second survivor space except that
 396   // any of the new region that overlaps with the current
 397   // region of the first survivor space has already been
 398   // mangled.
 399   delta_end = MIN2(s2->bottom(), s2MR.end());
 400   delta_start = MAX2(s2MR.start(), s1->end());
 401   MemRegion delta2_left;
 402   if (s2MR.start() < delta_end) {
 403     delta2_left = MemRegion(s2MR.start(), delta_end);
 404     s2->mangle_region(delta2_left);
 405   }
 406   delta_start = MAX2(s2->end(), s2MR.start());
 407   MemRegion delta2_right;
 408   if (delta_start < s2MR.end()) {
 409     s2->mangle_region(delta2_right);
 410   }
 411 
 412   if (TraceZapUnusedHeapArea) {
 413     // s1
 414     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
 415       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
 416       s1->bottom(), s1->end(), s1MR.start(), s1MR.end());
 417     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
 418       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
 419       delta1_left.start(), delta1_left.end(), delta1_right.start(),
 420       delta1_right.end());
 421 
 422     // s2
 423     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
 424       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
 425       s2->bottom(), s2->end(), s2MR.start(), s2MR.end());
 426     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
 427       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
 428       delta2_left.start(), delta2_left.end(), delta2_right.start(),
 429       delta2_right.end());
 430   }
 431 
 432 }
 433 #endif // NOT PRODUCT
 434 
 435 void PSYoungGen::resize_spaces(size_t requested_eden_size,
 436                                size_t requested_survivor_size) {
 437   assert(UseAdaptiveSizePolicy, "sanity check");
 438   assert(requested_eden_size > 0  && requested_survivor_size > 0,
 439          "just checking");
 440 
 441   // We require eden and to space to be empty
 442   if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
 443     return;
 444   }
 445 
 446   if (PrintAdaptiveSizePolicy && Verbose) {
 447     gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: "
 448                   SIZE_FORMAT
 449                   ", requested_survivor_size: " SIZE_FORMAT ")",
 450                   requested_eden_size, requested_survivor_size);
 451     gclog_or_tty->print_cr("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
 452                   SIZE_FORMAT,
 453                   eden_space()->bottom(),
 454                   eden_space()->end(),
 455                   pointer_delta(eden_space()->end(),
 456                                 eden_space()->bottom(),
 457                                 sizeof(char)));
 458     gclog_or_tty->print_cr("    from: [" PTR_FORMAT ".." PTR_FORMAT ") "
 459                   SIZE_FORMAT,
 460                   from_space()->bottom(),
 461                   from_space()->end(),
 462                   pointer_delta(from_space()->end(),
 463                                 from_space()->bottom(),
 464                                 sizeof(char)));
 465     gclog_or_tty->print_cr("      to: [" PTR_FORMAT ".." PTR_FORMAT ") "
 466                   SIZE_FORMAT,
 467                   to_space()->bottom(),
 468                   to_space()->end(),
 469                   pointer_delta(  to_space()->end(),
 470                                   to_space()->bottom(),
 471                                   sizeof(char)));
 472   }
 473 
 474   // There's nothing to do if the new sizes are the same as the current
 475   if (requested_survivor_size == to_space()->capacity_in_bytes() &&
 476       requested_survivor_size == from_space()->capacity_in_bytes() &&
 477       requested_eden_size == eden_space()->capacity_in_bytes()) {
 478     if (PrintAdaptiveSizePolicy && Verbose) {
 479       gclog_or_tty->print_cr("    capacities are the right sizes, returning");
 480     }
 481     return;
 482   }
 483 
 484   char* eden_start = (char*)eden_space()->bottom();
 485   char* eden_end   = (char*)eden_space()->end();
 486   char* from_start = (char*)from_space()->bottom();
 487   char* from_end   = (char*)from_space()->end();
 488   char* to_start   = (char*)to_space()->bottom();
 489   char* to_end     = (char*)to_space()->end();
 490 
 491   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 492   const size_t alignment = heap->intra_heap_alignment();
 493   const bool maintain_minimum =
 494     (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
 495 
 496   bool eden_from_to_order = from_start < to_start;
 497   // Check whether from space is below to space
 498   if (eden_from_to_order) {
 499     // Eden, from, to
 500     eden_from_to_order = true;
 501     if (PrintAdaptiveSizePolicy && Verbose) {
 502       gclog_or_tty->print_cr("  Eden, from, to:");
 503     }
 504 
 505     // Set eden
 506     // "requested_eden_size" is a goal for the size of eden
 507     // and may not be attainable.  "eden_size" below is
 508     // calculated based on the location of from-space and
 509     // the goal for the size of eden.  from-space is
 510     // fixed in place because it contains live data.
 511     // The calculation is done this way to avoid 32bit
 512     // overflow (i.e., eden_start + requested_eden_size
 513     // may too large for representation in 32bits).
 514     size_t eden_size;
 515     if (maintain_minimum) {
 516       // Only make eden larger than the requested size if
 517       // the minimum size of the generation has to be maintained.
 518       // This could be done in general but policy at a higher
 519       // level is determining a requested size for eden and that
 520       // should be honored unless there is a fundamental reason.
 521       eden_size = pointer_delta(from_start,
 522                                 eden_start,
 523                                 sizeof(char));
 524     } else {
 525       eden_size = MIN2(requested_eden_size,
 526                        pointer_delta(from_start, eden_start, sizeof(char)));
 527     }
 528 
 529     eden_end = eden_start + eden_size;
 530     assert(eden_end >= eden_start, "addition overflowed")
 531 
 532     // To may resize into from space as long as it is clear of live data.
 533     // From space must remain page aligned, though, so we need to do some
 534     // extra calculations.
 535 
 536     // First calculate an optimal to-space
 537     to_end   = (char*)virtual_space()->high();
 538     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
 539                                     sizeof(char));
 540 
 541     // Does the optimal to-space overlap from-space?
 542     if (to_start < (char*)from_space()->end()) {
 543       assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 544 
 545       // Calculate the minimum offset possible for from_end
 546       size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
 547 
 548       // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
 549       if (from_size == 0) {
 550         from_size = alignment;
 551       } else {
 552         from_size = align_size_up(from_size, alignment);
 553       }
 554 
 555       from_end = from_start + from_size;
 556       assert(from_end > from_start, "addition overflow or from_size problem");
 557 
 558       guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
 559 
 560       // Now update to_start with the new from_end
 561       to_start = MAX2(from_end, to_start);
 562     }
 563 
 564     guarantee(to_start != to_end, "to space is zero sized");
 565 
 566     if (PrintAdaptiveSizePolicy && Verbose) {
 567       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
 568                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 569                     eden_start,
 570                     eden_end,
 571                     pointer_delta(eden_end, eden_start, sizeof(char)));
 572       gclog_or_tty->print_cr("    [from_start .. from_end): "
 573                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 574                     from_start,
 575                     from_end,
 576                     pointer_delta(from_end, from_start, sizeof(char)));
 577       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
 578                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 579                     to_start,
 580                     to_end,
 581                     pointer_delta(  to_end,   to_start, sizeof(char)));
 582     }
 583   } else {
 584     // Eden, to, from
 585     if (PrintAdaptiveSizePolicy && Verbose) {
 586       gclog_or_tty->print_cr("  Eden, to, from:");
 587     }
 588 
 589     // To space gets priority over eden resizing. Note that we position
 590     // to space as if we were able to resize from space, even though from
 591     // space is not modified.
 592     // Giving eden priority was tried and gave poorer performance.
 593     to_end   = (char*)pointer_delta(virtual_space()->high(),
 594                                     (char*)requested_survivor_size,
 595                                     sizeof(char));
 596     to_end   = MIN2(to_end, from_start);
 597     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
 598                                     sizeof(char));
 599     // if the space sizes are to be increased by several times then
 600     // 'to_start' will point beyond the young generation. In this case
 601     // 'to_start' should be adjusted.
 602     to_start = MAX2(to_start, eden_start + alignment);
 603 
 604     // Compute how big eden can be, then adjust end.
 605     // See  comments above on calculating eden_end.
 606     size_t eden_size;
 607     if (maintain_minimum) {
 608       eden_size = pointer_delta(to_start, eden_start, sizeof(char));
 609     } else {
 610       eden_size = MIN2(requested_eden_size,
 611                        pointer_delta(to_start, eden_start, sizeof(char)));
 612     }
 613     eden_end = eden_start + eden_size;
 614     assert(eden_end >= eden_start, "addition overflowed")
 615 
 616     // Could choose to not let eden shrink
 617     // to_start = MAX2(to_start, eden_end);
 618 
 619     // Don't let eden shrink down to 0 or less.
 620     eden_end = MAX2(eden_end, eden_start + alignment);
 621     to_start = MAX2(to_start, eden_end);
 622 
 623     if (PrintAdaptiveSizePolicy && Verbose) {
 624       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
 625                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 626                     eden_start,
 627                     eden_end,
 628                     pointer_delta(eden_end, eden_start, sizeof(char)));
 629       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
 630                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 631                     to_start,
 632                     to_end,
 633                     pointer_delta(  to_end,   to_start, sizeof(char)));
 634       gclog_or_tty->print_cr("    [from_start .. from_end): "
 635                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 636                     from_start,
 637                     from_end,
 638                     pointer_delta(from_end, from_start, sizeof(char)));
 639     }
 640   }
 641 
 642 
 643   guarantee((HeapWord*)from_start <= from_space()->bottom(),
 644             "from start moved to the right");
 645   guarantee((HeapWord*)from_end >= from_space()->top(),
 646             "from end moved into live data");
 647   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
 648   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
 649   assert(is_object_aligned((intptr_t)to_start), "checking alignment");
 650 
 651   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
 652   MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
 653   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
 654 
 655   // Let's make sure the call to initialize doesn't reset "top"!
 656   HeapWord* old_from_top = from_space()->top();
 657 
 658   // For PrintAdaptiveSizePolicy block  below
 659   size_t old_from = from_space()->capacity_in_bytes();
 660   size_t old_to   = to_space()->capacity_in_bytes();
 661 
 662   if (ZapUnusedHeapArea) {
 663     // NUMA is a special case because a numa space is not mangled
 664     // in order to not prematurely bind its address to memory to
 665     // the wrong memory (i.e., don't want the GC thread to first
 666     // touch the memory).  The survivor spaces are not numa
 667     // spaces and are mangled.
 668     if (UseNUMA) {
 669       if (eden_from_to_order) {
 670         mangle_survivors(from_space(), fromMR, to_space(), toMR);
 671       } else {
 672         mangle_survivors(to_space(), toMR, from_space(), fromMR);
 673       }
 674     }
 675 
 676     // If not mangling the spaces, do some checking to verify that
 677     // the spaces are already mangled.
 678     // The spaces should be correctly mangled at this point so
 679     // do some checking here. Note that they are not being mangled
 680     // in the calls to initialize().
 681     // Must check mangling before the spaces are reshaped.  Otherwise,
 682     // the bottom or end of one space may have moved into an area
 683     // covered by another space and a failure of the check may
 684     // not correctly indicate which space is not properly mangled.
 685     HeapWord* limit = (HeapWord*) virtual_space()->high();
 686     eden_space()->check_mangled_unused_area(limit);
 687     from_space()->check_mangled_unused_area(limit);
 688       to_space()->check_mangled_unused_area(limit);
 689   }
 690   // When an existing space is being initialized, it is not
 691   // mangled because the space has been previously mangled.
 692   eden_space()->initialize(edenMR,
 693                            SpaceDecorator::Clear,
 694                            SpaceDecorator::DontMangle);
 695     to_space()->initialize(toMR,
 696                            SpaceDecorator::Clear,
 697                            SpaceDecorator::DontMangle);
 698   from_space()->initialize(fromMR,
 699                            SpaceDecorator::DontClear,
 700                            SpaceDecorator::DontMangle);
 701 
 702   assert(from_space()->top() == old_from_top, "from top changed!");
 703 
 704   if (PrintAdaptiveSizePolicy) {
 705     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 706     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 707 
 708     gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
 709                   "collection: %d "
 710                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
 711                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
 712                   heap->total_collections(),
 713                   old_from, old_to,
 714                   from_space()->capacity_in_bytes(),
 715                   to_space()->capacity_in_bytes());
 716     gclog_or_tty->cr();
 717   }
 718 }
 719 
 720 void PSYoungGen::swap_spaces() {
 721   MutableSpace* s    = from_space();
 722   _from_space        = to_space();
 723   _to_space          = s;
 724 
 725   // Now update the decorators.
 726   PSMarkSweepDecorator* md = from_mark_sweep();
 727   _from_mark_sweep           = to_mark_sweep();
 728   _to_mark_sweep             = md;
 729 
 730   assert(from_mark_sweep()->space() == from_space(), "Sanity");
 731   assert(to_mark_sweep()->space() == to_space(), "Sanity");
 732 }
 733 
 734 size_t PSYoungGen::capacity_in_bytes() const {
 735   return eden_space()->capacity_in_bytes()
 736        + from_space()->capacity_in_bytes();  // to_space() is only used during scavenge
 737 }
 738 
 739 
 740 size_t PSYoungGen::used_in_bytes() const {
 741   return eden_space()->used_in_bytes()
 742        + from_space()->used_in_bytes();      // to_space() is only used during scavenge
 743 }
 744 
 745 
 746 size_t PSYoungGen::free_in_bytes() const {
 747   return eden_space()->free_in_bytes()
 748        + from_space()->free_in_bytes();      // to_space() is only used during scavenge
 749 }
 750 
 751 size_t PSYoungGen::capacity_in_words() const {
 752   return eden_space()->capacity_in_words()
 753        + from_space()->capacity_in_words();  // to_space() is only used during scavenge
 754 }
 755 
 756 
 757 size_t PSYoungGen::used_in_words() const {
 758   return eden_space()->used_in_words()
 759        + from_space()->used_in_words();      // to_space() is only used during scavenge
 760 }
 761 
 762 
 763 size_t PSYoungGen::free_in_words() const {
 764   return eden_space()->free_in_words()
 765        + from_space()->free_in_words();      // to_space() is only used during scavenge
 766 }
 767 
 768 void PSYoungGen::object_iterate(ObjectClosure* blk) {
 769   eden_space()->object_iterate(blk);
 770   from_space()->object_iterate(blk);
 771   to_space()->object_iterate(blk);
 772 }
 773 
 774 void PSYoungGen::precompact() {
 775   eden_mark_sweep()->precompact();
 776   from_mark_sweep()->precompact();
 777   to_mark_sweep()->precompact();
 778 }
 779 
 780 void PSYoungGen::adjust_pointers() {
 781   eden_mark_sweep()->adjust_pointers();
 782   from_mark_sweep()->adjust_pointers();
 783   to_mark_sweep()->adjust_pointers();
 784 }
 785 
 786 void PSYoungGen::compact() {
 787   eden_mark_sweep()->compact(ZapUnusedHeapArea);
 788   from_mark_sweep()->compact(ZapUnusedHeapArea);
 789   // Mark sweep stores preserved markOops in to space, don't disturb!
 790   to_mark_sweep()->compact(false);
 791 }
 792 
 793 void PSYoungGen::move_and_update(ParCompactionManager* cm) {
 794   PSParallelCompact::move_and_update(cm, PSParallelCompact::eden_space_id);
 795   PSParallelCompact::move_and_update(cm, PSParallelCompact::from_space_id);
 796   PSParallelCompact::move_and_update(cm, PSParallelCompact::to_space_id);
 797 }
 798 
 799 void PSYoungGen::print() const { print_on(tty); }
 800 void PSYoungGen::print_on(outputStream* st) const {
 801   st->print(" %-15s", "PSYoungGen");
 802   if (PrintGCDetails && Verbose) {
 803     st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
 804                capacity_in_bytes(), used_in_bytes());
 805   } else {
 806     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
 807                capacity_in_bytes()/K, used_in_bytes()/K);
 808   }
 809   virtual_space()->print_space_boundaries_on(st);
 810   st->print("  eden"); eden_space()->print_on(st);
 811   st->print("  from"); from_space()->print_on(st);
 812   st->print("  to  "); to_space()->print_on(st);
 813 }
 814 
 815 void PSYoungGen::print_used_change(size_t prev_used) const {
 816   gclog_or_tty->print(" [%s:", name());
 817   gclog_or_tty->print(" "  SIZE_FORMAT "K"
 818                       "->" SIZE_FORMAT "K"
 819                       "("  SIZE_FORMAT "K)",
 820                       prev_used / K, used_in_bytes() / K,
 821                       capacity_in_bytes() / K);
 822   gclog_or_tty->print("]");
 823 }
 824 
 825 size_t PSYoungGen::available_for_expansion() {
 826   ShouldNotReachHere();
 827   return 0;
 828 }
 829 
 830 size_t PSYoungGen::available_for_contraction() {
 831   ShouldNotReachHere();
 832   return 0;
 833 }
 834 
 835 size_t PSYoungGen::available_to_min_gen() {
 836   assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
 837   return virtual_space()->committed_size() - min_gen_size();
 838 }
 839 
 840 // This method assumes that from-space has live data and that
 841 // any shrinkage of the young gen is limited by location of
 842 // from-space.
 843 size_t PSYoungGen::available_to_live() {
 844   size_t delta_in_survivor = 0;
 845   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 846   const size_t space_alignment = heap->intra_heap_alignment();
 847   const size_t gen_alignment = heap->young_gen_alignment();
 848 
 849   MutableSpace* space_shrinking = NULL;
 850   if (from_space()->end() > to_space()->end()) {
 851     space_shrinking = from_space();
 852   } else {
 853     space_shrinking = to_space();
 854   }
 855 
 856   // Include any space that is committed but not included in
 857   // the survivor spaces.
 858   assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
 859     "Survivor space beyond high end");
 860   size_t unused_committed = pointer_delta(virtual_space()->high(),
 861     space_shrinking->end(), sizeof(char));
 862 
 863   if (space_shrinking->is_empty()) {
 864     // Don't let the space shrink to 0
 865     assert(space_shrinking->capacity_in_bytes() >= space_alignment,
 866       "Space is too small");
 867     delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
 868   } else {
 869     delta_in_survivor = pointer_delta(space_shrinking->end(),
 870                                       space_shrinking->top(),
 871                                       sizeof(char));
 872   }
 873 
 874   size_t delta_in_bytes = unused_committed + delta_in_survivor;
 875   delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
 876   return delta_in_bytes;
 877 }
 878 
 879 // Return the number of bytes available for resizing down the young
 880 // generation.  This is the minimum of
 881 //      input "bytes"
 882 //      bytes to the minimum young gen size
 883 //      bytes to the size currently being used + some small extra
 884 size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
 885   // Allow shrinkage into the current eden but keep eden large enough
 886   // to maintain the minimum young gen size
 887   bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
 888   return align_size_down(bytes, virtual_space()->alignment());
 889 }
 890 
 891 void PSYoungGen::reset_after_change() {
 892   ShouldNotReachHere();
 893 }
 894 
 895 void PSYoungGen::reset_survivors_after_shrink() {
 896   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
 897                         (HeapWord*)virtual_space()->high_boundary());
 898   PSScavenge::reference_processor()->set_span(_reserved);
 899 
 900   MutableSpace* space_shrinking = NULL;
 901   if (from_space()->end() > to_space()->end()) {
 902     space_shrinking = from_space();
 903   } else {
 904     space_shrinking = to_space();
 905   }
 906 
 907   HeapWord* new_end = (HeapWord*)virtual_space()->high();
 908   assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
 909   // Was there a shrink of the survivor space?
 910   if (new_end < space_shrinking->end()) {
 911     MemRegion mr(space_shrinking->bottom(), new_end);
 912     space_shrinking->initialize(mr,
 913                                 SpaceDecorator::DontClear,
 914                                 SpaceDecorator::Mangle);
 915   }
 916 }
 917 
 918 // This method currently does not expect to expand into eden (i.e.,
 919 // the virtual space boundaries is expected to be consistent
 920 // with the eden boundaries..
 921 void PSYoungGen::post_resize() {
 922   assert_locked_or_safepoint(Heap_lock);
 923   assert((eden_space()->bottom() < to_space()->bottom()) &&
 924          (eden_space()->bottom() < from_space()->bottom()),
 925          "Eden is assumed to be below the survivor spaces");
 926 
 927   MemRegion cmr((HeapWord*)virtual_space()->low(),
 928                 (HeapWord*)virtual_space()->high());
 929   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 930   space_invariants();
 931 }
 932 
 933 
 934 
 935 void PSYoungGen::update_counters() {
 936   if (UsePerfData) {
 937     _eden_counters->update_all();
 938     _from_counters->update_all();
 939     _to_counters->update_all();
 940     _gen_counters->update_all();
 941   }
 942 }
 943 
 944 void PSYoungGen::verify(bool allow_dirty) {
 945   eden_space()->verify(allow_dirty);
 946   from_space()->verify(allow_dirty);
 947   to_space()->verify(allow_dirty);
 948 }
 949 
 950 #ifndef PRODUCT
 951 void PSYoungGen::record_spaces_top() {
 952   assert(ZapUnusedHeapArea, "Not mangling unused space");
 953   eden_space()->set_top_for_allocations();
 954   from_space()->set_top_for_allocations();
 955   to_space()->set_top_for_allocations();
 956 }
 957 #endif
 958 
 959 void PSYoungGen::try_to_expand_by(size_t expand_bytes) {
 960   size_t available_bytes = max_size() - capacity_in_bytes();
 961   if (available_bytes == 0) {
 962     // cannot expand
 963     return;
 964   }
 965   size_t eden_available_bytes = _max_eden_size - eden_space()->used_in_bytes();
 966   size_t survivor_available_bytes = _max_survivor_size - from_space()->used_in_bytes();
 967   size_t eden_expand_bytes =
 968       (size_t) (expand_bytes * ((double) eden_available_bytes / available_bytes));
 969   size_t survivor_expand_bytes =
 970       (size_t) (expand_bytes * ((double) survivor_available_bytes / available_bytes));
 971 
 972   // Don't expand unless it's significant
 973   if (eden_expand_bytes < MinHeapDeltaBytes) {
 974     eden_expand_bytes = 0;
 975   }
 976   if (survivor_expand_bytes < MinHeapDeltaBytes) {
 977     survivor_expand_bytes = 0;
 978   }
 979 
 980   if (eden_expand_bytes == 0 && survivor_expand_bytes == 0) {
 981     return; // no change, so return now
 982   }
 983 
 984   size_t eden_desired_capacity =
 985       eden_space()->capacity_in_bytes() + eden_expand_bytes;
 986   eden_desired_capacity = MIN2(eden_desired_capacity, _max_eden_size);
 987   eden_desired_capacity = align_size_down(eden_desired_capacity,
 988                                           virtual_space()->alignment());
 989 
 990   size_t survivor_desired_capacity =
 991       from_space()->capacity_in_bytes() + survivor_expand_bytes;
 992   survivor_desired_capacity = MIN2(survivor_desired_capacity, _max_survivor_size);
 993   survivor_desired_capacity = align_size_down(survivor_desired_capacity,
 994                                               virtual_space()->alignment());
 995 
 996   if (eden_desired_capacity == eden_space()->capacity_in_bytes()
 997       && survivor_desired_capacity == from_space()->capacity_in_bytes()) {
 998     return; // no change, so return now
 999   }
1000 
1001   if (PrintGC) {
1002     gclog_or_tty->print_cr(" Resizing young gen. expand_bytes=%d,%d",
1003                            eden_expand_bytes, survivor_expand_bytes);
1004     gclog_or_tty->print("BEFORE: Young Gen: ");
1005     gclog_or_tty->print("eden capacity : " SIZE_FORMAT ", ",
1006                         eden_space()->capacity_in_bytes());
1007     gclog_or_tty->print("eden used : " SIZE_FORMAT ", " ,
1008                         eden_space()->used_in_bytes());
1009     gclog_or_tty->print("survivor capacity : " SIZE_FORMAT ", ",
1010                         from_space()->capacity_in_bytes());
1011     gclog_or_tty->print_cr("survivor used : " SIZE_FORMAT ", " ,
1012                            from_space()->used_in_bytes());
1013   }
1014 
1015   resize(eden_desired_capacity, survivor_desired_capacity);
1016 
1017   if (PrintGC) {
1018     gclog_or_tty->print("AFTER: Young Gen: ");
1019     gclog_or_tty->print("eden capacity : " SIZE_FORMAT ", ",
1020                         eden_space()->capacity_in_bytes());
1021     gclog_or_tty->print("eden used : " SIZE_FORMAT ", " ,
1022                         eden_space()->used_in_bytes());
1023     gclog_or_tty->print("survivor capacity : " SIZE_FORMAT ", ",
1024                         from_space()->capacity_in_bytes());
1025     gclog_or_tty->print_cr("survivor used : " SIZE_FORMAT ", " ,
1026                            from_space()->used_in_bytes());
1027   }
1028 }
1029 
1030 void PSYoungGen::try_to_shrink_by(size_t shrink_bytes) {
1031   size_t free_bytes = capacity_in_bytes() - used_in_bytes();
1032   if (free_bytes == 0) {
1033     // cannot shrink
1034     return;
1035   }
1036   size_t eden_free_bytes = eden_space()->capacity_in_bytes() - eden_space()->used_in_bytes();
1037   size_t survivor_free_bytes = from_space()->capacity_in_bytes() - from_space()->used_in_bytes();
1038   size_t eden_shrink_bytes =
1039       (size_t) (shrink_bytes * ((double) eden_free_bytes / free_bytes));
1040   size_t survivor_shrink_bytes =
1041       (size_t) (shrink_bytes * ((double) survivor_free_bytes / free_bytes));
1042 
1043   // Don't shrink unless it's significant
1044   if (eden_shrink_bytes < MinHeapDeltaBytes) {
1045     eden_shrink_bytes = 0;
1046   }
1047   if (survivor_shrink_bytes < MinHeapDeltaBytes) {
1048     survivor_shrink_bytes = 0;
1049   }
1050 
1051   if (eden_shrink_bytes == 0 && survivor_shrink_bytes == 0) {
1052     return; // no change, so return now
1053   }
1054 
1055   size_t eden_desired_capacity =
1056       eden_space()->capacity_in_bytes() - eden_shrink_bytes;
1057   eden_desired_capacity = MAX2(eden_desired_capacity, _init_eden_size);
1058   assert(eden_space()->used_in_bytes() <= eden_desired_capacity, "sanity check");
1059   eden_desired_capacity = align_size_down(eden_desired_capacity,
1060                                           virtual_space()->alignment());
1061 
1062   size_t survivor_desired_capacity =
1063       from_space()->capacity_in_bytes() - survivor_shrink_bytes;
1064   survivor_desired_capacity = MAX2(survivor_desired_capacity, _init_survivor_size);
1065   assert(from_space()->used_in_bytes() <= survivor_desired_capacity, "sanity check");
1066   survivor_desired_capacity = align_size_down(survivor_desired_capacity,
1067                                               virtual_space()->alignment());
1068 
1069   if (eden_desired_capacity == eden_space()->capacity_in_bytes()
1070       && survivor_desired_capacity == from_space()->capacity_in_bytes()) {
1071     return; // no change, so return now
1072   }
1073 
1074   if (PrintGC) {
1075     gclog_or_tty->print_cr(" Resizing young gen. shrink_bytes=%d,%d",
1076                            eden_shrink_bytes, survivor_shrink_bytes);
1077     gclog_or_tty->print("BEFORE: Young Gen: ");
1078     gclog_or_tty->print("eden capacity : " SIZE_FORMAT ", ",
1079                         eden_space()->capacity_in_bytes());
1080     gclog_or_tty->print("eden used : " SIZE_FORMAT ", " ,
1081                         eden_space()->used_in_bytes());
1082     gclog_or_tty->print("survivor capacity : " SIZE_FORMAT ", ",
1083                         from_space()->capacity_in_bytes());
1084     gclog_or_tty->print_cr("survivor used : " SIZE_FORMAT ", " ,
1085                            from_space()->used_in_bytes());
1086   }
1087 
1088   resize(eden_desired_capacity, survivor_desired_capacity);
1089 
1090   if (PrintGC) {
1091     gclog_or_tty->print("AFTER: Young Gen: ");
1092     gclog_or_tty->print("eden capacity : " SIZE_FORMAT ", ",
1093                         eden_space()->capacity_in_bytes());
1094     gclog_or_tty->print("eden used : " SIZE_FORMAT ", " ,
1095                         eden_space()->used_in_bytes());
1096     gclog_or_tty->print("survivor capacity : " SIZE_FORMAT ", ",
1097                         from_space()->capacity_in_bytes());
1098     gclog_or_tty->print_cr("survivor used : " SIZE_FORMAT ", " ,
1099                            from_space()->used_in_bytes());
1100   }
1101 }