1 /*
   2  * Copyright 2002-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 
  26 # include "incls/_precompiled.incl"
  27 # include "incls/_psScavenge.cpp.incl"
  28 
  29 HeapWord*                  PSScavenge::_to_space_top_before_gc = NULL;
  30 int                        PSScavenge::_consecutive_skipped_scavenges = 0;
  31 ReferenceProcessor*        PSScavenge::_ref_processor = NULL;
  32 CardTableExtension*        PSScavenge::_card_table = NULL;
  33 bool                       PSScavenge::_survivor_overflow = false;
  34 int                        PSScavenge::_tenuring_threshold = 0;
  35 HeapWord*                  PSScavenge::_young_generation_boundary = NULL;
  36 elapsedTimer               PSScavenge::_accumulated_time;
  37 GrowableArray<markOop>*    PSScavenge::_preserved_mark_stack = NULL;
  38 GrowableArray<oop>*        PSScavenge::_preserved_oop_stack = NULL;
  39 CollectorCounters*         PSScavenge::_counters = NULL;
  40 
  41 // Define before use
  42 class PSIsAliveClosure: public BoolObjectClosure {
  43 public:
  44   void do_object(oop p) {
  45     assert(false, "Do not call.");
  46   }
  47   bool do_object_b(oop p) {
  48     return (!PSScavenge::is_obj_in_young((HeapWord*) p)) || p->is_forwarded();
  49   }
  50 };
  51 
  52 PSIsAliveClosure PSScavenge::_is_alive_closure;
  53 
  54 class PSKeepAliveClosure: public OopClosure {
  55 protected:
  56   MutableSpace* _to_space;
  57   PSPromotionManager* _promotion_manager;
  58 
  59 public:
  60   PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
  61     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  62     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  63     _to_space = heap->young_gen()->to_space();
  64 
  65     assert(_promotion_manager != NULL, "Sanity");
  66   }
  67 
  68   template <class T> void do_oop_work(T* p) {
  69     assert (!oopDesc::is_null(*p), "expected non-null ref");
  70     assert ((oopDesc::load_decode_heap_oop_not_null(p))->is_oop(),
  71             "expected an oop while scanning weak refs");
  72 
  73     // Weak refs may be visited more than once.
  74     if (PSScavenge::should_scavenge(p, _to_space)) {
  75       PSScavenge::copy_and_push_safe_barrier(_promotion_manager, p);
  76     }
  77   }
  78   virtual void do_oop(oop* p)       { PSKeepAliveClosure::do_oop_work(p); }
  79   virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
  80 };
  81 
  82 class PSEvacuateFollowersClosure: public VoidClosure {
  83  private:
  84   PSPromotionManager* _promotion_manager;
  85  public:
  86   PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
  87 
  88   virtual void do_void() {
  89     assert(_promotion_manager != NULL, "Sanity");
  90     _promotion_manager->drain_stacks(true);
  91     guarantee(_promotion_manager->stacks_empty(),
  92               "stacks should be empty at this point");
  93   }
  94 };
  95 
  96 class PSPromotionFailedClosure : public ObjectClosure {
  97   virtual void do_object(oop obj) {
  98     if (obj->is_forwarded()) {
  99       obj->init_mark();
 100     }
 101   }
 102 };
 103 
 104 class PSRefProcTaskProxy: public GCTask {
 105   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 106   ProcessTask & _rp_task;
 107   uint          _work_id;
 108 public:
 109   PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id)
 110     : _rp_task(rp_task),
 111       _work_id(work_id)
 112   { }
 113 
 114 private:
 115   virtual char* name() { return (char *)"Process referents by policy in parallel"; }
 116   virtual void do_it(GCTaskManager* manager, uint which);
 117 };
 118 
 119 void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
 120 {
 121   PSPromotionManager* promotion_manager =
 122     PSPromotionManager::gc_thread_promotion_manager(which);
 123   assert(promotion_manager != NULL, "sanity check");
 124   PSKeepAliveClosure keep_alive(promotion_manager);
 125   PSEvacuateFollowersClosure evac_followers(promotion_manager);
 126   PSIsAliveClosure is_alive;
 127   _rp_task.work(_work_id, is_alive, keep_alive, evac_followers);
 128 }
 129 
 130 class PSRefEnqueueTaskProxy: public GCTask {
 131   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 132   EnqueueTask& _enq_task;
 133   uint         _work_id;
 134 
 135 public:
 136   PSRefEnqueueTaskProxy(EnqueueTask& enq_task, uint work_id)
 137     : _enq_task(enq_task),
 138       _work_id(work_id)
 139   { }
 140 
 141   virtual char* name() { return (char *)"Enqueue reference objects in parallel"; }
 142   virtual void do_it(GCTaskManager* manager, uint which)
 143   {
 144     _enq_task.work(_work_id);
 145   }
 146 };
 147 
 148 class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 149   virtual void execute(ProcessTask& task);
 150   virtual void execute(EnqueueTask& task);
 151 };
 152 
 153 void PSRefProcTaskExecutor::execute(ProcessTask& task)
 154 {
 155   GCTaskQueue* q = GCTaskQueue::create();
 156   for(uint i=0; i<ParallelGCThreads; i++) {
 157     q->enqueue(new PSRefProcTaskProxy(task, i));
 158   }
 159   ParallelTaskTerminator terminator(
 160     ParallelScavengeHeap::gc_task_manager()->workers(),
 161     UseDepthFirstScavengeOrder ?
 162         (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth()
 163       : (TaskQueueSetSuper*) PSPromotionManager::stack_array_breadth());
 164   if (task.marks_oops_alive() && ParallelGCThreads > 1) {
 165     for (uint j=0; j<ParallelGCThreads; j++) {
 166       q->enqueue(new StealTask(&terminator));
 167     }
 168   }
 169   ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
 170 }
 171 
 172 
 173 void PSRefProcTaskExecutor::execute(EnqueueTask& task)
 174 {
 175   GCTaskQueue* q = GCTaskQueue::create();
 176   for(uint i=0; i<ParallelGCThreads; i++) {
 177     q->enqueue(new PSRefEnqueueTaskProxy(task, i));
 178   }
 179   ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
 180 }
 181 
 182 // This method contains all heap specific policy for invoking scavenge.
 183 // PSScavenge::invoke_no_policy() will do nothing but attempt to
 184 // scavenge. It will not clean up after failed promotions, bail out if
 185 // we've exceeded policy time limits, or any other special behavior.
 186 // All such policy should be placed here.
 187 //
 188 // Note that this method should only be called from the vm_thread while
 189 // at a safepoint!
 190 void PSScavenge::invoke() {
 191   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 192   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 193   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 194 
 195   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 196   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 197 
 198   PSAdaptiveSizePolicy* policy = heap->size_policy();
 199   IsGCActiveMark mark;
 200 
 201   bool scavenge_was_done = PSScavenge::invoke_no_policy();
 202 
 203   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 204   if (UsePerfData)
 205     counters->update_full_follows_scavenge(0);
 206   if (!scavenge_was_done ||
 207       policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
 208     if (UsePerfData)
 209       counters->update_full_follows_scavenge(full_follows_scavenge);
 210     GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
 211     CollectorPolicy* cp = heap->collector_policy();
 212     const bool clear_all_softrefs = cp->should_clear_all_soft_refs();
 213 
 214     if (UseParallelOldGC) {
 215       PSParallelCompact::invoke_no_policy(clear_all_softrefs);
 216     } else {
 217       PSMarkSweep::invoke_no_policy(clear_all_softrefs);
 218     }
 219   }
 220 }
 221 
 222 // This method contains no policy. You should probably
 223 // be calling invoke() instead.
 224 bool PSScavenge::invoke_no_policy() {
 225   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 226   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 227 
 228   TimeStamp scavenge_entry;
 229   TimeStamp scavenge_midpoint;
 230   TimeStamp scavenge_exit;
 231 
 232   scavenge_entry.update();
 233 
 234   if (GC_locker::check_active_before_gc()) {
 235     return false;
 236   }
 237 
 238   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 239   GCCause::Cause gc_cause = heap->gc_cause();
 240   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 241 
 242   // Check for potential problems.
 243   if (!should_attempt_scavenge()) {
 244     return false;
 245   }
 246 
 247   bool promotion_failure_occurred = false;
 248 
 249   PSYoungGen* young_gen = heap->young_gen();
 250   PSOldGen* old_gen = heap->old_gen();
 251   PSPermGen* perm_gen = heap->perm_gen();
 252   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 253   heap->increment_total_collections();
 254 
 255   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
 256 
 257   if ((gc_cause != GCCause::_java_lang_system_gc) ||
 258        UseAdaptiveSizePolicyWithSystemGC) {
 259     // Gather the feedback data for eden occupancy.
 260     young_gen->eden_space()->accumulate_statistics();
 261   }
 262 
 263   if (ZapUnusedHeapArea) {
 264     // Save information needed to minimize mangling
 265     heap->record_gen_tops_before_GC();
 266   }
 267 
 268   if (PrintHeapAtGC) {
 269     Universe::print_heap_before_gc();
 270   }
 271 
 272   assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
 273   assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
 274 
 275   size_t prev_used = heap->used();
 276   assert(promotion_failed() == false, "Sanity");
 277 
 278   // Fill in TLABs
 279   heap->accumulate_statistics_all_tlabs();
 280   heap->ensure_parsability(true);  // retire TLABs
 281 
 282   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 283     HandleMark hm;  // Discard invalid handles created during verification
 284     gclog_or_tty->print(" VerifyBeforeGC:");
 285     Universe::verify(true);
 286   }
 287 
 288   {
 289     ResourceMark rm;
 290     HandleMark hm;
 291 
 292     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 293     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 294     TraceTime t1("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
 295     TraceCollectorStats tcs(counters());
 296     TraceMemoryManagerStats tms(false /* not full GC */);
 297 
 298     if (TraceGen0Time) accumulated_time()->start();
 299 
 300     // Let the size policy know we're starting
 301     size_policy->minor_collection_begin();
 302 
 303     // Verify the object start arrays.
 304     if (VerifyObjectStartArray &&
 305         VerifyBeforeGC) {
 306       old_gen->verify_object_start_array();
 307       perm_gen->verify_object_start_array();
 308     }
 309 
 310     // Verify no unmarked old->young roots
 311     if (VerifyRememberedSets) {
 312       CardTableExtension::verify_all_young_refs_imprecise();
 313     }
 314 
 315     if (!ScavengeWithObjectsInToSpace) {
 316       assert(young_gen->to_space()->is_empty(),
 317              "Attempt to scavenge with live objects in to_space");
 318       young_gen->to_space()->clear(SpaceDecorator::Mangle);
 319     } else if (ZapUnusedHeapArea) {
 320       young_gen->to_space()->mangle_unused_area();
 321     }
 322     save_to_space_top_before_gc();
 323 
 324     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
 325     COMPILER2_PRESENT(DerivedPointerTable::clear());
 326 
 327     reference_processor()->enable_discovery();
 328     reference_processor()->setup_policy(false);
 329 
 330     // We track how much was promoted to the next generation for
 331     // the AdaptiveSizePolicy.
 332     size_t old_gen_used_before = old_gen->used_in_bytes();
 333 
 334     // For PrintGCDetails
 335     size_t young_gen_used_before = young_gen->used_in_bytes();
 336 
 337     // Reset our survivor overflow.
 338     set_survivor_overflow(false);
 339 
 340     // We need to save the old/perm top values before
 341     // creating the promotion_manager. We pass the top
 342     // values to the card_table, to prevent it from
 343     // straying into the promotion labs.
 344     HeapWord* old_top = old_gen->object_space()->top();
 345     HeapWord* perm_top = perm_gen->object_space()->top();
 346 
 347     // Release all previously held resources
 348     gc_task_manager()->release_all_resources();
 349 
 350     PSPromotionManager::pre_scavenge();
 351 
 352     // We'll use the promotion manager again later.
 353     PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
 354     {
 355       // TraceTime("Roots");
 356       ParallelScavengeHeap::ParStrongRootsScope psrs;
 357 
 358       GCTaskQueue* q = GCTaskQueue::create();
 359 
 360       for(uint i=0; i<ParallelGCThreads; i++) {
 361         q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i));
 362       }
 363 
 364       q->enqueue(new SerialOldToYoungRootsTask(perm_gen, perm_top));
 365 
 366       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe));
 367       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles));
 368       // We scan the thread roots in parallel
 369       Threads::create_thread_roots_tasks(q);
 370       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer));
 371       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::flat_profiler));
 372       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management));
 373       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary));
 374       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti));
 375       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
 376 
 377       ParallelTaskTerminator terminator(
 378         gc_task_manager()->workers(),
 379         promotion_manager->depth_first() ?
 380             (TaskQueueSetSuper*) promotion_manager->stack_array_depth()
 381           : (TaskQueueSetSuper*) promotion_manager->stack_array_breadth());
 382       if (ParallelGCThreads>1) {
 383         for (uint j=0; j<ParallelGCThreads; j++) {
 384           q->enqueue(new StealTask(&terminator));
 385         }
 386       }
 387 
 388       gc_task_manager()->execute_and_wait(q);
 389     }
 390 
 391     scavenge_midpoint.update();
 392 
 393     // Process reference objects discovered during scavenge
 394     {
 395       reference_processor()->setup_policy(false); // not always_clear
 396       PSKeepAliveClosure keep_alive(promotion_manager);
 397       PSEvacuateFollowersClosure evac_followers(promotion_manager);
 398       if (reference_processor()->processing_is_mt()) {
 399         PSRefProcTaskExecutor task_executor;
 400         reference_processor()->process_discovered_references(
 401           &_is_alive_closure, &keep_alive, &evac_followers, &task_executor);
 402       } else {
 403         reference_processor()->process_discovered_references(
 404           &_is_alive_closure, &keep_alive, &evac_followers, NULL);
 405       }
 406     }
 407 
 408     // Enqueue reference objects discovered during scavenge.
 409     if (reference_processor()->processing_is_mt()) {
 410       PSRefProcTaskExecutor task_executor;
 411       reference_processor()->enqueue_discovered_references(&task_executor);
 412     } else {
 413       reference_processor()->enqueue_discovered_references(NULL);
 414     }
 415 
 416     // Finally, flush the promotion_manager's labs, and deallocate its stacks.
 417     assert(promotion_manager->claimed_stack_empty(), "Sanity");
 418     PSPromotionManager::post_scavenge();
 419 
 420     promotion_failure_occurred = promotion_failed();
 421     if (promotion_failure_occurred) {
 422       clean_up_failed_promotion();
 423       if (PrintGC) {
 424         gclog_or_tty->print("--");
 425       }
 426     }
 427 
 428     // Let the size policy know we're done.  Note that we count promotion
 429     // failure cleanup time as part of the collection (otherwise, we're
 430     // implicitly saying it's mutator time).
 431     size_policy->minor_collection_end(gc_cause);
 432 
 433     if (!promotion_failure_occurred) {
 434       // Swap the survivor spaces.
 435 
 436 
 437       young_gen->eden_space()->clear(SpaceDecorator::Mangle);
 438       young_gen->from_space()->clear(SpaceDecorator::Mangle);
 439       young_gen->swap_spaces();
 440 
 441       size_t survived = young_gen->from_space()->used_in_bytes();
 442       size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
 443       size_policy->update_averages(_survivor_overflow, survived, promoted);
 444 
 445       // A successful scavenge should restart the GC time limit count which is
 446       // for full GC's.
 447       size_policy->reset_gc_overhead_limit_count();
 448       if (PSResizeByFreeRatioWithSystemGC &&
 449           gc_cause == GCCause::_java_lang_system_gc) {
 450         ParallelScavengeHeap* heap = (ParallelScavengeHeap*) Universe::heap();
 451         heap->resize_by_free_ratio(false);
 452 
 453       } else if (UseAdaptiveSizePolicy) {
 454         // Calculate the new survivor size and tenuring threshold
 455 
 456         if (PrintAdaptiveSizePolicy) {
 457           gclog_or_tty->print("AdaptiveSizeStart: ");
 458           gclog_or_tty->stamp();
 459           gclog_or_tty->print_cr(" collection: %d ",
 460                          heap->total_collections());
 461 
 462           if (Verbose) {
 463             gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
 464               " perm_gen_capacity: %d ",
 465               old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
 466               perm_gen->capacity_in_bytes());
 467           }
 468         }
 469 
 470 
 471         if (UsePerfData) {
 472           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 473           counters->update_old_eden_size(
 474             size_policy->calculated_eden_size_in_bytes());
 475           counters->update_old_promo_size(
 476             size_policy->calculated_promo_size_in_bytes());
 477           counters->update_old_capacity(old_gen->capacity_in_bytes());
 478           counters->update_young_capacity(young_gen->capacity_in_bytes());
 479           counters->update_survived(survived);
 480           counters->update_promoted(promoted);
 481           counters->update_survivor_overflowed(_survivor_overflow);
 482         }
 483 
 484         size_t survivor_limit =
 485           size_policy->max_survivor_size(young_gen->max_size());
 486         _tenuring_threshold =
 487           size_policy->compute_survivor_space_size_and_threshold(
 488                                                            _survivor_overflow,
 489                                                            _tenuring_threshold,
 490                                                            survivor_limit);
 491 
 492        if (PrintTenuringDistribution) {
 493          gclog_or_tty->cr();
 494          gclog_or_tty->print_cr("Desired survivor size %ld bytes, new threshold %d (max %d)",
 495                                 size_policy->calculated_survivor_size_in_bytes(),
 496                                 _tenuring_threshold, MaxTenuringThreshold);
 497        }
 498 
 499         if (UsePerfData) {
 500           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 501           counters->update_tenuring_threshold(_tenuring_threshold);
 502           counters->update_survivor_size_counters();
 503         }
 504 
 505         // Do call at minor collections?
 506         // Don't check if the size_policy is ready at this
 507         // level.  Let the size_policy check that internally.
 508         if (UseAdaptiveSizePolicy &&
 509             UseAdaptiveGenerationSizePolicyAtMinorCollection &&
 510             ((gc_cause != GCCause::_java_lang_system_gc) ||
 511               UseAdaptiveSizePolicyWithSystemGC)) {
 512 
 513           // Calculate optimial free space amounts
 514           assert(young_gen->max_size() >
 515             young_gen->from_space()->capacity_in_bytes() +
 516             young_gen->to_space()->capacity_in_bytes(),
 517             "Sizes of space in young gen are out-of-bounds");
 518           size_t max_eden_size = young_gen->max_size() -
 519             young_gen->from_space()->capacity_in_bytes() -
 520             young_gen->to_space()->capacity_in_bytes();
 521           size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
 522                                    young_gen->eden_space()->used_in_bytes(),
 523                                    old_gen->used_in_bytes(),
 524                                    perm_gen->used_in_bytes(),
 525                                    young_gen->eden_space()->capacity_in_bytes(),
 526                                    old_gen->max_gen_size(),
 527                                    max_eden_size,
 528                                    false  /* full gc*/,
 529                                    gc_cause,
 530                                    heap->collector_policy());
 531 
 532         }
 533         // Resize the young generation at every collection
 534         // even if new sizes have not been calculated.  This is
 535         // to allow resizes that may have been inhibited by the
 536         // relative location of the "to" and "from" spaces.
 537 
 538         // Resizing the old gen at minor collects can cause increases
 539         // that don't feed back to the generation sizing policy until
 540         // a major collection.  Don't resize the old gen here.
 541 
 542         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 543                         size_policy->calculated_survivor_size_in_bytes());
 544 
 545         if (PrintAdaptiveSizePolicy) {
 546           gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
 547                          heap->total_collections());
 548         }
 549       } else {
 550         ParallelScavengeHeap* heap = (ParallelScavengeHeap*) Universe::heap();
 551         heap->resize_by_free_ratio(false);
 552       }
 553 
 554       // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
 555       // cause the change of the heap layout. Make sure eden is reshaped if that's the case.
 556       // Also update() will case adaptive NUMA chunk resizing.
 557       assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
 558       young_gen->eden_space()->update();
 559 
 560       heap->gc_policy_counters()->update_counters();
 561 
 562       heap->resize_all_tlabs();
 563 
 564       assert(young_gen->to_space()->is_empty(), "to space should be empty now");
 565     }
 566 
 567     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 568 
 569     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
 570 
 571     // Re-verify object start arrays
 572     if (VerifyObjectStartArray &&
 573         VerifyAfterGC) {
 574       old_gen->verify_object_start_array();
 575       perm_gen->verify_object_start_array();
 576     }
 577 
 578     // Verify all old -> young cards are now precise
 579     if (VerifyRememberedSets) {
 580       // Precise verification will give false positives. Until this is fixed,
 581       // use imprecise verification.
 582       // CardTableExtension::verify_all_young_refs_precise();
 583       CardTableExtension::verify_all_young_refs_imprecise();
 584     }
 585 
 586     if (TraceGen0Time) accumulated_time()->stop();
 587 
 588     if (PrintGC) {
 589       if (PrintGCDetails) {
 590         // Don't print a GC timestamp here.  This is after the GC so
 591         // would be confusing.
 592         young_gen->print_used_change(young_gen_used_before);
 593       }
 594       heap->print_heap_change(prev_used);
 595     }
 596 
 597     // Track memory usage and detect low memory
 598     MemoryService::track_memory_usage();
 599     heap->update_counters();
 600   }
 601 
 602   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 603     HandleMark hm;  // Discard invalid handles created during verification
 604     gclog_or_tty->print(" VerifyAfterGC:");
 605     Universe::verify(false);
 606   }
 607 
 608   if (PrintHeapAtGC) {
 609     Universe::print_heap_after_gc();
 610   }
 611 
 612   if (ZapUnusedHeapArea) {
 613     young_gen->eden_space()->check_mangled_unused_area_complete();
 614     young_gen->from_space()->check_mangled_unused_area_complete();
 615     young_gen->to_space()->check_mangled_unused_area_complete();
 616   }
 617 
 618   scavenge_exit.update();
 619 
 620   if (PrintGCTaskTimeStamps) {
 621     tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " INT64_FORMAT,
 622                   scavenge_entry.ticks(), scavenge_midpoint.ticks(),
 623                   scavenge_exit.ticks());
 624     gc_task_manager()->print_task_time_stamps();
 625   }
 626 
 627 #ifdef TRACESPINNING
 628   ParallelTaskTerminator::print_termination_counts();
 629 #endif
 630 
 631   return !promotion_failure_occurred;
 632 }
 633 
 634 // This method iterates over all objects in the young generation,
 635 // unforwarding markOops. It then restores any preserved mark oops,
 636 // and clears the _preserved_mark_stack.
 637 void PSScavenge::clean_up_failed_promotion() {
 638   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 639   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 640   assert(promotion_failed(), "Sanity");
 641 
 642   PSYoungGen* young_gen = heap->young_gen();
 643 
 644   {
 645     ResourceMark rm;
 646 
 647     // Unforward all pointers in the young gen.
 648     PSPromotionFailedClosure unforward_closure;
 649     young_gen->object_iterate(&unforward_closure);
 650 
 651     if (PrintGC && Verbose) {
 652       gclog_or_tty->print_cr("Restoring %d marks",
 653                               _preserved_oop_stack->length());
 654     }
 655 
 656     // Restore any saved marks.
 657     for (int i=0; i < _preserved_oop_stack->length(); i++) {
 658       oop obj       = _preserved_oop_stack->at(i);
 659       markOop mark  = _preserved_mark_stack->at(i);
 660       obj->set_mark(mark);
 661     }
 662 
 663     // Deallocate the preserved mark and oop stacks.
 664     // The stacks were allocated as CHeap objects, so
 665     // we must call delete to prevent mem leaks.
 666     delete _preserved_mark_stack;
 667     _preserved_mark_stack = NULL;
 668     delete _preserved_oop_stack;
 669     _preserved_oop_stack = NULL;
 670   }
 671 
 672   // Reset the PromotionFailureALot counters.
 673   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 674 }
 675 
 676 // This method is called whenever an attempt to promote an object
 677 // fails. Some markOops will need preserving, some will not. Note
 678 // that the entire eden is traversed after a failed promotion, with
 679 // all forwarded headers replaced by the default markOop. This means
 680 // it is not neccessary to preserve most markOops.
 681 void PSScavenge::oop_promotion_failed(oop obj, markOop obj_mark) {
 682   if (_preserved_mark_stack == NULL) {
 683     ThreadCritical tc; // Lock and retest
 684     if (_preserved_mark_stack == NULL) {
 685       assert(_preserved_oop_stack == NULL, "Sanity");
 686       _preserved_mark_stack = new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
 687       _preserved_oop_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
 688     }
 689   }
 690 
 691   // Because we must hold the ThreadCritical lock before using
 692   // the stacks, we should be safe from observing partial allocations,
 693   // which are also guarded by the ThreadCritical lock.
 694   if (obj_mark->must_be_preserved_for_promotion_failure(obj)) {
 695     ThreadCritical tc;
 696     _preserved_oop_stack->push(obj);
 697     _preserved_mark_stack->push(obj_mark);
 698   }
 699 }
 700 
 701 bool PSScavenge::should_attempt_scavenge() {
 702   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 703   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 704   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 705 
 706   if (UsePerfData) {
 707     counters->update_scavenge_skipped(not_skipped);
 708   }
 709 
 710   PSYoungGen* young_gen = heap->young_gen();
 711   PSOldGen* old_gen = heap->old_gen();
 712 
 713   if (!ScavengeWithObjectsInToSpace) {
 714     // Do not attempt to promote unless to_space is empty
 715     if (!young_gen->to_space()->is_empty()) {
 716       _consecutive_skipped_scavenges++;
 717       if (UsePerfData) {
 718         counters->update_scavenge_skipped(to_space_not_empty);
 719       }
 720       return false;
 721     }
 722   }
 723 
 724   // Test to see if the scavenge will likely fail.
 725   PSAdaptiveSizePolicy* policy = heap->size_policy();
 726 
 727   // A similar test is done in the policy's should_full_GC().  If this is
 728   // changed, decide if that test should also be changed.
 729   size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
 730   size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
 731   bool result = promotion_estimate < old_gen->free_in_bytes();
 732 
 733   if (PrintGCDetails && Verbose) {
 734     gclog_or_tty->print(result ? "  do scavenge: " : "  skip scavenge: ");
 735     gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
 736       " padded_average_promoted " SIZE_FORMAT
 737       " free in old gen " SIZE_FORMAT,
 738       (size_t) policy->average_promoted_in_bytes(),
 739       (size_t) policy->padded_average_promoted_in_bytes(),
 740       old_gen->free_in_bytes());
 741     if (young_gen->used_in_bytes() <
 742         (size_t) policy->padded_average_promoted_in_bytes()) {
 743       gclog_or_tty->print_cr(" padded_promoted_average is greater"
 744         " than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
 745     }
 746   }
 747 
 748   if (result) {
 749     _consecutive_skipped_scavenges = 0;
 750   } else {
 751     _consecutive_skipped_scavenges++;
 752     if (UsePerfData) {
 753       counters->update_scavenge_skipped(promoted_too_large);
 754     }
 755   }
 756   return result;
 757 }
 758 
 759   // Used to add tasks
 760 GCTaskManager* const PSScavenge::gc_task_manager() {
 761   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
 762    "shouldn't return NULL");
 763   return ParallelScavengeHeap::gc_task_manager();
 764 }
 765 
 766 void PSScavenge::initialize() {
 767   // Arguments must have been parsed
 768 
 769   if (AlwaysTenure) {
 770     _tenuring_threshold = 0;
 771   } else if (NeverTenure) {
 772     _tenuring_threshold = markOopDesc::max_age + 1;
 773   } else {
 774     // We want to smooth out our startup times for the AdaptiveSizePolicy
 775     _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
 776                                                     MaxTenuringThreshold;
 777   }
 778 
 779   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 780   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 781 
 782   PSYoungGen* young_gen = heap->young_gen();
 783   PSOldGen* old_gen = heap->old_gen();
 784   PSPermGen* perm_gen = heap->perm_gen();
 785 
 786   // Set boundary between young_gen and old_gen
 787   assert(perm_gen->reserved().end() <= old_gen->object_space()->bottom(),
 788          "perm above old");
 789   assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
 790          "old above young");
 791   _young_generation_boundary = young_gen->eden_space()->bottom();
 792 
 793   // Initialize ref handling object for scavenging.
 794   MemRegion mr = young_gen->reserved();
 795   _ref_processor = ReferenceProcessor::create_ref_processor(
 796     mr,                         // span
 797     true,                       // atomic_discovery
 798     true,                       // mt_discovery
 799     NULL,                       // is_alive_non_header
 800     ParallelGCThreads,
 801     ParallelRefProcEnabled);
 802 
 803   // Cache the cardtable
 804   BarrierSet* bs = Universe::heap()->barrier_set();
 805   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
 806   _card_table = (CardTableExtension*)bs;
 807 
 808   _counters = new CollectorCounters("PSScavenge", 0);
 809 }