1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "gc_implementation/shared/isGCActiveMark.hpp"
  44 #include "gc_interface/collectedHeap.inline.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/tenuredGeneration.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "runtime/globals_extension.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "services/memoryService.hpp"
  64 #include "services/runtimeService.hpp"
  65 
  66 // statics
  67 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  68 bool CMSCollector::_full_gc_requested = false;
  69 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  70 
  71 //////////////////////////////////////////////////////////////////
  72 // In support of CMS/VM thread synchronization
  73 //////////////////////////////////////////////////////////////////
  74 // We split use of the CGC_lock into 2 "levels".
  75 // The low-level locking is of the usual CGC_lock monitor. We introduce
  76 // a higher level "token" (hereafter "CMS token") built on top of the
  77 // low level monitor (hereafter "CGC lock").
  78 // The token-passing protocol gives priority to the VM thread. The
  79 // CMS-lock doesn't provide any fairness guarantees, but clients
  80 // should ensure that it is only held for very short, bounded
  81 // durations.
  82 //
  83 // When either of the CMS thread or the VM thread is involved in
  84 // collection operations during which it does not want the other
  85 // thread to interfere, it obtains the CMS token.
  86 //
  87 // If either thread tries to get the token while the other has
  88 // it, that thread waits. However, if the VM thread and CMS thread
  89 // both want the token, then the VM thread gets priority while the
  90 // CMS thread waits. This ensures, for instance, that the "concurrent"
  91 // phases of the CMS thread's work do not block out the VM thread
  92 // for long periods of time as the CMS thread continues to hog
  93 // the token. (See bug 4616232).
  94 //
  95 // The baton-passing functions are, however, controlled by the
  96 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  97 // and here the low-level CMS lock, not the high level token,
  98 // ensures mutual exclusion.
  99 //
 100 // Two important conditions that we have to satisfy:
 101 // 1. if a thread does a low-level wait on the CMS lock, then it
 102 //    relinquishes the CMS token if it were holding that token
 103 //    when it acquired the low-level CMS lock.
 104 // 2. any low-level notifications on the low-level lock
 105 //    should only be sent when a thread has relinquished the token.
 106 //
 107 // In the absence of either property, we'd have potential deadlock.
 108 //
 109 // We protect each of the CMS (concurrent and sequential) phases
 110 // with the CMS _token_, not the CMS _lock_.
 111 //
 112 // The only code protected by CMS lock is the token acquisition code
 113 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 114 // baton-passing code.
 115 //
 116 // Unfortunately, i couldn't come up with a good abstraction to factor and
 117 // hide the naked CGC_lock manipulation in the baton-passing code
 118 // further below. That's something we should try to do. Also, the proof
 119 // of correctness of this 2-level locking scheme is far from obvious,
 120 // and potentially quite slippery. We have an uneasy supsicion, for instance,
 121 // that there may be a theoretical possibility of delay/starvation in the
 122 // low-level lock/wait/notify scheme used for the baton-passing because of
 123 // potential intereference with the priority scheme embodied in the
 124 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 125 // invocation further below and marked with "XXX 20011219YSR".
 126 // Indeed, as we note elsewhere, this may become yet more slippery
 127 // in the presence of multiple CMS and/or multiple VM threads. XXX
 128 
 129 class CMSTokenSync: public StackObj {
 130  private:
 131   bool _is_cms_thread;
 132  public:
 133   CMSTokenSync(bool is_cms_thread):
 134     _is_cms_thread(is_cms_thread) {
 135     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 136            "Incorrect argument to constructor");
 137     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 138   }
 139 
 140   ~CMSTokenSync() {
 141     assert(_is_cms_thread ?
 142              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 143              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 144           "Incorrect state");
 145     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 146   }
 147 };
 148 
 149 // Convenience class that does a CMSTokenSync, and then acquires
 150 // upto three locks.
 151 class CMSTokenSyncWithLocks: public CMSTokenSync {
 152  private:
 153   // Note: locks are acquired in textual declaration order
 154   // and released in the opposite order
 155   MutexLockerEx _locker1, _locker2, _locker3;
 156  public:
 157   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 158                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 159     CMSTokenSync(is_cms_thread),
 160     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 161     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 162     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 163   { }
 164 };
 165 
 166 
 167 // Wrapper class to temporarily disable icms during a foreground cms collection.
 168 class ICMSDisabler: public StackObj {
 169  public:
 170   // The ctor disables icms and wakes up the thread so it notices the change;
 171   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 172   // CMSIncrementalMode.
 173   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 174   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 175 };
 176 
 177 //////////////////////////////////////////////////////////////////
 178 //  Concurrent Mark-Sweep Generation /////////////////////////////
 179 //////////////////////////////////////////////////////////////////
 180 
 181 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 182 
 183 // This struct contains per-thread things necessary to support parallel
 184 // young-gen collection.
 185 class CMSParGCThreadState: public CHeapObj<mtGC> {
 186  public:
 187   CFLS_LAB lab;
 188   PromotionInfo promo;
 189 
 190   // Constructor.
 191   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 192     promo.setSpace(cfls);
 193   }
 194 };
 195 
 196 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 197      ReservedSpace rs, size_t initial_byte_size, int level,
 198      CardTableRS* ct, bool use_adaptive_freelists,
 199      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 200   CardGeneration(rs, initial_byte_size, level, ct),
 201   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 202   _debug_collection_type(Concurrent_collection_type),
 203   _did_compact(false)
 204 {
 205   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 206   HeapWord* end    = (HeapWord*) _virtual_space.high();
 207 
 208   _direct_allocated_words = 0;
 209   NOT_PRODUCT(
 210     _numObjectsPromoted = 0;
 211     _numWordsPromoted = 0;
 212     _numObjectsAllocated = 0;
 213     _numWordsAllocated = 0;
 214   )
 215 
 216   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 217                                            use_adaptive_freelists,
 218                                            dictionaryChoice);
 219   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 220   if (_cmsSpace == NULL) {
 221     vm_exit_during_initialization(
 222       "CompactibleFreeListSpace allocation failure");
 223   }
 224   _cmsSpace->_gen = this;
 225 
 226   _gc_stats = new CMSGCStats();
 227 
 228   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 229   // offsets match. The ability to tell free chunks from objects
 230   // depends on this property.
 231   debug_only(
 232     FreeChunk* junk = NULL;
 233     assert(UseCompressedKlassPointers ||
 234            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 235            "Offset of FreeChunk::_prev within FreeChunk must match"
 236            "  that of OopDesc::_klass within OopDesc");
 237   )
 238   if (CollectedHeap::use_parallel_gc_threads()) {
 239     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 240     _par_gc_thread_states =
 241       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 242     if (_par_gc_thread_states == NULL) {
 243       vm_exit_during_initialization("Could not allocate par gc structs");
 244     }
 245     for (uint i = 0; i < ParallelGCThreads; i++) {
 246       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 247       if (_par_gc_thread_states[i] == NULL) {
 248         vm_exit_during_initialization("Could not allocate par gc structs");
 249       }
 250     }
 251   } else {
 252     _par_gc_thread_states = NULL;
 253   }
 254   _incremental_collection_failed = false;
 255   // The "dilatation_factor" is the expansion that can occur on
 256   // account of the fact that the minimum object size in the CMS
 257   // generation may be larger than that in, say, a contiguous young
 258   //  generation.
 259   // Ideally, in the calculation below, we'd compute the dilatation
 260   // factor as: MinChunkSize/(promoting_gen's min object size)
 261   // Since we do not have such a general query interface for the
 262   // promoting generation, we'll instead just use the mimimum
 263   // object size (which today is a header's worth of space);
 264   // note that all arithmetic is in units of HeapWords.
 265   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 266   assert(_dilatation_factor >= 1.0, "from previous assert");
 267 }
 268 
 269 
 270 // The field "_initiating_occupancy" represents the occupancy percentage
 271 // at which we trigger a new collection cycle.  Unless explicitly specified
 272 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 273 // is calculated by:
 274 //
 275 //   Let "f" be MinHeapFreeRatio in
 276 //
 277 //    _intiating_occupancy = 100-f +
 278 //                           f * (CMSTriggerRatio/100)
 279 //   where CMSTriggerRatio is the argument "tr" below.
 280 //
 281 // That is, if we assume the heap is at its desired maximum occupancy at the
 282 // end of a collection, we let CMSTriggerRatio of the (purported) free
 283 // space be allocated before initiating a new collection cycle.
 284 //
 285 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 286   assert(io <= 100 && tr <= 100, "Check the arguments");
 287   if (io >= 0) {
 288     _initiating_occupancy = (double)io / 100.0;
 289   } else {
 290     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 291                              (double)(tr * MinHeapFreeRatio) / 100.0)
 292                             / 100.0;
 293   }
 294 }
 295 
 296 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 297   assert(collector() != NULL, "no collector");
 298   collector()->ref_processor_init();
 299 }
 300 
 301 void CMSCollector::ref_processor_init() {
 302   if (_ref_processor == NULL) {
 303     // Allocate and initialize a reference processor
 304     _ref_processor =
 305       new ReferenceProcessor(_span,                               // span
 306                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 307                              (int) ParallelGCThreads,             // mt processing degree
 308                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 309                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 310                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 311                              &_is_alive_closure,                  // closure for liveness info
 312                              false);                              // next field updates do not need write barrier
 313     // Initialize the _ref_processor field of CMSGen
 314     _cmsGen->set_ref_processor(_ref_processor);
 315 
 316   }
 317 }
 318 
 319 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 320   GenCollectedHeap* gch = GenCollectedHeap::heap();
 321   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 322     "Wrong type of heap");
 323   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 324     gch->gen_policy()->size_policy();
 325   assert(sp->is_gc_cms_adaptive_size_policy(),
 326     "Wrong type of size policy");
 327   return sp;
 328 }
 329 
 330 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 331   CMSGCAdaptivePolicyCounters* results =
 332     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 333   assert(
 334     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 335     "Wrong gc policy counter kind");
 336   return results;
 337 }
 338 
 339 
 340 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 341 
 342   const char* gen_name = "old";
 343 
 344   // Generation Counters - generation 1, 1 subspace
 345   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 346 
 347   _space_counters = new GSpaceCounters(gen_name, 0,
 348                                        _virtual_space.reserved_size(),
 349                                        this, _gen_counters);
 350 }
 351 
 352 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 353   _cms_gen(cms_gen)
 354 {
 355   assert(alpha <= 100, "bad value");
 356   _saved_alpha = alpha;
 357 
 358   // Initialize the alphas to the bootstrap value of 100.
 359   _gc0_alpha = _cms_alpha = 100;
 360 
 361   _cms_begin_time.update();
 362   _cms_end_time.update();
 363 
 364   _gc0_duration = 0.0;
 365   _gc0_period = 0.0;
 366   _gc0_promoted = 0;
 367 
 368   _cms_duration = 0.0;
 369   _cms_period = 0.0;
 370   _cms_allocated = 0;
 371 
 372   _cms_used_at_gc0_begin = 0;
 373   _cms_used_at_gc0_end = 0;
 374   _allow_duty_cycle_reduction = false;
 375   _valid_bits = 0;
 376   _icms_duty_cycle = CMSIncrementalDutyCycle;
 377 }
 378 
 379 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 380   // TBD: CR 6909490
 381   return 1.0;
 382 }
 383 
 384 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 385 }
 386 
 387 // If promotion failure handling is on use
 388 // the padded average size of the promotion for each
 389 // young generation collection.
 390 double CMSStats::time_until_cms_gen_full() const {
 391   size_t cms_free = _cms_gen->cmsSpace()->free();
 392   GenCollectedHeap* gch = GenCollectedHeap::heap();
 393   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 394                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 395   if (cms_free > expected_promotion) {
 396     // Start a cms collection if there isn't enough space to promote
 397     // for the next minor collection.  Use the padded average as
 398     // a safety factor.
 399     cms_free -= expected_promotion;
 400 
 401     // Adjust by the safety factor.
 402     double cms_free_dbl = (double)cms_free;
 403     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 404     // Apply a further correction factor which tries to adjust
 405     // for recent occurance of concurrent mode failures.
 406     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 407     cms_free_dbl = cms_free_dbl * cms_adjustment;
 408 
 409     if (PrintGCDetails && Verbose) {
 410       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 411         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 412         cms_free, expected_promotion);
 413       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 414         cms_free_dbl, cms_consumption_rate() + 1.0);
 415     }
 416     // Add 1 in case the consumption rate goes to zero.
 417     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 418   }
 419   return 0.0;
 420 }
 421 
 422 // Compare the duration of the cms collection to the
 423 // time remaining before the cms generation is empty.
 424 // Note that the time from the start of the cms collection
 425 // to the start of the cms sweep (less than the total
 426 // duration of the cms collection) can be used.  This
 427 // has been tried and some applications experienced
 428 // promotion failures early in execution.  This was
 429 // possibly because the averages were not accurate
 430 // enough at the beginning.
 431 double CMSStats::time_until_cms_start() const {
 432   // We add "gc0_period" to the "work" calculation
 433   // below because this query is done (mostly) at the
 434   // end of a scavenge, so we need to conservatively
 435   // account for that much possible delay
 436   // in the query so as to avoid concurrent mode failures
 437   // due to starting the collection just a wee bit too
 438   // late.
 439   double work = cms_duration() + gc0_period();
 440   double deadline = time_until_cms_gen_full();
 441   // If a concurrent mode failure occurred recently, we want to be
 442   // more conservative and halve our expected time_until_cms_gen_full()
 443   if (work > deadline) {
 444     if (Verbose && PrintGCDetails) {
 445       gclog_or_tty->print(
 446         " CMSCollector: collect because of anticipated promotion "
 447         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 448         gc0_period(), time_until_cms_gen_full());
 449     }
 450     return 0.0;
 451   }
 452   return work - deadline;
 453 }
 454 
 455 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 456 // amount of change to prevent wild oscillation.
 457 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 458                                               unsigned int new_duty_cycle) {
 459   assert(old_duty_cycle <= 100, "bad input value");
 460   assert(new_duty_cycle <= 100, "bad input value");
 461 
 462   // Note:  use subtraction with caution since it may underflow (values are
 463   // unsigned).  Addition is safe since we're in the range 0-100.
 464   unsigned int damped_duty_cycle = new_duty_cycle;
 465   if (new_duty_cycle < old_duty_cycle) {
 466     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 467     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 468       damped_duty_cycle = old_duty_cycle - largest_delta;
 469     }
 470   } else if (new_duty_cycle > old_duty_cycle) {
 471     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 472     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 473       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 474     }
 475   }
 476   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 477 
 478   if (CMSTraceIncrementalPacing) {
 479     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 480                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 481   }
 482   return damped_duty_cycle;
 483 }
 484 
 485 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 486   assert(CMSIncrementalPacing && valid(),
 487          "should be handled in icms_update_duty_cycle()");
 488 
 489   double cms_time_so_far = cms_timer().seconds();
 490   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 491   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 492 
 493   // Avoid division by 0.
 494   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 495   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 496 
 497   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 498   if (new_duty_cycle > _icms_duty_cycle) {
 499     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 500     if (new_duty_cycle > 2) {
 501       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 502                                                 new_duty_cycle);
 503     }
 504   } else if (_allow_duty_cycle_reduction) {
 505     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 506     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 507     // Respect the minimum duty cycle.
 508     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 509     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 510   }
 511 
 512   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 513     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 514   }
 515 
 516   _allow_duty_cycle_reduction = false;
 517   return _icms_duty_cycle;
 518 }
 519 
 520 #ifndef PRODUCT
 521 void CMSStats::print_on(outputStream *st) const {
 522   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 523   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 524                gc0_duration(), gc0_period(), gc0_promoted());
 525   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 526             cms_duration(), cms_duration_per_mb(),
 527             cms_period(), cms_allocated());
 528   st->print(",cms_since_beg=%g,cms_since_end=%g",
 529             cms_time_since_begin(), cms_time_since_end());
 530   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 531             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 532   if (CMSIncrementalMode) {
 533     st->print(",dc=%d", icms_duty_cycle());
 534   }
 535 
 536   if (valid()) {
 537     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 538               promotion_rate(), cms_allocation_rate());
 539     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 540               cms_consumption_rate(), time_until_cms_gen_full());
 541   }
 542   st->print(" ");
 543 }
 544 #endif // #ifndef PRODUCT
 545 
 546 CMSCollector::CollectorState CMSCollector::_collectorState =
 547                              CMSCollector::Idling;
 548 bool CMSCollector::_foregroundGCIsActive = false;
 549 bool CMSCollector::_foregroundGCShouldWait = false;
 550 
 551 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 552                            CardTableRS*                   ct,
 553                            ConcurrentMarkSweepPolicy*     cp):
 554   _cmsGen(cmsGen),
 555   _ct(ct),
 556   _ref_processor(NULL),    // will be set later
 557   _conc_workers(NULL),     // may be set later
 558   _abort_preclean(false),
 559   _start_sampling(false),
 560   _between_prologue_and_epilogue(false),
 561   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 562   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 563                  -1 /* lock-free */, "No_lock" /* dummy */),
 564   _modUnionClosure(&_modUnionTable),
 565   _modUnionClosurePar(&_modUnionTable),
 566   // Adjust my span to cover old (cms) gen
 567   _span(cmsGen->reserved()),
 568   // Construct the is_alive_closure with _span & markBitMap
 569   _is_alive_closure(_span, &_markBitMap),
 570   _restart_addr(NULL),
 571   _overflow_list(NULL),
 572   _stats(cmsGen),
 573   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 574   _eden_chunk_array(NULL),     // may be set in ctor body
 575   _eden_chunk_capacity(0),     // -- ditto --
 576   _eden_chunk_index(0),        // -- ditto --
 577   _survivor_plab_array(NULL),  // -- ditto --
 578   _survivor_chunk_array(NULL), // -- ditto --
 579   _survivor_chunk_capacity(0), // -- ditto --
 580   _survivor_chunk_index(0),    // -- ditto --
 581   _ser_pmc_preclean_ovflw(0),
 582   _ser_kac_preclean_ovflw(0),
 583   _ser_pmc_remark_ovflw(0),
 584   _par_pmc_remark_ovflw(0),
 585   _ser_kac_ovflw(0),
 586   _par_kac_ovflw(0),
 587 #ifndef PRODUCT
 588   _num_par_pushes(0),
 589 #endif
 590   _collection_count_start(0),
 591   _verifying(false),
 592   _icms_start_limit(NULL),
 593   _icms_stop_limit(NULL),
 594   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 595   _completed_initialization(false),
 596   _collector_policy(cp),
 597   _should_unload_classes(false),
 598   _concurrent_cycles_since_last_unload(0),
 599   _roots_scanning_options(0),
 600   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 601   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 602   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 603   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 604   _cms_start_registered(false)
 605 {
 606   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 607     ExplicitGCInvokesConcurrent = true;
 608   }
 609   // Now expand the span and allocate the collection support structures
 610   // (MUT, marking bit map etc.) to cover both generations subject to
 611   // collection.
 612 
 613   // For use by dirty card to oop closures.
 614   _cmsGen->cmsSpace()->set_collector(this);
 615 
 616   // Allocate MUT and marking bit map
 617   {
 618     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 619     if (!_markBitMap.allocate(_span)) {
 620       warning("Failed to allocate CMS Bit Map");
 621       return;
 622     }
 623     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 624   }
 625   {
 626     _modUnionTable.allocate(_span);
 627     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 628   }
 629 
 630   if (!_markStack.allocate(MarkStackSize)) {
 631     warning("Failed to allocate CMS Marking Stack");
 632     return;
 633   }
 634 
 635   // Support for multi-threaded concurrent phases
 636   if (CMSConcurrentMTEnabled) {
 637     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 638       // just for now
 639       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 640     }
 641     if (ConcGCThreads > 1) {
 642       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 643                                  ConcGCThreads, true);
 644       if (_conc_workers == NULL) {
 645         warning("GC/CMS: _conc_workers allocation failure: "
 646               "forcing -CMSConcurrentMTEnabled");
 647         CMSConcurrentMTEnabled = false;
 648       } else {
 649         _conc_workers->initialize_workers();
 650       }
 651     } else {
 652       CMSConcurrentMTEnabled = false;
 653     }
 654   }
 655   if (!CMSConcurrentMTEnabled) {
 656     ConcGCThreads = 0;
 657   } else {
 658     // Turn off CMSCleanOnEnter optimization temporarily for
 659     // the MT case where it's not fixed yet; see 6178663.
 660     CMSCleanOnEnter = false;
 661   }
 662   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 663          "Inconsistency");
 664 
 665   // Parallel task queues; these are shared for the
 666   // concurrent and stop-world phases of CMS, but
 667   // are not shared with parallel scavenge (ParNew).
 668   {
 669     uint i;
 670     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 671 
 672     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 673          || ParallelRefProcEnabled)
 674         && num_queues > 0) {
 675       _task_queues = new OopTaskQueueSet(num_queues);
 676       if (_task_queues == NULL) {
 677         warning("task_queues allocation failure.");
 678         return;
 679       }
 680       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 681       if (_hash_seed == NULL) {
 682         warning("_hash_seed array allocation failure");
 683         return;
 684       }
 685 
 686       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 687       for (i = 0; i < num_queues; i++) {
 688         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 689         if (q == NULL) {
 690           warning("work_queue allocation failure.");
 691           return;
 692         }
 693         _task_queues->register_queue(i, q);
 694       }
 695       for (i = 0; i < num_queues; i++) {
 696         _task_queues->queue(i)->initialize();
 697         _hash_seed[i] = 17;  // copied from ParNew
 698       }
 699     }
 700   }
 701 
 702   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 703 
 704   // Clip CMSBootstrapOccupancy between 0 and 100.
 705   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 706 
 707   _full_gcs_since_conc_gc = 0;
 708 
 709   // Now tell CMS generations the identity of their collector
 710   ConcurrentMarkSweepGeneration::set_collector(this);
 711 
 712   // Create & start a CMS thread for this CMS collector
 713   _cmsThread = ConcurrentMarkSweepThread::start(this);
 714   assert(cmsThread() != NULL, "CMS Thread should have been created");
 715   assert(cmsThread()->collector() == this,
 716          "CMS Thread should refer to this gen");
 717   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 718 
 719   // Support for parallelizing young gen rescan
 720   GenCollectedHeap* gch = GenCollectedHeap::heap();
 721   _young_gen = gch->prev_gen(_cmsGen);
 722   if (gch->supports_inline_contig_alloc()) {
 723     _top_addr = gch->top_addr();
 724     _end_addr = gch->end_addr();
 725     assert(_young_gen != NULL, "no _young_gen");
 726     _eden_chunk_index = 0;
 727     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 728     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 729     if (_eden_chunk_array == NULL) {
 730       _eden_chunk_capacity = 0;
 731       warning("GC/CMS: _eden_chunk_array allocation failure");
 732     }
 733   }
 734   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 735 
 736   // Support for parallelizing survivor space rescan
 737   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 738     const size_t max_plab_samples =
 739       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 740 
 741     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 742     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 743     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 744     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 745         || _cursor == NULL) {
 746       warning("Failed to allocate survivor plab/chunk array");
 747       if (_survivor_plab_array  != NULL) {
 748         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 749         _survivor_plab_array = NULL;
 750       }
 751       if (_survivor_chunk_array != NULL) {
 752         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 753         _survivor_chunk_array = NULL;
 754       }
 755       if (_cursor != NULL) {
 756         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 757         _cursor = NULL;
 758       }
 759     } else {
 760       _survivor_chunk_capacity = 2*max_plab_samples;
 761       for (uint i = 0; i < ParallelGCThreads; i++) {
 762         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 763         if (vec == NULL) {
 764           warning("Failed to allocate survivor plab array");
 765           for (int j = i; j > 0; j--) {
 766             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 767           }
 768           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 769           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 770           _survivor_plab_array = NULL;
 771           _survivor_chunk_array = NULL;
 772           _survivor_chunk_capacity = 0;
 773           break;
 774         } else {
 775           ChunkArray* cur =
 776             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 777                                                         max_plab_samples);
 778           assert(cur->end() == 0, "Should be 0");
 779           assert(cur->array() == vec, "Should be vec");
 780           assert(cur->capacity() == max_plab_samples, "Error");
 781         }
 782       }
 783     }
 784   }
 785   assert(   (   _survivor_plab_array  != NULL
 786              && _survivor_chunk_array != NULL)
 787          || (   _survivor_chunk_capacity == 0
 788              && _survivor_chunk_index == 0),
 789          "Error");
 790 
 791   // Choose what strong roots should be scanned depending on verification options.
 792   // If CMSClassUnloadingEnabled is on, root scanning option is set during
 793   // setup_cms_unloading_and_verification_state() on each CMS cycle.
 794   if (!CMSClassUnloadingEnabled) {
 795     // If class unloading is disabled we want to include all classes into the root set.
 796     add_root_scanning_option(SharedHeap::SO_AllClasses);
 797   }
 798 
 799   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 800   _gc_counters = new CollectorCounters("CMS", 1);
 801   _completed_initialization = true;
 802   _inter_sweep_timer.start();  // start of time
 803 }
 804 
 805 const char* ConcurrentMarkSweepGeneration::name() const {
 806   return "concurrent mark-sweep generation";
 807 }
 808 void ConcurrentMarkSweepGeneration::update_counters() {
 809   if (UsePerfData) {
 810     _space_counters->update_all();
 811     _gen_counters->update_all();
 812   }
 813 }
 814 
 815 // this is an optimized version of update_counters(). it takes the
 816 // used value as a parameter rather than computing it.
 817 //
 818 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 819   if (UsePerfData) {
 820     _space_counters->update_used(used);
 821     _space_counters->update_capacity();
 822     _gen_counters->update_all();
 823   }
 824 }
 825 
 826 void ConcurrentMarkSweepGeneration::print() const {
 827   Generation::print();
 828   cmsSpace()->print();
 829 }
 830 
 831 #ifndef PRODUCT
 832 void ConcurrentMarkSweepGeneration::print_statistics() {
 833   cmsSpace()->printFLCensus(0);
 834 }
 835 #endif
 836 
 837 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 838   GenCollectedHeap* gch = GenCollectedHeap::heap();
 839   if (PrintGCDetails) {
 840     if (Verbose) {
 841       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 842         level(), short_name(), s, used(), capacity());
 843     } else {
 844       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 845         level(), short_name(), s, used() / K, capacity() / K);
 846     }
 847   }
 848   if (Verbose) {
 849     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 850               gch->used(), gch->capacity());
 851   } else {
 852     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 853               gch->used() / K, gch->capacity() / K);
 854   }
 855 }
 856 
 857 size_t
 858 ConcurrentMarkSweepGeneration::contiguous_available() const {
 859   // dld proposes an improvement in precision here. If the committed
 860   // part of the space ends in a free block we should add that to
 861   // uncommitted size in the calculation below. Will make this
 862   // change later, staying with the approximation below for the
 863   // time being. -- ysr.
 864   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 865 }
 866 
 867 size_t
 868 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 869   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 870 }
 871 
 872 size_t ConcurrentMarkSweepGeneration::max_available() const {
 873   return free() + _virtual_space.uncommitted_size();
 874 }
 875 
 876 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 877   size_t available = max_available();
 878   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 879   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 880   if (Verbose && PrintGCDetails) {
 881     gclog_or_tty->print_cr(
 882       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 883       "max_promo("SIZE_FORMAT")",
 884       res? "":" not", available, res? ">=":"<",
 885       av_promo, max_promotion_in_bytes);
 886   }
 887   return res;
 888 }
 889 
 890 // At a promotion failure dump information on block layout in heap
 891 // (cms old generation).
 892 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 893   if (CMSDumpAtPromotionFailure) {
 894     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 895   }
 896 }
 897 
 898 CompactibleSpace*
 899 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 900   return _cmsSpace;
 901 }
 902 
 903 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 904   // Clear the promotion information.  These pointers can be adjusted
 905   // along with all the other pointers into the heap but
 906   // compaction is expected to be a rare event with
 907   // a heap using cms so don't do it without seeing the need.
 908   if (CollectedHeap::use_parallel_gc_threads()) {
 909     for (uint i = 0; i < ParallelGCThreads; i++) {
 910       _par_gc_thread_states[i]->promo.reset();
 911     }
 912   }
 913 }
 914 
 915 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 916   blk->do_space(_cmsSpace);
 917 }
 918 
 919 void ConcurrentMarkSweepGeneration::compute_new_size() {
 920   assert_locked_or_safepoint(Heap_lock);
 921 
 922   // If incremental collection failed, we just want to expand
 923   // to the limit.
 924   if (incremental_collection_failed()) {
 925     clear_incremental_collection_failed();
 926     grow_to_reserved();
 927     return;
 928   }
 929 
 930   // The heap has been compacted but not reset yet.
 931   // Any metric such as free() or used() will be incorrect.
 932 
 933   CardGeneration::compute_new_size();
 934 
 935   // Reset again after a possible resizing
 936   if (did_compact()) {
 937     cmsSpace()->reset_after_compaction();
 938   }
 939 }
 940 
 941 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 942   assert_locked_or_safepoint(Heap_lock);
 943 
 944   // If incremental collection failed, we just want to expand
 945   // to the limit.
 946   if (incremental_collection_failed()) {
 947     clear_incremental_collection_failed();
 948     grow_to_reserved();
 949     return;
 950   }
 951 
 952   double free_percentage = ((double) free()) / capacity();
 953   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 954   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 955 
 956   // compute expansion delta needed for reaching desired free percentage
 957   if (free_percentage < desired_free_percentage) {
 958     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 959     assert(desired_capacity >= capacity(), "invalid expansion size");
 960     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 961     if (PrintGCDetails && Verbose) {
 962       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 963       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 964       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 965       gclog_or_tty->print_cr("  Desired free fraction %f",
 966         desired_free_percentage);
 967       gclog_or_tty->print_cr("  Maximum free fraction %f",
 968         maximum_free_percentage);
 969       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 970       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 971         desired_capacity/1000);
 972       int prev_level = level() - 1;
 973       if (prev_level >= 0) {
 974         size_t prev_size = 0;
 975         GenCollectedHeap* gch = GenCollectedHeap::heap();
 976         Generation* prev_gen = gch->_gens[prev_level];
 977         prev_size = prev_gen->capacity();
 978           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 979                                  prev_size/1000);
 980       }
 981       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 982         unsafe_max_alloc_nogc()/1000);
 983       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 984         contiguous_available()/1000);
 985       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 986         expand_bytes);
 987     }
 988     // safe if expansion fails
 989     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 990     if (PrintGCDetails && Verbose) {
 991       gclog_or_tty->print_cr("  Expanded free fraction %f",
 992         ((double) free()) / capacity());
 993     }
 994   } else {
 995     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 996     assert(desired_capacity <= capacity(), "invalid expansion size");
 997     size_t shrink_bytes = capacity() - desired_capacity;
 998     // Don't shrink unless the delta is greater than the minimum shrink we want
 999     if (shrink_bytes >= MinHeapDeltaBytes) {
1000       shrink_free_list_by(shrink_bytes);
1001     }
1002   }
1003 }
1004 
1005 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
1006   return cmsSpace()->freelistLock();
1007 }
1008 
1009 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1010                                                   bool   tlab) {
1011   CMSSynchronousYieldRequest yr;
1012   MutexLockerEx x(freelistLock(),
1013                   Mutex::_no_safepoint_check_flag);
1014   return have_lock_and_allocate(size, tlab);
1015 }
1016 
1017 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1018                                                   bool   tlab /* ignored */) {
1019   assert_lock_strong(freelistLock());
1020   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1021   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1022   // Allocate the object live (grey) if the background collector has
1023   // started marking. This is necessary because the marker may
1024   // have passed this address and consequently this object will
1025   // not otherwise be greyed and would be incorrectly swept up.
1026   // Note that if this object contains references, the writing
1027   // of those references will dirty the card containing this object
1028   // allowing the object to be blackened (and its references scanned)
1029   // either during a preclean phase or at the final checkpoint.
1030   if (res != NULL) {
1031     // We may block here with an uninitialized object with
1032     // its mark-bit or P-bits not yet set. Such objects need
1033     // to be safely navigable by block_start().
1034     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1035     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1036     collector()->direct_allocated(res, adjustedSize);
1037     _direct_allocated_words += adjustedSize;
1038     // allocation counters
1039     NOT_PRODUCT(
1040       _numObjectsAllocated++;
1041       _numWordsAllocated += (int)adjustedSize;
1042     )
1043   }
1044   return res;
1045 }
1046 
1047 // In the case of direct allocation by mutators in a generation that
1048 // is being concurrently collected, the object must be allocated
1049 // live (grey) if the background collector has started marking.
1050 // This is necessary because the marker may
1051 // have passed this address and consequently this object will
1052 // not otherwise be greyed and would be incorrectly swept up.
1053 // Note that if this object contains references, the writing
1054 // of those references will dirty the card containing this object
1055 // allowing the object to be blackened (and its references scanned)
1056 // either during a preclean phase or at the final checkpoint.
1057 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1058   assert(_markBitMap.covers(start, size), "Out of bounds");
1059   if (_collectorState >= Marking) {
1060     MutexLockerEx y(_markBitMap.lock(),
1061                     Mutex::_no_safepoint_check_flag);
1062     // [see comments preceding SweepClosure::do_blk() below for details]
1063     //
1064     // Can the P-bits be deleted now?  JJJ
1065     //
1066     // 1. need to mark the object as live so it isn't collected
1067     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1068     // 3. need to mark the end of the object so marking, precleaning or sweeping
1069     //    can skip over uninitialized or unparsable objects. An allocated
1070     //    object is considered uninitialized for our purposes as long as
1071     //    its klass word is NULL.  All old gen objects are parsable
1072     //    as soon as they are initialized.)
1073     _markBitMap.mark(start);          // object is live
1074     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1075     _markBitMap.mark(start + size - 1);
1076                                       // mark end of object
1077   }
1078   // check that oop looks uninitialized
1079   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1080 }
1081 
1082 void CMSCollector::promoted(bool par, HeapWord* start,
1083                             bool is_obj_array, size_t obj_size) {
1084   assert(_markBitMap.covers(start), "Out of bounds");
1085   // See comment in direct_allocated() about when objects should
1086   // be allocated live.
1087   if (_collectorState >= Marking) {
1088     // we already hold the marking bit map lock, taken in
1089     // the prologue
1090     if (par) {
1091       _markBitMap.par_mark(start);
1092     } else {
1093       _markBitMap.mark(start);
1094     }
1095     // We don't need to mark the object as uninitialized (as
1096     // in direct_allocated above) because this is being done with the
1097     // world stopped and the object will be initialized by the
1098     // time the marking, precleaning or sweeping get to look at it.
1099     // But see the code for copying objects into the CMS generation,
1100     // where we need to ensure that concurrent readers of the
1101     // block offset table are able to safely navigate a block that
1102     // is in flux from being free to being allocated (and in
1103     // transition while being copied into) and subsequently
1104     // becoming a bona-fide object when the copy/promotion is complete.
1105     assert(SafepointSynchronize::is_at_safepoint(),
1106            "expect promotion only at safepoints");
1107 
1108     if (_collectorState < Sweeping) {
1109       // Mark the appropriate cards in the modUnionTable, so that
1110       // this object gets scanned before the sweep. If this is
1111       // not done, CMS generation references in the object might
1112       // not get marked.
1113       // For the case of arrays, which are otherwise precisely
1114       // marked, we need to dirty the entire array, not just its head.
1115       if (is_obj_array) {
1116         // The [par_]mark_range() method expects mr.end() below to
1117         // be aligned to the granularity of a bit's representation
1118         // in the heap. In the case of the MUT below, that's a
1119         // card size.
1120         MemRegion mr(start,
1121                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1122                         CardTableModRefBS::card_size /* bytes */));
1123         if (par) {
1124           _modUnionTable.par_mark_range(mr);
1125         } else {
1126           _modUnionTable.mark_range(mr);
1127         }
1128       } else {  // not an obj array; we can just mark the head
1129         if (par) {
1130           _modUnionTable.par_mark(start);
1131         } else {
1132           _modUnionTable.mark(start);
1133         }
1134       }
1135     }
1136   }
1137 }
1138 
1139 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1140 {
1141   size_t delta = pointer_delta(addr, space->bottom());
1142   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1143 }
1144 
1145 void CMSCollector::icms_update_allocation_limits()
1146 {
1147   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1148   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1149 
1150   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1151   if (CMSTraceIncrementalPacing) {
1152     stats().print();
1153   }
1154 
1155   assert(duty_cycle <= 100, "invalid duty cycle");
1156   if (duty_cycle != 0) {
1157     // The duty_cycle is a percentage between 0 and 100; convert to words and
1158     // then compute the offset from the endpoints of the space.
1159     size_t free_words = eden->free() / HeapWordSize;
1160     double free_words_dbl = (double)free_words;
1161     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1162     size_t offset_words = (free_words - duty_cycle_words) / 2;
1163 
1164     _icms_start_limit = eden->top() + offset_words;
1165     _icms_stop_limit = eden->end() - offset_words;
1166 
1167     // The limits may be adjusted (shifted to the right) by
1168     // CMSIncrementalOffset, to allow the application more mutator time after a
1169     // young gen gc (when all mutators were stopped) and before CMS starts and
1170     // takes away one or more cpus.
1171     if (CMSIncrementalOffset != 0) {
1172       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1173       size_t adjustment = (size_t)adjustment_dbl;
1174       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1175       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1176         _icms_start_limit += adjustment;
1177         _icms_stop_limit = tmp_stop;
1178       }
1179     }
1180   }
1181   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1182     _icms_start_limit = _icms_stop_limit = eden->end();
1183   }
1184 
1185   // Install the new start limit.
1186   eden->set_soft_end(_icms_start_limit);
1187 
1188   if (CMSTraceIncrementalMode) {
1189     gclog_or_tty->print(" icms alloc limits:  "
1190                            PTR_FORMAT "," PTR_FORMAT
1191                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1192                            _icms_start_limit, _icms_stop_limit,
1193                            percent_of_space(eden, _icms_start_limit),
1194                            percent_of_space(eden, _icms_stop_limit));
1195     if (Verbose) {
1196       gclog_or_tty->print("eden:  ");
1197       eden->print_on(gclog_or_tty);
1198     }
1199   }
1200 }
1201 
1202 // Any changes here should try to maintain the invariant
1203 // that if this method is called with _icms_start_limit
1204 // and _icms_stop_limit both NULL, then it should return NULL
1205 // and not notify the icms thread.
1206 HeapWord*
1207 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1208                                        size_t word_size)
1209 {
1210   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1211   // nop.
1212   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1213     if (top <= _icms_start_limit) {
1214       if (CMSTraceIncrementalMode) {
1215         space->print_on(gclog_or_tty);
1216         gclog_or_tty->stamp();
1217         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1218                                ", new limit=" PTR_FORMAT
1219                                " (" SIZE_FORMAT "%%)",
1220                                top, _icms_stop_limit,
1221                                percent_of_space(space, _icms_stop_limit));
1222       }
1223       ConcurrentMarkSweepThread::start_icms();
1224       assert(top < _icms_stop_limit, "Tautology");
1225       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1226         return _icms_stop_limit;
1227       }
1228 
1229       // The allocation will cross both the _start and _stop limits, so do the
1230       // stop notification also and return end().
1231       if (CMSTraceIncrementalMode) {
1232         space->print_on(gclog_or_tty);
1233         gclog_or_tty->stamp();
1234         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1235                                ", new limit=" PTR_FORMAT
1236                                " (" SIZE_FORMAT "%%)",
1237                                top, space->end(),
1238                                percent_of_space(space, space->end()));
1239       }
1240       ConcurrentMarkSweepThread::stop_icms();
1241       return space->end();
1242     }
1243 
1244     if (top <= _icms_stop_limit) {
1245       if (CMSTraceIncrementalMode) {
1246         space->print_on(gclog_or_tty);
1247         gclog_or_tty->stamp();
1248         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1249                                ", new limit=" PTR_FORMAT
1250                                " (" SIZE_FORMAT "%%)",
1251                                top, space->end(),
1252                                percent_of_space(space, space->end()));
1253       }
1254       ConcurrentMarkSweepThread::stop_icms();
1255       return space->end();
1256     }
1257 
1258     if (CMSTraceIncrementalMode) {
1259       space->print_on(gclog_or_tty);
1260       gclog_or_tty->stamp();
1261       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1262                              ", new limit=" PTR_FORMAT,
1263                              top, NULL);
1264     }
1265   }
1266 
1267   return NULL;
1268 }
1269 
1270 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1271   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1272   // allocate, copy and if necessary update promoinfo --
1273   // delegate to underlying space.
1274   assert_lock_strong(freelistLock());
1275 
1276 #ifndef PRODUCT
1277   if (Universe::heap()->promotion_should_fail()) {
1278     return NULL;
1279   }
1280 #endif  // #ifndef PRODUCT
1281 
1282   oop res = _cmsSpace->promote(obj, obj_size);
1283   if (res == NULL) {
1284     // expand and retry
1285     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1286     expand(s*HeapWordSize, MinHeapDeltaBytes,
1287       CMSExpansionCause::_satisfy_promotion);
1288     // Since there's currently no next generation, we don't try to promote
1289     // into a more senior generation.
1290     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1291                                "is made to pass on a possibly failing "
1292                                "promotion to next generation");
1293     res = _cmsSpace->promote(obj, obj_size);
1294   }
1295   if (res != NULL) {
1296     // See comment in allocate() about when objects should
1297     // be allocated live.
1298     assert(obj->is_oop(), "Will dereference klass pointer below");
1299     collector()->promoted(false,           // Not parallel
1300                           (HeapWord*)res, obj->is_objArray(), obj_size);
1301     // promotion counters
1302     NOT_PRODUCT(
1303       _numObjectsPromoted++;
1304       _numWordsPromoted +=
1305         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1306     )
1307   }
1308   return res;
1309 }
1310 
1311 
1312 HeapWord*
1313 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1314                                              HeapWord* top,
1315                                              size_t word_sz)
1316 {
1317   return collector()->allocation_limit_reached(space, top, word_sz);
1318 }
1319 
1320 // IMPORTANT: Notes on object size recognition in CMS.
1321 // ---------------------------------------------------
1322 // A block of storage in the CMS generation is always in
1323 // one of three states. A free block (FREE), an allocated
1324 // object (OBJECT) whose size() method reports the correct size,
1325 // and an intermediate state (TRANSIENT) in which its size cannot
1326 // be accurately determined.
1327 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1328 // -----------------------------------------------------
1329 // FREE:      klass_word & 1 == 1; mark_word holds block size
1330 //
1331 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1332 //            obj->size() computes correct size
1333 //
1334 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1335 //
1336 // STATE IDENTIFICATION: (64 bit+COOPS)
1337 // ------------------------------------
1338 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1339 //
1340 // OBJECT:    klass_word installed; klass_word != 0;
1341 //            obj->size() computes correct size
1342 //
1343 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1344 //
1345 //
1346 // STATE TRANSITION DIAGRAM
1347 //
1348 //        mut / parnew                     mut  /  parnew
1349 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1350 //  ^                                                                   |
1351 //  |------------------------ DEAD <------------------------------------|
1352 //         sweep                            mut
1353 //
1354 // While a block is in TRANSIENT state its size cannot be determined
1355 // so readers will either need to come back later or stall until
1356 // the size can be determined. Note that for the case of direct
1357 // allocation, P-bits, when available, may be used to determine the
1358 // size of an object that may not yet have been initialized.
1359 
1360 // Things to support parallel young-gen collection.
1361 oop
1362 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1363                                            oop old, markOop m,
1364                                            size_t word_sz) {
1365 #ifndef PRODUCT
1366   if (Universe::heap()->promotion_should_fail()) {
1367     return NULL;
1368   }
1369 #endif  // #ifndef PRODUCT
1370 
1371   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1372   PromotionInfo* promoInfo = &ps->promo;
1373   // if we are tracking promotions, then first ensure space for
1374   // promotion (including spooling space for saving header if necessary).
1375   // then allocate and copy, then track promoted info if needed.
1376   // When tracking (see PromotionInfo::track()), the mark word may
1377   // be displaced and in this case restoration of the mark word
1378   // occurs in the (oop_since_save_marks_)iterate phase.
1379   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1380     // Out of space for allocating spooling buffers;
1381     // try expanding and allocating spooling buffers.
1382     if (!expand_and_ensure_spooling_space(promoInfo)) {
1383       return NULL;
1384     }
1385   }
1386   assert(promoInfo->has_spooling_space(), "Control point invariant");
1387   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1388   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1389   if (obj_ptr == NULL) {
1390      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1391      if (obj_ptr == NULL) {
1392        return NULL;
1393      }
1394   }
1395   oop obj = oop(obj_ptr);
1396   OrderAccess::storestore();
1397   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1398   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1399   // IMPORTANT: See note on object initialization for CMS above.
1400   // Otherwise, copy the object.  Here we must be careful to insert the
1401   // klass pointer last, since this marks the block as an allocated object.
1402   // Except with compressed oops it's the mark word.
1403   HeapWord* old_ptr = (HeapWord*)old;
1404   // Restore the mark word copied above.
1405   obj->set_mark(m);
1406   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1407   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1408   OrderAccess::storestore();
1409 
1410   if (UseCompressedKlassPointers) {
1411     // Copy gap missed by (aligned) header size calculation below
1412     obj->set_klass_gap(old->klass_gap());
1413   }
1414   if (word_sz > (size_t)oopDesc::header_size()) {
1415     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1416                                  obj_ptr + oopDesc::header_size(),
1417                                  word_sz - oopDesc::header_size());
1418   }
1419 
1420   // Now we can track the promoted object, if necessary.  We take care
1421   // to delay the transition from uninitialized to full object
1422   // (i.e., insertion of klass pointer) until after, so that it
1423   // atomically becomes a promoted object.
1424   if (promoInfo->tracking()) {
1425     promoInfo->track((PromotedObject*)obj, old->klass());
1426   }
1427   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1428   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1429   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1430 
1431   // Finally, install the klass pointer (this should be volatile).
1432   OrderAccess::storestore();
1433   obj->set_klass(old->klass());
1434   // We should now be able to calculate the right size for this object
1435   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1436 
1437   collector()->promoted(true,          // parallel
1438                         obj_ptr, old->is_objArray(), word_sz);
1439 
1440   NOT_PRODUCT(
1441     Atomic::inc_ptr(&_numObjectsPromoted);
1442     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1443   )
1444 
1445   return obj;
1446 }
1447 
1448 void
1449 ConcurrentMarkSweepGeneration::
1450 par_promote_alloc_undo(int thread_num,
1451                        HeapWord* obj, size_t word_sz) {
1452   // CMS does not support promotion undo.
1453   ShouldNotReachHere();
1454 }
1455 
1456 void
1457 ConcurrentMarkSweepGeneration::
1458 par_promote_alloc_done(int thread_num) {
1459   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1460   ps->lab.retire(thread_num);
1461 }
1462 
1463 void
1464 ConcurrentMarkSweepGeneration::
1465 par_oop_since_save_marks_iterate_done(int thread_num) {
1466   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1467   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1468   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1469 }
1470 
1471 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1472                                                    size_t size,
1473                                                    bool   tlab)
1474 {
1475   // We allow a STW collection only if a full
1476   // collection was requested.
1477   return full || should_allocate(size, tlab); // FIX ME !!!
1478   // This and promotion failure handling are connected at the
1479   // hip and should be fixed by untying them.
1480 }
1481 
1482 bool CMSCollector::shouldConcurrentCollect() {
1483   if (_full_gc_requested) {
1484     if (Verbose && PrintGCDetails) {
1485       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1486                              " gc request (or gc_locker)");
1487     }
1488     return true;
1489   }
1490 
1491   // For debugging purposes, change the type of collection.
1492   // If the rotation is not on the concurrent collection
1493   // type, don't start a concurrent collection.
1494   NOT_PRODUCT(
1495     if (RotateCMSCollectionTypes &&
1496         (_cmsGen->debug_collection_type() !=
1497           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1498       assert(_cmsGen->debug_collection_type() !=
1499         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1500         "Bad cms collection type");
1501       return false;
1502     }
1503   )
1504 
1505   FreelistLocker x(this);
1506   // ------------------------------------------------------------------
1507   // Print out lots of information which affects the initiation of
1508   // a collection.
1509   if (PrintCMSInitiationStatistics && stats().valid()) {
1510     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1511     gclog_or_tty->stamp();
1512     gclog_or_tty->print_cr("");
1513     stats().print_on(gclog_or_tty);
1514     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1515       stats().time_until_cms_gen_full());
1516     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1517     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1518                            _cmsGen->contiguous_available());
1519     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1520     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1521     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1522     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1523     gclog_or_tty->print_cr("metadata initialized %d",
1524       MetaspaceGC::should_concurrent_collect());
1525   }
1526   // ------------------------------------------------------------------
1527 
1528   // If the estimated time to complete a cms collection (cms_duration())
1529   // is less than the estimated time remaining until the cms generation
1530   // is full, start a collection.
1531   if (!UseCMSInitiatingOccupancyOnly) {
1532     if (stats().valid()) {
1533       if (stats().time_until_cms_start() == 0.0) {
1534         return true;
1535       }
1536     } else {
1537       // We want to conservatively collect somewhat early in order
1538       // to try and "bootstrap" our CMS/promotion statistics;
1539       // this branch will not fire after the first successful CMS
1540       // collection because the stats should then be valid.
1541       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1542         if (Verbose && PrintGCDetails) {
1543           gclog_or_tty->print_cr(
1544             " CMSCollector: collect for bootstrapping statistics:"
1545             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1546             _bootstrap_occupancy);
1547         }
1548         return true;
1549       }
1550     }
1551   }
1552 
1553   // Otherwise, we start a collection cycle if
1554   // old gen want a collection cycle started. Each may use
1555   // an appropriate criterion for making this decision.
1556   // XXX We need to make sure that the gen expansion
1557   // criterion dovetails well with this. XXX NEED TO FIX THIS
1558   if (_cmsGen->should_concurrent_collect()) {
1559     if (Verbose && PrintGCDetails) {
1560       gclog_or_tty->print_cr("CMS old gen initiated");
1561     }
1562     return true;
1563   }
1564 
1565   // We start a collection if we believe an incremental collection may fail;
1566   // this is not likely to be productive in practice because it's probably too
1567   // late anyway.
1568   GenCollectedHeap* gch = GenCollectedHeap::heap();
1569   assert(gch->collector_policy()->is_two_generation_policy(),
1570          "You may want to check the correctness of the following");
1571   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1572     if (Verbose && PrintGCDetails) {
1573       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1574     }
1575     return true;
1576   }
1577 
1578   if (MetaspaceGC::should_concurrent_collect()) {
1579       if (Verbose && PrintGCDetails) {
1580       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1581       }
1582       return true;
1583     }
1584 
1585   return false;
1586 }
1587 
1588 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1589 
1590 // Clear _expansion_cause fields of constituent generations
1591 void CMSCollector::clear_expansion_cause() {
1592   _cmsGen->clear_expansion_cause();
1593 }
1594 
1595 // We should be conservative in starting a collection cycle.  To
1596 // start too eagerly runs the risk of collecting too often in the
1597 // extreme.  To collect too rarely falls back on full collections,
1598 // which works, even if not optimum in terms of concurrent work.
1599 // As a work around for too eagerly collecting, use the flag
1600 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1601 // giving the user an easily understandable way of controlling the
1602 // collections.
1603 // We want to start a new collection cycle if any of the following
1604 // conditions hold:
1605 // . our current occupancy exceeds the configured initiating occupancy
1606 //   for this generation, or
1607 // . we recently needed to expand this space and have not, since that
1608 //   expansion, done a collection of this generation, or
1609 // . the underlying space believes that it may be a good idea to initiate
1610 //   a concurrent collection (this may be based on criteria such as the
1611 //   following: the space uses linear allocation and linear allocation is
1612 //   going to fail, or there is believed to be excessive fragmentation in
1613 //   the generation, etc... or ...
1614 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1615 //   the case of the old generation; see CR 6543076):
1616 //   we may be approaching a point at which allocation requests may fail because
1617 //   we will be out of sufficient free space given allocation rate estimates.]
1618 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1619 
1620   assert_lock_strong(freelistLock());
1621   if (occupancy() > initiating_occupancy()) {
1622     if (PrintGCDetails && Verbose) {
1623       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1624         short_name(), occupancy(), initiating_occupancy());
1625     }
1626     return true;
1627   }
1628   if (UseCMSInitiatingOccupancyOnly) {
1629     return false;
1630   }
1631   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1632     if (PrintGCDetails && Verbose) {
1633       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1634         short_name());
1635     }
1636     return true;
1637   }
1638   if (_cmsSpace->should_concurrent_collect()) {
1639     if (PrintGCDetails && Verbose) {
1640       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1641         short_name());
1642     }
1643     return true;
1644   }
1645   return false;
1646 }
1647 
1648 void ConcurrentMarkSweepGeneration::collect(bool   full,
1649                                             bool   clear_all_soft_refs,
1650                                             size_t size,
1651                                             bool   tlab)
1652 {
1653   collector()->collect(full, clear_all_soft_refs, size, tlab);
1654 }
1655 
1656 void CMSCollector::collect(bool   full,
1657                            bool   clear_all_soft_refs,
1658                            size_t size,
1659                            bool   tlab)
1660 {
1661   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1662     // For debugging purposes skip the collection if the state
1663     // is not currently idle
1664     if (TraceCMSState) {
1665       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1666         Thread::current(), full, _collectorState);
1667     }
1668     return;
1669   }
1670 
1671   // The following "if" branch is present for defensive reasons.
1672   // In the current uses of this interface, it can be replaced with:
1673   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1674   // But I am not placing that assert here to allow future
1675   // generality in invoking this interface.
1676   if (GC_locker::is_active()) {
1677     // A consistency test for GC_locker
1678     assert(GC_locker::needs_gc(), "Should have been set already");
1679     // Skip this foreground collection, instead
1680     // expanding the heap if necessary.
1681     // Need the free list locks for the call to free() in compute_new_size()
1682     compute_new_size();
1683     return;
1684   }
1685   acquire_control_and_collect(full, clear_all_soft_refs);
1686   _full_gcs_since_conc_gc++;
1687 }
1688 
1689 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1690   GenCollectedHeap* gch = GenCollectedHeap::heap();
1691   unsigned int gc_count = gch->total_full_collections();
1692   if (gc_count == full_gc_count) {
1693     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1694     _full_gc_requested = true;
1695     _full_gc_cause = cause;
1696     CGC_lock->notify();   // nudge CMS thread
1697   } else {
1698     assert(gc_count > full_gc_count, "Error: causal loop");
1699   }
1700 }
1701 
1702 bool CMSCollector::is_external_interruption() {
1703   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1704   return GCCause::is_user_requested_gc(cause) ||
1705          GCCause::is_serviceability_requested_gc(cause);
1706 }
1707 
1708 void CMSCollector::report_concurrent_mode_interruption() {
1709   if (is_external_interruption()) {
1710     if (PrintGCDetails) {
1711       gclog_or_tty->print(" (concurrent mode interrupted)");
1712     }
1713   } else {
1714     if (PrintGCDetails) {
1715       gclog_or_tty->print(" (concurrent mode failure)");
1716     }
1717     _gc_tracer_cm->report_concurrent_mode_failure();
1718   }
1719 }
1720 
1721 
1722 // The foreground and background collectors need to coordinate in order
1723 // to make sure that they do not mutually interfere with CMS collections.
1724 // When a background collection is active,
1725 // the foreground collector may need to take over (preempt) and
1726 // synchronously complete an ongoing collection. Depending on the
1727 // frequency of the background collections and the heap usage
1728 // of the application, this preemption can be seldom or frequent.
1729 // There are only certain
1730 // points in the background collection that the "collection-baton"
1731 // can be passed to the foreground collector.
1732 //
1733 // The foreground collector will wait for the baton before
1734 // starting any part of the collection.  The foreground collector
1735 // will only wait at one location.
1736 //
1737 // The background collector will yield the baton before starting a new
1738 // phase of the collection (e.g., before initial marking, marking from roots,
1739 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1740 // of the loop which switches the phases. The background collector does some
1741 // of the phases (initial mark, final re-mark) with the world stopped.
1742 // Because of locking involved in stopping the world,
1743 // the foreground collector should not block waiting for the background
1744 // collector when it is doing a stop-the-world phase.  The background
1745 // collector will yield the baton at an additional point just before
1746 // it enters a stop-the-world phase.  Once the world is stopped, the
1747 // background collector checks the phase of the collection.  If the
1748 // phase has not changed, it proceeds with the collection.  If the
1749 // phase has changed, it skips that phase of the collection.  See
1750 // the comments on the use of the Heap_lock in collect_in_background().
1751 //
1752 // Variable used in baton passing.
1753 //   _foregroundGCIsActive - Set to true by the foreground collector when
1754 //      it wants the baton.  The foreground clears it when it has finished
1755 //      the collection.
1756 //   _foregroundGCShouldWait - Set to true by the background collector
1757 //        when it is running.  The foreground collector waits while
1758 //      _foregroundGCShouldWait is true.
1759 //  CGC_lock - monitor used to protect access to the above variables
1760 //      and to notify the foreground and background collectors.
1761 //  _collectorState - current state of the CMS collection.
1762 //
1763 // The foreground collector
1764 //   acquires the CGC_lock
1765 //   sets _foregroundGCIsActive
1766 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1767 //     various locks acquired in preparation for the collection
1768 //     are released so as not to block the background collector
1769 //     that is in the midst of a collection
1770 //   proceeds with the collection
1771 //   clears _foregroundGCIsActive
1772 //   returns
1773 //
1774 // The background collector in a loop iterating on the phases of the
1775 //      collection
1776 //   acquires the CGC_lock
1777 //   sets _foregroundGCShouldWait
1778 //   if _foregroundGCIsActive is set
1779 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1780 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1781 //     and exits the loop.
1782 //   otherwise
1783 //     proceed with that phase of the collection
1784 //     if the phase is a stop-the-world phase,
1785 //       yield the baton once more just before enqueueing
1786 //       the stop-world CMS operation (executed by the VM thread).
1787 //   returns after all phases of the collection are done
1788 //
1789 
1790 void CMSCollector::acquire_control_and_collect(bool full,
1791         bool clear_all_soft_refs) {
1792   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1793   assert(!Thread::current()->is_ConcurrentGC_thread(),
1794          "shouldn't try to acquire control from self!");
1795 
1796   // Start the protocol for acquiring control of the
1797   // collection from the background collector (aka CMS thread).
1798   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1799          "VM thread should have CMS token");
1800   // Remember the possibly interrupted state of an ongoing
1801   // concurrent collection
1802   CollectorState first_state = _collectorState;
1803 
1804   // Signal to a possibly ongoing concurrent collection that
1805   // we want to do a foreground collection.
1806   _foregroundGCIsActive = true;
1807 
1808   // Disable incremental mode during a foreground collection.
1809   ICMSDisabler icms_disabler;
1810 
1811   // release locks and wait for a notify from the background collector
1812   // releasing the locks in only necessary for phases which
1813   // do yields to improve the granularity of the collection.
1814   assert_lock_strong(bitMapLock());
1815   // We need to lock the Free list lock for the space that we are
1816   // currently collecting.
1817   assert(haveFreelistLocks(), "Must be holding free list locks");
1818   bitMapLock()->unlock();
1819   releaseFreelistLocks();
1820   {
1821     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1822     if (_foregroundGCShouldWait) {
1823       // We are going to be waiting for action for the CMS thread;
1824       // it had better not be gone (for instance at shutdown)!
1825       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1826              "CMS thread must be running");
1827       // Wait here until the background collector gives us the go-ahead
1828       ConcurrentMarkSweepThread::clear_CMS_flag(
1829         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1830       // Get a possibly blocked CMS thread going:
1831       //   Note that we set _foregroundGCIsActive true above,
1832       //   without protection of the CGC_lock.
1833       CGC_lock->notify();
1834       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1835              "Possible deadlock");
1836       while (_foregroundGCShouldWait) {
1837         // wait for notification
1838         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1839         // Possibility of delay/starvation here, since CMS token does
1840         // not know to give priority to VM thread? Actually, i think
1841         // there wouldn't be any delay/starvation, but the proof of
1842         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1843       }
1844       ConcurrentMarkSweepThread::set_CMS_flag(
1845         ConcurrentMarkSweepThread::CMS_vm_has_token);
1846     }
1847   }
1848   // The CMS_token is already held.  Get back the other locks.
1849   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1850          "VM thread should have CMS token");
1851   getFreelistLocks();
1852   bitMapLock()->lock_without_safepoint_check();
1853   if (TraceCMSState) {
1854     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1855       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1856     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1857   }
1858 
1859   // Check if we need to do a compaction, or if not, whether
1860   // we need to start the mark-sweep from scratch.
1861   bool should_compact    = false;
1862   bool should_start_over = false;
1863   decide_foreground_collection_type(clear_all_soft_refs,
1864     &should_compact, &should_start_over);
1865 
1866 NOT_PRODUCT(
1867   if (RotateCMSCollectionTypes) {
1868     if (_cmsGen->debug_collection_type() ==
1869         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1870       should_compact = true;
1871     } else if (_cmsGen->debug_collection_type() ==
1872                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1873       should_compact = false;
1874     }
1875   }
1876 )
1877 
1878   if (first_state > Idling) {
1879     report_concurrent_mode_interruption();
1880   }
1881 
1882   set_did_compact(should_compact);
1883   if (should_compact) {
1884     // If the collection is being acquired from the background
1885     // collector, there may be references on the discovered
1886     // references lists that have NULL referents (being those
1887     // that were concurrently cleared by a mutator) or
1888     // that are no longer active (having been enqueued concurrently
1889     // by the mutator).
1890     // Scrub the list of those references because Mark-Sweep-Compact
1891     // code assumes referents are not NULL and that all discovered
1892     // Reference objects are active.
1893     ref_processor()->clean_up_discovered_references();
1894 
1895     if (first_state > Idling) {
1896       save_heap_summary();
1897     }
1898 
1899     do_compaction_work(clear_all_soft_refs);
1900 
1901     // Has the GC time limit been exceeded?
1902     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1903     size_t max_eden_size = young_gen->max_capacity() -
1904                            young_gen->to()->capacity() -
1905                            young_gen->from()->capacity();
1906     GenCollectedHeap* gch = GenCollectedHeap::heap();
1907     GCCause::Cause gc_cause = gch->gc_cause();
1908     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1909                                            young_gen->eden()->used(),
1910                                            _cmsGen->max_capacity(),
1911                                            max_eden_size,
1912                                            full,
1913                                            gc_cause,
1914                                            gch->collector_policy());
1915   } else {
1916     do_mark_sweep_work(clear_all_soft_refs, first_state,
1917       should_start_over);
1918   }
1919   // Reset the expansion cause, now that we just completed
1920   // a collection cycle.
1921   clear_expansion_cause();
1922   _foregroundGCIsActive = false;
1923   return;
1924 }
1925 
1926 // Resize the tenured generation
1927 // after obtaining the free list locks for the
1928 // two generations.
1929 void CMSCollector::compute_new_size() {
1930   assert_locked_or_safepoint(Heap_lock);
1931   FreelistLocker z(this);
1932   MetaspaceGC::compute_new_size();
1933   _cmsGen->compute_new_size_free_list();
1934 }
1935 
1936 // A work method used by foreground collection to determine
1937 // what type of collection (compacting or not, continuing or fresh)
1938 // it should do.
1939 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1940 // and CMSCompactWhenClearAllSoftRefs the default in the future
1941 // and do away with the flags after a suitable period.
1942 void CMSCollector::decide_foreground_collection_type(
1943   bool clear_all_soft_refs, bool* should_compact,
1944   bool* should_start_over) {
1945   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1946   // flag is set, and we have either requested a System.gc() or
1947   // the number of full gc's since the last concurrent cycle
1948   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1949   // or if an incremental collection has failed
1950   GenCollectedHeap* gch = GenCollectedHeap::heap();
1951   assert(gch->collector_policy()->is_two_generation_policy(),
1952          "You may want to check the correctness of the following");
1953   // Inform cms gen if this was due to partial collection failing.
1954   // The CMS gen may use this fact to determine its expansion policy.
1955   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1956     assert(!_cmsGen->incremental_collection_failed(),
1957            "Should have been noticed, reacted to and cleared");
1958     _cmsGen->set_incremental_collection_failed();
1959   }
1960   *should_compact =
1961     UseCMSCompactAtFullCollection &&
1962     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1963      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1964      gch->incremental_collection_will_fail(true /* consult_young */));
1965   *should_start_over = false;
1966   if (clear_all_soft_refs && !*should_compact) {
1967     // We are about to do a last ditch collection attempt
1968     // so it would normally make sense to do a compaction
1969     // to reclaim as much space as possible.
1970     if (CMSCompactWhenClearAllSoftRefs) {
1971       // Default: The rationale is that in this case either
1972       // we are past the final marking phase, in which case
1973       // we'd have to start over, or so little has been done
1974       // that there's little point in saving that work. Compaction
1975       // appears to be the sensible choice in either case.
1976       *should_compact = true;
1977     } else {
1978       // We have been asked to clear all soft refs, but not to
1979       // compact. Make sure that we aren't past the final checkpoint
1980       // phase, for that is where we process soft refs. If we are already
1981       // past that phase, we'll need to redo the refs discovery phase and
1982       // if necessary clear soft refs that weren't previously
1983       // cleared. We do so by remembering the phase in which
1984       // we came in, and if we are past the refs processing
1985       // phase, we'll choose to just redo the mark-sweep
1986       // collection from scratch.
1987       if (_collectorState > FinalMarking) {
1988         // We are past the refs processing phase;
1989         // start over and do a fresh synchronous CMS cycle
1990         _collectorState = Resetting; // skip to reset to start new cycle
1991         reset(false /* == !asynch */);
1992         *should_start_over = true;
1993       } // else we can continue a possibly ongoing current cycle
1994     }
1995   }
1996 }
1997 
1998 // A work method used by the foreground collector to do
1999 // a mark-sweep-compact.
2000 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
2001   GenCollectedHeap* gch = GenCollectedHeap::heap();
2002 
2003   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
2004   gc_timer->register_gc_start(os::elapsed_counter());
2005 
2006   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
2007   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2008 
2009   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
2010   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2011     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2012       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2013   }
2014 
2015   // Sample collection interval time and reset for collection pause.
2016   if (UseAdaptiveSizePolicy) {
2017     size_policy()->msc_collection_begin();
2018   }
2019 
2020   // Temporarily widen the span of the weak reference processing to
2021   // the entire heap.
2022   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2023   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2024   // Temporarily, clear the "is_alive_non_header" field of the
2025   // reference processor.
2026   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2027   // Temporarily make reference _processing_ single threaded (non-MT).
2028   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2029   // Temporarily make refs discovery atomic
2030   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2031   // Temporarily make reference _discovery_ single threaded (non-MT)
2032   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2033 
2034   ref_processor()->set_enqueuing_is_done(false);
2035   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2036   ref_processor()->setup_policy(clear_all_soft_refs);
2037   // If an asynchronous collection finishes, the _modUnionTable is
2038   // all clear.  If we are assuming the collection from an asynchronous
2039   // collection, clear the _modUnionTable.
2040   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2041     "_modUnionTable should be clear if the baton was not passed");
2042   _modUnionTable.clear_all();
2043   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2044     "mod union for klasses should be clear if the baton was passed");
2045   _ct->klass_rem_set()->clear_mod_union();
2046 
2047   // We must adjust the allocation statistics being maintained
2048   // in the free list space. We do so by reading and clearing
2049   // the sweep timer and updating the block flux rate estimates below.
2050   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2051   if (_inter_sweep_timer.is_active()) {
2052     _inter_sweep_timer.stop();
2053     // Note that we do not use this sample to update the _inter_sweep_estimate.
2054     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2055                                             _inter_sweep_estimate.padded_average(),
2056                                             _intra_sweep_estimate.padded_average());
2057   }
2058 
2059   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2060     ref_processor(), clear_all_soft_refs);
2061   #ifdef ASSERT
2062     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2063     size_t free_size = cms_space->free();
2064     assert(free_size ==
2065            pointer_delta(cms_space->end(), cms_space->compaction_top())
2066            * HeapWordSize,
2067       "All the free space should be compacted into one chunk at top");
2068     assert(cms_space->dictionary()->total_chunk_size(
2069                                       debug_only(cms_space->freelistLock())) == 0 ||
2070            cms_space->totalSizeInIndexedFreeLists() == 0,
2071       "All the free space should be in a single chunk");
2072     size_t num = cms_space->totalCount();
2073     assert((free_size == 0 && num == 0) ||
2074            (free_size > 0  && (num == 1 || num == 2)),
2075          "There should be at most 2 free chunks after compaction");
2076   #endif // ASSERT
2077   _collectorState = Resetting;
2078   assert(_restart_addr == NULL,
2079          "Should have been NULL'd before baton was passed");
2080   reset(false /* == !asynch */);
2081   _cmsGen->reset_after_compaction();
2082   _concurrent_cycles_since_last_unload = 0;
2083 
2084   // Clear any data recorded in the PLAB chunk arrays.
2085   if (_survivor_plab_array != NULL) {
2086     reset_survivor_plab_arrays();
2087   }
2088 
2089   // Adjust the per-size allocation stats for the next epoch.
2090   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2091   // Restart the "inter sweep timer" for the next epoch.
2092   _inter_sweep_timer.reset();
2093   _inter_sweep_timer.start();
2094 
2095   // Sample collection pause time and reset for collection interval.
2096   if (UseAdaptiveSizePolicy) {
2097     size_policy()->msc_collection_end(gch->gc_cause());
2098   }
2099 
2100   gc_timer->register_gc_end(os::elapsed_counter());
2101 
2102   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2103 
2104   // For a mark-sweep-compact, compute_new_size() will be called
2105   // in the heap's do_collection() method.
2106 }
2107 
2108 // A work method used by the foreground collector to do
2109 // a mark-sweep, after taking over from a possibly on-going
2110 // concurrent mark-sweep collection.
2111 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2112   CollectorState first_state, bool should_start_over) {
2113   if (PrintGC && Verbose) {
2114     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2115       "collector with count %d",
2116       _full_gcs_since_conc_gc);
2117   }
2118   switch (_collectorState) {
2119     case Idling:
2120       if (first_state == Idling || should_start_over) {
2121         // The background GC was not active, or should
2122         // restarted from scratch;  start the cycle.
2123         _collectorState = InitialMarking;
2124       }
2125       // If first_state was not Idling, then a background GC
2126       // was in progress and has now finished.  No need to do it
2127       // again.  Leave the state as Idling.
2128       break;
2129     case Precleaning:
2130       // In the foreground case don't do the precleaning since
2131       // it is not done concurrently and there is extra work
2132       // required.
2133       _collectorState = FinalMarking;
2134   }
2135   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2136 
2137   // For a mark-sweep, compute_new_size() will be called
2138   // in the heap's do_collection() method.
2139 }
2140 
2141 
2142 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
2143   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
2144   EdenSpace* eden_space = dng->eden();
2145   ContiguousSpace* from_space = dng->from();
2146   ContiguousSpace* to_space   = dng->to();
2147   // Eden
2148   if (_eden_chunk_array != NULL) {
2149     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2150                            eden_space->bottom(), eden_space->top(),
2151                            eden_space->end(), eden_space->capacity());
2152     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
2153                            "_eden_chunk_capacity=" SIZE_FORMAT,
2154                            _eden_chunk_index, _eden_chunk_capacity);
2155     for (size_t i = 0; i < _eden_chunk_index; i++) {
2156       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2157                              i, _eden_chunk_array[i]);
2158     }
2159   }
2160   // Survivor
2161   if (_survivor_chunk_array != NULL) {
2162     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2163                            from_space->bottom(), from_space->top(),
2164                            from_space->end(), from_space->capacity());
2165     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
2166                            "_survivor_chunk_capacity=" SIZE_FORMAT,
2167                            _survivor_chunk_index, _survivor_chunk_capacity);
2168     for (size_t i = 0; i < _survivor_chunk_index; i++) {
2169       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2170                              i, _survivor_chunk_array[i]);
2171     }
2172   }
2173 }
2174 
2175 void CMSCollector::getFreelistLocks() const {
2176   // Get locks for all free lists in all generations that this
2177   // collector is responsible for
2178   _cmsGen->freelistLock()->lock_without_safepoint_check();
2179 }
2180 
2181 void CMSCollector::releaseFreelistLocks() const {
2182   // Release locks for all free lists in all generations that this
2183   // collector is responsible for
2184   _cmsGen->freelistLock()->unlock();
2185 }
2186 
2187 bool CMSCollector::haveFreelistLocks() const {
2188   // Check locks for all free lists in all generations that this
2189   // collector is responsible for
2190   assert_lock_strong(_cmsGen->freelistLock());
2191   PRODUCT_ONLY(ShouldNotReachHere());
2192   return true;
2193 }
2194 
2195 // A utility class that is used by the CMS collector to
2196 // temporarily "release" the foreground collector from its
2197 // usual obligation to wait for the background collector to
2198 // complete an ongoing phase before proceeding.
2199 class ReleaseForegroundGC: public StackObj {
2200  private:
2201   CMSCollector* _c;
2202  public:
2203   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2204     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2205     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2206     // allow a potentially blocked foreground collector to proceed
2207     _c->_foregroundGCShouldWait = false;
2208     if (_c->_foregroundGCIsActive) {
2209       CGC_lock->notify();
2210     }
2211     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2212            "Possible deadlock");
2213   }
2214 
2215   ~ReleaseForegroundGC() {
2216     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2217     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2218     _c->_foregroundGCShouldWait = true;
2219   }
2220 };
2221 
2222 // There are separate collect_in_background and collect_in_foreground because of
2223 // the different locking requirements of the background collector and the
2224 // foreground collector.  There was originally an attempt to share
2225 // one "collect" method between the background collector and the foreground
2226 // collector but the if-then-else required made it cleaner to have
2227 // separate methods.
2228 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2229   assert(Thread::current()->is_ConcurrentGC_thread(),
2230     "A CMS asynchronous collection is only allowed on a CMS thread.");
2231 
2232   GenCollectedHeap* gch = GenCollectedHeap::heap();
2233   {
2234     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2235     MutexLockerEx hl(Heap_lock, safepoint_check);
2236     FreelistLocker fll(this);
2237     MutexLockerEx x(CGC_lock, safepoint_check);
2238     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2239       // The foreground collector is active or we're
2240       // not using asynchronous collections.  Skip this
2241       // background collection.
2242       assert(!_foregroundGCShouldWait, "Should be clear");
2243       return;
2244     } else {
2245       assert(_collectorState == Idling, "Should be idling before start.");
2246       _collectorState = InitialMarking;
2247       register_gc_start(cause);
2248       // Reset the expansion cause, now that we are about to begin
2249       // a new cycle.
2250       clear_expansion_cause();
2251 
2252       // Clear the MetaspaceGC flag since a concurrent collection
2253       // is starting but also clear it after the collection.
2254       MetaspaceGC::set_should_concurrent_collect(false);
2255     }
2256     // Decide if we want to enable class unloading as part of the
2257     // ensuing concurrent GC cycle.
2258     update_should_unload_classes();
2259     _full_gc_requested = false;           // acks all outstanding full gc requests
2260     _full_gc_cause = GCCause::_no_gc;
2261     // Signal that we are about to start a collection
2262     gch->increment_total_full_collections();  // ... starting a collection cycle
2263     _collection_count_start = gch->total_full_collections();
2264   }
2265 
2266   // Used for PrintGC
2267   size_t prev_used;
2268   if (PrintGC && Verbose) {
2269     prev_used = _cmsGen->used(); // XXXPERM
2270   }
2271 
2272   // The change of the collection state is normally done at this level;
2273   // the exceptions are phases that are executed while the world is
2274   // stopped.  For those phases the change of state is done while the
2275   // world is stopped.  For baton passing purposes this allows the
2276   // background collector to finish the phase and change state atomically.
2277   // The foreground collector cannot wait on a phase that is done
2278   // while the world is stopped because the foreground collector already
2279   // has the world stopped and would deadlock.
2280   while (_collectorState != Idling) {
2281     if (TraceCMSState) {
2282       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2283         Thread::current(), _collectorState);
2284     }
2285     // The foreground collector
2286     //   holds the Heap_lock throughout its collection.
2287     //   holds the CMS token (but not the lock)
2288     //     except while it is waiting for the background collector to yield.
2289     //
2290     // The foreground collector should be blocked (not for long)
2291     //   if the background collector is about to start a phase
2292     //   executed with world stopped.  If the background
2293     //   collector has already started such a phase, the
2294     //   foreground collector is blocked waiting for the
2295     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2296     //   are executed in the VM thread.
2297     //
2298     // The locking order is
2299     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2300     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2301     //   CMS token  (claimed in
2302     //                stop_world_and_do() -->
2303     //                  safepoint_synchronize() -->
2304     //                    CMSThread::synchronize())
2305 
2306     {
2307       // Check if the FG collector wants us to yield.
2308       CMSTokenSync x(true); // is cms thread
2309       if (waitForForegroundGC()) {
2310         // We yielded to a foreground GC, nothing more to be
2311         // done this round.
2312         assert(_foregroundGCShouldWait == false, "We set it to false in "
2313                "waitForForegroundGC()");
2314         if (TraceCMSState) {
2315           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2316             " exiting collection CMS state %d",
2317             Thread::current(), _collectorState);
2318         }
2319         return;
2320       } else {
2321         // The background collector can run but check to see if the
2322         // foreground collector has done a collection while the
2323         // background collector was waiting to get the CGC_lock
2324         // above.  If yes, break so that _foregroundGCShouldWait
2325         // is cleared before returning.
2326         if (_collectorState == Idling) {
2327           break;
2328         }
2329       }
2330     }
2331 
2332     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2333       "should be waiting");
2334 
2335     switch (_collectorState) {
2336       case InitialMarking:
2337         {
2338           ReleaseForegroundGC x(this);
2339           stats().record_cms_begin();
2340           VM_CMS_Initial_Mark initial_mark_op(this);
2341           VMThread::execute(&initial_mark_op);
2342         }
2343         // The collector state may be any legal state at this point
2344         // since the background collector may have yielded to the
2345         // foreground collector.
2346         break;
2347       case Marking:
2348         // initial marking in checkpointRootsInitialWork has been completed
2349         if (markFromRoots(true)) { // we were successful
2350           assert(_collectorState == Precleaning, "Collector state should "
2351             "have changed");
2352         } else {
2353           assert(_foregroundGCIsActive, "Internal state inconsistency");
2354         }
2355         break;
2356       case Precleaning:
2357         if (UseAdaptiveSizePolicy) {
2358           size_policy()->concurrent_precleaning_begin();
2359         }
2360         // marking from roots in markFromRoots has been completed
2361         preclean();
2362         if (UseAdaptiveSizePolicy) {
2363           size_policy()->concurrent_precleaning_end();
2364         }
2365         assert(_collectorState == AbortablePreclean ||
2366                _collectorState == FinalMarking,
2367                "Collector state should have changed");
2368         break;
2369       case AbortablePreclean:
2370         if (UseAdaptiveSizePolicy) {
2371         size_policy()->concurrent_phases_resume();
2372         }
2373         abortable_preclean();
2374         if (UseAdaptiveSizePolicy) {
2375           size_policy()->concurrent_precleaning_end();
2376         }
2377         assert(_collectorState == FinalMarking, "Collector state should "
2378           "have changed");
2379         break;
2380       case FinalMarking:
2381         {
2382           ReleaseForegroundGC x(this);
2383 
2384           VM_CMS_Final_Remark final_remark_op(this);
2385           VMThread::execute(&final_remark_op);
2386         }
2387         assert(_foregroundGCShouldWait, "block post-condition");
2388         break;
2389       case Sweeping:
2390         if (UseAdaptiveSizePolicy) {
2391           size_policy()->concurrent_sweeping_begin();
2392         }
2393         // final marking in checkpointRootsFinal has been completed
2394         sweep(true);
2395         assert(_collectorState == Resizing, "Collector state change "
2396           "to Resizing must be done under the free_list_lock");
2397         _full_gcs_since_conc_gc = 0;
2398 
2399         // Stop the timers for adaptive size policy for the concurrent phases
2400         if (UseAdaptiveSizePolicy) {
2401           size_policy()->concurrent_sweeping_end();
2402           size_policy()->concurrent_phases_end(gch->gc_cause(),
2403                                              gch->prev_gen(_cmsGen)->capacity(),
2404                                              _cmsGen->free());
2405         }
2406 
2407       case Resizing: {
2408         // Sweeping has been completed...
2409         // At this point the background collection has completed.
2410         // Don't move the call to compute_new_size() down
2411         // into code that might be executed if the background
2412         // collection was preempted.
2413         {
2414           ReleaseForegroundGC x(this);   // unblock FG collection
2415           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2416           CMSTokenSync        z(true);   // not strictly needed.
2417           if (_collectorState == Resizing) {
2418             compute_new_size();
2419             save_heap_summary();
2420             _collectorState = Resetting;
2421           } else {
2422             assert(_collectorState == Idling, "The state should only change"
2423                    " because the foreground collector has finished the collection");
2424           }
2425         }
2426         break;
2427       }
2428       case Resetting:
2429         // CMS heap resizing has been completed
2430         reset(true);
2431         assert(_collectorState == Idling, "Collector state should "
2432           "have changed");
2433 
2434         MetaspaceGC::set_should_concurrent_collect(false);
2435 
2436         stats().record_cms_end();
2437         // Don't move the concurrent_phases_end() and compute_new_size()
2438         // calls to here because a preempted background collection
2439         // has it's state set to "Resetting".
2440         break;
2441       case Idling:
2442       default:
2443         ShouldNotReachHere();
2444         break;
2445     }
2446     if (TraceCMSState) {
2447       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2448         Thread::current(), _collectorState);
2449     }
2450     assert(_foregroundGCShouldWait, "block post-condition");
2451   }
2452 
2453   // Should this be in gc_epilogue?
2454   collector_policy()->counters()->update_counters();
2455 
2456   {
2457     // Clear _foregroundGCShouldWait and, in the event that the
2458     // foreground collector is waiting, notify it, before
2459     // returning.
2460     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2461     _foregroundGCShouldWait = false;
2462     if (_foregroundGCIsActive) {
2463       CGC_lock->notify();
2464     }
2465     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2466            "Possible deadlock");
2467   }
2468   if (TraceCMSState) {
2469     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2470       " exiting collection CMS state %d",
2471       Thread::current(), _collectorState);
2472   }
2473   if (PrintGC && Verbose) {
2474     _cmsGen->print_heap_change(prev_used);
2475   }
2476 }
2477 
2478 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2479   if (!_cms_start_registered) {
2480     register_gc_start(cause);
2481   }
2482 }
2483 
2484 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2485   _cms_start_registered = true;
2486   _gc_timer_cm->register_gc_start(os::elapsed_counter());
2487   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2488 }
2489 
2490 void CMSCollector::register_gc_end() {
2491   if (_cms_start_registered) {
2492     report_heap_summary(GCWhen::AfterGC);
2493 
2494     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2495     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2496     _cms_start_registered = false;
2497   }
2498 }
2499 
2500 void CMSCollector::save_heap_summary() {
2501   GenCollectedHeap* gch = GenCollectedHeap::heap();
2502   _last_heap_summary = gch->create_heap_summary();
2503   _last_metaspace_summary = gch->create_metaspace_summary();
2504 }
2505 
2506 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2507   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary, _last_metaspace_summary);
2508 }
2509 
2510 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2511   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2512          "Foreground collector should be waiting, not executing");
2513   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2514     "may only be done by the VM Thread with the world stopped");
2515   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2516          "VM thread should have CMS token");
2517 
2518   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2519     true, NULL);)
2520   if (UseAdaptiveSizePolicy) {
2521     size_policy()->ms_collection_begin();
2522   }
2523   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2524 
2525   HandleMark hm;  // Discard invalid handles created during verification
2526 
2527   if (VerifyBeforeGC &&
2528       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2529     Universe::verify();
2530   }
2531 
2532   // Snapshot the soft reference policy to be used in this collection cycle.
2533   ref_processor()->setup_policy(clear_all_soft_refs);
2534 
2535   bool init_mark_was_synchronous = false; // until proven otherwise
2536   while (_collectorState != Idling) {
2537     if (TraceCMSState) {
2538       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2539         Thread::current(), _collectorState);
2540     }
2541     switch (_collectorState) {
2542       case InitialMarking:
2543         register_foreground_gc_start(cause);
2544         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2545         checkpointRootsInitial(false);
2546         assert(_collectorState == Marking, "Collector state should have changed"
2547           " within checkpointRootsInitial()");
2548         break;
2549       case Marking:
2550         // initial marking in checkpointRootsInitialWork has been completed
2551         if (VerifyDuringGC &&
2552             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2553           Universe::verify("Verify before initial mark: ");
2554         }
2555         {
2556           bool res = markFromRoots(false);
2557           assert(res && _collectorState == FinalMarking, "Collector state should "
2558             "have changed");
2559           break;
2560         }
2561       case FinalMarking:
2562         if (VerifyDuringGC &&
2563             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2564           Universe::verify("Verify before re-mark: ");
2565         }
2566         checkpointRootsFinal(false, clear_all_soft_refs,
2567                              init_mark_was_synchronous);
2568         assert(_collectorState == Sweeping, "Collector state should not "
2569           "have changed within checkpointRootsFinal()");
2570         break;
2571       case Sweeping:
2572         // final marking in checkpointRootsFinal has been completed
2573         if (VerifyDuringGC &&
2574             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2575           Universe::verify("Verify before sweep: ");
2576         }
2577         sweep(false);
2578         assert(_collectorState == Resizing, "Incorrect state");
2579         break;
2580       case Resizing: {
2581         // Sweeping has been completed; the actual resize in this case
2582         // is done separately; nothing to be done in this state.
2583         _collectorState = Resetting;
2584         break;
2585       }
2586       case Resetting:
2587         // The heap has been resized.
2588         if (VerifyDuringGC &&
2589             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2590           Universe::verify("Verify before reset: ");
2591         }
2592         save_heap_summary();
2593         reset(false);
2594         assert(_collectorState == Idling, "Collector state should "
2595           "have changed");
2596         break;
2597       case Precleaning:
2598       case AbortablePreclean:
2599         // Elide the preclean phase
2600         _collectorState = FinalMarking;
2601         break;
2602       default:
2603         ShouldNotReachHere();
2604     }
2605     if (TraceCMSState) {
2606       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2607         Thread::current(), _collectorState);
2608     }
2609   }
2610 
2611   if (UseAdaptiveSizePolicy) {
2612     GenCollectedHeap* gch = GenCollectedHeap::heap();
2613     size_policy()->ms_collection_end(gch->gc_cause());
2614   }
2615 
2616   if (VerifyAfterGC &&
2617       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2618     Universe::verify();
2619   }
2620   if (TraceCMSState) {
2621     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2622       " exiting collection CMS state %d",
2623       Thread::current(), _collectorState);
2624   }
2625 }
2626 
2627 bool CMSCollector::waitForForegroundGC() {
2628   bool res = false;
2629   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2630          "CMS thread should have CMS token");
2631   // Block the foreground collector until the
2632   // background collectors decides whether to
2633   // yield.
2634   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2635   _foregroundGCShouldWait = true;
2636   if (_foregroundGCIsActive) {
2637     // The background collector yields to the
2638     // foreground collector and returns a value
2639     // indicating that it has yielded.  The foreground
2640     // collector can proceed.
2641     res = true;
2642     _foregroundGCShouldWait = false;
2643     ConcurrentMarkSweepThread::clear_CMS_flag(
2644       ConcurrentMarkSweepThread::CMS_cms_has_token);
2645     ConcurrentMarkSweepThread::set_CMS_flag(
2646       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2647     // Get a possibly blocked foreground thread going
2648     CGC_lock->notify();
2649     if (TraceCMSState) {
2650       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2651         Thread::current(), _collectorState);
2652     }
2653     while (_foregroundGCIsActive) {
2654       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2655     }
2656     ConcurrentMarkSweepThread::set_CMS_flag(
2657       ConcurrentMarkSweepThread::CMS_cms_has_token);
2658     ConcurrentMarkSweepThread::clear_CMS_flag(
2659       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2660   }
2661   if (TraceCMSState) {
2662     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2663       Thread::current(), _collectorState);
2664   }
2665   return res;
2666 }
2667 
2668 // Because of the need to lock the free lists and other structures in
2669 // the collector, common to all the generations that the collector is
2670 // collecting, we need the gc_prologues of individual CMS generations
2671 // delegate to their collector. It may have been simpler had the
2672 // current infrastructure allowed one to call a prologue on a
2673 // collector. In the absence of that we have the generation's
2674 // prologue delegate to the collector, which delegates back
2675 // some "local" work to a worker method in the individual generations
2676 // that it's responsible for collecting, while itself doing any
2677 // work common to all generations it's responsible for. A similar
2678 // comment applies to the  gc_epilogue()'s.
2679 // The role of the varaible _between_prologue_and_epilogue is to
2680 // enforce the invocation protocol.
2681 void CMSCollector::gc_prologue(bool full) {
2682   // Call gc_prologue_work() for the CMSGen
2683   // we are responsible for.
2684 
2685   // The following locking discipline assumes that we are only called
2686   // when the world is stopped.
2687   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2688 
2689   // The CMSCollector prologue must call the gc_prologues for the
2690   // "generations" that it's responsible
2691   // for.
2692 
2693   assert(   Thread::current()->is_VM_thread()
2694          || (   CMSScavengeBeforeRemark
2695              && Thread::current()->is_ConcurrentGC_thread()),
2696          "Incorrect thread type for prologue execution");
2697 
2698   if (_between_prologue_and_epilogue) {
2699     // We have already been invoked; this is a gc_prologue delegation
2700     // from yet another CMS generation that we are responsible for, just
2701     // ignore it since all relevant work has already been done.
2702     return;
2703   }
2704 
2705   // set a bit saying prologue has been called; cleared in epilogue
2706   _between_prologue_and_epilogue = true;
2707   // Claim locks for common data structures, then call gc_prologue_work()
2708   // for each CMSGen.
2709 
2710   getFreelistLocks();   // gets free list locks on constituent spaces
2711   bitMapLock()->lock_without_safepoint_check();
2712 
2713   // Should call gc_prologue_work() for all cms gens we are responsible for
2714   bool duringMarking =    _collectorState >= Marking
2715                          && _collectorState < Sweeping;
2716 
2717   // The young collections clear the modified oops state, which tells if
2718   // there are any modified oops in the class. The remark phase also needs
2719   // that information. Tell the young collection to save the union of all
2720   // modified klasses.
2721   if (duringMarking) {
2722     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2723   }
2724 
2725   bool registerClosure = duringMarking;
2726 
2727   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2728                                                &_modUnionClosurePar
2729                                                : &_modUnionClosure;
2730   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2731 
2732   if (!full) {
2733     stats().record_gc0_begin();
2734   }
2735 }
2736 
2737 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2738 
2739   _capacity_at_prologue = capacity();
2740   _used_at_prologue = used();
2741 
2742   // Delegate to CMScollector which knows how to coordinate between
2743   // this and any other CMS generations that it is responsible for
2744   // collecting.
2745   collector()->gc_prologue(full);
2746 }
2747 
2748 // This is a "private" interface for use by this generation's CMSCollector.
2749 // Not to be called directly by any other entity (for instance,
2750 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2751 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2752   bool registerClosure, ModUnionClosure* modUnionClosure) {
2753   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2754   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2755     "Should be NULL");
2756   if (registerClosure) {
2757     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2758   }
2759   cmsSpace()->gc_prologue();
2760   // Clear stat counters
2761   NOT_PRODUCT(
2762     assert(_numObjectsPromoted == 0, "check");
2763     assert(_numWordsPromoted   == 0, "check");
2764     if (Verbose && PrintGC) {
2765       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2766                           SIZE_FORMAT" bytes concurrently",
2767       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2768     }
2769     _numObjectsAllocated = 0;
2770     _numWordsAllocated   = 0;
2771   )
2772 }
2773 
2774 void CMSCollector::gc_epilogue(bool full) {
2775   // The following locking discipline assumes that we are only called
2776   // when the world is stopped.
2777   assert(SafepointSynchronize::is_at_safepoint(),
2778          "world is stopped assumption");
2779 
2780   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2781   // if linear allocation blocks need to be appropriately marked to allow the
2782   // the blocks to be parsable. We also check here whether we need to nudge the
2783   // CMS collector thread to start a new cycle (if it's not already active).
2784   assert(   Thread::current()->is_VM_thread()
2785          || (   CMSScavengeBeforeRemark
2786              && Thread::current()->is_ConcurrentGC_thread()),
2787          "Incorrect thread type for epilogue execution");
2788 
2789   if (!_between_prologue_and_epilogue) {
2790     // We have already been invoked; this is a gc_epilogue delegation
2791     // from yet another CMS generation that we are responsible for, just
2792     // ignore it since all relevant work has already been done.
2793     return;
2794   }
2795   assert(haveFreelistLocks(), "must have freelist locks");
2796   assert_lock_strong(bitMapLock());
2797 
2798   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2799 
2800   _cmsGen->gc_epilogue_work(full);
2801 
2802   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2803     // in case sampling was not already enabled, enable it
2804     _start_sampling = true;
2805   }
2806   // reset _eden_chunk_array so sampling starts afresh
2807   _eden_chunk_index = 0;
2808 
2809   size_t cms_used   = _cmsGen->cmsSpace()->used();
2810 
2811   // update performance counters - this uses a special version of
2812   // update_counters() that allows the utilization to be passed as a
2813   // parameter, avoiding multiple calls to used().
2814   //
2815   _cmsGen->update_counters(cms_used);
2816 
2817   if (CMSIncrementalMode) {
2818     icms_update_allocation_limits();
2819   }
2820 
2821   bitMapLock()->unlock();
2822   releaseFreelistLocks();
2823 
2824   if (!CleanChunkPoolAsync) {
2825     Chunk::clean_chunk_pool();
2826   }
2827 
2828   set_did_compact(false);
2829   _between_prologue_and_epilogue = false;  // ready for next cycle
2830 }
2831 
2832 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2833   collector()->gc_epilogue(full);
2834 
2835   // Also reset promotion tracking in par gc thread states.
2836   if (CollectedHeap::use_parallel_gc_threads()) {
2837     for (uint i = 0; i < ParallelGCThreads; i++) {
2838       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2839     }
2840   }
2841 }
2842 
2843 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2844   assert(!incremental_collection_failed(), "Should have been cleared");
2845   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2846   cmsSpace()->gc_epilogue();
2847     // Print stat counters
2848   NOT_PRODUCT(
2849     assert(_numObjectsAllocated == 0, "check");
2850     assert(_numWordsAllocated == 0, "check");
2851     if (Verbose && PrintGC) {
2852       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2853                           SIZE_FORMAT" bytes",
2854                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2855     }
2856     _numObjectsPromoted = 0;
2857     _numWordsPromoted   = 0;
2858   )
2859 
2860   if (PrintGC && Verbose) {
2861     // Call down the chain in contiguous_available needs the freelistLock
2862     // so print this out before releasing the freeListLock.
2863     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2864                         contiguous_available());
2865   }
2866 }
2867 
2868 #ifndef PRODUCT
2869 bool CMSCollector::have_cms_token() {
2870   Thread* thr = Thread::current();
2871   if (thr->is_VM_thread()) {
2872     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2873   } else if (thr->is_ConcurrentGC_thread()) {
2874     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2875   } else if (thr->is_GC_task_thread()) {
2876     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2877            ParGCRareEvent_lock->owned_by_self();
2878   }
2879   return false;
2880 }
2881 #endif
2882 
2883 // Check reachability of the given heap address in CMS generation,
2884 // treating all other generations as roots.
2885 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2886   // We could "guarantee" below, rather than assert, but i'll
2887   // leave these as "asserts" so that an adventurous debugger
2888   // could try this in the product build provided some subset of
2889   // the conditions were met, provided they were intersted in the
2890   // results and knew that the computation below wouldn't interfere
2891   // with other concurrent computations mutating the structures
2892   // being read or written.
2893   assert(SafepointSynchronize::is_at_safepoint(),
2894          "Else mutations in object graph will make answer suspect");
2895   assert(have_cms_token(), "Should hold cms token");
2896   assert(haveFreelistLocks(), "must hold free list locks");
2897   assert_lock_strong(bitMapLock());
2898 
2899   // Clear the marking bit map array before starting, but, just
2900   // for kicks, first report if the given address is already marked
2901   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2902                 _markBitMap.isMarked(addr) ? "" : " not");
2903 
2904   if (verify_after_remark()) {
2905     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2906     bool result = verification_mark_bm()->isMarked(addr);
2907     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2908                            result ? "IS" : "is NOT");
2909     return result;
2910   } else {
2911     gclog_or_tty->print_cr("Could not compute result");
2912     return false;
2913   }
2914 }
2915 
2916 
2917 void
2918 CMSCollector::print_on_error(outputStream* st) {
2919   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2920   if (collector != NULL) {
2921     CMSBitMap* bitmap = &collector->_markBitMap;
2922     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2923     bitmap->print_on_error(st, " Bits: ");
2924 
2925     st->cr();
2926 
2927     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2928     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2929     mut_bitmap->print_on_error(st, " Bits: ");
2930   }
2931 }
2932 
2933 ////////////////////////////////////////////////////////
2934 // CMS Verification Support
2935 ////////////////////////////////////////////////////////
2936 // Following the remark phase, the following invariant
2937 // should hold -- each object in the CMS heap which is
2938 // marked in markBitMap() should be marked in the verification_mark_bm().
2939 
2940 class VerifyMarkedClosure: public BitMapClosure {
2941   CMSBitMap* _marks;
2942   bool       _failed;
2943 
2944  public:
2945   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2946 
2947   bool do_bit(size_t offset) {
2948     HeapWord* addr = _marks->offsetToHeapWord(offset);
2949     if (!_marks->isMarked(addr)) {
2950       oop(addr)->print_on(gclog_or_tty);
2951       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2952       _failed = true;
2953     }
2954     return true;
2955   }
2956 
2957   bool failed() { return _failed; }
2958 };
2959 
2960 bool CMSCollector::verify_after_remark(bool silent) {
2961   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2962   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2963   static bool init = false;
2964 
2965   assert(SafepointSynchronize::is_at_safepoint(),
2966          "Else mutations in object graph will make answer suspect");
2967   assert(have_cms_token(),
2968          "Else there may be mutual interference in use of "
2969          " verification data structures");
2970   assert(_collectorState > Marking && _collectorState <= Sweeping,
2971          "Else marking info checked here may be obsolete");
2972   assert(haveFreelistLocks(), "must hold free list locks");
2973   assert_lock_strong(bitMapLock());
2974 
2975 
2976   // Allocate marking bit map if not already allocated
2977   if (!init) { // first time
2978     if (!verification_mark_bm()->allocate(_span)) {
2979       return false;
2980     }
2981     init = true;
2982   }
2983 
2984   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2985 
2986   // Turn off refs discovery -- so we will be tracing through refs.
2987   // This is as intended, because by this time
2988   // GC must already have cleared any refs that need to be cleared,
2989   // and traced those that need to be marked; moreover,
2990   // the marking done here is not going to intefere in any
2991   // way with the marking information used by GC.
2992   NoRefDiscovery no_discovery(ref_processor());
2993 
2994   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2995 
2996   // Clear any marks from a previous round
2997   verification_mark_bm()->clear_all();
2998   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2999   verify_work_stacks_empty();
3000 
3001   GenCollectedHeap* gch = GenCollectedHeap::heap();
3002   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3003   // Update the saved marks which may affect the root scans.
3004   gch->save_marks();
3005 
3006   if (CMSRemarkVerifyVariant == 1) {
3007     // In this first variant of verification, we complete
3008     // all marking, then check if the new marks-verctor is
3009     // a subset of the CMS marks-vector.
3010     verify_after_remark_work_1();
3011   } else if (CMSRemarkVerifyVariant == 2) {
3012     // In this second variant of verification, we flag an error
3013     // (i.e. an object reachable in the new marks-vector not reachable
3014     // in the CMS marks-vector) immediately, also indicating the
3015     // identify of an object (A) that references the unmarked object (B) --
3016     // presumably, a mutation to A failed to be picked up by preclean/remark?
3017     verify_after_remark_work_2();
3018   } else {
3019     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
3020             CMSRemarkVerifyVariant);
3021   }
3022   if (!silent) gclog_or_tty->print(" done] ");
3023   return true;
3024 }
3025 
3026 void CMSCollector::verify_after_remark_work_1() {
3027   ResourceMark rm;
3028   HandleMark  hm;
3029   GenCollectedHeap* gch = GenCollectedHeap::heap();
3030 
3031   // Get a clear set of claim bits for the strong roots processing to work with.
3032   ClassLoaderDataGraph::clear_claimed_marks();
3033 
3034   // Mark from roots one level into CMS
3035   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3036   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3037 
3038   gch->gen_process_strong_roots(_cmsGen->level(),
3039                                 true,   // younger gens are roots
3040                                 true,   // activate StrongRootsScope
3041                                 false,  // not scavenging
3042                                 SharedHeap::ScanningOption(roots_scanning_options()),
3043                                 &notOlder,
3044                                 true,   // walk code active on stacks
3045                                 NULL,
3046                                 NULL); // SSS: Provide correct closure
3047 
3048   // Now mark from the roots
3049   MarkFromRootsClosure markFromRootsClosure(this, _span,
3050     verification_mark_bm(), verification_mark_stack(),
3051     false /* don't yield */, true /* verifying */);
3052   assert(_restart_addr == NULL, "Expected pre-condition");
3053   verification_mark_bm()->iterate(&markFromRootsClosure);
3054   while (_restart_addr != NULL) {
3055     // Deal with stack overflow: by restarting at the indicated
3056     // address.
3057     HeapWord* ra = _restart_addr;
3058     markFromRootsClosure.reset(ra);
3059     _restart_addr = NULL;
3060     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3061   }
3062   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3063   verify_work_stacks_empty();
3064 
3065   // Marking completed -- now verify that each bit marked in
3066   // verification_mark_bm() is also marked in markBitMap(); flag all
3067   // errors by printing corresponding objects.
3068   VerifyMarkedClosure vcl(markBitMap());
3069   verification_mark_bm()->iterate(&vcl);
3070   if (vcl.failed()) {
3071     gclog_or_tty->print("Verification failed");
3072     Universe::heap()->print_on(gclog_or_tty);
3073     fatal("CMS: failed marking verification after remark");
3074   }
3075 }
3076 
3077 class VerifyKlassOopsKlassClosure : public KlassClosure {
3078   class VerifyKlassOopsClosure : public OopClosure {
3079     CMSBitMap* _bitmap;
3080    public:
3081     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3082     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3083     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3084   } _oop_closure;
3085  public:
3086   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3087   void do_klass(Klass* k) {
3088     k->oops_do(&_oop_closure);
3089   }
3090 };
3091 
3092 void CMSCollector::verify_after_remark_work_2() {
3093   ResourceMark rm;
3094   HandleMark  hm;
3095   GenCollectedHeap* gch = GenCollectedHeap::heap();
3096 
3097   // Get a clear set of claim bits for the strong roots processing to work with.
3098   ClassLoaderDataGraph::clear_claimed_marks();
3099 
3100   // Mark from roots one level into CMS
3101   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3102                                      markBitMap());
3103   CMKlassClosure klass_closure(&notOlder);
3104 
3105   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3106   gch->gen_process_strong_roots(_cmsGen->level(),
3107                                 true,   // younger gens are roots
3108                                 true,   // activate StrongRootsScope
3109                                 false,  // not scavenging
3110                                 SharedHeap::ScanningOption(roots_scanning_options()),
3111                                 &notOlder,
3112                                 true,   // walk code active on stacks
3113                                 NULL,
3114                                 &klass_closure);
3115 
3116   // Now mark from the roots
3117   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3118     verification_mark_bm(), markBitMap(), verification_mark_stack());
3119   assert(_restart_addr == NULL, "Expected pre-condition");
3120   verification_mark_bm()->iterate(&markFromRootsClosure);
3121   while (_restart_addr != NULL) {
3122     // Deal with stack overflow: by restarting at the indicated
3123     // address.
3124     HeapWord* ra = _restart_addr;
3125     markFromRootsClosure.reset(ra);
3126     _restart_addr = NULL;
3127     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3128   }
3129   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3130   verify_work_stacks_empty();
3131 
3132   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3133   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3134 
3135   // Marking completed -- now verify that each bit marked in
3136   // verification_mark_bm() is also marked in markBitMap(); flag all
3137   // errors by printing corresponding objects.
3138   VerifyMarkedClosure vcl(markBitMap());
3139   verification_mark_bm()->iterate(&vcl);
3140   assert(!vcl.failed(), "Else verification above should not have succeeded");
3141 }
3142 
3143 void ConcurrentMarkSweepGeneration::save_marks() {
3144   // delegate to CMS space
3145   cmsSpace()->save_marks();
3146   for (uint i = 0; i < ParallelGCThreads; i++) {
3147     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3148   }
3149 }
3150 
3151 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3152   return cmsSpace()->no_allocs_since_save_marks();
3153 }
3154 
3155 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3156                                                                 \
3157 void ConcurrentMarkSweepGeneration::                            \
3158 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3159   cl->set_generation(this);                                     \
3160   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3161   cl->reset_generation();                                       \
3162   save_marks();                                                 \
3163 }
3164 
3165 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3166 
3167 void
3168 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3169   cl->set_generation(this);
3170   younger_refs_in_space_iterate(_cmsSpace, cl);
3171   cl->reset_generation();
3172 }
3173 
3174 void
3175 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
3176   if (freelistLock()->owned_by_self()) {
3177     Generation::oop_iterate(mr, cl);
3178   } else {
3179     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3180     Generation::oop_iterate(mr, cl);
3181   }
3182 }
3183 
3184 void
3185 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3186   if (freelistLock()->owned_by_self()) {
3187     Generation::oop_iterate(cl);
3188   } else {
3189     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3190     Generation::oop_iterate(cl);
3191   }
3192 }
3193 
3194 void
3195 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3196   if (freelistLock()->owned_by_self()) {
3197     Generation::object_iterate(cl);
3198   } else {
3199     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3200     Generation::object_iterate(cl);
3201   }
3202 }
3203 
3204 void
3205 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3206   if (freelistLock()->owned_by_self()) {
3207     Generation::safe_object_iterate(cl);
3208   } else {
3209     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3210     Generation::safe_object_iterate(cl);
3211   }
3212 }
3213 
3214 void
3215 ConcurrentMarkSweepGeneration::post_compact() {
3216 }
3217 
3218 void
3219 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3220   // Fix the linear allocation blocks to look like free blocks.
3221 
3222   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3223   // are not called when the heap is verified during universe initialization and
3224   // at vm shutdown.
3225   if (freelistLock()->owned_by_self()) {
3226     cmsSpace()->prepare_for_verify();
3227   } else {
3228     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3229     cmsSpace()->prepare_for_verify();
3230   }
3231 }
3232 
3233 void
3234 ConcurrentMarkSweepGeneration::verify() {
3235   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3236   // are not called when the heap is verified during universe initialization and
3237   // at vm shutdown.
3238   if (freelistLock()->owned_by_self()) {
3239     cmsSpace()->verify();
3240   } else {
3241     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3242     cmsSpace()->verify();
3243   }
3244 }
3245 
3246 void CMSCollector::verify() {
3247   _cmsGen->verify();
3248 }
3249 
3250 #ifndef PRODUCT
3251 bool CMSCollector::overflow_list_is_empty() const {
3252   assert(_num_par_pushes >= 0, "Inconsistency");
3253   if (_overflow_list == NULL) {
3254     assert(_num_par_pushes == 0, "Inconsistency");
3255   }
3256   return _overflow_list == NULL;
3257 }
3258 
3259 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3260 // merely consolidate assertion checks that appear to occur together frequently.
3261 void CMSCollector::verify_work_stacks_empty() const {
3262   assert(_markStack.isEmpty(), "Marking stack should be empty");
3263   assert(overflow_list_is_empty(), "Overflow list should be empty");
3264 }
3265 
3266 void CMSCollector::verify_overflow_empty() const {
3267   assert(overflow_list_is_empty(), "Overflow list should be empty");
3268   assert(no_preserved_marks(), "No preserved marks");
3269 }
3270 #endif // PRODUCT
3271 
3272 // Decide if we want to enable class unloading as part of the
3273 // ensuing concurrent GC cycle. We will collect and
3274 // unload classes if it's the case that:
3275 // (1) an explicit gc request has been made and the flag
3276 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3277 // (2) (a) class unloading is enabled at the command line, and
3278 //     (b) old gen is getting really full
3279 // NOTE: Provided there is no change in the state of the heap between
3280 // calls to this method, it should have idempotent results. Moreover,
3281 // its results should be monotonically increasing (i.e. going from 0 to 1,
3282 // but not 1 to 0) between successive calls between which the heap was
3283 // not collected. For the implementation below, it must thus rely on
3284 // the property that concurrent_cycles_since_last_unload()
3285 // will not decrease unless a collection cycle happened and that
3286 // _cmsGen->is_too_full() are
3287 // themselves also monotonic in that sense. See check_monotonicity()
3288 // below.
3289 void CMSCollector::update_should_unload_classes() {
3290   _should_unload_classes = false;
3291   // Condition 1 above
3292   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3293     _should_unload_classes = true;
3294   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3295     // Disjuncts 2.b.(i,ii,iii) above
3296     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3297                               CMSClassUnloadingMaxInterval)
3298                            || _cmsGen->is_too_full();
3299   }
3300 }
3301 
3302 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3303   bool res = should_concurrent_collect();
3304   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3305   return res;
3306 }
3307 
3308 void CMSCollector::setup_cms_unloading_and_verification_state() {
3309   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3310                              || VerifyBeforeExit;
3311   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3312 
3313   // We set the proper root for this CMS cycle here.
3314   // When class unloading is disabled, we set the default root scanning option
3315   // once in the CMSCollector constructor.
3316   if (CMSClassUnloadingEnabled) {
3317     if (should_unload_classes()) {
3318       set_root_scanning_option(SharedHeap::SO_SystemClasses);
3319     } else {
3320       set_root_scanning_option(SharedHeap::SO_AllClasses | rso);
3321     }
3322   }
3323 
3324   if (should_unload_classes()) {   // Should unload classes this cycle
3325     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3326     set_verifying(should_verify);    // Set verification state for this cycle
3327     return;                            // Nothing else needs to be done at this time
3328   }
3329 
3330   // Not unloading classes this cycle
3331   assert(!should_unload_classes(), "Inconsitency!");
3332   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3333     // Include symbols, strings and code cache elements to prevent their resurrection.
3334     add_root_scanning_option(rso);
3335     set_verifying(true);
3336   } else if (verifying() && !should_verify) {
3337     // We were verifying, but some verification flags got disabled.
3338     set_verifying(false);
3339     // Exclude symbols, strings and code cache elements from root scanning to
3340     // reduce IM and RM pauses.
3341     remove_root_scanning_option(rso);
3342   }
3343 }
3344 
3345 
3346 #ifndef PRODUCT
3347 HeapWord* CMSCollector::block_start(const void* p) const {
3348   const HeapWord* addr = (HeapWord*)p;
3349   if (_span.contains(p)) {
3350     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3351       return _cmsGen->cmsSpace()->block_start(p);
3352     }
3353   }
3354   return NULL;
3355 }
3356 #endif
3357 
3358 HeapWord*
3359 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3360                                                    bool   tlab,
3361                                                    bool   parallel) {
3362   CMSSynchronousYieldRequest yr;
3363   assert(!tlab, "Can't deal with TLAB allocation");
3364   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3365   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3366     CMSExpansionCause::_satisfy_allocation);
3367   if (GCExpandToAllocateDelayMillis > 0) {
3368     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3369   }
3370   return have_lock_and_allocate(word_size, tlab);
3371 }
3372 
3373 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3374 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3375 // to CardGeneration and share it...
3376 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3377   return CardGeneration::expand(bytes, expand_bytes);
3378 }
3379 
3380 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3381   CMSExpansionCause::Cause cause)
3382 {
3383 
3384   bool success = expand(bytes, expand_bytes);
3385 
3386   // remember why we expanded; this information is used
3387   // by shouldConcurrentCollect() when making decisions on whether to start
3388   // a new CMS cycle.
3389   if (success) {
3390     set_expansion_cause(cause);
3391     if (PrintGCDetails && Verbose) {
3392       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3393         CMSExpansionCause::to_string(cause));
3394     }
3395   }
3396 }
3397 
3398 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3399   HeapWord* res = NULL;
3400   MutexLocker x(ParGCRareEvent_lock);
3401   while (true) {
3402     // Expansion by some other thread might make alloc OK now:
3403     res = ps->lab.alloc(word_sz);
3404     if (res != NULL) return res;
3405     // If there's not enough expansion space available, give up.
3406     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3407       return NULL;
3408     }
3409     // Otherwise, we try expansion.
3410     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3411       CMSExpansionCause::_allocate_par_lab);
3412     // Now go around the loop and try alloc again;
3413     // A competing par_promote might beat us to the expansion space,
3414     // so we may go around the loop again if promotion fails agaion.
3415     if (GCExpandToAllocateDelayMillis > 0) {
3416       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3417     }
3418   }
3419 }
3420 
3421 
3422 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3423   PromotionInfo* promo) {
3424   MutexLocker x(ParGCRareEvent_lock);
3425   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3426   while (true) {
3427     // Expansion by some other thread might make alloc OK now:
3428     if (promo->ensure_spooling_space()) {
3429       assert(promo->has_spooling_space(),
3430              "Post-condition of successful ensure_spooling_space()");
3431       return true;
3432     }
3433     // If there's not enough expansion space available, give up.
3434     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3435       return false;
3436     }
3437     // Otherwise, we try expansion.
3438     expand(refill_size_bytes, MinHeapDeltaBytes,
3439       CMSExpansionCause::_allocate_par_spooling_space);
3440     // Now go around the loop and try alloc again;
3441     // A competing allocation might beat us to the expansion space,
3442     // so we may go around the loop again if allocation fails again.
3443     if (GCExpandToAllocateDelayMillis > 0) {
3444       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3445     }
3446   }
3447 }
3448 
3449 
3450 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3451   assert_locked_or_safepoint(ExpandHeap_lock);
3452   // Shrink committed space
3453   _virtual_space.shrink_by(bytes);
3454   // Shrink space; this also shrinks the space's BOT
3455   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3456   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3457   // Shrink the shared block offset array
3458   _bts->resize(new_word_size);
3459   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3460   // Shrink the card table
3461   Universe::heap()->barrier_set()->resize_covered_region(mr);
3462 
3463   if (Verbose && PrintGC) {
3464     size_t new_mem_size = _virtual_space.committed_size();
3465     size_t old_mem_size = new_mem_size + bytes;
3466     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3467                   name(), old_mem_size/K, new_mem_size/K);
3468   }
3469 }
3470 
3471 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3472   assert_locked_or_safepoint(Heap_lock);
3473   size_t size = ReservedSpace::page_align_size_down(bytes);
3474   // Only shrink if a compaction was done so that all the free space
3475   // in the generation is in a contiguous block at the end.
3476   if (size > 0 && did_compact()) {
3477     shrink_by(size);
3478   }
3479 }
3480 
3481 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3482   assert_locked_or_safepoint(Heap_lock);
3483   bool result = _virtual_space.expand_by(bytes);
3484   if (result) {
3485     size_t new_word_size =
3486       heap_word_size(_virtual_space.committed_size());
3487     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3488     _bts->resize(new_word_size);  // resize the block offset shared array
3489     Universe::heap()->barrier_set()->resize_covered_region(mr);
3490     // Hmmmm... why doesn't CFLS::set_end verify locking?
3491     // This is quite ugly; FIX ME XXX
3492     _cmsSpace->assert_locked(freelistLock());
3493     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3494 
3495     // update the space and generation capacity counters
3496     if (UsePerfData) {
3497       _space_counters->update_capacity();
3498       _gen_counters->update_all();
3499     }
3500 
3501     if (Verbose && PrintGC) {
3502       size_t new_mem_size = _virtual_space.committed_size();
3503       size_t old_mem_size = new_mem_size - bytes;
3504       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3505                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3506     }
3507   }
3508   return result;
3509 }
3510 
3511 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3512   assert_locked_or_safepoint(Heap_lock);
3513   bool success = true;
3514   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3515   if (remaining_bytes > 0) {
3516     success = grow_by(remaining_bytes);
3517     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3518   }
3519   return success;
3520 }
3521 
3522 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3523   assert_locked_or_safepoint(Heap_lock);
3524   assert_lock_strong(freelistLock());
3525   if (PrintGCDetails && Verbose) {
3526     warning("Shrinking of CMS not yet implemented");
3527   }
3528   return;
3529 }
3530 
3531 
3532 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3533 // phases.
3534 class CMSPhaseAccounting: public StackObj {
3535  public:
3536   CMSPhaseAccounting(CMSCollector *collector,
3537                      const char *phase,
3538                      bool print_cr = true);
3539   ~CMSPhaseAccounting();
3540 
3541  private:
3542   CMSCollector *_collector;
3543   const char *_phase;
3544   elapsedTimer _wallclock;
3545   bool _print_cr;
3546 
3547  public:
3548   // Not MT-safe; so do not pass around these StackObj's
3549   // where they may be accessed by other threads.
3550   jlong wallclock_millis() {
3551     assert(_wallclock.is_active(), "Wall clock should not stop");
3552     _wallclock.stop();  // to record time
3553     jlong ret = _wallclock.milliseconds();
3554     _wallclock.start(); // restart
3555     return ret;
3556   }
3557 };
3558 
3559 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3560                                        const char *phase,
3561                                        bool print_cr) :
3562   _collector(collector), _phase(phase), _print_cr(print_cr) {
3563 
3564   if (PrintCMSStatistics != 0) {
3565     _collector->resetYields();
3566   }
3567   if (PrintGCDetails) {
3568     gclog_or_tty->date_stamp(PrintGCDateStamps);
3569     gclog_or_tty->stamp(PrintGCTimeStamps);
3570     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3571       _collector->cmsGen()->short_name(), _phase);
3572   }
3573   _collector->resetTimer();
3574   _wallclock.start();
3575   _collector->startTimer();
3576 }
3577 
3578 CMSPhaseAccounting::~CMSPhaseAccounting() {
3579   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3580   _collector->stopTimer();
3581   _wallclock.stop();
3582   if (PrintGCDetails) {
3583     gclog_or_tty->date_stamp(PrintGCDateStamps);
3584     gclog_or_tty->stamp(PrintGCTimeStamps);
3585     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3586                  _collector->cmsGen()->short_name(),
3587                  _phase, _collector->timerValue(), _wallclock.seconds());
3588     if (_print_cr) {
3589       gclog_or_tty->print_cr("");
3590     }
3591     if (PrintCMSStatistics != 0) {
3592       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3593                     _collector->yields());
3594     }
3595   }
3596 }
3597 
3598 // CMS work
3599 
3600 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
3601 class CMSParMarkTask : public AbstractGangTask {
3602  protected:
3603   CMSCollector*     _collector;
3604   int               _n_workers;
3605   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
3606       AbstractGangTask(name),
3607       _collector(collector),
3608       _n_workers(n_workers) {}
3609   // Work method in support of parallel rescan ... of young gen spaces
3610   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
3611                              ContiguousSpace* space,
3612                              HeapWord** chunk_array, size_t chunk_top);
3613   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
3614 };
3615 
3616 // Parallel initial mark task
3617 class CMSParInitialMarkTask: public CMSParMarkTask {
3618  public:
3619   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
3620       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
3621                      collector, n_workers) {}
3622   void work(uint worker_id);
3623 };
3624 
3625 // Checkpoint the roots into this generation from outside
3626 // this generation. [Note this initial checkpoint need only
3627 // be approximate -- we'll do a catch up phase subsequently.]
3628 void CMSCollector::checkpointRootsInitial(bool asynch) {
3629   assert(_collectorState == InitialMarking, "Wrong collector state");
3630   check_correct_thread_executing();
3631   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3632 
3633   save_heap_summary();
3634   report_heap_summary(GCWhen::BeforeGC);
3635 
3636   ReferenceProcessor* rp = ref_processor();
3637   SpecializationStats::clear();
3638   assert(_restart_addr == NULL, "Control point invariant");
3639   if (asynch) {
3640     // acquire locks for subsequent manipulations
3641     MutexLockerEx x(bitMapLock(),
3642                     Mutex::_no_safepoint_check_flag);
3643     checkpointRootsInitialWork(asynch);
3644     // enable ("weak") refs discovery
3645     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3646     _collectorState = Marking;
3647   } else {
3648     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3649     // which recognizes if we are a CMS generation, and doesn't try to turn on
3650     // discovery; verify that they aren't meddling.
3651     assert(!rp->discovery_is_atomic(),
3652            "incorrect setting of discovery predicate");
3653     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3654            "ref discovery for this generation kind");
3655     // already have locks
3656     checkpointRootsInitialWork(asynch);
3657     // now enable ("weak") refs discovery
3658     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3659     _collectorState = Marking;
3660   }
3661   SpecializationStats::print();
3662 }
3663 
3664 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3665   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3666   assert(_collectorState == InitialMarking, "just checking");
3667 
3668   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3669   // precede our marking with a collection of all
3670   // younger generations to keep floating garbage to a minimum.
3671   // XXX: we won't do this for now -- it's an optimization to be done later.
3672 
3673   // already have locks
3674   assert_lock_strong(bitMapLock());
3675   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3676 
3677   // Setup the verification and class unloading state for this
3678   // CMS collection cycle.
3679   setup_cms_unloading_and_verification_state();
3680 
3681   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3682     PrintGCDetails && Verbose, true, _gc_timer_cm);)
3683   if (UseAdaptiveSizePolicy) {
3684     size_policy()->checkpoint_roots_initial_begin();
3685   }
3686 
3687   // Reset all the PLAB chunk arrays if necessary.
3688   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3689     reset_survivor_plab_arrays();
3690   }
3691 
3692   ResourceMark rm;
3693   HandleMark  hm;
3694 
3695   FalseClosure falseClosure;
3696   // In the case of a synchronous collection, we will elide the
3697   // remark step, so it's important to catch all the nmethod oops
3698   // in this step.
3699   // The final 'true' flag to gen_process_strong_roots will ensure this.
3700   // If 'async' is true, we can relax the nmethod tracing.
3701   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3702   GenCollectedHeap* gch = GenCollectedHeap::heap();
3703 
3704   verify_work_stacks_empty();
3705   verify_overflow_empty();
3706 
3707   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3708   // Update the saved marks which may affect the root scans.
3709   gch->save_marks();
3710 
3711   // weak reference processing has not started yet.
3712   ref_processor()->set_enqueuing_is_done(false);
3713 
3714   // Need to remember all newly created CLDs,
3715   // so that we can guarantee that the remark finds them.
3716   ClassLoaderDataGraph::remember_new_clds(true);
3717 
3718   // Whenever a CLD is found, it will be claimed before proceeding to mark
3719   // the klasses. The claimed marks need to be cleared before marking starts.
3720   ClassLoaderDataGraph::clear_claimed_marks();
3721 
3722   if (CMSPrintEdenSurvivorChunks) {
3723     print_eden_and_survivor_chunk_arrays();
3724   }
3725 
3726   {
3727     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3728     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3729       // The parallel version.
3730       FlexibleWorkGang* workers = gch->workers();
3731       assert(workers != NULL, "Need parallel worker threads.");
3732       int n_workers = workers->active_workers();
3733       CMSParInitialMarkTask tsk(this, n_workers);
3734       gch->set_par_threads(n_workers);
3735       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3736       if (n_workers > 1) {
3737         GenCollectedHeap::StrongRootsScope srs(gch);
3738         workers->run_task(&tsk);
3739       } else {
3740         GenCollectedHeap::StrongRootsScope srs(gch);
3741         tsk.work(0);
3742       }
3743       gch->set_par_threads(0);
3744     } else {
3745       // The serial version.
3746       CMKlassClosure klass_closure(&notOlder);
3747       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3748       gch->gen_process_strong_roots(_cmsGen->level(),
3749                                     true,   // younger gens are roots
3750                                     true,   // activate StrongRootsScope
3751                                     false,  // not scavenging
3752                                     SharedHeap::ScanningOption(roots_scanning_options()),
3753                                     &notOlder,
3754                                     true,   // walk all of code cache if (so & SO_CodeCache)
3755                                     NULL,
3756                                     &klass_closure);
3757     }
3758   }
3759 
3760   // Clear mod-union table; it will be dirtied in the prologue of
3761   // CMS generation per each younger generation collection.
3762 
3763   assert(_modUnionTable.isAllClear(),
3764        "Was cleared in most recent final checkpoint phase"
3765        " or no bits are set in the gc_prologue before the start of the next "
3766        "subsequent marking phase.");
3767 
3768   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3769 
3770   // Save the end of the used_region of the constituent generations
3771   // to be used to limit the extent of sweep in each generation.
3772   save_sweep_limits();
3773   if (UseAdaptiveSizePolicy) {
3774     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3775   }
3776   verify_overflow_empty();
3777 }
3778 
3779 bool CMSCollector::markFromRoots(bool asynch) {
3780   // we might be tempted to assert that:
3781   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3782   //        "inconsistent argument?");
3783   // However that wouldn't be right, because it's possible that
3784   // a safepoint is indeed in progress as a younger generation
3785   // stop-the-world GC happens even as we mark in this generation.
3786   assert(_collectorState == Marking, "inconsistent state?");
3787   check_correct_thread_executing();
3788   verify_overflow_empty();
3789 
3790   bool res;
3791   if (asynch) {
3792 
3793     // Start the timers for adaptive size policy for the concurrent phases
3794     // Do it here so that the foreground MS can use the concurrent
3795     // timer since a foreground MS might has the sweep done concurrently
3796     // or STW.
3797     if (UseAdaptiveSizePolicy) {
3798       size_policy()->concurrent_marking_begin();
3799     }
3800 
3801     // Weak ref discovery note: We may be discovering weak
3802     // refs in this generation concurrent (but interleaved) with
3803     // weak ref discovery by a younger generation collector.
3804 
3805     CMSTokenSyncWithLocks ts(true, bitMapLock());
3806     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3807     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3808     res = markFromRootsWork(asynch);
3809     if (res) {
3810       _collectorState = Precleaning;
3811     } else { // We failed and a foreground collection wants to take over
3812       assert(_foregroundGCIsActive, "internal state inconsistency");
3813       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3814       if (PrintGCDetails) {
3815         gclog_or_tty->print_cr("bailing out to foreground collection");
3816       }
3817     }
3818     if (UseAdaptiveSizePolicy) {
3819       size_policy()->concurrent_marking_end();
3820     }
3821   } else {
3822     assert(SafepointSynchronize::is_at_safepoint(),
3823            "inconsistent with asynch == false");
3824     if (UseAdaptiveSizePolicy) {
3825       size_policy()->ms_collection_marking_begin();
3826     }
3827     // already have locks
3828     res = markFromRootsWork(asynch);
3829     _collectorState = FinalMarking;
3830     if (UseAdaptiveSizePolicy) {
3831       GenCollectedHeap* gch = GenCollectedHeap::heap();
3832       size_policy()->ms_collection_marking_end(gch->gc_cause());
3833     }
3834   }
3835   verify_overflow_empty();
3836   return res;
3837 }
3838 
3839 bool CMSCollector::markFromRootsWork(bool asynch) {
3840   // iterate over marked bits in bit map, doing a full scan and mark
3841   // from these roots using the following algorithm:
3842   // . if oop is to the right of the current scan pointer,
3843   //   mark corresponding bit (we'll process it later)
3844   // . else (oop is to left of current scan pointer)
3845   //   push oop on marking stack
3846   // . drain the marking stack
3847 
3848   // Note that when we do a marking step we need to hold the
3849   // bit map lock -- recall that direct allocation (by mutators)
3850   // and promotion (by younger generation collectors) is also
3851   // marking the bit map. [the so-called allocate live policy.]
3852   // Because the implementation of bit map marking is not
3853   // robust wrt simultaneous marking of bits in the same word,
3854   // we need to make sure that there is no such interference
3855   // between concurrent such updates.
3856 
3857   // already have locks
3858   assert_lock_strong(bitMapLock());
3859 
3860   verify_work_stacks_empty();
3861   verify_overflow_empty();
3862   bool result = false;
3863   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3864     result = do_marking_mt(asynch);
3865   } else {
3866     result = do_marking_st(asynch);
3867   }
3868   return result;
3869 }
3870 
3871 // Forward decl
3872 class CMSConcMarkingTask;
3873 
3874 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3875   CMSCollector*       _collector;
3876   CMSConcMarkingTask* _task;
3877  public:
3878   virtual void yield();
3879 
3880   // "n_threads" is the number of threads to be terminated.
3881   // "queue_set" is a set of work queues of other threads.
3882   // "collector" is the CMS collector associated with this task terminator.
3883   // "yield" indicates whether we need the gang as a whole to yield.
3884   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3885     ParallelTaskTerminator(n_threads, queue_set),
3886     _collector(collector) { }
3887 
3888   void set_task(CMSConcMarkingTask* task) {
3889     _task = task;
3890   }
3891 };
3892 
3893 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3894   CMSConcMarkingTask* _task;
3895  public:
3896   bool should_exit_termination();
3897   void set_task(CMSConcMarkingTask* task) {
3898     _task = task;
3899   }
3900 };
3901 
3902 // MT Concurrent Marking Task
3903 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3904   CMSCollector* _collector;
3905   int           _n_workers;                  // requested/desired # workers
3906   bool          _asynch;
3907   bool          _result;
3908   CompactibleFreeListSpace*  _cms_space;
3909   char          _pad_front[64];   // padding to ...
3910   HeapWord*     _global_finger;   // ... avoid sharing cache line
3911   char          _pad_back[64];
3912   HeapWord*     _restart_addr;
3913 
3914   //  Exposed here for yielding support
3915   Mutex* const _bit_map_lock;
3916 
3917   // The per thread work queues, available here for stealing
3918   OopTaskQueueSet*  _task_queues;
3919 
3920   // Termination (and yielding) support
3921   CMSConcMarkingTerminator _term;
3922   CMSConcMarkingTerminatorTerminator _term_term;
3923 
3924  public:
3925   CMSConcMarkingTask(CMSCollector* collector,
3926                  CompactibleFreeListSpace* cms_space,
3927                  bool asynch,
3928                  YieldingFlexibleWorkGang* workers,
3929                  OopTaskQueueSet* task_queues):
3930     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3931     _collector(collector),
3932     _cms_space(cms_space),
3933     _asynch(asynch), _n_workers(0), _result(true),
3934     _task_queues(task_queues),
3935     _term(_n_workers, task_queues, _collector),
3936     _bit_map_lock(collector->bitMapLock())
3937   {
3938     _requested_size = _n_workers;
3939     _term.set_task(this);
3940     _term_term.set_task(this);
3941     _restart_addr = _global_finger = _cms_space->bottom();
3942   }
3943 
3944 
3945   OopTaskQueueSet* task_queues()  { return _task_queues; }
3946 
3947   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3948 
3949   HeapWord** global_finger_addr() { return &_global_finger; }
3950 
3951   CMSConcMarkingTerminator* terminator() { return &_term; }
3952 
3953   virtual void set_for_termination(int active_workers) {
3954     terminator()->reset_for_reuse(active_workers);
3955   }
3956 
3957   void work(uint worker_id);
3958   bool should_yield() {
3959     return    ConcurrentMarkSweepThread::should_yield()
3960            && !_collector->foregroundGCIsActive()
3961            && _asynch;
3962   }
3963 
3964   virtual void coordinator_yield();  // stuff done by coordinator
3965   bool result() { return _result; }
3966 
3967   void reset(HeapWord* ra) {
3968     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3969     _restart_addr = _global_finger = ra;
3970     _term.reset_for_reuse();
3971   }
3972 
3973   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3974                                            OopTaskQueue* work_q);
3975 
3976  private:
3977   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3978   void do_work_steal(int i);
3979   void bump_global_finger(HeapWord* f);
3980 };
3981 
3982 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3983   assert(_task != NULL, "Error");
3984   return _task->yielding();
3985   // Note that we do not need the disjunct || _task->should_yield() above
3986   // because we want terminating threads to yield only if the task
3987   // is already in the midst of yielding, which happens only after at least one
3988   // thread has yielded.
3989 }
3990 
3991 void CMSConcMarkingTerminator::yield() {
3992   if (_task->should_yield()) {
3993     _task->yield();
3994   } else {
3995     ParallelTaskTerminator::yield();
3996   }
3997 }
3998 
3999 ////////////////////////////////////////////////////////////////
4000 // Concurrent Marking Algorithm Sketch
4001 ////////////////////////////////////////////////////////////////
4002 // Until all tasks exhausted (both spaces):
4003 // -- claim next available chunk
4004 // -- bump global finger via CAS
4005 // -- find first object that starts in this chunk
4006 //    and start scanning bitmap from that position
4007 // -- scan marked objects for oops
4008 // -- CAS-mark target, and if successful:
4009 //    . if target oop is above global finger (volatile read)
4010 //      nothing to do
4011 //    . if target oop is in chunk and above local finger
4012 //        then nothing to do
4013 //    . else push on work-queue
4014 // -- Deal with possible overflow issues:
4015 //    . local work-queue overflow causes stuff to be pushed on
4016 //      global (common) overflow queue
4017 //    . always first empty local work queue
4018 //    . then get a batch of oops from global work queue if any
4019 //    . then do work stealing
4020 // -- When all tasks claimed (both spaces)
4021 //    and local work queue empty,
4022 //    then in a loop do:
4023 //    . check global overflow stack; steal a batch of oops and trace
4024 //    . try to steal from other threads oif GOS is empty
4025 //    . if neither is available, offer termination
4026 // -- Terminate and return result
4027 //
4028 void CMSConcMarkingTask::work(uint worker_id) {
4029   elapsedTimer _timer;
4030   ResourceMark rm;
4031   HandleMark hm;
4032 
4033   DEBUG_ONLY(_collector->verify_overflow_empty();)
4034 
4035   // Before we begin work, our work queue should be empty
4036   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
4037   // Scan the bitmap covering _cms_space, tracing through grey objects.
4038   _timer.start();
4039   do_scan_and_mark(worker_id, _cms_space);
4040   _timer.stop();
4041   if (PrintCMSStatistics != 0) {
4042     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
4043       worker_id, _timer.seconds());
4044       // XXX: need xxx/xxx type of notation, two timers
4045   }
4046 
4047   // ... do work stealing
4048   _timer.reset();
4049   _timer.start();
4050   do_work_steal(worker_id);
4051   _timer.stop();
4052   if (PrintCMSStatistics != 0) {
4053     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
4054       worker_id, _timer.seconds());
4055       // XXX: need xxx/xxx type of notation, two timers
4056   }
4057   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
4058   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
4059   // Note that under the current task protocol, the
4060   // following assertion is true even of the spaces
4061   // expanded since the completion of the concurrent
4062   // marking. XXX This will likely change under a strict
4063   // ABORT semantics.
4064   // After perm removal the comparison was changed to
4065   // greater than or equal to from strictly greater than.
4066   // Before perm removal the highest address sweep would
4067   // have been at the end of perm gen but now is at the
4068   // end of the tenured gen.
4069   assert(_global_finger >=  _cms_space->end(),
4070          "All tasks have been completed");
4071   DEBUG_ONLY(_collector->verify_overflow_empty();)
4072 }
4073 
4074 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
4075   HeapWord* read = _global_finger;
4076   HeapWord* cur  = read;
4077   while (f > read) {
4078     cur = read;
4079     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
4080     if (cur == read) {
4081       // our cas succeeded
4082       assert(_global_finger >= f, "protocol consistency");
4083       break;
4084     }
4085   }
4086 }
4087 
4088 // This is really inefficient, and should be redone by
4089 // using (not yet available) block-read and -write interfaces to the
4090 // stack and the work_queue. XXX FIX ME !!!
4091 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4092                                                       OopTaskQueue* work_q) {
4093   // Fast lock-free check
4094   if (ovflw_stk->length() == 0) {
4095     return false;
4096   }
4097   assert(work_q->size() == 0, "Shouldn't steal");
4098   MutexLockerEx ml(ovflw_stk->par_lock(),
4099                    Mutex::_no_safepoint_check_flag);
4100   // Grab up to 1/4 the size of the work queue
4101   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4102                     (size_t)ParGCDesiredObjsFromOverflowList);
4103   num = MIN2(num, ovflw_stk->length());
4104   for (int i = (int) num; i > 0; i--) {
4105     oop cur = ovflw_stk->pop();
4106     assert(cur != NULL, "Counted wrong?");
4107     work_q->push(cur);
4108   }
4109   return num > 0;
4110 }
4111 
4112 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4113   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4114   int n_tasks = pst->n_tasks();
4115   // We allow that there may be no tasks to do here because
4116   // we are restarting after a stack overflow.
4117   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4118   uint nth_task = 0;
4119 
4120   HeapWord* aligned_start = sp->bottom();
4121   if (sp->used_region().contains(_restart_addr)) {
4122     // Align down to a card boundary for the start of 0th task
4123     // for this space.
4124     aligned_start =
4125       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4126                                  CardTableModRefBS::card_size);
4127   }
4128 
4129   size_t chunk_size = sp->marking_task_size();
4130   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4131     // Having claimed the nth task in this space,
4132     // compute the chunk that it corresponds to:
4133     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4134                                aligned_start + (nth_task+1)*chunk_size);
4135     // Try and bump the global finger via a CAS;
4136     // note that we need to do the global finger bump
4137     // _before_ taking the intersection below, because
4138     // the task corresponding to that region will be
4139     // deemed done even if the used_region() expands
4140     // because of allocation -- as it almost certainly will
4141     // during start-up while the threads yield in the
4142     // closure below.
4143     HeapWord* finger = span.end();
4144     bump_global_finger(finger);   // atomically
4145     // There are null tasks here corresponding to chunks
4146     // beyond the "top" address of the space.
4147     span = span.intersection(sp->used_region());
4148     if (!span.is_empty()) {  // Non-null task
4149       HeapWord* prev_obj;
4150       assert(!span.contains(_restart_addr) || nth_task == 0,
4151              "Inconsistency");
4152       if (nth_task == 0) {
4153         // For the 0th task, we'll not need to compute a block_start.
4154         if (span.contains(_restart_addr)) {
4155           // In the case of a restart because of stack overflow,
4156           // we might additionally skip a chunk prefix.
4157           prev_obj = _restart_addr;
4158         } else {
4159           prev_obj = span.start();
4160         }
4161       } else {
4162         // We want to skip the first object because
4163         // the protocol is to scan any object in its entirety
4164         // that _starts_ in this span; a fortiori, any
4165         // object starting in an earlier span is scanned
4166         // as part of an earlier claimed task.
4167         // Below we use the "careful" version of block_start
4168         // so we do not try to navigate uninitialized objects.
4169         prev_obj = sp->block_start_careful(span.start());
4170         // Below we use a variant of block_size that uses the
4171         // Printezis bits to avoid waiting for allocated
4172         // objects to become initialized/parsable.
4173         while (prev_obj < span.start()) {
4174           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4175           if (sz > 0) {
4176             prev_obj += sz;
4177           } else {
4178             // In this case we may end up doing a bit of redundant
4179             // scanning, but that appears unavoidable, short of
4180             // locking the free list locks; see bug 6324141.
4181             break;
4182           }
4183         }
4184       }
4185       if (prev_obj < span.end()) {
4186         MemRegion my_span = MemRegion(prev_obj, span.end());
4187         // Do the marking work within a non-empty span --
4188         // the last argument to the constructor indicates whether the
4189         // iteration should be incremental with periodic yields.
4190         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4191                                     &_collector->_markBitMap,
4192                                     work_queue(i),
4193                                     &_collector->_markStack,
4194                                     _asynch);
4195         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4196       } // else nothing to do for this task
4197     }   // else nothing to do for this task
4198   }
4199   // We'd be tempted to assert here that since there are no
4200   // more tasks left to claim in this space, the global_finger
4201   // must exceed space->top() and a fortiori space->end(). However,
4202   // that would not quite be correct because the bumping of
4203   // global_finger occurs strictly after the claiming of a task,
4204   // so by the time we reach here the global finger may not yet
4205   // have been bumped up by the thread that claimed the last
4206   // task.
4207   pst->all_tasks_completed();
4208 }
4209 
4210 class Par_ConcMarkingClosure: public CMSOopClosure {
4211  private:
4212   CMSCollector* _collector;
4213   CMSConcMarkingTask* _task;
4214   MemRegion     _span;
4215   CMSBitMap*    _bit_map;
4216   CMSMarkStack* _overflow_stack;
4217   OopTaskQueue* _work_queue;
4218  protected:
4219   DO_OOP_WORK_DEFN
4220  public:
4221   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4222                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4223     CMSOopClosure(collector->ref_processor()),
4224     _collector(collector),
4225     _task(task),
4226     _span(collector->_span),
4227     _work_queue(work_queue),
4228     _bit_map(bit_map),
4229     _overflow_stack(overflow_stack)
4230   { }
4231   virtual void do_oop(oop* p);
4232   virtual void do_oop(narrowOop* p);
4233 
4234   void trim_queue(size_t max);
4235   void handle_stack_overflow(HeapWord* lost);
4236   void do_yield_check() {
4237     if (_task->should_yield()) {
4238       _task->yield();
4239     }
4240   }
4241 };
4242 
4243 // Grey object scanning during work stealing phase --
4244 // the salient assumption here is that any references
4245 // that are in these stolen objects being scanned must
4246 // already have been initialized (else they would not have
4247 // been published), so we do not need to check for
4248 // uninitialized objects before pushing here.
4249 void Par_ConcMarkingClosure::do_oop(oop obj) {
4250   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4251   HeapWord* addr = (HeapWord*)obj;
4252   // Check if oop points into the CMS generation
4253   // and is not marked
4254   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4255     // a white object ...
4256     // If we manage to "claim" the object, by being the
4257     // first thread to mark it, then we push it on our
4258     // marking stack
4259     if (_bit_map->par_mark(addr)) {     // ... now grey
4260       // push on work queue (grey set)
4261       bool simulate_overflow = false;
4262       NOT_PRODUCT(
4263         if (CMSMarkStackOverflowALot &&
4264             _collector->simulate_overflow()) {
4265           // simulate a stack overflow
4266           simulate_overflow = true;
4267         }
4268       )
4269       if (simulate_overflow ||
4270           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4271         // stack overflow
4272         if (PrintCMSStatistics != 0) {
4273           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4274                                  SIZE_FORMAT, _overflow_stack->capacity());
4275         }
4276         // We cannot assert that the overflow stack is full because
4277         // it may have been emptied since.
4278         assert(simulate_overflow ||
4279                _work_queue->size() == _work_queue->max_elems(),
4280               "Else push should have succeeded");
4281         handle_stack_overflow(addr);
4282       }
4283     } // Else, some other thread got there first
4284     do_yield_check();
4285   }
4286 }
4287 
4288 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4289 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4290 
4291 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4292   while (_work_queue->size() > max) {
4293     oop new_oop;
4294     if (_work_queue->pop_local(new_oop)) {
4295       assert(new_oop->is_oop(), "Should be an oop");
4296       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4297       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4298       new_oop->oop_iterate(this);  // do_oop() above
4299       do_yield_check();
4300     }
4301   }
4302 }
4303 
4304 // Upon stack overflow, we discard (part of) the stack,
4305 // remembering the least address amongst those discarded
4306 // in CMSCollector's _restart_address.
4307 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4308   // We need to do this under a mutex to prevent other
4309   // workers from interfering with the work done below.
4310   MutexLockerEx ml(_overflow_stack->par_lock(),
4311                    Mutex::_no_safepoint_check_flag);
4312   // Remember the least grey address discarded
4313   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4314   _collector->lower_restart_addr(ra);
4315   _overflow_stack->reset();  // discard stack contents
4316   _overflow_stack->expand(); // expand the stack if possible
4317 }
4318 
4319 
4320 void CMSConcMarkingTask::do_work_steal(int i) {
4321   OopTaskQueue* work_q = work_queue(i);
4322   oop obj_to_scan;
4323   CMSBitMap* bm = &(_collector->_markBitMap);
4324   CMSMarkStack* ovflw = &(_collector->_markStack);
4325   int* seed = _collector->hash_seed(i);
4326   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4327   while (true) {
4328     cl.trim_queue(0);
4329     assert(work_q->size() == 0, "Should have been emptied above");
4330     if (get_work_from_overflow_stack(ovflw, work_q)) {
4331       // Can't assert below because the work obtained from the
4332       // overflow stack may already have been stolen from us.
4333       // assert(work_q->size() > 0, "Work from overflow stack");
4334       continue;
4335     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4336       assert(obj_to_scan->is_oop(), "Should be an oop");
4337       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4338       obj_to_scan->oop_iterate(&cl);
4339     } else if (terminator()->offer_termination(&_term_term)) {
4340       assert(work_q->size() == 0, "Impossible!");
4341       break;
4342     } else if (yielding() || should_yield()) {
4343       yield();
4344     }
4345   }
4346 }
4347 
4348 // This is run by the CMS (coordinator) thread.
4349 void CMSConcMarkingTask::coordinator_yield() {
4350   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4351          "CMS thread should hold CMS token");
4352   // First give up the locks, then yield, then re-lock
4353   // We should probably use a constructor/destructor idiom to
4354   // do this unlock/lock or modify the MutexUnlocker class to
4355   // serve our purpose. XXX
4356   assert_lock_strong(_bit_map_lock);
4357   _bit_map_lock->unlock();
4358   ConcurrentMarkSweepThread::desynchronize(true);
4359   ConcurrentMarkSweepThread::acknowledge_yield_request();
4360   _collector->stopTimer();
4361   if (PrintCMSStatistics != 0) {
4362     _collector->incrementYields();
4363   }
4364   _collector->icms_wait();
4365 
4366   // It is possible for whichever thread initiated the yield request
4367   // not to get a chance to wake up and take the bitmap lock between
4368   // this thread releasing it and reacquiring it. So, while the
4369   // should_yield() flag is on, let's sleep for a bit to give the
4370   // other thread a chance to wake up. The limit imposed on the number
4371   // of iterations is defensive, to avoid any unforseen circumstances
4372   // putting us into an infinite loop. Since it's always been this
4373   // (coordinator_yield()) method that was observed to cause the
4374   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4375   // which is by default non-zero. For the other seven methods that
4376   // also perform the yield operation, as are using a different
4377   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4378   // can enable the sleeping for those methods too, if necessary.
4379   // See 6442774.
4380   //
4381   // We really need to reconsider the synchronization between the GC
4382   // thread and the yield-requesting threads in the future and we
4383   // should really use wait/notify, which is the recommended
4384   // way of doing this type of interaction. Additionally, we should
4385   // consolidate the eight methods that do the yield operation and they
4386   // are almost identical into one for better maintenability and
4387   // readability. See 6445193.
4388   //
4389   // Tony 2006.06.29
4390   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4391                    ConcurrentMarkSweepThread::should_yield() &&
4392                    !CMSCollector::foregroundGCIsActive(); ++i) {
4393     os::sleep(Thread::current(), 1, false);
4394     ConcurrentMarkSweepThread::acknowledge_yield_request();
4395   }
4396 
4397   ConcurrentMarkSweepThread::synchronize(true);
4398   _bit_map_lock->lock_without_safepoint_check();
4399   _collector->startTimer();
4400 }
4401 
4402 bool CMSCollector::do_marking_mt(bool asynch) {
4403   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4404   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4405                                        conc_workers()->total_workers(),
4406                                        conc_workers()->active_workers(),
4407                                        Threads::number_of_non_daemon_threads());
4408   conc_workers()->set_active_workers(num_workers);
4409 
4410   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4411 
4412   CMSConcMarkingTask tsk(this,
4413                          cms_space,
4414                          asynch,
4415                          conc_workers(),
4416                          task_queues());
4417 
4418   // Since the actual number of workers we get may be different
4419   // from the number we requested above, do we need to do anything different
4420   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4421   // class?? XXX
4422   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4423 
4424   // Refs discovery is already non-atomic.
4425   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4426   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4427   conc_workers()->start_task(&tsk);
4428   while (tsk.yielded()) {
4429     tsk.coordinator_yield();
4430     conc_workers()->continue_task(&tsk);
4431   }
4432   // If the task was aborted, _restart_addr will be non-NULL
4433   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4434   while (_restart_addr != NULL) {
4435     // XXX For now we do not make use of ABORTED state and have not
4436     // yet implemented the right abort semantics (even in the original
4437     // single-threaded CMS case). That needs some more investigation
4438     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4439     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4440     // If _restart_addr is non-NULL, a marking stack overflow
4441     // occurred; we need to do a fresh marking iteration from the
4442     // indicated restart address.
4443     if (_foregroundGCIsActive && asynch) {
4444       // We may be running into repeated stack overflows, having
4445       // reached the limit of the stack size, while making very
4446       // slow forward progress. It may be best to bail out and
4447       // let the foreground collector do its job.
4448       // Clear _restart_addr, so that foreground GC
4449       // works from scratch. This avoids the headache of
4450       // a "rescan" which would otherwise be needed because
4451       // of the dirty mod union table & card table.
4452       _restart_addr = NULL;
4453       return false;
4454     }
4455     // Adjust the task to restart from _restart_addr
4456     tsk.reset(_restart_addr);
4457     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4458                   _restart_addr);
4459     _restart_addr = NULL;
4460     // Get the workers going again
4461     conc_workers()->start_task(&tsk);
4462     while (tsk.yielded()) {
4463       tsk.coordinator_yield();
4464       conc_workers()->continue_task(&tsk);
4465     }
4466   }
4467   assert(tsk.completed(), "Inconsistency");
4468   assert(tsk.result() == true, "Inconsistency");
4469   return true;
4470 }
4471 
4472 bool CMSCollector::do_marking_st(bool asynch) {
4473   ResourceMark rm;
4474   HandleMark   hm;
4475 
4476   // Temporarily make refs discovery single threaded (non-MT)
4477   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4478   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4479     &_markStack, CMSYield && asynch);
4480   // the last argument to iterate indicates whether the iteration
4481   // should be incremental with periodic yields.
4482   _markBitMap.iterate(&markFromRootsClosure);
4483   // If _restart_addr is non-NULL, a marking stack overflow
4484   // occurred; we need to do a fresh iteration from the
4485   // indicated restart address.
4486   while (_restart_addr != NULL) {
4487     if (_foregroundGCIsActive && asynch) {
4488       // We may be running into repeated stack overflows, having
4489       // reached the limit of the stack size, while making very
4490       // slow forward progress. It may be best to bail out and
4491       // let the foreground collector do its job.
4492       // Clear _restart_addr, so that foreground GC
4493       // works from scratch. This avoids the headache of
4494       // a "rescan" which would otherwise be needed because
4495       // of the dirty mod union table & card table.
4496       _restart_addr = NULL;
4497       return false;  // indicating failure to complete marking
4498     }
4499     // Deal with stack overflow:
4500     // we restart marking from _restart_addr
4501     HeapWord* ra = _restart_addr;
4502     markFromRootsClosure.reset(ra);
4503     _restart_addr = NULL;
4504     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4505   }
4506   return true;
4507 }
4508 
4509 void CMSCollector::preclean() {
4510   check_correct_thread_executing();
4511   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4512   verify_work_stacks_empty();
4513   verify_overflow_empty();
4514   _abort_preclean = false;
4515   if (CMSPrecleaningEnabled) {
4516     if (!CMSEdenChunksRecordAlways) {
4517       _eden_chunk_index = 0;
4518     }
4519     size_t used = get_eden_used();
4520     size_t capacity = get_eden_capacity();
4521     // Don't start sampling unless we will get sufficiently
4522     // many samples.
4523     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4524                 * CMSScheduleRemarkEdenPenetration)) {
4525       _start_sampling = true;
4526     } else {
4527       _start_sampling = false;
4528     }
4529     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4530     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4531     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4532   }
4533   CMSTokenSync x(true); // is cms thread
4534   if (CMSPrecleaningEnabled) {
4535     sample_eden();
4536     _collectorState = AbortablePreclean;
4537   } else {
4538     _collectorState = FinalMarking;
4539   }
4540   verify_work_stacks_empty();
4541   verify_overflow_empty();
4542 }
4543 
4544 // Try and schedule the remark such that young gen
4545 // occupancy is CMSScheduleRemarkEdenPenetration %.
4546 void CMSCollector::abortable_preclean() {
4547   check_correct_thread_executing();
4548   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4549   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4550 
4551   // If Eden's current occupancy is below this threshold,
4552   // immediately schedule the remark; else preclean
4553   // past the next scavenge in an effort to
4554   // schedule the pause as described avove. By choosing
4555   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4556   // we will never do an actual abortable preclean cycle.
4557   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4558     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4559     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4560     // We need more smarts in the abortable preclean
4561     // loop below to deal with cases where allocation
4562     // in young gen is very very slow, and our precleaning
4563     // is running a losing race against a horde of
4564     // mutators intent on flooding us with CMS updates
4565     // (dirty cards).
4566     // One, admittedly dumb, strategy is to give up
4567     // after a certain number of abortable precleaning loops
4568     // or after a certain maximum time. We want to make
4569     // this smarter in the next iteration.
4570     // XXX FIX ME!!! YSR
4571     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4572     while (!(should_abort_preclean() ||
4573              ConcurrentMarkSweepThread::should_terminate())) {
4574       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4575       cumworkdone += workdone;
4576       loops++;
4577       // Voluntarily terminate abortable preclean phase if we have
4578       // been at it for too long.
4579       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4580           loops >= CMSMaxAbortablePrecleanLoops) {
4581         if (PrintGCDetails) {
4582           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4583         }
4584         break;
4585       }
4586       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4587         if (PrintGCDetails) {
4588           gclog_or_tty->print(" CMS: abort preclean due to time ");
4589         }
4590         break;
4591       }
4592       // If we are doing little work each iteration, we should
4593       // take a short break.
4594       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4595         // Sleep for some time, waiting for work to accumulate
4596         stopTimer();
4597         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4598         startTimer();
4599         waited++;
4600       }
4601     }
4602     if (PrintCMSStatistics > 0) {
4603       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4604                           loops, waited, cumworkdone);
4605     }
4606   }
4607   CMSTokenSync x(true); // is cms thread
4608   if (_collectorState != Idling) {
4609     assert(_collectorState == AbortablePreclean,
4610            "Spontaneous state transition?");
4611     _collectorState = FinalMarking;
4612   } // Else, a foreground collection completed this CMS cycle.
4613   return;
4614 }
4615 
4616 // Respond to an Eden sampling opportunity
4617 void CMSCollector::sample_eden() {
4618   // Make sure a young gc cannot sneak in between our
4619   // reading and recording of a sample.
4620   assert(Thread::current()->is_ConcurrentGC_thread(),
4621          "Only the cms thread may collect Eden samples");
4622   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4623          "Should collect samples while holding CMS token");
4624   if (!_start_sampling) {
4625     return;
4626   }
4627   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4628   // is populated by the young generation.
4629   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4630     if (_eden_chunk_index < _eden_chunk_capacity) {
4631       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4632       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4633              "Unexpected state of Eden");
4634       // We'd like to check that what we just sampled is an oop-start address;
4635       // however, we cannot do that here since the object may not yet have been
4636       // initialized. So we'll instead do the check when we _use_ this sample
4637       // later.
4638       if (_eden_chunk_index == 0 ||
4639           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4640                          _eden_chunk_array[_eden_chunk_index-1])
4641            >= CMSSamplingGrain)) {
4642         _eden_chunk_index++;  // commit sample
4643       }
4644     }
4645   }
4646   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4647     size_t used = get_eden_used();
4648     size_t capacity = get_eden_capacity();
4649     assert(used <= capacity, "Unexpected state of Eden");
4650     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4651       _abort_preclean = true;
4652     }
4653   }
4654 }
4655 
4656 
4657 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4658   assert(_collectorState == Precleaning ||
4659          _collectorState == AbortablePreclean, "incorrect state");
4660   ResourceMark rm;
4661   HandleMark   hm;
4662 
4663   // Precleaning is currently not MT but the reference processor
4664   // may be set for MT.  Disable it temporarily here.
4665   ReferenceProcessor* rp = ref_processor();
4666   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4667 
4668   // Do one pass of scrubbing the discovered reference lists
4669   // to remove any reference objects with strongly-reachable
4670   // referents.
4671   if (clean_refs) {
4672     CMSPrecleanRefsYieldClosure yield_cl(this);
4673     assert(rp->span().equals(_span), "Spans should be equal");
4674     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4675                                    &_markStack, true /* preclean */);
4676     CMSDrainMarkingStackClosure complete_trace(this,
4677                                    _span, &_markBitMap, &_markStack,
4678                                    &keep_alive, true /* preclean */);
4679 
4680     // We don't want this step to interfere with a young
4681     // collection because we don't want to take CPU
4682     // or memory bandwidth away from the young GC threads
4683     // (which may be as many as there are CPUs).
4684     // Note that we don't need to protect ourselves from
4685     // interference with mutators because they can't
4686     // manipulate the discovered reference lists nor affect
4687     // the computed reachability of the referents, the
4688     // only properties manipulated by the precleaning
4689     // of these reference lists.
4690     stopTimer();
4691     CMSTokenSyncWithLocks x(true /* is cms thread */,
4692                             bitMapLock());
4693     startTimer();
4694     sample_eden();
4695 
4696     // The following will yield to allow foreground
4697     // collection to proceed promptly. XXX YSR:
4698     // The code in this method may need further
4699     // tweaking for better performance and some restructuring
4700     // for cleaner interfaces.
4701     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4702     rp->preclean_discovered_references(
4703           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4704           gc_timer);
4705   }
4706 
4707   if (clean_survivor) {  // preclean the active survivor space(s)
4708     assert(_young_gen->kind() == Generation::DefNew ||
4709            _young_gen->kind() == Generation::ParNew ||
4710            _young_gen->kind() == Generation::ASParNew,
4711          "incorrect type for cast");
4712     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4713     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4714                              &_markBitMap, &_modUnionTable,
4715                              &_markStack, true /* precleaning phase */);
4716     stopTimer();
4717     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4718                              bitMapLock());
4719     startTimer();
4720     unsigned int before_count =
4721       GenCollectedHeap::heap()->total_collections();
4722     SurvivorSpacePrecleanClosure
4723       sss_cl(this, _span, &_markBitMap, &_markStack,
4724              &pam_cl, before_count, CMSYield);
4725     dng->from()->object_iterate_careful(&sss_cl);
4726     dng->to()->object_iterate_careful(&sss_cl);
4727   }
4728   MarkRefsIntoAndScanClosure
4729     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4730              &_markStack, this, CMSYield,
4731              true /* precleaning phase */);
4732   // CAUTION: The following closure has persistent state that may need to
4733   // be reset upon a decrease in the sequence of addresses it
4734   // processes.
4735   ScanMarkedObjectsAgainCarefullyClosure
4736     smoac_cl(this, _span,
4737       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4738 
4739   // Preclean dirty cards in ModUnionTable and CardTable using
4740   // appropriate convergence criterion;
4741   // repeat CMSPrecleanIter times unless we find that
4742   // we are losing.
4743   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4744   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4745          "Bad convergence multiplier");
4746   assert(CMSPrecleanThreshold >= 100,
4747          "Unreasonably low CMSPrecleanThreshold");
4748 
4749   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4750   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4751        numIter < CMSPrecleanIter;
4752        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4753     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4754     if (Verbose && PrintGCDetails) {
4755       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4756     }
4757     // Either there are very few dirty cards, so re-mark
4758     // pause will be small anyway, or our pre-cleaning isn't
4759     // that much faster than the rate at which cards are being
4760     // dirtied, so we might as well stop and re-mark since
4761     // precleaning won't improve our re-mark time by much.
4762     if (curNumCards <= CMSPrecleanThreshold ||
4763         (numIter > 0 &&
4764          (curNumCards * CMSPrecleanDenominator >
4765          lastNumCards * CMSPrecleanNumerator))) {
4766       numIter++;
4767       cumNumCards += curNumCards;
4768       break;
4769     }
4770   }
4771 
4772   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4773 
4774   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4775   cumNumCards += curNumCards;
4776   if (PrintGCDetails && PrintCMSStatistics != 0) {
4777     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4778                   curNumCards, cumNumCards, numIter);
4779   }
4780   return cumNumCards;   // as a measure of useful work done
4781 }
4782 
4783 // PRECLEANING NOTES:
4784 // Precleaning involves:
4785 // . reading the bits of the modUnionTable and clearing the set bits.
4786 // . For the cards corresponding to the set bits, we scan the
4787 //   objects on those cards. This means we need the free_list_lock
4788 //   so that we can safely iterate over the CMS space when scanning
4789 //   for oops.
4790 // . When we scan the objects, we'll be both reading and setting
4791 //   marks in the marking bit map, so we'll need the marking bit map.
4792 // . For protecting _collector_state transitions, we take the CGC_lock.
4793 //   Note that any races in the reading of of card table entries by the
4794 //   CMS thread on the one hand and the clearing of those entries by the
4795 //   VM thread or the setting of those entries by the mutator threads on the
4796 //   other are quite benign. However, for efficiency it makes sense to keep
4797 //   the VM thread from racing with the CMS thread while the latter is
4798 //   dirty card info to the modUnionTable. We therefore also use the
4799 //   CGC_lock to protect the reading of the card table and the mod union
4800 //   table by the CM thread.
4801 // . We run concurrently with mutator updates, so scanning
4802 //   needs to be done carefully  -- we should not try to scan
4803 //   potentially uninitialized objects.
4804 //
4805 // Locking strategy: While holding the CGC_lock, we scan over and
4806 // reset a maximal dirty range of the mod union / card tables, then lock
4807 // the free_list_lock and bitmap lock to do a full marking, then
4808 // release these locks; and repeat the cycle. This allows for a
4809 // certain amount of fairness in the sharing of these locks between
4810 // the CMS collector on the one hand, and the VM thread and the
4811 // mutators on the other.
4812 
4813 // NOTE: preclean_mod_union_table() and preclean_card_table()
4814 // further below are largely identical; if you need to modify
4815 // one of these methods, please check the other method too.
4816 
4817 size_t CMSCollector::preclean_mod_union_table(
4818   ConcurrentMarkSweepGeneration* gen,
4819   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4820   verify_work_stacks_empty();
4821   verify_overflow_empty();
4822 
4823   // strategy: starting with the first card, accumulate contiguous
4824   // ranges of dirty cards; clear these cards, then scan the region
4825   // covered by these cards.
4826 
4827   // Since all of the MUT is committed ahead, we can just use
4828   // that, in case the generations expand while we are precleaning.
4829   // It might also be fine to just use the committed part of the
4830   // generation, but we might potentially miss cards when the
4831   // generation is rapidly expanding while we are in the midst
4832   // of precleaning.
4833   HeapWord* startAddr = gen->reserved().start();
4834   HeapWord* endAddr   = gen->reserved().end();
4835 
4836   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4837 
4838   size_t numDirtyCards, cumNumDirtyCards;
4839   HeapWord *nextAddr, *lastAddr;
4840   for (cumNumDirtyCards = numDirtyCards = 0,
4841        nextAddr = lastAddr = startAddr;
4842        nextAddr < endAddr;
4843        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4844 
4845     ResourceMark rm;
4846     HandleMark   hm;
4847 
4848     MemRegion dirtyRegion;
4849     {
4850       stopTimer();
4851       // Potential yield point
4852       CMSTokenSync ts(true);
4853       startTimer();
4854       sample_eden();
4855       // Get dirty region starting at nextOffset (inclusive),
4856       // simultaneously clearing it.
4857       dirtyRegion =
4858         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4859       assert(dirtyRegion.start() >= nextAddr,
4860              "returned region inconsistent?");
4861     }
4862     // Remember where the next search should begin.
4863     // The returned region (if non-empty) is a right open interval,
4864     // so lastOffset is obtained from the right end of that
4865     // interval.
4866     lastAddr = dirtyRegion.end();
4867     // Should do something more transparent and less hacky XXX
4868     numDirtyCards =
4869       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4870 
4871     // We'll scan the cards in the dirty region (with periodic
4872     // yields for foreground GC as needed).
4873     if (!dirtyRegion.is_empty()) {
4874       assert(numDirtyCards > 0, "consistency check");
4875       HeapWord* stop_point = NULL;
4876       stopTimer();
4877       // Potential yield point
4878       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4879                                bitMapLock());
4880       startTimer();
4881       {
4882         verify_work_stacks_empty();
4883         verify_overflow_empty();
4884         sample_eden();
4885         stop_point =
4886           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4887       }
4888       if (stop_point != NULL) {
4889         // The careful iteration stopped early either because it found an
4890         // uninitialized object, or because we were in the midst of an
4891         // "abortable preclean", which should now be aborted. Redirty
4892         // the bits corresponding to the partially-scanned or unscanned
4893         // cards. We'll either restart at the next block boundary or
4894         // abort the preclean.
4895         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4896                "Should only be AbortablePreclean.");
4897         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4898         if (should_abort_preclean()) {
4899           break; // out of preclean loop
4900         } else {
4901           // Compute the next address at which preclean should pick up;
4902           // might need bitMapLock in order to read P-bits.
4903           lastAddr = next_card_start_after_block(stop_point);
4904         }
4905       }
4906     } else {
4907       assert(lastAddr == endAddr, "consistency check");
4908       assert(numDirtyCards == 0, "consistency check");
4909       break;
4910     }
4911   }
4912   verify_work_stacks_empty();
4913   verify_overflow_empty();
4914   return cumNumDirtyCards;
4915 }
4916 
4917 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4918 // below are largely identical; if you need to modify
4919 // one of these methods, please check the other method too.
4920 
4921 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4922   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4923   // strategy: it's similar to precleamModUnionTable above, in that
4924   // we accumulate contiguous ranges of dirty cards, mark these cards
4925   // precleaned, then scan the region covered by these cards.
4926   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4927   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4928 
4929   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4930 
4931   size_t numDirtyCards, cumNumDirtyCards;
4932   HeapWord *lastAddr, *nextAddr;
4933 
4934   for (cumNumDirtyCards = numDirtyCards = 0,
4935        nextAddr = lastAddr = startAddr;
4936        nextAddr < endAddr;
4937        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4938 
4939     ResourceMark rm;
4940     HandleMark   hm;
4941 
4942     MemRegion dirtyRegion;
4943     {
4944       // See comments in "Precleaning notes" above on why we
4945       // do this locking. XXX Could the locking overheads be
4946       // too high when dirty cards are sparse? [I don't think so.]
4947       stopTimer();
4948       CMSTokenSync x(true); // is cms thread
4949       startTimer();
4950       sample_eden();
4951       // Get and clear dirty region from card table
4952       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4953                                     MemRegion(nextAddr, endAddr),
4954                                     true,
4955                                     CardTableModRefBS::precleaned_card_val());
4956 
4957       assert(dirtyRegion.start() >= nextAddr,
4958              "returned region inconsistent?");
4959     }
4960     lastAddr = dirtyRegion.end();
4961     numDirtyCards =
4962       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4963 
4964     if (!dirtyRegion.is_empty()) {
4965       stopTimer();
4966       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4967       startTimer();
4968       sample_eden();
4969       verify_work_stacks_empty();
4970       verify_overflow_empty();
4971       HeapWord* stop_point =
4972         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4973       if (stop_point != NULL) {
4974         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4975                "Should only be AbortablePreclean.");
4976         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4977         if (should_abort_preclean()) {
4978           break; // out of preclean loop
4979         } else {
4980           // Compute the next address at which preclean should pick up.
4981           lastAddr = next_card_start_after_block(stop_point);
4982         }
4983       }
4984     } else {
4985       break;
4986     }
4987   }
4988   verify_work_stacks_empty();
4989   verify_overflow_empty();
4990   return cumNumDirtyCards;
4991 }
4992 
4993 class PrecleanKlassClosure : public KlassClosure {
4994   CMKlassClosure _cm_klass_closure;
4995  public:
4996   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4997   void do_klass(Klass* k) {
4998     if (k->has_accumulated_modified_oops()) {
4999       k->clear_accumulated_modified_oops();
5000 
5001       _cm_klass_closure.do_klass(k);
5002     }
5003   }
5004 };
5005 
5006 // The freelist lock is needed to prevent asserts, is it really needed?
5007 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
5008 
5009   cl->set_freelistLock(freelistLock);
5010 
5011   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
5012 
5013   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
5014   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
5015   PrecleanKlassClosure preclean_klass_closure(cl);
5016   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
5017 
5018   verify_work_stacks_empty();
5019   verify_overflow_empty();
5020 }
5021 
5022 void CMSCollector::checkpointRootsFinal(bool asynch,
5023   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5024   assert(_collectorState == FinalMarking, "incorrect state transition?");
5025   check_correct_thread_executing();
5026   // world is stopped at this checkpoint
5027   assert(SafepointSynchronize::is_at_safepoint(),
5028          "world should be stopped");
5029   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5030 
5031   verify_work_stacks_empty();
5032   verify_overflow_empty();
5033 
5034   SpecializationStats::clear();
5035   if (PrintGCDetails) {
5036     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
5037                         _young_gen->used() / K,
5038                         _young_gen->capacity() / K);
5039   }
5040   if (asynch) {
5041     if (CMSScavengeBeforeRemark) {
5042       GenCollectedHeap* gch = GenCollectedHeap::heap();
5043       // Temporarily set flag to false, GCH->do_collection will
5044       // expect it to be false and set to true
5045       FlagSetting fl(gch->_is_gc_active, false);
5046       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
5047         PrintGCDetails && Verbose, true, _gc_timer_cm);)
5048       int level = _cmsGen->level() - 1;
5049       if (level >= 0) {
5050         gch->do_collection(true,        // full (i.e. force, see below)
5051                            false,       // !clear_all_soft_refs
5052                            0,           // size
5053                            false,       // is_tlab
5054                            level        // max_level
5055                           );
5056       }
5057     }
5058     FreelistLocker x(this);
5059     MutexLockerEx y(bitMapLock(),
5060                     Mutex::_no_safepoint_check_flag);
5061     assert(!init_mark_was_synchronous, "but that's impossible!");
5062     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
5063   } else {
5064     // already have all the locks
5065     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
5066                              init_mark_was_synchronous);
5067   }
5068   verify_work_stacks_empty();
5069   verify_overflow_empty();
5070   SpecializationStats::print();
5071 }
5072 
5073 void CMSCollector::checkpointRootsFinalWork(bool asynch,
5074   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5075 
5076   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
5077 
5078   assert(haveFreelistLocks(), "must have free list locks");
5079   assert_lock_strong(bitMapLock());
5080 
5081   if (UseAdaptiveSizePolicy) {
5082     size_policy()->checkpoint_roots_final_begin();
5083   }
5084 
5085   ResourceMark rm;
5086   HandleMark   hm;
5087 
5088   GenCollectedHeap* gch = GenCollectedHeap::heap();
5089 
5090   if (should_unload_classes()) {
5091     CodeCache::gc_prologue();
5092   }
5093   assert(haveFreelistLocks(), "must have free list locks");
5094   assert_lock_strong(bitMapLock());
5095 
5096   if (!init_mark_was_synchronous) {
5097     // We might assume that we need not fill TLAB's when
5098     // CMSScavengeBeforeRemark is set, because we may have just done
5099     // a scavenge which would have filled all TLAB's -- and besides
5100     // Eden would be empty. This however may not always be the case --
5101     // for instance although we asked for a scavenge, it may not have
5102     // happened because of a JNI critical section. We probably need
5103     // a policy for deciding whether we can in that case wait until
5104     // the critical section releases and then do the remark following
5105     // the scavenge, and skip it here. In the absence of that policy,
5106     // or of an indication of whether the scavenge did indeed occur,
5107     // we cannot rely on TLAB's having been filled and must do
5108     // so here just in case a scavenge did not happen.
5109     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5110     // Update the saved marks which may affect the root scans.
5111     gch->save_marks();
5112 
5113     if (CMSPrintEdenSurvivorChunks) {
5114       print_eden_and_survivor_chunk_arrays();
5115     }
5116 
5117     {
5118       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5119 
5120       // Note on the role of the mod union table:
5121       // Since the marker in "markFromRoots" marks concurrently with
5122       // mutators, it is possible for some reachable objects not to have been
5123       // scanned. For instance, an only reference to an object A was
5124       // placed in object B after the marker scanned B. Unless B is rescanned,
5125       // A would be collected. Such updates to references in marked objects
5126       // are detected via the mod union table which is the set of all cards
5127       // dirtied since the first checkpoint in this GC cycle and prior to
5128       // the most recent young generation GC, minus those cleaned up by the
5129       // concurrent precleaning.
5130       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5131         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
5132         do_remark_parallel();
5133       } else {
5134         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5135                     _gc_timer_cm);
5136         do_remark_non_parallel();
5137       }
5138     }
5139   } else {
5140     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5141     // The initial mark was stop-world, so there's no rescanning to
5142     // do; go straight on to the next step below.
5143   }
5144   verify_work_stacks_empty();
5145   verify_overflow_empty();
5146 
5147   {
5148     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
5149     refProcessingWork(asynch, clear_all_soft_refs);
5150   }
5151   verify_work_stacks_empty();
5152   verify_overflow_empty();
5153 
5154   if (should_unload_classes()) {
5155     CodeCache::gc_epilogue();
5156   }
5157   JvmtiExport::gc_epilogue();
5158 
5159   // If we encountered any (marking stack / work queue) overflow
5160   // events during the current CMS cycle, take appropriate
5161   // remedial measures, where possible, so as to try and avoid
5162   // recurrence of that condition.
5163   assert(_markStack.isEmpty(), "No grey objects");
5164   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5165                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5166   if (ser_ovflw > 0) {
5167     if (PrintCMSStatistics != 0) {
5168       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5169         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5170         ", kac_preclean="SIZE_FORMAT")",
5171         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5172         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5173     }
5174     _markStack.expand();
5175     _ser_pmc_remark_ovflw = 0;
5176     _ser_pmc_preclean_ovflw = 0;
5177     _ser_kac_preclean_ovflw = 0;
5178     _ser_kac_ovflw = 0;
5179   }
5180   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5181     if (PrintCMSStatistics != 0) {
5182       gclog_or_tty->print_cr("Work queue overflow (benign) "
5183         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5184         _par_pmc_remark_ovflw, _par_kac_ovflw);
5185     }
5186     _par_pmc_remark_ovflw = 0;
5187     _par_kac_ovflw = 0;
5188   }
5189   if (PrintCMSStatistics != 0) {
5190      if (_markStack._hit_limit > 0) {
5191        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5192                               _markStack._hit_limit);
5193      }
5194      if (_markStack._failed_double > 0) {
5195        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5196                               " current capacity "SIZE_FORMAT,
5197                               _markStack._failed_double,
5198                               _markStack.capacity());
5199      }
5200   }
5201   _markStack._hit_limit = 0;
5202   _markStack._failed_double = 0;
5203 
5204   if ((VerifyAfterGC || VerifyDuringGC) &&
5205       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5206     verify_after_remark();
5207   }
5208 
5209   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5210 
5211   // Change under the freelistLocks.
5212   _collectorState = Sweeping;
5213   // Call isAllClear() under bitMapLock
5214   assert(_modUnionTable.isAllClear(),
5215       "Should be clear by end of the final marking");
5216   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5217       "Should be clear by end of the final marking");
5218   if (UseAdaptiveSizePolicy) {
5219     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5220   }
5221 }
5222 
5223 void CMSParInitialMarkTask::work(uint worker_id) {
5224   elapsedTimer _timer;
5225   ResourceMark rm;
5226   HandleMark   hm;
5227 
5228   // ---------- scan from roots --------------
5229   _timer.start();
5230   GenCollectedHeap* gch = GenCollectedHeap::heap();
5231   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
5232   CMKlassClosure klass_closure(&par_mri_cl);
5233 
5234   // ---------- young gen roots --------------
5235   {
5236     work_on_young_gen_roots(worker_id, &par_mri_cl);
5237     _timer.stop();
5238     if (PrintCMSStatistics != 0) {
5239       gclog_or_tty->print_cr(
5240         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
5241         worker_id, _timer.seconds());
5242     }
5243   }
5244 
5245   // ---------- remaining roots --------------
5246   _timer.reset();
5247   _timer.start();
5248   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5249                                 false,     // yg was scanned above
5250                                 false,     // this is parallel code
5251                                 false,     // not scavenging
5252                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5253                                 &par_mri_cl,
5254                                 true,   // walk all of code cache if (so & SO_CodeCache)
5255                                 NULL,
5256                                 &klass_closure);
5257   assert(_collector->should_unload_classes()
5258          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5259          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5260   _timer.stop();
5261   if (PrintCMSStatistics != 0) {
5262     gclog_or_tty->print_cr(
5263       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
5264       worker_id, _timer.seconds());
5265   }
5266 }
5267 
5268 // Parallel remark task
5269 class CMSParRemarkTask: public CMSParMarkTask {
5270   CompactibleFreeListSpace* _cms_space;
5271 
5272   // The per-thread work queues, available here for stealing.
5273   OopTaskQueueSet*       _task_queues;
5274   ParallelTaskTerminator _term;
5275 
5276  public:
5277   // A value of 0 passed to n_workers will cause the number of
5278   // workers to be taken from the active workers in the work gang.
5279   CMSParRemarkTask(CMSCollector* collector,
5280                    CompactibleFreeListSpace* cms_space,
5281                    int n_workers, FlexibleWorkGang* workers,
5282                    OopTaskQueueSet* task_queues):
5283     CMSParMarkTask("Rescan roots and grey objects in parallel",
5284                    collector, n_workers),
5285     _cms_space(cms_space),
5286     _task_queues(task_queues),
5287     _term(n_workers, task_queues) { }
5288 
5289   OopTaskQueueSet* task_queues() { return _task_queues; }
5290 
5291   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5292 
5293   ParallelTaskTerminator* terminator() { return &_term; }
5294   int n_workers() { return _n_workers; }
5295 
5296   void work(uint worker_id);
5297 
5298  private:
5299   // ... of  dirty cards in old space
5300   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5301                                   Par_MarkRefsIntoAndScanClosure* cl);
5302 
5303   // ... work stealing for the above
5304   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5305 };
5306 
5307 class RemarkKlassClosure : public KlassClosure {
5308   CMKlassClosure _cm_klass_closure;
5309  public:
5310   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5311   void do_klass(Klass* k) {
5312     // Check if we have modified any oops in the Klass during the concurrent marking.
5313     if (k->has_accumulated_modified_oops()) {
5314       k->clear_accumulated_modified_oops();
5315 
5316       // We could have transfered the current modified marks to the accumulated marks,
5317       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5318     } else if (k->has_modified_oops()) {
5319       // Don't clear anything, this info is needed by the next young collection.
5320     } else {
5321       // No modified oops in the Klass.
5322       return;
5323     }
5324 
5325     // The klass has modified fields, need to scan the klass.
5326     _cm_klass_closure.do_klass(k);
5327   }
5328 };
5329 
5330 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
5331   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5332   EdenSpace* eden_space = dng->eden();
5333   ContiguousSpace* from_space = dng->from();
5334   ContiguousSpace* to_space   = dng->to();
5335 
5336   HeapWord** eca = _collector->_eden_chunk_array;
5337   size_t     ect = _collector->_eden_chunk_index;
5338   HeapWord** sca = _collector->_survivor_chunk_array;
5339   size_t     sct = _collector->_survivor_chunk_index;
5340 
5341   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5342   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5343 
5344   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
5345   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
5346   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
5347 }
5348 
5349 // work_queue(i) is passed to the closure
5350 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5351 // also is passed to do_dirty_card_rescan_tasks() and to
5352 // do_work_steal() to select the i-th task_queue.
5353 
5354 void CMSParRemarkTask::work(uint worker_id) {
5355   elapsedTimer _timer;
5356   ResourceMark rm;
5357   HandleMark   hm;
5358 
5359   // ---------- rescan from roots --------------
5360   _timer.start();
5361   GenCollectedHeap* gch = GenCollectedHeap::heap();
5362   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5363     _collector->_span, _collector->ref_processor(),
5364     &(_collector->_markBitMap),
5365     work_queue(worker_id));
5366 
5367   // Rescan young gen roots first since these are likely
5368   // coarsely partitioned and may, on that account, constitute
5369   // the critical path; thus, it's best to start off that
5370   // work first.
5371   // ---------- young gen roots --------------
5372   {
5373     work_on_young_gen_roots(worker_id, &par_mrias_cl);
5374     _timer.stop();
5375     if (PrintCMSStatistics != 0) {
5376       gclog_or_tty->print_cr(
5377         "Finished young gen rescan work in %dth thread: %3.3f sec",
5378         worker_id, _timer.seconds());
5379     }
5380   }
5381 
5382   // ---------- remaining roots --------------
5383   _timer.reset();
5384   _timer.start();
5385   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5386                                 false,     // yg was scanned above
5387                                 false,     // this is parallel code
5388                                 false,     // not scavenging
5389                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5390                                 &par_mrias_cl,
5391                                 true,   // walk all of code cache if (so & SO_CodeCache)
5392                                 NULL,
5393                                 NULL);     // The dirty klasses will be handled below
5394   assert(_collector->should_unload_classes()
5395          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5396          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5397   _timer.stop();
5398   if (PrintCMSStatistics != 0) {
5399     gclog_or_tty->print_cr(
5400       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5401       worker_id, _timer.seconds());
5402   }
5403 
5404   // ---------- unhandled CLD scanning ----------
5405   if (worker_id == 0) { // Single threaded at the moment.
5406     _timer.reset();
5407     _timer.start();
5408 
5409     // Scan all new class loader data objects and new dependencies that were
5410     // introduced during concurrent marking.
5411     ResourceMark rm;
5412     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5413     for (int i = 0; i < array->length(); i++) {
5414       par_mrias_cl.do_class_loader_data(array->at(i));
5415     }
5416 
5417     // We don't need to keep track of new CLDs anymore.
5418     ClassLoaderDataGraph::remember_new_clds(false);
5419 
5420     _timer.stop();
5421     if (PrintCMSStatistics != 0) {
5422       gclog_or_tty->print_cr(
5423           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5424           worker_id, _timer.seconds());
5425     }
5426   }
5427 
5428   // ---------- dirty klass scanning ----------
5429   if (worker_id == 0) { // Single threaded at the moment.
5430     _timer.reset();
5431     _timer.start();
5432 
5433     // Scan all classes that was dirtied during the concurrent marking phase.
5434     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5435     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5436 
5437     _timer.stop();
5438     if (PrintCMSStatistics != 0) {
5439       gclog_or_tty->print_cr(
5440           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5441           worker_id, _timer.seconds());
5442     }
5443   }
5444 
5445   // We might have added oops to ClassLoaderData::_handles during the
5446   // concurrent marking phase. These oops point to newly allocated objects
5447   // that are guaranteed to be kept alive. Either by the direct allocation
5448   // code, or when the young collector processes the strong roots. Hence,
5449   // we don't have to revisit the _handles block during the remark phase.
5450 
5451   // ---------- rescan dirty cards ------------
5452   _timer.reset();
5453   _timer.start();
5454 
5455   // Do the rescan tasks for each of the two spaces
5456   // (cms_space) in turn.
5457   // "worker_id" is passed to select the task_queue for "worker_id"
5458   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5459   _timer.stop();
5460   if (PrintCMSStatistics != 0) {
5461     gclog_or_tty->print_cr(
5462       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5463       worker_id, _timer.seconds());
5464   }
5465 
5466   // ---------- steal work from other threads ...
5467   // ---------- ... and drain overflow list.
5468   _timer.reset();
5469   _timer.start();
5470   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5471   _timer.stop();
5472   if (PrintCMSStatistics != 0) {
5473     gclog_or_tty->print_cr(
5474       "Finished work stealing in %dth thread: %3.3f sec",
5475       worker_id, _timer.seconds());
5476   }
5477 }
5478 
5479 // Note that parameter "i" is not used.
5480 void
5481 CMSParMarkTask::do_young_space_rescan(uint worker_id,
5482   OopsInGenClosure* cl, ContiguousSpace* space,
5483   HeapWord** chunk_array, size_t chunk_top) {
5484   // Until all tasks completed:
5485   // . claim an unclaimed task
5486   // . compute region boundaries corresponding to task claimed
5487   //   using chunk_array
5488   // . par_oop_iterate(cl) over that region
5489 
5490   ResourceMark rm;
5491   HandleMark   hm;
5492 
5493   SequentialSubTasksDone* pst = space->par_seq_tasks();
5494 
5495   uint nth_task = 0;
5496   uint n_tasks  = pst->n_tasks();
5497 
5498   if (n_tasks > 0) {
5499     assert(pst->valid(), "Uninitialized use?");
5500     HeapWord *start, *end;
5501     while (!pst->is_task_claimed(/* reference */ nth_task)) {
5502       // We claimed task # nth_task; compute its boundaries.
5503       if (chunk_top == 0) {  // no samples were taken
5504         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5505         start = space->bottom();
5506         end   = space->top();
5507       } else if (nth_task == 0) {
5508         start = space->bottom();
5509         end   = chunk_array[nth_task];
5510       } else if (nth_task < (uint)chunk_top) {
5511         assert(nth_task >= 1, "Control point invariant");
5512         start = chunk_array[nth_task - 1];
5513         end   = chunk_array[nth_task];
5514       } else {
5515         assert(nth_task == (uint)chunk_top, "Control point invariant");
5516         start = chunk_array[chunk_top - 1];
5517         end   = space->top();
5518       }
5519       MemRegion mr(start, end);
5520       // Verify that mr is in space
5521       assert(mr.is_empty() || space->used_region().contains(mr),
5522              "Should be in space");
5523       // Verify that "start" is an object boundary
5524       assert(mr.is_empty() || oop(mr.start())->is_oop(),
5525              "Should be an oop");
5526       space->par_oop_iterate(mr, cl);
5527     }
5528     pst->all_tasks_completed();
5529   }
5530 }
5531 
5532 void
5533 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5534   CompactibleFreeListSpace* sp, int i,
5535   Par_MarkRefsIntoAndScanClosure* cl) {
5536   // Until all tasks completed:
5537   // . claim an unclaimed task
5538   // . compute region boundaries corresponding to task claimed
5539   // . transfer dirty bits ct->mut for that region
5540   // . apply rescanclosure to dirty mut bits for that region
5541 
5542   ResourceMark rm;
5543   HandleMark   hm;
5544 
5545   OopTaskQueue* work_q = work_queue(i);
5546   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5547   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5548   // CAUTION: This closure has state that persists across calls to
5549   // the work method dirty_range_iterate_clear() in that it has
5550   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5551   // use of that state in the imbedded UpwardsObjectClosure instance
5552   // assumes that the cards are always iterated (even if in parallel
5553   // by several threads) in monotonically increasing order per each
5554   // thread. This is true of the implementation below which picks
5555   // card ranges (chunks) in monotonically increasing order globally
5556   // and, a-fortiori, in monotonically increasing order per thread
5557   // (the latter order being a subsequence of the former).
5558   // If the work code below is ever reorganized into a more chaotic
5559   // work-partitioning form than the current "sequential tasks"
5560   // paradigm, the use of that persistent state will have to be
5561   // revisited and modified appropriately. See also related
5562   // bug 4756801 work on which should examine this code to make
5563   // sure that the changes there do not run counter to the
5564   // assumptions made here and necessary for correctness and
5565   // efficiency. Note also that this code might yield inefficient
5566   // behaviour in the case of very large objects that span one or
5567   // more work chunks. Such objects would potentially be scanned
5568   // several times redundantly. Work on 4756801 should try and
5569   // address that performance anomaly if at all possible. XXX
5570   MemRegion  full_span  = _collector->_span;
5571   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5572   MarkFromDirtyCardsClosure
5573     greyRescanClosure(_collector, full_span, // entire span of interest
5574                       sp, bm, work_q, cl);
5575 
5576   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5577   assert(pst->valid(), "Uninitialized use?");
5578   uint nth_task = 0;
5579   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5580   MemRegion span = sp->used_region();
5581   HeapWord* start_addr = span.start();
5582   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5583                                            alignment);
5584   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5585   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5586          start_addr, "Check alignment");
5587   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5588          chunk_size, "Check alignment");
5589 
5590   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5591     // Having claimed the nth_task, compute corresponding mem-region,
5592     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5593     // The alignment restriction ensures that we do not need any
5594     // synchronization with other gang-workers while setting or
5595     // clearing bits in thus chunk of the MUT.
5596     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5597                                     start_addr + (nth_task+1)*chunk_size);
5598     // The last chunk's end might be way beyond end of the
5599     // used region. In that case pull back appropriately.
5600     if (this_span.end() > end_addr) {
5601       this_span.set_end(end_addr);
5602       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5603     }
5604     // Iterate over the dirty cards covering this chunk, marking them
5605     // precleaned, and setting the corresponding bits in the mod union
5606     // table. Since we have been careful to partition at Card and MUT-word
5607     // boundaries no synchronization is needed between parallel threads.
5608     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5609                                                  &modUnionClosure);
5610 
5611     // Having transferred these marks into the modUnionTable,
5612     // rescan the marked objects on the dirty cards in the modUnionTable.
5613     // Even if this is at a synchronous collection, the initial marking
5614     // may have been done during an asynchronous collection so there
5615     // may be dirty bits in the mod-union table.
5616     _collector->_modUnionTable.dirty_range_iterate_clear(
5617                   this_span, &greyRescanClosure);
5618     _collector->_modUnionTable.verifyNoOneBitsInRange(
5619                                  this_span.start(),
5620                                  this_span.end());
5621   }
5622   pst->all_tasks_completed();  // declare that i am done
5623 }
5624 
5625 // . see if we can share work_queues with ParNew? XXX
5626 void
5627 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5628                                 int* seed) {
5629   OopTaskQueue* work_q = work_queue(i);
5630   NOT_PRODUCT(int num_steals = 0;)
5631   oop obj_to_scan;
5632   CMSBitMap* bm = &(_collector->_markBitMap);
5633 
5634   while (true) {
5635     // Completely finish any left over work from (an) earlier round(s)
5636     cl->trim_queue(0);
5637     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5638                                          (size_t)ParGCDesiredObjsFromOverflowList);
5639     // Now check if there's any work in the overflow list
5640     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5641     // only affects the number of attempts made to get work from the
5642     // overflow list and does not affect the number of workers.  Just
5643     // pass ParallelGCThreads so this behavior is unchanged.
5644     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5645                                                 work_q,
5646                                                 ParallelGCThreads)) {
5647       // found something in global overflow list;
5648       // not yet ready to go stealing work from others.
5649       // We'd like to assert(work_q->size() != 0, ...)
5650       // because we just took work from the overflow list,
5651       // but of course we can't since all of that could have
5652       // been already stolen from us.
5653       // "He giveth and He taketh away."
5654       continue;
5655     }
5656     // Verify that we have no work before we resort to stealing
5657     assert(work_q->size() == 0, "Have work, shouldn't steal");
5658     // Try to steal from other queues that have work
5659     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5660       NOT_PRODUCT(num_steals++;)
5661       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5662       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5663       // Do scanning work
5664       obj_to_scan->oop_iterate(cl);
5665       // Loop around, finish this work, and try to steal some more
5666     } else if (terminator()->offer_termination()) {
5667         break;  // nirvana from the infinite cycle
5668     }
5669   }
5670   NOT_PRODUCT(
5671     if (PrintCMSStatistics != 0) {
5672       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5673     }
5674   )
5675   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5676          "Else our work is not yet done");
5677 }
5678 
5679 // Record object boundaries in _eden_chunk_array by sampling the eden
5680 // top in the slow-path eden object allocation code path and record
5681 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5682 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5683 // sampling in sample_eden() that activates during the part of the
5684 // preclean phase.
5685 void CMSCollector::sample_eden_chunk() {
5686   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5687     if (_eden_chunk_lock->try_lock()) {
5688       // Record a sample. This is the critical section. The contents
5689       // of the _eden_chunk_array have to be non-decreasing in the
5690       // address order.
5691       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5692       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5693              "Unexpected state of Eden");
5694       if (_eden_chunk_index == 0 ||
5695           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5696            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5697                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5698         _eden_chunk_index++;  // commit sample
5699       }
5700       _eden_chunk_lock->unlock();
5701     }
5702   }
5703 }
5704 
5705 // Return a thread-local PLAB recording array, as appropriate.
5706 void* CMSCollector::get_data_recorder(int thr_num) {
5707   if (_survivor_plab_array != NULL &&
5708       (CMSPLABRecordAlways ||
5709        (_collectorState > Marking && _collectorState < FinalMarking))) {
5710     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5711     ChunkArray* ca = &_survivor_plab_array[thr_num];
5712     ca->reset();   // clear it so that fresh data is recorded
5713     return (void*) ca;
5714   } else {
5715     return NULL;
5716   }
5717 }
5718 
5719 // Reset all the thread-local PLAB recording arrays
5720 void CMSCollector::reset_survivor_plab_arrays() {
5721   for (uint i = 0; i < ParallelGCThreads; i++) {
5722     _survivor_plab_array[i].reset();
5723   }
5724 }
5725 
5726 // Merge the per-thread plab arrays into the global survivor chunk
5727 // array which will provide the partitioning of the survivor space
5728 // for CMS initial scan and rescan.
5729 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5730                                               int no_of_gc_threads) {
5731   assert(_survivor_plab_array  != NULL, "Error");
5732   assert(_survivor_chunk_array != NULL, "Error");
5733   assert(_collectorState == FinalMarking ||
5734          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5735   for (int j = 0; j < no_of_gc_threads; j++) {
5736     _cursor[j] = 0;
5737   }
5738   HeapWord* top = surv->top();
5739   size_t i;
5740   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5741     HeapWord* min_val = top;          // Higher than any PLAB address
5742     uint      min_tid = 0;            // position of min_val this round
5743     for (int j = 0; j < no_of_gc_threads; j++) {
5744       ChunkArray* cur_sca = &_survivor_plab_array[j];
5745       if (_cursor[j] == cur_sca->end()) {
5746         continue;
5747       }
5748       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5749       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5750       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5751       if (cur_val < min_val) {
5752         min_tid = j;
5753         min_val = cur_val;
5754       } else {
5755         assert(cur_val < top, "All recorded addresses should be less");
5756       }
5757     }
5758     // At this point min_val and min_tid are respectively
5759     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5760     // and the thread (j) that witnesses that address.
5761     // We record this address in the _survivor_chunk_array[i]
5762     // and increment _cursor[min_tid] prior to the next round i.
5763     if (min_val == top) {
5764       break;
5765     }
5766     _survivor_chunk_array[i] = min_val;
5767     _cursor[min_tid]++;
5768   }
5769   // We are all done; record the size of the _survivor_chunk_array
5770   _survivor_chunk_index = i; // exclusive: [0, i)
5771   if (PrintCMSStatistics > 0) {
5772     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5773   }
5774   // Verify that we used up all the recorded entries
5775   #ifdef ASSERT
5776     size_t total = 0;
5777     for (int j = 0; j < no_of_gc_threads; j++) {
5778       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5779       total += _cursor[j];
5780     }
5781     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5782     // Check that the merged array is in sorted order
5783     if (total > 0) {
5784       for (size_t i = 0; i < total - 1; i++) {
5785         if (PrintCMSStatistics > 0) {
5786           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5787                               i, _survivor_chunk_array[i]);
5788         }
5789         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5790                "Not sorted");
5791       }
5792     }
5793   #endif // ASSERT
5794 }
5795 
5796 // Set up the space's par_seq_tasks structure for work claiming
5797 // for parallel initial scan and rescan of young gen.
5798 // See ParRescanTask where this is currently used.
5799 void
5800 CMSCollector::
5801 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5802   assert(n_threads > 0, "Unexpected n_threads argument");
5803   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5804 
5805   // Eden space
5806   if (!dng->eden()->is_empty()) {
5807     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5808     assert(!pst->valid(), "Clobbering existing data?");
5809     // Each valid entry in [0, _eden_chunk_index) represents a task.
5810     size_t n_tasks = _eden_chunk_index + 1;
5811     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5812     // Sets the condition for completion of the subtask (how many threads
5813     // need to finish in order to be done).
5814     pst->set_n_threads(n_threads);
5815     pst->set_n_tasks((int)n_tasks);
5816   }
5817 
5818   // Merge the survivor plab arrays into _survivor_chunk_array
5819   if (_survivor_plab_array != NULL) {
5820     merge_survivor_plab_arrays(dng->from(), n_threads);
5821   } else {
5822     assert(_survivor_chunk_index == 0, "Error");
5823   }
5824 
5825   // To space
5826   {
5827     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5828     assert(!pst->valid(), "Clobbering existing data?");
5829     // Sets the condition for completion of the subtask (how many threads
5830     // need to finish in order to be done).
5831     pst->set_n_threads(n_threads);
5832     pst->set_n_tasks(1);
5833     assert(pst->valid(), "Error");
5834   }
5835 
5836   // From space
5837   {
5838     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5839     assert(!pst->valid(), "Clobbering existing data?");
5840     size_t n_tasks = _survivor_chunk_index + 1;
5841     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5842     // Sets the condition for completion of the subtask (how many threads
5843     // need to finish in order to be done).
5844     pst->set_n_threads(n_threads);
5845     pst->set_n_tasks((int)n_tasks);
5846     assert(pst->valid(), "Error");
5847   }
5848 }
5849 
5850 // Parallel version of remark
5851 void CMSCollector::do_remark_parallel() {
5852   GenCollectedHeap* gch = GenCollectedHeap::heap();
5853   FlexibleWorkGang* workers = gch->workers();
5854   assert(workers != NULL, "Need parallel worker threads.");
5855   // Choose to use the number of GC workers most recently set
5856   // into "active_workers".  If active_workers is not set, set it
5857   // to ParallelGCThreads.
5858   int n_workers = workers->active_workers();
5859   if (n_workers == 0) {
5860     assert(n_workers > 0, "Should have been set during scavenge");
5861     n_workers = ParallelGCThreads;
5862     workers->set_active_workers(n_workers);
5863   }
5864   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5865 
5866   CMSParRemarkTask tsk(this,
5867     cms_space,
5868     n_workers, workers, task_queues());
5869 
5870   // Set up for parallel process_strong_roots work.
5871   gch->set_par_threads(n_workers);
5872   // We won't be iterating over the cards in the card table updating
5873   // the younger_gen cards, so we shouldn't call the following else
5874   // the verification code as well as subsequent younger_refs_iterate
5875   // code would get confused. XXX
5876   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5877 
5878   // The young gen rescan work will not be done as part of
5879   // process_strong_roots (which currently doesn't knw how to
5880   // parallelize such a scan), but rather will be broken up into
5881   // a set of parallel tasks (via the sampling that the [abortable]
5882   // preclean phase did of EdenSpace, plus the [two] tasks of
5883   // scanning the [two] survivor spaces. Further fine-grain
5884   // parallelization of the scanning of the survivor spaces
5885   // themselves, and of precleaning of the younger gen itself
5886   // is deferred to the future.
5887   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5888 
5889   // The dirty card rescan work is broken up into a "sequence"
5890   // of parallel tasks (per constituent space) that are dynamically
5891   // claimed by the parallel threads.
5892   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5893 
5894   // It turns out that even when we're using 1 thread, doing the work in a
5895   // separate thread causes wide variance in run times.  We can't help this
5896   // in the multi-threaded case, but we special-case n=1 here to get
5897   // repeatable measurements of the 1-thread overhead of the parallel code.
5898   if (n_workers > 1) {
5899     // Make refs discovery MT-safe, if it isn't already: it may not
5900     // necessarily be so, since it's possible that we are doing
5901     // ST marking.
5902     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5903     GenCollectedHeap::StrongRootsScope srs(gch);
5904     workers->run_task(&tsk);
5905   } else {
5906     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5907     GenCollectedHeap::StrongRootsScope srs(gch);
5908     tsk.work(0);
5909   }
5910 
5911   gch->set_par_threads(0);  // 0 ==> non-parallel.
5912   // restore, single-threaded for now, any preserved marks
5913   // as a result of work_q overflow
5914   restore_preserved_marks_if_any();
5915 }
5916 
5917 // Non-parallel version of remark
5918 void CMSCollector::do_remark_non_parallel() {
5919   ResourceMark rm;
5920   HandleMark   hm;
5921   GenCollectedHeap* gch = GenCollectedHeap::heap();
5922   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5923 
5924   MarkRefsIntoAndScanClosure
5925     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5926              &_markStack, this,
5927              false /* should_yield */, false /* not precleaning */);
5928   MarkFromDirtyCardsClosure
5929     markFromDirtyCardsClosure(this, _span,
5930                               NULL,  // space is set further below
5931                               &_markBitMap, &_markStack, &mrias_cl);
5932   {
5933     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5934     // Iterate over the dirty cards, setting the corresponding bits in the
5935     // mod union table.
5936     {
5937       ModUnionClosure modUnionClosure(&_modUnionTable);
5938       _ct->ct_bs()->dirty_card_iterate(
5939                       _cmsGen->used_region(),
5940                       &modUnionClosure);
5941     }
5942     // Having transferred these marks into the modUnionTable, we just need
5943     // to rescan the marked objects on the dirty cards in the modUnionTable.
5944     // The initial marking may have been done during an asynchronous
5945     // collection so there may be dirty bits in the mod-union table.
5946     const int alignment =
5947       CardTableModRefBS::card_size * BitsPerWord;
5948     {
5949       // ... First handle dirty cards in CMS gen
5950       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5951       MemRegion ur = _cmsGen->used_region();
5952       HeapWord* lb = ur.start();
5953       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5954       MemRegion cms_span(lb, ub);
5955       _modUnionTable.dirty_range_iterate_clear(cms_span,
5956                                                &markFromDirtyCardsClosure);
5957       verify_work_stacks_empty();
5958       if (PrintCMSStatistics != 0) {
5959         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5960           markFromDirtyCardsClosure.num_dirty_cards());
5961       }
5962     }
5963   }
5964   if (VerifyDuringGC &&
5965       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5966     HandleMark hm;  // Discard invalid handles created during verification
5967     Universe::verify();
5968   }
5969   {
5970     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5971 
5972     verify_work_stacks_empty();
5973 
5974     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5975     GenCollectedHeap::StrongRootsScope srs(gch);
5976     gch->gen_process_strong_roots(_cmsGen->level(),
5977                                   true,  // younger gens as roots
5978                                   false, // use the local StrongRootsScope
5979                                   false, // not scavenging
5980                                   SharedHeap::ScanningOption(roots_scanning_options()),
5981                                   &mrias_cl,
5982                                   true,   // walk code active on stacks
5983                                   NULL,
5984                                   NULL);  // The dirty klasses will be handled below
5985 
5986     assert(should_unload_classes()
5987            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5988            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5989   }
5990 
5991   {
5992     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5993 
5994     verify_work_stacks_empty();
5995 
5996     // Scan all class loader data objects that might have been introduced
5997     // during concurrent marking.
5998     ResourceMark rm;
5999     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
6000     for (int i = 0; i < array->length(); i++) {
6001       mrias_cl.do_class_loader_data(array->at(i));
6002     }
6003 
6004     // We don't need to keep track of new CLDs anymore.
6005     ClassLoaderDataGraph::remember_new_clds(false);
6006 
6007     verify_work_stacks_empty();
6008   }
6009 
6010   {
6011     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
6012 
6013     verify_work_stacks_empty();
6014 
6015     RemarkKlassClosure remark_klass_closure(&mrias_cl);
6016     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
6017 
6018     verify_work_stacks_empty();
6019   }
6020 
6021   // We might have added oops to ClassLoaderData::_handles during the
6022   // concurrent marking phase. These oops point to newly allocated objects
6023   // that are guaranteed to be kept alive. Either by the direct allocation
6024   // code, or when the young collector processes the strong roots. Hence,
6025   // we don't have to revisit the _handles block during the remark phase.
6026 
6027   verify_work_stacks_empty();
6028   // Restore evacuated mark words, if any, used for overflow list links
6029   if (!CMSOverflowEarlyRestoration) {
6030     restore_preserved_marks_if_any();
6031   }
6032   verify_overflow_empty();
6033 }
6034 
6035 ////////////////////////////////////////////////////////
6036 // Parallel Reference Processing Task Proxy Class
6037 ////////////////////////////////////////////////////////
6038 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
6039   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
6040   CMSCollector*          _collector;
6041   CMSBitMap*             _mark_bit_map;
6042   const MemRegion        _span;
6043   ProcessTask&           _task;
6044 
6045 public:
6046   CMSRefProcTaskProxy(ProcessTask&     task,
6047                       CMSCollector*    collector,
6048                       const MemRegion& span,
6049                       CMSBitMap*       mark_bit_map,
6050                       AbstractWorkGang* workers,
6051                       OopTaskQueueSet* task_queues):
6052     // XXX Should superclass AGTWOQ also know about AWG since it knows
6053     // about the task_queues used by the AWG? Then it could initialize
6054     // the terminator() object. See 6984287. The set_for_termination()
6055     // below is a temporary band-aid for the regression in 6984287.
6056     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
6057       task_queues),
6058     _task(task),
6059     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
6060   {
6061     assert(_collector->_span.equals(_span) && !_span.is_empty(),
6062            "Inconsistency in _span");
6063     set_for_termination(workers->active_workers());
6064   }
6065 
6066   OopTaskQueueSet* task_queues() { return queues(); }
6067 
6068   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
6069 
6070   void do_work_steal(int i,
6071                      CMSParDrainMarkingStackClosure* drain,
6072                      CMSParKeepAliveClosure* keep_alive,
6073                      int* seed);
6074 
6075   virtual void work(uint worker_id);
6076 };
6077 
6078 void CMSRefProcTaskProxy::work(uint worker_id) {
6079   assert(_collector->_span.equals(_span), "Inconsistency in _span");
6080   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
6081                                         _mark_bit_map,
6082                                         work_queue(worker_id));
6083   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
6084                                                  _mark_bit_map,
6085                                                  work_queue(worker_id));
6086   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
6087   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
6088   if (_task.marks_oops_alive()) {
6089     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
6090                   _collector->hash_seed(worker_id));
6091   }
6092   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
6093   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
6094 }
6095 
6096 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
6097   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
6098   EnqueueTask& _task;
6099 
6100 public:
6101   CMSRefEnqueueTaskProxy(EnqueueTask& task)
6102     : AbstractGangTask("Enqueue reference objects in parallel"),
6103       _task(task)
6104   { }
6105 
6106   virtual void work(uint worker_id)
6107   {
6108     _task.work(worker_id);
6109   }
6110 };
6111 
6112 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
6113   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
6114    _span(span),
6115    _bit_map(bit_map),
6116    _work_queue(work_queue),
6117    _mark_and_push(collector, span, bit_map, work_queue),
6118    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6119                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
6120 { }
6121 
6122 // . see if we can share work_queues with ParNew? XXX
6123 void CMSRefProcTaskProxy::do_work_steal(int i,
6124   CMSParDrainMarkingStackClosure* drain,
6125   CMSParKeepAliveClosure* keep_alive,
6126   int* seed) {
6127   OopTaskQueue* work_q = work_queue(i);
6128   NOT_PRODUCT(int num_steals = 0;)
6129   oop obj_to_scan;
6130 
6131   while (true) {
6132     // Completely finish any left over work from (an) earlier round(s)
6133     drain->trim_queue(0);
6134     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
6135                                          (size_t)ParGCDesiredObjsFromOverflowList);
6136     // Now check if there's any work in the overflow list
6137     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
6138     // only affects the number of attempts made to get work from the
6139     // overflow list and does not affect the number of workers.  Just
6140     // pass ParallelGCThreads so this behavior is unchanged.
6141     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
6142                                                 work_q,
6143                                                 ParallelGCThreads)) {
6144       // Found something in global overflow list;
6145       // not yet ready to go stealing work from others.
6146       // We'd like to assert(work_q->size() != 0, ...)
6147       // because we just took work from the overflow list,
6148       // but of course we can't, since all of that might have
6149       // been already stolen from us.
6150       continue;
6151     }
6152     // Verify that we have no work before we resort to stealing
6153     assert(work_q->size() == 0, "Have work, shouldn't steal");
6154     // Try to steal from other queues that have work
6155     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6156       NOT_PRODUCT(num_steals++;)
6157       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6158       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6159       // Do scanning work
6160       obj_to_scan->oop_iterate(keep_alive);
6161       // Loop around, finish this work, and try to steal some more
6162     } else if (terminator()->offer_termination()) {
6163       break;  // nirvana from the infinite cycle
6164     }
6165   }
6166   NOT_PRODUCT(
6167     if (PrintCMSStatistics != 0) {
6168       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6169     }
6170   )
6171 }
6172 
6173 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6174 {
6175   GenCollectedHeap* gch = GenCollectedHeap::heap();
6176   FlexibleWorkGang* workers = gch->workers();
6177   assert(workers != NULL, "Need parallel worker threads.");
6178   CMSRefProcTaskProxy rp_task(task, &_collector,
6179                               _collector.ref_processor()->span(),
6180                               _collector.markBitMap(),
6181                               workers, _collector.task_queues());
6182   workers->run_task(&rp_task);
6183 }
6184 
6185 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6186 {
6187 
6188   GenCollectedHeap* gch = GenCollectedHeap::heap();
6189   FlexibleWorkGang* workers = gch->workers();
6190   assert(workers != NULL, "Need parallel worker threads.");
6191   CMSRefEnqueueTaskProxy enq_task(task);
6192   workers->run_task(&enq_task);
6193 }
6194 
6195 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6196 
6197   ResourceMark rm;
6198   HandleMark   hm;
6199 
6200   ReferenceProcessor* rp = ref_processor();
6201   assert(rp->span().equals(_span), "Spans should be equal");
6202   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6203   // Process weak references.
6204   rp->setup_policy(clear_all_soft_refs);
6205   verify_work_stacks_empty();
6206 
6207   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6208                                           &_markStack, false /* !preclean */);
6209   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6210                                 _span, &_markBitMap, &_markStack,
6211                                 &cmsKeepAliveClosure, false /* !preclean */);
6212   {
6213     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
6214 
6215     ReferenceProcessorStats stats;
6216     if (rp->processing_is_mt()) {
6217       // Set the degree of MT here.  If the discovery is done MT, there
6218       // may have been a different number of threads doing the discovery
6219       // and a different number of discovered lists may have Ref objects.
6220       // That is OK as long as the Reference lists are balanced (see
6221       // balance_all_queues() and balance_queues()).
6222       GenCollectedHeap* gch = GenCollectedHeap::heap();
6223       int active_workers = ParallelGCThreads;
6224       FlexibleWorkGang* workers = gch->workers();
6225       if (workers != NULL) {
6226         active_workers = workers->active_workers();
6227         // The expectation is that active_workers will have already
6228         // been set to a reasonable value.  If it has not been set,
6229         // investigate.
6230         assert(active_workers > 0, "Should have been set during scavenge");
6231       }
6232       rp->set_active_mt_degree(active_workers);
6233       CMSRefProcTaskExecutor task_executor(*this);
6234       stats = rp->process_discovered_references(&_is_alive_closure,
6235                                         &cmsKeepAliveClosure,
6236                                         &cmsDrainMarkingStackClosure,
6237                                         &task_executor,
6238                                         _gc_timer_cm);
6239     } else {
6240       stats = rp->process_discovered_references(&_is_alive_closure,
6241                                         &cmsKeepAliveClosure,
6242                                         &cmsDrainMarkingStackClosure,
6243                                         NULL,
6244                                         _gc_timer_cm);
6245     }
6246     _gc_tracer_cm->report_gc_reference_stats(stats);
6247 
6248   }
6249 
6250   // This is the point where the entire marking should have completed.
6251   verify_work_stacks_empty();
6252 
6253   if (should_unload_classes()) {
6254     {
6255       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
6256 
6257       // Unload classes and purge the SystemDictionary.
6258       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6259 
6260       // Unload nmethods.
6261       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6262 
6263       // Prune dead klasses from subklass/sibling/implementor lists.
6264       Klass::clean_weak_klass_links(&_is_alive_closure);
6265     }
6266 
6267     {
6268       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
6269       // Clean up unreferenced symbols in symbol table.
6270       SymbolTable::unlink();
6271     }
6272   }
6273 
6274   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
6275   // Need to check if we really scanned the StringTable.
6276   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
6277     GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
6278     // Delete entries for dead interned strings.
6279     StringTable::unlink(&_is_alive_closure);
6280   }
6281 
6282   // Restore any preserved marks as a result of mark stack or
6283   // work queue overflow
6284   restore_preserved_marks_if_any();  // done single-threaded for now
6285 
6286   rp->set_enqueuing_is_done(true);
6287   if (rp->processing_is_mt()) {
6288     rp->balance_all_queues();
6289     CMSRefProcTaskExecutor task_executor(*this);
6290     rp->enqueue_discovered_references(&task_executor);
6291   } else {
6292     rp->enqueue_discovered_references(NULL);
6293   }
6294   rp->verify_no_references_recorded();
6295   assert(!rp->discovery_enabled(), "should have been disabled");
6296 }
6297 
6298 #ifndef PRODUCT
6299 void CMSCollector::check_correct_thread_executing() {
6300   Thread* t = Thread::current();
6301   // Only the VM thread or the CMS thread should be here.
6302   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6303          "Unexpected thread type");
6304   // If this is the vm thread, the foreground process
6305   // should not be waiting.  Note that _foregroundGCIsActive is
6306   // true while the foreground collector is waiting.
6307   if (_foregroundGCShouldWait) {
6308     // We cannot be the VM thread
6309     assert(t->is_ConcurrentGC_thread(),
6310            "Should be CMS thread");
6311   } else {
6312     // We can be the CMS thread only if we are in a stop-world
6313     // phase of CMS collection.
6314     if (t->is_ConcurrentGC_thread()) {
6315       assert(_collectorState == InitialMarking ||
6316              _collectorState == FinalMarking,
6317              "Should be a stop-world phase");
6318       // The CMS thread should be holding the CMS_token.
6319       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6320              "Potential interference with concurrently "
6321              "executing VM thread");
6322     }
6323   }
6324 }
6325 #endif
6326 
6327 void CMSCollector::sweep(bool asynch) {
6328   assert(_collectorState == Sweeping, "just checking");
6329   check_correct_thread_executing();
6330   verify_work_stacks_empty();
6331   verify_overflow_empty();
6332   increment_sweep_count();
6333   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6334 
6335   _inter_sweep_timer.stop();
6336   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6337   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6338 
6339   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6340   _intra_sweep_timer.reset();
6341   _intra_sweep_timer.start();
6342   if (asynch) {
6343     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6344     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6345     // First sweep the old gen
6346     {
6347       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6348                                bitMapLock());
6349       sweepWork(_cmsGen, asynch);
6350     }
6351 
6352     // Update Universe::_heap_*_at_gc figures.
6353     // We need all the free list locks to make the abstract state
6354     // transition from Sweeping to Resetting. See detailed note
6355     // further below.
6356     {
6357       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6358       // Update heap occupancy information which is used as
6359       // input to soft ref clearing policy at the next gc.
6360       Universe::update_heap_info_at_gc();
6361       _collectorState = Resizing;
6362     }
6363   } else {
6364     // already have needed locks
6365     sweepWork(_cmsGen,  asynch);
6366     // Update heap occupancy information which is used as
6367     // input to soft ref clearing policy at the next gc.
6368     Universe::update_heap_info_at_gc();
6369     _collectorState = Resizing;
6370   }
6371   verify_work_stacks_empty();
6372   verify_overflow_empty();
6373 
6374   if (should_unload_classes()) {
6375     ClassLoaderDataGraph::purge();
6376   }
6377 
6378   _intra_sweep_timer.stop();
6379   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6380 
6381   _inter_sweep_timer.reset();
6382   _inter_sweep_timer.start();
6383 
6384   // We need to use a monotonically non-deccreasing time in ms
6385   // or we will see time-warp warnings and os::javaTimeMillis()
6386   // does not guarantee monotonicity.
6387   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6388   update_time_of_last_gc(now);
6389 
6390   // NOTE on abstract state transitions:
6391   // Mutators allocate-live and/or mark the mod-union table dirty
6392   // based on the state of the collection.  The former is done in
6393   // the interval [Marking, Sweeping] and the latter in the interval
6394   // [Marking, Sweeping).  Thus the transitions into the Marking state
6395   // and out of the Sweeping state must be synchronously visible
6396   // globally to the mutators.
6397   // The transition into the Marking state happens with the world
6398   // stopped so the mutators will globally see it.  Sweeping is
6399   // done asynchronously by the background collector so the transition
6400   // from the Sweeping state to the Resizing state must be done
6401   // under the freelistLock (as is the check for whether to
6402   // allocate-live and whether to dirty the mod-union table).
6403   assert(_collectorState == Resizing, "Change of collector state to"
6404     " Resizing must be done under the freelistLocks (plural)");
6405 
6406   // Now that sweeping has been completed, we clear
6407   // the incremental_collection_failed flag,
6408   // thus inviting a younger gen collection to promote into
6409   // this generation. If such a promotion may still fail,
6410   // the flag will be set again when a young collection is
6411   // attempted.
6412   GenCollectedHeap* gch = GenCollectedHeap::heap();
6413   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6414   gch->update_full_collections_completed(_collection_count_start);
6415 }
6416 
6417 // FIX ME!!! Looks like this belongs in CFLSpace, with
6418 // CMSGen merely delegating to it.
6419 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6420   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6421   HeapWord*  minAddr        = _cmsSpace->bottom();
6422   HeapWord*  largestAddr    =
6423     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6424   if (largestAddr == NULL) {
6425     // The dictionary appears to be empty.  In this case
6426     // try to coalesce at the end of the heap.
6427     largestAddr = _cmsSpace->end();
6428   }
6429   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6430   size_t nearLargestOffset =
6431     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6432   if (PrintFLSStatistics != 0) {
6433     gclog_or_tty->print_cr(
6434       "CMS: Large Block: " PTR_FORMAT ";"
6435       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6436       largestAddr,
6437       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6438   }
6439   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6440 }
6441 
6442 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6443   return addr >= _cmsSpace->nearLargestChunk();
6444 }
6445 
6446 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6447   return _cmsSpace->find_chunk_at_end();
6448 }
6449 
6450 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6451                                                     bool full) {
6452   // The next lower level has been collected.  Gather any statistics
6453   // that are of interest at this point.
6454   if (!full && (current_level + 1) == level()) {
6455     // Gather statistics on the young generation collection.
6456     collector()->stats().record_gc0_end(used());
6457   }
6458 }
6459 
6460 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6461   GenCollectedHeap* gch = GenCollectedHeap::heap();
6462   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6463     "Wrong type of heap");
6464   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6465     gch->gen_policy()->size_policy();
6466   assert(sp->is_gc_cms_adaptive_size_policy(),
6467     "Wrong type of size policy");
6468   return sp;
6469 }
6470 
6471 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6472   if (PrintGCDetails && Verbose) {
6473     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6474   }
6475   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6476   _debug_collection_type =
6477     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6478   if (PrintGCDetails && Verbose) {
6479     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6480   }
6481 }
6482 
6483 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6484   bool asynch) {
6485   // We iterate over the space(s) underlying this generation,
6486   // checking the mark bit map to see if the bits corresponding
6487   // to specific blocks are marked or not. Blocks that are
6488   // marked are live and are not swept up. All remaining blocks
6489   // are swept up, with coalescing on-the-fly as we sweep up
6490   // contiguous free and/or garbage blocks:
6491   // We need to ensure that the sweeper synchronizes with allocators
6492   // and stop-the-world collectors. In particular, the following
6493   // locks are used:
6494   // . CMS token: if this is held, a stop the world collection cannot occur
6495   // . freelistLock: if this is held no allocation can occur from this
6496   //                 generation by another thread
6497   // . bitMapLock: if this is held, no other thread can access or update
6498   //
6499 
6500   // Note that we need to hold the freelistLock if we use
6501   // block iterate below; else the iterator might go awry if
6502   // a mutator (or promotion) causes block contents to change
6503   // (for instance if the allocator divvies up a block).
6504   // If we hold the free list lock, for all practical purposes
6505   // young generation GC's can't occur (they'll usually need to
6506   // promote), so we might as well prevent all young generation
6507   // GC's while we do a sweeping step. For the same reason, we might
6508   // as well take the bit map lock for the entire duration
6509 
6510   // check that we hold the requisite locks
6511   assert(have_cms_token(), "Should hold cms token");
6512   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6513          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6514         "Should possess CMS token to sweep");
6515   assert_lock_strong(gen->freelistLock());
6516   assert_lock_strong(bitMapLock());
6517 
6518   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6519   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6520   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6521                                       _inter_sweep_estimate.padded_average(),
6522                                       _intra_sweep_estimate.padded_average());
6523   gen->setNearLargestChunk();
6524 
6525   {
6526     SweepClosure sweepClosure(this, gen, &_markBitMap,
6527                             CMSYield && asynch);
6528     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6529     // We need to free-up/coalesce garbage/blocks from a
6530     // co-terminal free run. This is done in the SweepClosure
6531     // destructor; so, do not remove this scope, else the
6532     // end-of-sweep-census below will be off by a little bit.
6533   }
6534   gen->cmsSpace()->sweep_completed();
6535   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6536   if (should_unload_classes()) {                // unloaded classes this cycle,
6537     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6538   } else {                                      // did not unload classes,
6539     _concurrent_cycles_since_last_unload++;     // ... increment count
6540   }
6541 }
6542 
6543 // Reset CMS data structures (for now just the marking bit map)
6544 // preparatory for the next cycle.
6545 void CMSCollector::reset(bool asynch) {
6546   GenCollectedHeap* gch = GenCollectedHeap::heap();
6547   CMSAdaptiveSizePolicy* sp = size_policy();
6548   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6549   if (asynch) {
6550     CMSTokenSyncWithLocks ts(true, bitMapLock());
6551 
6552     // If the state is not "Resetting", the foreground  thread
6553     // has done a collection and the resetting.
6554     if (_collectorState != Resetting) {
6555       assert(_collectorState == Idling, "The state should only change"
6556         " because the foreground collector has finished the collection");
6557       return;
6558     }
6559 
6560     // Clear the mark bitmap (no grey objects to start with)
6561     // for the next cycle.
6562     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6563     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6564 
6565     HeapWord* curAddr = _markBitMap.startWord();
6566     while (curAddr < _markBitMap.endWord()) {
6567       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6568       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6569       _markBitMap.clear_large_range(chunk);
6570       if (ConcurrentMarkSweepThread::should_yield() &&
6571           !foregroundGCIsActive() &&
6572           CMSYield) {
6573         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6574                "CMS thread should hold CMS token");
6575         assert_lock_strong(bitMapLock());
6576         bitMapLock()->unlock();
6577         ConcurrentMarkSweepThread::desynchronize(true);
6578         ConcurrentMarkSweepThread::acknowledge_yield_request();
6579         stopTimer();
6580         if (PrintCMSStatistics != 0) {
6581           incrementYields();
6582         }
6583         icms_wait();
6584 
6585         // See the comment in coordinator_yield()
6586         for (unsigned i = 0; i < CMSYieldSleepCount &&
6587                          ConcurrentMarkSweepThread::should_yield() &&
6588                          !CMSCollector::foregroundGCIsActive(); ++i) {
6589           os::sleep(Thread::current(), 1, false);
6590           ConcurrentMarkSweepThread::acknowledge_yield_request();
6591         }
6592 
6593         ConcurrentMarkSweepThread::synchronize(true);
6594         bitMapLock()->lock_without_safepoint_check();
6595         startTimer();
6596       }
6597       curAddr = chunk.end();
6598     }
6599     // A successful mostly concurrent collection has been done.
6600     // Because only the full (i.e., concurrent mode failure) collections
6601     // are being measured for gc overhead limits, clean the "near" flag
6602     // and count.
6603     sp->reset_gc_overhead_limit_count();
6604     _collectorState = Idling;
6605   } else {
6606     // already have the lock
6607     assert(_collectorState == Resetting, "just checking");
6608     assert_lock_strong(bitMapLock());
6609     _markBitMap.clear_all();
6610     _collectorState = Idling;
6611   }
6612 
6613   // Stop incremental mode after a cycle completes, so that any future cycles
6614   // are triggered by allocation.
6615   stop_icms();
6616 
6617   NOT_PRODUCT(
6618     if (RotateCMSCollectionTypes) {
6619       _cmsGen->rotate_debug_collection_type();
6620     }
6621   )
6622 
6623   register_gc_end();
6624 }
6625 
6626 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6627   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6628   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6629   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
6630   TraceCollectorStats tcs(counters());
6631 
6632   switch (op) {
6633     case CMS_op_checkpointRootsInitial: {
6634       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6635       checkpointRootsInitial(true);       // asynch
6636       if (PrintGC) {
6637         _cmsGen->printOccupancy("initial-mark");
6638       }
6639       break;
6640     }
6641     case CMS_op_checkpointRootsFinal: {
6642       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6643       checkpointRootsFinal(true,    // asynch
6644                            false,   // !clear_all_soft_refs
6645                            false);  // !init_mark_was_synchronous
6646       if (PrintGC) {
6647         _cmsGen->printOccupancy("remark");
6648       }
6649       break;
6650     }
6651     default:
6652       fatal("No such CMS_op");
6653   }
6654 }
6655 
6656 #ifndef PRODUCT
6657 size_t const CMSCollector::skip_header_HeapWords() {
6658   return FreeChunk::header_size();
6659 }
6660 
6661 // Try and collect here conditions that should hold when
6662 // CMS thread is exiting. The idea is that the foreground GC
6663 // thread should not be blocked if it wants to terminate
6664 // the CMS thread and yet continue to run the VM for a while
6665 // after that.
6666 void CMSCollector::verify_ok_to_terminate() const {
6667   assert(Thread::current()->is_ConcurrentGC_thread(),
6668          "should be called by CMS thread");
6669   assert(!_foregroundGCShouldWait, "should be false");
6670   // We could check here that all the various low-level locks
6671   // are not held by the CMS thread, but that is overkill; see
6672   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6673   // is checked.
6674 }
6675 #endif
6676 
6677 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6678    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6679           "missing Printezis mark?");
6680   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6681   size_t size = pointer_delta(nextOneAddr + 1, addr);
6682   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6683          "alignment problem");
6684   assert(size >= 3, "Necessary for Printezis marks to work");
6685   return size;
6686 }
6687 
6688 // A variant of the above (block_size_using_printezis_bits()) except
6689 // that we return 0 if the P-bits are not yet set.
6690 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6691   if (_markBitMap.isMarked(addr + 1)) {
6692     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6693     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6694     size_t size = pointer_delta(nextOneAddr + 1, addr);
6695     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6696            "alignment problem");
6697     assert(size >= 3, "Necessary for Printezis marks to work");
6698     return size;
6699   }
6700   return 0;
6701 }
6702 
6703 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6704   size_t sz = 0;
6705   oop p = (oop)addr;
6706   if (p->klass_or_null() != NULL) {
6707     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6708   } else {
6709     sz = block_size_using_printezis_bits(addr);
6710   }
6711   assert(sz > 0, "size must be nonzero");
6712   HeapWord* next_block = addr + sz;
6713   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6714                                              CardTableModRefBS::card_size);
6715   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6716          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6717          "must be different cards");
6718   return next_card;
6719 }
6720 
6721 
6722 // CMS Bit Map Wrapper /////////////////////////////////////////
6723 
6724 // Construct a CMS bit map infrastructure, but don't create the
6725 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6726 // further below.
6727 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6728   _bm(),
6729   _shifter(shifter),
6730   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6731 {
6732   _bmStartWord = 0;
6733   _bmWordSize  = 0;
6734 }
6735 
6736 bool CMSBitMap::allocate(MemRegion mr) {
6737   _bmStartWord = mr.start();
6738   _bmWordSize  = mr.word_size();
6739   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6740                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6741   if (!brs.is_reserved()) {
6742     warning("CMS bit map allocation failure");
6743     return false;
6744   }
6745   // For now we'll just commit all of the bit map up fromt.
6746   // Later on we'll try to be more parsimonious with swap.
6747   if (!_virtual_space.initialize(brs, brs.size())) {
6748     warning("CMS bit map backing store failure");
6749     return false;
6750   }
6751   assert(_virtual_space.committed_size() == brs.size(),
6752          "didn't reserve backing store for all of CMS bit map?");
6753   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6754   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6755          _bmWordSize, "inconsistency in bit map sizing");
6756   _bm.set_size(_bmWordSize >> _shifter);
6757 
6758   // bm.clear(); // can we rely on getting zero'd memory? verify below
6759   assert(isAllClear(),
6760          "Expected zero'd memory from ReservedSpace constructor");
6761   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6762          "consistency check");
6763   return true;
6764 }
6765 
6766 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6767   HeapWord *next_addr, *end_addr, *last_addr;
6768   assert_locked();
6769   assert(covers(mr), "out-of-range error");
6770   // XXX assert that start and end are appropriately aligned
6771   for (next_addr = mr.start(), end_addr = mr.end();
6772        next_addr < end_addr; next_addr = last_addr) {
6773     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6774     last_addr = dirty_region.end();
6775     if (!dirty_region.is_empty()) {
6776       cl->do_MemRegion(dirty_region);
6777     } else {
6778       assert(last_addr == end_addr, "program logic");
6779       return;
6780     }
6781   }
6782 }
6783 
6784 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6785   _bm.print_on_error(st, prefix);
6786 }
6787 
6788 #ifndef PRODUCT
6789 void CMSBitMap::assert_locked() const {
6790   CMSLockVerifier::assert_locked(lock());
6791 }
6792 
6793 bool CMSBitMap::covers(MemRegion mr) const {
6794   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6795   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6796          "size inconsistency");
6797   return (mr.start() >= _bmStartWord) &&
6798          (mr.end()   <= endWord());
6799 }
6800 
6801 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6802     return (start >= _bmStartWord && (start + size) <= endWord());
6803 }
6804 
6805 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6806   // verify that there are no 1 bits in the interval [left, right)
6807   FalseBitMapClosure falseBitMapClosure;
6808   iterate(&falseBitMapClosure, left, right);
6809 }
6810 
6811 void CMSBitMap::region_invariant(MemRegion mr)
6812 {
6813   assert_locked();
6814   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6815   assert(!mr.is_empty(), "unexpected empty region");
6816   assert(covers(mr), "mr should be covered by bit map");
6817   // convert address range into offset range
6818   size_t start_ofs = heapWordToOffset(mr.start());
6819   // Make sure that end() is appropriately aligned
6820   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6821                         (1 << (_shifter+LogHeapWordSize))),
6822          "Misaligned mr.end()");
6823   size_t end_ofs   = heapWordToOffset(mr.end());
6824   assert(end_ofs > start_ofs, "Should mark at least one bit");
6825 }
6826 
6827 #endif
6828 
6829 bool CMSMarkStack::allocate(size_t size) {
6830   // allocate a stack of the requisite depth
6831   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6832                    size * sizeof(oop)));
6833   if (!rs.is_reserved()) {
6834     warning("CMSMarkStack allocation failure");
6835     return false;
6836   }
6837   if (!_virtual_space.initialize(rs, rs.size())) {
6838     warning("CMSMarkStack backing store failure");
6839     return false;
6840   }
6841   assert(_virtual_space.committed_size() == rs.size(),
6842          "didn't reserve backing store for all of CMS stack?");
6843   _base = (oop*)(_virtual_space.low());
6844   _index = 0;
6845   _capacity = size;
6846   NOT_PRODUCT(_max_depth = 0);
6847   return true;
6848 }
6849 
6850 // XXX FIX ME !!! In the MT case we come in here holding a
6851 // leaf lock. For printing we need to take a further lock
6852 // which has lower rank. We need to recallibrate the two
6853 // lock-ranks involved in order to be able to rpint the
6854 // messages below. (Or defer the printing to the caller.
6855 // For now we take the expedient path of just disabling the
6856 // messages for the problematic case.)
6857 void CMSMarkStack::expand() {
6858   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6859   if (_capacity == MarkStackSizeMax) {
6860     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6861       // We print a warning message only once per CMS cycle.
6862       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6863     }
6864     return;
6865   }
6866   // Double capacity if possible
6867   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6868   // Do not give up existing stack until we have managed to
6869   // get the double capacity that we desired.
6870   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6871                    new_capacity * sizeof(oop)));
6872   if (rs.is_reserved()) {
6873     // Release the backing store associated with old stack
6874     _virtual_space.release();
6875     // Reinitialize virtual space for new stack
6876     if (!_virtual_space.initialize(rs, rs.size())) {
6877       fatal("Not enough swap for expanded marking stack");
6878     }
6879     _base = (oop*)(_virtual_space.low());
6880     _index = 0;
6881     _capacity = new_capacity;
6882   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6883     // Failed to double capacity, continue;
6884     // we print a detail message only once per CMS cycle.
6885     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6886             SIZE_FORMAT"K",
6887             _capacity / K, new_capacity / K);
6888   }
6889 }
6890 
6891 
6892 // Closures
6893 // XXX: there seems to be a lot of code  duplication here;
6894 // should refactor and consolidate common code.
6895 
6896 // This closure is used to mark refs into the CMS generation in
6897 // the CMS bit map. Called at the first checkpoint. This closure
6898 // assumes that we do not need to re-mark dirty cards; if the CMS
6899 // generation on which this is used is not an oldest
6900 // generation then this will lose younger_gen cards!
6901 
6902 MarkRefsIntoClosure::MarkRefsIntoClosure(
6903   MemRegion span, CMSBitMap* bitMap):
6904     _span(span),
6905     _bitMap(bitMap)
6906 {
6907     assert(_ref_processor == NULL, "deliberately left NULL");
6908     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6909 }
6910 
6911 void MarkRefsIntoClosure::do_oop(oop obj) {
6912   // if p points into _span, then mark corresponding bit in _markBitMap
6913   assert(obj->is_oop(), "expected an oop");
6914   HeapWord* addr = (HeapWord*)obj;
6915   if (_span.contains(addr)) {
6916     // this should be made more efficient
6917     _bitMap->mark(addr);
6918   }
6919 }
6920 
6921 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6922 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6923 
6924 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6925   MemRegion span, CMSBitMap* bitMap):
6926     _span(span),
6927     _bitMap(bitMap)
6928 {
6929     assert(_ref_processor == NULL, "deliberately left NULL");
6930     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6931 }
6932 
6933 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6934   // if p points into _span, then mark corresponding bit in _markBitMap
6935   assert(obj->is_oop(), "expected an oop");
6936   HeapWord* addr = (HeapWord*)obj;
6937   if (_span.contains(addr)) {
6938     // this should be made more efficient
6939     _bitMap->par_mark(addr);
6940   }
6941 }
6942 
6943 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6944 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6945 
6946 // A variant of the above, used for CMS marking verification.
6947 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6948   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6949     _span(span),
6950     _verification_bm(verification_bm),
6951     _cms_bm(cms_bm)
6952 {
6953     assert(_ref_processor == NULL, "deliberately left NULL");
6954     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6955 }
6956 
6957 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6958   // if p points into _span, then mark corresponding bit in _markBitMap
6959   assert(obj->is_oop(), "expected an oop");
6960   HeapWord* addr = (HeapWord*)obj;
6961   if (_span.contains(addr)) {
6962     _verification_bm->mark(addr);
6963     if (!_cms_bm->isMarked(addr)) {
6964       oop(addr)->print();
6965       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6966       fatal("... aborting");
6967     }
6968   }
6969 }
6970 
6971 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6972 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6973 
6974 //////////////////////////////////////////////////
6975 // MarkRefsIntoAndScanClosure
6976 //////////////////////////////////////////////////
6977 
6978 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6979                                                        ReferenceProcessor* rp,
6980                                                        CMSBitMap* bit_map,
6981                                                        CMSBitMap* mod_union_table,
6982                                                        CMSMarkStack*  mark_stack,
6983                                                        CMSCollector* collector,
6984                                                        bool should_yield,
6985                                                        bool concurrent_precleaning):
6986   _collector(collector),
6987   _span(span),
6988   _bit_map(bit_map),
6989   _mark_stack(mark_stack),
6990   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6991                       mark_stack, concurrent_precleaning),
6992   _yield(should_yield),
6993   _concurrent_precleaning(concurrent_precleaning),
6994   _freelistLock(NULL)
6995 {
6996   _ref_processor = rp;
6997   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6998 }
6999 
7000 // This closure is used to mark refs into the CMS generation at the
7001 // second (final) checkpoint, and to scan and transitively follow
7002 // the unmarked oops. It is also used during the concurrent precleaning
7003 // phase while scanning objects on dirty cards in the CMS generation.
7004 // The marks are made in the marking bit map and the marking stack is
7005 // used for keeping the (newly) grey objects during the scan.
7006 // The parallel version (Par_...) appears further below.
7007 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7008   if (obj != NULL) {
7009     assert(obj->is_oop(), "expected an oop");
7010     HeapWord* addr = (HeapWord*)obj;
7011     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7012     assert(_collector->overflow_list_is_empty(),
7013            "overflow list should be empty");
7014     if (_span.contains(addr) &&
7015         !_bit_map->isMarked(addr)) {
7016       // mark bit map (object is now grey)
7017       _bit_map->mark(addr);
7018       // push on marking stack (stack should be empty), and drain the
7019       // stack by applying this closure to the oops in the oops popped
7020       // from the stack (i.e. blacken the grey objects)
7021       bool res = _mark_stack->push(obj);
7022       assert(res, "Should have space to push on empty stack");
7023       do {
7024         oop new_oop = _mark_stack->pop();
7025         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7026         assert(_bit_map->isMarked((HeapWord*)new_oop),
7027                "only grey objects on this stack");
7028         // iterate over the oops in this oop, marking and pushing
7029         // the ones in CMS heap (i.e. in _span).
7030         new_oop->oop_iterate(&_pushAndMarkClosure);
7031         // check if it's time to yield
7032         do_yield_check();
7033       } while (!_mark_stack->isEmpty() ||
7034                (!_concurrent_precleaning && take_from_overflow_list()));
7035         // if marking stack is empty, and we are not doing this
7036         // during precleaning, then check the overflow list
7037     }
7038     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7039     assert(_collector->overflow_list_is_empty(),
7040            "overflow list was drained above");
7041     // We could restore evacuated mark words, if any, used for
7042     // overflow list links here because the overflow list is
7043     // provably empty here. That would reduce the maximum
7044     // size requirements for preserved_{oop,mark}_stack.
7045     // But we'll just postpone it until we are all done
7046     // so we can just stream through.
7047     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
7048       _collector->restore_preserved_marks_if_any();
7049       assert(_collector->no_preserved_marks(), "No preserved marks");
7050     }
7051     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
7052            "All preserved marks should have been restored above");
7053   }
7054 }
7055 
7056 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7057 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7058 
7059 void MarkRefsIntoAndScanClosure::do_yield_work() {
7060   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7061          "CMS thread should hold CMS token");
7062   assert_lock_strong(_freelistLock);
7063   assert_lock_strong(_bit_map->lock());
7064   // relinquish the free_list_lock and bitMaplock()
7065   _bit_map->lock()->unlock();
7066   _freelistLock->unlock();
7067   ConcurrentMarkSweepThread::desynchronize(true);
7068   ConcurrentMarkSweepThread::acknowledge_yield_request();
7069   _collector->stopTimer();
7070   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7071   if (PrintCMSStatistics != 0) {
7072     _collector->incrementYields();
7073   }
7074   _collector->icms_wait();
7075 
7076   // See the comment in coordinator_yield()
7077   for (unsigned i = 0;
7078        i < CMSYieldSleepCount &&
7079        ConcurrentMarkSweepThread::should_yield() &&
7080        !CMSCollector::foregroundGCIsActive();
7081        ++i) {
7082     os::sleep(Thread::current(), 1, false);
7083     ConcurrentMarkSweepThread::acknowledge_yield_request();
7084   }
7085 
7086   ConcurrentMarkSweepThread::synchronize(true);
7087   _freelistLock->lock_without_safepoint_check();
7088   _bit_map->lock()->lock_without_safepoint_check();
7089   _collector->startTimer();
7090 }
7091 
7092 ///////////////////////////////////////////////////////////
7093 // Par_MarkRefsIntoAndScanClosure: a parallel version of
7094 //                                 MarkRefsIntoAndScanClosure
7095 ///////////////////////////////////////////////////////////
7096 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
7097   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
7098   CMSBitMap* bit_map, OopTaskQueue* work_queue):
7099   _span(span),
7100   _bit_map(bit_map),
7101   _work_queue(work_queue),
7102   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
7103                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
7104   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
7105 {
7106   _ref_processor = rp;
7107   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7108 }
7109 
7110 // This closure is used to mark refs into the CMS generation at the
7111 // second (final) checkpoint, and to scan and transitively follow
7112 // the unmarked oops. The marks are made in the marking bit map and
7113 // the work_queue is used for keeping the (newly) grey objects during
7114 // the scan phase whence they are also available for stealing by parallel
7115 // threads. Since the marking bit map is shared, updates are
7116 // synchronized (via CAS).
7117 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7118   if (obj != NULL) {
7119     // Ignore mark word because this could be an already marked oop
7120     // that may be chained at the end of the overflow list.
7121     assert(obj->is_oop(true), "expected an oop");
7122     HeapWord* addr = (HeapWord*)obj;
7123     if (_span.contains(addr) &&
7124         !_bit_map->isMarked(addr)) {
7125       // mark bit map (object will become grey):
7126       // It is possible for several threads to be
7127       // trying to "claim" this object concurrently;
7128       // the unique thread that succeeds in marking the
7129       // object first will do the subsequent push on
7130       // to the work queue (or overflow list).
7131       if (_bit_map->par_mark(addr)) {
7132         // push on work_queue (which may not be empty), and trim the
7133         // queue to an appropriate length by applying this closure to
7134         // the oops in the oops popped from the stack (i.e. blacken the
7135         // grey objects)
7136         bool res = _work_queue->push(obj);
7137         assert(res, "Low water mark should be less than capacity?");
7138         trim_queue(_low_water_mark);
7139       } // Else, another thread claimed the object
7140     }
7141   }
7142 }
7143 
7144 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7145 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7146 
7147 // This closure is used to rescan the marked objects on the dirty cards
7148 // in the mod union table and the card table proper.
7149 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
7150   oop p, MemRegion mr) {
7151 
7152   size_t size = 0;
7153   HeapWord* addr = (HeapWord*)p;
7154   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7155   assert(_span.contains(addr), "we are scanning the CMS generation");
7156   // check if it's time to yield
7157   if (do_yield_check()) {
7158     // We yielded for some foreground stop-world work,
7159     // and we have been asked to abort this ongoing preclean cycle.
7160     return 0;
7161   }
7162   if (_bitMap->isMarked(addr)) {
7163     // it's marked; is it potentially uninitialized?
7164     if (p->klass_or_null() != NULL) {
7165         // an initialized object; ignore mark word in verification below
7166         // since we are running concurrent with mutators
7167         assert(p->is_oop(true), "should be an oop");
7168         if (p->is_objArray()) {
7169           // objArrays are precisely marked; restrict scanning
7170           // to dirty cards only.
7171           size = CompactibleFreeListSpace::adjustObjectSize(
7172                    p->oop_iterate(_scanningClosure, mr));
7173         } else {
7174           // A non-array may have been imprecisely marked; we need
7175           // to scan object in its entirety.
7176           size = CompactibleFreeListSpace::adjustObjectSize(
7177                    p->oop_iterate(_scanningClosure));
7178         }
7179         #ifdef ASSERT
7180           size_t direct_size =
7181             CompactibleFreeListSpace::adjustObjectSize(p->size());
7182           assert(size == direct_size, "Inconsistency in size");
7183           assert(size >= 3, "Necessary for Printezis marks to work");
7184           if (!_bitMap->isMarked(addr+1)) {
7185             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7186           } else {
7187             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7188             assert(_bitMap->isMarked(addr+size-1),
7189                    "inconsistent Printezis mark");
7190           }
7191         #endif // ASSERT
7192     } else {
7193       // an unitialized object
7194       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7195       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7196       size = pointer_delta(nextOneAddr + 1, addr);
7197       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7198              "alignment problem");
7199       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7200       // will dirty the card when the klass pointer is installed in the
7201       // object (signalling the completion of initialization).
7202     }
7203   } else {
7204     // Either a not yet marked object or an uninitialized object
7205     if (p->klass_or_null() == NULL) {
7206       // An uninitialized object, skip to the next card, since
7207       // we may not be able to read its P-bits yet.
7208       assert(size == 0, "Initial value");
7209     } else {
7210       // An object not (yet) reached by marking: we merely need to
7211       // compute its size so as to go look at the next block.
7212       assert(p->is_oop(true), "should be an oop");
7213       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7214     }
7215   }
7216   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7217   return size;
7218 }
7219 
7220 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7221   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7222          "CMS thread should hold CMS token");
7223   assert_lock_strong(_freelistLock);
7224   assert_lock_strong(_bitMap->lock());
7225   // relinquish the free_list_lock and bitMaplock()
7226   _bitMap->lock()->unlock();
7227   _freelistLock->unlock();
7228   ConcurrentMarkSweepThread::desynchronize(true);
7229   ConcurrentMarkSweepThread::acknowledge_yield_request();
7230   _collector->stopTimer();
7231   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7232   if (PrintCMSStatistics != 0) {
7233     _collector->incrementYields();
7234   }
7235   _collector->icms_wait();
7236 
7237   // See the comment in coordinator_yield()
7238   for (unsigned i = 0; i < CMSYieldSleepCount &&
7239                    ConcurrentMarkSweepThread::should_yield() &&
7240                    !CMSCollector::foregroundGCIsActive(); ++i) {
7241     os::sleep(Thread::current(), 1, false);
7242     ConcurrentMarkSweepThread::acknowledge_yield_request();
7243   }
7244 
7245   ConcurrentMarkSweepThread::synchronize(true);
7246   _freelistLock->lock_without_safepoint_check();
7247   _bitMap->lock()->lock_without_safepoint_check();
7248   _collector->startTimer();
7249 }
7250 
7251 
7252 //////////////////////////////////////////////////////////////////
7253 // SurvivorSpacePrecleanClosure
7254 //////////////////////////////////////////////////////////////////
7255 // This (single-threaded) closure is used to preclean the oops in
7256 // the survivor spaces.
7257 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7258 
7259   HeapWord* addr = (HeapWord*)p;
7260   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7261   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7262   assert(p->klass_or_null() != NULL, "object should be initializd");
7263   // an initialized object; ignore mark word in verification below
7264   // since we are running concurrent with mutators
7265   assert(p->is_oop(true), "should be an oop");
7266   // Note that we do not yield while we iterate over
7267   // the interior oops of p, pushing the relevant ones
7268   // on our marking stack.
7269   size_t size = p->oop_iterate(_scanning_closure);
7270   do_yield_check();
7271   // Observe that below, we do not abandon the preclean
7272   // phase as soon as we should; rather we empty the
7273   // marking stack before returning. This is to satisfy
7274   // some existing assertions. In general, it may be a
7275   // good idea to abort immediately and complete the marking
7276   // from the grey objects at a later time.
7277   while (!_mark_stack->isEmpty()) {
7278     oop new_oop = _mark_stack->pop();
7279     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7280     assert(_bit_map->isMarked((HeapWord*)new_oop),
7281            "only grey objects on this stack");
7282     // iterate over the oops in this oop, marking and pushing
7283     // the ones in CMS heap (i.e. in _span).
7284     new_oop->oop_iterate(_scanning_closure);
7285     // check if it's time to yield
7286     do_yield_check();
7287   }
7288   unsigned int after_count =
7289     GenCollectedHeap::heap()->total_collections();
7290   bool abort = (_before_count != after_count) ||
7291                _collector->should_abort_preclean();
7292   return abort ? 0 : size;
7293 }
7294 
7295 void SurvivorSpacePrecleanClosure::do_yield_work() {
7296   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7297          "CMS thread should hold CMS token");
7298   assert_lock_strong(_bit_map->lock());
7299   // Relinquish the bit map lock
7300   _bit_map->lock()->unlock();
7301   ConcurrentMarkSweepThread::desynchronize(true);
7302   ConcurrentMarkSweepThread::acknowledge_yield_request();
7303   _collector->stopTimer();
7304   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7305   if (PrintCMSStatistics != 0) {
7306     _collector->incrementYields();
7307   }
7308   _collector->icms_wait();
7309 
7310   // See the comment in coordinator_yield()
7311   for (unsigned i = 0; i < CMSYieldSleepCount &&
7312                        ConcurrentMarkSweepThread::should_yield() &&
7313                        !CMSCollector::foregroundGCIsActive(); ++i) {
7314     os::sleep(Thread::current(), 1, false);
7315     ConcurrentMarkSweepThread::acknowledge_yield_request();
7316   }
7317 
7318   ConcurrentMarkSweepThread::synchronize(true);
7319   _bit_map->lock()->lock_without_safepoint_check();
7320   _collector->startTimer();
7321 }
7322 
7323 // This closure is used to rescan the marked objects on the dirty cards
7324 // in the mod union table and the card table proper. In the parallel
7325 // case, although the bitMap is shared, we do a single read so the
7326 // isMarked() query is "safe".
7327 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7328   // Ignore mark word because we are running concurrent with mutators
7329   assert(p->is_oop_or_null(true), "expected an oop or null");
7330   HeapWord* addr = (HeapWord*)p;
7331   assert(_span.contains(addr), "we are scanning the CMS generation");
7332   bool is_obj_array = false;
7333   #ifdef ASSERT
7334     if (!_parallel) {
7335       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7336       assert(_collector->overflow_list_is_empty(),
7337              "overflow list should be empty");
7338 
7339     }
7340   #endif // ASSERT
7341   if (_bit_map->isMarked(addr)) {
7342     // Obj arrays are precisely marked, non-arrays are not;
7343     // so we scan objArrays precisely and non-arrays in their
7344     // entirety.
7345     if (p->is_objArray()) {
7346       is_obj_array = true;
7347       if (_parallel) {
7348         p->oop_iterate(_par_scan_closure, mr);
7349       } else {
7350         p->oop_iterate(_scan_closure, mr);
7351       }
7352     } else {
7353       if (_parallel) {
7354         p->oop_iterate(_par_scan_closure);
7355       } else {
7356         p->oop_iterate(_scan_closure);
7357       }
7358     }
7359   }
7360   #ifdef ASSERT
7361     if (!_parallel) {
7362       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7363       assert(_collector->overflow_list_is_empty(),
7364              "overflow list should be empty");
7365 
7366     }
7367   #endif // ASSERT
7368   return is_obj_array;
7369 }
7370 
7371 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7372                         MemRegion span,
7373                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7374                         bool should_yield, bool verifying):
7375   _collector(collector),
7376   _span(span),
7377   _bitMap(bitMap),
7378   _mut(&collector->_modUnionTable),
7379   _markStack(markStack),
7380   _yield(should_yield),
7381   _skipBits(0)
7382 {
7383   assert(_markStack->isEmpty(), "stack should be empty");
7384   _finger = _bitMap->startWord();
7385   _threshold = _finger;
7386   assert(_collector->_restart_addr == NULL, "Sanity check");
7387   assert(_span.contains(_finger), "Out of bounds _finger?");
7388   DEBUG_ONLY(_verifying = verifying;)
7389 }
7390 
7391 void MarkFromRootsClosure::reset(HeapWord* addr) {
7392   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7393   assert(_span.contains(addr), "Out of bounds _finger?");
7394   _finger = addr;
7395   _threshold = (HeapWord*)round_to(
7396                  (intptr_t)_finger, CardTableModRefBS::card_size);
7397 }
7398 
7399 // Should revisit to see if this should be restructured for
7400 // greater efficiency.
7401 bool MarkFromRootsClosure::do_bit(size_t offset) {
7402   if (_skipBits > 0) {
7403     _skipBits--;
7404     return true;
7405   }
7406   // convert offset into a HeapWord*
7407   HeapWord* addr = _bitMap->startWord() + offset;
7408   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7409          "address out of range");
7410   assert(_bitMap->isMarked(addr), "tautology");
7411   if (_bitMap->isMarked(addr+1)) {
7412     // this is an allocated but not yet initialized object
7413     assert(_skipBits == 0, "tautology");
7414     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7415     oop p = oop(addr);
7416     if (p->klass_or_null() == NULL) {
7417       DEBUG_ONLY(if (!_verifying) {)
7418         // We re-dirty the cards on which this object lies and increase
7419         // the _threshold so that we'll come back to scan this object
7420         // during the preclean or remark phase. (CMSCleanOnEnter)
7421         if (CMSCleanOnEnter) {
7422           size_t sz = _collector->block_size_using_printezis_bits(addr);
7423           HeapWord* end_card_addr   = (HeapWord*)round_to(
7424                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7425           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7426           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7427           // Bump _threshold to end_card_addr; note that
7428           // _threshold cannot possibly exceed end_card_addr, anyhow.
7429           // This prevents future clearing of the card as the scan proceeds
7430           // to the right.
7431           assert(_threshold <= end_card_addr,
7432                  "Because we are just scanning into this object");
7433           if (_threshold < end_card_addr) {
7434             _threshold = end_card_addr;
7435           }
7436           if (p->klass_or_null() != NULL) {
7437             // Redirty the range of cards...
7438             _mut->mark_range(redirty_range);
7439           } // ...else the setting of klass will dirty the card anyway.
7440         }
7441       DEBUG_ONLY(})
7442       return true;
7443     }
7444   }
7445   scanOopsInOop(addr);
7446   return true;
7447 }
7448 
7449 // We take a break if we've been at this for a while,
7450 // so as to avoid monopolizing the locks involved.
7451 void MarkFromRootsClosure::do_yield_work() {
7452   // First give up the locks, then yield, then re-lock
7453   // We should probably use a constructor/destructor idiom to
7454   // do this unlock/lock or modify the MutexUnlocker class to
7455   // serve our purpose. XXX
7456   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7457          "CMS thread should hold CMS token");
7458   assert_lock_strong(_bitMap->lock());
7459   _bitMap->lock()->unlock();
7460   ConcurrentMarkSweepThread::desynchronize(true);
7461   ConcurrentMarkSweepThread::acknowledge_yield_request();
7462   _collector->stopTimer();
7463   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7464   if (PrintCMSStatistics != 0) {
7465     _collector->incrementYields();
7466   }
7467   _collector->icms_wait();
7468 
7469   // See the comment in coordinator_yield()
7470   for (unsigned i = 0; i < CMSYieldSleepCount &&
7471                        ConcurrentMarkSweepThread::should_yield() &&
7472                        !CMSCollector::foregroundGCIsActive(); ++i) {
7473     os::sleep(Thread::current(), 1, false);
7474     ConcurrentMarkSweepThread::acknowledge_yield_request();
7475   }
7476 
7477   ConcurrentMarkSweepThread::synchronize(true);
7478   _bitMap->lock()->lock_without_safepoint_check();
7479   _collector->startTimer();
7480 }
7481 
7482 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7483   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7484   assert(_markStack->isEmpty(),
7485          "should drain stack to limit stack usage");
7486   // convert ptr to an oop preparatory to scanning
7487   oop obj = oop(ptr);
7488   // Ignore mark word in verification below, since we
7489   // may be running concurrent with mutators.
7490   assert(obj->is_oop(true), "should be an oop");
7491   assert(_finger <= ptr, "_finger runneth ahead");
7492   // advance the finger to right end of this object
7493   _finger = ptr + obj->size();
7494   assert(_finger > ptr, "we just incremented it above");
7495   // On large heaps, it may take us some time to get through
7496   // the marking phase (especially if running iCMS). During
7497   // this time it's possible that a lot of mutations have
7498   // accumulated in the card table and the mod union table --
7499   // these mutation records are redundant until we have
7500   // actually traced into the corresponding card.
7501   // Here, we check whether advancing the finger would make
7502   // us cross into a new card, and if so clear corresponding
7503   // cards in the MUT (preclean them in the card-table in the
7504   // future).
7505 
7506   DEBUG_ONLY(if (!_verifying) {)
7507     // The clean-on-enter optimization is disabled by default,
7508     // until we fix 6178663.
7509     if (CMSCleanOnEnter && (_finger > _threshold)) {
7510       // [_threshold, _finger) represents the interval
7511       // of cards to be cleared  in MUT (or precleaned in card table).
7512       // The set of cards to be cleared is all those that overlap
7513       // with the interval [_threshold, _finger); note that
7514       // _threshold is always kept card-aligned but _finger isn't
7515       // always card-aligned.
7516       HeapWord* old_threshold = _threshold;
7517       assert(old_threshold == (HeapWord*)round_to(
7518               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7519              "_threshold should always be card-aligned");
7520       _threshold = (HeapWord*)round_to(
7521                      (intptr_t)_finger, CardTableModRefBS::card_size);
7522       MemRegion mr(old_threshold, _threshold);
7523       assert(!mr.is_empty(), "Control point invariant");
7524       assert(_span.contains(mr), "Should clear within span");
7525       _mut->clear_range(mr);
7526     }
7527   DEBUG_ONLY(})
7528   // Note: the finger doesn't advance while we drain
7529   // the stack below.
7530   PushOrMarkClosure pushOrMarkClosure(_collector,
7531                                       _span, _bitMap, _markStack,
7532                                       _finger, this);
7533   bool res = _markStack->push(obj);
7534   assert(res, "Empty non-zero size stack should have space for single push");
7535   while (!_markStack->isEmpty()) {
7536     oop new_oop = _markStack->pop();
7537     // Skip verifying header mark word below because we are
7538     // running concurrent with mutators.
7539     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7540     // now scan this oop's oops
7541     new_oop->oop_iterate(&pushOrMarkClosure);
7542     do_yield_check();
7543   }
7544   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7545 }
7546 
7547 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7548                        CMSCollector* collector, MemRegion span,
7549                        CMSBitMap* bit_map,
7550                        OopTaskQueue* work_queue,
7551                        CMSMarkStack*  overflow_stack,
7552                        bool should_yield):
7553   _collector(collector),
7554   _whole_span(collector->_span),
7555   _span(span),
7556   _bit_map(bit_map),
7557   _mut(&collector->_modUnionTable),
7558   _work_queue(work_queue),
7559   _overflow_stack(overflow_stack),
7560   _yield(should_yield),
7561   _skip_bits(0),
7562   _task(task)
7563 {
7564   assert(_work_queue->size() == 0, "work_queue should be empty");
7565   _finger = span.start();
7566   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7567   assert(_span.contains(_finger), "Out of bounds _finger?");
7568 }
7569 
7570 // Should revisit to see if this should be restructured for
7571 // greater efficiency.
7572 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7573   if (_skip_bits > 0) {
7574     _skip_bits--;
7575     return true;
7576   }
7577   // convert offset into a HeapWord*
7578   HeapWord* addr = _bit_map->startWord() + offset;
7579   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7580          "address out of range");
7581   assert(_bit_map->isMarked(addr), "tautology");
7582   if (_bit_map->isMarked(addr+1)) {
7583     // this is an allocated object that might not yet be initialized
7584     assert(_skip_bits == 0, "tautology");
7585     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7586     oop p = oop(addr);
7587     if (p->klass_or_null() == NULL) {
7588       // in the case of Clean-on-Enter optimization, redirty card
7589       // and avoid clearing card by increasing  the threshold.
7590       return true;
7591     }
7592   }
7593   scan_oops_in_oop(addr);
7594   return true;
7595 }
7596 
7597 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7598   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7599   // Should we assert that our work queue is empty or
7600   // below some drain limit?
7601   assert(_work_queue->size() == 0,
7602          "should drain stack to limit stack usage");
7603   // convert ptr to an oop preparatory to scanning
7604   oop obj = oop(ptr);
7605   // Ignore mark word in verification below, since we
7606   // may be running concurrent with mutators.
7607   assert(obj->is_oop(true), "should be an oop");
7608   assert(_finger <= ptr, "_finger runneth ahead");
7609   // advance the finger to right end of this object
7610   _finger = ptr + obj->size();
7611   assert(_finger > ptr, "we just incremented it above");
7612   // On large heaps, it may take us some time to get through
7613   // the marking phase (especially if running iCMS). During
7614   // this time it's possible that a lot of mutations have
7615   // accumulated in the card table and the mod union table --
7616   // these mutation records are redundant until we have
7617   // actually traced into the corresponding card.
7618   // Here, we check whether advancing the finger would make
7619   // us cross into a new card, and if so clear corresponding
7620   // cards in the MUT (preclean them in the card-table in the
7621   // future).
7622 
7623   // The clean-on-enter optimization is disabled by default,
7624   // until we fix 6178663.
7625   if (CMSCleanOnEnter && (_finger > _threshold)) {
7626     // [_threshold, _finger) represents the interval
7627     // of cards to be cleared  in MUT (or precleaned in card table).
7628     // The set of cards to be cleared is all those that overlap
7629     // with the interval [_threshold, _finger); note that
7630     // _threshold is always kept card-aligned but _finger isn't
7631     // always card-aligned.
7632     HeapWord* old_threshold = _threshold;
7633     assert(old_threshold == (HeapWord*)round_to(
7634             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7635            "_threshold should always be card-aligned");
7636     _threshold = (HeapWord*)round_to(
7637                    (intptr_t)_finger, CardTableModRefBS::card_size);
7638     MemRegion mr(old_threshold, _threshold);
7639     assert(!mr.is_empty(), "Control point invariant");
7640     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7641     _mut->clear_range(mr);
7642   }
7643 
7644   // Note: the local finger doesn't advance while we drain
7645   // the stack below, but the global finger sure can and will.
7646   HeapWord** gfa = _task->global_finger_addr();
7647   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7648                                       _span, _bit_map,
7649                                       _work_queue,
7650                                       _overflow_stack,
7651                                       _finger,
7652                                       gfa, this);
7653   bool res = _work_queue->push(obj);   // overflow could occur here
7654   assert(res, "Will hold once we use workqueues");
7655   while (true) {
7656     oop new_oop;
7657     if (!_work_queue->pop_local(new_oop)) {
7658       // We emptied our work_queue; check if there's stuff that can
7659       // be gotten from the overflow stack.
7660       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7661             _overflow_stack, _work_queue)) {
7662         do_yield_check();
7663         continue;
7664       } else {  // done
7665         break;
7666       }
7667     }
7668     // Skip verifying header mark word below because we are
7669     // running concurrent with mutators.
7670     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7671     // now scan this oop's oops
7672     new_oop->oop_iterate(&pushOrMarkClosure);
7673     do_yield_check();
7674   }
7675   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7676 }
7677 
7678 // Yield in response to a request from VM Thread or
7679 // from mutators.
7680 void Par_MarkFromRootsClosure::do_yield_work() {
7681   assert(_task != NULL, "sanity");
7682   _task->yield();
7683 }
7684 
7685 // A variant of the above used for verifying CMS marking work.
7686 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7687                         MemRegion span,
7688                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7689                         CMSMarkStack*  mark_stack):
7690   _collector(collector),
7691   _span(span),
7692   _verification_bm(verification_bm),
7693   _cms_bm(cms_bm),
7694   _mark_stack(mark_stack),
7695   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7696                       mark_stack)
7697 {
7698   assert(_mark_stack->isEmpty(), "stack should be empty");
7699   _finger = _verification_bm->startWord();
7700   assert(_collector->_restart_addr == NULL, "Sanity check");
7701   assert(_span.contains(_finger), "Out of bounds _finger?");
7702 }
7703 
7704 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7705   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7706   assert(_span.contains(addr), "Out of bounds _finger?");
7707   _finger = addr;
7708 }
7709 
7710 // Should revisit to see if this should be restructured for
7711 // greater efficiency.
7712 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7713   // convert offset into a HeapWord*
7714   HeapWord* addr = _verification_bm->startWord() + offset;
7715   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7716          "address out of range");
7717   assert(_verification_bm->isMarked(addr), "tautology");
7718   assert(_cms_bm->isMarked(addr), "tautology");
7719 
7720   assert(_mark_stack->isEmpty(),
7721          "should drain stack to limit stack usage");
7722   // convert addr to an oop preparatory to scanning
7723   oop obj = oop(addr);
7724   assert(obj->is_oop(), "should be an oop");
7725   assert(_finger <= addr, "_finger runneth ahead");
7726   // advance the finger to right end of this object
7727   _finger = addr + obj->size();
7728   assert(_finger > addr, "we just incremented it above");
7729   // Note: the finger doesn't advance while we drain
7730   // the stack below.
7731   bool res = _mark_stack->push(obj);
7732   assert(res, "Empty non-zero size stack should have space for single push");
7733   while (!_mark_stack->isEmpty()) {
7734     oop new_oop = _mark_stack->pop();
7735     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7736     // now scan this oop's oops
7737     new_oop->oop_iterate(&_pam_verify_closure);
7738   }
7739   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7740   return true;
7741 }
7742 
7743 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7744   CMSCollector* collector, MemRegion span,
7745   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7746   CMSMarkStack*  mark_stack):
7747   CMSOopClosure(collector->ref_processor()),
7748   _collector(collector),
7749   _span(span),
7750   _verification_bm(verification_bm),
7751   _cms_bm(cms_bm),
7752   _mark_stack(mark_stack)
7753 { }
7754 
7755 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7756 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7757 
7758 // Upon stack overflow, we discard (part of) the stack,
7759 // remembering the least address amongst those discarded
7760 // in CMSCollector's _restart_address.
7761 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7762   // Remember the least grey address discarded
7763   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7764   _collector->lower_restart_addr(ra);
7765   _mark_stack->reset();  // discard stack contents
7766   _mark_stack->expand(); // expand the stack if possible
7767 }
7768 
7769 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7770   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7771   HeapWord* addr = (HeapWord*)obj;
7772   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7773     // Oop lies in _span and isn't yet grey or black
7774     _verification_bm->mark(addr);            // now grey
7775     if (!_cms_bm->isMarked(addr)) {
7776       oop(addr)->print();
7777       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7778                              addr);
7779       fatal("... aborting");
7780     }
7781 
7782     if (!_mark_stack->push(obj)) { // stack overflow
7783       if (PrintCMSStatistics != 0) {
7784         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7785                                SIZE_FORMAT, _mark_stack->capacity());
7786       }
7787       assert(_mark_stack->isFull(), "Else push should have succeeded");
7788       handle_stack_overflow(addr);
7789     }
7790     // anything including and to the right of _finger
7791     // will be scanned as we iterate over the remainder of the
7792     // bit map
7793   }
7794 }
7795 
7796 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7797                      MemRegion span,
7798                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7799                      HeapWord* finger, MarkFromRootsClosure* parent) :
7800   CMSOopClosure(collector->ref_processor()),
7801   _collector(collector),
7802   _span(span),
7803   _bitMap(bitMap),
7804   _markStack(markStack),
7805   _finger(finger),
7806   _parent(parent)
7807 { }
7808 
7809 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7810                      MemRegion span,
7811                      CMSBitMap* bit_map,
7812                      OopTaskQueue* work_queue,
7813                      CMSMarkStack*  overflow_stack,
7814                      HeapWord* finger,
7815                      HeapWord** global_finger_addr,
7816                      Par_MarkFromRootsClosure* parent) :
7817   CMSOopClosure(collector->ref_processor()),
7818   _collector(collector),
7819   _whole_span(collector->_span),
7820   _span(span),
7821   _bit_map(bit_map),
7822   _work_queue(work_queue),
7823   _overflow_stack(overflow_stack),
7824   _finger(finger),
7825   _global_finger_addr(global_finger_addr),
7826   _parent(parent)
7827 { }
7828 
7829 // Assumes thread-safe access by callers, who are
7830 // responsible for mutual exclusion.
7831 void CMSCollector::lower_restart_addr(HeapWord* low) {
7832   assert(_span.contains(low), "Out of bounds addr");
7833   if (_restart_addr == NULL) {
7834     _restart_addr = low;
7835   } else {
7836     _restart_addr = MIN2(_restart_addr, low);
7837   }
7838 }
7839 
7840 // Upon stack overflow, we discard (part of) the stack,
7841 // remembering the least address amongst those discarded
7842 // in CMSCollector's _restart_address.
7843 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7844   // Remember the least grey address discarded
7845   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7846   _collector->lower_restart_addr(ra);
7847   _markStack->reset();  // discard stack contents
7848   _markStack->expand(); // expand the stack if possible
7849 }
7850 
7851 // Upon stack overflow, we discard (part of) the stack,
7852 // remembering the least address amongst those discarded
7853 // in CMSCollector's _restart_address.
7854 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7855   // We need to do this under a mutex to prevent other
7856   // workers from interfering with the work done below.
7857   MutexLockerEx ml(_overflow_stack->par_lock(),
7858                    Mutex::_no_safepoint_check_flag);
7859   // Remember the least grey address discarded
7860   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7861   _collector->lower_restart_addr(ra);
7862   _overflow_stack->reset();  // discard stack contents
7863   _overflow_stack->expand(); // expand the stack if possible
7864 }
7865 
7866 void CMKlassClosure::do_klass(Klass* k) {
7867   assert(_oop_closure != NULL, "Not initialized?");
7868   k->oops_do(_oop_closure);
7869 }
7870 
7871 void PushOrMarkClosure::do_oop(oop obj) {
7872   // Ignore mark word because we are running concurrent with mutators.
7873   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7874   HeapWord* addr = (HeapWord*)obj;
7875   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7876     // Oop lies in _span and isn't yet grey or black
7877     _bitMap->mark(addr);            // now grey
7878     if (addr < _finger) {
7879       // the bit map iteration has already either passed, or
7880       // sampled, this bit in the bit map; we'll need to
7881       // use the marking stack to scan this oop's oops.
7882       bool simulate_overflow = false;
7883       NOT_PRODUCT(
7884         if (CMSMarkStackOverflowALot &&
7885             _collector->simulate_overflow()) {
7886           // simulate a stack overflow
7887           simulate_overflow = true;
7888         }
7889       )
7890       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7891         if (PrintCMSStatistics != 0) {
7892           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7893                                  SIZE_FORMAT, _markStack->capacity());
7894         }
7895         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7896         handle_stack_overflow(addr);
7897       }
7898     }
7899     // anything including and to the right of _finger
7900     // will be scanned as we iterate over the remainder of the
7901     // bit map
7902     do_yield_check();
7903   }
7904 }
7905 
7906 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7907 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7908 
7909 void Par_PushOrMarkClosure::do_oop(oop obj) {
7910   // Ignore mark word because we are running concurrent with mutators.
7911   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7912   HeapWord* addr = (HeapWord*)obj;
7913   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7914     // Oop lies in _span and isn't yet grey or black
7915     // We read the global_finger (volatile read) strictly after marking oop
7916     bool res = _bit_map->par_mark(addr);    // now grey
7917     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7918     // Should we push this marked oop on our stack?
7919     // -- if someone else marked it, nothing to do
7920     // -- if target oop is above global finger nothing to do
7921     // -- if target oop is in chunk and above local finger
7922     //      then nothing to do
7923     // -- else push on work queue
7924     if (   !res       // someone else marked it, they will deal with it
7925         || (addr >= *gfa)  // will be scanned in a later task
7926         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7927       return;
7928     }
7929     // the bit map iteration has already either passed, or
7930     // sampled, this bit in the bit map; we'll need to
7931     // use the marking stack to scan this oop's oops.
7932     bool simulate_overflow = false;
7933     NOT_PRODUCT(
7934       if (CMSMarkStackOverflowALot &&
7935           _collector->simulate_overflow()) {
7936         // simulate a stack overflow
7937         simulate_overflow = true;
7938       }
7939     )
7940     if (simulate_overflow ||
7941         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7942       // stack overflow
7943       if (PrintCMSStatistics != 0) {
7944         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7945                                SIZE_FORMAT, _overflow_stack->capacity());
7946       }
7947       // We cannot assert that the overflow stack is full because
7948       // it may have been emptied since.
7949       assert(simulate_overflow ||
7950              _work_queue->size() == _work_queue->max_elems(),
7951             "Else push should have succeeded");
7952       handle_stack_overflow(addr);
7953     }
7954     do_yield_check();
7955   }
7956 }
7957 
7958 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7959 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7960 
7961 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7962                                        MemRegion span,
7963                                        ReferenceProcessor* rp,
7964                                        CMSBitMap* bit_map,
7965                                        CMSBitMap* mod_union_table,
7966                                        CMSMarkStack*  mark_stack,
7967                                        bool           concurrent_precleaning):
7968   CMSOopClosure(rp),
7969   _collector(collector),
7970   _span(span),
7971   _bit_map(bit_map),
7972   _mod_union_table(mod_union_table),
7973   _mark_stack(mark_stack),
7974   _concurrent_precleaning(concurrent_precleaning)
7975 {
7976   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7977 }
7978 
7979 // Grey object rescan during pre-cleaning and second checkpoint phases --
7980 // the non-parallel version (the parallel version appears further below.)
7981 void PushAndMarkClosure::do_oop(oop obj) {
7982   // Ignore mark word verification. If during concurrent precleaning,
7983   // the object monitor may be locked. If during the checkpoint
7984   // phases, the object may already have been reached by a  different
7985   // path and may be at the end of the global overflow list (so
7986   // the mark word may be NULL).
7987   assert(obj->is_oop_or_null(true /* ignore mark word */),
7988          "expected an oop or NULL");
7989   HeapWord* addr = (HeapWord*)obj;
7990   // Check if oop points into the CMS generation
7991   // and is not marked
7992   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7993     // a white object ...
7994     _bit_map->mark(addr);         // ... now grey
7995     // push on the marking stack (grey set)
7996     bool simulate_overflow = false;
7997     NOT_PRODUCT(
7998       if (CMSMarkStackOverflowALot &&
7999           _collector->simulate_overflow()) {
8000         // simulate a stack overflow
8001         simulate_overflow = true;
8002       }
8003     )
8004     if (simulate_overflow || !_mark_stack->push(obj)) {
8005       if (_concurrent_precleaning) {
8006          // During precleaning we can just dirty the appropriate card(s)
8007          // in the mod union table, thus ensuring that the object remains
8008          // in the grey set  and continue. In the case of object arrays
8009          // we need to dirty all of the cards that the object spans,
8010          // since the rescan of object arrays will be limited to the
8011          // dirty cards.
8012          // Note that no one can be intefering with us in this action
8013          // of dirtying the mod union table, so no locking or atomics
8014          // are required.
8015          if (obj->is_objArray()) {
8016            size_t sz = obj->size();
8017            HeapWord* end_card_addr = (HeapWord*)round_to(
8018                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
8019            MemRegion redirty_range = MemRegion(addr, end_card_addr);
8020            assert(!redirty_range.is_empty(), "Arithmetical tautology");
8021            _mod_union_table->mark_range(redirty_range);
8022          } else {
8023            _mod_union_table->mark(addr);
8024          }
8025          _collector->_ser_pmc_preclean_ovflw++;
8026       } else {
8027          // During the remark phase, we need to remember this oop
8028          // in the overflow list.
8029          _collector->push_on_overflow_list(obj);
8030          _collector->_ser_pmc_remark_ovflw++;
8031       }
8032     }
8033   }
8034 }
8035 
8036 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
8037                                                MemRegion span,
8038                                                ReferenceProcessor* rp,
8039                                                CMSBitMap* bit_map,
8040                                                OopTaskQueue* work_queue):
8041   CMSOopClosure(rp),
8042   _collector(collector),
8043   _span(span),
8044   _bit_map(bit_map),
8045   _work_queue(work_queue)
8046 {
8047   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
8048 }
8049 
8050 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
8051 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
8052 
8053 // Grey object rescan during second checkpoint phase --
8054 // the parallel version.
8055 void Par_PushAndMarkClosure::do_oop(oop obj) {
8056   // In the assert below, we ignore the mark word because
8057   // this oop may point to an already visited object that is
8058   // on the overflow stack (in which case the mark word has
8059   // been hijacked for chaining into the overflow stack --
8060   // if this is the last object in the overflow stack then
8061   // its mark word will be NULL). Because this object may
8062   // have been subsequently popped off the global overflow
8063   // stack, and the mark word possibly restored to the prototypical
8064   // value, by the time we get to examined this failing assert in
8065   // the debugger, is_oop_or_null(false) may subsequently start
8066   // to hold.
8067   assert(obj->is_oop_or_null(true),
8068          "expected an oop or NULL");
8069   HeapWord* addr = (HeapWord*)obj;
8070   // Check if oop points into the CMS generation
8071   // and is not marked
8072   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
8073     // a white object ...
8074     // If we manage to "claim" the object, by being the
8075     // first thread to mark it, then we push it on our
8076     // marking stack
8077     if (_bit_map->par_mark(addr)) {     // ... now grey
8078       // push on work queue (grey set)
8079       bool simulate_overflow = false;
8080       NOT_PRODUCT(
8081         if (CMSMarkStackOverflowALot &&
8082             _collector->par_simulate_overflow()) {
8083           // simulate a stack overflow
8084           simulate_overflow = true;
8085         }
8086       )
8087       if (simulate_overflow || !_work_queue->push(obj)) {
8088         _collector->par_push_on_overflow_list(obj);
8089         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
8090       }
8091     } // Else, some other thread got there first
8092   }
8093 }
8094 
8095 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
8096 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
8097 
8098 void CMSPrecleanRefsYieldClosure::do_yield_work() {
8099   Mutex* bml = _collector->bitMapLock();
8100   assert_lock_strong(bml);
8101   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8102          "CMS thread should hold CMS token");
8103 
8104   bml->unlock();
8105   ConcurrentMarkSweepThread::desynchronize(true);
8106 
8107   ConcurrentMarkSweepThread::acknowledge_yield_request();
8108 
8109   _collector->stopTimer();
8110   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8111   if (PrintCMSStatistics != 0) {
8112     _collector->incrementYields();
8113   }
8114   _collector->icms_wait();
8115 
8116   // See the comment in coordinator_yield()
8117   for (unsigned i = 0; i < CMSYieldSleepCount &&
8118                        ConcurrentMarkSweepThread::should_yield() &&
8119                        !CMSCollector::foregroundGCIsActive(); ++i) {
8120     os::sleep(Thread::current(), 1, false);
8121     ConcurrentMarkSweepThread::acknowledge_yield_request();
8122   }
8123 
8124   ConcurrentMarkSweepThread::synchronize(true);
8125   bml->lock();
8126 
8127   _collector->startTimer();
8128 }
8129 
8130 bool CMSPrecleanRefsYieldClosure::should_return() {
8131   if (ConcurrentMarkSweepThread::should_yield()) {
8132     do_yield_work();
8133   }
8134   return _collector->foregroundGCIsActive();
8135 }
8136 
8137 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
8138   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
8139          "mr should be aligned to start at a card boundary");
8140   // We'd like to assert:
8141   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
8142   //        "mr should be a range of cards");
8143   // However, that would be too strong in one case -- the last
8144   // partition ends at _unallocated_block which, in general, can be
8145   // an arbitrary boundary, not necessarily card aligned.
8146   if (PrintCMSStatistics != 0) {
8147     _num_dirty_cards +=
8148          mr.word_size()/CardTableModRefBS::card_size_in_words;
8149   }
8150   _space->object_iterate_mem(mr, &_scan_cl);
8151 }
8152 
8153 SweepClosure::SweepClosure(CMSCollector* collector,
8154                            ConcurrentMarkSweepGeneration* g,
8155                            CMSBitMap* bitMap, bool should_yield) :
8156   _collector(collector),
8157   _g(g),
8158   _sp(g->cmsSpace()),
8159   _limit(_sp->sweep_limit()),
8160   _freelistLock(_sp->freelistLock()),
8161   _bitMap(bitMap),
8162   _yield(should_yield),
8163   _inFreeRange(false),           // No free range at beginning of sweep
8164   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
8165   _lastFreeRangeCoalesced(false),
8166   _freeFinger(g->used_region().start())
8167 {
8168   NOT_PRODUCT(
8169     _numObjectsFreed = 0;
8170     _numWordsFreed   = 0;
8171     _numObjectsLive = 0;
8172     _numWordsLive = 0;
8173     _numObjectsAlreadyFree = 0;
8174     _numWordsAlreadyFree = 0;
8175     _last_fc = NULL;
8176 
8177     _sp->initializeIndexedFreeListArrayReturnedBytes();
8178     _sp->dictionary()->initialize_dict_returned_bytes();
8179   )
8180   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8181          "sweep _limit out of bounds");
8182   if (CMSTraceSweeper) {
8183     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8184                         _limit);
8185   }
8186 }
8187 
8188 void SweepClosure::print_on(outputStream* st) const {
8189   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8190                 _sp->bottom(), _sp->end());
8191   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8192   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8193   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8194   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8195                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8196 }
8197 
8198 #ifndef PRODUCT
8199 // Assertion checking only:  no useful work in product mode --
8200 // however, if any of the flags below become product flags,
8201 // you may need to review this code to see if it needs to be
8202 // enabled in product mode.
8203 SweepClosure::~SweepClosure() {
8204   assert_lock_strong(_freelistLock);
8205   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8206          "sweep _limit out of bounds");
8207   if (inFreeRange()) {
8208     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8209     print();
8210     ShouldNotReachHere();
8211   }
8212   if (Verbose && PrintGC) {
8213     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8214                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8215     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8216                            SIZE_FORMAT" bytes  "
8217       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8218       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8219       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8220     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8221                         * sizeof(HeapWord);
8222     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8223 
8224     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8225       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8226       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8227       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8228       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8229       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8230         indexListReturnedBytes);
8231       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8232         dict_returned_bytes);
8233     }
8234   }
8235   if (CMSTraceSweeper) {
8236     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8237                            _limit);
8238   }
8239 }
8240 #endif  // PRODUCT
8241 
8242 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8243     bool freeRangeInFreeLists) {
8244   if (CMSTraceSweeper) {
8245     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
8246                freeFinger, freeRangeInFreeLists);
8247   }
8248   assert(!inFreeRange(), "Trampling existing free range");
8249   set_inFreeRange(true);
8250   set_lastFreeRangeCoalesced(false);
8251 
8252   set_freeFinger(freeFinger);
8253   set_freeRangeInFreeLists(freeRangeInFreeLists);
8254   if (CMSTestInFreeList) {
8255     if (freeRangeInFreeLists) {
8256       FreeChunk* fc = (FreeChunk*) freeFinger;
8257       assert(fc->is_free(), "A chunk on the free list should be free.");
8258       assert(fc->size() > 0, "Free range should have a size");
8259       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8260     }
8261   }
8262 }
8263 
8264 // Note that the sweeper runs concurrently with mutators. Thus,
8265 // it is possible for direct allocation in this generation to happen
8266 // in the middle of the sweep. Note that the sweeper also coalesces
8267 // contiguous free blocks. Thus, unless the sweeper and the allocator
8268 // synchronize appropriately freshly allocated blocks may get swept up.
8269 // This is accomplished by the sweeper locking the free lists while
8270 // it is sweeping. Thus blocks that are determined to be free are
8271 // indeed free. There is however one additional complication:
8272 // blocks that have been allocated since the final checkpoint and
8273 // mark, will not have been marked and so would be treated as
8274 // unreachable and swept up. To prevent this, the allocator marks
8275 // the bit map when allocating during the sweep phase. This leads,
8276 // however, to a further complication -- objects may have been allocated
8277 // but not yet initialized -- in the sense that the header isn't yet
8278 // installed. The sweeper can not then determine the size of the block
8279 // in order to skip over it. To deal with this case, we use a technique
8280 // (due to Printezis) to encode such uninitialized block sizes in the
8281 // bit map. Since the bit map uses a bit per every HeapWord, but the
8282 // CMS generation has a minimum object size of 3 HeapWords, it follows
8283 // that "normal marks" won't be adjacent in the bit map (there will
8284 // always be at least two 0 bits between successive 1 bits). We make use
8285 // of these "unused" bits to represent uninitialized blocks -- the bit
8286 // corresponding to the start of the uninitialized object and the next
8287 // bit are both set. Finally, a 1 bit marks the end of the object that
8288 // started with the two consecutive 1 bits to indicate its potentially
8289 // uninitialized state.
8290 
8291 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8292   FreeChunk* fc = (FreeChunk*)addr;
8293   size_t res;
8294 
8295   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8296   // than "addr == _limit" because although _limit was a block boundary when
8297   // we started the sweep, it may no longer be one because heap expansion
8298   // may have caused us to coalesce the block ending at the address _limit
8299   // with a newly expanded chunk (this happens when _limit was set to the
8300   // previous _end of the space), so we may have stepped past _limit:
8301   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8302   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8303     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8304            "sweep _limit out of bounds");
8305     assert(addr < _sp->end(), "addr out of bounds");
8306     // Flush any free range we might be holding as a single
8307     // coalesced chunk to the appropriate free list.
8308     if (inFreeRange()) {
8309       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8310              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8311       flush_cur_free_chunk(freeFinger(),
8312                            pointer_delta(addr, freeFinger()));
8313       if (CMSTraceSweeper) {
8314         gclog_or_tty->print("Sweep: last chunk: ");
8315         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8316                    "[coalesced:"SIZE_FORMAT"]\n",
8317                    freeFinger(), pointer_delta(addr, freeFinger()),
8318                    lastFreeRangeCoalesced());
8319       }
8320     }
8321 
8322     // help the iterator loop finish
8323     return pointer_delta(_sp->end(), addr);
8324   }
8325 
8326   assert(addr < _limit, "sweep invariant");
8327   // check if we should yield
8328   do_yield_check(addr);
8329   if (fc->is_free()) {
8330     // Chunk that is already free
8331     res = fc->size();
8332     do_already_free_chunk(fc);
8333     debug_only(_sp->verifyFreeLists());
8334     // If we flush the chunk at hand in lookahead_and_flush()
8335     // and it's coalesced with a preceding chunk, then the
8336     // process of "mangling" the payload of the coalesced block
8337     // will cause erasure of the size information from the
8338     // (erstwhile) header of all the coalesced blocks but the
8339     // first, so the first disjunct in the assert will not hold
8340     // in that specific case (in which case the second disjunct
8341     // will hold).
8342     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8343            "Otherwise the size info doesn't change at this step");
8344     NOT_PRODUCT(
8345       _numObjectsAlreadyFree++;
8346       _numWordsAlreadyFree += res;
8347     )
8348     NOT_PRODUCT(_last_fc = fc;)
8349   } else if (!_bitMap->isMarked(addr)) {
8350     // Chunk is fresh garbage
8351     res = do_garbage_chunk(fc);
8352     debug_only(_sp->verifyFreeLists());
8353     NOT_PRODUCT(
8354       _numObjectsFreed++;
8355       _numWordsFreed += res;
8356     )
8357   } else {
8358     // Chunk that is alive.
8359     res = do_live_chunk(fc);
8360     debug_only(_sp->verifyFreeLists());
8361     NOT_PRODUCT(
8362         _numObjectsLive++;
8363         _numWordsLive += res;
8364     )
8365   }
8366   return res;
8367 }
8368 
8369 // For the smart allocation, record following
8370 //  split deaths - a free chunk is removed from its free list because
8371 //      it is being split into two or more chunks.
8372 //  split birth - a free chunk is being added to its free list because
8373 //      a larger free chunk has been split and resulted in this free chunk.
8374 //  coal death - a free chunk is being removed from its free list because
8375 //      it is being coalesced into a large free chunk.
8376 //  coal birth - a free chunk is being added to its free list because
8377 //      it was created when two or more free chunks where coalesced into
8378 //      this free chunk.
8379 //
8380 // These statistics are used to determine the desired number of free
8381 // chunks of a given size.  The desired number is chosen to be relative
8382 // to the end of a CMS sweep.  The desired number at the end of a sweep
8383 // is the
8384 //      count-at-end-of-previous-sweep (an amount that was enough)
8385 //              - count-at-beginning-of-current-sweep  (the excess)
8386 //              + split-births  (gains in this size during interval)
8387 //              - split-deaths  (demands on this size during interval)
8388 // where the interval is from the end of one sweep to the end of the
8389 // next.
8390 //
8391 // When sweeping the sweeper maintains an accumulated chunk which is
8392 // the chunk that is made up of chunks that have been coalesced.  That
8393 // will be termed the left-hand chunk.  A new chunk of garbage that
8394 // is being considered for coalescing will be referred to as the
8395 // right-hand chunk.
8396 //
8397 // When making a decision on whether to coalesce a right-hand chunk with
8398 // the current left-hand chunk, the current count vs. the desired count
8399 // of the left-hand chunk is considered.  Also if the right-hand chunk
8400 // is near the large chunk at the end of the heap (see
8401 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8402 // left-hand chunk is coalesced.
8403 //
8404 // When making a decision about whether to split a chunk, the desired count
8405 // vs. the current count of the candidate to be split is also considered.
8406 // If the candidate is underpopulated (currently fewer chunks than desired)
8407 // a chunk of an overpopulated (currently more chunks than desired) size may
8408 // be chosen.  The "hint" associated with a free list, if non-null, points
8409 // to a free list which may be overpopulated.
8410 //
8411 
8412 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8413   const size_t size = fc->size();
8414   // Chunks that cannot be coalesced are not in the
8415   // free lists.
8416   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8417     assert(_sp->verify_chunk_in_free_list(fc),
8418       "free chunk should be in free lists");
8419   }
8420   // a chunk that is already free, should not have been
8421   // marked in the bit map
8422   HeapWord* const addr = (HeapWord*) fc;
8423   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8424   // Verify that the bit map has no bits marked between
8425   // addr and purported end of this block.
8426   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8427 
8428   // Some chunks cannot be coalesced under any circumstances.
8429   // See the definition of cantCoalesce().
8430   if (!fc->cantCoalesce()) {
8431     // This chunk can potentially be coalesced.
8432     if (_sp->adaptive_freelists()) {
8433       // All the work is done in
8434       do_post_free_or_garbage_chunk(fc, size);
8435     } else {  // Not adaptive free lists
8436       // this is a free chunk that can potentially be coalesced by the sweeper;
8437       if (!inFreeRange()) {
8438         // if the next chunk is a free block that can't be coalesced
8439         // it doesn't make sense to remove this chunk from the free lists
8440         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8441         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8442         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8443             nextChunk->is_free()               &&     // ... which is free...
8444             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8445           // nothing to do
8446         } else {
8447           // Potentially the start of a new free range:
8448           // Don't eagerly remove it from the free lists.
8449           // No need to remove it if it will just be put
8450           // back again.  (Also from a pragmatic point of view
8451           // if it is a free block in a region that is beyond
8452           // any allocated blocks, an assertion will fail)
8453           // Remember the start of a free run.
8454           initialize_free_range(addr, true);
8455           // end - can coalesce with next chunk
8456         }
8457       } else {
8458         // the midst of a free range, we are coalescing
8459         print_free_block_coalesced(fc);
8460         if (CMSTraceSweeper) {
8461           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8462         }
8463         // remove it from the free lists
8464         _sp->removeFreeChunkFromFreeLists(fc);
8465         set_lastFreeRangeCoalesced(true);
8466         // If the chunk is being coalesced and the current free range is
8467         // in the free lists, remove the current free range so that it
8468         // will be returned to the free lists in its entirety - all
8469         // the coalesced pieces included.
8470         if (freeRangeInFreeLists()) {
8471           FreeChunk* ffc = (FreeChunk*) freeFinger();
8472           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8473             "Size of free range is inconsistent with chunk size.");
8474           if (CMSTestInFreeList) {
8475             assert(_sp->verify_chunk_in_free_list(ffc),
8476               "free range is not in free lists");
8477           }
8478           _sp->removeFreeChunkFromFreeLists(ffc);
8479           set_freeRangeInFreeLists(false);
8480         }
8481       }
8482     }
8483     // Note that if the chunk is not coalescable (the else arm
8484     // below), we unconditionally flush, without needing to do
8485     // a "lookahead," as we do below.
8486     if (inFreeRange()) lookahead_and_flush(fc, size);
8487   } else {
8488     // Code path common to both original and adaptive free lists.
8489 
8490     // cant coalesce with previous block; this should be treated
8491     // as the end of a free run if any
8492     if (inFreeRange()) {
8493       // we kicked some butt; time to pick up the garbage
8494       assert(freeFinger() < addr, "freeFinger points too high");
8495       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8496     }
8497     // else, nothing to do, just continue
8498   }
8499 }
8500 
8501 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8502   // This is a chunk of garbage.  It is not in any free list.
8503   // Add it to a free list or let it possibly be coalesced into
8504   // a larger chunk.
8505   HeapWord* const addr = (HeapWord*) fc;
8506   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8507 
8508   if (_sp->adaptive_freelists()) {
8509     // Verify that the bit map has no bits marked between
8510     // addr and purported end of just dead object.
8511     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8512 
8513     do_post_free_or_garbage_chunk(fc, size);
8514   } else {
8515     if (!inFreeRange()) {
8516       // start of a new free range
8517       assert(size > 0, "A free range should have a size");
8518       initialize_free_range(addr, false);
8519     } else {
8520       // this will be swept up when we hit the end of the
8521       // free range
8522       if (CMSTraceSweeper) {
8523         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8524       }
8525       // If the chunk is being coalesced and the current free range is
8526       // in the free lists, remove the current free range so that it
8527       // will be returned to the free lists in its entirety - all
8528       // the coalesced pieces included.
8529       if (freeRangeInFreeLists()) {
8530         FreeChunk* ffc = (FreeChunk*)freeFinger();
8531         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8532           "Size of free range is inconsistent with chunk size.");
8533         if (CMSTestInFreeList) {
8534           assert(_sp->verify_chunk_in_free_list(ffc),
8535             "free range is not in free lists");
8536         }
8537         _sp->removeFreeChunkFromFreeLists(ffc);
8538         set_freeRangeInFreeLists(false);
8539       }
8540       set_lastFreeRangeCoalesced(true);
8541     }
8542     // this will be swept up when we hit the end of the free range
8543 
8544     // Verify that the bit map has no bits marked between
8545     // addr and purported end of just dead object.
8546     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8547   }
8548   assert(_limit >= addr + size,
8549          "A freshly garbage chunk can't possibly straddle over _limit");
8550   if (inFreeRange()) lookahead_and_flush(fc, size);
8551   return size;
8552 }
8553 
8554 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8555   HeapWord* addr = (HeapWord*) fc;
8556   // The sweeper has just found a live object. Return any accumulated
8557   // left hand chunk to the free lists.
8558   if (inFreeRange()) {
8559     assert(freeFinger() < addr, "freeFinger points too high");
8560     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8561   }
8562 
8563   // This object is live: we'd normally expect this to be
8564   // an oop, and like to assert the following:
8565   // assert(oop(addr)->is_oop(), "live block should be an oop");
8566   // However, as we commented above, this may be an object whose
8567   // header hasn't yet been initialized.
8568   size_t size;
8569   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8570   if (_bitMap->isMarked(addr + 1)) {
8571     // Determine the size from the bit map, rather than trying to
8572     // compute it from the object header.
8573     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8574     size = pointer_delta(nextOneAddr + 1, addr);
8575     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8576            "alignment problem");
8577 
8578 #ifdef ASSERT
8579       if (oop(addr)->klass_or_null() != NULL) {
8580         // Ignore mark word because we are running concurrent with mutators
8581         assert(oop(addr)->is_oop(true), "live block should be an oop");
8582         assert(size ==
8583                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8584                "P-mark and computed size do not agree");
8585       }
8586 #endif
8587 
8588   } else {
8589     // This should be an initialized object that's alive.
8590     assert(oop(addr)->klass_or_null() != NULL,
8591            "Should be an initialized object");
8592     // Ignore mark word because we are running concurrent with mutators
8593     assert(oop(addr)->is_oop(true), "live block should be an oop");
8594     // Verify that the bit map has no bits marked between
8595     // addr and purported end of this block.
8596     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8597     assert(size >= 3, "Necessary for Printezis marks to work");
8598     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8599     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8600   }
8601   return size;
8602 }
8603 
8604 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8605                                                  size_t chunkSize) {
8606   // do_post_free_or_garbage_chunk() should only be called in the case
8607   // of the adaptive free list allocator.
8608   const bool fcInFreeLists = fc->is_free();
8609   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8610   assert((HeapWord*)fc <= _limit, "sweep invariant");
8611   if (CMSTestInFreeList && fcInFreeLists) {
8612     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8613   }
8614 
8615   if (CMSTraceSweeper) {
8616     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8617   }
8618 
8619   HeapWord* const fc_addr = (HeapWord*) fc;
8620 
8621   bool coalesce;
8622   const size_t left  = pointer_delta(fc_addr, freeFinger());
8623   const size_t right = chunkSize;
8624   switch (FLSCoalescePolicy) {
8625     // numeric value forms a coalition aggressiveness metric
8626     case 0:  { // never coalesce
8627       coalesce = false;
8628       break;
8629     }
8630     case 1: { // coalesce if left & right chunks on overpopulated lists
8631       coalesce = _sp->coalOverPopulated(left) &&
8632                  _sp->coalOverPopulated(right);
8633       break;
8634     }
8635     case 2: { // coalesce if left chunk on overpopulated list (default)
8636       coalesce = _sp->coalOverPopulated(left);
8637       break;
8638     }
8639     case 3: { // coalesce if left OR right chunk on overpopulated list
8640       coalesce = _sp->coalOverPopulated(left) ||
8641                  _sp->coalOverPopulated(right);
8642       break;
8643     }
8644     case 4: { // always coalesce
8645       coalesce = true;
8646       break;
8647     }
8648     default:
8649      ShouldNotReachHere();
8650   }
8651 
8652   // Should the current free range be coalesced?
8653   // If the chunk is in a free range and either we decided to coalesce above
8654   // or the chunk is near the large block at the end of the heap
8655   // (isNearLargestChunk() returns true), then coalesce this chunk.
8656   const bool doCoalesce = inFreeRange()
8657                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8658   if (doCoalesce) {
8659     // Coalesce the current free range on the left with the new
8660     // chunk on the right.  If either is on a free list,
8661     // it must be removed from the list and stashed in the closure.
8662     if (freeRangeInFreeLists()) {
8663       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8664       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8665         "Size of free range is inconsistent with chunk size.");
8666       if (CMSTestInFreeList) {
8667         assert(_sp->verify_chunk_in_free_list(ffc),
8668           "Chunk is not in free lists");
8669       }
8670       _sp->coalDeath(ffc->size());
8671       _sp->removeFreeChunkFromFreeLists(ffc);
8672       set_freeRangeInFreeLists(false);
8673     }
8674     if (fcInFreeLists) {
8675       _sp->coalDeath(chunkSize);
8676       assert(fc->size() == chunkSize,
8677         "The chunk has the wrong size or is not in the free lists");
8678       _sp->removeFreeChunkFromFreeLists(fc);
8679     }
8680     set_lastFreeRangeCoalesced(true);
8681     print_free_block_coalesced(fc);
8682   } else {  // not in a free range and/or should not coalesce
8683     // Return the current free range and start a new one.
8684     if (inFreeRange()) {
8685       // In a free range but cannot coalesce with the right hand chunk.
8686       // Put the current free range into the free lists.
8687       flush_cur_free_chunk(freeFinger(),
8688                            pointer_delta(fc_addr, freeFinger()));
8689     }
8690     // Set up for new free range.  Pass along whether the right hand
8691     // chunk is in the free lists.
8692     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8693   }
8694 }
8695 
8696 // Lookahead flush:
8697 // If we are tracking a free range, and this is the last chunk that
8698 // we'll look at because its end crosses past _limit, we'll preemptively
8699 // flush it along with any free range we may be holding on to. Note that
8700 // this can be the case only for an already free or freshly garbage
8701 // chunk. If this block is an object, it can never straddle
8702 // over _limit. The "straddling" occurs when _limit is set at
8703 // the previous end of the space when this cycle started, and
8704 // a subsequent heap expansion caused the previously co-terminal
8705 // free block to be coalesced with the newly expanded portion,
8706 // thus rendering _limit a non-block-boundary making it dangerous
8707 // for the sweeper to step over and examine.
8708 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8709   assert(inFreeRange(), "Should only be called if currently in a free range.");
8710   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8711   assert(_sp->used_region().contains(eob - 1),
8712          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
8713                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8714                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8715                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8716   if (eob >= _limit) {
8717     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8718     if (CMSTraceSweeper) {
8719       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8720                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8721                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8722                              _limit, fc, eob, _sp->bottom(), _sp->end());
8723     }
8724     // Return the storage we are tracking back into the free lists.
8725     if (CMSTraceSweeper) {
8726       gclog_or_tty->print_cr("Flushing ... ");
8727     }
8728     assert(freeFinger() < eob, "Error");
8729     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8730   }
8731 }
8732 
8733 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8734   assert(inFreeRange(), "Should only be called if currently in a free range.");
8735   assert(size > 0,
8736     "A zero sized chunk cannot be added to the free lists.");
8737   if (!freeRangeInFreeLists()) {
8738     if (CMSTestInFreeList) {
8739       FreeChunk* fc = (FreeChunk*) chunk;
8740       fc->set_size(size);
8741       assert(!_sp->verify_chunk_in_free_list(fc),
8742         "chunk should not be in free lists yet");
8743     }
8744     if (CMSTraceSweeper) {
8745       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8746                     chunk, size);
8747     }
8748     // A new free range is going to be starting.  The current
8749     // free range has not been added to the free lists yet or
8750     // was removed so add it back.
8751     // If the current free range was coalesced, then the death
8752     // of the free range was recorded.  Record a birth now.
8753     if (lastFreeRangeCoalesced()) {
8754       _sp->coalBirth(size);
8755     }
8756     _sp->addChunkAndRepairOffsetTable(chunk, size,
8757             lastFreeRangeCoalesced());
8758   } else if (CMSTraceSweeper) {
8759     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8760   }
8761   set_inFreeRange(false);
8762   set_freeRangeInFreeLists(false);
8763 }
8764 
8765 // We take a break if we've been at this for a while,
8766 // so as to avoid monopolizing the locks involved.
8767 void SweepClosure::do_yield_work(HeapWord* addr) {
8768   // Return current free chunk being used for coalescing (if any)
8769   // to the appropriate freelist.  After yielding, the next
8770   // free block encountered will start a coalescing range of
8771   // free blocks.  If the next free block is adjacent to the
8772   // chunk just flushed, they will need to wait for the next
8773   // sweep to be coalesced.
8774   if (inFreeRange()) {
8775     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8776   }
8777 
8778   // First give up the locks, then yield, then re-lock.
8779   // We should probably use a constructor/destructor idiom to
8780   // do this unlock/lock or modify the MutexUnlocker class to
8781   // serve our purpose. XXX
8782   assert_lock_strong(_bitMap->lock());
8783   assert_lock_strong(_freelistLock);
8784   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8785          "CMS thread should hold CMS token");
8786   _bitMap->lock()->unlock();
8787   _freelistLock->unlock();
8788   ConcurrentMarkSweepThread::desynchronize(true);
8789   ConcurrentMarkSweepThread::acknowledge_yield_request();
8790   _collector->stopTimer();
8791   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8792   if (PrintCMSStatistics != 0) {
8793     _collector->incrementYields();
8794   }
8795   _collector->icms_wait();
8796 
8797   // See the comment in coordinator_yield()
8798   for (unsigned i = 0; i < CMSYieldSleepCount &&
8799                        ConcurrentMarkSweepThread::should_yield() &&
8800                        !CMSCollector::foregroundGCIsActive(); ++i) {
8801     os::sleep(Thread::current(), 1, false);
8802     ConcurrentMarkSweepThread::acknowledge_yield_request();
8803   }
8804 
8805   ConcurrentMarkSweepThread::synchronize(true);
8806   _freelistLock->lock();
8807   _bitMap->lock()->lock_without_safepoint_check();
8808   _collector->startTimer();
8809 }
8810 
8811 #ifndef PRODUCT
8812 // This is actually very useful in a product build if it can
8813 // be called from the debugger.  Compile it into the product
8814 // as needed.
8815 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8816   return debug_cms_space->verify_chunk_in_free_list(fc);
8817 }
8818 #endif
8819 
8820 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8821   if (CMSTraceSweeper) {
8822     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8823                            fc, fc->size());
8824   }
8825 }
8826 
8827 // CMSIsAliveClosure
8828 bool CMSIsAliveClosure::do_object_b(oop obj) {
8829   HeapWord* addr = (HeapWord*)obj;
8830   return addr != NULL &&
8831          (!_span.contains(addr) || _bit_map->isMarked(addr));
8832 }
8833 
8834 
8835 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8836                       MemRegion span,
8837                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8838                       bool cpc):
8839   _collector(collector),
8840   _span(span),
8841   _bit_map(bit_map),
8842   _mark_stack(mark_stack),
8843   _concurrent_precleaning(cpc) {
8844   assert(!_span.is_empty(), "Empty span could spell trouble");
8845 }
8846 
8847 
8848 // CMSKeepAliveClosure: the serial version
8849 void CMSKeepAliveClosure::do_oop(oop obj) {
8850   HeapWord* addr = (HeapWord*)obj;
8851   if (_span.contains(addr) &&
8852       !_bit_map->isMarked(addr)) {
8853     _bit_map->mark(addr);
8854     bool simulate_overflow = false;
8855     NOT_PRODUCT(
8856       if (CMSMarkStackOverflowALot &&
8857           _collector->simulate_overflow()) {
8858         // simulate a stack overflow
8859         simulate_overflow = true;
8860       }
8861     )
8862     if (simulate_overflow || !_mark_stack->push(obj)) {
8863       if (_concurrent_precleaning) {
8864         // We dirty the overflown object and let the remark
8865         // phase deal with it.
8866         assert(_collector->overflow_list_is_empty(), "Error");
8867         // In the case of object arrays, we need to dirty all of
8868         // the cards that the object spans. No locking or atomics
8869         // are needed since no one else can be mutating the mod union
8870         // table.
8871         if (obj->is_objArray()) {
8872           size_t sz = obj->size();
8873           HeapWord* end_card_addr =
8874             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8875           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8876           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8877           _collector->_modUnionTable.mark_range(redirty_range);
8878         } else {
8879           _collector->_modUnionTable.mark(addr);
8880         }
8881         _collector->_ser_kac_preclean_ovflw++;
8882       } else {
8883         _collector->push_on_overflow_list(obj);
8884         _collector->_ser_kac_ovflw++;
8885       }
8886     }
8887   }
8888 }
8889 
8890 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8891 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8892 
8893 // CMSParKeepAliveClosure: a parallel version of the above.
8894 // The work queues are private to each closure (thread),
8895 // but (may be) available for stealing by other threads.
8896 void CMSParKeepAliveClosure::do_oop(oop obj) {
8897   HeapWord* addr = (HeapWord*)obj;
8898   if (_span.contains(addr) &&
8899       !_bit_map->isMarked(addr)) {
8900     // In general, during recursive tracing, several threads
8901     // may be concurrently getting here; the first one to
8902     // "tag" it, claims it.
8903     if (_bit_map->par_mark(addr)) {
8904       bool res = _work_queue->push(obj);
8905       assert(res, "Low water mark should be much less than capacity");
8906       // Do a recursive trim in the hope that this will keep
8907       // stack usage lower, but leave some oops for potential stealers
8908       trim_queue(_low_water_mark);
8909     } // Else, another thread got there first
8910   }
8911 }
8912 
8913 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8914 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8915 
8916 void CMSParKeepAliveClosure::trim_queue(uint max) {
8917   while (_work_queue->size() > max) {
8918     oop new_oop;
8919     if (_work_queue->pop_local(new_oop)) {
8920       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8921       assert(_bit_map->isMarked((HeapWord*)new_oop),
8922              "no white objects on this stack!");
8923       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8924       // iterate over the oops in this oop, marking and pushing
8925       // the ones in CMS heap (i.e. in _span).
8926       new_oop->oop_iterate(&_mark_and_push);
8927     }
8928   }
8929 }
8930 
8931 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8932                                 CMSCollector* collector,
8933                                 MemRegion span, CMSBitMap* bit_map,
8934                                 OopTaskQueue* work_queue):
8935   _collector(collector),
8936   _span(span),
8937   _bit_map(bit_map),
8938   _work_queue(work_queue) { }
8939 
8940 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8941   HeapWord* addr = (HeapWord*)obj;
8942   if (_span.contains(addr) &&
8943       !_bit_map->isMarked(addr)) {
8944     if (_bit_map->par_mark(addr)) {
8945       bool simulate_overflow = false;
8946       NOT_PRODUCT(
8947         if (CMSMarkStackOverflowALot &&
8948             _collector->par_simulate_overflow()) {
8949           // simulate a stack overflow
8950           simulate_overflow = true;
8951         }
8952       )
8953       if (simulate_overflow || !_work_queue->push(obj)) {
8954         _collector->par_push_on_overflow_list(obj);
8955         _collector->_par_kac_ovflw++;
8956       }
8957     } // Else another thread got there already
8958   }
8959 }
8960 
8961 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8962 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8963 
8964 //////////////////////////////////////////////////////////////////
8965 //  CMSExpansionCause                /////////////////////////////
8966 //////////////////////////////////////////////////////////////////
8967 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8968   switch (cause) {
8969     case _no_expansion:
8970       return "No expansion";
8971     case _satisfy_free_ratio:
8972       return "Free ratio";
8973     case _satisfy_promotion:
8974       return "Satisfy promotion";
8975     case _satisfy_allocation:
8976       return "allocation";
8977     case _allocate_par_lab:
8978       return "Par LAB";
8979     case _allocate_par_spooling_space:
8980       return "Par Spooling Space";
8981     case _adaptive_size_policy:
8982       return "Ergonomics";
8983     default:
8984       return "unknown";
8985   }
8986 }
8987 
8988 void CMSDrainMarkingStackClosure::do_void() {
8989   // the max number to take from overflow list at a time
8990   const size_t num = _mark_stack->capacity()/4;
8991   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8992          "Overflow list should be NULL during concurrent phases");
8993   while (!_mark_stack->isEmpty() ||
8994          // if stack is empty, check the overflow list
8995          _collector->take_from_overflow_list(num, _mark_stack)) {
8996     oop obj = _mark_stack->pop();
8997     HeapWord* addr = (HeapWord*)obj;
8998     assert(_span.contains(addr), "Should be within span");
8999     assert(_bit_map->isMarked(addr), "Should be marked");
9000     assert(obj->is_oop(), "Should be an oop");
9001     obj->oop_iterate(_keep_alive);
9002   }
9003 }
9004 
9005 void CMSParDrainMarkingStackClosure::do_void() {
9006   // drain queue
9007   trim_queue(0);
9008 }
9009 
9010 // Trim our work_queue so its length is below max at return
9011 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
9012   while (_work_queue->size() > max) {
9013     oop new_oop;
9014     if (_work_queue->pop_local(new_oop)) {
9015       assert(new_oop->is_oop(), "Expected an oop");
9016       assert(_bit_map->isMarked((HeapWord*)new_oop),
9017              "no white objects on this stack!");
9018       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
9019       // iterate over the oops in this oop, marking and pushing
9020       // the ones in CMS heap (i.e. in _span).
9021       new_oop->oop_iterate(&_mark_and_push);
9022     }
9023   }
9024 }
9025 
9026 ////////////////////////////////////////////////////////////////////
9027 // Support for Marking Stack Overflow list handling and related code
9028 ////////////////////////////////////////////////////////////////////
9029 // Much of the following code is similar in shape and spirit to the
9030 // code used in ParNewGC. We should try and share that code
9031 // as much as possible in the future.
9032 
9033 #ifndef PRODUCT
9034 // Debugging support for CMSStackOverflowALot
9035 
9036 // It's OK to call this multi-threaded;  the worst thing
9037 // that can happen is that we'll get a bunch of closely
9038 // spaced simulated oveflows, but that's OK, in fact
9039 // probably good as it would exercise the overflow code
9040 // under contention.
9041 bool CMSCollector::simulate_overflow() {
9042   if (_overflow_counter-- <= 0) { // just being defensive
9043     _overflow_counter = CMSMarkStackOverflowInterval;
9044     return true;
9045   } else {
9046     return false;
9047   }
9048 }
9049 
9050 bool CMSCollector::par_simulate_overflow() {
9051   return simulate_overflow();
9052 }
9053 #endif
9054 
9055 // Single-threaded
9056 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
9057   assert(stack->isEmpty(), "Expected precondition");
9058   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
9059   size_t i = num;
9060   oop  cur = _overflow_list;
9061   const markOop proto = markOopDesc::prototype();
9062   NOT_PRODUCT(ssize_t n = 0;)
9063   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
9064     next = oop(cur->mark());
9065     cur->set_mark(proto);   // until proven otherwise
9066     assert(cur->is_oop(), "Should be an oop");
9067     bool res = stack->push(cur);
9068     assert(res, "Bit off more than can chew?");
9069     NOT_PRODUCT(n++;)
9070   }
9071   _overflow_list = cur;
9072 #ifndef PRODUCT
9073   assert(_num_par_pushes >= n, "Too many pops?");
9074   _num_par_pushes -=n;
9075 #endif
9076   return !stack->isEmpty();
9077 }
9078 
9079 #define BUSY  (oop(0x1aff1aff))
9080 // (MT-safe) Get a prefix of at most "num" from the list.
9081 // The overflow list is chained through the mark word of
9082 // each object in the list. We fetch the entire list,
9083 // break off a prefix of the right size and return the
9084 // remainder. If other threads try to take objects from
9085 // the overflow list at that time, they will wait for
9086 // some time to see if data becomes available. If (and
9087 // only if) another thread places one or more object(s)
9088 // on the global list before we have returned the suffix
9089 // to the global list, we will walk down our local list
9090 // to find its end and append the global list to
9091 // our suffix before returning it. This suffix walk can
9092 // prove to be expensive (quadratic in the amount of traffic)
9093 // when there are many objects in the overflow list and
9094 // there is much producer-consumer contention on the list.
9095 // *NOTE*: The overflow list manipulation code here and
9096 // in ParNewGeneration:: are very similar in shape,
9097 // except that in the ParNew case we use the old (from/eden)
9098 // copy of the object to thread the list via its klass word.
9099 // Because of the common code, if you make any changes in
9100 // the code below, please check the ParNew version to see if
9101 // similar changes might be needed.
9102 // CR 6797058 has been filed to consolidate the common code.
9103 bool CMSCollector::par_take_from_overflow_list(size_t num,
9104                                                OopTaskQueue* work_q,
9105                                                int no_of_gc_threads) {
9106   assert(work_q->size() == 0, "First empty local work queue");
9107   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
9108   if (_overflow_list == NULL) {
9109     return false;
9110   }
9111   // Grab the entire list; we'll put back a suffix
9112   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
9113   Thread* tid = Thread::current();
9114   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
9115   // set to ParallelGCThreads.
9116   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
9117   size_t sleep_time_millis = MAX2((size_t)1, num/100);
9118   // If the list is busy, we spin for a short while,
9119   // sleeping between attempts to get the list.
9120   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
9121     os::sleep(tid, sleep_time_millis, false);
9122     if (_overflow_list == NULL) {
9123       // Nothing left to take
9124       return false;
9125     } else if (_overflow_list != BUSY) {
9126       // Try and grab the prefix
9127       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
9128     }
9129   }
9130   // If the list was found to be empty, or we spun long
9131   // enough, we give up and return empty-handed. If we leave
9132   // the list in the BUSY state below, it must be the case that
9133   // some other thread holds the overflow list and will set it
9134   // to a non-BUSY state in the future.
9135   if (prefix == NULL || prefix == BUSY) {
9136      // Nothing to take or waited long enough
9137      if (prefix == NULL) {
9138        // Write back the NULL in case we overwrote it with BUSY above
9139        // and it is still the same value.
9140        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9141      }
9142      return false;
9143   }
9144   assert(prefix != NULL && prefix != BUSY, "Error");
9145   size_t i = num;
9146   oop cur = prefix;
9147   // Walk down the first "num" objects, unless we reach the end.
9148   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
9149   if (cur->mark() == NULL) {
9150     // We have "num" or fewer elements in the list, so there
9151     // is nothing to return to the global list.
9152     // Write back the NULL in lieu of the BUSY we wrote
9153     // above, if it is still the same value.
9154     if (_overflow_list == BUSY) {
9155       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9156     }
9157   } else {
9158     // Chop off the suffix and rerturn it to the global list.
9159     assert(cur->mark() != BUSY, "Error");
9160     oop suffix_head = cur->mark(); // suffix will be put back on global list
9161     cur->set_mark(NULL);           // break off suffix
9162     // It's possible that the list is still in the empty(busy) state
9163     // we left it in a short while ago; in that case we may be
9164     // able to place back the suffix without incurring the cost
9165     // of a walk down the list.
9166     oop observed_overflow_list = _overflow_list;
9167     oop cur_overflow_list = observed_overflow_list;
9168     bool attached = false;
9169     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
9170       observed_overflow_list =
9171         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9172       if (cur_overflow_list == observed_overflow_list) {
9173         attached = true;
9174         break;
9175       } else cur_overflow_list = observed_overflow_list;
9176     }
9177     if (!attached) {
9178       // Too bad, someone else sneaked in (at least) an element; we'll need
9179       // to do a splice. Find tail of suffix so we can prepend suffix to global
9180       // list.
9181       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9182       oop suffix_tail = cur;
9183       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9184              "Tautology");
9185       observed_overflow_list = _overflow_list;
9186       do {
9187         cur_overflow_list = observed_overflow_list;
9188         if (cur_overflow_list != BUSY) {
9189           // Do the splice ...
9190           suffix_tail->set_mark(markOop(cur_overflow_list));
9191         } else { // cur_overflow_list == BUSY
9192           suffix_tail->set_mark(NULL);
9193         }
9194         // ... and try to place spliced list back on overflow_list ...
9195         observed_overflow_list =
9196           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9197       } while (cur_overflow_list != observed_overflow_list);
9198       // ... until we have succeeded in doing so.
9199     }
9200   }
9201 
9202   // Push the prefix elements on work_q
9203   assert(prefix != NULL, "control point invariant");
9204   const markOop proto = markOopDesc::prototype();
9205   oop next;
9206   NOT_PRODUCT(ssize_t n = 0;)
9207   for (cur = prefix; cur != NULL; cur = next) {
9208     next = oop(cur->mark());
9209     cur->set_mark(proto);   // until proven otherwise
9210     assert(cur->is_oop(), "Should be an oop");
9211     bool res = work_q->push(cur);
9212     assert(res, "Bit off more than we can chew?");
9213     NOT_PRODUCT(n++;)
9214   }
9215 #ifndef PRODUCT
9216   assert(_num_par_pushes >= n, "Too many pops?");
9217   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9218 #endif
9219   return true;
9220 }
9221 
9222 // Single-threaded
9223 void CMSCollector::push_on_overflow_list(oop p) {
9224   NOT_PRODUCT(_num_par_pushes++;)
9225   assert(p->is_oop(), "Not an oop");
9226   preserve_mark_if_necessary(p);
9227   p->set_mark((markOop)_overflow_list);
9228   _overflow_list = p;
9229 }
9230 
9231 // Multi-threaded; use CAS to prepend to overflow list
9232 void CMSCollector::par_push_on_overflow_list(oop p) {
9233   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9234   assert(p->is_oop(), "Not an oop");
9235   par_preserve_mark_if_necessary(p);
9236   oop observed_overflow_list = _overflow_list;
9237   oop cur_overflow_list;
9238   do {
9239     cur_overflow_list = observed_overflow_list;
9240     if (cur_overflow_list != BUSY) {
9241       p->set_mark(markOop(cur_overflow_list));
9242     } else {
9243       p->set_mark(NULL);
9244     }
9245     observed_overflow_list =
9246       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9247   } while (cur_overflow_list != observed_overflow_list);
9248 }
9249 #undef BUSY
9250 
9251 // Single threaded
9252 // General Note on GrowableArray: pushes may silently fail
9253 // because we are (temporarily) out of C-heap for expanding
9254 // the stack. The problem is quite ubiquitous and affects
9255 // a lot of code in the JVM. The prudent thing for GrowableArray
9256 // to do (for now) is to exit with an error. However, that may
9257 // be too draconian in some cases because the caller may be
9258 // able to recover without much harm. For such cases, we
9259 // should probably introduce a "soft_push" method which returns
9260 // an indication of success or failure with the assumption that
9261 // the caller may be able to recover from a failure; code in
9262 // the VM can then be changed, incrementally, to deal with such
9263 // failures where possible, thus, incrementally hardening the VM
9264 // in such low resource situations.
9265 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9266   _preserved_oop_stack.push(p);
9267   _preserved_mark_stack.push(m);
9268   assert(m == p->mark(), "Mark word changed");
9269   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9270          "bijection");
9271 }
9272 
9273 // Single threaded
9274 void CMSCollector::preserve_mark_if_necessary(oop p) {
9275   markOop m = p->mark();
9276   if (m->must_be_preserved(p)) {
9277     preserve_mark_work(p, m);
9278   }
9279 }
9280 
9281 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9282   markOop m = p->mark();
9283   if (m->must_be_preserved(p)) {
9284     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9285     // Even though we read the mark word without holding
9286     // the lock, we are assured that it will not change
9287     // because we "own" this oop, so no other thread can
9288     // be trying to push it on the overflow list; see
9289     // the assertion in preserve_mark_work() that checks
9290     // that m == p->mark().
9291     preserve_mark_work(p, m);
9292   }
9293 }
9294 
9295 // We should be able to do this multi-threaded,
9296 // a chunk of stack being a task (this is
9297 // correct because each oop only ever appears
9298 // once in the overflow list. However, it's
9299 // not very easy to completely overlap this with
9300 // other operations, so will generally not be done
9301 // until all work's been completed. Because we
9302 // expect the preserved oop stack (set) to be small,
9303 // it's probably fine to do this single-threaded.
9304 // We can explore cleverer concurrent/overlapped/parallel
9305 // processing of preserved marks if we feel the
9306 // need for this in the future. Stack overflow should
9307 // be so rare in practice and, when it happens, its
9308 // effect on performance so great that this will
9309 // likely just be in the noise anyway.
9310 void CMSCollector::restore_preserved_marks_if_any() {
9311   assert(SafepointSynchronize::is_at_safepoint(),
9312          "world should be stopped");
9313   assert(Thread::current()->is_ConcurrentGC_thread() ||
9314          Thread::current()->is_VM_thread(),
9315          "should be single-threaded");
9316   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9317          "bijection");
9318 
9319   while (!_preserved_oop_stack.is_empty()) {
9320     oop p = _preserved_oop_stack.pop();
9321     assert(p->is_oop(), "Should be an oop");
9322     assert(_span.contains(p), "oop should be in _span");
9323     assert(p->mark() == markOopDesc::prototype(),
9324            "Set when taken from overflow list");
9325     markOop m = _preserved_mark_stack.pop();
9326     p->set_mark(m);
9327   }
9328   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9329          "stacks were cleared above");
9330 }
9331 
9332 #ifndef PRODUCT
9333 bool CMSCollector::no_preserved_marks() const {
9334   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9335 }
9336 #endif
9337 
9338 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9339 {
9340   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9341   CMSAdaptiveSizePolicy* size_policy =
9342     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9343   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9344     "Wrong type for size policy");
9345   return size_policy;
9346 }
9347 
9348 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9349                                            size_t desired_promo_size) {
9350   if (cur_promo_size < desired_promo_size) {
9351     size_t expand_bytes = desired_promo_size - cur_promo_size;
9352     if (PrintAdaptiveSizePolicy && Verbose) {
9353       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9354         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9355         expand_bytes);
9356     }
9357     expand(expand_bytes,
9358            MinHeapDeltaBytes,
9359            CMSExpansionCause::_adaptive_size_policy);
9360   } else if (desired_promo_size < cur_promo_size) {
9361     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9362     if (PrintAdaptiveSizePolicy && Verbose) {
9363       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9364         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9365         shrink_bytes);
9366     }
9367     shrink(shrink_bytes);
9368   }
9369 }
9370 
9371 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9372   GenCollectedHeap* gch = GenCollectedHeap::heap();
9373   CMSGCAdaptivePolicyCounters* counters =
9374     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9375   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9376     "Wrong kind of counters");
9377   return counters;
9378 }
9379 
9380 
9381 void ASConcurrentMarkSweepGeneration::update_counters() {
9382   if (UsePerfData) {
9383     _space_counters->update_all();
9384     _gen_counters->update_all();
9385     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9386     GenCollectedHeap* gch = GenCollectedHeap::heap();
9387     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9388     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9389       "Wrong gc statistics type");
9390     counters->update_counters(gc_stats_l);
9391   }
9392 }
9393 
9394 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9395   if (UsePerfData) {
9396     _space_counters->update_used(used);
9397     _space_counters->update_capacity();
9398     _gen_counters->update_all();
9399 
9400     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9401     GenCollectedHeap* gch = GenCollectedHeap::heap();
9402     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9403     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9404       "Wrong gc statistics type");
9405     counters->update_counters(gc_stats_l);
9406   }
9407 }
9408 
9409 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9410   assert_locked_or_safepoint(Heap_lock);
9411   assert_lock_strong(freelistLock());
9412   HeapWord* old_end = _cmsSpace->end();
9413   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9414   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9415   FreeChunk* chunk_at_end = find_chunk_at_end();
9416   if (chunk_at_end == NULL) {
9417     // No room to shrink
9418     if (PrintGCDetails && Verbose) {
9419       gclog_or_tty->print_cr("No room to shrink: old_end  "
9420         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9421         " chunk_at_end  " PTR_FORMAT,
9422         old_end, unallocated_start, chunk_at_end);
9423     }
9424     return;
9425   } else {
9426 
9427     // Find the chunk at the end of the space and determine
9428     // how much it can be shrunk.
9429     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9430     size_t aligned_shrinkable_size_in_bytes =
9431       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9432     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
9433       "Inconsistent chunk at end of space");
9434     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9435     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9436 
9437     // Shrink the underlying space
9438     _virtual_space.shrink_by(bytes);
9439     if (PrintGCDetails && Verbose) {
9440       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9441         " desired_bytes " SIZE_FORMAT
9442         " shrinkable_size_in_bytes " SIZE_FORMAT
9443         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9444         "  bytes  " SIZE_FORMAT,
9445         desired_bytes, shrinkable_size_in_bytes,
9446         aligned_shrinkable_size_in_bytes, bytes);
9447       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9448         "  unallocated_start  " SIZE_FORMAT,
9449         old_end, unallocated_start);
9450     }
9451 
9452     // If the space did shrink (shrinking is not guaranteed),
9453     // shrink the chunk at the end by the appropriate amount.
9454     if (((HeapWord*)_virtual_space.high()) < old_end) {
9455       size_t new_word_size =
9456         heap_word_size(_virtual_space.committed_size());
9457 
9458       // Have to remove the chunk from the dictionary because it is changing
9459       // size and might be someplace elsewhere in the dictionary.
9460 
9461       // Get the chunk at end, shrink it, and put it
9462       // back.
9463       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9464       size_t word_size_change = word_size_before - new_word_size;
9465       size_t chunk_at_end_old_size = chunk_at_end->size();
9466       assert(chunk_at_end_old_size >= word_size_change,
9467         "Shrink is too large");
9468       chunk_at_end->set_size(chunk_at_end_old_size -
9469                           word_size_change);
9470       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9471         word_size_change);
9472 
9473       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9474 
9475       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9476       _bts->resize(new_word_size);  // resize the block offset shared array
9477       Universe::heap()->barrier_set()->resize_covered_region(mr);
9478       _cmsSpace->assert_locked();
9479       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9480 
9481       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9482 
9483       // update the space and generation capacity counters
9484       if (UsePerfData) {
9485         _space_counters->update_capacity();
9486         _gen_counters->update_all();
9487       }
9488 
9489       if (Verbose && PrintGCDetails) {
9490         size_t new_mem_size = _virtual_space.committed_size();
9491         size_t old_mem_size = new_mem_size + bytes;
9492         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
9493                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9494       }
9495     }
9496 
9497     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9498       "Inconsistency at end of space");
9499     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
9500       "Shrinking is inconsistent");
9501     return;
9502   }
9503 }
9504 // Transfer some number of overflown objects to usual marking
9505 // stack. Return true if some objects were transferred.
9506 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9507   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9508                     (size_t)ParGCDesiredObjsFromOverflowList);
9509 
9510   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9511   assert(_collector->overflow_list_is_empty() || res,
9512          "If list is not empty, we should have taken something");
9513   assert(!res || !_mark_stack->isEmpty(),
9514          "If we took something, it should now be on our stack");
9515   return res;
9516 }
9517 
9518 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9519   size_t res = _sp->block_size_no_stall(addr, _collector);
9520   if (_sp->block_is_obj(addr)) {
9521     if (_live_bit_map->isMarked(addr)) {
9522       // It can't have been dead in a previous cycle
9523       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9524     } else {
9525       _dead_bit_map->mark(addr);      // mark the dead object
9526     }
9527   }
9528   // Could be 0, if the block size could not be computed without stalling.
9529   return res;
9530 }
9531 
9532 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9533 
9534   switch (phase) {
9535     case CMSCollector::InitialMarking:
9536       initialize(true  /* fullGC */ ,
9537                  cause /* cause of the GC */,
9538                  true  /* recordGCBeginTime */,
9539                  true  /* recordPreGCUsage */,
9540                  false /* recordPeakUsage */,
9541                  false /* recordPostGCusage */,
9542                  true  /* recordAccumulatedGCTime */,
9543                  false /* recordGCEndTime */,
9544                  false /* countCollection */  );
9545       break;
9546 
9547     case CMSCollector::FinalMarking:
9548       initialize(true  /* fullGC */ ,
9549                  cause /* cause of the GC */,
9550                  false /* recordGCBeginTime */,
9551                  false /* recordPreGCUsage */,
9552                  false /* recordPeakUsage */,
9553                  false /* recordPostGCusage */,
9554                  true  /* recordAccumulatedGCTime */,
9555                  false /* recordGCEndTime */,
9556                  false /* countCollection */  );
9557       break;
9558 
9559     case CMSCollector::Sweeping:
9560       initialize(true  /* fullGC */ ,
9561                  cause /* cause of the GC */,
9562                  false /* recordGCBeginTime */,
9563                  false /* recordPreGCUsage */,
9564                  true  /* recordPeakUsage */,
9565                  true  /* recordPostGCusage */,
9566                  false /* recordAccumulatedGCTime */,
9567                  true  /* recordGCEndTime */,
9568                  true  /* countCollection */  );
9569       break;
9570 
9571     default:
9572       ShouldNotReachHere();
9573   }
9574 }