1 /*
   2  * Copyright 2001-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_parallelScavengeHeap.cpp.incl"
  27 
  28 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  29 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  30 PSPermGen*   ParallelScavengeHeap::_perm_gen = NULL;
  31 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  32 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  33 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
  34 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  35 
  36 static void trace_gen_sizes(const char* const str,
  37                             size_t pg_min, size_t pg_max,
  38                             size_t og_min, size_t og_max,
  39                             size_t yg_min, size_t yg_max)
  40 {
  41   if (TracePageSizes) {
  42     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
  43                   SIZE_FORMAT "," SIZE_FORMAT " "
  44                   SIZE_FORMAT "," SIZE_FORMAT " "
  45                   SIZE_FORMAT,
  46                   str, pg_min / K, pg_max / K,
  47                   og_min / K, og_max / K,
  48                   yg_min / K, yg_max / K,
  49                   (pg_max + og_max + yg_max) / K);
  50   }
  51 }
  52 
  53 jint ParallelScavengeHeap::initialize() {
  54   CollectedHeap::pre_initialize();
  55 
  56   // Cannot be initialized until after the flags are parsed
  57   // GenerationSizer flag_parser;
  58   _collector_policy = new GenerationSizer();
  59 
  60   size_t yg_min_size = _collector_policy->min_young_gen_size();
  61   size_t yg_max_size = _collector_policy->max_young_gen_size();
  62   size_t og_min_size = _collector_policy->min_old_gen_size();
  63   size_t og_max_size = _collector_policy->max_old_gen_size();
  64   // Why isn't there a min_perm_gen_size()?
  65   size_t pg_min_size = _collector_policy->perm_gen_size();
  66   size_t pg_max_size = _collector_policy->max_perm_gen_size();
  67 
  68   trace_gen_sizes("ps heap raw",
  69                   pg_min_size, pg_max_size,
  70                   og_min_size, og_max_size,
  71                   yg_min_size, yg_max_size);
  72 
  73   // The ReservedSpace ctor used below requires that the page size for the perm
  74   // gen is <= the page size for the rest of the heap (young + old gens).
  75   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
  76                                                      yg_max_size + og_max_size,
  77                                                      8);
  78   const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
  79                                                           pg_max_size, 16),
  80                                  og_page_sz);
  81 
  82   const size_t pg_align = set_alignment(_perm_gen_alignment,  pg_page_sz);
  83   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
  84   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
  85 
  86   // Update sizes to reflect the selected page size(s).
  87   //
  88   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
  89   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
  90   // move to the common code.
  91   yg_min_size = align_size_up(yg_min_size, yg_align);
  92   yg_max_size = align_size_up(yg_max_size, yg_align);
  93   size_t yg_cur_size =
  94     align_size_up(_collector_policy->young_gen_size(), yg_align);
  95   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
  96 
  97   og_min_size = align_size_up(og_min_size, og_align);
  98   og_max_size = align_size_up(og_max_size, og_align);
  99   size_t og_cur_size =
 100     align_size_up(_collector_policy->old_gen_size(), og_align);
 101   og_cur_size = MAX2(og_cur_size, og_min_size);
 102 
 103   pg_min_size = align_size_up(pg_min_size, pg_align);
 104   pg_max_size = align_size_up(pg_max_size, pg_align);
 105   size_t pg_cur_size = pg_min_size;
 106 
 107   trace_gen_sizes("ps heap rnd",
 108                   pg_min_size, pg_max_size,
 109                   og_min_size, og_max_size,
 110                   yg_min_size, yg_max_size);
 111 
 112   const size_t total_reserved = pg_max_size + og_max_size + yg_max_size;
 113   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
 114 
 115   // The main part of the heap (old gen + young gen) can often use a larger page
 116   // size than is needed or wanted for the perm gen.  Use the "compound
 117   // alignment" ReservedSpace ctor to avoid having to use the same page size for
 118   // all gens.
 119 
 120   ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
 121                             og_align, addr);
 122 
 123   if (UseCompressedOops) {
 124     if (addr != NULL && !heap_rs.is_reserved()) {
 125       // Failed to reserve at specified address - the requested memory
 126       // region is taken already, for example, by 'java' launcher.
 127       // Try again to reserver heap higher.
 128       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
 129       ReservedHeapSpace heap_rs0(pg_max_size, pg_align, og_max_size + yg_max_size,
 130                                  og_align, addr);
 131       if (addr != NULL && !heap_rs0.is_reserved()) {
 132         // Failed to reserve at specified address again - give up.
 133         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
 134         assert(addr == NULL, "");
 135         ReservedHeapSpace heap_rs1(pg_max_size, pg_align, og_max_size + yg_max_size,
 136                                    og_align, addr);
 137         heap_rs = heap_rs1;
 138       } else {
 139         heap_rs = heap_rs0;
 140       }
 141     }
 142   }
 143 
 144   os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
 145                        heap_rs.base(), pg_max_size);
 146   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
 147                        og_max_size + yg_max_size, og_page_sz,
 148                        heap_rs.base() + pg_max_size,
 149                        heap_rs.size() - pg_max_size);
 150   if (!heap_rs.is_reserved()) {
 151     vm_shutdown_during_initialization(
 152       "Could not reserve enough space for object heap");
 153     return JNI_ENOMEM;
 154   }
 155 
 156   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 157                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 158 
 159   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
 160   _barrier_set = barrier_set;
 161   oopDesc::set_bs(_barrier_set);
 162   if (_barrier_set == NULL) {
 163     vm_shutdown_during_initialization(
 164       "Could not reserve enough space for barrier set");
 165     return JNI_ENOMEM;
 166   }
 167 
 168   // Initial young gen size is 4 Mb
 169   //
 170   // XXX - what about flag_parser.young_gen_size()?
 171   const size_t init_young_size = align_size_up(4 * M, yg_align);
 172   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
 173 
 174   // Split the reserved space into perm gen and the main heap (everything else).
 175   // The main heap uses a different alignment.
 176   ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
 177   ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
 178 
 179   // Make up the generations
 180   // Calculate the maximum size that a generation can grow.  This
 181   // includes growth into the other generation.  Note that the
 182   // parameter _max_gen_size is kept as the maximum
 183   // size of the generation as the boundaries currently stand.
 184   // _max_gen_size is still used as that value.
 185   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 186   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
 187 
 188   _gens = new AdjoiningGenerations(main_rs,
 189                                    og_cur_size,
 190                                    og_min_size,
 191                                    og_max_size,
 192                                    yg_cur_size,
 193                                    yg_min_size,
 194                                    yg_max_size,
 195                                    yg_align);
 196 
 197   _old_gen = _gens->old_gen();
 198   _young_gen = _gens->young_gen();
 199 
 200   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
 201   const size_t old_capacity = _old_gen->capacity_in_bytes();
 202   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
 203   _size_policy =
 204     new PSAdaptiveSizePolicy(eden_capacity,
 205                              initial_promo_size,
 206                              young_gen()->to_space()->capacity_in_bytes(),
 207                              intra_heap_alignment(),
 208                              max_gc_pause_sec,
 209                              max_gc_minor_pause_sec,
 210                              GCTimeRatio
 211                              );
 212 
 213   _perm_gen = new PSPermGen(perm_rs,
 214                             pg_align,
 215                             pg_cur_size,
 216                             pg_cur_size,
 217                             pg_max_size,
 218                             "perm", 2);
 219 
 220   assert(!UseAdaptiveGCBoundary ||
 221     (old_gen()->virtual_space()->high_boundary() ==
 222      young_gen()->virtual_space()->low_boundary()),
 223     "Boundaries must meet");
 224   // initialize the policy counters - 2 collectors, 3 generations
 225   _gc_policy_counters =
 226     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
 227   _psh = this;
 228 
 229   // Set up the GCTaskManager
 230   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 231 
 232   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 233     return JNI_ENOMEM;
 234   }
 235 
 236   return JNI_OK;
 237 }
 238 
 239 void ParallelScavengeHeap::post_initialize() {
 240   // Need to init the tenuring threshold
 241   PSScavenge::initialize();
 242   if (UseParallelOldGC) {
 243     PSParallelCompact::post_initialize();
 244   } else {
 245     PSMarkSweep::initialize();
 246   }
 247   PSPromotionManager::initialize();
 248 }
 249 
 250 void ParallelScavengeHeap::update_counters() {
 251   young_gen()->update_counters();
 252   old_gen()->update_counters();
 253   perm_gen()->update_counters();
 254 }
 255 
 256 size_t ParallelScavengeHeap::capacity() const {
 257   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 258   return value;
 259 }
 260 
 261 size_t ParallelScavengeHeap::used() const {
 262   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 263   return value;
 264 }
 265 
 266 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 267   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 268 }
 269 
 270 
 271 size_t ParallelScavengeHeap::permanent_capacity() const {
 272   return perm_gen()->capacity_in_bytes();
 273 }
 274 
 275 size_t ParallelScavengeHeap::permanent_used() const {
 276   return perm_gen()->used_in_bytes();
 277 }
 278 
 279 size_t ParallelScavengeHeap::max_capacity() const {
 280   size_t estimated = reserved_region().byte_size();
 281   estimated -= perm_gen()->reserved().byte_size();
 282   if (UseAdaptiveSizePolicy) {
 283     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 284   } else {
 285     estimated -= young_gen()->to_space()->capacity_in_bytes();
 286   }
 287   return MAX2(estimated, capacity());
 288 }
 289 
 290 bool ParallelScavengeHeap::is_in(const void* p) const {
 291   if (young_gen()->is_in(p)) {
 292     return true;
 293   }
 294 
 295   if (old_gen()->is_in(p)) {
 296     return true;
 297   }
 298 
 299   if (perm_gen()->is_in(p)) {
 300     return true;
 301   }
 302 
 303   return false;
 304 }
 305 
 306 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 307   if (young_gen()->is_in_reserved(p)) {
 308     return true;
 309   }
 310 
 311   if (old_gen()->is_in_reserved(p)) {
 312     return true;
 313   }
 314 
 315   if (perm_gen()->is_in_reserved(p)) {
 316     return true;
 317   }
 318 
 319   return false;
 320 }
 321 
 322 // There are two levels of allocation policy here.
 323 //
 324 // When an allocation request fails, the requesting thread must invoke a VM
 325 // operation, transfer control to the VM thread, and await the results of a
 326 // garbage collection. That is quite expensive, and we should avoid doing it
 327 // multiple times if possible.
 328 //
 329 // To accomplish this, we have a basic allocation policy, and also a
 330 // failed allocation policy.
 331 //
 332 // The basic allocation policy controls how you allocate memory without
 333 // attempting garbage collection. It is okay to grab locks and
 334 // expand the heap, if that can be done without coming to a safepoint.
 335 // It is likely that the basic allocation policy will not be very
 336 // aggressive.
 337 //
 338 // The failed allocation policy is invoked from the VM thread after
 339 // the basic allocation policy is unable to satisfy a mem_allocate
 340 // request. This policy needs to cover the entire range of collection,
 341 // heap expansion, and out-of-memory conditions. It should make every
 342 // attempt to allocate the requested memory.
 343 
 344 // Basic allocation policy. Should never be called at a safepoint, or
 345 // from the VM thread.
 346 //
 347 // This method must handle cases where many mem_allocate requests fail
 348 // simultaneously. When that happens, only one VM operation will succeed,
 349 // and the rest will not be executed. For that reason, this method loops
 350 // during failed allocation attempts. If the java heap becomes exhausted,
 351 // we rely on the size_policy object to force a bail out.
 352 HeapWord* ParallelScavengeHeap::mem_allocate(
 353                                      size_t size,
 354                                      bool is_noref,
 355                                      bool is_tlab,
 356                                      bool* gc_overhead_limit_was_exceeded) {
 357   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 358   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 359   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 360 
 361   // In general gc_overhead_limit_was_exceeded should be false so
 362   // set it so here and reset it to true only if the gc time
 363   // limit is being exceeded as checked below.
 364   *gc_overhead_limit_was_exceeded = false;
 365 
 366   HeapWord* result = young_gen()->allocate(size, is_tlab);
 367 
 368   uint loop_count = 0;
 369   uint gc_count = 0;
 370 
 371   while (result == NULL) {
 372     // We don't want to have multiple collections for a single filled generation.
 373     // To prevent this, each thread tracks the total_collections() value, and if
 374     // the count has changed, does not do a new collection.
 375     //
 376     // The collection count must be read only while holding the heap lock. VM
 377     // operations also hold the heap lock during collections. There is a lock
 378     // contention case where thread A blocks waiting on the Heap_lock, while
 379     // thread B is holding it doing a collection. When thread A gets the lock,
 380     // the collection count has already changed. To prevent duplicate collections,
 381     // The policy MUST attempt allocations during the same period it reads the
 382     // total_collections() value!
 383     {
 384       MutexLocker ml(Heap_lock);
 385       gc_count = Universe::heap()->total_collections();
 386 
 387       result = young_gen()->allocate(size, is_tlab);
 388 
 389       // (1) If the requested object is too large to easily fit in the
 390       //     young_gen, or
 391       // (2) If GC is locked out via GCLocker, young gen is full and
 392       //     the need for a GC already signalled to GCLocker (done
 393       //     at a safepoint),
 394       // ... then, rather than force a safepoint and (a potentially futile)
 395       // collection (attempt) for each allocation, try allocation directly
 396       // in old_gen. For case (2) above, we may in the future allow
 397       // TLAB allocation directly in the old gen.
 398       if (result != NULL) {
 399         return result;
 400       }
 401       if (!is_tlab &&
 402           size >= (young_gen()->eden_space()->capacity_in_words(Thread::current()) / 2)) {
 403         result = old_gen()->allocate(size, is_tlab);
 404         if (result != NULL) {
 405           return result;
 406         }
 407       }
 408       if (GC_locker::is_active_and_needs_gc()) {
 409         // GC is locked out. If this is a TLAB allocation,
 410         // return NULL; the requestor will retry allocation
 411         // of an idividual object at a time.
 412         if (is_tlab) {
 413           return NULL;
 414         }
 415 
 416         // If this thread is not in a jni critical section, we stall
 417         // the requestor until the critical section has cleared and
 418         // GC allowed. When the critical section clears, a GC is
 419         // initiated by the last thread exiting the critical section; so
 420         // we retry the allocation sequence from the beginning of the loop,
 421         // rather than causing more, now probably unnecessary, GC attempts.
 422         JavaThread* jthr = JavaThread::current();
 423         if (!jthr->in_critical()) {
 424           MutexUnlocker mul(Heap_lock);
 425           GC_locker::stall_until_clear();
 426           continue;
 427         } else {
 428           if (CheckJNICalls) {
 429             fatal("Possible deadlock due to allocating while"
 430                   " in jni critical section");
 431           }
 432           return NULL;
 433         }
 434       }
 435     }
 436 
 437     if (result == NULL) {
 438 
 439       // Generate a VM operation
 440       VM_ParallelGCFailedAllocation op(size, is_tlab, gc_count);
 441       VMThread::execute(&op);
 442 
 443       // Did the VM operation execute? If so, return the result directly.
 444       // This prevents us from looping until time out on requests that can
 445       // not be satisfied.
 446       if (op.prologue_succeeded()) {
 447         assert(Universe::heap()->is_in_or_null(op.result()),
 448           "result not in heap");
 449 
 450         // If GC was locked out during VM operation then retry allocation
 451         // and/or stall as necessary.
 452         if (op.gc_locked()) {
 453           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 454           continue;  // retry and/or stall as necessary
 455         }
 456 
 457         // Exit the loop if the gc time limit has been exceeded.
 458         // The allocation must have failed above ("result" guarding
 459         // this path is NULL) and the most recent collection has exceeded the
 460         // gc overhead limit (although enough may have been collected to
 461         // satisfy the allocation).  Exit the loop so that an out-of-memory
 462         // will be thrown (return a NULL ignoring the contents of
 463         // op.result()),
 464         // but clear gc_overhead_limit_exceeded so that the next collection
 465         // starts with a clean slate (i.e., forgets about previous overhead
 466         // excesses).  Fill op.result() with a filler object so that the
 467         // heap remains parsable.
 468         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 469         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
 470         assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
 471         if (limit_exceeded && softrefs_clear) {
 472           *gc_overhead_limit_was_exceeded = true;
 473           size_policy()->set_gc_overhead_limit_exceeded(false);
 474           if (PrintGCDetails && Verbose) {
 475             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
 476               "return NULL because gc_overhead_limit_exceeded is set");
 477           }
 478           if (op.result() != NULL) {
 479             CollectedHeap::fill_with_object(op.result(), size);
 480           }
 481           return NULL;
 482         }
 483 
 484         return op.result();
 485       }
 486     }
 487 
 488     // The policy object will prevent us from looping forever. If the
 489     // time spent in gc crosses a threshold, we will bail out.
 490     loop_count++;
 491     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 492         (loop_count % QueuedAllocationWarningCount == 0)) {
 493       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
 494               " size=%d %s", loop_count, size, is_tlab ? "(TLAB)" : "");
 495     }
 496   }
 497 
 498   return result;
 499 }
 500 
 501 // Failed allocation policy. Must be called from the VM thread, and
 502 // only at a safepoint! Note that this method has policy for allocation
 503 // flow, and NOT collection policy. So we do not check for gc collection
 504 // time over limit here, that is the responsibility of the heap specific
 505 // collection methods. This method decides where to attempt allocations,
 506 // and when to attempt collections, but no collection specific policy.
 507 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size, bool is_tlab) {
 508   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 509   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 510   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 511   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 512 
 513   size_t mark_sweep_invocation_count = total_invocations();
 514 
 515   // We assume (and assert!) that an allocation at this point will fail
 516   // unless we collect.
 517 
 518   // First level allocation failure, scavenge and allocate in young gen.
 519   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 520   PSScavenge::invoke();
 521   HeapWord* result = young_gen()->allocate(size, is_tlab);
 522 
 523   // Second level allocation failure.
 524   //   Mark sweep and allocate in young generation.
 525   if (result == NULL) {
 526     // There is some chance the scavenge method decided to invoke mark_sweep.
 527     // Don't mark sweep twice if so.
 528     if (mark_sweep_invocation_count == total_invocations()) {
 529       invoke_full_gc(false);
 530       result = young_gen()->allocate(size, is_tlab);
 531     }
 532   }
 533 
 534   // Third level allocation failure.
 535   //   After mark sweep and young generation allocation failure,
 536   //   allocate in old generation.
 537   if (result == NULL && !is_tlab) {
 538     result = old_gen()->allocate(size, is_tlab);
 539   }
 540 
 541   // Fourth level allocation failure. We're running out of memory.
 542   //   More complete mark sweep and allocate in young generation.
 543   if (result == NULL) {
 544     invoke_full_gc(true);
 545     result = young_gen()->allocate(size, is_tlab);
 546   }
 547 
 548   // Fifth level allocation failure.
 549   //   After more complete mark sweep, allocate in old generation.
 550   if (result == NULL && !is_tlab) {
 551     result = old_gen()->allocate(size, is_tlab);
 552   }
 553 
 554   return result;
 555 }
 556 
 557 //
 558 // This is the policy loop for allocating in the permanent generation.
 559 // If the initial allocation fails, we create a vm operation which will
 560 // cause a collection.
 561 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
 562   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 563   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 564   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 565 
 566   HeapWord* result;
 567 
 568   uint loop_count = 0;
 569   uint gc_count = 0;
 570   uint full_gc_count = 0;
 571 
 572   do {
 573     // We don't want to have multiple collections for a single filled generation.
 574     // To prevent this, each thread tracks the total_collections() value, and if
 575     // the count has changed, does not do a new collection.
 576     //
 577     // The collection count must be read only while holding the heap lock. VM
 578     // operations also hold the heap lock during collections. There is a lock
 579     // contention case where thread A blocks waiting on the Heap_lock, while
 580     // thread B is holding it doing a collection. When thread A gets the lock,
 581     // the collection count has already changed. To prevent duplicate collections,
 582     // The policy MUST attempt allocations during the same period it reads the
 583     // total_collections() value!
 584     {
 585       MutexLocker ml(Heap_lock);
 586       gc_count      = Universe::heap()->total_collections();
 587       full_gc_count = Universe::heap()->total_full_collections();
 588 
 589       result = perm_gen()->allocate_permanent(size);
 590 
 591       if (result != NULL) {
 592         return result;
 593       }
 594 
 595       if (GC_locker::is_active_and_needs_gc()) {
 596         // If this thread is not in a jni critical section, we stall
 597         // the requestor until the critical section has cleared and
 598         // GC allowed. When the critical section clears, a GC is
 599         // initiated by the last thread exiting the critical section; so
 600         // we retry the allocation sequence from the beginning of the loop,
 601         // rather than causing more, now probably unnecessary, GC attempts.
 602         JavaThread* jthr = JavaThread::current();
 603         if (!jthr->in_critical()) {
 604           MutexUnlocker mul(Heap_lock);
 605           GC_locker::stall_until_clear();
 606           continue;
 607         } else {
 608           if (CheckJNICalls) {
 609             fatal("Possible deadlock due to allocating while"
 610                   " in jni critical section");
 611           }
 612           return NULL;
 613         }
 614       }
 615     }
 616 
 617     if (result == NULL) {
 618 
 619       // Exit the loop if the gc time limit has been exceeded.
 620       // The allocation must have failed above (result must be NULL),
 621       // and the most recent collection must have exceeded the
 622       // gc time limit.  Exit the loop so that an out-of-memory
 623       // will be thrown (returning a NULL will do that), but
 624       // clear gc_overhead_limit_exceeded so that the next collection
 625       // will succeeded if the applications decides to handle the
 626       // out-of-memory and tries to go on.
 627       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 628       if (limit_exceeded) {
 629         size_policy()->set_gc_overhead_limit_exceeded(false);
 630         if (PrintGCDetails && Verbose) {
 631           gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate:"
 632             " return NULL because gc_overhead_limit_exceeded is set");
 633         }
 634         assert(result == NULL, "Allocation did not fail");
 635         return NULL;
 636       }
 637 
 638       // Generate a VM operation
 639       VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
 640       VMThread::execute(&op);
 641 
 642       // Did the VM operation execute? If so, return the result directly.
 643       // This prevents us from looping until time out on requests that can
 644       // not be satisfied.
 645       if (op.prologue_succeeded()) {
 646         assert(Universe::heap()->is_in_permanent_or_null(op.result()),
 647           "result not in heap");
 648         // If GC was locked out during VM operation then retry allocation
 649         // and/or stall as necessary.
 650         if (op.gc_locked()) {
 651           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 652           continue;  // retry and/or stall as necessary
 653         }
 654         // If a NULL results is being returned, an out-of-memory
 655         // will be thrown now.  Clear the gc_overhead_limit_exceeded
 656         // flag to avoid the following situation.
 657         //      gc_overhead_limit_exceeded is set during a collection
 658         //      the collection fails to return enough space and an OOM is thrown
 659         //      a subsequent GC prematurely throws an out-of-memory because
 660         //        the gc_overhead_limit_exceeded counts did not start
 661         //        again from 0.
 662         if (op.result() == NULL) {
 663           size_policy()->reset_gc_overhead_limit_count();
 664         }
 665         return op.result();
 666       }
 667     }
 668 
 669     // The policy object will prevent us from looping forever. If the
 670     // time spent in gc crosses a threshold, we will bail out.
 671     loop_count++;
 672     if ((QueuedAllocationWarningCount > 0) &&
 673         (loop_count % QueuedAllocationWarningCount == 0)) {
 674       warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
 675               " size=%d", loop_count, size);
 676     }
 677   } while (result == NULL);
 678 
 679   return result;
 680 }
 681 
 682 //
 683 // This is the policy code for permanent allocations which have failed
 684 // and require a collection. Note that just as in failed_mem_allocate,
 685 // we do not set collection policy, only where & when to allocate and
 686 // collect.
 687 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
 688   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 689   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 690   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 691   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 692   assert(size > perm_gen()->free_in_words(), "Allocation should fail");
 693 
 694   // We assume (and assert!) that an allocation at this point will fail
 695   // unless we collect.
 696 
 697   // First level allocation failure.  Mark-sweep and allocate in perm gen.
 698   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 699   invoke_full_gc(false);
 700   HeapWord* result = perm_gen()->allocate_permanent(size);
 701 
 702   // Second level allocation failure. We're running out of memory.
 703   if (result == NULL) {
 704     invoke_full_gc(true);
 705     result = perm_gen()->allocate_permanent(size);
 706   }
 707 
 708   return result;
 709 }
 710 
 711 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 712   CollectedHeap::ensure_parsability(retire_tlabs);
 713   young_gen()->eden_space()->ensure_parsability();
 714 }
 715 
 716 size_t ParallelScavengeHeap::unsafe_max_alloc() {
 717   return young_gen()->eden_space()->free_in_bytes();
 718 }
 719 
 720 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 721   return young_gen()->eden_space()->tlab_capacity(thr);
 722 }
 723 
 724 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 725   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 726 }
 727 
 728 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
 729   return young_gen()->allocate(size, true);
 730 }
 731 
 732 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
 733   CollectedHeap::accumulate_statistics_all_tlabs();
 734 }
 735 
 736 void ParallelScavengeHeap::resize_all_tlabs() {
 737   CollectedHeap::resize_all_tlabs();
 738 }
 739 
 740 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
 741   // We don't need barriers for stores to objects in the
 742   // young gen and, a fortiori, for initializing stores to
 743   // objects therein.
 744   return is_in_young(new_obj);
 745 }
 746 
 747 // This method is used by System.gc() and JVMTI.
 748 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 749   assert(!Heap_lock->owned_by_self(),
 750     "this thread should not own the Heap_lock");
 751 
 752   unsigned int gc_count      = 0;
 753   unsigned int full_gc_count = 0;
 754   {
 755     MutexLocker ml(Heap_lock);
 756     // This value is guarded by the Heap_lock
 757     gc_count      = Universe::heap()->total_collections();
 758     full_gc_count = Universe::heap()->total_full_collections();
 759   }
 760 
 761   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 762   VMThread::execute(&op);
 763 }
 764 
 765 // This interface assumes that it's being called by the
 766 // vm thread. It collects the heap assuming that the
 767 // heap lock is already held and that we are executing in
 768 // the context of the vm thread.
 769 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
 770   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 771   assert(Heap_lock->is_locked(), "Precondition#2");
 772   GCCauseSetter gcs(this, cause);
 773   switch (cause) {
 774     case GCCause::_heap_inspection:
 775     case GCCause::_heap_dump: {
 776       HandleMark hm;
 777       invoke_full_gc(false);
 778       break;
 779     }
 780     default: // XXX FIX ME
 781       ShouldNotReachHere();
 782   }
 783 }
 784 
 785 
 786 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
 787   Unimplemented();
 788 }
 789 
 790 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 791   young_gen()->object_iterate(cl);
 792   old_gen()->object_iterate(cl);
 793   perm_gen()->object_iterate(cl);
 794 }
 795 
 796 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
 797   Unimplemented();
 798 }
 799 
 800 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
 801   perm_gen()->object_iterate(cl);
 802 }
 803 
 804 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 805   if (young_gen()->is_in_reserved(addr)) {
 806     assert(young_gen()->is_in(addr),
 807            "addr should be in allocated part of young gen");
 808     if (Debugging)  return NULL;  // called from find() in debug.cpp
 809     Unimplemented();
 810   } else if (old_gen()->is_in_reserved(addr)) {
 811     assert(old_gen()->is_in(addr),
 812            "addr should be in allocated part of old gen");
 813     return old_gen()->start_array()->object_start((HeapWord*)addr);
 814   } else if (perm_gen()->is_in_reserved(addr)) {
 815     assert(perm_gen()->is_in(addr),
 816            "addr should be in allocated part of perm gen");
 817     return perm_gen()->start_array()->object_start((HeapWord*)addr);
 818   }
 819   return 0;
 820 }
 821 
 822 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 823   return oop(addr)->size();
 824 }
 825 
 826 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 827   return block_start(addr) == addr;
 828 }
 829 
 830 jlong ParallelScavengeHeap::millis_since_last_gc() {
 831   return UseParallelOldGC ?
 832     PSParallelCompact::millis_since_last_gc() :
 833     PSMarkSweep::millis_since_last_gc();
 834 }
 835 
 836 void ParallelScavengeHeap::prepare_for_verify() {
 837   ensure_parsability(false);  // no need to retire TLABs for verification
 838 }
 839 
 840 void ParallelScavengeHeap::print() const { print_on(tty); }
 841 
 842 void ParallelScavengeHeap::print_on(outputStream* st) const {
 843   young_gen()->print_on(st);
 844   old_gen()->print_on(st);
 845   perm_gen()->print_on(st);
 846 }
 847 
 848 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 849   PSScavenge::gc_task_manager()->threads_do(tc);
 850 }
 851 
 852 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 853   PSScavenge::gc_task_manager()->print_threads_on(st);
 854 }
 855 
 856 void ParallelScavengeHeap::print_tracing_info() const {
 857   if (TraceGen0Time) {
 858     double time = PSScavenge::accumulated_time()->seconds();
 859     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
 860   }
 861   if (TraceGen1Time) {
 862     double time = PSMarkSweep::accumulated_time()->seconds();
 863     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
 864   }
 865 }
 866 
 867 
 868 void ParallelScavengeHeap::verify(bool allow_dirty, bool silent, bool option /* ignored */) {
 869   // Why do we need the total_collections()-filter below?
 870   if (total_collections() > 0) {
 871     if (!silent) {
 872       gclog_or_tty->print("permanent ");
 873     }
 874     perm_gen()->verify(allow_dirty);
 875 
 876     if (!silent) {
 877       gclog_or_tty->print("tenured ");
 878     }
 879     old_gen()->verify(allow_dirty);
 880 
 881     if (!silent) {
 882       gclog_or_tty->print("eden ");
 883     }
 884     young_gen()->verify(allow_dirty);
 885   }
 886   if (!silent) {
 887     gclog_or_tty->print("ref_proc ");
 888   }
 889   ReferenceProcessor::verify();
 890 }
 891 
 892 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
 893   if (PrintGCDetails && Verbose) {
 894     gclog_or_tty->print(" "  SIZE_FORMAT
 895                         "->" SIZE_FORMAT
 896                         "("  SIZE_FORMAT ")",
 897                         prev_used, used(), capacity());
 898   } else {
 899     gclog_or_tty->print(" "  SIZE_FORMAT "K"
 900                         "->" SIZE_FORMAT "K"
 901                         "("  SIZE_FORMAT "K)",
 902                         prev_used / K, used() / K, capacity() / K);
 903   }
 904 }
 905 
 906 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 907   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 908   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
 909   return _psh;
 910 }
 911 
 912 // Before delegating the resize to the young generation,
 913 // the reserved space for the young and old generations
 914 // may be changed to accomodate the desired resize.
 915 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 916     size_t survivor_size) {
 917   if (UseAdaptiveGCBoundary) {
 918     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 919       size_policy()->reset_bytes_absorbed_from_eden();
 920       return;  // The generation changed size already.
 921     }
 922     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 923   }
 924 
 925   // Delegate the resize to the generation.
 926   _young_gen->resize(eden_size, survivor_size);
 927 }
 928 
 929 // Before delegating the resize to the old generation,
 930 // the reserved space for the young and old generations
 931 // may be changed to accomodate the desired resize.
 932 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 933   if (UseAdaptiveGCBoundary) {
 934     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 935       size_policy()->reset_bytes_absorbed_from_eden();
 936       return;  // The generation changed size already.
 937     }
 938     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 939   }
 940 
 941   // Delegate the resize to the generation.
 942   _old_gen->resize(desired_free_space);
 943 }
 944 
 945 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 946   // nothing particular
 947 }
 948 
 949 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 950   // nothing particular
 951 }
 952 
 953 #ifndef PRODUCT
 954 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 955   if (ZapUnusedHeapArea) {
 956     young_gen()->record_spaces_top();
 957     old_gen()->record_spaces_top();
 958     perm_gen()->record_spaces_top();
 959   }
 960 }
 961 
 962 void ParallelScavengeHeap::gen_mangle_unused_area() {
 963   if (ZapUnusedHeapArea) {
 964     young_gen()->eden_space()->mangle_unused_area();
 965     young_gen()->to_space()->mangle_unused_area();
 966     young_gen()->from_space()->mangle_unused_area();
 967     old_gen()->object_space()->mangle_unused_area();
 968     perm_gen()->object_space()->mangle_unused_area();
 969   }
 970 }
 971 #endif